
LTCP-RC: RTT COMPENSATION TECHNIQUE TO SCALE

HIGH-SPEED PROTOCOL IN HIGH RTT LINKS

A Thesis

by

SAURABH JAIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2005

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4269646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

LTCP-RC: RTT COMPENSATION TECHNIQUE TO SCALE

HIGH-SPEED PROTOCOL IN HIGH RTT LINKS

A Thesis

by

SAURABH JAIN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, A. L. Narasimha Reddy
Committee Members, Pierce Cantrell

Deepa Kundur
Riccardo Bettati

Head of Department, Chanan Singh

August 2005

Major Subject: Computer Engineering

iii

ABSTRACT

LTCP-RC: RTT Compensation Technique to Scale

High-Speed Protocol in High RTT Links. (August 2005)

Saurabh Jain, B.Tech., Indian Institute of Technology Bombay

Chair of Advisory Committee: Dr. A.L. Narasimha Reddy

In this thesis, we propose a new protocol named Layered TCP with RTT Com-

pensation (LTCP-RC, for short). LTCP-RC is a simple modification to the congestion

window response of the high-speed protocol, Layered TCP (LTCP). In networks char-

acterized by large link delays and high RTTs, LTCP-RC makes the LTCP protocol

more scalable. Ack-clocked schemes, similar to TCP, suffer performance problems

like long convergence time and throughput degradation, when RTT experienced by

the flow increases. Also, when flows with different RTTs compete, the problem of

unfairness among competing flows becomes worse in the case of high-speed protocols.

LTCP-RC uses an RTT Compensation technique in order to solve these problems.

This thesis presents a general framework to decide the function for RTT Compen-

sation factor and two particular design choices are analyzed in detail. The first

algorithm uses a fixed function based on the minimum RTT observed by the flow.

The second algorithm uses an adaptive scheme which regulates itself according to

the dynamic network conditions. Evaluation of the performance of these schemes is

done using analysis and ns-2 simulations. LTCP-RC exhibits significant performance

improvement in terms of reduced convergence time, low drop rates, increased utiliza-

tion in presence of links with channel errors and good fairness properties between

the flows,. The scheme is simple to understand, easy to implement on the TCP/IP

stack and does not require any additional support from the network resources. The

iv

choice of parameters can be influenced to tune the RTT unfairness of the scheme,

which is not possible in TCP or other high-speed protocols. The flexible nature of

the analysis framework has laid the ground work for the development of new schemes,

which can improve the performance of the window based protocols in high delay and

heterogeneous networks.

v

To my parents

vi

ACKNOWLEDGMENTS

I am very grateful to my advisor, Dr. A. L. Narsimha Reddy, for giving me the

opportunity to work with him. I owe him gratitude for showing me the direction for

the research. Without his constant guidance, suggestions and encouragement, this

work would not have been possible. He has answered all my questions very patiently

and supported and encouraged me, whenever I needed him. The informal group

meetings organized by him have been a constant source of knowledge and inspiration.

I also want to thank him for all the facilities and support provided to me. Thanks a

lot, Dr. Reddy, for everything.

I would also like to express my sincere acknowledgment to Sumitha Bhandharkar.

Her constant support, valuable comments and guidance have helped me throughout

the course of my master’s study. She has helped me in learning new things, given

time to discuss the problems and has been a source of inspiration all along.

I would also like to thank my parents and brother, who taught me the value of

hard work by their own example. I would like to share my moment of happiness with

them. Without their encouragement and confidence in me, I would have never been

able to pursue and complete my master’s study.

Last but not the least, I would like to thank all my friends, who directly and

indirectly supported and helped me, in completing this thesis.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Related Work . 2

1. BIC TCP: Binary Increase Congestion Control 4

2. H-TCP: TCP for High-Speed and Long-Distance

Networks . 5

B. Motivation . 7

C. Organization . 7

II BACKGROUND . 8

A. LTCP: Layered Transport Control Protocol 8

III PROBLEM AT HIGH RTT . 12

A. Interaction of Two LTCP Flows 13

1. Case 1: Flows Competing at Different RTTs 13

2. Case 2: Flows Competing at Same RTT 15

IV LTCP-RC I: USING A FIXED RTT COMPENSATION TECH-

NIQUE . 18

A. RTT Unfairness . 19

B. Convergence Time for Two Flows 21

C. Effect of Random Drops 23

D. Effect of Large Queuing Delay 25

E. Simulation Results . 27

1. Effect of Parameter c 28

2. Fairness Among Multiple Flows 30

3. RTT Unfairness . 33

4. Dynamic Link Sharing 34

5. Effect of Random Drops 34

F. Conclusion . 37

V LTCP-RC II: USING AN ADAPTIVE RTT COMPENSA-

TION TECHNIQUE . 38

A. Implementation Details . 39

viii

CHAPTER Page

B. An Alternate Design Choice 40

C. Stability Analysis . 41

D. Simulation Results . 43

1. Convergence Time and Drop Rates 44

2. Drop Events . 45

3. RTT Unfairness . 47

4. Dynamic Sharing . 48

E. Conclusion . 50

VI CONCLUSION AND FUTURE WORK 51

REFERENCES . 53

VITA . 56

ix

LIST OF TABLES

TABLE Page

I LTCP-RC I: RTT Unfairness at Different Values of α 21

II LTCP-RC I: Comparison of Drop Rates and Convergence Time . . . 30

III LTCP-RC I: Fairness Among LTCP-RC Flows 32

IV LTCP-RC I: RTT Unfairness . 33

V LTCP-RC I: Effect of Channel Errors 37

VI LTCP-RC II: Comparison of Drop Rates and Convergence Time . . . 44

VII LTCP-RC II: RTT Unfairness . 48

x

LIST OF FIGURES

FIGURE Page

1 Graphical Representation of Layers in LTCP 9

2 Convergence of LTCP Flows . 16

3 LTCP-RC I: Simulation Topology . 27

4 LTCP-RC I: Definition of Region 1 and Region 2 29

5 LTCP-RC I: Convergence of Different Protocols 31

6 LTCP-RC I: Dynamic Link Sharing 35

7 LTCP-RC I: Throughput vs Error Rates 36

8 LTCP-RC II: State Diagram for Convergence of Two Flows 42

9 LTCP-RC II: Evolution of Window for Two Flows 46

10 LTCP-RC II: Evolution of Window for LTCP-RC 47

11 LTCP-RC II: Dynamic Link Sharing 49

1

CHAPTER I

INTRODUCTION

The current version of the TCP protocols (Tahoe, Reno, NewReno) suffer perfor-

mance problems in connections characterized by relatively high error rates and long

propagation delays, such as those that encompass terrestrial and satellite radio links.

Changes in the communication networks over the last few years have led to ever-

increasing availability of the network bandwidth and the deployment of high-speed

links for high-delay transatlantic communication. This has posed a serious challenge

for the AIMD algorithms used for congestion control in TCP. Over the past few years,

several solutions and new protocols have been put forth for solving this problem and

improving the performance of TCP in high-speed networks. HighSpeed TCP [1],

Scalable TCP [2], Fast TCP [3], XCP [4], BIC-TCP [5], H-TCP [6] and LTCP [7] are

some of the examples.

Most of the above protocols modify the congestion window response function

of the TCP at the sender side and do not require any additional support from the

network. They use the window-based transmission algorithm, which is triggered by

incoming acknowledgments (ACK) from the receiver. It must be stressed that many

high-speed networks run over long distances, connecting several organizations around

the world, and their round trip times (RTTs) can rise beyond 200 milliseconds [5].

High RTTs reduce the congestion window growth rate, which results in significant

throughput degradation. Even when two flows experience the same RTT, they may

take long time to converge when they start at different time intervals. Moreover,

when flows with different RTTs compete over the same bottleneck link, the flow with

The journal model is IEEE Transactions on Automatic Control.

2

longer RTT is penalized in terms of reduced throughput and unfair sharing of the

network bandwidth. Most of the high-speed protocols suffer from this RTT unfairness

problem, when the window increase rate gets larger as the congestion window grows

[5]. RTT unfairness problem for high speed networks is exacerbated by drop tail

routers where losses are highly synchronized [5].

In light of these problems, there has been a surge of interest for schemes which

will scale the TCP protocol for both high-speed and long distance networks, and

also reduce the RTT unfairness problem experienced by the high-speed schemes. In

this thesis, we have tried to study the performance problems which occur due to

increase in link delays and RTT observed by the flow. We propose a new scheme,

LTCP-RC, which use an RTT Compensation technique to improve the performance

of high-speed protocol, LTCP, in high RTT links. LTCP-RC scales the congestion

window response of the LTCP protocol by using the RTT Compensation factor based

on the RTT observed. The work presented in this thesis provides a detailed analysis

framework and new set of techniques which can help to solve the RTT disparity

problem.

A. Related Work

Effects of the increase in round trip time on the performance of TCP have been studied

extensively in literature. An analytical model of TCP throughput was developed by

J. Padhye et. al. [8], which provides the equation for the throughput obtained, in

terms of loss rate and RTT observed by the flow. The equation given by this model

can be represented in simplified form as,

BW =

√
3
2

RTT
√

p
(1.1)

3

Equation 1.1 shows that, for a given loss probability p and congestion window W,

an increase in the observed RTT, results in a proportionate decrease in the throughput

obtained by the TCP flow. In [9], Golestani et. al. have studied the dependency of the

window increase rate on the round trip time. The authors have also investigated the

impact of this dependence on the fairness properties of the algorithms. The authors

introduced the notion of window-oriented and rate-oriented fairness and concluded

that TCP shows window-oriented fairness. The paper states that for a TCP flow,

window size at the equilibrium point is independent of the round trip time and only

depends on the loss probability.

