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Abstract  
 

Optimal condition selection in machining operations is an imperative decision for the process engineer 
as it influences improved tool life and surface roughness values. As the aluminium market is extremely 
competitive, process engineers strive to understand what to do to gain preference from prospective 
customers. From this viewpoint, the criteria responsible for operating decisions should be examined. In 
this paper the WSM, WPM and WASPAS multicriteria methods are proposed for optimal machining 
conditions for turned aluminium bars. A stepwise methodology of the WSM, WPM and WASPAS methods 
is detailed. The proposed technique was tested on published data regarding the turning of an aluminium 
bar, machined on a lathe machine. The case study consists of three input parameters (spindle speed, 
feed rate and depth of cut) and four responses (cutting temperature, cutting force, surface roughness 
and material removal rate). After analysing the experimental data using the models, the entropy method 
chose material removal rate was chosen as the best. Using the three other models, the best selection 
was run 17 which correspond to an input parameter of 605 rpm spindle speed, 0.12 mm/rev feed rate 
and 1.8 mm depth of cut. This article offers a completely new approach to operating condition selection 
in the turning of the aluminium bar. In the current aluminium market, it is extremely important to 
understand the operating conditions of the machine for enlarged customer patronage and sustainability. 
The unique feature of this approach is the elevated level of reliability it exhibits. 
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Introduction 

Today, modern machining processes focus 
on achieving enhanced quality of turned bars, 
dimensional accuracy during production, 
elevated production rate, acceptable surface 
roughness and economic impacts for the 
machining firm (Das et al., 2018; 
Saravanakumar et al., 2018; Singh et al., 2019; 
Palaniappan et al., 2020; Ameur, 2020; 
Kaladhar, 2020; Singh et al., 2020). However, it 
is surprising that the scarce machining 
resources quickly get used up. With more than 
one operator working with resources conflicts 
sometimes occur on the inadequate distribution 
of turning resources. This may cause delays in 
job delivery and increased penalty costs.  

Furthermore, the conventional procedure to 
achieve the best selection of operating 
parameters during the turning of steel on the 

CNC lathe machine is well known (Zheng et al., 
2008; Mikolajczyk et al., 2018; Zubair and 
Mansor, 2019; Pathapalli et al., 2019; Singh et 
al., 2019; Ameur, 2020; Kaladhar, 2020; Singh 
et al., 2020). At present, it involves the use of 
experience by the process engineer in 
combination with trial and error. The weakness 
of this approach is that trial and error is 
sometimes frustrating after substantial repeats 
(Ameur, 2020). Besides, wrong results may be 
obtained, leading to wrong decisions, which are 
sometimes irreversible. However, multi-criteria 
tools offer a reliable approach in the absence of 
exact mathematical formula; analytical methods 
may be computationally demanding (Zavadskas 
et al., 2012, 2013a,b; Pathapalli et al., 2019). 
While some multicriteria tools have been used 
to select optimal machining parameters, the 
unique simplicity and flexibility of the innovative 
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WASPAS method have not been reported 
(Nayak, 2014; Chakraborty and Zavadskas, 
2014; Pathapalli et al., 2019; Zubair and 
Mansor, 2019). In this paper, the WASPAS 
method was used to aid the technological 
advancement of the subtraction machining 
literature (Bid and Siddique, 2019). 

A brief review of the relevant literature 
reveals the following. Mali et al. (2019) 
simulated the cutting forces obtained when 
aluminium 7075 alloy was turned without 
lubricant using Deform-3D software using depth 
of cut, speed and feed. Prakash et al. (2020) 
turned aluminium/rock dust composites and 
revealed that the feed has a substantial impact 
on roughness average and material removal 
rate but fewer impacts on other parameters. 
Palaniappan et al. (2020) turned aluminium 
6082 alloy during CNC turning to establish the 
optimal process parameters using L27 in a 
Taguchi scheme. Saravanakumar et al. (2018) 
experimentally analyzed the optimal aluminium 
alloy 6063 turning parameters for surface finish 
enhancement while the cutting tool used is the 
carbon nitride inserts. Das et al. (2018) reported 
that the most impacting parameter on the 
responses in an experiment is the feed while the 
depth of cut and spindle speed was rated as 
insignificant. Rao and Allamraju (2017) 
established the induced residual stress and 
micro-hardness of aluminium 7075 alloy during 
the CNC turning process. Das and Chapgain 
(2018) studied the impact of machining factors 
on the responses of the process for silicon 
carbide powder fortified Al7075 matrix 
composite using Taguchi scheme.  

