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Abstract
The rice contamination to heavy metals and its associated health risks have been less addressed in the southeast of Iran. In the
present study, in the mentioned region, we assessed the concentration of nine elements in rice, and the health risk related to the
measured elements was determined using the data which were gathered by a questionnaire. For this purpose, 36 samples of the 12
most widely consumed rice brands were collected. Using ICP-MS, the concentrations of Ni, Cr, Hg, Sr, Mn, Fe, Se, Ba, and Zn
were measured in the studied samples as 0.599 ± 0.124, 0.483 ± 0.28, 0.0157 ± 0.005, 0.85 ± 1.307, 11.5 ± 1.97, 178.46 ± 67.27,
0.212 ± 0.083, 0.845 ± 0.62, and 8.416 ± 1.611 mg/kg, respectively. We found that, regarding the other studies, the levels of Ni,
Cr, Hg, Fe, and Ba were higher. Besides, using 258 distributed questionnaires among citizens, the daily rice consumption was
determined to be 295.66 ± 171.005 g/person/ day. Based on this consumption rate and Monto Carlo uncertainty simulation, Fe
(0.741 ± 0.54 mg/kg/day) and Se (8.95E-04 ± 6.33E-04 mg/kg/day) showed the highest and lowest daily intake, respectively.
Also, using Hazard Quotient (HQ), the non-carcinogenic risk effects of the surveyed elements were estimated. The obtained
results of HQ revealed that Fe (2.48) and Mn (1.06) could pose non-carcinogenic health risks to consumers. Moreover, the
calculated hazard Index showed that the overall health risk of the surveyed elements is in an unsafe range.
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Introduction

Nowadays, a huge consideration goes to these contaminants
because they are toxic and non-biodegradable and have a per-
sist nature which severely threaten the health of human beings
and the other creatures [1]. Also, food contamination to these
elements is a worldwide problem [2]. It has been found that
application of untreated wastewaters, pesticide use, sewage
sludge, manure, and organic composts in farmlands are among

the primary sources of introducing heavy metals and the other
elements into the farmland products [3]. Some metals and
metalloids such as Zn, Mo, and Se are indispensable in bio-
logical systems, but most of these elements are toxic and have
adverse metabolites and physiologic effects including cancer,
neurological disorders, genetic, and congenital disorders on
organism [4, 5]. The ingestion of the contaminated food (oral
route) is considered one of the most pivotal pathways for
exposure of human to these elements [6]. Among various
staple food, rice is a substantial cereal crop around the globe
and also highly consumed in Asia [7]. For instance, in China
and Bangladesh, the average consumption of rice was deter-
mined between 340 and 650 g/day [8, 9]. Due to physiologic
structure of rice, previous studies have shown the bioaccumu-
lation of different toxic elements in this plant [5, 8, 10].
Therefore, it is probable that rice consumers could be exposed
to high concentrations of metals and metalloids from contam-
inated sites. Unfortunately, there are no accurate data available
on rice consumption in Iran, particularly in the southeast re-
gion. Because of the vicinity to Southeastern Asian countries
that are known to consume rice in large quantities, the daily
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consumption of rice among people of southeast Iran is high.
On the other hand, most available rice brands in the market of
southeast Iran are smuggled from Pakistan into the this area
because the southeast Iran shares a long border with Pakistan
[11], and since there is no effective monitoring system to
control quality for health safety issues, the high-levels expo-
sure to toxic elements through rice ingestion could be critical.
The current research was carried out to evaluate the concen-
tration of nine elements including Ni, Cr, Hg, Sr, Mn, Fe, Se,
Ba, and Zn in the distributed rice in the southeast markets of
Iran. Also, the health risk level related to consumption of
evaluated rice samples were estimated by determining the dai-
ly rice consumption of people in this region.

