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Performance of a cardiac lipid panel 
compared to four prognostic scores 
in chronic heart failure
Peter McGranaghan1,2,12, Anshul Saxena2,12, Hans‑Dirk Düngen1, Muni Rubens2, 
Sandeep Appunni3, Joseph Salami2, Emir Veledar2,10,11, Philipp Lacour1, Florian Blaschke1, 
Danilo Obradovic4, Goran Loncar5, Elvis Tahirovic6, Frank Edelmann1,7,8, 
Burkert Pieske1,7,8,9 & Tobias Daniel Trippel1,7*

The cardiac lipid panel (CLP) is a novel panel of metabolomic biomarkers that has previously shown 
to improve the diagnostic and prognostic value for CHF patients. Several prognostic scores have been 
developed for cardiovascular disease risk, but their use is limited to specific populations and precision 
is still inadequate. We compared a risk score using the CLP plus NT-proBNP to four commonly used 
risk scores: The Seattle Heart Failure Model (SHFM), Framingham risk score (FRS), Barcelona bio-HF 
(BCN Bio-HF) and Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) score. We included 
280 elderly CHF patients from the Cardiac Insufficiency Bisoprolol Study in Elderly trial. Cox Regression 
and hierarchical cluster analysis was performed. Integrated area under the curves (IAUC) was used 
as criterium for comparison. The mean (SD) follow-up period was 81 (33) months, and 95 (34%) 
subjects met the primary endpoint. The IAUC for FRS was 0.53, SHFM 0.61, BCN Bio-HF 0.72, MAGGIC 
0.68, and CLP 0.78. Subjects were partitioned into three risk clusters: low, moderate, high with the 
CLP score showing the best ability to group patients into their respective risk cluster. A risk score 
composed of a novel panel of metabolite biomarkers plus NT-proBNP outperformed other common 
prognostic scores in predicting 10-year cardiovascular death in elderly ambulatory CHF patients. This 
approach could improve the clinical risk assessment of CHF patients.

The prevalence of chronic heart failure (CHF) in the western world continues to increase, especially in patients 
older than 65 years1. CHF is a major burden on the health care system and is associated with high morbidity 
and mortality, including a poor quality of life2. An important aspect of CHF management is to ensure that clini-
cians and patients with CHF have the necessary knowledge and resources to make the best health decisions. A 
prognostic model is one such resource, defined as a formal combination of multiple predictors from which risks 
of a specific outcome can be calculated for individual patients.

Prognostic models are abundant in the literature, and the most popular ones include the SHFM (Seattle Heart 
Failure Model), FRS (Framingham Risk Score), MAGGIC (Meta-analysis Global Group in Chronic Heart Fail-
ure), and BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator). The SHFM score is the most thoroughly 
validated and contains the most predictor variables of the four3. The MAGGIC score4 was developed from a 
dataset of over 39,000 patients across 30 studies and validated on more than 60,000 patients using 2 large CHF 
cohorts5,6. The FRS score was developed as a sex-specific risk score that can be conveniently used to calculate 
general cardiovascular disease (CVD) risk and risk of individual CVD events7. The BCN Bio-HF score contains 11 
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clinical variables with the most biomarker variables [NT-proBNP, high-sensitivity cardiac troponin T (hs-cTnT), 
high-sensitivity soluble ST2 (ST2)] and has been externally validated8,9. These models all use common clinical 
and demographic variables to predict the prognosis of CHF patients and have convenient online calculators. 
Although these scores have been validated, they have not been widely adopted possibly because they are not 
routinely calculated in clinical practice10–12, have poor reliability at the individual patient level5, suffer from a 
significant amount of missing data requiring imputation.

Metabolomics is a rapidly growing field in biomarker profiling that could help meet the need for more robust 
prognostic biomarkers. By applying nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry 
(MS), it is now possible to analyze hundreds of metabolites from human samples such as blood, urine, saliva, 
and tissue, which can elucidate the outcome of complex networks of endogenous and exogenous biochemical 
reactions13. This approach could provide a more comprehensive signature of biochemical activities that could 
be associated with diet, medication, disease progression, and thus negative outcomes due to these complex 
mechanisms14,15. Previous studies have shown that metabolomic biomarkers can be used for risk prediction as 
well as diagnosis of CHF16–28.

One promising metabolomic biomarker panel in CHF patients is the cardiac lipid panel (CLP) which is sup-
plemented by N-terminal pro–B-type natriuretic peptide (NT-proBNP). The CLP is consists of three specific 
metabolomics features: triacylglycerol (TAG) 18:1/18:0/18:0, phosphatidylcholine (PC) 16:0/18:2, and the sum 
of the 3 isobaric sphingomyelin (SM) species SM d18:1/23:1, SM d18:2/23:0, and SM d17:1/24:1. The diagnostic 
value of CLP was first discovered in a study by Mueller and colleagues, where they compared CHF patients to 
healthy controls, and found that CLP was able to improve the diagnostic performance over NT-proBNP alone29. 
The incremental prognostic value of the CLP was first assessed in a recent study which found it improved the 
discrimination and risk assessment over NT-proBNP and clinical risk factors30.

The objective of this study was to compare the performance of a risk score composed of the CLP panel plus 
NT-proBNP to the four commonly used traditional risk scores (SHFM, FRS, MAGGIC, BCN Bio-HF) to pre-
dict long-term cardiovascular mortality in ambulatory CHF patients. We hypothesized that the CLP risk score 
would improve our ability to classify risk of cardiovascular death in comparison to the four validated clinical 
risk prediction algorithms.

Results
Table 1 shows the baseline characteristics of the total population (n = 280) as well as the variables included in each 
score. Mean age of this sub-cohort was 72.1 (4.9) years, 26.4% were women, 45% patients had heart failure with 
reduced ejection fraction (HFrEF) (LVEF < 35%), and most patients were in NYHA functional class II (67.5%) 
with the remaining in NYHA class III. Hypertension was present in 80% of participants and 45% were current or 
former smokers; 29% had diabetes and 71% had CAD. During the follow-up period (mean = 81 months, SD = 33; 
median = 96 months), 95 (34%) patients met the primary outcome. There were 30 (11%) patients who met the 
secondary outcome of 3-year all-cause mortality. The sample selection criteria as well as the comparison of this 
sub cohort’s baseline characteristics to the source cohort has previously been reported30, however, this study 
analyzed 10 year follow up rather than the previously reported 4 year follow up.

All variables were available for each score except for the lymphocytes (%) variable in the SHFM score, which 
was imputed as previously described. The SHFM model had the highest number of variables (n = 17), followed 
by MAGGIC (n = 13), BCN Bio-HF (n = 12), FRS (n = 7), and CLP (n = 4). There were 13 overlapping variables 
which were included in at least 2 scores. The SHFM score included the most medication (n = 6) and laboratory 
(n = 5) variables, BCN Bio-HF is the only model with biomarker data (NT-proBNP) while MAGGIC included 
the most clinical (n = 7) and demographic variables (n = 3).

