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Abstract

A game of rock-paper-scissors is an interesting example of an interaction where none of the

pure strategies strictly dominates all others, leading to a cyclic pattern. In this work, we con-

sider an unstable version of rock-paper-scissors dynamics and allow individuals to make

behavioural mistakes during the strategy execution. We show that such an assumption can

break a cyclic relationship leading to a stable equilibrium emerging with only one strategy

surviving. We consider two cases: completely random mistakes when individuals have no

bias towards any strategy and a general form of mistakes. Then, we determine conditions

for a strategy to dominate all other strategies. However, given that individuals who adopt a

dominating strategy are still prone to behavioural mistakes in the observed behaviour, we

may still observe extinct strategies. That is, behavioural mistakes in strategy execution sta-

bilise evolutionary dynamics leading to an evolutionary stable and, potentially, mixed co-

existence equilibrium.

Author summary

A game of rock-paper-scissors is more than just a children’s game. This type of interac-

tions is often used to describe competition among animals or humans. A special feature of

such an interaction is that none of the pure strategies dominates, resulting in a cyclic pat-

tern. However, in wild communities such interactions are rarely observed by biologists.

Our results suggest that this lack of cyclicity may stem from imperfectness of interacting

individuals. In other words, we show analytically that heterogeneity in behavioural pat-

terns may break a cyclic relationship and lead to a stable equilibrium in pure or mixed

strategies.

Introduction

The question frequently arising in ecology is: Under which conditions does a particular type of
species survive? This question is also relevant in the context of understanding a wide range of

environmental, social, genetic and other conditions potentially influencing evolutionary
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trajectories. Evolutionary game theory, a branch of game theory and ecological sciences, aims

to answer that question [1–5]. One of the most well-known games applied to biology is the

rock-paper-scissors game (RPS). Here, rock beats scissors, scissors beat paper and paper beats

rock. Whether we are talking about population dynamics or economics and human behaviour,

this game is known to illustrate salient features while being easy to understand (for a thorough

review of the models used to study RPS games see [6]). In biology, this game was applied to

explain cyclic dynamics in some species such as mating strategies of side-blotched lizards [7, 8]

and phenotypic competition in bacterial strains of E. Coli [9, 10]. Furthermore, in the engi-

neered microbial populations, introduction of such a competition seemed to stabilise the com-

munity [11] and even promote cooperation [12]. Moreover, it was suggested that introduction

of new strategies into classic social dilemmas, such as loners [13–15] or risk-averse hedgers

[16], can lead to cyclic competition. Nevertheless, cyclicity is rarely observed in wild commu-

nities of microbes [17], even though it was shown experimentally that behavioural heterogene-

ity in microbes can stabilise communities [18]. Recently, it was suggested that it might be

challenging for such non-transitive competition to evolve in the first place [19]. However, even

if cyclic competition emerges, its stability can be very sensitive to the exact balance in the com-

munity, potentially leading to the dominance of only one strategy [20]. In this paper, we utilise

a game-theoretic concept of incompetence [21, 22] which allows individuals to make mistakes

during the execution of their strategy. This results in a potentially unintended strategy being

actually played during the interaction with another individual. We show that such an assump-

tion can induce evolutionary stability in the initially unstable rock-paper-scissors dynamics

and predict possible outcomes of the competition under the assumption of execution errors.

Behavioural stochasticity is an expanding field rich in different approaches to the problem.

An approximation of behavioural errors of players in games was first considered as “trembling

hands” [23] with the presence of mistakes during the strategies’ execution with some small

probability. Later, in evolutionary games it was modelled via mutations [24, 25], language

learning [26–28] or other experimental learning processes [29–32], adaptation dynamics [33],

phenotypic plasticity [34], edge diversity in games on graphs [35, 36], and noise in continuous

and discrete-time replicator dynamics [37–40]. Furthermore, mutations of players were intro-

duced to the replicator dynamics via the replicator-mutator dynamics [28, 41], where each

type has its own mutation rate but these mutations do not occur simultaneously. However,

behavioural stochasticity at the moment of interaction was not considered in these studies.

An attempt to generalise players’ behavioural mistakes via the notion of incompetence was

made in classic game theory [42]. Later, the concept of evolutionary games under incompe-

tence was suggested to model such social problems of species in biological settings [22]. The

notion of incompetence proposes a general framework for modelling behavioural mistakes

with the underlying assumption that only one of the n non-cooperative strategies can be exe-

cuted. That is, with a certain probability, individuals might execute a strategy different from

the one they chose. In these settings, both players are prone to making mistakes resulting in

stochastic payoffs of all involved individuals, altering overall population’s fitness.