Material and methods

Sampling

In order to specify the most commonly used rice brands in the
southeast of Iran, 258 questionnaires were distributed among
women who referred to five health centers in Sistan and
Balouchestan province. Also, the mean daily rice consump-
tion in families was determined through this questionnaire. By
analyzing the collected data, 12 most common consumed rice
brands were gathered from the marketplace of the southeast of
Iran. Three samples (about 100 g) of each brand were collect-
ed randomly from three separate packages, and each package
was chosen from three separate shops.

Sample preparation and analysis

To remove dust or any impurity, samples were rinsed by de-
ionized water and then were kept at 70 °C for 72 h. The
samples were then grounded and passed through a 1 mm-
mesh sieve. The digestion of samples was done according to
the conducted study by Djahed et al. [12]. Afterward, the
concentrations of elements were determined using inductively
coupled plasma mass spectrometry (7500cx, Agilent
Scientific Technology, USA). We utilized certified reference
materials of NIST-SRM-1566b and NIST-SRM-1568b to
confirm the accuracy of the analytical procedures. In
Table 1, the limit of detection (LOD), mean of recoveries from
the analysis of certified reference material are shown.

Exposure assessment

Exposure assessment is a critical step considered in risk as-
sessment [6]. In the current study, we utilized the estimated
daily intake (EDI) to evaluate people’s exposure to the sur-
veyed elements by oral ingestion. We used Eq. 1 to estimate
EDI [13].

EDI ¼ Cmetal � EF � ED � FIRð Þ= W � Tð Þ ð1Þ
Where EDI presents the estimated daily intake (mg/kg/day);
Cmetal shows the level of element in the sample (mg/kg); EF is
the frequency of exposure (365 days/year); ED is the duration
of exposure (taken as 30 years for non-carcinogens effects);
FIR demonstrates the mean of daily rice consumption (g/per-
son/day); W is the mean body weight (kg), and T is the mean
exposure time that is approximated through multiplying EF

with ED. Also, the value of W was regarded to be 70 kg [14].

Non-carcinogenic risk assessment

We used the qualitative method to evaluate non-carcinogenic
health risks. To this end, we used the hazard quotient index
(HQ) according to Eq. 2 [13, 15–17].

HQ ¼ EDI=RfD ð2Þ
Where HQ (dimensionless), EDI (mg/kg/day), and RfD
(mg/kg/day) are the hazard quotient index, the estimated daily
intake, and the reference dose of the desired element, respec-
tively. If the HQ value is calculated to be equal or lower than
one, the non-carcinogenic risk is insignificant and if the
amount of HQ is determined to be over one, then there could
be non-carcinogenic effects [6]. Moreover, using Eq. 3, the
hazard index (HI) was evaluated. This index can be employed
for the total risk caused through more than one constituent in a
material or the total of several risks for a specific constituent
that the body is exposed to from various pathways [15, 16,
18].

Hazard Index ¼ ∑n
k¼1

EDIk
RfDk

ð3Þ

Data analysis

Deterministic and stochastic approaches are available to per-
form a model of risk assessment. Variability in the response of
different persons, fluctuation in the levels of toxins, and un-
certainty in the approximation of different factors might cause
huge uncertainty in the risk assessment process [19, 20].
Ignoring this uncertainty can lead to underestimation and/or
overestimation of the results [20]. In the deterministic method,
the variables are inserted into the model as point estimates
which ignore the uncertainties. While in the stochastic meth-
od, the uncertainty is applied both in the input and output of
the model. In the risk assessment process, in order to apply the
stochastic approach, the Monte Carlo technique is a widely
used method [19]. Hence, in this study, we employed the
Monte Carlo simulation to assess the uncertainty in the input
values. Initially, the probability of distribution was analyzed
for the input variables. Then, using Monte Carlo simulation,
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the models of exposure as well as risk assessment were sim-
ulated. To this end, we utilized 20,000 iterations. To exert the
Monte Carlo simulation, ModelRisk software (V.5.0.2.1,
Vose Software, Belgium) was used. Moreover, we applied
the Kruskal Wallis test to survey the difference between the
concentrations of elements in various rice samples. The statis-
tical analyses were performed with IBM SPSS statistical soft-
ware (version12.0).