Jeyaprakash et al. (2020) compared 
experiments with the turning of aluminium 
19000 alloys performed on the CNC machine 
with an analytical model. The outcome was that 
electroplated materials showed less value in 
machining conditions, tool geometry, and 
surface finish. Kumar et al. (2017) turned 
aluminium 2219 alloy and concluded that 
Al2219 and Al2219 composites impact reduced 
wear effects on the TiN coated carbide inserts 
as the surface roughness, cutting speed and 
cutting force heightened. Jayaraman and 
Maheshkumar (2014) reported on the turning of 
AA6063 T6 aluminium alloy in an optimisation 
drive using combined grey relational analysis 
and Taguchi scheme.  

From the review conducted the following 
important observations are made:  

1. The literature has two sets of studies – 
simulation and experiments. 

2. Turning was studied in dry and wet 
conditions. 

3. The work materials include AA 6063, AA 
6082, AA 7075 and rock dust reinforced 
aluminium metal matrix composite. 

4. Application areas are automotive 
components and aircraft fittings, worm 
gears, meter shafts, missile parts, and valve 
parts. 

5. Turned bars have been tested using micro-
hardness and X-ray diffraction 

6. There is scope to study the turning of the 
aluminium bar along with the following 
directions:  
a. Experimental studies on the aluminium 

bar on the CNC turning machine. 
b. Selection activities of the responses 

and parameters of the turning process 
subjected to entropy WPM, WSM and 
WASPAS multi-criteria tools. 

c. The HSQ tool of 3-X10% cobalt for a 
single point application. 

d. Responses to include tool-tip 
temperature, cutting forces (Fx, Fy and 
Fz), roughness average (Ra) and 
material removal rate (MRR). 
Parameters to include the speed, feed 
rate and depth of cut. 

e. To compare the TOPSIS results of 
Nayak (2014) with the outcomes of 
WSM, WPM and WASPAS methods. 
This is to enhance our comprehension 
on the turning of aluminium bar by 
emphasizing necessary information. 

 
In mechanical engineering, to study the 

relationship among cutting temperature, cutting 
speed, feed and depth of cut, it is often noted 
that for the growth in value for feed (or depth of 
cut) the chips produced becomes thicker. The 
consequence is that thickness-to-surface area 
ratio of the chips produced from the aluminium 
bar becomes larger. This offers less chance for 
the heat generated during machining to be 
dispersed and temperature growth is 
experienced. However, in the situation studied, 
the focus is on the responses. As seen in Table 
3 of Nayak (2014), the first three experimental 
trials on tool-tip temperature showed growth in 
values and declined randomly. The same 
characteristic is true for all other responses of 
forces, Ra and MRR. These criteria (responses) 
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are conflicting, and it is challenging to rank the 
alternatives without using multicriteria decision-
making tools. This makes this problem a 
ranking and selection class with conflicting 
criteria which was solved using the WPM, WSM 
and WASPAS methods. Extremely little 
research has been conducted on the features of 
the process and models of selection using multi-
criteria analysis for the turning process. The 
development of a framework to select the 
responses and parameters during the turning of 
an aluminium bar of 50 mm diameter x 150 mm 
length using the WPM, WSM and WASPAS 
multi-criteria models is the novelty of this article. 
The multi-criteria models were used to obtain 
the optimal responses and parameters for the 
turning process. The following responses were 
considered in the work: tool-tip temperature, 
cutting forces, surface roughness and the MRR. 
Furthermore, the parameters of the turning 
process are the feed rate, spindle speed and 
depth of cut. The process parameters and 
responses were synchronized to achieve the 
following objectives:  
1. To analyze the impacts of parameters on 

the responses of the turning process. 
2. To investigate the influence of the 

parameters and responses on the outcome 
of the responses for entropy method, WPM, 
WSM and WASPAS methods.  

3. To compare results of TOPSIS procedure 
based on Nayak (2014) with the outcomes 
of WPM, WSM and WASPAS.  

4. To propose the optimal configurations 
based on entropy, WSM, WPM and 
WASPAS methods.  

 
For the first time, the WSM, WPM and 

WASPAS multi-criteria methods are proposed 
to analyse the machining operating conditions 
in the laboratory using literature experimental 
data. The unique feature of this approach is the 
elevated level of reliability it exhibits.  

 
Methods 

Before proceeding on the procedures 
implemented in the present work, it is necessary 
to briefly mention that the TOPSIS procedure is 
the benchmark with which our study was 
compared with in the work of Nayak (2014). The 
TOPSIS procedure is summarized to contain 
the following (Nayak, 2014): determination of 
the choice variables, formation of the 

normalized and weighted normalized choice 
variables, institution of the positive and negative 
ideal solutions, computation of the separation 
index, computation of the comparative 
closeness of the solution and establishment of 
ranks for the preference order. 