Table 2 shows the univariate Cox Regression results. The CLP (HR = 2.38, p < 0.001), SHFM (HR = 2.01, 
p = 0.002, MAGGIC (HR = 1.10, p < 0.001), and BCN Bio-HF (HR = 1.09, p = 0.0393) scores were significantly 
associated with the outcome while FRS was not. The hazard ratios for the secondary endpoint of 3-year all-cause 
mortality are shown in Supplemental Table 1. All scores had a higher HR than the primary outcome except for 
CLP and FRS. Figure 1 shows the AUC change over time (IAUC) for the 5 prognostic scores with the comparison 
of Uno’s concordance statistics for hypothesis testing. The IAUC was 0.53, 0.61, 0.68, 0.72, and 0.78 for FRS, 
SHFM, MAGGIC, BCN Bio-HF, and CLP, respectively. Harrell’s c statistics at 10 year follow up show similar 
results (Supplemental Table 2). The four traditional scores were all significantly different (p < 0.05) from the CLP 
score according to the difference in concordance statistic (Supplemental Table 3). The incremental value of the 
CLP to NT-proBNP is shown in Supplemental Figure 1, the NT-proBNP only IAUC was 0.71 while the CLP 
score (which incorporates the CLP biomarkers plus NT-proBNP) was 0.78 (p = 0.004). Discrimination analysis 
of the secondary outcome of 3-year all-cause mortality showed the CLP IAUC lowered to 0.76, and only CLP vs 
FRS remained significantly different (Supplemental Figure 2). The models showed adequate calibration except 
for FRS (calibration curve slope = 0.894) (Supplemental Figure 3).

Competing event analysis showed the SHFM, MAGGIC, and the CLP models remained significantly associ-
ated with cardiovascular death, and all scores showed less association to non-cardiovascular death (Supplemental 
Table 4). The CIF curve, which accounted for non-cardiovascular mortality as a competing event, showed higher 
cumulative incidence of cardiovascular mortality with higher CLP scores (Supplemental Figure 4).

Figure 2 shows the hierarchical cluster dendrogram mapped to illustrate the assignment of patients into their 
respective clusters and the associated color map shows the range of each prognostic score and their distribution 
within each cluster. Hierarchical clustering grouped the patients in separate clusters accounting for the noise 
between smaller clusters. Each observation was treated as a unique cluster, and this method: (1) identified the two 
similar or close clusters, and (2) merged the two most similar clusters. Using this clustering technique, similar 
prognostic score data from participants were grouped together, such that the members in the same group were 
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Characteristic

Total Prognostic score

n = 280 SHFM FRS MAGGIC BCN Bio-HF CLP

Age (years), mean ± SD 72 ± 4.9 ✓ ✓ ✓ ✓

NYHA (II/III), n 188/91 ✓ ✓ ✓

Male, n (%) 206 (74) ✓ ✓ ✓ ✓

Body mass index (kg/m2), mean ± SD 26.8 ± 3.4 ✓

Heart rate (bpm), mean ± SD 73 ± 13.0

Systolic blood pressure (mm Hg), mean ± SD 134 ± 19 ✓ ✓ ✓

Diastolic blood pressure (mm Hg), mean ± SD 81 ± 11

Years since first diagnosis of CHF 5.2 ± 5.6 ✓

Laboratory, mean ± SD

Creatinine (μmol/L) 107 ± 27.9 ✓

Hemoglobin (g/dL) 13.4 ± 1.5 ✓ ✓

Sodium (mEq/L) 141.4 ± 3.3 ✓ ✓

Uric acid (μmol/L) 356 ± 127 ✓

Total Cholesterol (mmol/L) 5.1 ± 1.6

HDL cholesterol (mmol/L) 1.2 ± 0.5 ✓

LDL cholesterol (mmol/L) 3.4 ± 1.3

Triglycerides (mmol/L) 1.7 ± 1.0

Lymphocytes (%)* ✓

NT-proBNP (pg/mL) 793 (331–1765)† ✓ ✓

PC 16:0/18:2 (µg/dl) 36,810 (32,435–40,015)† ✓

TAG 18:1/18:0/18:0 (µg/dl) 121 (76.5–256.4)† ✓

SM d18:1/23:1, SM d18:2/23:0, SM d17:1/24:1 (µg/dl) 1342 (1134–1596)† ✓

Cardiac imaging, mean ± SD

LVEF (%) 36 ± 9.5 ✓ ✓

LVDed (mm) 58.8 ± 9.2

LVDes (mm) 45.5 ± 9.7

LVVed (mL) 152.7 ± 63.9

LVVes (mL) 101.1 ± 51.6

LAes (mm) 45.3 ± 7.2

E/e’ 12 ± 9.2

E/A 1 ± 0.8

Deceleration time (ms) 226 ± 80

Comorbidities, n (%)

Diabetes 82 (29) ✓ ✓

Hypertension 224 (80)

Coronary artery disease 200 (71) ✓

Smokers 125 (45) ✓ ✓

Hyperlipidemia 162 (58)

COPD 9 (3) ✓

Medication, n (%)

ACE inhibitor 247 (88) ✓ ✓

Allopurinol 0 (0) ✓

ARB 115 (41) ✓ ✓

Beta blocker 203 (73) ✓ ✓

Diuretics 219 (78) ✓

Diuretic dose mg/kg per day 0.32 ± 0.31 ✓

Glycoside 59 (21)

Aspirin 216 (77)

Nitrate 146 (52)

Antiarrhythmic agent 42 (15)

Statin 114 (41) ✓ ✓

Table 1.   Baseline characteristics of the study participants and variables included in each prognostic score. ACE, 
angiotensin-converting enzyme; ARB, angiotensin receptor blocker; BCN Bio-HF, Barcelona Bio-Heart Failure 
Risk Calculator; CLP, Cardiac Lipid Panel Risk Score; COPD, chronic obstructive pulmonary disease; E/A, ratio 
of the early (E) to late (A) ventricular filling velocities; E/e’, ratio between early mitral inflow velocity and mitral 
annular early diastolic velocity; FRS, Framingham Risk Score; LAes, left atrial end systole; LDL, low-density 
lipoprotein; NYHA, New York Heart Association; HDL, high-density lipoprotein; LVDed, left ventricular 
diameter end diastole; LVDes, left ventricular diameter end systole; LVVed, left ventricular volume end diastole; 
LVEF, left ventricular ejection fraction; LVVes, left ventricular volume end systole; mg/kg, milligrams per 
kilograms; MAGGIC, Meta-analysis Global Group in Chronic Heart Failure; NTpro-BNP, N-terminal pro–B-
type natriuretic; PC, phosphatidylcholine; SHFM, Seattle Heart Failure Model; SM, sphingomyelin; TAG, 
triacylglycerol. *Imputed using the median, 31%, of the normal range 20–40%. † Median (Interquartile Range).



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8164  | https://doi.org/10.1038/s41598-021-87776-w

www.nature.com/scientificreports/

more similar to each other than the members in the other groups. We can infer from the cluster centres and 
cluster memberships that CLP risk score was better at grouping patients with respect to their cardiovascular 
mortality risk and associated clinical characteristics compared to the other four scores. The survival curves for 
each risk cluster are shown in Fig. 3. Rates of mortality were: low risk cluster (20%), moderate risk cluster (27%) 
and high-risk cluster (50%). Supplemental Figure 5 shows the constellation plot on a two-dimensional plane 
with nodes and links to describe relationship among component nodes. This plot is an alternate depiction of the 
dendrogram and illustrates the length between clusters and a balanced structure. Supplemental Figure 6 shows 
the scatterplot matrix of all 4 scores and clusters to illustrate the relationships between each prognostic score 
and risk cluster assignment.