Here, we consider the following scenario. Imagine, each randomly chosen individual finds

itself in the pairwise interaction with another randomly chosen individual. Both of them

choose a strategy to play. However, the chance that they will play their chosen strategies

depends on two factors: on the overall level of behavioural plasticity in the population and a

distribution of behavioural mistakes. If the population is completely homogeneous, then all

interactions among the individuals are deterministic (λ = 1, see Fig 1A). However, if the popu-

lation’s behaviour is plastic (λ< 1), then individuals may make mistakes when executing their

chosen strategies. The probabilities of playing one or another strategy are determined both

by the degree of plasticity, λ, and their maximal probabilities of mistakes captured in matrix
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S (λ = 0). The latter results in behavioural plasticity that perturbs the game outcome (see Fig

1B). In some games, execution errors mean that organisms are able to execute strategies

required by the environmental conditions even when they make a wrong choice. That is, spe-

cies execute strategies that are required for their survival in the environment, by mistake. We

do not assume that they carry out this execution consciously. However, this random character-

istic may be crucial when we consider changing environments where adaptation becomes par-

ticularly important and depends strongly on the interplay between behavioural patterns and

fitness.

In low-dimensional games this interplay can be captured and analysed in detail. Unfortu-

nately, it becomes challenging as dimensionality of a game grows where even small perturba-

tions may impact an evolutionary outcome. However, under a natural assumption that

behavioural mistakes are completely random, we can describe game behaviour for general n
dimensions. We show that in such settings, strategies (or behavioural types) leverage their fit-

ness advantage. This in turn might lead to only one strategy dominating. Further, we assume

that mistakes do not have to be completely random. We consider a symmetric case of an unsta-

ble RPS game where no choice of strategies yields a fitness advantage. Such games lead to a het-

eroclinic orbit where none of the strategies dominate. We choose such settings precisely

because it is challenging to induce stability in these games. By contrast, an initially stable ver-

sion of the RPS game can promote biodiversity even in finite populations settings [43], and

even very small perturbations can stabilise a classic version of the RPS game [44]. We show

that behavioural mistakes bring asymmetry to the game, breaking the cyclic relationship and

potentially leading to dominance of one of the strategies. That is, the structure of execution

errors may technically imply the existence of an evolutionary stable interior point.

Model

In this paper we focus on the RPS dynamics. Hence, we shall mostly work with the general

form of R given by

Rock Paper Scissors

Rock

Paper

Scissors

0 � a1 b1

b2 0 � a2

� a3 b3 0

0

B
B
B
@

1

C
C
C
A

; ð1Þ

where ai; bi 2 R
þ

[4].

Fig 1. A schematic representation of behavioural mistakes in a rock-paper-scissors game. (A) Rock-paper-scissors

dynamics with pure strategies is described by a fitness matrix such that the cyclic relationship between the three

strategies is promoted. (B) The effect of execution errors on the example of one interaction: here individual 1 has

chosen strategy paper and individual 2 has chosen strategy rock. Without mistakes, individual 1 would win this

instance of the contest. However, a mistake in the execution leads to mixed strategies being played for both individuals

resulting in different possible outcomes of the interaction. Hence, the outcome of the game is no longer deterministic

but stochastic and depends on the probability distribution of mistakes.

https://doi.org/10.1371/journal.pcbi.1008523.g001
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In classic games, there is an underlying assumption that players are able to execute the cho-

sen actions perfectly. We assume that actions selected by players may not coincide with the

executed actions. Such behavioural stochasticity results in executing unintended strategies and

is captured in matrix Q(λ) from [21] defined as

QðlÞ ¼ ð1 � lÞSþ lI; l 2 ½0; 1�: ð2Þ

In [21] the authors called Q(λ) the incompetence matrix with elements qij(λ). However, in the

biological context considered here the name plasticity matrix is more appropriate. This sto-

chastic matrix is constructed from the set of all probabilities of player 1 executing action j
given that she selects action i. When λ = 1, Q(1) = I and no mistakes are observed in the popu-

lation. Hence, the population is behaviourally homogeneous and all interactions are determin-

istic. However, if λ< 1, then with probabilities qij(λ) an individual chooses to play strategy i
but plays strategy j instead. We say that in such a case the population is Q(λ)-heterogeneous

and the outcomes of the interactions are now stochastic. We shall call λ the strength of beha-
vioural plasticity. In the limit as λ! 0, the matrix Q(0) is equal to S, which is defined as a limit-

ing distribution of behavioural mistakes. Such a matrix in the case of a three-strategy matrix

game has the form

S ¼

s11 s12 s13

s21 s22 s23

s31 s32 s33

0

B
B
B
@

1

C
C
C
A
; ð3Þ

and is also a stochastic matrix. Every i-th row of this matrix defines a mixed profile of each

strategy i. We define the expected incompetent reward matrix as a perturbation of the fitness

matrix by plasticity (or incompetence), namely

RðlÞ ¼ QðlÞRQðlÞT: ð4Þ

It is sufficient to consider the following simpler canonical form of the fitness matrix