Results and discussion

The obtained results are presented in Table 2. In addition, for
every brand, the minimum, maximum, and the mean of each
element are depicted in Fig. 1.

Concentration of Ni

Exposure to nickel can increase allergic skin diseases, espe-
cially in women. Also, the reproductive disorders and unde-
sirable effects on the fetuses are from the other effects of
nickel [21]. Nickel enters the body through the respiratory
and intestinal system. This element can be found in many

foods such as cereals, canned vegetables, spaghetti, canned
and dried fruits, cocoa, and chocolate. The entered nickel
might create some radical oxygen species and the other reac-
tive compounds within the cell, which indirectly cause cell
damage and cancer [22]. In the present survey, the mean con-
tent of nickel in the collected samples was 0.599 ±
0.124 mg/kg. Besides, the maximum and minimum of the
measured concentrations in the samples were 0.997 and
0.318 mg/kg, respectively. The concentration levels of Ni in
all the studied samples were determined over LOD value. The
difference between the mean concentration among the inves-
tigated brands was not statistically significant (x2 = 19.52,
p > 0.05). According to Fig. 1, the rice brand of code 1 had
the highest concentration of Ni; besides, the codes 6, 7, and 11
had a mean concentration above the overall mean of all sur-
veyed brands. In a study on the heavy metal contamination in
Indian rice supplied in the market of Iran, the mean Ni con-
centration was stated to be 0.019 mg/kg [23]. Moreover, in
another study conducted by Pinto et al., the mean content of
this element was at 0.06 mg/kg in the rice samples collected
from Portugal and Spain markets [14]. In the mentioned stud-
ies, the reported concentration was much less than the values
in the present research.

Table 2 Mean, range, distribution type, and RfD related to the measured elements

Elements
(NDSa)

Mean
(mg kg−1)

STD
(mg kg−1)

Median
(mg kg−1)

Range
(mg kg−1)

95% CI for the mean
(mg kg−1)

Type of
Distribution

RfD
(mg kg−1 day−1)

Ni (36) 0.599 0.124 0.582 0.318–0.997 0.557 to 0.641 Logistic 0.02

Cr (30) 0.483 0.28 0.4 0.2–1.2 0.378 to 0.588 Expon 0.003

Hg (17) 0.0157 0.005 0.015 0.01–0.0321 0.011 to 0.018 Pareto 0.0003

Sr (36) 0.85 1.307 0.5 0.2–7.1 0.407 to 1.292 Loglogistic 0.6

Mn (36) 11.5 1.978 11.5 7–16 10.83 to 12.169 Logistic 0.046

Fe (26) 178.461 67.279 166.5 104–394 132.195 to 200.902 Expon 0.3

Se (36) 0.212 0.083 0.218 0.055–0.422 0.184 to 0.24 Normal 0.005

Ba (36) 0.845 0.62 0.623 0.24–3.5 0.635 to 1.055 Loglogistic 0.07

Zn (36) 8.416 1.611 8.505 1.56–11.1 7.871 to 8.961 Laplace 0.3

a Number of Detectable Samples (Over LOD)

Table 1 Recovery of certified
reference material, and limit of
detection

Element Certified value
(mg kg−1)

Measured value
(mg kg−1)

Recovery% LOD
(mg kg−1)