Table 3 shows the cohort characteristics and the prognostic score distribution for each risk cluster. The three 
clusters were: low risk, n = 119; moderate risk, n = 44; high risk, n = 117. There were 11 out of the 50 cohort char-
acteristics significantly different across the 3 clusters. In particular, patients in the highest risk cluster were older, 
with lower LVEF, higher NT-proBNP, and experienced a higher frequency of events. The SHFM, BCN Bio-HF, 
and CLP scoreswere significantly different across their respective risk clusters. Of the continuous risk scores 
(FRS, SHFM, MAGGIC, BCN Bio-HF), only SHFM and MAGGIC, had its highest mean score in the high-risk 
cluster. The categorical CLP score showed a skewed distribution of higher risk scores (3–4) in the moderate and 
high-risk clusters. In the high-risk cluster, the majority of subjects were scored with CLP scores of 3–4.

The correlation of the CLP biomarkers TAG, PC, and SM were most correlated with the clinical character-
istics: triglycerides (r = 0.531, p < 0.001), total cholesterol (r = 0.431, p < 0.001), and LDL (r = 0.502, p < 0.001), 
respectively (Supplemental Figure 7).

Discussion
We found that a risk score based on a novel panel of three metabolite-based biomarkers plus NT-proBNP 
outperformed commonly used traditional prognostic models for predicting cardiovascular mortality in elderly 
ambulatory CHF patients. We first measured the association of each risk score with the outcome, followed by 
discrimination analysis, then cluster analysis, and finally correlation analysis of the individual CLP biomarkers 
with the clinical characteristics. In our study cohort, CLP score, showed the best discrimination compared to 
the other 4 scores. This indicates that the biomarker information included in the CLP score could more precisely 
classify high risk CHF patients than the information included in the 4 other risk scores. On the other hand, 
the biomarker information from the CLP is not as easily attainable and no convenient calculator exists yet, as 
these findings should first be validated in larger cohorts. Additionally, none of the other scores were originally 
developed for 10-year cardiovascular mortality. To the best of our knowledge there is no score specific for pre-
dicting 10-year risk of cardiovascular death, but it is not uncommon to use the scores such as FRS to predict 
different outcomes in similar studies31–33. Nevertheless, the other risk scores may be improved with the addition 
of common biomarkers in their score calculation. For instance, NT-proBNP is a well-established biomarker 
that is known to be associated with ventricular wall stress34 and is considered the gold-standard biomarker in 
CHF diagnosis and prognosis35. Only BCN Bio-HF contained NT-proBNP and it was the next best performing 
prognostic score after the CLP.

We performed cluster analysis to assess how well the risk scores could partition subjects into different risk 
groups, blinded to the study outcome. A strength of this approach is that clusters could define relevant groups 
of patients and could mitigate the problems of multicollinearity while determining if the predictive variables are 
useful in separating these groups. In our study, patients within each cluster varied along measures of age, labora-
tory parameters, days survived, as well as the prognostic scores. When comparing the score distributions across 
the three risk clusters, the CLP score showed a more homogenous grouping of patients according to their risk 
score stratification while the other scores showed a more heterogenous distribution across risk clusters. Several 
prior studies have used similar clustering methods to identify clinically relevant patient subgroups for CHF36,37, 
but we are not aware of previous studies using clustering methods to compare a novel biomarker score to other 
conventional prognostic scores for CHF.

The combination of the CLP’s metabolomic features with NT-proBNP into a risk score may help overcome 
limitations of using only traditional clinical risk factors. Furthermore, application of a single biomarker such 
as NT-proBNP for outcome prediction is limited by insufficient specificity (low predictive value or high false 
positive rate)38,39. Recently, it was reported that the CLP added incremental prognostic value to NT-proBNP in 

Table 2.   Prognostic scores and univariate hazard ratios for cardiovascular mortality. Unadjusted Cox 
proportional hazard models of 10-year outcome for cardiovascular mortality. Total subjects, n = 280. Total 
events, n = 95. SHFM (Seattle Heart Failure Model), FRS (Framingham Risk Score), and MAGGIC (Meta-
analysis Global Group in Chronic Heart Failure), BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator), 
and Cardiac Lipid Panel Risk Score (CLP).

Score HR (95% CI) p value

SHFM 1.89 (1.29–2.807) 0.0017

FRS 1.02 (0.97–1.07) 0.5291

MAGGIC 1.10 (1.05–1.14) < .0001

BCN Bio-HF 1.09 (1.00–1.84) 0.0393

CLP 2.38 (1.95–2.92) < .0001
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predicting 4-year cardiovascular mortality30. We used the same method to calculate the CLP score for this study, 
and we also confirmed that the CLP provided similar incremental value to NT-proBNP alone as previously found 
in the 4-year study30.Using an aggregate score rather than individual biomarkers for risk prediction can help more 
precisely stratify risk. A recent meta-analysis of 18 metabolomic prognostic biomarker studies for CVD found 
those which incorporated a selection of metabolites into a score (n = 5 studies) had the best prognostic perfor-
mance rather than using the individual biomarker values16. Another systematic review20 reported 6 studies21–26 
developed a metabolite-based score to predict CVD risk with each score composed between 4 and 16 biomarkers.

We have briefly mentioned the components of the CLP in the introduction section, in addition to improving 
risk prediction, developing a biomarker-based risk score could also improve our understanding of the patho-
physiology and biological mechanisms involved in CHF. In the following paragraphs we would like to highlight 
those mechanisms based on previous research. The CLP metabolites can be grouped into three different lipid 
subclasses, sphingomyelin (SM) phosphatidylcholine (PC), and triglycerides (TAG), which have previously been 
found to be associated with cardiomyocyte stress/apoptosis40, intestinal microbial metabolism/inflammation19, 
and coronary artery disease41, respectively. Sphingomyelins are localized in cell membranes and lipoproteins, 
and their hydrolysis by sphingomyelinase leads to increased amounts of ceramide. Ceramide triggers the genera-
tion of reactive oxygen species (ROS) involved in the modulation of cell proliferation and apoptosis, neutrophil 
adhesion to the vessel wall, and vascular tone. Dysfunctional sphingomyelin and ceramide metabolism may lead 
to or aggravate cardiovascular diseases42. Lemaitre et al.43 reported that lipid species such as Cer-16 and SM-16 
were associated with increased risk of heart failure. Sigruener et al.44 reported that the detection of sphingomy-
elin species SM 16∶0, 16∶1, 24∶1 and 24∶2 was increasingly associated with mortality in Ludwigshafen Risk and 
Cardiovascular Health (LURIC) study. The CLP biomarker panel consists of the sum of three monosaturated 
fatty acid carrying SM species: SM d18:1/23:1, SM d18:2/23:0, SM d17:1/24:1.