~RðlÞ ¼ RðlÞ � DðRðlÞÞ; ð5Þ

where D(R(λ)) is a matrix with each column j consisting of the diagonal elements of R(λ),

inducing rjj(λ) = 0, j = 1, 2, 3 since such positive linear transformation of the fitness matrix

does not affect the qualitative behaviour of replicator dynamics [45]. In our further analysis,

we will focus on the equilibrium analysis of the games with the fitness matrix ~RðlÞ, and

explore possible transitions caused by λ changing values in [0, 1]. Then, substituting (4) into

(5), we obtain a new game with mistakes ~RðlÞ given by

~RðlÞ ¼

0 ~r12 ~r13

~r21 0 ~r23

~r31
~r32 0

0

B
B
B
@

1

C
C
C
A
; ð6Þ

where every element of the fitness matrix ~RðlÞ has the form

~rijðlÞ ¼ ðqi � qjÞ
TRqj;

with qi being the i-th row of matrix Q(λ) from (2).
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In the evolutionary sense, behavioural mistakes lead to perturbations in fitness that popula-

tions obtain over time. This might be due to populations’ migration to new and unexplored

environments or due to changing environments. Then, interacting individuals obtain a finite

number, n, of available behavioural strategies. With the absence of mistakes, both interacting

individuals are making their strategical choices which lead to some payoff according to the fit-

ness matrix R. However, mistakes from matrix Q(λ) perturb the outcome of the interaction

twice as both interacting individuals are prone to execution errors. Hence, the population

dynamics now depends on the degree of plasticity, that is competency of individuals, accord-

ing to replicator equations [46] defined as

_xi ¼ xiðfiðlÞ � �ðlÞÞ; i ¼ 1; . . . ; n;

where the fitness of i-th strategy is given by

fiðlÞ ¼ eT
i
~RðlÞx

where eT
i is the i-th transposed unit basis vector. The mean fitness of the entire population is

defined as

�ðlÞ ¼ xT ~RðlÞx:

Interpretation of λ
The model proposed here was first referred to as a “game with incompetence of players” [21,

42]. That is, the matrix Q was consisting of probabilities of players’ mistakes, when they

intended to execute strategy i but played strategy j instead. Such a model was inspired by an

analogy with tennis players, where less experienced players are prone to hitting a different shot

to one they initially intended. Here, players have a set of n possible shots to hit. Given the com-

plexity level of the shot as well as players’ talents, those probabilities of mistakes will not be uni-

form. Moreover, players are learning while training and, hence, reducing their incompetence.

This was captured in the parameter λ: with the level of mistakes decreasing as λ! 1.

This concept was next considered in the evolutionary settings as a modelling approach to

adaptation to a new environment [22]. First, it was assumed that a population is immersed

into a new environment, which can happen either due to migration of animals or changing

environmental conditions. It is assumed that there are n behavioural types or strategies avail-

able to individuals. Then, new conditions might increase stress levels and force individuals’

behaviour to deviate from the one in the old environment. Such deviations are then captured

in the matrix S. As time passes by, animals learn and adapt to their new environmental condi-

tions, which is then reflected in the parameter λ. In such settings, one can also assume some

form of learning dynamics, λ(t) [47].

Another possible way to think about this model, is to apply it at a genetic level [48]. That is,

we would construct a game between n pure types, for instance, genes in microbes. The time-

dependent process of λ(t) evolving from 1 to 0 can then be considered more as environmental

stimuli dynamics and have various functional forms reflecting environmental fluctuations.

Matrices S and Q would represent levels of phenotypic plasticity, where each phenotype would

allow some mixing between n genes that depend on the level of environmental stimuli. Then,

natural selection would drive the evolution, which might result in extinction of one type or

another. This also depends on the assumption concerning the exact form of environmental

fluctuations.