When two flows with different RTTs compete over the same bottleneck link then

the TCP algorithm, by its design is biased against the longer RTT flow. Several

schemes have been proposed to reduce this bias. Sally Floyd proposed a constant-

rate window increase algorithm in [10]. The paper presents an algorithm in which,

each flow increases its congestion window by a ∗ RTT 2, where a is a fixed constant.

Thus, each flow increases its window by a packets per second, such that flows with

different RTTs achieve the same sending rate. TCP Hybla [11] provides an extension

of Floyd’s scheme [10] and aimed at providing a protocol to solve the RTT disparity

problem of TCP. TCP Hybla modifies the congestion window update algorithm on

the receipt of an acknowledgment. On a successful receipt of an acknowledgment, the

congestion window is updated using the relation,

Wi+1 =


Wi + 2ρ − 1, during Slow Start

Wi + ρ2/Wi, during Congestion Avoidance
(1.2)

Simulation results presented in the paper show that TCP Hybla flows are fair to

each other during random link losses and when flows with different RTTs compete

with each other.

4

The problem of RTT unfairness in high-speed protocols has been suggested by

Rhee et. al. [5]. The authors state that, in order to scale the protocol, the window

increase rate of most of the high-speed schemes gets larger as the window grows.

This makes the RTT unfairness problem of high-speed protocols more severe. Several

schemes have been proposed to scale TCP for both high speed and long distance

networks. Below we present a brief review of two such schemes.

1. BIC TCP: Binary Increase Congestion Control

Rhee et. al. proposed BIC protocol to scale TCP for fast, long distance network

in [5]. The primary goal of this scheme is to probe the available bandwidth aggres-

sively initially and then, become less aggressive when the window gets closer to the

maximum possible window. The algorithm uses the combination of binary search

increase and additive increase to control the congestion window at the sender. In

the binary increase mode, the sender keeps track of the maximum window (window

at which packet drop occurred) and the minimum window (window at which there

are no losses). The binary search is employed by calculating the target window as

the mid-point between the maximum and the minimum. The congestion window is

increased to this target window, if packet loss is not observed for a RTT. Then, the

minimum is set to the new current window and the target is calculated again. If

the distance between the target and the minimum window is larger than a threshold

value, then additive increase is used. In this phase, congestion window is increased

by a fixed amount at every RTT.

On a packet loss, BIC uses multiplicative decrease similar to TCP. But the de-

crease factor is 0.125 for BIC as compared to 0.5 for TCP. To make the convergence

of two flows faster, BIC uses the fast convergence algorithm in which, it keep track

of the window size at which packet drop occurred for two consecutive loss events.

5

By comparing the window size at which drop occurred between two consecutive loss

events, it can be inferred whether the current window is larger or smaller than fair

share. If window is in a downward trend, then the current window is larger than the

fair share. The maximum is readjusted to the new target window and a new target

is recalculated. Otherwise, window is increased using normal BIC algorithm. A flow

with the larger window increases by a smaller rate, as compared to the flow with

smaller window. This leads to faster convergence in BIC protocol. Due to the use

of binary search increase, the BIC algorithm reduces its window increase rate when

the current window gets closer to the target window size. Therefore, it results in low

packet loss rates.

This paper also presents the issue of RTT unfairness and the authors state that

synchronized losses makes the RTT unfairness problem more severe. Simulation re-

sults presented show that, in the case of drop tail routers, the number of synchronized

loss can be quite substantial. This paper has studied the RTT unfairness of HSTCP

[1] and STCP [2] through analysis and simulations on ns-2 simulator. Both the

schemes exhibit serious RTT unfairness problem and performance worst than stan-

dard AIMD schemes. At larger window sizes, the RTT unfairness of the BIC is similar

to the AIMD schemes but at lower window, BIC performs worse than AIMD. Results

presented in the paper confirmed that BIC has good bandwidth utilization, better

RTT unfairness properties as compared to HSTCP and STCP. With respect to TCP

Friendliness, the performance of BIC is better at higher bandwidth but worse at lower

bandwidth, when compared with HSTCP and STCP protocols.

2. H-TCP: TCP for High-Speed and Long-Distance Networks

This is another scheme [6] that adjusts the rate at which congestion window is in-

creased on the sender side, in order to scale conventional TCP for high-speed and

6

long distance networks. The key idea in this scheme, is to use the time elapsed since

the last packet drop experienced by the source, to decide the rate, α, at which source

inserts packet into the network. The protocol uses two modes of operation. In the

low-speed mode, it behaves as conventional TCP in order to maintain backward com-

patibility. In the high speed mode, α is calculated using a function of time elapsed

since the last packet drop. The function proposed in the paper is given by,

αH(∆) = 1 + 10(∆−∆L) + (
∆−∆L

2
)2 (1.3)

where ∆L is the threshold at which the switch between the low-speed and the

high-speed mode occur and αH is the rate at which window is increased in the high-

speed mode.

On observing a packet loss, the H-TCP algorithm uses an adaptive backoff mech-

anism to achieve maximum throughput and link utilization. The protocol keep track

of the throughput, B−, obtained by the flow, just before a congestion event. If the

difference between B− in the current and the previous loss event is greater than a

threshold, then the window decrease factor β is set to 0.5. Otherwise, it is set to

RTTmin

RTTmax
in order to achieve maximum throughput. This can be represented as,

β(k + 1) =


0.5 |B

−(k+1)−B−(k)
B−(k)

| > 0.2

RTTmin

RTTmax
otherwise.

(1.4)

In order to achieve constant convergence time, H-TCP algorithm scale ‘α’ by the

round-trip time observed by the flow. Mathematical intuition behind this scaling is

not presented in this paper but it will make the throughput obtained by H-TCP flow

proportional to RTT. This paper has not presented any results for higher RTT flows

or flows competing in different RTT links. However, ns-2 simulation results presented

reveal good fairness properties between two H-TCP flows. Other aspects like RTT

7

unfairness, TCP friendliness are not explored.

B. Motivation

With the increase in the available bandwidth and inter-continental communication,

several researchers made an effort on improving the performance of TCP. There has

been substantial amount of research in the area of improving TCP performance,

when RTT increases. To reduce RTT unfairness, most of the schemes emphasized

on scaling the window increase function by squared RTT to obtain fair bandwidth

share. The key contribution of this thesis will be an RTT Compensation technique

which can be tuned to achieve desired fairness properties. A detailed analytical

framework is presented and different solutions are investigated. We also observe that

a fixed solution might not be sufficient for all performance requirements. An adaptive

technique which makes the protocol more or less aggressive according to dynamic

network conditions is also explored. We aimed at obtaining a better understanding

of the effects of different network factors and conditions on our scheme.

C. Organization

The rest of the thesis is organized as follows. In chapter II, we provide a brief back-

ground of the LTCP protocol. In Chapter III, an analysis of the problems faced by

LTCP at high RTT and heterogeneous links are presented. In Chapter IV, LTCP-RC

design, using a fixed function for RTT Compensation is proposed. Chapter V presents

an adaptive algorithm for LTCP-RC, which regulate itself according to dynamic net-

work conditions. Finally, Chapter VI, presents conclusions and recommended future

work.

8

CHAPTER II

BACKGROUND

A. LTCP: Layered Transport Control Protocol

LTCP is a simple layering technique for the congestion window response of TCP to

make it more scalable in high-speed networks [7]. The original LTCP scheme proposed

a sender-side modification, which aimed at improving the performance of TCP only

on high-bandwidth links. It uses a two-dimensional congestion control framework.

The macroscopic control, employed layering to quickly and efficiently make use of

the available bandwidth whereas microscopic control, extends the existing AIMD

algorithm of TCP to determine the per-ack behavior. The scheme can be thought

of as an emulation of multiple flows at the transport level, with the key contribution

that the number of virtual flows adapt to dynamic network conditions.

LTCP algorithm is described as follows. When a flow operates at a higher layer

it increases its congestion window faster than the flow operating at a lower layer.

Initially, all new LTCP connections start with the first layer. If congestion is not

observed for an extended period of time, it adds more number of layers. Operating at

a particular layer K, the LTCP flow increases its congestion window more aggressively

as compared to normal TCP. The congestion window is increased by K/cwnd packets

for each incoming ack, or equivalently, it is increased by K on the successful receipt

of one window of acknowledgments. Each layer K is also associated with a step-size

δK . When the current congestion window exceeds the window corresponding to the

last addition of a layer (WK) by the step size δK , a new layer is added. The layers in

LTCP can be formalized as,

W1 = 0, W2 = W1 + δ1, ... WK = WK−1 + δK−1 (2.1)

9

Therefore, LTCP flow operates at a layer K, when the congestion window W lies

between WK and WK+1 as shown in Figure 1.

δ
K

δ
K−1 W

K−1

W
K

W
K+1

Number
 Layer Minimum Window

Corresponding to the layer

Κ−1

K

K+1

Fig. 1. Graphical Representation of Layers in LTCP

On a congestion drop event, LTCP reduces its congestion window using a mul-

tiplicative decrease β similar to TCP. The window reduction WR on the receipt of

3-duplicate acknowledgments can be represented as,

WR = β ∗W (2.2)

The primary objective of the LTCP protocol design was to scale TCP in high

speed links while making sure that the two LTCP flows, operating at same RTT,

should be fair to each other. In order to ensure that two LTCP flows with same RTT,

but starting at different times, converge, the number of RTTs taken by the larger

flow to regain the lost bandwidth after a congestion event, should be larger than

the recovery time of the smaller flow. This would make sure that the smaller flow

10

will grab the bandwidth faster than the larger flow and two flows will converge. To

formulate this mathematically, we assume that the two flows are operating at layers

K1 and K2 (K1 > K2) and WR1 and WR2 are the window reductions for each flow,

upon a packet loss. After the packet drop, suppose the flows operate at layers K
′
1

and K
′
2, respectively. The flows take WR1

K
′
1

and WR2

K
′
2

RTTs respectively to regain the

lost bandwidth. Following the above reasoning we can write the inequalities as,

WR1

K
′
1

>
WR2

K
′
2

(2.3)

[7] states that in order to allow smooth layer transitions after a window reduction

due to a packet loss, at most one layer can be dropped. Therefore, a flow operating

at layer K before the packet loss, should operate at layer either at layer K or (K-1),

after the window reduction. Keeping this in mind, the worst case for the convergence

of two flows arises, when two flows operate in adjacent layers and the larger flows does

not reduce a layer but the smaller flow does i.e. K
′
1 = K and K

′
2 = (K2−1) = (K−2).