NIST-SRM-1568b Fe 7.42 7.38 ± 0.51 99.46 0.02

Mn 19.2 18.89 ± 0.92 98.38 0.008

Hg 0.0059 0.0056 ± 0.0008 94.91 0.0003

Se 0.365 0.375 ± 0.007 102.73 0.005

Zn 19.42 19.37 ± 0.09 99.74 0.008

NIST-SRM-1566b Ni 1.04 1.02 ± 0.04 98.07 0.01

Ba 8.6 8.68 ± 0.05 100.93 0.01

Sr 6.8 6.71 ± 0.08 98.67 0.01

J Environ Health Sci Engineer



Concentration of Cr

For more than a century, chromium has been used in indus-
tries and is abundant in nature. Chromium is a Group 1 inor-
ganic human carcinogen [24]. Exposure to this element can
result in the generation of free oxidizing radicals, mutations in
DNA, chromosomal damage, and sister chromatid exchange.
These effects might lead to the development of tumors, aller-
gic sensitization, and asthmatic responses [25]. Lung cancer is
a consequence of chromium inhalation exposure. In addition,
cancers of gastrointestinal and central nervous systems, skin
ulceration, and dermatitis are the other complications of chro-
mium oral exposure [26, 27]. As reported in Table 2, the mean
content of chromium in surveyed samples was detected to be
0.483 ± 0.28 mg/kg, which ranged from 0.2 to 1.2 mg/kg.
Further, as Fig. 1 depicts, the brand codes of 6 and 11 had
the highest and lowest concentrations of Cr, respectively.
Also, the results from the Kruskal Wallis test revealed that
there is no statistical difference between surveyed brands
(x2 = 14.812, p > 0.05). In a study by Barbosa et al., the con-
tent of Cr in the supplied rice of Brazilian markets was report-
ed 3 ± 0.3 mg/kg [28]. In Portugal and Spain markets, the

concentration of this element was 0.11 ± 0.05 mg/kg [14]. In
another study, Saha and Zaman reported the concentration of
Cr 0.15 ± 0.01 mg/kg in rice cultivated in Bangladesh [29].
Besides, Lin et al. showed the Cr contents of the existing rice
in Taiwan market 0.1 ± 0.39 mg/kg [30]. In comparison with
the mentioned studies, the mean concentration of Cr in this
investigation was higher, suggesting that the measured sam-
ples were contaminated with Cr.

Concentration of Hg

Mercury (Hg) is a toxic element for humans. Hg has toxic
influences on the nervous, renal, reproductive, and cardiovas-
cular systems and also affects the development of the fetus’
brain [8, 10]. The mean concentration of Hg in the investigat-
ed samples was specified to be 0.0157 ± 0.005 mg/kg ranging
from 0.01 to 0.0321 mg/kg (Table 2). As shown in Table 2,
the Hg levels were detectable in 17 samples. In some brands
such as codes of 2 and 9 (Fig. 1), all samples were determined
under LOD. Also, the difference between Hg levels was not
statistically significant (x2 = 10.005, p > 0.05) among the sur-
veyed brands. In the rice samples cultivated near an industrial

Fig. 1 Comparison of the mean, maximum and minimum concentrations of heavy metals in the surveyed brands
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zone in China, Cao et al. found the mean concentration of Hg
0.0057 (0.001–0.013) mg/kg [31]. In Tanzania, Machiwa
measured the concentration of Hg in rice samples gathered
from the wetlands of Lake Victoria basin and reported Hg
concentrations in the range of 0.0005 to 0.0062 mg/kg [32].
Besides, in an E-waste recycling area in southeast China, Fu
et al. found themean concentration ofHg 0.022 ± 0.014mg/kg
[33]. By comparing the Hg concentration level of the investi-
gated samples in the current research with other studies, we
concluded that the samples with a higher concentration than
LOD were probably cultivated in contaminated areas.

