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Abstract
We revise a previous result about the Fröhlich dynamics in the strong coupling limit
obtained in Griesemer (Rev Math Phys 29(10):1750030, 2017). In the latter it was
shown that the Fröhlich time evolution applied to the initial state ϕ0 ⊗ ξα , where ϕ0 is
the electron ground state of the Pekar energy functional and ξα the associated coherent
state of the phonons, can be approximated by a global phase for times small compared
to α2. In the present note we prove that a similar approximation holds for t = O(α2)

if one includes a nontrivial effective dynamics for the phonons that is generated by
an operator proportional to α−2 and quadratic in creation and annihilation operators.
Our result implies that the electron ground state remains close to its initial state for
times of order α2, while the phonon fluctuations around the coherent state ξα can be
described by a time-dependent Bogoliubov transformation.

Keywords Fröhlich polaron · Strong coupling limit · Effective dynamics · Quantum
corrections

Mathematics Subject Classification 81Q05 · 81Q15 · 82C10

1 Introduction andmain result

1.1 Themodel

The Fröhlich polaron is a quantum model for a large polaron which describes an
electron in an ionic lattice interacting with the excitations (phonons) of this lattice
[1,12]. Large refers to the assumption that the extension of the electron is much larger
compared to the lattice spacing which can thus be approximated by a continuum. In
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this model, the energy and the dynamics of the electron and the phonons are described
by the Fröhlich Hamiltonian

HF
phys,α = p2 ⊗ 1 + 1 ⊗ N + √

αφ(Gx ) (1)

that acts on theHilbert spaceH = L2(R3, dx)⊗F . HereF = ⊕∞
n=0 L

2(R3, dk)⊗
n
sym

is the bosonic Fock space, x and p = −i∇x denote the position and momentum
operator of the electron, respectively, and N is the number operator onF . The interac-
tion between the electron and the phonons is described by φ(Gx ) = a(Gx ) + a∗(Gx )

with a( f ) and a∗( f ) the usual annihilation and creation operators on F and Gx the
bounded multiplication operator defined for any x ∈ R

3 by the function

Gx (k) = e−ikx

2π |k| . (2)

The creation and annihilation operators satisfy the canonical commutation relations

[a( f ), a∗(g)] = 〈 f , g〉L2 ,

[a( f ), a(g)] = [a∗( f ), a∗(g)] = 0 ∀ f , g ∈ L2(R3, dk). (3)

Finally the number α > 0 is a dimensionless coupling parameter that models the
strength of the interaction. The regime α → ∞ is called the strong coupling limit.

By a change of units which corresponds to rescaling all lengths by a factor α−1,
the Fröhlich Hamiltonian HF

phys, is unitarily equivalent to the operator α2HF
α with1

HF
α = p2 ⊗ 1 + 1 ⊗ α−2N + α−1φ(Gx ). (4)

In the analysis of the strong coupling limit it is more convenient to work in strong
coupling units, i.e., to use HF

α instead of the original Fröhlich Hamiltonian HF
phys,α

and then consider rescaled values of energy E = α−2Ephys and time t = α2tphys.
This explains why t = O(α2) is the time scale we are interested in for the dynamics
generated by HF

α .

In this work we study the large α limit of the time-evolved state�α(t) = e−i HF
α t�α

for a special initial state, namely the Pekar product state �α = ϕ0 ⊗ ξα where ϕ0 ∈
H1(R3, dx) is the self-trapped electron ground state of the Pekar energy functional
(to be defined below) and ξα = W (α f0)∗�0 is the corresponding coherent phonon
state. That is to say, �0 = (1, 0, 0, . . .) is the normalized vacuum state in F and

W (α f0) = exp
(
a∗(α f0) − a(α f0)

)
(5)

denotes the Weyl operator w.r.t. the function

α f0(k) = α
〈
ϕ0,G ·(k)ϕ0

〉
L2 = α

2π |k|
∫

R3
e−ikx |ϕ0(x)|2 dx . (6)

1 See [13, Appendix B].
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We recall that the Weyl operator is unitary and satisfies the shift relation

W (α f0)
∗a(g)W (α f0) = a(g) + α

〈
g, f0

〉
L2 (7)

for any g ∈ L2(R3, dk).
The Pekar energy functional is defined by

EP(ϕ) =
∫

R3
|∇ϕ(x)|2dx − 1

2

∫

R3

∫

R3

|ϕ(x)|2|ϕ(y)|2
|x − y| dxdy (8)

with constraint ||ϕ||L2 = 1. It was shown in [20] that EP(ϕ) admits a uniqueminimizer
(unique up to spatial translations)

ϕ0 ∈ H1(R3, dx) ∩ {
ϕ ∈ L2(R3, dx) : ||ϕ||L2 = 1

}
(9)

that can be chosen positively. The minimizer further solves the Euler–Lagrange equa-
tion (hϕ0 − λ)ϕ0 = 0 where

hϕ0 = p2 + V ϕ0 , V ϕ0(x) = −2Re〈Gx , f0〉L2 , (10)

and λ = EP(ϕ0) − || f0||2L2 . By its positivity, it follows that ϕ0 is the unique ground
state of the Schrödinger operator hϕ0 and that λ = inf σ(hϕ0) belongs to the discrete
spectrum of hϕ0 , see [25, Sec. 12]. Introducing the orthogonal projector Q = 1 − P
with P = |ϕ0〉〈ϕ0|, we hence know that hϕ0 − λ is a positive operator when restricted
to the closed subspace ranQ ⊆ L2(R3, dx). This allows the definition of the restricted
resolvent

R = Q(hϕ0 − λ)−1Q (11)

as a bounded operator in L2(R3, dx). The fact that R is independent of α and thus
bounded uniformly as α → ∞ is a crucial ingredient in the analysis of the strong
coupling limit of �α(t). In a nutshell, it ensures a separation of scales as α → ∞ of
the different parts of the Fröhlich Hamiltonian HF

α when the latter is applied to states
of the form ϕ ⊗ W (α f0)∗η for suitable ϕ ∈ ranQ and η ∈ F .