PC is the most abundant lipid in the human body and is subjected to chemical events like lipid peroxidation 
and ROS formation45. Myocardium suffers heavily from lipid peroxidation related injury46. PC carrying polyun-
saturated fatty acids such as PC (16:0/18:2) which is a component of the CLP panel, have increased risk for lipid 
peroxidation47. Oxidative stress increases the formation of electrophilic aldehydes from native phospholipids 
leading to formation of adducts with tissue or plasma proteins thereby aggravating the pathophysiology of car-
diovascular diseases48. Previous studies have shown that lipid peroxidation and ROS generation are associated 
with cardiac damage and raises mortality. Higher consumption of PC was found to increase the risk of organ 

Figure 1.   Discrimination performance for each prognostic score for 10-year cardiovascular mortality. 
Integrated area under the curve (IAUC) for: SHFM (Seattle Heart Failure Model), FRS (Framingham Risk 
Score), and MAGGIC (Meta-analysis Global Group in Chronic Heart Failure), BCN Bio-HF (Barcelona Bio-
Heart Failure Risk Calculator), and Cardiac Lipid Panel Risk Score (CLP). Total subjects, n = 280; total events, 
n = 95. p values were calculated from the differences in concordance statistic in comparison to the CLP score.
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injury and cardiovascular mortality49. Natural antioxidants like α-tocopherol have shown to reduce such oxida-
tive stress and resulting inflammation thereby preventing the progression of cardiac injury50.

The molecules of TG are involved in the regulation of insulin-signaling pathways through the activation of 
several serine/threonine kinases, which suppress insulin receptors, thus inducing peripheral insulin resistance. 
Previous studies have shown that insulin resistance leads to inflammation and atherosclerosis51. Although the 
relationship between total triglycerides and insulin resistance and CVD risk are well established52, the rela-
tionships between individual serum TGs and insulin resistance is not well-established. Studies of individual 
TGs may help better characterize insulin resistance and CVD better than total triglycerides. For instance, it 
was previously found that saturated TG 16:0 fatty acid was positively associated with fasting serum insulin 
concentrations and that of essential 18:3 n-6 fatty acid was negatively associated53. Another study on indi-
vidual TGs revealed that serum TG molecules containing saturated and monounsaturated fatty acids, such as 
TG(16:0/16:0/18:1) and TG(16:0/18:1/18:0), correlated positively, whereas those containing essential fatty acids, 
such as TG(18:1/18:2/18:2), negatively with features of insulin resistance54. The CLP consists of the saturated and 
monosaturated fatty acid carrying TAG 18:1/18:0/18:0.

These findings indicate that metabolomic studies may help gain a deeper understanding of the molecular 
mechanisms of CVD. Therefore, more detailed metabolomic analysis would hopefully lead to the discovery or 
further development of sensitive and specific lipid-based markers for cardiovascular risk.

Figure 2.   Hierarchal cluster dendrogram of three risk clusters. Assignment of patients into risk clusters based 
on the prognostic scores. The clustering process can be viewed by reading the dendrogram from left to right. 
Each step consists of combining the two closest clusters into a single cluster. The joining of clusters is indicated 
by horizontal lines that are connected by vertical lines. The horizontal position of the vertical line represents the 
distance between the two clusters that are most recently joined to form the specified number of clusters. The 
prognostic scores used for clustering were: SHFM (Seattle Heart Failure Model), FRS (Framingham Risk Score), 
and MAGGIC (Meta-analysis Global Group in Chronic Heart Failure), BCN Bio-HF (Barcelona Bio-Heart 
Failure Risk Calculator), and Cardiac Lipid Panel Risk Score (CLP). Each prognostic score was standardized to 
the same scale (mean = 0; SD = 1). Ward’s minimum variance method was used for clustering. Blue dendrogram 
indicates the cluster 1 (low risk), n = 119; Grey dendrogram indicates cluster 2 (moderate risk), n = 44, Red 
dendrogram indicates cluster 3 (high risk), n = 117; Total subjects, n = 280.
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Study limitations
These proof-of-concept findings should be interpreted as hypothesis generating to be used as a reference for 
validation studies on larger cohorts in the future. The homogeneity of this cohort, elderly patients with stable 
CHF, may have had an impact on the performance of the prognostic scores. Due to the inclusion and exclusion 
criteria of the CIBIS-ELD trial, these results may not have good external validity, and more research would be 
needed to validate the results. Performance and comparison of the risk scores may be affected by the fact that 
the models were designed using different endpoint definitions and cohorts. Risk categories that are clinically 
relevant for one model’s definition may not apply to a different model. The MAGGIC score estimates risk of all-
cause mortality at one and at three years, the SHFM up to five years, and the BCN Bio-HF at one, two, and three 
years, and the FRS estimates risk of first CVD event, none of which were developed for the primary outcome 
of this study of 10-year cardiovascular mortality. The SHFM score may have been affected by the imputation of 
lymphocytes % as well as the lack of patients taking allopurinol. The BCN-bio HF score was updated in 201855 
which could provide better predictive value than the 2014 version used in this study. We were limited by the 
availability of the data for the 2018 version of the BCN-bio HF score, since it required more parameters such as 
ARNi medication and number of HF hospitalizations in the previous year. The FRS was originally developed for 
coronary artery disease and not CHF, which may explain its poor performance on this cohort. The CLP biomarker 
kit was developed for routine use in the clinic; however, it is still a research biomarker panel pending regulatory 
approval and must be sent to a lab equipped with MS technology. Our findings are limited to this population of 
elderly CHF patients and future validation studies should be performed to include a more heterogenous cohort 
such as younger, more women, and early/ asymptomatic patients. Other common biomarkers such as ST2, 
hs-CRP, and troponins should be compared to the CLP as they are more readily available and do not require 
samples be sent to a specialized lab. The CLP panel was originally developed as a diagnostic and early detection 
biomarker for HFrEF, and clinicians and researchers should be cautious when using it as a prognostic tool, as 
these are still preliminary findings.

Conclusion
In a cohort of ambulatory CHF patients, we have shown that the prognostic scores included in this study were 
useful in stratifying patients into risk clusters. Our findings demonstrate that the CLP risk score comprising 
a panel of 3 novel metabolomic biomarkers and NT-proBNP, could improve the prediction of cardiovascular 
mortality over traditional prognostic scores. In the future, a broader array of biomarkers should be integrated 
into a more comprehensive risk score that may improve discrimination potential and risk stratification and the 

Figure 3.   Kaplan Meier survival curves for 10-year cardiovascular mortality stratified by each risk cluster. The 
following scores were used to derive the risk clusters: SHFM (Seattle Heart Failure Model), FRS (Framingham 
Risk Score), MAGGIC (Meta-analysis Global Group in Chronic Heart Failure), BCN Bio-HF (Barcelona 
Bio-Heart Failure Risk Calculator), and Cardiac Lipid Panel Risk Score (CLP). Each prognostic score was 
standardized to the same scale (mean = 0; SD = 1). Total subjects, n = 280; total events, n = 95.
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Characteristic

Cluster 1 Cluster 2 Cluster 3

p value

Low risk Moderate risk High risk

n = 119 n = 44 n = 117

Age (years), mean ± SD 71 ± 5.1 71 ± 4.2 73 ± 4.8 0.0058a

NYHA (II/III), n 83/36 35/9 71/46 0.1868c

Male, n (%) 91 (77) 29 (66) 86 (74) 0.3979b

Body mass index (kg/m2), mean ± SD 27.0 ± 3.0 27.0 ± 3.4 26.6 ± 3.9 0.4165a

Heart rate (bpm), mean ± SD 73.8 ± 26.7 72.0 ± 10.9 73.2 ± 12.6 0.9385a

Systolic blood pressure (mm Hg), 
mean ± SD 136 ± 17.7 137 ± 25.7 131 ± 16.9 0.0642a