Here, we focus on the more general interpretation of λ as the strength of behavioural plas-

ticity. For this general approach we do not impose any time-dependence on λ. Instead, we
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study all possible equilibria for each of the values of λ in the interval [0, 1]. Every pure strategy

i has an assigned probability distribution captured in the matrix Q(λ). When λ = 0, the popula-

tion utilises a limiting distribution of mistakes S and has maximal plasticity. When λ = 1, the

population’s behaviour is deterministic and no plasticity is observed. This can be interpreted

as an approach to modelling behavioural heterogeneity or noise in interactions. Specifically, in

the settings of phenotypic plasticity, it is natural to assume a complete randomisation in the

strategy execution corresponding to S being comprised of uniformly distributed probability

vectors. However, in terms of adaptations to new environmental conditions, probability of

mistakes may differ depending on the strategy being chosen. Thus, we shall assume a general

form of matrix S. Next, we shall first demonstrate this model on some examples.

Motivating example 1

First, consider phenotypic behavioural plasticity as an interpretation of the model. In such set-

tings, it is natural to assume that “execution errors” are symmetric and equally likely. That is,

let us assume that if λ = 0, then individuals are completely random in their strategic choice.

Then, all components of matrix S are equal and are given by sij ¼
1

n= . Next, let us assume that

strategies are not equal in their fitness advantages by considering the fitness matrix R given by

Rock Paper Scissors

Rock

Paper

Scissors

0 � 2 1

1 0 � 3

� 3 1 0

0

B
B
B
@

1

C
C
C
A

:

Game flows for different values of λ are depicted in Fig 2. For λ = 1, the game possesses an

unstable mixed equilibrium ~x ¼ ð10=32
; 13=32

; 9
32Þ= (see Fig 2A). As the strength of behavioural

plasticity increases (λ decreases), the game dynamics experiences several transitions. First, the

interior equilibrium of the game with pure strategies is pushed to the population adopting

only rock strategy (Fig 2B and 2C) via the existence of the unstable equilibrium point on the

paper-rock edge. Note that in panel B an interior equilibrium point still exists whereas in panel

C the game transits to having no interior equilibrium.

Since the stable equilibrium is a strict Nash equilibrium, it is an evolutionary stable strategy

(ESS) [4]. However, for any given λ and strategy choice, ~xðlÞ, the observed stochastic behav-

iour of organisms, ~yðlÞ, is defined by the matrix Q(λ) as a result of

~yðlÞ ¼ QðlÞ~xðlÞ: ð7Þ

Fig 2. Game flow for the unstable RPS game with uniform mixed strategies for different values of λ. Here, a stable

fixed point is denoted by a red circle and a unstable fixed point is denoted by a white circle. The colour in the interior

of the simplex indicates the rate of change: from slow (blue) to fast (red). In this example, completely random

execution errors lead to the dominance of the rock strategy. We use the Wolfram Mathematica project [49] to produce

these phase planes.

https://doi.org/10.1371/journal.pcbi.1008523.g002

PLOS COMPUTATIONAL BIOLOGY Mistakes can stabilise the dynamics of rock-paper-scissors games

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008523 April 12, 2021 6 / 16

https://doi.org/10.1371/journal.pcbi.1008523.g002
https://doi.org/10.1371/journal.pcbi.1008523


Hence, at λ = 0 the game possesses a stable pure equilibrium ~xð0Þ ¼ ð1; 0; 0Þ that corresponds

to the execution vector ~y ¼ sT
1
¼ ð1 3;

1
3;

1
3Þ=== , where sT

1
is the first column of the matrix S.

That is, if λ is sufficiently close to 0, the game ~Rð0Þ obtains a stable interior completely mixed

equilibrium. Hence, given the execution vector, the assumption of behavioural plasticity intro-

duces a stable interior ESS to an unstable rock-paper-scissors game. Note that, from the per-

spective of the observed strategy, it does not matter which of the strategies will dominate in

this case as they all have the same probabilities of mistakes.

Motivating example 2

The assumption that individuals make mistakes completely at random is somewhat limiting.

In some cases, more freedom in the definition of individuals’ plasticity is required. For

instance, if we assume that λ is interpreted as an adaptation process to new environmental

conditions, then some behavioural choices may have different distributions of mistakes. For

instance, let us consider an example where the fitness matrix R is given as follows

Rock Paper Scissors

Rock

Paper

Scissors

0 � 2 1

1 0 � 2

� 2 1 0

0

B
B
B
@

1

C
C
C
A

:

Note that the determinant of R is negative, which implies that this game possesses an inte-

rior fixed point (1
3;

1
3;

1
3=== ) that is unstable. Hence, there exists a heteroclinic orbit as there

are no stable equilibria. The dynamics then oscillate from the centre of the simplex to the

boundaries. Such dynamics are generally quite robust under perturbations. We now consider

how the game dynamics behave under our assumptions.