This gives the inequality,

WR1

K
>

WR2

K − 2

⇒ W
′

K
>

W
′′

K − 2
(2.4)

The second equation above is derived from Equation 2.2 by substituting for WR.

Again the worst case will occur, when the window W
′
will be close to transition to

the layer (K+1) and the window W
′′

has recently transitioned into layer (K-1) i.e.

W
′
= WK+1 and W

′′
= WK−1. For this worst case, Equation 2.4 can be re-written

as,

WK+1 >
K

K − 2
WK−1 (2.5)

Based on the above inequality, the increase behavior for LTCP is chosen conser-

11

vatively as,

WK =
K + 1

K − 2
WK−1 (2.6)

With this choice of WK and starting layers at W2 = WT , we have,

WK =
K(K + 1)(K − 1)

6
WT (2.7)

where WT is the window threshold parameter and is set to 50, in the current

implement. By defining, δK = WK+1 −WK , the size of layer K is given by,

δK =
K(K + 1)

2
WT (2.8)

The above analysis is based on the assumption that after a window reduction

due to a packet drop, at most one layer is dropped. In order to ensure this, parameter

β should be chosen appropriately. That means, that the window reduction at layer K

should be smaller than the size of the layer below, δK−1. [7] suggests use of smaller

value of β = 0.15 for LTCP as compared to β = 0.5 for TCP. This value is chosen

in order to support K = 19 and to maintain a full link utilization for a 2.4Gbps link

with an RTT of 150ms (where window size can grow to 30,000 packets).

Results obtained from analysis and simulations have shown that LTCP protocol

shows very high bandwidth utilization, low drop rates, excellent convergence and

fairness properties. But being an ack-clocked, window controlled scheme similar to

TCP, the aggressiveness of LTCP depends on RTT. Performance reduces as the link

delay and RTT observed by the flow increases. In the next chapter, we present the

problems which arise due to increase in RTT and following chapters will provide

possible solutions.

12

CHAPTER III

PROBLEM AT HIGH RTT

LTCP congestion control algorithm can be viewed as a feedback system, where the

input is the information about the congestion in the network and the output is the

sending rate or the congestion window of the flow. As the link delay increases, the

acknowledgments from the receiver are delayed. This reduces the congestion window

growth rate and leads to the significant throughput degradation. According to the

throughput analysis for LTCP given in [7], the throughput BW obtained by an LTCP

flow on a network with round trip time RTT, loss probability p, is given by,

BW =

√
K
′

β
(1− β

2
)

RTT
√

p
(3.1)

where, β is the factor by which the congestion window is reduced and K
′
is the

layer at which the flow operates after the packet drop.

Equation 3.1 shows that the throughput obtained by the LTCP flow is inversely

proportional to the RTT. Since BW = W/RTT , for a given loss probability p and a

fixed window size W, an increase in RTT will result in a proportionate reduction in

the throughput obtained by the LTCP flow. Equation 3.1 can also be interpreted in

other way: for a given link bandwidth BW, as RTT increases, the congestion window

W required to fill the pipe had to increase. The larger target for the congestion

window coupled with the increase in RTT, will increase the time required to fully

utilize the available bandwidth. In the following section, we present an analysis for

interaction of two LTCP flows. The behavior of LTCP is analyzed in terms of RTT

unfairness and convergence time.

13

A. Interaction of Two LTCP Flows

In this section, the behavior of LTCP when two flows compete over the same bot-

tleneck bandwidth is analyzed. Since, the behavior depends on whether the flows

experience same or different RTTs, these two cases are analyzed separately. The

analysis presented in this section is based on the assumption of synchronized loss

model. In networks with drop-tail routers or high speed links with low multiplexing,

the fraction of synchronized losses are quite significant [5]. Therefore, this assumption

is made to simplify the analysis.

1. Case 1: Flows Competing at Different RTTs

The analysis presented in this section is based on the analysis presented in [5] for

RTT unfairness. Assuming synchronized losses, the time between two drop events t,

will be same for both the flows. For a flow i with round trip time RTTi and packet

loss probability pi, the average number of packets sent by the flow between two drop

events is given by 1/pi. Also, the number of RTTs between two consecutive loss

events is t/RTTi. Therefore, average window size of the flow i is given by,

Wi =
1/pi

t/RTTi

=
RTTi

tpi

(3.2)

From Equation 3.1, the bandwidth of LTCP flow is given by,

BW =
Wi

RTTi

=

√
K
′
i

β
(1− β

2
)

RTT
√

p

⇒ pi =
K

′
iC

W 2
i

where C =
1

β
(1− β

2
) (3.3)

By substituting pi in Equation 3.2 we get,

Wi =
tK

′
iC

RTTi

(3.4)

14

Equation 2.7, gives the relationship between the window size W and the operat-

ing layer K for the LTCP flow as,

W ∝ K3 or K ∝ W 1/3 (3.5)

Substituting this relationship in Equation 3.4, we get,

Wi ∝ (
tC

RTTi

)3/2 (3.6)

RTT unfairness is defined as the ratio of the throughput obtained by two flows

in terms of the ratio of the RTTs. RTT unfairness for LTCP can be found by dividing

Equation 3.6 for two flows. By synchronized loss model, time t will be same for two

flows. Also, the factor C is constant for a given value of β and will remain same for

the two flows. Hence, RTT unfairness for LTCP is given by,

(W1

RTT1
)(1− p1)

(W2

RTT2
)(1− p2)

'
W1

RTT1

W2

RTT2

∝ (
RTT2

RTT1

)5/2 since, p � 1

⇒ BW1

BW2

∝ (
RTT2

RTT1

)5/2 (3.7)

Analysis done on similar lines for TCP gives RTT unfairness equation as,

BW1

BW2

∝ (
RTT2

RTT1

)2 (3.8)

Comparing Equation 3.7 and 3.8, we observe that the RTT unfairness of the

LTCP is slightly worse than that of the TCP. In case of LTCP, a flow with the larger

window size operates at a higher layer as compared to a flow with the smaller win-

dow. The larger flow increases its window at the rate corresponding to its operating

layer, which is larger than the rate of window increase for the smaller flow. In case

of TCP, both the flows increase window at the same rate. Difference in the rate

of increase in congestion window coupled with difference in RTTs, make the RTT

15

unfairness of LTCP worse than that of TCP. We have verified this analysis through

ns-2 simulations. Implementation details and results of the simulations will be given

in the following chapters.

2. Case 2: Flows Competing at Same RTT

This analysis is also based on a synchronous loss model. In this section, the average

time of convergence of two LTCP flows is analyzed and a relationship is established

between the convergence time and the RTT. The behavior of congestion window for

two LTCP flows, competing with each other is shown in Figure 2. The design of the

protocol ensures that after a drop event, the smaller flow claims the lost bandwidth

faster than the larger flow. Let Wmax represent the combined window of the two flows

at which packet drop occur and t be the time between two loss events. Following

parameters are defined for the flow i,

K
′
i : Average layer number in which flow operates between two drop events,

W
′
i : Congestion window just before the first drop event,

W
′′
i : Congestion window just before the second drop event

If we assume that the link bandwidth does not change then the sum of the

windows of the two flows, just before the packet drop event, will remain same and

equal to Wmax. This can be represented as,

Wmax = W
′

1 + W
′

2 = W
′′

1 + W
′′

2 (3.9)

Between two loss events, the congestion window increases at an average rate of

K
′
i per RTT. Equation for W

′′
i can be written as,

W
′′

1 = (1− β)W
′

1 + K
′

1t/RTT (3.10)

W
′′

2 = (1− β)W
′

2 + K
′

2t/RTT (3.11)

16

W
1
’

W
1
’’

W2’
W ’’

W max

2

time

W
in

do
w

t

Fig. 2. Convergence of LTCP Flows

Adding the above equations and substituting from Equation 3.9, we get,

Wmax = W
′′

1 + W
′′

2

= (1− β)(W
′

1 + W
′

2) + (K
′

1 + K
′

2)t/RTT

= (1− β)Wmax + (K
′

1 + K
′

2)t/RTT (3.12)

From this, the time between drop events as,

t =
βWmax

(K
′
1 + K

′
2)

RTT (3.13)

Equation 3.13 reveals that the time between two loss events is directly propor-

tional to RTT. The value of t can be used to calculate the congestion window W
′′
1

as,

W
′′

1 = (1− β)W
′

1 + K
′

1

βWmax

(K
′
1 + K

′
2)

(3.14)

17

The congestion window after a packet drop is independent of the RTT. Therefore,

increase in RTT will not affect the congestion window after the drop event. Hence,

the total number of drop events will not change. But, an increase in RTT will result

in a proportionate increase in the time between two loss events. Therefore, total time

of convergence of two flows, which depends on the time between two drop events will

also increase. This analysis is verified using simulations on ns-2 simulator and the

results are presented in the following chapters.