Diastolic blood pressure (mm Hg), 
mean ± SD 82.9 ± 10.9 78.7 ± 13.0 79.5 ± 10.3 0.0485a

Years since first diagnosis of CHF 5.3 ± 5.9 5.0 ± 4.5 5.3 ± 5.7 0.9737a

Cardiac Death, n (%) 24 (20) 12 (27) 59 (50)  < 0.0001b

Laboratory, mean ± SD

Serum creatinine (μmol/l) 103 ± 26.7 104 ± 26.7 113 ± 28.7 0.0034a

Hemoglobin (g/dL) 13.6 ± 1.4 13.4 ± 1.1 13.4 ± 1.7 0.1927a

Sodium (mmol/L) 142 ± 3.2 141 ± 3.6 141 ± 3.2 0.6576a

Uric acid (μmol/L) 342 ± 103 324 ± 108 378 ± 147 0.1084a

Total Cholesterol (mmol/L) 5.1 ± 1.6 5.4 ± 1.4 5.0 ± 1.6 0.2022a

HDL cholesterol (mmol/L) 1.2 ± 0.4 1.2 ± 0.4 1.2 ± 0.5 0.6042a

LDL cholesterol (mmol/L) 3.5 ± 1.4 3.5 ± 1.1 3.3 ± 1.3 0.4337a

Triglycerides (mmol/L) 1.7 ± 0.9 1.7 ± 0.9 1.8 ± 1.0 0.5816a

Lymphocytes (%)* 31 31 31 N/A

NT-proBNP (pg/mL) 506.0 (236–1461)† 860 (369–1883)† 1094 (450–2059)† 0.0015a

PC 16:0/18:2 (µg/dl) 36,830 (33,035–40,460)† 35,300 (30,538–39,370) † 37,275 (31,688–39,850) † 0.3678 a

TAG 18:1/18:0/18:0 (µg/dl) 131 (91–253)† 107 (74–264) † 103 (72–253) † 0.5739 a

SM d18:1/23:1, SM d18:2/23:0, SM 
d17:1/24:1 (µg/dl) 1433 (1181–1613)† 1378 (1156–1688) † 1296 (1071–1529) † 0.1598a

Cardiac imaging, mean ± SD

LVEF (%) 37.7 ± 9.6 36.7 ± 8.2 34.0 ± 9.5 0.0046a

LVDed (mm) 57.8 ± 9.2 59.6 ± 8.1 59.5 ± 9.5 0.2684a

LVDes (mm) 44.3 ± 9.4 45.6 ± 9.0 46.7 ± 10.1 0.1422a

LVVed (mL) 147 ± 57.5 165 ± 77 154 ± 64.6 0.4697a

LVVes (mL) 95.9 ± 47 109 ± 60.7 104 ± 52.2 0.4449a

LAes (mm) 44.6 ± 6.9 45.3 ± 6.5 45.9 ± 7.7 0.3705a

E/e’ 11.3 ± 8.8 10.4 ± 9.1 13.0 ± 9.5 0.0202a

E/A 1.0 ± 0.6 1.0 ± 0.8 1.2 ± 0.9 0.2407a

Deceleration time (ms) 233 ± 84.8 229 ± 80.8 219 ± 72.8 0.4823a

Comorbidities, n (%)

Diabetes 29 (24) 11 (25) 42 (36) 0.1195b

Hypertension 95 (80) 39 (87) 90 (77) 0.2534b

Coronary artery disease 80 (67) 30 (68) 90 (77) 0.2245b

Smokers 55 (46) 20 (46) 50 (43) 0.8592b

Hyperlipidemia 67(56) 26 (61) 69 (59) 0.8636b

COPD 2 (2) 2 (5) 5 (4) 0.2143b

Medication, n (%)

ACE inhibitor 104 (87) 36 (82) 107 (92) 0.2244b

Allopurinol 0 (0) 0 (0) 0 (0) N/A

ARB 39 (33) 16 (36) 60 (51) 0.0121b

Beta blocker 87 (73) 36 (82) 80 (68) 0.2303b

Diuretics 53 (45) 23 (52) 69 (59) 0.0850b

Diuretic dose mg/kg, mean ± SD 0.28 ± 0.25 0.33 ± 0.35 0.36 ± 0.34 0.3410a

Glycoside 26 (22) 8 (18) 25 (21) 0.8736b

Aspirin 92 (77) 33 (75) 91 (78) 0.9309b

Nitrate 55 (46) 28 (64) 63 (54) 0.1262b

Antiarrhythmic agent 16 (13) 6 (14) 20 (17) 0.7075b

Statin 51 (43) 18 (41) 45 (39) 0.7894b

Continued
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CLP offers a promise. The CLP score is a step in the direction of providing a more precise decision support tool 
to assist clinicians and patients in managing their CHF treatment.

Methods
Study population.  This study used a sub-cohort randomly selected from the Cardiac Insufficiency Biso-
prolol Study in Elderly (CIBIS-ELD) trial, a multi-center, randomized, double-blind trial with ≥ 65-year-old 
patients being treated for CHF. The original study design and results of the CIBIS-ELD trial have been published 
previously56,57. Briefly, patients with CHF were randomized in a 1:1 fashion to receive two different beta-block-
ers, either bisoprolol or carvedilol, and up titrated every fortnight for 12 weeks and then followed at 10 years. 
From this source cohort (n = 883), there were n = 589 with available blood samples. Patients were randomly 
selected and included in the analysis only if they passed quality control58,59 resulting in a final set of 280 cases. 
The ethics committees of all participating centers approved the study protocol, and informed consent was signed 
by all participants prior to study participation. The ethics committees include: Germany: Ethikkommission der 
Charité on the 13th June 2007 (Amendment 5) (ref: 125/2004), Serbia: Ethics board of the University Hospital 
on the 31st March 2006 (ref: 6108/18), Slovenia: The national medical ethics committee on the 2nd July 2007 
(ref: KME 188/06/07). The investigation conformed to the principles outlined in the Declaration of Helsinki60.

Biomarker measurements.  Targeted metabolite profiling of the serum samples which passed quality 
control was performed at a specialized metabolomics lab using a commercially available kit. The kit uses a pro-
tocol based on a 1-phase extraction of the blood samples followed by gas chromatography mass spectrometry 
(GC–MS) (Agilent 6890 GC coupled to an Agilent 5973 MS-System) and liquid chromatography tandem-mass 
spectrometry (LC–MS/MS) (Agilent 1100 HPLC-System coupled to an Applied Biosystems API4000 MS/MS-
System) analysis as previously described29. The analytical protocol was designed for routine measurement in the 
clinical practice setting; however, it is currently only available in specialized labs equipped with MS technology. 
The samples were stored at − 80 °C and transferred on dry ice prior to analysis. The three CLP metabolomic 
features and NT-proBNP measurements, were generated at baseline, only for the previously mentioned samples 
(n = 280). NT-proBNP was a measured using commercially available assays (Elecsys, Roche Diagnostics).