The exact probability distributions captured in S would depend on the particular situation

and species under consideration. Let us demonstrate the influence of execution errors on the

following example of matrix S. Assume that at the highest level of execution errors (λ = 0) indi-

viduals play each of their chosen strategies with probability not less than 1
3= . When an individ-

ual plays a scissors strategy, her strategy execution is completely random. However, choosing a

rock or paper strategy may induce some asymmetry in the strategy execution. An individual

playing a rock strategy executes only rock and paper strategies with probabilities 1
3= and 2

3= ,

respectively. Individuals, who choose a paper strategy, obtain a limiting distribution of mis-

takes of (1
2;

1
3;

1
6=== ). Then, the matrix S is given by

Rock Paper Scissors

Rock

Paper

Scissors

1=3
2=3 0

1=2
1=3

1=6

1=3
1=3

1=3

0

B
B
B
@

1

C
C
C
A

:

Game flows for different values of λ are depicted in Fig 3. As λ varies from 1 to 0, the game

dynamics go through several transitions (see panel A for the overview). The first transition

happens at l ¼ 2
5= when pure stable equilibrium of scissors emerges (see Fig 3B and 3C).

Note that the interior equilibrium still exists but the heteroclinic orbit does not—the dynamics

converge to a stable point. Next, at λ� 0.287, a paper strategy becomes stable (Fig 3D). Fur-

ther, the interior fixed point vanishes at l ¼ 1
4= leaving unstable fixed points on the rock-
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scissors and paper-scissors edges (Fig 3E), which is followed by a rock strategy becoming

stable at λ� 0.209 (Fig 3F). This interval of all three strategies being stable is rather short as

at l ¼ 1
5= paper loses its stability (Fig 3G). However, these are not the only transformations

occurring: at l ¼ 1
7= the interior equilibrium emerges again (Fig 3H). While the interior equi-

librium exists again, scissors lose their stability too at l ¼ 1
13= and at λ = 0 rock is the only sta-

ble equilibrium. Note that for λ = 0 (Fig 3J), the stable observed pure equilibrium will again be

a mixed strategy due to the execution errors given by ~yð0Þ ¼ s1 ¼ ð
1

3;
2

3; 0Þ== .

These examples demonstrate that execution errors might break the heteroclinic orbit by intro-

ducing a stable equilibrium in the game. That is, stochasticity induced by mistakes might stabilise

dynamics that were unstable before. In addition, in the case of players executing only mixed

strategies, the game might obtain a stable interior point altering its original dynamics (see Figs

2C and 3J). In the following analysis we shall examine possible transitions in unstable RPS

games. We aim to define conditions under which we can secure existence of a stable equilibrium.

Results

Games with completely random plasticity

Let us first consider the case when behavioural mistakes are completely random. Such settings

can be interpreted as either a form of phenotypic plasticity or just noise in the interactions.

Then, the matrix S is such that any strategy obtains the same probability of mistakes, that is,

sij ¼
1

3= , 8i, j = 1, 2, 3. For such a game, the canonical fitness matrix simplifies to

R̂ðlÞ ¼ Rþ
1 � l

3l
RJ;

Fig 3. Game transitions under execution errors from example 2. (A) Frequencies of each strategies in the interior equilibrium as functions of λ. Here,

x1 represents rock frequency, x2—paper frequency and x3—scissors frequency. The interior equilibrium exists for most the values of λ but (1
7= , 1

4= ).

Further, the coloured bar at the top of the plot indicates stability intervals of λ for different vertices (a stable vertex is indicated on top of the bar). For

instance, vertex 3 is the only stable vertex for λ 2 (� 0.287, 2
5= ). Game flow for the unstable rock-paper-scissors game is depicted for different values of

λ as follows: (B) λ = 1, (C) λ = 0.3, (D) λ = 0.27, (E) λ = 0.22, (F) λ = 0.205, (G) λ = 0.16, (H) λ = 0.1, (I) λ = 0.05, (J) λ = 0. We depicted each transition in

the game from panel A. Here, a stable fixed point is denoted by a red circle and a unstable fixed point is denoted by a white circle. Hence, as λ changes

its values from 1 to 0, the game experiences several transitions in its equilibria and for different degrees of execution errors, each of the pure strategies

has a chance to dominate. However, for the maximum plasticity, only pure rock strategy survives.

https://doi.org/10.1371/journal.pcbi.1008523.g003
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where J is a matrix of ones, R is the fitness matrix of the original game and λ 2 (0, 1]. In a game

with λ 2 (0, 1], if strategies do not induce any overall fitness advantage to any strategy (that is,

R is a row-sum-constant matrix), then uniform execution errors will not affect the resulting

equilibrium (see S1 File, Proposition 1).