 
The idea of weighted sum model (WSM)  

This is one of the multi-criteria models that 
are known for their simplicity in assessing 
several options regarding the available member 
of decision criteria. The weighted sum model 
has competing methods, including WASPAS, 
VIKOR, WPM, MOORA and GTMA. The idea of 
beneficial (Equation (1))/(non-beneficial) 
(Equation (2)) attribute is the characteristics of 
the parameter being considered in which 
maximum/minimum values are desired from 
them.  

 
Beneficial attributes:  X = x/xmax    Eq. 1 
Non-beneficial attributes:   X = xmin/x  Eq. 2 

 
Where !!"#and !!$% are the minimum and 

maximum values of the data set in the group 
considered and X is the estimated value. Now, 
the values obtained in Equations (1) are (2) are 
substituted as weights in Equation (3). 

, for " = 1,2,3, … ,) Eq. 3 

where *" illustrates the comparative weight of 
importance of the interior +& while ,"& 	represents 
the performance value (normalised scale) of 
option ." while it is appraised regarding criterion 
+& . It follows that the total (as all criteria are 
treated concurrently) significance of option .", 
denoted as ."'()*+,-./	 

In this work, normalization was applied to 
determine weights in the entropy method, and 
to evaluate the preferences scores for the 
WPM, WSM and WASPAS to avoid using 
different responses and parameters in diverse 
units. For instance, the tool-tip temperature is in 
+- 	, the cutting forces of the tool are in newtons, 

and the MMR is in mm3/min. Also, for the 
parameters such as speed, feed and depth of 
cut, the units are respectively in rpm, mm/rev 
and mm. Thus, to compare results, there is a 
need for common ground. The normalized 
values are restricted between 0 and 1. In this 
work, the min-max normalization method is 
adopted with the linear transformation. In this 
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instance, the min reflects the minimum while the 
max shows the maximum values of the 
response or parameters of interest.  

The steps involved in WSM are described as 
follows (Zavadskas et al., 2012, 2013a,b):  
Step 1: The decision criteria can be established 
in matrix format as 
 

        Eq. 4 

where /	is the matrix and 0"& are the elements 
of the matrix. 
Step 2: The value in the decision matrix are 
normalised based on their type of criteria 0"& 	 as 
(a) For a beneficial criterion 

                    Eq. 5 

where 0"&  are the elements of the matrix,  
0"&!$%	is the maximum value among the 
elements and  is the beneficial criterion value 
(b) For a non-beneficial criterion 

                    Eq. 6 

           Eq. 7 

where 0"&!"#	 is the minimum value among the 

elements and  is the beneficial criterion 

value.   
Step 3:  The weighted normalized decision 
matrix 

           or        Eq. 8 

But Y is given as  

           Eq. 9 

where 1 is the weighted normalised value and 
2& 	is the weight of each criterion. 
The weights are assigned by keeping the 
weights 2& in the power of the performance 

values,  . Weights are assigned to criteria 
according to an order of importance. The sum 
of the weights must be equal to 1. However, the 
assignment of weights can be done subjectively 
(based on the decision maker’s consideration) 
or objectively (through mathematical 
calculations i.e. entropy and CRITIC methods).  
Step 4: Preference score and ranking 
estimation. 
Preference scores show an inclusive summary 
of the machining-based characteristics of the 
turning process on a universal grade. It reveals 
numerous aspects into a single mark fixed at 
zero as the lower boundary and as the higher 
boundary. It helps in prioritizing the 
experimental trial results based on either the 
parameters through the lens of the global 
influence of parameters or responses. It 
evaluates the variations in the turning 
parameters based on relative value breakdown. 
To compute the preference scores and ranked 
values of the parameters of a turning 
experiment, the preference scores are first 
produced and related (ranked) such that higher 
values are positioned above the lower values. 
To appraise the preference score using the 
WSM, WPM and WASPAS, the equivalent sub-
dimensional scores are initially related while the 
upper score ascertains the trend of the 
preference. The preference score was 
evaluated by producing the values in the cells of 
the normalized weighted table across rows and 
then ranked, Equation (8). 
The preference score for WSM is derived by 
summing the matrix across rows. 

           Eq. 10 

Step 5: Result - The alternative with the highest 
rank is selected as the best alternative and the 
next ranked alternative can be selected in the 
absence of the highest-ranking alternative. 
 
The concept of WPM 

The weighted product model (WPM) is a 
multi-criteria decision-making method that is 
used to select the best alternatives from a list. 
In this method, the preference score is derived 
by multiplying through the rows in the weighted 
normalized matrix. 

Steps involved in WPM are as follows: 
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Step 1: Repeat of Equation (4) to establish the 
decision criteria in matrix format. 
Step 2: The value in the decision matrix are 
normalized based on the type of criterion pij 
(Equation (5) for beneficial criterion, Equations 
(6) and (7) for non-beneficial criterion). 
 Step 3:  The weight normalized decision matrix 
(Equations (8) and (9)) 
Weights are assigned to criteria according to an 
order of importance as shown in Step 3 of the 
weighted sum method.  
Step 4: Estimate the preference score and 
ranking   
The preference score for WPM is derived by 
multiplying the matrix across rows. 