That the scale separation of the different parts in HF
α allows an effective description

of the Fröhlich dynamics for times t = o(α2) was first observed in [13]. There, it was
shown that the wave function �α(t) = e−i HF

α tϕ0 ⊗ W (α f0)∗�0 remains close to its
initial state up to a global phase factor, i.e.,

∣
∣
∣
∣�α(t) − e−iEP(ϕ0)tϕ0 ⊗ W (α f0)

∗�0
∣
∣
∣
∣
H ≤ C |t |1/2α−1 (12)

for some C > 0. Since the initial state is normalized to one, the upper bound is mean-
ingful for t � α2. A similar approximation was obtained in [19] for more general
initial states, namely Pekar product states in which the electron is initially trapped
in the classical field produced by a given coherent state of the phonons. Modulo
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a global phase factor, the effective dynamics is then described by the Pekar prod-
uct state ϕLP(t) ⊗ W (α fLP(t))∗�0 with (ϕLP(t), fLP(t)) solving the time-dependent
Landau–Pekar equations, cf. [19, Eqn. (8)]. In fact, the effective dynamics in (12) can
be understood as the special case in which (ϕ0, f0) are the stationary ground state
solutions of the Landau–Pekar equations. The proof of the nonstationary problem,
however, is technically more demanding as it is based on a nonlinear adiabatic theo-
rem for the solution of the Landau–Pekar equations, see [19, Theorem II.1]. Loosely
speaking, the latter shows that the scale separation of the different parts in the Fröh-
lich Hamiltonian remains valid on some suitable time scale also in the nonstationary
case. An adiabatic theorem for the Landau–Pekar equations in one spatial dimension
has been derived in [9,10]. Earlier results about the Fröhlich dynamics in the strong
coupling limit provide approximations for t = o(α) but for much more general initial
Pekar product states ϕ ⊗W (α f )∗�0 with no particular assumption about the relation
between ϕ and f , see [7,8]. To our knowledge, there are no results available to date
that provide an approximation for the Fröhlich dynamics for t = O(α2).2

Remark 1 The particular choice of our initial state �α = ϕ0 ⊗ ξα is motivated by
Pekar’s approximation of the ground state energy of the Fröhlich Hamiltonian [24].
Taking the expectation value of HF

α for general Pekar states ϕ⊗W (α f )∗�0 and mini-
mizing over the phononmode f ∈ L2(R, dk) leads to the Pekar functional EP(ϕ). That
Pekar’s approximations is accurate in the strong coupling limit was rigorously proved
in [3] and later, using a different approach which provided in addition a quantitative
error estimate, in [21]. They showed

inf σ(HF
α ) = EP(ϕ0) + o(1) (13)

as α → ∞. The physical picture behind this result is that the electron creates a
classical phonon field which in turn leads to an effective trapping of the electron. This
self-trapping mechanism is described by the ground state of (8). Let us also mention
that the rigorous derivation of the next order contribution in (13) is still an open
problem that was recently solved in [11] for a model in which the Fröhlich polaron is
assumed to be confined to a suitably bounded region � ⊂ R

3.

Remark 2 We note that (4), and equally (1), is somewhat formal since Gx /∈
L2(R3, dk) and hence φ(Gx ) is not a densely defined operator. However, by a well-
known argument that goes back to Lieb and Yamazaki [22], the right side of (4)
defines a closed semi-bounded quadratic form with domain given by the form domain
of p2 ⊗ 1 + 1 ⊗ N . The Hamiltonian HF

α is then defined as the unique self-adjoint
operator associated with this quadratic form, cf. [26, Thm. VIII.15]. For the purpose
of this work, it is sufficient to use the form representation given in (4). Alternative
approaches to define the Fröhlich Hamiltonian with an explicit characterization of its
domain have been discussed more recently in [14,17].

2 After the submission of this article new results have been reported about the derivation of the Landau–
Pekar equations (and the corresponding quantum fluctuations) for times of order α2 [6,18].
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1.2 Effective dynamics

Our goal is to derive an approximation similar to (12) for times t = O(α2). To
achieve this, we compare �α(t) with an effective time evolution that is generated by
the Hamiltonian

Hϕ0
α = 1 ⊗ 〈

ϕ0,
(
HF

α − (α−1φ(G ·) − V ϕ0)(R ⊗ 1)(α−1φ(G ·) − V ϕ0)
)
ϕ0

〉
L2 (14)

acting on H = L2(R3, dx) ⊗ F . This operator acts nontrivially only on the Fock
space. The expectation value in the second factor of the tensor product is taken with
respect to the inner product in L2(R3, dx). Equivalently we could write the second
factor as a partial trace,

TrL2(R3)

(|ϕ0〉〈ϕ0|
(
HF

α − (α−1φ(G ·) − V ϕ0)(R ⊗ 1)(α−1φ(G ·) − V ϕ0)
)|ϕ0〉〈ϕ0|

)
.

(15)

In the following proposition we clarify the difference compared to the ansatz in (12)
and, more importantly, we obtain the existence of a unitary time evolution generated
by Hϕ0

α .

Proposition 1.1 For any α > 0 we have

W (α f0)H
ϕ0
α W (α f0)

∗ − EP(ϕ0) = 1 ⊗ α−2(N − Aϕ0) (16)

with the operator Aϕ0 : F → F defined by

Aϕ0 = 〈
ϕ0, φ(G ·)(R ⊗ 1)φ(G ·)ϕ0

〉
L2

=
∫

R3

∫

R3

〈
ϕ0,G ·(k)RG ·(l)ϕ0

〉
L2 (a∗

k + a−k)(a
∗
l + a−l) dkdl (17)

Moreover, D(N ) ⊆ D(N − Aϕ0) and N − Aϕ0 is essentially self-adjoint on F . (We
denote its closure again by N − Aϕ0 .)

We prove this proposition in Sect. 2.4. By unitarity of the Weyl operator, it follows
that Hϕ0

α is self-adjoint onH and thus exp(−i Hϕ0
α t) defines a unitary time evolution.

Let us emphasize that the effective Hamiltonian acts nontrivially only on the
phonons. This implies in particular that the time evolved state exp(−i Hϕ0

α t)ϕ0 ⊗ ξα is
still an exact product. Because of the operator Aϕ0 in (16), however, the coherent state
structure of the initial state ξα is not conserved. In this regard, our effective dynamics
is different compared to the known results discussed in the previous section.