Result 1. Let ~x be an interior equilibrium of R. If the limiting distribution of mistakes, S, is a
uniform matrix, that is, sij ¼

1
3= , 8i, j = 1, 2, 3 and R is a row-sum-constant matrix, then ~x is an

interior equilibrium for the game R̂ðlÞ for any λ 2 (0, 1].

In other words, if in a row-sum-constant game everyone is making mistakes with the same

probabilities, then population dynamics are invariant under these mistakes. However, diversity

in fitness advantages between the strategies might help one of the groups to benefit from beha-

vioural heterogeneity of the population by leveraging its fitness advantage. We can calculate

the interior fixed point in a general row-sum case as follows:

Result 2. Let ~x be an interior fixed point of the original game R. Then, for λ sufficiently close
to 1 and the limiting distribution of mistakes, S, being a uniform matrix, that is, sij ¼

1
3= , 8i,

j = 1, 2, 3, we obtain that

~xðlÞ ¼
1

l
~x �

1 � l

3
1

� �

; ð8Þ

is an interior fixed point for the game R̂ðlÞ.
Note that, the point ~xðlÞ from Eq (8) remains a fixed point of the replicator dynamics as

long as it is preserved in the interior of the simplex, that is, as long as ~xk >
ð1� lÞ=3

; 8k (see S1

File, Theorem 1). Hence, it can be easily verified that for this point to remain in the interior of

the simplex for all λ 2 [0, 1] we must have that ~xk ¼
1

3; 8k= . The exact position of ~x is deter-

mined by the entries of the matrix R. Since for a general form of R the interior equilibrium will

not be located in the exact centre of the simplex, some strategies can go extinct first. This con-

firms that not only the strength of behavioural plasticity and probabilities of mistakes are

important, but also the relative fitness advantages captured in the fitness matrix R. That is, mis-

takes can give a chance to some strategies to make use of their fitness advantage leading to the

dominance of a particular strategy.

Remark. Note that Result 2 holds for any number of strategies n and any game. For a gen-

eral form of the result see S1 File.

Result 2 implies that the interior equilibrium of the original game is shifted by behavioural

heterogeneity and drives less fit strategies to extinction. However, the observed strategy will

remain the same for any dominating pure strategy due to the symmetry in mistakes distribu-

tions. Hence, uniform S introduces evolutionary stability in the games with heteroclinic cycles.

Moreover, for the extreme case of behavioural plasticity (λ� 0), this equilibrium will be close

to a completely mixed equilibrium (1
3;

1
3;

1
3=== ). Note that in the case of λ = 0, the matrix ~Rð0Þ

is a zero matrix, meaning that the strategies are neutral and any point in the simplex is stable.

Breaking the cyclic relationship

Next we address the question: What if behavioural mistakes of individuals are not necessarily

uniformly distributed? For instance, if we treat the parameter λ as some form of adaptation or

learning, then the probabilities of mistakes might be different for different strategies. In such a

case, we consider the general form of matrix S as in Eq (3). In order to study the effect of the

limiting distribution of mistakes (as λ! 0), we shall focus on the form of a RPS game,

where no strategy gains a fitness advantage. That is, we assume a row-sum-constant fitness

matrix with an unstable equilibrium in the centre of the simplex by letting a1 = a2 = a3 = a and
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b1 = b2 = b3 = b in the matrix (1). The condition a> b ensures instability of the interior fixed

point (1
3;

1
3;

1
3=== ) and, hence, the existence of a heteroclinic orbit.

In three dimensions (see (6)), transitions in a game are caused by either the elements ~rijðlÞ

changing the sign, or cofactors ~RijðlÞ changing the sign, or the determinant of the fitness

matrix detð~RðlÞÞ changing its sign [22, 50]. In the case of RPS games, the stability of the inte-

rior equilibria is determined by the sign of the determinant of the fitness matrix [51]. There

are three cases: (a) if det(R) < 0, then such a game obtains an unstable interior equilibrium

resulting in a heteroclinic cycle; (b) if det(R) > 0, then such an equilibrium is a stable fixed

point; (c) if det(R) = 0, then there exists an unstable interior equilibrium and periodic orbits.

Then, under the assumptions of our model, the interior point’s stability could potentially

switch. That is, if the determinant of the fitness matrix ~RðlÞ changes its sign while the game is

still a RPS game, the unstable interior point could become stable. However, the equilibrium

behaviour of the game with ~RðlÞ is the same as R(λ) by [45] given the relation between the two

matrices in Eq (5). Since the determinant of the fitness matrix R(λ) always preserves the same

sign as det(R), then detð~RðlÞÞ also cannot change its sign while the interior point exists.