              Eq. 11 

Step 5: Ranking 
Each preference score will be ranked in 
ascending order with the highest value 
assigned a rank of 1. 
Step 6: Result: Repeat Step 5 of Section 2.1 

 
The concept of WASPAS 

Bid and Siddique’s (2019) exposition on the 
evaluation of WASPAS is noteworthy. The 
authors traced the initiation of the fundamental 
principles of WASPAS to Zavadskas et al. 
(2012). The work integrated the weighted sum 
model and the weighted product model as a 
multicriteria tool. To verify the model, 
Zavadskas collaborated with other researchers 
to apply WASPAS in several project 
management initiatives (Zavadskas et al., 2013 
a, b; Bagočius et al., 2013; Hashemkhani et al., 
2013; Chakraborty and Zavadskas, 2014). 
Further developments were made on the model 
by Tosun and Seyrek (2010).  

The weighted aggregated sum product 
assessment is a unique combination of the 
weighted sum model (WSM) and weighted 
product model (WPM). It works to smoothen the 
errors associated with WSM and WPM by 
making use of their preference score values, 

  and  , respectively to get a joint 
generalized criterion of WASPAS using 
Equation (12): 

          Eq. 12 
where λ is the WASPAS parameter is 0.5. 

Qi is ranked according to highest values in 
the ascending order with the highest value 
ranked as the 1st position. 

 
Weight determination of criteria 

A decision-maker allocates points to each 
criterion. The more points a criterion receives, 
the greater its relative importance. The total of 
all criteria weights must be equal to 1. The 
weights obtained from point allocation methods 
are not very precise, and the method becomes 
more difficult as the number of criteria exceeds 
five. Therefore an objective approach to finding 
the weight of criteria is adopted in this case 
study.  

The idea of entropy in the multicriteria 
analysis was borrowed from how certain 
physical processes behave based on the 
principle of diversification. It explains, for 
example, why the lubricating oil used in the 
turning process of an aluminium bar spreads. 
Furthermore, entropy may be explained as a 
turning evaluation method using the concept of 
probability. A structure with a higher probability 
of containing energy than the other, for 
instance, is declared to have higher entropy. 
This idea is transferred to machining as a 
method to define the most important 
parameters and responses in a turning process 
involving the use of an aluminium bar. The 
entropy method is used to calculate the weights 
of criteria when the decision-maker has 
conflicting views on the values of weights to be 
used. The weights calculated by the entropy 
method can be derived by the following steps: 
Step 1: Normalize the decision matrix  

              Eq. 13   

         Eq. 14 

where  is the normalised value.  

Step 2: Compute the entropy 

          Eq. 15 

where i = 1, 2,…, n; j = 1, 2,…, m and  is the 
entropy 
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However,           Eq. 16 

where s is the number of alternatives 
Step 3: Compute the weight vector 
                  Eq. 17 

where j = 1, 2,…, n 
  
Experimental details 

The HMT NH 26 lathe machine is the name 
of the machine tool that produced the 
experimental data used in the current paper 
(Nayak, 2014). This data from Nayak (2014) 
was used to validate the model used in the 
present work. By comparing Nayak (2014) with 
the present work, it may interest us to know 
what needs to be considered so that the 
experimental conditions can be equalised. In 
this instance, the normalization of the data 
needs to be updated to reflect the various 
methods of entropy, weighted sum model and 
weighted product model. The turning process 
uses the aluminium bars (50mm (diameter) x 
150mm (length)) with the parameters of interest 
being the feed, depth of cut and spindle speed. 
However, the output elements are the cutting 
forces, the MRR, tool-tip temperature and Ra. 
In the literature, most efforts at optimizing 
process characteristics and on prioritisation 
were directed at parameters such as feed, 
depth of cut and speed. But at variance with the 
literature on turning, efforts were directed at 
prioritising the responses of the turning process 
by considering the following multi-criteria 
models: entropy, WPM, WSM and WASPAS. 
So, the paper establishes an optimal (turning) 
machining condition on the CNC lathe machine, 
using an aluminium bar to minimize the MRR, 
tool-tip temperature, cutting forces and Ra. The 
controllable parameters of the process, namely 
feed, depth of cut and spindle speed were 
chosen from the experimental data generated 
by Nayak (2014) with twenty-five trials (Table 1 
on Design of Experiments from Nayak (2014).  