Calculating prognostic scores.  Each prognostic score was calculated using the corresponding method 
proposed by the original authors (3–6). Only the scores which were developed in the follow-up time period, 
2006–2016, were included in the analysis due to data availability. For calculating the SHFM score, % lymphocyte 
was missing, and the median (31%) of the normal range (20–40%) was imputed for all subjects. For calculating 

Table 3.   Comparison of cohort characteristics and prognostic scores. Cohort characteristics and prognostic 
score distribution across risk clusters. The prognostic scores used for clustering were: SHFM (Seattle Heart 
Failure Model), FRS (Framingham Risk Score), and MAGGIC (Meta-analysis Global Group in Chronic 
Heart Failure), BCN Bio-HF (Barcelona Bio-Heart Failure Risk Calculator), and Cardiac Lipid Panel Risk 
Score (CLP). Each prognostic score was standardized to the same scale (mean = 0; SD = 1). Ward’s minimum 
variance method was used for clustering. ACE, angiotensin-converting enzyme; ARB, angiotensin receptor 
blocker; TAG, triacylglycerol 18:1/18:0/18:0; COPD, chronic obstructive pulmonary disease; E/A, ratio of 
the early (E) to late (A) ventricular filling velocities; E/e’, ratio between early mitral inflow velocity and mitral 
annular early diastolic velocity; LAes, left atrial end systole; LDL, low-density lipoprotein; NYHA, New York 
Heart Association; HDL, high-density lipoprotein; LVDed, left ventricular diameter end diastole; LVDes, left 
ventricular diameter end systole; LVVed, left ventricular volume end diastole; LVEF, left ventricular ejection 
fraction; LVVes, left ventricular volume end systole; mg/kg, milligrams per kilograms; NTpro-BNP, N-terminal 
pro–B-type natriuretic; PC, phosphatidylcholine; SM, sphingomyelin. a Wilcoxon rank sum test, bPearson’s 
chi-square test, cMantel-Haenszel chi-square. *Imputed using the median, 31%, of the normal range 20–40%. 
† Median (Interquartile Range).

Characteristic

Cluster 1 Cluster 2 Cluster 3

p value

Low risk Moderate risk High risk

n = 119 n = 44 n = 117

Prognostic scores

SHFM, Mean (SD) 1.1 ± 0.54 0.9 ± 0.6 1.32 ± 0.5  < .0001a

FRS, Mean (SD) 20.1 ± 4.1 20.6 ± 4.5 20.1 ± 4.0 0.6033a

MAGGIC, Mean (SD) 22.1 ± 5.0 21.4 ± 3.8 22.7 ± 5.0 0.2092a

BCN Bio-HF, Mean (SD) 0.83 ± 0.17 0.34 ± 0.13 0.76 ± 0.2  < .0001a

CLP, n (%)  < .0001b

0 6 (6) 1 (3) 0 (0)

1 83 (85) 24 (75) 4 (4)

2 4 (4) 3 (9) 13 (12)

3 5 (5) 4 (13) 77 (68)

4 0 (0) 0 (0) 19 (17)
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the BCN Bio-HF score, the model with clinical variables plus NT-proBNP was used since ST-2 and hs-cTnT were 
not available. The CLP risk score was calculated as the count of biomarkers above the Youden index cut-off61. 
The Youden’s index calculates each biomarker’s optimal cut-off from the Cox regression. There were 4 cut-off 
values, since four biomarkers are included in the score: three from the CLP and NT-proBNP. Based on the cut-
off, a value of 1 or 0 was assigned if the biomarker value was above/below the cut-off value, or in the direction of 
greater risk, then all 4 values were summed to generate the final score for each subject. The score ranged from 0 
to 4, higher scores indicating higher risk. The primary outcome, cardiovascular death, was defined as death by 
myocardial infarction, non-responding arrhythmia, asystole, chronic pump failure, or other cardiac cause and 
verified by a blinded committee of cardiologists.

Statistical analysis.  Power and sample Size.  The sample size was adjusted for an anticipated event rate of 
0.34. A Cox regression of the log hazard ratio on a covariate with a standard deviation of 1.5 based on a sample 
of 257 observations achieves 80% power at a 0.050 significance level to detect a regression coefficient equal to 0.2. 
Adjusting for an anticipated loss to follow up rate of 10%, the final sample size would be 283.

Discrimination analysis and calibration.  Categorical variables were expressed as number (%) and continuous 
variables were expressed as mean (SD). The primary outcome was 10-year cardiovascular death, and the second-
ary outcome was 3 year all-cause death, since all scores except for FRS were developed for this outcome. Cox 
Regression was performed on each of the prognostic scores, and hazard ratios and 95% confidence intervals were 
calculated to assess their relationship with the outcome.

For the survival models, integrated area under the receiver operator curves (IAUC) and Harrell’s c statistic62 
were calculated to assess the discrimination of each score in predicting the outcome. Hypothesis testing of the 
change in discrimination was performed by calculating the differences in concordance statistics63. The IAUC 
curves are computed as a weighted average of the AUC values at all the event times, with the weights as the 
jumps of the Kaplan–Meier estimate of the survivor function. Calibration (i.e., the agreement between observed 
outcomes and predictions) of all models was assessed graphically, with calibration plots.

Competing event and cause-specific analysis was performed for all models with non-cardiovascular mortality 
as the competing event. The cumulative incidence function (CIF) was calculated for the CLP which was stratified 
by low (CLP score 0–1), moderate (CLP score 2), and high (CLP score 3–4) to assess CIF. The discrimination 
analysis and competing event and cause-specific analysis were performed using SAS software version 9.4 of the 
SAS System for Windows (SAS Institute, Inc., Cary, North Carolina)64. Calibration was analyzed using Stata 
Statistical Software version 1665.

Cluster analysis.  Hierarchical cluster analysis was performed using Ward’s minimum variance method to 
assess each prognostic score’s ability to separate cases into risk groups. The distance between two clusters is the 
ANOVA sum of squares between the clusters summed over all variables. Only the 5 risk scores used as the input 
variables for the cluster analysis to examine how well they classified patients into a low, moderate, and high-risk 
of cardiovascular mortality. Data was standardized (mean of 0 and SD of 1), to perform clustering. The clinical 
characteristics and scores were compared across risk clusters. Comparisons among continuous variables were 
performed using Wilcoxon rank sum test; and Pearson’s chi-square test (or Fisher’s exact test) or Mantel–Haen-
szel Chi-square test for categorical and ordinal data, respectively. Kaplan–Meier curves were used to compare the 
survival distribution across risk clusters. Survival time was calculated from baseline until cardiovascular death 
or censoring at 10 year follow up. Cluster analysis was performed using JMP pro software version 1466. Kaplan–
Meier curves were generated using SAS software version 9.4 of the SAS System for Windows (SAS Institute, Inc., 
Cary, North Carolina)64.

Correlation analysis.  To investigate potential relationships between the CLP biomarker values and common 
clinical parameters, Pearson’s correlation coefficients were calculated, significant at the 0.01 level (2-tailed). Cor-
relation analysis was performed using R software version 3.6.167.