Remark 3 As a motivation of our ansatz in (14) let us mention its analogy to the
well-known second-order perturbation formula

Eε = 〈
u0,

(
Hε − εV R0εV

)
u0

〉 + O(ε3) (ε � 1) (18)
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for the nondegenerate ground state energy Eε of a suitable Hamiltonian Hε =
H0 + εV by means of the ground state vector u0 of H0 and the reduced resolvent
R0 = (1 − |u0〉〈u0|)(H0 − 〈u0, H0u0〉)−1(1 − |u0〉〈u0|). Despite this analogy, we
emphasize that the expectation value in (14) is taken only w.r.t. to the electron wave
function ϕ0 ∈ L2(R3, dx) and not w.r.t. to the full Pekar product ϕ0 ⊗ ξα . The rea-
son why the expectation value w.r.t. ϕ0 ⊗ ξα would not lead to a good ansatz for the
effective dynamics is the appearance of the factor α−2 in front of the number operator
N .

1.3 Main results

We are now ready to state our main results.

Theorem 1.2 Let ϕ0 ∈ H1(R3, dx) be the unique minimizer of the Pekar functional
(8) with ||ϕ0||L2 = 1 and let f0 ∈ L2(R3, dk) be defined as in (6). Let further η0 ∈ F
satisfy ||η0||F = 1 and supα>0 ||(N + 1)5/2η0||F < ∞. Then, there are constants
c,C > 0 such that

∣
∣
∣
∣
(
e−i HF

α t − e−i H
ϕ0
α t)ϕ0 ⊗ W (α f0)

∗η0
∣
∣
∣
∣
H ≤ Cα−1 exp(c|t |α−2) (19)

for all t ∈ R and α > 0.

Since the initial state is normalized to one, the approximation is accurate for
t = O(α2) (indeed, it is accurate for t � α2 ln α). As a direct consequence of (19)

together with [e−i H
ϕ0
α t , P ⊗1] = 0, we obtain the following statement that shows that

the reduced density of the electron remains approximately constant.

Corollary 1.3 Under the same assumptions as in Theorem 1.2 there exist constants
c,C > 0 such that

TrL2

∣
∣
∣TrF

∣
∣�α(t)

〉〈
�α(t)

∣
∣ − ∣

∣ϕ0
〉〈
ϕ0

∣
∣
∣
∣
∣ ≤ Cα−1 exp(c|t |α−2) (20)

with �α(t) = e−i HF
α tϕ0 ⊗ W (α f0)∗η0.

Theorem 1.2 shows that on the time scale t = O(α2) it is important to include
the creation and annihilation of noncoherent phonons in the effective time evolution.
In earlier findings which provided approximations for t = o(α) [7,8] and t = o(α2)

[13,19], respectively, it was not necessary to take such noncoherent phonons into
account as the effective dynamics was still described by exact Pekar product states. In
our next corollary, we use the fact that the operator N − Aϕ0 is quadratic in creation
and annihilation operators in order to describe the fluctuations around the coherent
phonons by means of a time-dependent Bogoliubov transformation.

To make the last statement precise we need to introduce some well-known notions
related to the Bogoliubov transformation. The generalized annihilation and creation
operators are defined by A(F) = a( f ) + a∗(g) and A∗(F) = a∗( f ) + a(g),
respectively, for any F = f ⊕ Jg ∈ L2(R3, dk) ⊕ L2(R3, dk) where J denotes
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the complex conjugation map (Jg)(x) = g(x). A bounded invertible map V on
L2(R3, dk) ⊕ L2(R3, dk) is called a Bogoliubov map if it satisfies

A∗(VF) = A(VJ F),
[
A(VF), A∗(VG)

] = 〈
F,SG〉

L2⊕L2 (21)

for all F,G ∈ L2(R3, dk) ⊕ L2(R3, dk) where

J =
(
0 J
J 0

)

, S =
(
1 0
0 −1

)

. (22)

In case that the Bogoliubov map V is a Hilbert–Schmidt operator, i.e., if V∗V is trace
class, it can be implemented as a unitary operator onF . This is the content of the Shale–
Stinespring condition which states that there exists a unitary operator UV : F → F
such that

UV A(F)U∗
V = A(VF) (23)

for any F ∈ L2(R3, dk) ⊕ L2(R3, dk) if and only if TrV∗V < ∞, see, e.g., [27,
Thm. 9.5]. We call the operator UV the Bogoliubov transformation associated with
the Bogoliubov map V . Finally we need the concept of (pure bosonic) quasi-free states
inF . A quasi-free state η ∈ F is defined by the property that there is a Bogoliubovmap
Vη such that η can be written as the transformed vacuum η = UVη

�0 (in particular,�0
is quasi-free). For a detailed introduction toBogoliubov transformations and quasi-free
states, we refer to [27, Sec. 9 and 10].

Our next goal is to show that the dynamics of the noncoherent phonons in
�α(t) = e−i HF

α tϕ0 ⊗ W (α f0)∗η0 can be described by a time-dependent Bogoliubov
transformation UVα(t) associated with the Bogoliubov map

Vα(t) = exp

[

− i t

α2

(
1 − G K
−K −1 + G

)]

Vα(0), Vα(0) =
(
1 0
0 1

)

, (24)

where K, G denote integral operators in L2(R3, dk) defined by the kernels

K(k, l) = (2π |k|)−1(2π |l|)−1{〈ϕ0, e
−ikx Re−ilxϕ0

〉
L2 + 〈

ϕ0, e
−ilx Re−ikxϕ0

〉
L2

}
,

(25)

G(k, l) = (2π |k|)−1(2π |l|)−1{〈ϕ0, e
+ikx Re−ilxϕ0

〉
L2 + 〈

ϕ0, e
−ikx Re+ilxϕ0

〉
L2

}
,

(26)

and where K, G are to be understood as the integral operators with kernels K(k, l) =
K(k, l) = K(−k,−l) and G(k, l) = G(k, l) = G(l, k), respectively.