Analysis presented above shows that the LTCP protocol suffers from performance

deterioration when the RTT increases. These problems are direct consequence of the

LTCP design and cannot be resolved without introducing modifications to the existing

LTCP algorithm. In the following, we present LTCP-RC, a simple extension to the

LTCP high-speed protocol, which makes LTCP more scalable in high RTT networks.

LTCP-RC employs an RTT Compensation technique using a factor, KR which is

based on the RTT observed by the flow. This technique improves the convergence

time, RTT unfairness properties while preserving the fairness properties of the original

LTCP protocol. Following chapters provide implementation details, analysis and

simulations results of the LTCP-RC scheme.

18

CHAPTER IV

LTCP-RC I: USING A FIXED RTT COMPENSATION TECHNIQUE

In this design, LTCP-RC employs an RTT Compensation factor KR based on the

RTT observed by the flow. The RTT Compensation technique modifies the congestion

window update algorithm, on the receipt of an acknowledgment, for LTCP. In the

design presented in this chapter, a flow always employs the same function of RTT for

KR. In the next chapter, we will present a technique that adapt to the changes in

the network.

Our first goal in the design of LTCP-RC is to preserve the convergence and

fairness properties of the basic LTCP scheme. Therefore, LTCP-RC should not alter

the fairness and convergence equations for LTCP presented in Chapter II. Specifically,

Equation 2.3 should hold. In order to ensure this, RTT Compensation use a scaling

factor KR to the basic LTCP window increase function. On a successful receipt of

one window of acknowledgments, LTCP-RC will increase its congestion window by

KR ∗K packets, instead of K packets. For this design, Equation 2.3 can be re-written

as,

WR1

KR1 ∗K
′
1

>
WR2

KR2 ∗K
′
2

(4.1)

For two flows with same RTT, the value of KR will be same and thus will cancel

out in the above Equation. The above Equation will reduce to Equation 2.3 for LTCP

and convergence will hold.

Our second aim of scalability requires that increase in the RTT should make

the LTCP-RC more aggressive. Therefore, KR should be directly proportional to the

Round Trip Time. But, increased congestion in the network leads to higher queuing

delay and larger round-trip time. If KR is chosen on the basis of instantaneous RTT

then the value of KR will also increase. This will make the load on the network

19

buffers worse. To take care of this problem, propagation delay is used instead of

instantaneous RTT to calculate the value of KR. Since, propagation delay is difficult

to measure in actual implementation, the minimum RTT observed by the flow is used

as a measure for the propagation delay. The value of KR is updated whenever the

minimum RTT change.

For the sake of simplicity, we choose an RTT Compensation function of the form,

KR = c(RTT)α (c < 1) (4.2)

where, c and α are constants and RTT is measured in milliseconds. Next few

sections examine the performance of the protocol using different mathematical anal-

ysis. Results obtained from the analysis and simulations, will be used to decide the

values for c and α.

A. RTT Unfairness

The analysis presented in this section is similar to the analysis presented in Chapter

III. The assumption of synchronous loss model is made. As explained above, the

LTCP-RC flow operating at a layer K, will increase the congestion window at the rate

of KR∗K packets every RTT. The throughput equation for LTCP-RC, corresponding

to Equation 3.1 can be derived as,

BW =

√
KR∗K′

β
(1− β

2
)

RTT
√

p
(4.3)

Using BW = W/RTT we will get,

BW =
Wi

RTTi

=

√
KRi

K
′
i

β
(1− β

2
)

RTT
√

p

⇒ pi =
KRi

∗K
′
iC

W 2
i

where C =
1

β
(1− β

2
) (4.4)

20

Substituting the value of pi in Equation 3.2 from Chapter II, the average window

size between two loss events can be calculated as,

Wi =
tKRi

K
′
iC

RTTi

(4.5)

RTT unfairness can be calculated by dividing the above equation for two flows

and using approximation that p � 1,

BW1

BW2

=
W1

RTT1

W2

RTT2

= (
RTT2

RTT1

)2(
K

′
1

K
′
2

)(
KR1

KR2

) (4.6)

Substituting Wi ∝ (K
′
i)

3 from Equation 3.5 we get,

BW1

BW2

=
W1

RTT1

W2

RTT2

= (
RTT2

RTT1

)
5
2 (

KR1

KR2

)
3
2 (4.7)

By substituting KR = c(RTT)α and simplifying we get,

BW1

BW2

= (
RTT2

RTT1

)(5
2
− 3α

2
) (4.8)

The above equation shows that RTT unfairness of LTCP-RC depends on the

value of α. For example, choosing α = 1/3, the RTT unfairness of LTCP is given by,

BW1

BW2

= (
RTT2

RTT1

)2 (4.9)

This is similar to the RTT unfairness of the AIMD scheme used in TCP. Table

I, presents the RTT unfairness of LTCP-RC protocol for different values of α.

Choosing α = 1 makes the congestion windows of two LTCP-RC flows indepen-

dent of RTT and gives window oriented fairness [9]. Similarly, α = 5/3 results in

rate-oriented fairness, when the effect of RTT is completely eliminated and the pro-

tocol behaves as a rate-oriented, scheme independent of RTT. Thus, by influencing

the value of α, RTT unfairness of the LTCP-RC protocol can be controlled. This

provides a mechanism to tune the protocol and desired performance can be achieved.

21

Table I. LTCP-RC I: RTT Unfairness at Different Values of α

α RTT unfairness (BW1

BW2
)

1/3 (RTT2

RTT1
)2

1/2 (RTT2

RTT1
)7/4

1 (RTT2

RTT1
)

5/3 constant

In our current implementation, we have used the value of α = 1/3 to make the

RTT unfairness of LTCP-RC same as that of TCP. The RTT Compensation function

is then represented as, KR = c(RTT)1/3.

B. Convergence Time for Two Flows

In this section, we analyze the convergence time for two LTCP-RC flows when the

second flow starts after the first flow has reached a steady state. Both the flows observe

the same RTT. The analysis again is based on the assumption of synchronous loss

model. Between two loss events, congestion window will increase at an average rate

of KR ∗ K
′
i per RTT. Two flows, experiencing same RTT, will have the same value

for KR. Using K
′
i , W

′
i and W

′′
i , as defined in Chapter III Section 2, we can re-write

equation for the increase in congestion window with time as,

W
′′

1 = (1− β)W
′

1 + KR ∗K
′

1t/RTT (4.10)

W
′′

2 = (1− β)W
′

2 + KR ∗K
′

2t/RTT (4.11)

Assuming that Wmax does not change, we can add the above two equations and

22

substitute for Wmax from Equation 3.9 to get,

Wmax = W
′′

1 + W
′′

2

= (1− β)(W
′

1 + W
′

2) +
KR(K

′
1 + K

′
2)t

RTT

= (1− β)Wmax +
KR(K

′
1 + K

′
2)t

RTT
(4.12)

The time between two loss events is re-calculated as,

t =
βWmax

KR(K
′
1 + K

′
2)

RTT (4.13)

From the above equation, it is clear that for two LTCP-RC flows with same RTT

(and hence same KR), the time between two loss events is reduced by a factor of KR.

If we calculate the congestion window at the second loss event by substituting the

value of t in equation for W
′′
i and simplifying we get,

W
′′

1 = (1− β)W
′

1 + KR ∗K
′

1t/RTT

= (1− β)W1 +
KRK

′
1βWmax

KR(K
′
1 + K

′
2)

(4.14)

= (1− β)W1 +
K

′
1βWmax

(K
′
1 + K

′
2)

(4.15)

The above equation shows that the window W
′′
1 at next loss event is independent

of KR. RTT Compensation does not affect the windows achieved by the flows between

two loss events. Thus for LTCP-RC, the number of loss events required convergence

will remain same as LTCP. But, the time between loss events will be reduced by a

factor of KR. Therefore, for LTCP-RC, the overall convergence time will be reduced

by a factor of KR as compared to LTCP. RTT Compensation makes the protocol more

aggressive by increasing the rate at which the flow increases its congestion window.

23

C. Effect of Random Drops

The assumption with synchronized losses might not hold in all network scenarios.

Real networks are characterized by random losses and channel errors especially in the

case of wireless links. In this section, we analyze the behavior of LTCP-RC assuming

a random loss model. The analysis is based on similar lines presented in [9] and [12].

LTCP-RC, update the congestion window w on a successful packet delivery or reduce

it on observing a packet loss. Let A(w, RTT) and B(w, RT) represent the congestion

window response functions on a successful delivery of packet and observation of a

packet loss, respectively. Here, w represents the size of congestion window and RTT

is the round trip time. For LTCP-RC, these functions are given by,

A(w, RTT) =
KR ∗K

w
∼ KR

w1/3

B(w, RTT) = βw (4.16)

The above Equation is derived using approximation, K ∝ w1/3. If p denotes

the probability of packet loss then, the expected change of congestion window, ∆w is

given by,

E{∆w} = p · E{∆w| packet loss}+ (1− p) · E{∆w| successful transmission}

= −p ·B(w,RTT) + (1− p) · A(w, RTT) (4.17)

Let Ws represents the average window at statistical equilibrium. At the equilib-

rium point, expected change in window will be zero or E{∆w} = 0. By substituting

this in the above equation and using Equation 4.16, we get,

p =
A(Ws, RTT)

A(Ws, RTT) + B(Ws, RTT)

=
1

1 + βW
5/3
s

KR

24

=
1

1 + βW
5/3
s

c(RTT)1/3

(4.18)

The terms in the above equation can be re-arranged to calculate the value of Ws

as,

βW 5/3
s

c(RTT)1/3
=

1− p

p
≈ 1

p
(4.19)

⇒ Ws ∝ RTT 0.2

p0.6
(4.20)

The above Equation is similar to the throughput equation obtained for LTCP-

RC, confirming the validity of our analysis.