Received: 18 December 2020; Accepted: 5 April 2021

References
	 1.	 MEMBERS, W. G. et al. Heart disease and stroke statistics─2012 update: A report from the American Heart Association. Circula-

tion 125(1), e2 (2012).
	 2.	 Bui, A. L., Horwich, T. B. & Fonarow, G. C. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol. 8(1), 30–41 (2011).
	 3.	 Levy, W. C. et al. The Seattle Heart Failure Model: Prediction of survival in heart failure. Circulation 113(11), 1424–1433 (2006).
	 4.	 Pocock, S. J. et al. Predicting survival in heart failure: A risk score based on 39 372 patients from 30 studies. Eur. Heart J. 34(19), 

1404–1413 (2013).
	 5.	 Allen, L. A. et al. Use of risk models to predict death in the next year among individual ambulatory patients with heart failure. 

JAMA Cardiol. 2(4), 435–441 (2017).
	 6.	 Sartipy, U. et al. Predicting survival in heart failure: Validation of the MAGGIC heart failure risk score in 51,043 patients from the 

Swedish Heart Failure Registry. Eur. J. Heart Fail. 16(2), 173–179 (2014).
	 7.	 D’Agostino, R. B. Sr. et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 

117(6), 743–753 (2008).
	 8.	 Lupón, J. et al. Development of a novel heart failure risk tool: The Barcelona bio-heart failure risk calculator (BCN bio-HF calcula-

tor). PLoS ONE 9(1), e85466 (2014).
	 9.	 Lupón, J. et al. Validation of the Barcelona Bio-Heart Failure Risk Calculator in a cohort from Boston. Rev. Esp. Cardiol. (Engl. ed.) 

68(1), 80–81 (2014).



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8164  | https://doi.org/10.1038/s41598-021-87776-w

www.nature.com/scientificreports/

	10.	 Howlett, J. G. Should we perform a heart failure risk score? 4–5 (2013).
	11.	 Aaronson, K. D. & Cowger, J. Heart failure prognostic models: Why bother?. Cir.c Heart Fail. 5(1), 6–9 (2012).
	12.	 Steyerberg, E. W. et al. Prognosis research strategy (PROGRESS) 3: Prognostic model research. PLoS Med. 10(2), e1001381 (2013).
	13.	 Albert, C. L. & Tang, W. H. W. Metabolic Biomarkers in heart failure. Heart Fail. Clin. 14(1), 109–118 (2018).
	14.	 Gupte, A. A. et al. Mechanical unloading promotes myocardial energy recovery in human heart failure. Circ. Cardiovasc. Genet. 

7(3), 266–276 (2014).
	15.	 Bedi, K. C. Jr. et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in 

advanced human heart failure. Circulation 133(8), 706–716 (2016).
	16.	 McGranaghan, P. et al. Predictive value of metabolomic biomarkers for cardiovascular disease risk: A systematic review and meta-

analysis. Biomarkers 25(2), 101–111 (2020).
	17.	 Cheng, M. L. et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diag-

nostic and prognostic value of metabolomics. J. Am. Coll. Cardiol. 65(15), 1509–1520 (2015).
	18.	 Ahmad, T. et al. Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory 

support. J. Am. Coll. Cardiol. 67(3), 291–299 (2016).
	19.	 Tang, W. H. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients 

with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol. 64(18), 1908–1914 (2014).
	20.	 Ruiz-Canela, M. et al. Comprehensive metabolomic profiling and incident cardiovascular disease: A systematic review. J. Am. 

Heart Assoc. 6(10), e005705 (2017).
	21.	 Shah, S. H. et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardio-

vascular events. Circ. Cardiovasc. Genet. 3(2), 207–214 (2010).
	22.	 Shah, S. H. et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am. 

Heart J. 163(5), 844–850 (2012).
	23.	 Rizza, S. et al. Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis 232(2), 

260–264 (2014).
	24.	 Vaarhorst, A. A. et al. A metabolomic profile is associated with the risk of incident coronary heart disease. Am. Heart J. 168(1), 

45–52 (2014).
	25.	 Kume, S. et al. Predictive properties of plasma amino acid profile for cardiovascular disease in patients with type 2 diabetes. PLoS 

ONE 9(6), e101219 (2014).
	26.	 Zheng, Y. et al. Associations between metabolomic compounds and incident heart failure among African Americans: The ARIC 

Study. Am. J. Epidemiol. 178(4), 534–542 (2013).
	27.	 Lanfear, D. E. et al. Targeted metabolomic profiling of plasma and survival in heart failure patients. JACC Heart Fail. 5(11), 823–832 

(2017).
	28.	 Wurtz, P. et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 

131(9), 774–785 (2015).
	29.	 Mueller-Hennessen, M. et al. A novel lipid biomarker panel for the detection of heart failure with reduced ejection fraction. Clin. 

Chem. 63(1), 267–277 (2017).
	30.	 McGranaghan, P. et al. Incremental prognostic value of a novel metabolite-based biomarker score in congestive heart failure 

patients. ESC Heart Fail. 7, 3029–3039 (2020).
	31.	 Towfighi, A., Markovic, D. & Ovbiagele, B. Utility of Framingham coronary heart disease risk score for predicting cardiac risk 

after stroke. Stroke 43(11), 2942–2947 (2012).
	32.	 Chen, S. C. et al. Framingham risk score with cardiovascular events in chronic kidney disease. PLoS ONE 8(3), e60008 (2013).
	33.	 Sara, J. D. et al. Utility of the Framingham Risk Score in predicting secondary events in patients following percutaneous coronary 

intervention: A time-trend analysis. Am. Heart J. 1(172), 115–128 (2016).
	34.	 Weber, M. & Hamm, C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart 92(6), 843–849 (2006).
	35.	 McKie, P. M. & Burnett, J. C. Jr. NT-proBNP: The gold standard biomarker in heart failure. J. Am. Coll. Cardiol. 68(22), 2437–2439 

(2016).
	36.	 Scherzer, R. et al. Association of biomarker clusters with cardiac phenotypes and mortality in patients With HIV infection. Circ. 

Heart Fail. 11(4), e004312 (2018).
	37.	 Ahmad, T. et al. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J. Am. Coll. Cardiol. 64(17), 

1765–1774 (2014).
	38.	 Jensen, J., Ma, L. P., Bjurman, C., Hammarsten, O. & Fu, M. L. Prognostic values of NTpro BNP/BNP ratio in comparison with 

NTpro BNP or BNP alone in elderly patients with chronic heart failure in a 2-year follow up. Int. J. Cardiol. 155(1), 1–5 (2012).
	39.	 Maisel, A. et al. State of the art: Using natriuretic peptide levels in clinical practice. Eur. J. Heart Fail. 10(9), 824–839 (2008).
	40.	 Borodzicz, S., Czarzasta, K., Kuch, M. & Cudnoch-Jedrzejewska, A. Sphingolipids in cardiovascular diseases and metabolic dis-

orders. Lipids Health Dis. 14, 55 (2015).
	41.	 Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 45(11), 

1345–1352 (2013).
	42.	 Li, X., Becker, K. A. & Zhang, Y. Ceramide in redox signaling and cardiovascular diseases. Cell. Physiol. Biochem. 26(1), 41–48 

(2010).
	43.	 Lemaitre, R. N. et al. Plasma ceramides and sphingomyelins in relation to heart failure risk: The Cardiovascular Health Study. 