Corollary 1.4 Under the same assumptions as in Theorem 1.2 with the additional
requirement that η0 ∈ F is quasi-free, there exist constants c,C > 0 such that

TrF
∣
∣
∣TrL2

∣
∣W (α f0)�α(t)

〉〈
W (α f0)�α(t)

∣
∣ − ∣

∣UVα(t)η0
〉〈
UVα(t)η0

∣
∣
∣
∣
∣
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≤ Cα−1 exp(c|t |α−2) (27)

with �α(t) = e−i HF
α tϕ0 ⊗ W (α f0)∗η0 and UVα(t) the Bogoliubov transformation

associated with the time-dependent Bogoliubov map Vα(t) defined in (24).

The remainder of this note is organized as follows. We conclude section one with
a short remark about the notation and a sketch of the proof of Theorem 1.2. In the
second section we begin by stating two preliminary lemmas which are useful for the
proof of Theorem 1.2. The latter is given in Sect. 2.2, whereas the preliminary lemmas
are proved in Sect. 2.3. Finally we prove Proposition 1.1 together with Corollaries 1.3
and 1.4 in Sect. 2.4.

1.4 Notation

From now on, we omit the tensor product with the identity in operators of the form
hϕ0 = hϕ0 ⊗ 1 and N = 1 ⊗ N . Moreover we make use of the abbreviation

δGx = Gx − f0, (28)

with f0 defined as in (6) and by ϕ0 ∈ H1(R3, dx) we always denote the ground state
of the Pekar functional (8) satisfying ||ϕ0||L2 = 1. The letter C is used for positive
constants that are independent of t and α. The exact value of C may vary from line to
line.

1.5 Sketch of the proof

The proof of Theorem 1.2 is motivated mainly by the proof of inequality (12) given
in [13]. To demonstrate our main idea it is instructive to start with a sketch of the
derivation of (12) (in slightly different way compared to [13]). To this end, we use the
shift relation (7) to verify

W (α f0)H
F
α W (α f0)

∗ − EP(ϕ0) = hϕ0 − λ + α−2N + α−1φ(δG ·). (29)

With W (α f0)e−i HF
α tW (α f0)∗ = exp(−iW (α f0)HF

α W (α f0)∗t) and by Duhamel’s
principle, one then obtains

∣
∣
∣
∣
(
e−i HF

α t − e−iEP(ϕ0)t
)
ϕ0 ⊗ W (α f0)

∗�0
∣
∣
∣
∣2
H

= −2α−1 Re
∫ t

0
i
〈
e−i(hϕ0−λ+α−2N+α−1φ(δG·))sϕ0 ⊗ �0, Qφ(δG ·)ϕ0 ⊗ �0

〉
H ds.

(30)

Note that we further used (hϕ0 −λ)ϕ0 = 0 and φ(δGx )ϕ0 ⊗�0 = Qφ(δGx )ϕ0 ⊗�0
which holds because of 〈ϕ0, δG ·ϕ0〉L2 = 0 (recall P = |ϕ0〉〈ϕ0| and Q = 1 − P).
A rough estimate of the right side would now lead to an upper bound proportional
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to |t |α−1. The reason why the right side behaves actually better than this is a phase
inside the integral which oscillates with nonzero (α-independent) frequency.3 To take
advantage of this phase we rewrite the integrand as

〈
ei(h

ϕ0−λ)se−i(hϕ0−λ+α−2N+α−1φ(δG·))sϕ0 ⊗ �0,

(
d

ds
ei(h

ϕ0−λ)s R

)

φ(δG ·)ϕ0 ⊗ �0
〉
H

(31)

and then integrate by parts. This leads to a perturbation like expansion of (30) which
among other contributions (e.g., the boundary terms which are of order α−1) includes
the term

2α−2 Re
∫ t

0
i
〈
e−i(hϕ0−λ+α−2N+α−1φ(δG·))sϕ0 ⊗ �0, φ(δG ·)Rφ(δG ·)ϕ0 ⊗ �0

〉
H ds.

(32)

Apart from some technical difficulties being related to Gx /∈ L2(R3, dk), one then
applies the estimate (here we use that R is uniformly bounded)

∣
∣
〈
e−i(hϕ0−λ+α−2N+α−1φ(δG·))sϕ0 ⊗ �0, φ(δG ·)Rφ(δG ·)ϕ0 ⊗ �0

〉
H |

≤ C
∣
∣
∣
∣(N + 1)�0

∣
∣
∣
∣F (33)

in order to arrive at | (32) | ≤ Cα−2|t |. This bound is indeed the reason why (12) is
limited to t = o(α2). Our idea to improve upon this is to use the oscillating phase in
(32) a second time. Inserting the identity 1 = P + Q on the left of φ(δGx ) we obtain
two contributions,

(32.a)

= 2α−2
∫ t

0
Re i

〈
e−i(hϕ0−λ)+α−2N+α−1φ(δG·))sϕ0 ⊗ �0, Qφ(δG ·)Rφ(δG ·)ϕ0 ⊗ �0

〉
H

ds,

(32.b)

= 2α−2
∫ t

0
Re i

〈
e−i(hϕ0−λ)+α−2N+α−1φ(δG·))sϕ0 ⊗ �0, Pφ(δG ·)Rφ(δG ·)ϕ0 ⊗ �0

〉
H

ds.

In the first one we can proceed similarly as before and improve the bound through
integration by parts to | (32.a) | ≤ C(α−2 +|t |α−3). In the second line, however, inte-
gration by parts is not applicable since (hϕ0 −λ)P = 0. In other words, there is no fast
oscillating phase in this termand thus (32.b) seems to be really of order |t |α−2. To avoid
this term in the first place we include the operatorW (α f0)∗α−2(N−Aϕ0)W (α f0) into
the effective dynamics, see (16). Starting over again with the new effective dynamics
we now obtain an additional term in the first-order Duhamel expansion which can-
cels exactly the contribution from (32.b), cf. (51) and (57). Because of the nontrivial

3 One should think of the improved t-dependence in
∫ t
0 ie

ibsds = b−1(eibt − 1) compared to
∫ t
0 1ds = t .
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dynamics of the phonons we now have to take into account the number of excita-
tions in the effective time evolution. Using a Gronwall argument, this is shown to be
bounded by a constant times exp(c|t |α−2) which leads to the exponential factor in
(19). This already explains much of our proof and aside from the technical details, it
would lead to an upper bound in (19) that is proportional to α−1/2 exp(|t |α−2). By a
third integration by parts we can improve the accuracy of this upper bound further and
finally arrive at the stated bound in (19).