Concentration of Sr

Sr is known as a potent human toxin that causes brain damage
and mental disabilities [34]. Sr can substitute the calcium in
bones because it has similar biochemical characteristics to
calcium. Hence, at high concentrations, Sr can lead to disor-
ders in normal bone development [10]. Besides, the white
cells are destroyed when Sr enters the bone marrow that con-
sequently causes immune system impairment. In this condi-
tion, different types of diseases such as cancer might develop
[35]. Also, in plants, Sr can be exchanged with calcium, which
is an essential element for plant growth while Sr is an unnec-
essary element [36]. The findings of current research revealed
that the content of Sr in the rice samples ranged from 0.2 to
7.1 mg/kg with a mean concentration of 0.85 ± 1.307 mg/kg.
According to Fig. 1, Sr element in all brands was detectable,
and in two rice brands of code 6 and 2, the measured concen-
tration was higher than the overall mean. Based on the
Kruskal Wallis test, it was found no statistical difference be-
tween the Sr contents in the surveyed brands (x2 = 15.153,
p > 0.05). In a study on the existing rice in the Jamaican mar-
ket, Antoine et al. reported the mean Sr level to be 1.93 ±
0.348 mg/kg [10]. Also, in another investigation in Spain
and Portugalmarkets, Pinito et al. determined the content level
of Sr as 0.2 ± 0.14 mg/kg [14]. The obtained level of Sr in the
present study was in the range of the mentioned studies.

Concentration of Mn

Manganese (Mn) works as an enzyme activator and also is a
necessary element for bone growth and fat metabolism; there-
fore, lack of this element can lead to extreme skeletal and
reproduction disorders in mammals [37]. However, manga-
nese deficiency in humans is rare because it is present in
almost all foodstuffs. Exposure to high concentrations of Mn
causes side effects such as neurotoxicity [3]. In this study, the
mean content ofMn in the rice brandswas 11.5 ± 1.976mg/kg.
Also, the concentration range for Mn was 7–16 mg/kg
(Table 2). According to Fig. 1, the highest mean for Mn was
obtained in the brands of code 6, but one of the brands of code
2 had the highest level among all the studied brands.

According to the observed results from the Kruskal Wallis
test, a statistical difference in the content of the investigated
brands was determined (x2 = 21.8, p < 0.05). Antoine et al.
found the concentration of Mn equal to 10.5 ± 3.68 mg/kg in
the rice available in the Jamaican market [10]. In another
study, Barbosa et al. reported the level of Mn to be 12.2 ±
6.4 mg/kg in the Brazilian rice market [28]. Considering the
results of the mentioned researches and the level of Mn in the
planted rice in an industrial area in China (28.639 ±
5.57 mg/kg) [33], it was concluded that our samples were
not contaminated with Mn.

Concentration of Fe

Iron (Fe) is an essential element but could be toxic in high
concentrations [38]. Free Fe accelerates the production of tox-
ic radicals that will damage DNA, proteins, lipids, and mito-
chondria, and these damages might be a major cause of aging
[38, 39]. The liver, heart, central nervous systems, pancreatic
beta cells, and blood are among the organs and cell types,
which are affected by Fe overload [40]. Also, Fe causes ath-
erosclerosis, neurodegeneration, Parkinson’s, and
Alzheimer’s disease [38, 39]. Based on Table 2, the mean of
Fe content in the surveyed samples was 178.461 ±
67.279 mg/kg. Figure 1 shows the highest as well as the low-
est level of this element that belonged to brand codes 1 and 12.
Also, all samples of the brand code 4 were below LOD. The
Kruskal Wallis test revealed that there was no statistical dif-
ference between the Fe concentrations of the surveyed brands
(x2 = 8.14, p > 0.05). Compared to other studies, our findings
showed that the concentration of Fe in the investigated sam-
ples was in a high range; for instance, in separate studies in
Swedish and Brazilian markets, the mean concentration of Fe
was determined to be 2.2 (1.2–3.7) and 3.6 ± 3 mg/kg, respec-
tively [5, 28]. Also, in another survey in Portugal and Spain
markets [14], the mean concentration of this element was re-
ported as 6.8 ± 1.5 mg/kg, which was lower than our result.