Circul. Heart Fail. 12(7), e005708 (2019).
	44.	 Sigruener, A. et al. Glycerophospholipid and sphingolipid species and mortality: The Ludwigshafen Risk and Cardiovascular Health 

(LURIC) study. PLoS ONE 9(1), e85724 (2014).
	45.	 Reis, A. & Spickett, C. M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta (BBA) Biomembr. 1818(10), 2374–2387 

(2012).
	46.	 Gianazza, E., Brioschi, M., Fernandez, A. M. & Banfi, C. Lipoxidation in cardiovascular diseases. Redox Biol. 1(23), 101119 (2019).
	47.	 Norris, S. E., Mitchell, T. W. & Else, P. L. Phospholipid peroxidation: Lack of effect of fatty acid pairing. Lipids 47(5), 451–460 

(2012).
	48.	 Tallman, K. A. et al. Phospholipid−protein adducts of lipid peroxidation: Synthesis and study of new biotinylated phosphatidyl-

cholines. Chem. Res. Toxicol. 20(2), 227–234 (2007).
	49.	 Zheng, Y. et al. Dietary phosphatidylcholine and risk of all-cause and cardiovascular-specific mortality among US women and 

men. Am. J. Clin. Nutr. 104(1), 173–180 (2016).
	50.	 Wallert, M. et al. α-Tocopherol preserves cardiac function by reducing oxidative stress and inflammation in ischemia/reperfusion 

injury. Redox Biol. 1(26), 101292 (2019).
	51.	 Ye, X., Kong, W., Zafar, M. I. & Chen, L. L. Serum triglycerides as a risk factor for cardiovascular diseases in type 2 diabetes mel-

litus: a systematic review and meta-analysis of prospective studies. Cardiovasc. Diabetol. 18(1), 1 (2019).
	52.	 Miller, M. et al. Triglycerides and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 

123(20), 2292–2333 (2011).
	53.	 Tremblay, A. J. et al. Associations between the fatty acid content of triglyceride, visceral adipose tissue accumulation, and compo-

nents of the insulin resistance syndrome. Metabolism 53(3), 310–317 (2004).



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:8164  | https://doi.org/10.1038/s41598-021-87776-w

www.nature.com/scientificreports/

	54.	 Kotronen, A. et al. Serum saturated fatty acids containing triacylglycerols are better markers of insulin resistance than total serum 
triacylglycerol concentrations. Diabetologia 52(4), 684–690 (2009).

	55.	 Bayés-Genís, A. & Lupón, J. The Barcelona Bio-HF calculator: A contemporary web-based heart failure risk score. JACC Heart 
Fail. 6(9), 808–810 (2018).

	56.	 Dungen, H. D. et al. Bisoprolol vs. carvedilol in elderly patients with heart failure: Rationale and design of the CIBIS-ELD trial. 
Clin. Res. Cardiol. 97(9), 578–586 (2008).

	57.	 Dungen, H. D. et al. Titration to target dose of bisoprolol vs. carvedilol in elderly patients with heart failure: The CIBIS-ELD trial. 
Eur. J. Heart Fail. 13(6), 670–680 (2011).

	58.	 Kamlage, B. et al. Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and 
targeted metabolite profiling. Clin. Chem. 60(2), 399–412 (2014).

	59.	 Kamlage, B., Schmitz, O., Kastler, J., Catchpole, G., Dostler, M., Liebenberg, V., inventors; Metanomics Health GmbH, assignee. 
Means and Methods for Assessing the Quality of a Biological Sample. United States patent application US 14/767,059. (2016).

	60.	 Rickham, P. P. Human experimentation. Code of ethics of the world medical association. Declaration of Helsinki. Br. Med. J. 
2(5402), 177 (1964).

	61.	 Youden, W. J. Index for rating diagnostic tests. Cancer 3(1), 32–35 (1950).
	62.	 Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L. & Rosati, R. A. Evaluating the yield of medical tests. JAMA 247(18), 2543–2546 

(1982).
	63.	 Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B. & Wei, L. J. On the C-statistics for evaluating overall adequacy of risk prediction 

procedures with censored survival data. Stat. Med. 30(10), 1105–1117 (2011).
	64.	 SAS software, Version 9.4 of the SAS System for Windows. Copyright 2019 SAS Institute Inc. SAS and all other SAS Institute Inc. 

product or service names are registered trademarks or trademarks of SAS Institute Inc., Cary, NC, USA. http://​suppo​rt.​sas.​com.
	65.	 StataCorp. Stata Statistical Software: Release 16. College Station, TX: StataCorp LLC. http://​stata.​com (2019).
	66.	 JMP, Version 14. SAS Institute Inc., Cary, NC, 1989–2019. http://​jmp.​com.
	67.	 R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

https://​www.R-​proje​ct.​org/ (2019).

Acknowledgements
We would like to acknowledge the former staff of Metanomics Health GmbH (Berlin, Germany) as well as the 
patients and investigators participating in the CIBIS-ELD trial.

Author contributions
Author T.T. was responsible for study conception and design; authors B.P., E.T., F.E., G.L., H.D.D., and T.T. 
were responsible for acquisition of data; authors A.S., D.O., E.V., F.B., J.S., M.R., P.L., P.M., and S.A. and were 
responsible for data analysis, and drafting and revision of the manuscript. All authors critically reviewed and 
approved the manuscript.

Funding
Funding is not applicable for this study. The original CIBIS-ELD study was funded by the German Federal Min-
istry of Education and Research (BMBF, Project No. 01GI0205). Charité – University Medicine Berlin holds the 
intellectual property under patents WO 2011092285, WO 2015028671, WO 2016034600, Means and methods 
for diagnosing heart failure in a subject, WO 2014060486, WO 2014060486, Means and methods for determin-
ing a clearance normalized amount of a metabolite disease biomarker in a sample, WO 2016016258 Means and 
methods for diagnosing heart failure on the basis of cholesterol parameters, sphingomyelins and/or triacylg-
lycerols. CIBIS-ELD was supported by the German Federal Ministry of Education and Research (grant number 
01GI0205). Sponsor according to ICH-GCP was the Charité - Universitätsmedizin (Berlin, Germany). Merck 
KGaA provided an unrestricted grant without any rights to influence trial design, data collection, data analysis, 
and interpretation or publication of CIBIS-ELD. The formerly existing Metanomics Health GmbH (Berlin, Ger-
many) supported the presented analysis by a research grant and performed the measurements without any rights 
to influence design, data collection, data analysis, and interpretation, or publication of the current manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​87776-w.

Correspondence and requests for materials should be addressed to T.D.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

http://support.sas.com
http://stata.com
http://jmp.com
https://www.R-project.org/
https://doi.org/10.1038/s41598-021-87776-w
https://doi.org/10.1038/s41598-021-87776-w
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Performance of a cardiac lipid panel compared to four prognostic scores in chronic heart failure
	Citation

	Performance of a cardiac lipid panel compared to four prognostic scores in chronic heart failure
	Results
	Discussion
	Study limitations
	Conclusion
	Methods
	Study population. 
	Biomarker measurements. 
	Calculating prognostic scores. 
	Statistical analysis. 
	Power and sample Size. 
	Discrimination analysis and calibration. 
	Cluster analysis. 
	Correlation analysis. 


	References
	Acknowledgements