Hence, stability properties of the interior equilibrium cannot be changed in our model. How-

ever, the equilibrium can be pushed to the boundary of the strategy space due to the asymme-

try in the matrix S.

Note that for a homogeneous population (λ = 1) the interior fixed point, ~x, can be calcu-

lated as

~xi ¼

P3

j¼1
Rji

P3

j¼1

P3

k¼1
Rjk

; ð9Þ

where Rji are cofactors of the matrix R. Then, as rate of execution errors of players increase

(λ! 0), the interior point ~xðlÞmight transform and become infeasible as one or two of the

components reach 0, that is, ~xiðlÞ ! 0 for some i.
Hence, depending on the probabilities of mistakes, we can describe possible transitions in

the game dynamics induced by the changes in the strength of behavioural plasticity, λ. For

instance, the game might possess an unstable interior equilibrium for any λ. However, the sta-

bility of the vertices will be disturbed as the entries of ~RðlÞ change their signs. An example of

such a case can be found in Fig 4A, where the components of the interior equilibrium ~xiðlÞ

are plotted. The coloured bar at the top of each plot indicates the interval of λ where the verti-

ces (either one or two or all three) are stable. Further, Fig 4B shows an example of the game

transitions with the interior equilibrium disappearing after some λ and varying stability of the

vertices is depicted. However, given the rational functional form of ~xiðlÞ, it is possible that the

interior equilibrium exists for more than one sub-interval of λ. For instance, in Fig 4C and

panel D the interior fixed point emerges twice as λ changes from 0 to 1. Furthermore, stability

transitions of the vertices in such cases are rich in structure. This is especially the case for the

example depicted in Fig 4D.

Generally, components of the interior equilibrium are rational functions with numerators

and denominators being 4-th order polynomials in λ. Consequently, there is a variety of possi-

ble behaviours. However, we can determine strict conditions for a vertex to be stable, based on

its behaviour for a mixed strategy profile captured in the corresponding rows of the matrix S.

Specifically, we can determine those conditions in the following result (see S1 File for more

details).

Result 3. Let λc 2 (0, 1) be such that lc
¼ minðlc

kj; l
c
ijÞ, where ~rkjðl

c
kjÞ ¼ 0 and ~rijðl

c
ijÞ ¼ 0, i,

j, k are all distinct. Vertex j is a stable point of the replicator dynamics under incompetence for
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λ 2 [0, λc) if and only if

sjRsj > slRsj; 8 l 6¼ j: ð10Þ

This result follows from the fact that as the population becomes more plastic as λ! 0 and

R(λ)!SRST, the canonical form of the fitness matrix is reduced to

~Rð0Þ ¼

0 C12 C13

C21 0 C23

C31 C32 0

0

B
B
B
@

1

C
C
C
A
;

where Cij = (si − sj)
T Rsj and si are the corresponding rows of S. If we think about sj’s as a

mixed strategy that population use when vertex j is stable, we can interpret those conditions as

stability requirements. That is, the plastic behaviour of strategy j has to be a better response to

itself than both mixed profiles of strategies i and k. Hence, stability of the strategic choice of

pure strategy i is determined by the stability of its mixed profile.

Remark. Note that for λ = 0, conditions (10) imply stability of vertex j for any number of

strategies n and any game.

Fig 4. Various game transitions of the unstable RPS game as λ varies between [0, 1]. The components of the

interior fixed point are plotted as functions of λ. Further, the coloured bar at the top of the plot indicates stability

intervals of λ for different vertices (a stable vertex is indicated on top of the bar). (A) The interior fixed point exists for

all λ but vertices interchange their stability. In the limit of mistakes (λ! 0), two vertices are stable. (B) The interior

fixed point exists for a sub-interval and vertices interchange their stability. As λ! 0, two vertices are stable. (C) The

interior fixed point exists for two sub-intervals of (0, 1). In the limit of mistakes (λ! 0), only vertex 1 is stable. (D) The

interior fixed point exists for almost all values of λ. In the limit of mistakes (λ! 0), all three vertices are stable.

Generally, the exact equilibria transitions and existence of an interior equilibrium is determined by the limiting

distribution of mistakes, S. We found that for almost all matrices S there is a high chance that at least one of the pure

strategies will become dominant.

https://doi.org/10.1371/journal.pcbi.1008523.g004
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Note that since the stable equilibrium is pure, it is a strict Nash equilibrium. Hence, the

original replicator dynamics obtains an evolutionary stable point under the assumptions of

our model. In fact, by Eq (7), according to the strategy execution of individuals, we obtain a

stable point in the interior that corresponds to si, where i is a stable vertex. A schematic repre-

sentation of such a transformation can be found in Fig 5.