In principle there is no obstacle for continuing the explained strategy by additional
integration by parts. In the present work, however, we do not pursue this idea further
for the following two reasons. First, the effective Hamiltonian would become more
complicated and involve terms with more than two creation and annihilation operators
(hence the advantage of having a quadratic Hamiltonian would be lost). Second, an
extension of our result to even longer times (e.g., t = O(α3)) would not follow as
an immediate consequence. This is due to the difficulty of controlling the number of
phonon excitations produced in the effective time evolution. In Lemma 2.2 we shall
see that our bound would be insufficient for times t � α2.

Remark 4 The described idea of improving the approximation to longer times by
changing the effective Hamiltonian as in (16) was similarly used also in [15,16]. These
works treat very different models, namely the dynamics of a single tracer particle resp.
two tracer particles interacting with an ideal Fermi gas in the high density limit. The
used approximations and the proofs of their accuracy, however, are analogous to the
one we apply to the Fröhlich Polaron. The scale separation in these models comes
from the large momenta of the gas modes that are close to the Fermi surface. (For the
ideal Fermi gas, high density is equivalent to a large Fermi momentum.)

2 Proofs

2.1 Preliminary lemmas

Before we start with the proof of Theorem 1.2, let us state two lemmas with several
helpful estimates. Their proofs are postponed to Sect. 2.3.

Lemma 2.1 Let P = |ϕ0〉〈ϕ0| and R as defined in (11). There is a constant C > 0
such that for any � = ϕ0 ⊗ η ∈ H with η ∈ D(N 5/2), the following bounds hold.

∣
∣
∣
∣Rφ(δG ·)�

∣
∣
∣
∣
H + ∣

∣
∣
∣
[
N , Rφ(δG ·)

]
�

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)1/2η

∣
∣
∣
∣F , (34)

∣
∣
∣
∣(Rφ(δG ·))2�

∣
∣
∣
∣
H + ∣

∣
∣
∣
[
N , (Rφ(δG ·))2

]
�

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)η

∣
∣
∣
∣F , (35)

∣
∣
∣
∣(Rφ(δG ·))3�

∣
∣
∣
∣
H + ∣

∣
∣
∣Pφ(δG ·)(Rφ(δG ·))2�

∣
∣
∣
∣
H

+ ∣
∣
∣
∣Rφ(δG ·)Pφ(δG ·)Rφ(δG ·)�

∣
∣
∣
∣
H + ∣

∣
∣
∣
[
N , (Rφ(δG ·))3

]
�

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)3/2η

∣
∣
∣
∣F ,

(36)
∣
∣
∣
∣(Rφ(δG ·))2Pφ(δG ·)Rφ(δG ·)�

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)2η

∣
∣
∣
∣F , (37)

∣
∣
∣
∣(Rφ(δG ·))3Pφ(δG ·)Rφ(δG ·)�

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)5/2η

∣
∣
∣
∣F . (38)
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Moreover for � ∈ H1(R3, dx) ⊗ F we have

∣
∣
〈
�,φ(δG ·)(Rφ(δG ·))3�

〉
H

∣
∣ ≤ C

(
1 + ∣

∣
∣
∣p�

∣
∣
∣
∣
H

)∣
∣
∣
∣(N + 1)2η

∣
∣
∣
∣F . (39)

Lemma 2.2 Let η ∈ D(N 5/2) with ||η||F = 1 and supα>0 ||(N + 1)5/2η0||F < ∞.
Then there are constants c,C > 0 such that

5∑

j=0

∣
∣
∣
∣(N + 1) j/2 exp(−iα−2(N − Aϕ0)t)η

∣
∣
∣
∣2F ≤ C exp(c|t |α−2), (40)

∣
∣
∣
∣p e−i HF

α tϕ0 ⊗ W (α f0)
∗η

∣
∣
∣
∣
H ≤ C (41)

for all t ∈ R and α > 0.

2.2 Proof of Theorem 1.2

We recall the relations

W (α f0)H
F
α W (α f0)

∗ − EP(ϕ0) = hϕ0 − λ + α−2N + α−1φ(δGx ), (42)

W (α f0)H
ϕ0
α W (α f0)

∗ − EP(ϕ0) = α−2(N − Aϕ0), (43)

which are verified by the commutation relations

W (α f0)α
−2NW (α f0)

∗ = α−2N − α−1φ( f0) + || f0||2L2 , (44)

W (α f0)α
−1φ(Gx )W (α f0)

∗ = α−1φ(Gx ) + V ϕ0 , (45)

which in turn are easily obtained via (7). Using the unitarity of the Weyl operator we
thus shall estimate

∣
∣
∣
∣
(
e−i HF

α t − e−i H
ϕ0
α t)ϕ0 ⊗ W (α f0)

∗η0
∣
∣
∣
∣
H

= ∣
∣
∣
∣
(
e−i(hϕ0−λ+α−2N+α−1φ(δG·))t − e−iα−2(N−Aϕ0 )t)ϕ0 ⊗ η0

∣
∣
∣
∣
H . (46)

For notational convenience let us abbreviate

ψα(t) = e−i(hϕ0−λ+α−2N+α−1φ(δGx ))tϕ0 ⊗ η0, ξα(t) = ϕ0 ⊗ e−iα−2(N−Aϕ0 )tη0.

(47)

By the fundamental theorem of calculus we have

∣
∣
∣
∣ψα(t) − ξα(t)

∣
∣
∣
∣2
H = 2Re〈ψα(0), ψα(0) − ei(h

ϕ0−λ+α−2N+α−1φ(δG·))tξα(t)〉H
= −2Re

〈
ψα(0),

∫ t

0

d

ds

(
ei(h

ϕ0−λ+α−2N+α−1φ(δG·))sξα(s)
)
ds

〉
H .