Equation 4.18 can be used to establish fairness statement for two LTCP-RC

flows, in the presence of random losses and channel errors. When two flows compete

on the same bottleneck link then both the flows experience the same loss probability.

Equating pi, from Equation 4.18 for two flows we get,

βW 5/3
s1

c(RTT1)1/3
=

βW 5/3
s2

c(RTT2)1/3

⇒ Ws1

Ws2

= (
RTT1

RTT2

)0.2

⇒ BWs1

BWs2

= (
RTT2

RTT1

)0.8 (4.21)

The above equation shows that the throughput obtained by LTCP-RC at equi-

librium point is inversely proportional to RTT 0.8. An analysis on similar lines for

TCP gives the ratio of throughput at equilibrium point as,

BWs1

BWs2

=
RTT2

RTT1

(4.22)

TCP shows window oriented fairness and the throughput obtained by the TCP

flow is proportional to the inverse of RTT. The throughput obtained by the LTCP-RC

flow will be more than the throughput obtained by the TCP flow. LTCP-RC flows

25

will also be more fair to each other as compared to TCP flows for the same ratio

of RTT. Hence, LTCP-RC will perform better than TCP in the presence of random

losses in the network. The analysis presented will be verified by simulations using

channel error rates in later sections.

D. Effect of Large Queuing Delay

In this section, we analyze the deterioration in the performance of LTCP-RC when

the buffering delay becomes large. We study the effect of very large buffer size on

the amount of data lost by the protocol. The analysis is done on the similar lines as

presented in [13]. When buffer sizes become large, then the propagation delay could

become negligible compared to the queuing delay. Schemes similar to TCP use packet

loss as an indication of congestion. They continue to increase the congestion window

even if the combined sending rate of all the flows on the bottleneck link exceeds

the link capacity. For large buffers (hence large feedback delays), the end-users will

eventually overshoot the bottleneck link and experience bursty packet losses. This is

due to the excess data sent into the network before congestion is detected. In this

analysis, we analyze the relationship between the amount of lost data during each

overshoot and the buffering delay.

LTCP-RC increases its window size by KR ∗K/W (t − 1) for each incoming ac-

knowledgment, where W(t-1) represents the congestion window at time (t-1). If C

represents the bottleneck link capacity then after the link is saturated, acknowledg-

ments from the receiver arrive at the rate of C pkts/sec. This is the rate at which the

bottleneck link will transfer the data to the receiver. The increase in the congestion

window at the sender can be written as,

dW

dt
=

C(KR ∗K)

W

26

=
CKR

W 2/3
, since , K ∝ W 1/3

⇒ W (t) = (
5

3
CKRt + δ)3/5 (4.23)

where δ is the integration constant. The equation above gives the evolution of the

congestion window for LTCP-RC with respect to time. Assuming that the bottleneck

link starts overflowing at time, t = 0, the amount of extra packets injected in the

network per acknowledgment are given by KR∗K
W (t)

or KR

W (t)2/3 . Therefore, the amount of

extra packets S(t) sent into the link during time [0, t] can be modeled as,

S(t) = S(t− 1) +
KR

W (t− 1)2/3
(4.24)

Since, acknowledgments arrive at the rate of C pkts/sec, we can write the differ-

ential equations as

dS(t)

dt
=

CKR

W (t)2/3

=
CKR

(5
3
CKRt)2/5

(4.25)

By integrating t from [0, D], where D is the total buffering delay, we can simplify

to get,

S(D) ∼ 5

3
(CKRD + δ)3/5 (4.26)

In the above equation, since KR depends only on minimum RTT (i.e. only

on propagation delay), it is taken as constant during integration. For LTCP, the

amount of lost data S(D) ∝ D0.6. For TCP, S(D) ∝ D0.5 and for Rate-based AIMD

S(D) ∝ D [13]. Thus, LTCP-RC results in slightly higher losses than TCP, but still

performs better than Rate-based schemes. Slightly higher losses in LTCP-RC can be

attributed to the aggressive nature of the LTCP scheme which is essential for scaling

the protocol at high-speed and high RTT networks.

27

E. Simulation Results

The LTCP-RC design is evaluated using experiments conducted on ns-2 network

simulator [14]. All simulations are conducted using a dumb-bell network topology

as shown in Figure 3. One common bottleneck link connects n sources to n corre-

sponding receivers. Unless otherwise specified, the bottleneck link capacity is set to

1Gbps with a delay of 40ms. Links that connect senders and receivers to the routers

are set to a bandwidth of 2.4Gbps and a delay of 10ms. Thus, end-to-end RTT for

each flow is set to 120ms, unless specified. The default queue size at the routers is

set to be equal to the product of bottleneck link bandwidth and delay. Drop-tail

queue management scheme is used at the routers. The protocol is implemented by

introducing a new window option in the basic TCP code in the file tcp.cc in ns-2. All

the simulations use TCP/Sack1 agent for the sender and TCPSink/Sack1 agent for

the receiver. Unmodified TCP/Sack1 is used for the TCP simulations. FTP traffic is

used between the senders and receivers. All the readings are taken for 1000 seconds

and data for initial 300 seconds is discarded, to ensure that steady state is reached.

S 1

Router 1 Router 2

R 1

R 2

2.4 Gbps,

10ms

2.4 Gbps,
10ms

1 Gbps,

40ms

2S

Fig. 3. LTCP-RC I: Simulation Topology

28

For comparison purposes, simulations for H-TCP and BIC high-speed protocols

are also conducted using the ns-2 patches and example scripts available on authors

websites [15], [16]. For LTCP-RC, the parameter β is set to 0.15 and WT is set to 50

packets. For H-TCP flows, window option was set to -10, to simulate the complete

H-TCP algorithm. For BIC flows, the parameter β is set to 0.875, Smax is set to 32,

Smin is set to 0.01, window option is set to 12, low window is set to 14, log factor

is set to 2 and fast convergence is turned on. Simulations for BIC use TCP/SackTS

agent for sender.

1. Effect of Parameter c

In our implementation of LTCP-RC, the function for the factor KR, is given by

c(RTT)1/3, where RTT is in milliseconds. Increase in the value of c will make the

value of KR larger and this will make the protocol more aggressive. As shown in

the analysis for convergence time of two flows, larger value of KR will reduce the

convergence time but it might result in higher packet losses. We study the effect of

parameter c on the convergence time and the packet drop rate in this experiment. The

simulation consists of two flows competing on the same bottleneck link and observing

same RTT. The second flow was started 300 seconds after the start of the first flow.

This allows the first flow to grab the available bandwidth and reach a steady state.

Following regions are defined as shown in Figure 4. Region 1 is defined from 100-299

seconds when the first flow is operating in a steady state. Region 2 is defined from

800-999 seconds when both the flows have converged and reached a steady state value.

Link drop-rates are measured in both Region 1 and Region 2. To measure the

convergence time, the maximum congestion window attained by the first flow in

Region 1 is measured. The maximum of the time taken (after the second flow is

29

Region

Region

1

2

Time

A
ve

ra
ge

 W
in

do
w

Fig. 4. LTCP-RC I: Definition of Region 1 and Region 2

started), by the first flow to reduce its congestion window to 55% of the maximum

value or time taken by the second flow to increase by 45% of the maximum value, is

calculated. This is termed as the time for 45-55% convergence. Table II, shows the

droprates in Region 1 and 2 and the time of 45-55% convergence with varying values

of c. It also presents the result of simulation with basic LTCP, BIC and H-TCP high

speed protocols.

Table II, shows that increase in the value of c result in an increase in the drop

rates in both Region 1 and Region 2. Results also reveal corresponding reduction

in the convergence time. The choice of parameter c decides the operating point of

the protocol. The results show that the basic LTCP protocol takes a long time to

converge and the RTT Compensation technique has resulted in a significant reduction

in convergence time. H-TCP protocol scales its ‘window increase’ by the round-trip

30

Table II. LTCP-RC I: Comparison of Drop Rates and Convergence Time

Drop Rates (%) Time for 45-55%

Region 1 Region2 Convergence (seconds)

c = 0.4 0.00127 0.00325 202.2

c = 0.5 0.00193 0.00513 173.6

c = 0.6 0.00284 0.00723 154.1

c = 0.7 0.00365 0.00998 139.8

c = 0.8 0.00487 0.01286 123.2

LTCP 0.00035 0.00089 415.3

BIC 0.00147 0.00606 151.3

H-TCP 0.00620 0.01152 33.6

time to achieve the convergence time which is independent of RTT. But this scaling

makes the H-TCP protocol very aggressive and leads to high drop rates.

In our current implementation, we have used c = 0.5 because it offers a good

trade-off between convergence time and drop rate. Remaining simulations in this

chapter use, KR = 0.5(RTT)1/3 (unless specified), where RTT is in milliseconds.

2. Fairness Among Multiple Flows

In this simulation, co-existence of flows of same protocol with each other is studied.

As a first part of the experiment, the results from previous experiment is studied in

more detail. Figure 5 plots the graph of the congestion window of two flows with

respect to time for different protocols.

Although 45-55% convergence time of BIC protocol is low, but it exhibits overall

convergence problems. Plot of the congestion window for BIC protocol reveals diver-

31

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (seconds)

W
in

d
o
w

LTCP1
LTCP2

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (seconds)
W

in
d
o
w

LTCP−RC1
LTCP−RC2

(a) LTCP (b) LTCP-RC (with c=0.5)

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (seconds)

W
in

d
o
w

BIC1
BIC2

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (seconds)

W
in

d
o
w

HTCP1
HTCP2

(c) BIC (d) H-TCP

Fig. 5. LTCP-RC I: Convergence of Different Protocols

32

gence between the congestion window. LTCP on the other hand, requires long time

to convergence. As H-TCP protocol is designed for constant convergence time, it con-

vergence very quickly. LTCP-RC clearly takes smaller convergence time as compared

to LTCP and maintains fair share across different flows.