As demonstrated in Examples 1 and 2, while λ decreases from 1 to 0, the dynamics can

experience several bifurcations where an equilibrium can emerge on one of the edges. An

edge-equilibrium is characterised by exactly one of the components of the equilibrium being 0,

that is, ~xiðlÞ ¼ 0. Hence, this edge point is determined by the interaction between the two

remaining strategies. However, for the version of an RPS game considered here, those equilib-

ria will be mostly unstable (see S1 File for more details). Note that the point on the correspond-

ing edge might exist before the interior reaches the boundary.

Overall, when strategies are initially equivalent in their fitness advantages in the non-plastic

game, the asymmetry in matrix Q(λ) introduces asymmetry in the game ~RðlÞ. This in turn

leads to the competition between pure strategies resulting in some stable fixed point of the

dynamics. The outcome of the competition is determined by the interplay among mixed pro-

files of all three strategies. Specifically, the mixed profile of strategy j has to be uninvadable by

both populations consisting of individuals following strategies i and k. This observation is dif-

ferent from the case of a uniform mixed strategies profile. That is, if in the former case, mixed

profiles were likely to introduce a completely mixed equilibrium, in the case of asymmetric S,

competition between the mixed strategies is important.

Discussion

Much research has been devoted to describing behavioural mistakes of organisms and how

those mistakes affect the outcome of the evolutionary competition. In addition, the RPS game

itself received a lot of attention due to its ability to describe cyclic competitive interactions.

However, such cycles are rarely observed in nature. We propose that behavioural heterogeneity

or noise can induce stabilisation of communities driving them to evolutionary stable out-

comes. Our model introduces behavioural mistakes in the context of a cyclic RPS game. Here,

behavioural mistakes imply that individuals might execute a strategy different from the

intended one. We encode all probabilities of mistakes in a matrix Q(λ) and allow individuals

to play either a mixed or pure strategy. The degree of plasticity is captured by the parameter λ
varying from 1 (no plasticity) to 0 (maximum plasticity).

Fig 5. A schematic representation of a possible influence of execution errors on the RPS dynamics. The original game possesses an unstable

equilibrium ~x . Once the execution errors are introduced, for some λ the game can obtain a stable equilibrium ~xðlÞ represented by a vertex i. As the

probability to play mixed strategies in this case is high, it keeps disturbing the strategy execution of the players choosing strategy i according to Eq (7)

resulting in an equilibrium ~yðlÞ that is possibly in the interior.

https://doi.org/10.1371/journal.pcbi.1008523.g005
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We then explore the influence of the limiting distribution of mistakes captured in matrix S
on the evolution of social behaviour of species. Depending on the matrix S, different pure strat-

egies might benefit from those mistakes. Such matrix captures mistake probabilities for the

limiting case of λ = 0. We analyse the interplay of learning and fitness advantages and define

conditions under which strategies can prevail. For example, in the case with completely ran-

dom mistakes, the most beneficial strategy is the strategy with the highest relative fitness

advantage (see Result 2). However, it does not change the outcome of the evolution since in

this case it will be a completely mixed interior point.

One can also interpret our model as adaptation to new environmental conditions. Then, it

is natural to expect that specific environments require different strategies to be adopted. For

instance, in the case with an RPS game with the interior equilibrium (1
3;

1
3;

1
3=== ) and a

general form of S, different strategies might become stable depending on their behavioural

plasticity as their competence evolves (see Result 3). However, even if behavioural choice of

organisms will evolve to a stable pure strategy, their executed strategy (for λ 6¼ 1) might differ

from their actual type. Conversely, we will obtain a vector of mixed strategies given by Eq (7).

Hence, S can introduce stability in the game which might preserve all three strategies from

extinction.

Interestingly, at λ = 0, strategies are leveraging the advantage they can gain from mistakes

from maximum plasticity. For instance, in the case with a general form of limiting probability

distribution, stability of a pure strategy is determined by its plastic response to itself (see Result

3). For a strategy to become stable, it is necessary to be uninvadable by the other two plastic

strategies.

Overall, behavioural heterogeneity, captured through the execution noise, might help spe-

cies to benefit from behavioural heterogeneity or plasticity. The ability of our model to induce

a stable equilibrium in the unstable game might help in explaining why such unstable RPS

dynamics are not observed in wild communities. That is, plasticity in behaviour might help

to stabilise the evolutionary outcome and sometimes enable one of the strategies to become

dominant.

Supporting information

S1 File. Mathematical appendix. In this document we derive all results presented in the man-

uscript.

(PDF)
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