Concentration of Se

Selenium (Se) is an essential element for humans. It has a
major role in metabolic activity in the human body [41].
Investigations have shown that the use of Se increases bio-
chemical resistance against cancer and infection and reported
it as a natural anti-carcinogenic agent [41, 42]. However, a
high-level intake of Se might lead to selenosis [41], which
can cause symptoms such as nausea, vomiting, garlic-like
breath odor, gastrointestinal, skin lesions, tooth decay, nail
and hair deformities, liver damage, and peripheral nerve dam-
age [43]. In the current study, the mean concentration of Se in
the investigated brands was 0.212 ± 0.083 mg/kg. The highest
and lowest measured concentrations were 10.055 and
0.422 mg/kg, respectively. According to Fig. 1, the highest
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measured mean in the studied brands was detected in the
brands with code 5; however, one of the surveyed samples
of code 1 had the highest measured value. Moreover, based
on the obtained results from the Kruskal Wallis test, no sig-
nificant difference was observed in the concentration of Se in
the studied brands (x2 = 15.64, p > 0.05). In a research,
Jorhem et al. determined the mean content of Se in the
Swedish market as 0.1 (<0.1–0.2) mg/kg [5]. Also, the con-
centration of this metal in Portugal and Spain markets was 0.2
± 0.19 mg/kg [14]. We found that the concentration of Se in
the investigated samples was lower than the mentioned
studies.

Concentration of Ba

Barium (Ba) can be deposited in bone and substitute calcium.
Moreover, Ba causes smooth, striated, and cardiac muscle
stimulation, and blood pressure elevation [44]. In our investi-
gation, it was found that the determined values of bariumwere
higher than the limit of detection in all the studied samples
(Fig. 1). As presented in Table 2, the lowest and the highest
measured concentrations in the studied samples were 0.24 and
3.5 mg/kg, respectively. Also, as Fig. 1 depicts, the concen-
tration of Ba is maximum in the brand of code 2 (1.69 ±
1.56 mg/kg). The mean Ba concentration in the investigated
rice samples was 0.84 ± 0.62 mg/kg. Besides, a significant
difference was found between the levels of the surveyed
brands (x2 = 22.02, p < 0.05). Fu et al. studied rice planted in
the E-waste recycling area and reported the mean content of
Ba in the investigated samples as 2.586 mg/kg, which was
much more than the obtained results in the present study.
They also concluded that the high concentrations of this ele-
ment were attributed to the high concentration of barium in the
soil of the studied area [33]. In another study in Brazil,
Barbosa et al. reported the mean barium content in rice as
0.32 ± 0.28 mg/kg [28], whereas the obtained average amount
in this study was about 3 times more than the mentioned
studies.

Concentration of Zn

Zinc plays a significant role in the adjustment of metabolic
activities. Nevertheless, long-term consumption and high con-
centration of Zn in the diet may lead to vomiting, nausea,
fever, headache, and stomachache [37]. The highest and low-
est concentrations of Zn in the investigated samples were ob-
served in the rice brands of codes 1 and 3, respectively (Fig.
1). As presented in Table 2, the mean concentration of Zn was
8.416 ± 6.11 mg/kg. Besides, a significant difference was
found in Zn concentration in the investigated brands (x2 =
21.8, p < 0.05). In separate studies conducted in Taiwan,
Jamaica, and Sweden, Zn levels were reported to be 13.1 ±
19.4, 15.6 ± 19, and 17 (15–18) mg/kg, respectively [5, 10,

30], suggesting that the mean concentration of Zn in the cur-
rent research was lower than the mentioned studies.

Exposure assessment

The intake level of the toxic agent into the human body is
determined in the exposure assessment process. In the present
research, 258 questionnaires were distributed among the
southeast citizens of Iran to investigate their mean rice con-
sumption. A total of 240 questionnaires were completed. The
respondents answered the questions including the mean fre-
quency of daily rice consumption, the type of devices (cup/
glass) that respondents may use to measure the quantity of rice
for cooking, and the mean number of glasses/cups of rice that
they cook for each individual in each meal. Table 3 presents
the results of the distributed questionnaire analysis.