The single point tool used by Nayak (2014) 
to turn the aluminium bar, eliminating chips 
through a cutting edge in a single pass was an 
HSQ tool of 3-X10% cobalt content element. 
The tool has two principal advantages. First, the 
design and production of the tool is 
straightforward as it reduces effort made by the 
machinist, resulting in less stress to the 
operator, thereby providing an opportunity for 
high machine productivity and timely delivery of 
turned aluminium bar. Second, single tools are 
relatively cheaper, creating an opportunity to 
invest the tool budget on other machining areas 
with enhanced commercial gains. The HSQ 
(hydrogen silsesquioxane) tool is an inorganic 
resist item with high resolution and etched 
confrontation to oxygen. It works well when 
flooded with lubricants (water), which could 
cause rusting and reduce tool’s service life. 
Besides, the 10% cobalt addition on the tool 
makes it effective on hard materials while 
machining at elevated speeds. In this 
circumstance, the single point HSQ tool of 3-
X10% cobalt chosen by Nayak (2014) to turn 
the aluminium bar in the experiment is ideal.   

 
Results and Discussion 

To determine the entropy results for parameters 
or responses in a process, the first step is to 
determine the normalised values involving 
different dimensions of the responses. This 
helped to obtain a magnitude. The outcome of 
this transformation is the normalised matrix. 
Recall that the data transformed is the original 
dataset offered in Nayak (2014). The revised 
data is shown in Table 1.   
 
Entropy weight determination 

The responses, including tool-tip 
temperature, cutting forces Fx, Fy, Fz in the x, y, 
and z directions, Ra and MRR were subject to 
an objective weight determination procedure. 
These responses are treated as criteria and 
normalized to adjust the values to a general 
scale from different scales of measurements.

 
Table 1. Experimental data – revised (Nayak, 2014)* 

Sl. No 
 

Tool-tip temperature (°C) Fx (N) Fy (N) Fz (N) Ra (μ-m) MRR (mm3/min) 

 912.1 3398.92 2713.67 5512.77 328.5285 602928.4 

*The original data that were summed up as the last row on this table is available in the open literature, Nayak (2014), and 
may be consulted by those interested in the details. 
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The normalised data is the format used for 

pairwise comparison of criteria. The results 
indicating the matrix obtained for normalisation 
are displayed in Table 2.  In this result, twenty-
five trials are considered, with each trial 
obtained from the turning experiment in the 
laboratory turning of the aluminium bar., 

The computation of the entropy method was 
done from the normalised Table 3 using 
Equations (11) and (12). The objective weight is 
Wj. The findings from the entropy method reveal 
that it is possible to prioritise the responses of 
the turning process. The results obtained are 
the weights of 0.0074, 0.1589, 0.1587, 0.1754 
and 0.3697 for tool-tip temperature, Fx, Fy, Fz, 
Ra and MRR, respectively (Table 3). This 
translates to the highest weighted criterion as 
the MRR and this was followed by Fx. It means 
that concerning time and cost invested in 
machining the aluminium bars, the MRR is the 
major controlling factor. When properly 
monitored and coordinated it could enhance 
productivity and output for the machining 
system. The process engineer could employ the 
results of the entropy weight in budget decisions 
concerning the turning process. 

Based on the entropy results, the MRR was 
given a rank of the highest priority. This means 
that for planning purposes, the utmost attention 
could be directed to this response in the turning 
process.  Consequently, the correlation 
coefficient was determined between the MRR 
and each of the turning process parameters. 
The correlation coefficient obtained using the 
Microsoft Excel 2003 produced an output of 
correlation between the MRR and each of the 
speed, feed and depth of cut of the machine at 
a time. This produced a value of 0.1313 to relate 
the MRR and the spindle speed. The mean 
square error was obtained when the prediction 
is compared with the experimental data 
(Equation 1). The mean square error was 
applied to the experimental and predicted 
values with the following Equation (18): 

     Eq. 18 

where N indicates the experimental trials, fpred 
is the symbol for the exponential smoothing 
model outcomes while fexp is the experimental 

values obtained by Nayak (2014) for the 
experimental trial ".  

The mean square error for the MRR – 
spindle speed predictive error is 5919.54.                  
Furthermore, the exponential smoothing model 
was used to predict the feed and the depth of 
cut while the dumping factors were extracted 
the correlation coefficients representing the 
associations between MRR and feed in an 
instance and MRR and depth of cut in the other 
instance. The corresponding correlation 
coefficient is 0.0039 for the MRR-feed 
association and 0.4326 for the MRR- depth of 
cut association. The MSE for the MRR– feed 
association is 0.0006 while for the MRR-depth 
of cut association, the MSE is 0.2973. 