(48)
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Hence we get

∣
∣
∣
∣ψα(t) − ξα(t)

∣
∣
∣
∣2
H = 2Re fα(t) + 2Re gα(t) (49)

with

fα(t) = −iα−1
∫ t

0

〈
ψα(s), φ(δG ·)ξα(s)

〉
H ds, (50)

gα(t) = −iα−2
∫ t

0

〈
ψα(s), Pφ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds. (51)

Note that here we have used [N − Aϕ0 , P] = 0, Pξα(s) = ξα(s) and (hϕ0 −λ)P = 0.
With 1 = P + Q and 〈ϕ0, δG ·ϕ0〉L2 = 0 one further obtains

fα(t) = −iα−1
∫ t

0

〈
ψα(s), Qφ(δG ·)ξα(s)

〉
H ds. (52)

In the first part of the proof we do three integrations by part w.r.t. the time variable
s. This leads to a perturbation like expansion of (52) into different contributions. In
particular, after the first partial integration, we obtain one term that equals −gα(t).
Since this term would contribute an error of order |t |α−2, it is crucial that we included
the second-order correction in the effective dynamics. All remaining contributions
will be estimated separately in the second part of the proof and finally lead to the error
in (19).

To prepare the first integration by parts we use the restricted resolvent R = Q(hϕ0 −
λ)−1Q in order to write

fα(t) = −α−1
∫ t

0

〈
ei(h

ϕ0−λ)sψα(s),

(
d

ds
ei(h

ϕ0−λ)s R

)

φ(δG ·)ξα(s)
〉
H ds. (53)

Using

d

ds
ei(h

ϕ0−λ)sψα(s) = −iei(h
ϕ0−λ)s(α−2N + α−1φ(δGx )

)
ψα(s), (54)

d

ds
ξα(s) = −iα−2(N − Aϕ0)ξα(s), (55)

together with Rψα(0) = Rϕ0 ⊗ η0 = 0, one finds by integration by parts

fα(t) = −α−1〈ψα(t), Rφ(δG ·)ξα(t)
〉
H (56a)

+ iα−3
∫ t

0

〈
ψα(s), R

([
N , φ(δG ·)

] + φ(δG ·)Aϕ0
)
ξα(s)

〉
H ds (56b)

+ iα−2
∫ t

0

〈
ψα(s), φ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds. (56c)
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In the last line the prefactor α−2 is not sufficient andwe need to do a second integration
by parts. For that, we insert again the identity 1 = P + Q on the left of φ(δGx ). The
term containing P equals

iα−2
∫ t

0

〈
ψα(s), Pφ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds = −gα(t), (57)

and thus

(56c) + gα(t) = iα−2
∫ t

0

〈
ψα(s), Qφ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds. (58)

In this term we can integrate by parts similarly as in (53) which leads to

(56c) + gα(t) = α−2〈ψα(t), Rφ(δG ·)Rφ(δG ·)ξα(t)
〉
H (59a)

− iα−4
∫ t

0

〈
ψα(s),

[
N , Rφ(δG ·)Rφ(δG ·)

]
ξα(s)

〉
H ds (59b)

− iα−4
∫ t

0

〈
ψα(s), Rφ(δG ·)Rφ(δG ·)Aϕ0ξα(s)

〉
H ds (59c)

− iα−3
∫ t

0

〈
ψα(s), Pφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds (59d)

− iα−3
∫ t

0

〈
ψα(s), Qφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds. (59e)

In the last line we do a third integration by parts, i.e.,

(59e) = −α−3〈ψα(t), Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(t)
〉
H (60a)

+ iα−5
∫ t

0

〈
ψα(s),

[
N , Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)

]
ξα(s)

〉
H ds (60b)

+ iα−5
∫ t

0

〈
ψα(s), Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)Aϕ0ξα(s)

〉
H ds (60c)

+ iα−4
∫ t

0

〈
ψα(s), φ(δG ·)Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds. (60d)

Summing up the above expansion we arrive at

fα(t) + gα(t)

= (56a) + (56b) + (59a) + (59b) + (59c) + (59d) + (60a) + (60b) + (60c) + (60d).

In the remainder of the proof we separately estimate each summand on the right side.
This is readily done using basic inequalities in combination with Lemmas 2.1 and 2.2.
At the end, we conclude by applying Gronwall’s inequality.
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Term (56a). In the first boundary term from the integration by parts we have

(56a) = −iα−1〈ψα(t) − ξα(t), Rφ(δG ·)ξα(t)
〉
H (61)

since Rξα(t) = 0. Using the Cauchy–Schwarz inequality we obtain

|(56a)| ≤ 1

4

∣
∣
∣
∣ψα(t) − ξα(t)

∣
∣
∣
∣2
H + α−2

∣
∣
∣
∣Rφ(δG ·)ξα(t)

∣
∣
∣
∣2
H , (62)

and with (34) and (40),

∣
∣
∣
∣Rφ(δG ·)ξα(t)

∣
∣
∣
∣2
H ≤ C

∣
∣
∣
∣(N + 1)1/2ξα(t)

∣
∣
∣
∣2
H ≤ C exp(c|t |α−2). (63)

Terms (59a) and (60a). For the other two boundary terms we proceed similarly and
find

|(59a)| ≤ 1

4

∣
∣
∣
∣ψα(t) − ξα(t)

∣
∣
∣
∣2
H + α−4

∣
∣
∣
∣Rφ(δG ·)Rφ(δG ·)ξα(t)

∣
∣
∣
∣
H

≤ 1

4

∣
∣
∣
∣ψα(t) − ξα(t)

∣
∣
∣
∣2
H + Cα−4 exp(c|t |α−2) (64)

as well as

|(60a)| ≤ 1

4

∣
∣
∣
∣ψα(t) − ξα(t)

∣
∣
∣
∣2
H + α−6

∣
∣
∣
∣Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(t)

∣
∣
∣
∣
H

≤ 1

4

∣
∣
∣
∣ψα(t) − ξα(t)

∣
∣
∣
∣2
H + Cα−6 exp(c|t |α−2) (65)

where we have used (35) and (36) in combination with (40).