For more precise calculations, we selected 5 glasses and 5
cups in different figures to approximate the capacities of cups
as well as glasses (in terms of g/cup and g/glass). We filled
them with rice several times and, subsequently, determined a
mean of 118.04 ± 16.73 g and 178.52 ± 0.32 g for capacities
of cups and glasses, respectively. Furthermore, we estimated
the mean daily rice consumption as 295.66 ± 171.005 g/per-
son/day through multiplying the parameters of the frequency
of rice consumption per day, the number of cups or glasses of
rice cooked for each person in each meal, and the capacity of a
glass or a cup. The estimated daily rice consumption in the
present research was obtained higher than the other investiga-
tions in Iran. For instance, the daily consumption of rice levels
in the research conducted by Bakhtiarian and Zazouli was
calculated to be 116.16 and 165 g/person/day, respectively
[45, 46]. The authors of the present study believe that the
obtained results are more accurate because of estimating daily
rice consumption using questionnaires directly.

Regarding the estimated daily consumption of rice, the EDI
was calculated using Eq. 1. For this purpose, Monte Carlo
analysis through 20,000 iterations was utilized. The results
are presented in Table 4.

As presented in Table 4, Fe with a mean of 0.741 ±
0.54mg/kg/day was estimated as the greatest EDI. In addition,
Se intake among the surveyed elements with a mean of 8.95 ±
6.33 mg/kg/day was determined as the lowest one. As Table 4
shows, the mean estimation of the EDI for the surveyed ele-
ments ranked in the following order: Fe >Mn > Zn > Ba>Sr >
Ni > Cr > Se.

Risk characterization

The qualitative risk assessment of the non-carcinogenic ef-
fects of the investigated elements was done using Eq. 2. For
this purpose, the Monte Carlo analysis, the calculated EDI
(Table 3), and RfD (Table 2) were used. Figure 2 presents
the distribution of HQ obtained through Monte Carlo
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simulation. To determine the HQ distribution, 20,000 itera-
tions were done. As shown in Fig. 2, according to Monte
Carlo analysis, just 90% of iterations for Cr, Fe, and Mn
ranged over 1 while it was below 1 for the rest of the elements.
Furthermore, the data about the HQ stochastic analysis are
shown in Table 5. As can be seen in Table 5, Fe with a mean
of 2.48 ± 1.98 and Sr with a mean of 4.66E-3 ± 6.55E-3 had
the highest and lowest estimated HQ, respectively. Moreover,
the mean for the calculated HQ of the surveyed elements was
obtained in the following order: Fe >Mn > Cr > Hg > Se >
Ni > Zn > Ba>Sr. According to Table 4, the mean HQ for
Mn and Fe elements was over 1, suggesting that the consump-
tion of investigated rice brands can cause the rise of non-
carcinogenic effects, arising from exposure to the mentioned
elements. Also, the 90th percentile of iterations related to Cr
was over 1 but their mean was estimated below 1. This result
suggests the non-carcinogenic adverse effects of Cr are possi-
ble in the consumers of the studied brands; however, its prob-
ability is low. According to Table 4, the other surveyed ele-
ments had the HQ below 1, indicating their rare non-

carcinogenic effects. Also, using Eq. 3, the amount of HI
was calculated to be 4.92, which revealed that the overall risk
related to the consumption of the studied rice brands was high.
As presented in Table 4, elements such as Fe, Mn, and Cr had
the most contribution level in HI.

Conclusion

Rice is among the most important resources for heavy metal
intake. Thus, monitoring heavy metals in foodstuff is critical,
especially in countries with high rice consumption. Although
rice is considered as a staple food in the southeastern region of
Iran, there is no accurate information related to the rate of
daily rice consumption as well as the level of toxic elements
in the rice which is supplying in the marketplace of this region.
In the current research, the concentrations of nine important
elements were determined in 36 collected samples (12 brands)
of rice from the markets of southeastern, Iran. Furthermore,
health risk arising from the consumption of these rice brands

Table 3 The obtained results
from the collected questionnaires Parameters Value

The brands of consumed rice were belonged to Pakistan 75.6%

India 13.4%

Iran 0.6%

I don’t know 10.2%

Average frequency of daily rice consumption Once a day 84.3%

Twice a day 15%

Three times a day 0.7%

Frequency of devices which were utilized for rice measurement Cup 78.8%

Glass 21.2%

Average of number of cups that were cooked for each individual 2.1 ± 0.4 (min = 1, max = 4)