In this paper, entropy weight determination 
model was used to establish the comparative 
importance of all the responses used in the 
turning experiment. The optimum commercial 
dividend in the turning of an aluminium bar for 
the given situation, the MRR should be given 
the utmost attention. The next stage is to 
choose the MRR as the dependent variable that 
is influenced by the three process parameters 
of spindle speed, feed and depth-of-cut. The 
correlation coefficient was established between 
MRR and each of the spindle speed, feed and 
depth of cut parameter. The values so obtained 
were used as the damping factor introduced into 
the exponential smoothing model. Predictions 
were made based on the exponential smoothing 
model and an error measurement index, the 
mean square error was determined for each of 
the associations of MRR and each of the turning 
process parameters. The results obtained were 
the mean square error (MSE) of 5919.54, 
0.0006 and 0.2973 for the respective 
associations between MRR and spindle speed, 
feed and depth of cut. The outcome suggests 
that the most reliable parameter that the 
exponential smoothing method predicted 
properly is the feed. The results concur with the 
methodology of a recent outcome of Prakash et 
al. (2000) that declared that feed has a 
substantial impact on the MRR. This confirms 
the workability of the model because despite 
more responses than MRR, the model made a 
distinction and was sensitive to the data with 
reliable results. 
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Table 3. Entropy values using rijlnrij 

 
 

This work proposes a new entropy weight 
determination model to evaluate the relative 
importance of the responses within the turning 
process for an aluminium bar. The start of the 
method involves obtaining normalisation from 
the experimental outcomes of Nayak (2014). 
The normalised values were then subjected to 
objective weight determination within the 
framework of entropy method analysis. The 
data were then analysed by the innovative 
exponential smoothing model to permit 
prediction of process parameters. 
 
Weighted sum model 

In data analysis, the normalised values are 
determined to adjust the values measured on 
different scales to a notionally common scale 
and a normalised matrix is determined as 
shown in Equation (1) and Equation (2) for 

beneficial and non-beneficial criteria. Tool-tip 
temperature, cutting forces and surface 
roughness fall into the less is better criterion 
while MRR is a higher is better criteria since it is 
desired that the chips formed during machining 
operations should be removed at a high rate. 
Applying the objective weights derived from the 
entropy method on the normalised decision 
table by multiplying the weights across the 
corresponding cell. The weights (Wj) are 
0.0074, 0.1589, 0.1587, 0.1754, 0.1299 and 
0.3697 respectively (Table 2). After summing 
the values across row to get the preference 
scores,  they are then ranked to select the best 
alternative among the 25 levels. The first 
alternative is seen to have the highest 
preference score and has therefore been 
assigned a rank of 1 (Table 4). It is, therefore, 
the best alternative out of the given 25 
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alternatives as analysed using Weighted Sum 
Model (WSM). The physical meaning when the 
values indicated for Experiment 1 is related to 
the data in Table 3 of Nayak (2014) is as 
follows: turn the bar at the tool-tip temperature 
of 30 °C, forces Fx, Fy and Fz, of 44.90N, 
31.79N and 109.65 N, respectively. However, 
Ra should be 3.48 (μ-m) and MRR should be 
4444.44 mm3/min. 
 
Weighted product model (WPM) 

The experimental data from Nayak (2014) 
are normalised concerning beneficial and non-
beneficial criteria given by Equations (1) and (2) 
to aid pair-wise comparison by standardizing 
criteria units; weights are then applied by 
keeping the objective weights derived from 
entropy method to the power of the 
performance values of the table; Values are 
multiplied across rows to get the preference 
scores which is ranked to select the best 
alternative. The Tables 2 and 4 show the 
normalised decision matrix, performance 
values, preference score and ranks. 

The normalised decision Table 3 is obtained 
by keeping the entropy weights in the power of 
the performance value as shown in Equation 
(7). Note that the entries in the second to the 
seventh column show the results of the WPN 
application of entropy weights across criteria. 
The preference score is obtained by multiplying 
the cells in the normalised weighted table 
across rows and ranked according to the 
magnitude as shown in Equation (8). From 
Table 4, it is visibly clear that run 17 attains the 
first rank. This is because it has a preference 
score of 0.4251 which is the highest in 
magnitude amongst all other runs. The physical 
meaning when the values indicated for 
Experiment 17 is related to the data in Table 3 
of Nayak (2014) is as follows: turn the bar at the 
tool-tip temperature of 38.4 °C, forces Fx, Fy 
and Fz, of 149.25N, 117.18N and 209.27N, 
respectively. However, Ra should be 21.15 (μ-
m) and MRR should be 175555.56 mm3/min. 
 
WASPAS 

In WASPAS, to select the best alternative 
from the experimental data, a joint generalized 
criterion was used, Equation (9), where  and  
represent the preference scores from WSM and 
WPN, respectively (Table 8). From Equation 
(7), the preference score for WASPAS is  . With 
λ = 0.5, Table 5 is obtained. Run 17 has the 

highest preference score and is therefore 
ranked 1st being the best amongst all 
alternatives. The results of the physical 
meaning for WPM and WASPAS are the same. 
 