Table III. LTCP-RC I: Fairness Among LTCP-RC Flows

No. Avg. per-flow Min. per-flow Max. per-flow Standard Jain’s

of Throughput Throughput Throughput Deviation Fairness

Flows (Mbps) (Mbps) (Mbps) Index

2 480.77 480.34 481.20 0.60 1.00

4 240.39 240.28 240.55 0.12 1.00

6 160.26 160.14 160.37 0.10 1.00

8 120.19 120.16 120.31 0.05 1.00

10 96.15 95.75 99.55 1.19 0.99

Experiments are also conducted to measure the fairness of LTCP-RC flows with

each other. Varying number of flows are started at the same time and average per-

flow bandwidth of each flow is measured. The fairness index proposed by Jain et. al.

in [17] is used as the measure of fairness. Table III presents the maximum, minimum

and average per-flow throughput, standard deviation and Jain’s Fairness Index for

varying number of Flows. Results reveal that even if number of flows become large,

the maximum and minimum throughput remains close to the average value. The

fairness index also remain close to 1. Therefore, it can be inferred that LTCP-RC

protocol maintains fairness among different flows and share the available network

bandwidth equitably.

33

3. RTT Unfairness

In this experiment, the RTT unfairness of LTCP-RC protocol is studied. Two flows

with different round trip times are started at the same time on a common bottleneck

link. RTT unfairness is measured as the ratio of throughput obtained by each flow.

The ratio of RTTs for two flows is varied from 2 to 4 for different runs of the experi-

ment. The RTT of the shorter-delay flow is kept at 40ms. The bottleneck link has a

bandwidth of 1Gbps and delay of 10ms.

Table IV. LTCP-RC I: RTT Unfairness

RTT Ratio TCP LTCP LTCP-RC BIC H-TCP

2 3.14 3.84 3.35 9.73 1.85

3 7.35 12.99 7.63 16.63 2.78

4 14.78 28.61 13.65 26.88 3.68

Table IV, shows that the RTT unfairness of LTCP-RC is less than that of LTCP

protocol. Due to the use of KR = c(RTT)1/3 function for RTT Compensation, RTT

unfairness of LTCP-RC is almost similar to that of TCP. BIC has RTT unfairness

worse than both TCP and LTCP-RC. The values of RTT unfairness for H-TCP is

same as the ratio of RTT. This is due the use of scaling factor, proportional to RTT,

by H-TCP protocol.

From the earlier analysis, we expected the ratio of throughput for two LTCP-RC

flows proportional to RTT 2. The values obtained from simulations is little less than

the value expected from analysis. This is due to the approximations for W ∝ K1/3

and use of propagation delay instead of instantaneous RTT. Moreover, measurement

of minimum RTT might include queuing delay and which will change the ratio of

34

RTTs.

4. Dynamic Link Sharing

In this experiment, we evaluate the response of LTCP-RC to the changes in the

network conditions due to the arrival of new flows and the departure of old flows. We

study the performance improvement of LTCP-RC as compared to LTCP protocol.

Four flows are started at regular intervals of 300 seconds. First flow is active from

t=0 to t=2100 second, the second flow is active from t=300 to t=1800 seconds, the

third flow from t=600 to t=1500 second and the fourth flow is active from t=900 to

t=1200 seconds. Figure 6 shows the plot of the throughput obtained by each flow

with respect to time for LTCP and LTCP-RC protocols. The figure reveal that in

both the cases when a new flow is started, the existing flow gave up the bandwidth

until all the flows reach the fair utilization level. When an existing flow stops sending

data, the remaining flows ramp up and reach the new fair share level, utilizing the

available link bandwidth. But, LTCP-RC converges much faster than the basic LTCP

scheme. LTCP flow takes a long time to converge to the equilibrium steady state rate.

This can be specially observed when flow 2 and flow 4 enters the network. In the

plot for LTCP older flows did not converge to the fair share even after 300 seconds.

Whereas in the case of LTCP-RC, the flows quickly reach to the common equilibrium

rate.

5. Effect of Random Drops

The bandwidth equation for TCP has shown that TCP requires extremely low packet

loss rates in order to maintain high link utilization. In this experiment, we compare

the performance of LTCP with other high-speed protocols in the presence of channel

errors. The simulation is conducted using a single FTP transfer over a bottleneck

35

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900

1000

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

LTCP1
LTCP2
LTCP3
LTCP4

(a) LTCP

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900

1000

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

LTCP−RC1
LTCP−RC2
LTCP−RC3
LTCP−RC4

(b) LTCP-RC

Fig. 6. LTCP-RC I: Dynamic Link Sharing

36

link of 1Gbps and RTT of 120ms. Random drops are introduced in the bottleneck

link using an uniform error model. We measure the average throughput obtained by

the flow, during the steady state. Figure 7 shows the plot of throughput obtained by

different protocols at varying channel error rates. The packet loss rates in the graph

do not account for the congestion losses (which might occur when the sender rate

exceeds the bottleneck capacity). The data in the figure include only channel error

rates at the bottleneck link, as specified in the simulation error model.

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1.0
0E

-07

2.0
0E

-07

4.0
0E

-07

6.0
0E

-07

8.0
0E

-07

1.0
0E

-06

2.0
0E

-06

4.0
0E

-06

6.0
0E

-06

8.0
0E

-06

1.0
0E

-05

2.0
0E

-05

4.0
0E

-05

6.0
0E

-05

8.0
0E

-05

1.0
0E

-04

Random Loss Rate

Th
ro

ug
hp

ut
 (M

bp
s)

LTCP
LTCP-RC
BIC
H-TCP

Fig. 7. LTCP-RC I: Throughput vs Error Rates

The graph reveals that all the protocols maintain high utilization at very low loss

rates. But increase in the channel errors deteriorates the utilization. The utilization

obtained by LTCP-RC is better than LTCP and H-TCP protocols. The utilization

37

Table V. LTCP-RC I: Effect of Channel Errors

Packet LTCP LTCP-RC BIC H-TCP

Loss Rate Throughput Throughput Throughput Throughput

(%) (Mbps) (Mbps) (Mbps) (Mbps)

1.00E-07 957.31 961.52 952.38 919.61

1.00E-06 576.40 886.18 909.96 687.05

1.00E-05 119.43 226.39 262.37 151.49

1.00E-04 36.01 57.01 55.25 33.49

of BIC is close to that of LTCP-RC. Table V, shows the sample data for the average

throughput obtained by different protocols.

F. Conclusion

Our analysis and simulation results have revealed that the LTCP scheme suffers from

performance problems at higher RTTs. RTT Compensation technique presented for

LTCP-RC improves the performance of basic LTCP scheme considerably. Mathemat-

ical analysis and results obtained from simulation have shown improvement in terms

of convergence time and RTT unfairness. But, the RTT Compensation technique

employed in LTCP-RC makes the protocol more aggressive, resulting in higher drop

rates. It offers a trade-off between the required convergence time and tolerable drop

rates. In the next chapter, an adaptive scheme is proposed which will regulate itself

according to the dynamics of the network.

38

CHAPTER V

LTCP-RC II: USING AN ADAPTIVE RTT COMPENSATION TECHNIQUE

In the previous chapter, we presented a RTT Compensation Technique which uses

a fixed function for the scaling factor KR. The fixed function make the LTCP-RC

protocol more aggressive, resulting in higher loss rates but low convergence time. In

this new design, we aimed at improving the LTCP-RC design further. In the new

design, two modes of operations for LTCP-RC are defined. In the steady state, the

protocol need not be aggressive. Therefore, we set KR = 1 or turn it off. This will

reduce the drop rates in steady state. In the transient state, a flow is probing for

the available bandwidth and needs to be more aggressive. Therefore, we turn on KR.

This design is named as LTCP-RCon−off . The scheme can be represented as,

KR =


1, during steady state (off)

0.5(RTT)1/3, during transient state (on)
(5.1)

To decide about the state of the protocol, the layering scheme, inherent to the

design of LTCP is used. The decision about the steady state or the transient state

is made on the basis of the layer at which a flow is operating. We measure and

record the layers, at which last three packet loss events occurred. A steady state is

assumed, if last three loss events occur in the same layer. In this case, KR is turned

off. When the congestion window is increased and the size of the current window

becomes larger than the layer boundary (at which last drop occurred), then it is

assumed that bandwidth is available. In this case, KR is turned on.

Further, in order to achieve faster convergence, when two flows are competing

over a bottleneck link, ideally, KR should be turned off for the flow with larger

window size and on for the flow with smaller window. This makes the smaller flow

39

more aggressive. After a packet drop, the smaller flow will regain the lost bandwidth

faster than the flow with larger window and will lead to faster convergence. Therefore,

If layer at which loss event occurs is smaller than the layer at which the last drop

occurred, then it shows that the window is in a decreasing trend and is giving up

bandwidth. Hence, KR is turned off in this case.

A. Implementation Details

Below, we present the pseudo-code of the LTCP-RCon−off design. A packet drop

event is characterized by the receipt of triple-duplicate acknowledgments from the

receiver. The following parameters are used,

current layer : layer at which packet drop event occurred.

last layer : layer at which last packet drop event occurred.

second last layer : layer at which second last packet drop event occurred.

K : current operating layer.

WK : window corresponding to the layer, K

stored KR : stored value of KR which is calculated at the start of the flow

and updated whenever minimum RTT changes.