Average of number of glasses that were cooked for each individual 1.8 ± 0.77 (min = 2, max = 5)

Average capacity of cup 118.04 ± 16.73 (g cup−1)

Average capacity of glass 178.52 ± 0.32 (g glass−1)

Average daily of rice consumption 295.66 ± 171.005 (g person−1 day−1)

Table 4 Stochastic calculation of
EDI (mg/kg/day) Element Minimum Maximum Mean SD Median 90th Percentile

Ni 0 8.58E-02 2.50E-03 1.59E-03 2.19E-03 3.89E-03

Cr 3.10E-04 4.35E-02 2.00E-03 1.75E-03 1.51E-03 3.72E-03

Hg 1.51E-05 3.00E-03 7.03E-05 7.58E-05 5.30E-05 1.19E-04

Sr 3.30E-04 0.760683 2.82E-03 6.28E-03 2.07E-03 4.96E-03

Mn 3.52E-03 1.823295 4.89E-02 3.05E-02 4.27E-02 7.58E-02

Fe 0.172166 16.99389 0.74172 0.541727 0.602651 1.271397

Se 0 2.88E-02 8.95E-04 6.33E-04 7.78E-04 1.54E-03

Ba 3.08E-04 0.127533 3.53E-03 3.67E-03 2.64E-03 6.41E-03

Zn 0 1.358918 3.60E-02 2.23E-02 3.15E-02 5.48E-02
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was evaluated. The results showed that the mean concentra-
tion of elements were 0.599 ± 0.124 (Ni), 0.483 ± 0.8 (Cr),
0.0157 ± 0.005 (Hg), 0.85 ± 1.307 (Sr), 11.5 ± 1.978 (Mn),
178.461 ± 67.279 (Fe), 0.212 ± 0.083 (Se), 0.845 ± 0.62
(Ba), and 8.416 ± 1.611 (Zn) mg/kg. Additionally, our find-
ings revealed that the mean concentrations of metals, such as

Ni, Cr, Hg, Fe, and Ba were higher than the reported levels in
other studies. Also, Fe with a mean of 0.741 ± 0.45 mg/kg/day
and Se with a mean of 8.95E-04 ± 6.33E-04 mg/kg/day had
the highest and lowest exposure level, respectively. We esti-
mated the HQ value for Mn and Fe over 1, which showed a
high probability of non-carcinogenic effects on the

Fig. 2 HQ distribution for Ni, Cr, Hg, Sr, Mn, Fe, Se, Ba, and Zn through Monte Carlo simulation

Table 5 Stochastic calculation of
HQ and estimated HI for
evaluated elements

Element Mean SD Median 90th Percentile Contribution to HI (%) HI

Ni 1.25E-01 7.45E-02 1.09E-01 1.96E-01 2.543808 4.92E+
00Cr 6.66E-01 5.68E-01 5.01E-01 1.26E+00a 13.53807

Hg 2.35E-01 2.61E-01 1.77E-01 4.00E-01 4.769865

Sr 4.66E-03 6.55E-03 3.43E-03 8.27E-03 0.094789

Mn 1.06E+
00a

6.25E-01 9.31E-01 1.63E+00a 21.59974

Fe 2.48E+
00a

1.98E+
00

2.00E+
00

4.27E+00a 50.35444

Se 1.79E-01 1.27E-01 1.55E-01 3.07E-01 3.644492

Ba 5.01E-02 4.98E-02 3.76E-02 9.09E-02 1.019361

Zn 1.20E-01 7.02E-02 1.05E-01 1.85E-01 2.435445

a Estimated HQ over the hazard quotient threshold (over 1)
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consumers. Moreover, the HI index was estimated at 4.92,
which supports the surveyed rice samples in this study to be
unsafe for consumers.
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