Findings 

The following findings are obtained from this 
investigation: 
1. Entropy weight determination approach is 

efficient to analyse the responses of the 
turning process, which includes tool-tip 
temperature, cutting force in the x, y and z 
directions (Fx, Fy and Fz), surface 
roughness and MRR. 

2. The entropy method reveals the relative 
weights of 0.007447, 0.158863, 0.158733, 
0.175395, 0.129877 and 0.369685 for the 
respective, Fx, Fy, Fz, Ra and MRR. This 
indicates MRR as requiring the highest 
priority possible.  

3. When the MRR values were related to 
processing parameters of speed, feed and 
depth of cut, correlation coefficients of 
0.1313, 0.0039 and 0.4326 were obtained. 
The values were weak but highest for the 
MRR-depth-of-cut association. However, it 
is surprising to observe from further 
analysis that the analysis of the MRR-feed 
was the most satisfactory using mean 
squared error despite its weak correction 
value. 

4. As the MRR-speed, MRR-feed and MRR-
depth-of- cut relationship was examined by 
the mean square error formula, the 
corresponding values of 5919.54, 0.0006 
and 0.2973 were obtained, giving much 
support for a feed-MRR relationship, which 
has the least mean squares error. 

5. From the results of the preference score 
and ranking for the weighted sum model, 
experimental number 1 was ranked as the 
best (rank of 1). This prompts the 
researcher to check the original 
experimental data for decisions. It is 
concluded that based on the WSM method, 
the experimental number 1 of the data 
collected by Nayak (2014), in Table 3 is a 
tool-tip temperature of 30°C, Fx value of 
44.90 N, Fy value of 31.79 N, Fz value of 
109.65 N, roughness average of 3.4823  -m 
and a metal removal rate of 4,444.44 
mm3/min.  

6. By comparing Nayak (2014) where the 
TOPSIS result attached the highest priority 
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to experiment Number 17 of Table 7 
(Nayak, 2014) with the weighted sum model 
(current paper), the following may be 
mentioned. The WSM's prediction is 28% 
less than Nayak's TOPSIS prediction. This 
implies that less energy is used to machine 
the aluminium bar, which makes it energy 
efficient. Thus, the WPM result is better. 
This pattern is maintained throughout the 
results obtained for other responses using 
WPM. Thus, Fx, Fy, Fz, Ra and MRR has 
an improvement of 232.41%, 268.61%, 
281.71%, 52.77% and 38.50% when WPM 
is used. Since cutting forces Fx, Fy and Fz 
and MRR deal with energy and the use of 
energy is minimized using the WPM, the 
method is said to yield energy efficiency 
results when compared with Nayak's (2014) 
TOPSIS predicted results. Also, the surface 
roughness obtained through the use of 
WPM is better as lower results mean a 
better surface finish. So WPM is preferable 
to TOPSIS with the obtained prediction 
results of both models.  

7. Since experiment number 1 is selected in 
the result given by WSM as the best, to 
obtain the best values of the input 
parameters values given by experiment one 
in the original table is read. It reveals that 
the optimum spindle speed is 275 rpm, 
while 0.08 mm/rev and 0/6mm are the 
optimum feed and depth of art, respectively 
for the turned aluminium bar.  

8. From the results of preference scores and 
ranking for the weighted product model, the 
experiment trial 17 was ranked as the best 
(rank of 1). In checking the experimental 
data of Table 3 in Nayak (2014), the 
following values of the responses and 
parameters were obtained. For the 
responses, the optimal results were 
attained at 38.4 °C of tool-tip temperature, 
149.25 N for Fx, 117.18N for Fy and 
209.27N for Fz. The roughness average 
was 21.14  -m while the MRR was 
175,555.56 mm3/min. These values concur 
with those suggested by the results of 
TOPSIS in Nayak (2014). Thus, these 
results confirm the correctness of Nayak's 
(2014) outcomes on TOPSIS predictions. 
For the parameters, the optimum 
parameters that correspond to 
experimental trial 17 are 605 rpm for spindle 
speed, 0.12 mm/rev for feed and 1.8 mm for 

a depth of cut. This concurs with the 
suggestion of Nayak (2014) that also picked 
experiment 17 as the best when the 
TOPSIS multi-criteria were used for 
analysis. By interpreting the results 
obtained in this work compared with 
Nayak's (2014) outcome, the same energy 
values are used to process the aluminium 
bar in machining. Hence the TOPSIS multi-
criteria model is not superior to the 
weighted product model when applied to 
the turning data by Nayak (2014). 