Initialization:

second last layer = last layer = current layer = 1;
stored KR = 0.5(RTT)1/3;

On receiving 3 duplicate acknowledgments, decrease congestion window:

second last layer = last layer;
last layer = current layer;
current layer = K ;

40

if (second last layer ≥ last layer && last layer ≥ current layer) then
KR = 1;

else
KR = stored KR;
cwnd = (1 - β) ∗ cwnd ;
while cwnd < WK do

K = K − 1;
end while

end if

On receipt of an acknowledgments, increase congestion window:

cwnd = cwnd + (KR ∗K)/cwnd ;
while cwnd > WK+1 do

//window crosses the current layer boundary. Increase number of layers
K + +;
if K > current layer then

// layer crosses the layer at which last drop occurred.
KR = stored KR;

end if
end while

B. An Alternate Design Choice

The LTCP-RCon−off design can create problem of overshoot when two flows operate

in the same layer and each has it’s KR turned off. The flow which crosses the layer

boundary faster will turn on its KR, while the other flow still has its KR turned

off. The first flow will start increasing its congestion window at the rate of KR ∗K

packets/RTT as compared to the other flow, which will increase its congestion window

at the rate of K packets/RTT. For example, let’s consider two flows operating near

boundary of layer 10 at the RTT of 120ms. Then, the flow with KR turned off will

increase the congestion window at the rate of 10 packets per/RTT. On the other

hand, the flow with KR turned on will increase congestion window at the rate of 24

packets/RTT (KR ∗K = 0.5(120)1/3 ∗ 10). Due to the large difference in the rate of

congestion window increase, it might lead to short term unfairness between the two

flows.

41

To reduce the difference in the rate of congestion window increase for the two

flows, we propose an alternate design named as LTCP-RCfull−half . In this algorithm,

instead of turning the KR off completely, we reduce it to a lower value at the steady

state. We use the same function, c(RTT)1/3 for KR but modify the value of c, when-

ever KR needs to be changed . In steady state, c = 0.3 is used while in transient state,

c = 0.5 is employed. The rationale behind choosing these values is to make the value

of KR greater than 1, for RTT larger than 40ms and reduce the difference between

the value of KR in steady and transient state. The algorithm can be represented as,

KR =


0.3(RTT)1/3, during steady state (half)

0.5(RTT)1/3, during transient state (full)
(5.2)

C. Stability Analysis

Due to dynamic network conditions, the value of KR might change in the adaptive

RTT Compensation techniques. In this section, we analyze the affect of change in the

value of KR on the convergence of two flows. Both the flows are operating at same

RTT and will have same value for the function c(RTT)1/3. The exact mathematical

analysis becomes complicated due to the discrete nature of the layers in the protocol.

Here, a simplified intuitive assessment for the convergence of two flows is presented.

It is assumed, that the flow 1 is operating at a higher window as compared to flow 2.

Each flow can have it’s KR either turned on or off. Therefore, there are four possible

states for the two flows, as shown in Figure 8.

In states A and D, both the flows have the same value of KR. The convergence

analysis presented in Chapter IV Section B, will hold true and the two flows will

converge. In the state C, KR is turned off for the higher flow and turned on for

the smaller flow. After a packet drop, the convergence equation of LTCP-RC can be

42

RK = ON

R 1

2

K = OFF

R

RK = ON
1

2
K = OFF

R

R 1

2

K = OFF

K = OFF

RK = ON

RK = ON
1

2

A

B C

D

Fig. 8. LTCP-RC II: State Diagram for Convergence of Two Flows

re-written as,

WR1

KR ∗K1

>
WR2

KR ∗K2

⇒ WR1

K1

>
WR2

KR2K2

(5.3)

By LTCP-RC design, WR1/K1 > WR2/K2 and KR > 1. Therefore, the above

equation holds true and the two flows will convergence in state C also. Hence, states

A, C and D represent the stable states, where the two flows will convergence. Figure

8 also shows the possible transition between different states. Only, the state B is an

unstable state, where higher flow turns on it’s KR, while the smaller flow turns off the

KR. In this case, the time taken by the higher flow to regain the lost bandwidth, on

a packet drop, might be smaller then the time taken by the smaller flow. This may

lead to divergence between the two flows. But, since the network bandwidth is finite,

43

the higher flow cannot increase its congestion window infinitely. Also by design of

the protocol, with increasing window, the size of the layer also increases. Due to the

effect of either the finite maximum window or large size of the operating layer, the

higher flow will eventually observe three consecutive drops in same layer. It will then

transition to either state A or D, which are stable states. This shows that the state

B is not permanent. In any of the remaining states, it is not possible for a flow to

operate at a higher window, when a competing flow is operating at a smaller window.

Thus, two flows may experience temporary divergence, when they enter state B,

but then they will start converging back again, when they return back to either of

the remaining state.

The institutive explanation presented in this section shows that although we

might have short term unfairness and oscillations, but we will observe overall conver-

gence behavior.

D. Simulation Results

The algorithm for adaptive LTCP-RC (on-off and full-half) is implemented in ns-2

simulator by modifying the source code for TCP agent in files, tcp.cc and tcp-sack1.cc.

Simulation topology for the experiments presented in this section, is same as shown

in Figure 3. The bottleneck bandwidth is set to 1Gbps and a RTT of 120ms, unless

otherwise specified. Experiments are conducted to evaluate both the designs namely,

LTCP-RCon−off and LTCP-RCfull−half . In rest of the chapter, we will use LTCP-RC

to represent the scheme from Chapter IV, with fixed function for KR.

44

1. Convergence Time and Drop Rates

Our initial motivation for adaptive LTCP-RC scheme is to reduce the drop rates while

keeping low convergence time. In this experiment, we study the convergence time and

drop rates for two flows competing over the same bottleneck link. The second flow

is started 300 seconds after the start of the first flow, so that the first flow grabs the

available link bandwidth and reach a steady state. Region 1 and Region 2 used are

same as those defined in Chapter IV Section 1. Convergence time is measured as

the time for 45-55% convergence. Table VI, presents the results obtained from the

experiment.

Table VI. LTCP-RC II: Comparison of Drop Rates and Convergence Time

Drop Rates (%) Time for 45-55%

Region 1 Region2 Convergence (seconds)

LTCP 0.00035 0.00089 415.3

LTCP-RCon−off 0.00035 0.00081 109.6

LTCP-RCfull−half 0.00075 0.00191 109.6

LTCP-RC 0.00193 0.00513 173.6

BIC 0.00147 0.00606 151.3

H-TCP 0.00620 0.01152 33.6

Results presented in Table VI, shows that drop rates for LTCP-RCon−off is sim-

ilar to the basic LTCP scheme in both Region 1 and Region 2. In both these regions,

the two flows reach a steady state and turn off their KR. Thus, both of them behave

exactly like LTCP flow and show same drop rates. On the other hand, drop rates

for LTCP-RCfull−half are slightly higher as compared to LTCP and LTCP-RCon−off .

45

Still the drop rates observed for LTCP-RCfull−half is very low as compared to LTCP-

RC(with fixed function), BIC and H-TCP.

Convergence time for both adaptive LTCP-RC schemes is the same and much

smaller than LTCP, LTCP-RC and BIC high-speed protocols. When the second flow

is started, the flow with the larger window size observes consecutive drops either in

the same or lower layers. On the other hand, the flow with the smaller window size

regains the lost bandwidth faster and observe drops in increasing number of layers.

Thus, the smaller flow turns on KR and the larger flow turns off KR, leading to

smaller convergence time for the adaptive schemes.

2. Drop Events

The data for this experiment are taken from the simulations conducted for the previ-

ous section. In this experiment, we study the evolution of the window and the total

number of drop events observed in different schemes. Figure 9 shows the plot of the

congestion window with respect to time for LTCP-RCon−off and LTCP-RCfull−half

protocol. Figure 10 shows similar plot for LTCP-RC. The graph clearly shows the

decrease in convergence time for LTCP-RCon−off and LTCP-RCfull−half as compared

to LTCP-RC. It is also evident from the graph, that the LTCP-RCon−off incurs less

number of drop events, in both Region 1 and Region 2, as compared to LTCP-

RCfull−half . LTCP-RCfull−half , on the other hand, experiences less drop events com-

pared to LTCP-RC scheme. Results from Table VI, show that the LTCP-RCon−off

and the LTCP-RCfull−half observe lower drop rates compared to LTCP-RC. Decrease

in the drop rates coupled with the reduced number of drop events will make the total

number of packets lost by the LTCP-RCon−off and LTCP-RCfull−half smaller than

the packets lost by LTCP-RC.

46

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (seconds)

W
in

do
w

Flow1
Flow2

(a) LTCP-RCon−off

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (seconds)

W
in

do
w

Flow1
Flow2

(b) LTCP-RCfull−half

Fig. 9. LTCP-RC II: Evolution of Window for Two Flows

47

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

Time (seconds)

W
in

do
w

Flow1
Flow2

Fig. 10. LTCP-RC II: Evolution of Window for LTCP-RC

3. RTT Unfairness

In this experiment, we study the RTT unfairness for the schemes with adaptive RTT

Compensation. At steady state, the LTCP-RCon−off flow uses KR = 1. Therefore,

an LTCP-RCon−off is expected to have RTT unfairness similar to an unmodified

LTCP. LTCP-RCfull−half , on the other hand, uses KR ∝ (RTT)1/3 at steady state.

Hence, its RTT unfairness is expected to be similar to that of LTCP-RC. We conduct

simulations to measure the RTT unfairness for two flows, sharing a same link but

observing different RTTs. Simulations are conducted on a bottleneck link of 1Gbps

and RTT of shorter-delay flow is set to 40ms. RTT unfairness is measured as the

ratio of throughput obtained by two flows, with varying the ratio of RTT. Table VII,

shows the result obtained from the simulations. The result verifies our arguments

presented above. RTT unfairness of the LTCP-RCon−off is similar to that of LTCP.