Term (56b). In this term we have

(56b) = iα−3
∫ t

0

〈
ψα(s) − ξα(s), R

([
N , φ(δG ·)

] + φ(δG ·)Aϕ0
)
ξα(s)

〉
H ds. (66)

Using (34), the third line of (36) and (40) we estimate

|(56b)| ≤ α−2
∫ t

0

∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H ds

+ 1

2
α−4

∫ t

0

(∣
∣
∣
∣
[
N , Rφ(δG ·)

]
ξα(s)

∣
∣
∣
∣2
H + ∣

∣
∣
∣Rφ(δG ·)Aϕ0ξα(s)

∣
∣
∣
∣2
H

)
ds

≤ α−2
∫ t

0

∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H ds + Cα−2(exp(c|t |α−2) − 1). (67)

Terms (59b) and (59c). Similarly as in the previous term,

|(59b)| + |(59c)| ≤ α−2
∫ t

0

∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H ds
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+ 1

2
α−6

∫ t

0

(∣
∣
∣
∣
[
N , Rφ(δG ·)Rφ(δG ·)

]
ξα(s)

∣
∣
∣
∣2
H

+ ∣
∣
∣
∣Rφ(δG ·)Rφ(δG ·)Aϕ0ξα(s)

∣
∣
∣
∣2
H

)
ds, (68)

and thus by means of (35), (37) and (40) we obtain

|(59b)| + |(59c)| ≤ α−2
∫ t

0

∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H ds + Cα−4(exp(c|t |α−2) − 1).

(69)

Term (59d). In this line we keep the real part (cf. (49)) and have

Re (59d) = α−3
∫ t

0
Im

〈
ψα(s) − ξα(s), Pφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(s)

〉
H ds

(70)

(the imaginary part of the added expectation value is zero). The absolute value of the
right side is bounded from above by

|Re (59d)| ≤ 1

2
α−2

∫ t

0

(∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H

+ 1

2
α−4

∫ t

0

∣
∣
∣
∣Pφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(s)

∣
∣
∣
∣2
H

)
ds

≤ α−2
∫ t

0

∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H ds + Cα−2(exp(c|t |α−2) − 1), (71)

where one uses (36) and (40) in the second step.

Term (60b). By means of (36) and (40) one obtains

|(60b)| ≤ α−5
∫ t

0

∣
∣
∣
∣
[
N , Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)

]
ξα(s)

∣
∣
∣
∣ ds

≤ Cα−3(exp(c|t |α−2) − 1). (72)

Term (60c). In this term one can use (38) and (40) to find

|(60c)| ≤ α−5
∫ t

0

∣
∣
∣
∣Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)Aϕ0ξα(s)

∣
∣
∣
∣ ds

≤ Cα−3(exp(c|t |α−2) − 1). (73)

Term (60d). For the last term we apply (39) in combination with

||pψα(s)||H = ||p e−i HF
α sϕ0 ⊗ W (α f0)

∗η0||H , (74)
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see (42), as well as (40) and (41). This leads to

|(60d)| ≤ α−4
∫ t

0

∣
∣
〈
ψα(s), φ(δG ·)Rφ(δG ·)Rφ(δG ·)Rφ(δG ·)ξα(s)

〉
H

∣
∣ ds

≤ Cα−4
∫ t

0

(
1 + ∣

∣
∣
∣p e−i HF

α sϕ0 ⊗ W (α f0)
∗η0

∣
∣
∣
∣
H

)∣
∣
∣
∣(N + 1)2ξα(s)

∣
∣
∣
∣
H ds

≤ Cα−2(exp(c|t |α−2) − 1). (75)

Conclusion. In total, we have shown

∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H ≤ Cα−2 exp(c|t |α−2) + Cα−2

∫ t

0

∣
∣
∣
∣ψα(s) − ξα(s)

∣
∣
∣
∣2
H ds,

(76)

from which the claimed bound follows by the integral version of Gronwall’s inequal-
ity. �

2.3 Proofs of Lemmas 2.1 and 2.2

The main tool of the proof of Lemma 2.1 is the commutator method by Lieb and
Yamazaki [22] bywhich one improves the behavior of the interaction at largemomenta
using the regularity of the electron wave function. More precisely one writes

Gx (k) = G̃x (k) − p · Kx (k) + Kx (k) · p (77)

with

G̃x (k) = Gx (k)χ[0,1](|k|), Kx (k) = k

|k|2Gx (k)χ(1,∞)(|k|), (78)

where χ denotes the characteristic function, i.e., χA(r) = 1 for all r ∈ A ⊆ R and
χA(r) = 0 otherwise. The advantage of rewriting Gx this way is that G̃x and Kx are
square-integrable,

sup
x∈R3

(||G̃x (·)||L2 + ||Kx (·)||L2) < ∞. (79)

For the next proof let us recall the common bounds for the annihilation and creation
operators,

||a(g)�||H ≤ ||g||L2 ||N 1/2�||H , ||a∗(g)�||H ≤ ||g||L2 ||(N + 1)1/2�||H
(80)

for any g ∈ L2(R3, dk).
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Proof of Lemma 2.1 For the proof of (34), we set a# ∈ {a, a∗} and use (77), (79),
|| f0||L2 < ∞ and (80) to estimate

∣
∣
∣
∣Ra#(δG ·)P�

∣
∣
∣
∣
H ≤ ∣

∣
∣
∣Ra#(G̃ · − f0)P�

∣
∣
∣
∣
H

+ ∣
∣
∣
∣Rp · a#(K·)P�

∣
∣
∣
∣
H + ∣

∣
∣
∣Ra#(K·) · pP�

∣
∣
∣
∣
H

≤ C
(||R|| + ||Rp|| + ||R|| ||pP||)∣∣∣∣(N + 1)1/2η

∣
∣
∣
∣F

≤ C
∣
∣
∣
∣(N + 1)1/2η

∣
∣
∣
∣F , (81)

where || · || = || · ||L denotes the norm on the space of bounded operators
L (L2(R3, dx)). That ||R||+||pP||L2 < ∞ is clear. To show ||Rp|| < ∞we compute

∣
∣
∣
∣pRψ

∣
∣
∣
∣2
L2 = 〈

ψ, R(hϕ0 − λ)Rψ
〉
L2 + 〈

ψ, R(λ − V ϕ0)Rψ
〉
L2

≤ 〈
ψ, Rψ

〉
L2 + 1

2

〈
ψ, Rp2Rψ

〉
L2 + C

∣
∣
∣
∣Rψ

∣
∣
∣
∣2
L2 (82)

where we used ±V ϕ0 ≤ 1
2 p

2 + C as shown, e.g., in [19, Lemma III.2].4 Since the
bound (81) holds equally if R is replaced by P and since