9. The performance scores and ranking of the 
outcome from the application of WASPAS 
multi-criteria to Nayak’s (2014) data were 
determined. It was noticed that 
experimental number 17 yielded the 
optimum results. This gives responses of 
tool-tip temperature as 38.4 °C, Fx as 
149.25 N, Fy as 117.18 N and Fz as 
209.27N. The value of surface roughness 
was obtained as 21.14  -m while the MRR 
yielded 175,555.56 mm3/min. The 
corresponding values of the parameters 
were also observed as follows. Using 
experimental 17, a value of 605rpm was 
obtained for spindle speed, 0.12 mm/rev 
was for feed rate while 1.8 mm was 
obtained for a depth of cut. By considering 
the optimal values of responses and 
parameters, they agree with the results that 
were given by Nayak (2014) using TOPSIS 
multi-criteria to determine the preference 
scores and ranks of the responses and 
parameters. In terms of energy efficiency, 
the same energy was used by the process 
using the results from WASPAS and 
TOPSIS that Nayak (2014) evaluated. 

 
Implications of the work and contributions 

Machining criteria are critical parameters to 
be approximated to operate the lathe machine 
at a highly efficient level in the subtraction 
industry. Efficiency will be achieved in energy 
optimisation because the parameters that 
control energy usage in the lathe machine are 
known in advance, prioritised and worked on. 
Consequently, if these parameters are analysed 
using multicriteria structures great utility will be 
observed. Consequently, understanding the 
challenges facing small scale and free-lance 
machinists when choosing the best parameters 
and responses for their machined components 
and parts offers profound insights into the 
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manning process when considering using 
WASPAS in such small scale and free-lance 
machining activates to attain social change.  

This work contributes to the turning literature 
by:  
1. Emphasizing responses and parametric 

selection parameters and their unique 
attributes that were previously undecided in 
past turning research. These parameters 
and responses could assist in widening the 
understanding of machining researchers on 
the selection parameters and responses 
and the procedure to follow in the selection 
process.  

2. Uniquely applying the theories of entropy to 
understand the underlying principle of 
diversification that guides its application, 
which can provide moved analysis and 
improvement of the current concepts in the 
selection of turning parameters and 
responses for optimal condition 
specifications. 

3. Executing the premise of WASPAS 
innovatively to provide insights into the 
fundamental notion of the performance of 
an option regarding a particular criterion 
when the member of alternatives and 
criteria is specified. The principles guide its 
application to normalise and eventually 
determine the preference scores and ranks 
of the criteria. This principle may offer new 
study and enhancement of the present 
ideas to select responses and parameters 
in the turning process to attain optimal 
settings. 

   
Conclusion 

In this paper, three multi-criteria models, 
namely, the WSM, WPM and WASPAS were 
deployed to select the optimum operating 
conditions when turning an aluminium bar on a 
lathe machine. The three models were each 
used to analyse the model by normalising the 
data to be in the same units then further 
analysis was attempted to finally obtain the 
results. Specifically, an aluminium bar was 
experimentally investigated and the results 
recorded based on 25 sets of input parameters 
of spindle speed, feed rate and depth of cut. 
Four responses from this investigation (cutting 
temperature, cutting force, Ra and MRR) were 
recorded and used as criteria to select the 
optimum machining input operation. After 

analysing the experimental data obtained using 
WSM, WPM and WASPAS by applying entropy 
weights across the criteria, the most occurring 
first selection is run 17 which correspond to an 
input parameter of 605 rpm spindle speed, 0.12 
mm/rev feed rate and 1.8mm depth of cut. The 
combination of these parameters is found to be 
the optimum in operating the machine to obtain 
a reasonable low cutting temperature and force 
with high MRR. Further investigations may be 
considered for hard metal (difficult-to-machine) 
materials. Other methods such as artificial 
removal network may be applied for prediction 
purpose in the future. Furthermore, in this work, 
the concerns exclude studies regarding 
aluminium bar deformation when machined. 
The dimensional accuracy, characteristics of 
the chip formed as well as the degree of 
changes regarding tool nose have all been 
neglected in the experimental studies by Nayak 
(2014), which yielded the current analysis. To 
bridge this gap, future efforts may be directed at 
these issues. In this context, future analysis 
using WPM, WSM and WASPAS could treat the 
changes in tool nose geometry, dimensions 
(geometry) of the chips produced in turning and 
the turned bar deformation as an additional 
response to those used in the work. The result 
may then analyse if the additional responses 
yield significant differences in the conclusions 
regarding the optimal responses and optimal 
parameters for the turned bar process. 
Additionally, deterministic values were 
considered but often in practice, the values 
dealt with are probabilistic. So, it may enhance 
the researcher's understanding of the idea of 
fuzzy could be incorporated into the 
computation to tackle the uncertainty and 
impression involved in measurement. 
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