However, the LTCP-RCfull−half shows performance similar to LTCP-RC.

48

Table VII. LTCP-RC II: RTT Unfairness

RTT Ratio LTCP-RCon−off LTCP-RCfull−half LTCP LTCP-RC

2 3.05 2.72 3.84 3.35

3 12.92 7.38 12.99 7.63

4 26.18 13.20 28.61 13.64

4. Dynamic Sharing

In this experiment, we study the response of the protocols to the dynamic network

conditions, when different flows join and leave the network. Dynamic network condi-

tions cause changes in the value of KR and may affect co-existence of the flows with

each other. Simulations are conducted using four flows, each joins and leaves the

network at regular interval of 300ms. The bottleneck link capacity is set to 1Gbps,

with an RTT of 120ms for the each flow. Simulations are conducted for both LTCP-

RCon−off and LTCP-RCfull−half protocol. Figure 11 shows the plot of the throughput

obtained by each flow, with respect to time.

Figure 11 shows that, in both the schemes, when a new flow joins the network,

the existing flows turns off KR and quickly gave up the bandwidth. This leads to

faster convergence. Similarly, when a flow leaves the network, the remaining flows

quickly ramp up to grab the available bandwidth. But the graph also presents the

problem of short-term unfairness in the adaptive schemes. This occurs when the flows

reach a fair share and some flows turn on the KR while others turn it off. Short-term

unfairness can also arise when a flow leaves the network. If one of the flow turns on

its KR earlier than the other flows, then it can lead to temporary divergence. Short-

term unfairness is much more prominent in LTCP-RCon−off scheme as compared to

49

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900

1000

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Flow1
Flow2
Flow3
Flow4

(a) LTCP-RCon−off

0 500 1000 1500 2000
0

100

200

300

400

500

600

700

800

900

1000

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

Flow1
Flow2
Flow3
data4

(b) LTCP-RCfull−half

Fig. 11. LTCP-RC II: Dynamic Link Sharing

50

LTCP-RCfull−half . It can be observed in Figure 11, when the third flow joins or one

of the flows leaves the network. The third flow overshoots the first two flows by a

large amount in LTCP-RCon−off . But, the graph also shows that the offshoot and

divergence of the flows is only temporary. The flows with larger window turn off their

KR quickly and all the flows converge back again to the fair share level.

E. Conclusion

The schemes presented in this chapter propose an adaptive RTT Compensation tech-

nique, which changes the value of KR according to dynamic network conditions. This

helps in faster convergence and lower drop rates at steady state. But simulation

results reveal short term unfairness problems with adaptive schemes. But the diver-

gence is not permanent and the adaptive RTT Compensation techniques will observe

fair utilization over long intervals of time.

51

CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis, we propose a new design for improving the performance of window-based

schemes in networks characterized by long-delay and high RTTs. We have provided

the ground work for a new protocol set termed LTCP-RC. The protocol uses a set

of RTT Compensation techniques to tune the performance of high-speed protocols in

high RTT networks. We have studied the RTT Compensation technique specifically

with respect to the LTCP high-speed protocol but the framework presented in this

thesis can also be extended to other high-speed protocols. One of the goals of this

thesis was to understand the performance problems faced by window based schemes,

due to the increase in link delays. Our analysis shows that the LTCP algorithm

suffers from the problem of long convergence time and RTT unfairness worse than

TCP. LTCP-RC scales the congestion window by using an RTT Compensation Factor,

KR. This factor is a function of the minimum RTT observed by the flow. Two design

options for LTCP-RC are proposed and studied in detail. The choice of the functions

for LTCP-RC is made on the basis of simplicity and feasibility of implementations.

The detailed mathematical analysis framework presented in this thesis provides a

mechanism to explore and select other design choices.

We have presented through analysis and simulations that LTCP-RC exhibits low

convergence time and considerable speed up in claiming bandwidth and packet loss

recovery times as compared to TCP. Our design choice makes the RTT unfairness,

of LTCP-RC similar to TCP. Extensive analysis and simulation results, presented

in this thesis, have also shown that the LTCP-RC can perform better or similar to

BIC and H-TCP protocols, while maintaining the time tested AIMD characteristics.

LTCP-RC maintains good utilization in the presence of random drops, adaptability

52

to dynamic network conditions and exhibits good fairness properties. The adaptive

RTT Compensation techniques presented in Chapter V, provide low drop rates and

very small convergence times. These techniques suffer from short term unfairness,

but they provide improved solutions for networks characterized by low multiplexing

or flows with long session time.

Analysis presented in Chapter IV and V are based on the assumption of drop

tail queues at the routers and low multiplexing at high speed links. Future work will

study the performance of LTCP-RC protocol in highly multiplexed links and with

Active Queue Management (AQM) schemes like RED [18]. Another possible area for

research is study the effect of the router buffers. More work is required in this area,

in order to understand the effect of buffer sizes on link utilization and performance

of the protocol. LTCP-RC uses the value of minimum RTT observed in order to

calculate the RTT Compensation factor. In real implementation, the granularity and

accuracy of timers used for estimation of RTT affects the performance of the scheme.

We observe that better understanding of these issues will help us to formulate a design

which will lead to a more stable and better performing protocol.

53

REFERENCES

[1] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” in RFC 3649, Ex-

perimental, December 2003. Available at www.icir.org/floyd/hstcp.html

[2] T. Kelly, “Scalable TCP: Improving Performance in HighSpeed Wide Area Net-

works,” in ACM Computer Communications Review, Volume 33, Issue 2, pp.

83-91, April 2003.

[3] C. Jin, D. X. Wei and S. H. Low, “FAST TCP: motivation, architecture, algo-

rithms, performance,” in Proc. of IEEE INFOCOM 2004, Hong Kong, March

2004.

[4] D. Katabi, M. Handley and C. Rohrs, “Congestion Control for High Bandwidth-

Delay Product Networks,” in Proc. of ACM SIGCOMM’02, Pittsburgh, pp.

89-102, August 2002.

[5] L. Xu, K. Harfoush and I. Rhee, “Binary Increase Congestion Control for Fast

Long Distance Networks,” in Proc. of IEEE INFOCOM 2004, Hong Kong, March

2004.

[6] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long-distance net-

works,” in Proc. of PFLDnet 2004, Illinouis, USA, February 2004.

[7] S. Bhandarkar, S. Jain and A. L. N. Reddy, “Improving the Performance of

TCP in High Bandwidth High RTT Links Using Layered Congestion Control,”

in Proc. of PFLDNet 2005, France, February 2005.

[8] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modelling TCP Throughput:

A simple Model and Its empirical validation,” in Proc. of ACM SIGCOMM’98,

Vancouver, pp. 303-314, October, 1998.

54

[9] S. J. Golestani and K. K. Sabnani, “Fundamental Observation on Multicast

Congestion Control in the Internet,” in Proc. of IEEE INFOCOM, March 1999.

[10] S. Floyd, “Connections with multiple congested gateways in packet-switched

networks part 1: one-way traffic,” ACM SIGCOMM Computer Communication

Review, vol. 21, issue 5, pp. 30-47, October 1991.

[11] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for heterogeneous

networks,” in International Journal of Satellite Communication and Networking

2004, vol. 22, pp. 547-566, September 2004.

[12] S. J. Golestani and S. Bhattacharyya, “A Class of End-to-End Congestion Con-

trol Algorithms for the Internet,” in Proc. of ICNP, Austin, USA, pp. 137-150,

October 1998.

[13] Y. Zhang and D. Loguinov, “Oscillations and Buffer Overflows in Video Stream-

ing under Non-Negligible Queuing Delay,” in Proc. of NOSSDAV’04, Ireland,

June 2004.

[14] “ns-2 Network Simulator,” Department of Electrical Engineering and Computer

Sciences, University of California at Berkely, CA. Available at http://www.isi.

edu/nsnam/ns, Accessed in November, 2003.

[15] “ns implementation of H-TCP,” Hamilton Institute. Available at

http://www.hamilton.ie/net/htcp.zip, Accessed in August, 2004.

[16] “BI-TCP Implementation for NS-2,” Department of Computer Science,

North Carolina State University. Available at http://www.csc.ncsu.edu

/faculty/rhee/export/bitcp/bitcp-ns/bitcp-ns.htm, Accessed in November, 2004.

55

[17] D. Chiu and R. Jain, “Analysis of the Increase and Decrease Algorithms for

Congestion Avoidance in Computer Networks,” in Computer Networks and ISDN

Systems, vol. 17, no. 1, pp.1-14, June 1989.

[18] Floyd S. and Jacobson V., “Random Early Detection gateways for Congestion

Avoidance,” in IEEE/ACM Transactions on Networking, vol. 1, no. 4, pp. 397-

413, August 1993.

56

VITA

Saurabh Jain was born on February 19, 1980 in Kota, India. He received his

Bachelor of Technology Degree in electrical engineering from Indian Institute of Tech-

nology Bombay, Mumbai, India in August 2002. His undergraduate research focused

on the protocol for grouping the receivers in different groups during multicast trans-

fer of data. He worked as a Consultant at i2 Technologies India Pvt Ltd, Bangalore,

India from May 2002 till August 2003. In August 2005, he received his Master of

Science Degree in computer engineering from Texas A&M University. His research at

Texas A&M focused on network protocols for high-speed and long-distance networks.

He had also worked at LayerN Networks, Austin, Texas as intern during May-August

2004. His can be reached at, 3, Sukhdham Parisar, Civil Lines, Kota, Rajastha, India

- 324001. His E-mail address is, saurabh jain80@hotmail.com

The typist for this thesis was Saurabh Jain.