[
N , φ(δGx )

] = a∗(δGx ) − a(δGx ), (83)

this proves (34).
In order to prove (35) we derive the bound for

∣
∣
∣
∣Ra#1(δG ·)Ra#2(δG ·)�

∣
∣
∣
∣ with

a#i ∈ {a, a∗}. Proceeding similarly as in (81), we find

∣
∣
∣
∣Ra#1(δG ·)Ra#2(δG ·)�

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)1/2R1/2a#2(δG ·)�

∣
∣
∣
∣
H . (84)

From here we use

(N + 1)1/2R1/2a(δGx )� = R1/2a(δGx )N
1/2�, (85)

(N + 1)1/2R1/2a∗(δGx )� = R1/2a∗(δGx )(N + 2)1/2�, (86)

together with

∣
∣
∣
∣R1/2a#2(δG ·)�

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)1/2η

∣
∣
∣
∣F . (87)

The latter is obtained in complete analogy to (81). The bounds for the other terms on
the l.h.s. of (35) are derived the same way. Since the derivation of (36) and (37) is
also very similar, we omit further details.

To prove (38) we proceed again as in (81) and find

∣
∣
〈
�, a#1(δG ·)Ra#2(δG ·)Ra#3(δG ·)Ra#4(δG ·)�

〉
H

∣
∣

≤ ∣
∣
∣
∣�

∣
∣
∣
∣
H

∣
∣
∣
∣
(
a#1(G̃ · − f0) − a#1(K·) · p)Ra#2(δG ·)Ra#3(δG ·)Ra#4(δG ·)�

∣
∣
∣
∣
H

4 Note that our potential V ϕ0 coincides (up to a factor) with Vϕ for ϕ = f0 ∈ L2(R3, dk) in [19].
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+
∣
∣
∣
〈
�, p · a#1(K·)Ra#2(δG ·)Ra#3(δG ·)Ra#4(δG ·)�

〉
H

∣
∣
∣

≤ C
(
1 + ||p�||H

)∣
∣
∣
∣(N + 1)1/2R1/2a#2(δG ·)Ra#3(δG ·)R1/2a#4(δG ·)�

∣
∣
∣
∣
H .

(88)

By estimating the last factor similarly as the right hand side of (84) we obtain (38). ��
Proof of Lemma 2.2 We start by verifying the following bound,

∣
∣
〈
η, (N + 1) j−1[N , Aϕ0 ](N + 1)m− jη

〉
F

∣
∣ ≤ C

∣
∣
∣
∣(N + 1)m/2η

∣
∣
∣
∣2F (89)

for 1 ≤ j ≤ m. To do so, use (83) to write

[N , Aϕ0 ] = 〈
ϕ0, (a

∗(G ·) − a(G ·))R(a∗(G ·) + a(G ·))ϕ0
〉 + h.c., (90)

and then estimate each term separately.We illustrate the argument for the term Aϕ0++ =
〈ϕ0, a∗(G ·)Ra∗(G ·)ϕ0〉L2 for which we have

〈
η, (N + 1) j−1Aϕ0++(N + 1)m− jη

〉
F

=
{〈

η, (N + 1) j−1(N − 1)
m
2 +1− j Aϕ0++(N + 1)

m
2 −1η

〉
F

(m
2 + 1 ≥ j

)
,

〈
η, (N + 1)

j+i
2 −1Aϕ0++(N + 3)

j−i
2 (N + 1)m− jη

〉
F , with i = m + 2 − j

(
j ≥ m

2 + 1
)
.

Taking the absolute value and using the Cauchy–Schwarz inequality we can bound
the first line from above by

∣
∣
∣
∣(N + 1) j−1(N − 1)

m
2 +1− jη

∣
∣
∣
∣F

∣
∣
∣
∣Aϕ0++(N + 1)

m
2 −1η

∣
∣
∣
∣F ≤ C

∣
∣
∣
∣(N + 1)

m
2 η

∣
∣
∣
∣2F ,

(91)

where we used ||Aϕ0++η||F ≤ C ||(N + 1)η||F , η ∈ F , which is proved the same way
as the bound for the left side of (84). Similarly we find the following upper bound for
the second line,

∣
∣
∣
∣(N + 1)

j+i
2 −1η

∣
∣
∣
∣F

∣
∣
∣
∣Aϕ0++(N + 3)

j−i
2 (N + 1)m− jη

∣
∣
∣
∣F ≤ C

∣
∣
∣
∣(N + 1)

m
2 η

∣
∣
∣
∣2F . (92)

Repeating the same argument for the other terms in (90) leads to the stated bound in
(89).

Next let ηα(t) = exp(−iα−2(N − Aϕ0)t)η and compute the time derivative

d

dt

〈
ηα(t), Nmηα(t)

〉
F = −α−2

m∑

j=1

〈
ηα(t), N j−1i[N , Aϕ0 ]Nm− jηα(t)

〉
F (93)

which form ∈ {1, 2, 3, 4, 5} is easily checked explicitly. Setting z(t) = ∑5
j=1

∣
∣
∣
∣(N +

1) j/2ηα(t)
∣
∣
∣
∣2F , we have by (89) and (93), | ddt z(t)| ≤ Cα−2z(t). Since supα>0 z(0) <

∞ by assumption, it follows from Gronwall’s inequality that z(t) ≤ C exp(c|t |α−2).
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For a proof of (41), let ψα(t) = e−i HF
α tϕ0 ⊗ W (α f0)∗η and estimate

∣
∣
∣
∣pψα(t)

∣
∣
∣
∣2
H ≤ C

〈
ψα(t), (HF

α + 1)ψα(t)
〉
H = C

〈
ψα(0), (HF

α + 1)ψα(0)
〉
H

= C
(
1 + EP(ϕ0) + α−2〈η, Nη

〉
F

)
(94)

for some constant C > 0. Here we used N ≥ 0 and p2 + α−2N ≤ C(HF
α + 1) in

the first step (see, e.g., [13, Lemma A.5]) and the commutation relation (42) together
with 〈ϕ0, δGxϕ0〉L2 = 0 in the third step. ��

2.4 Proofs of Proposition 1.1 and Corollaries 1.3 and 1.4

Proof of proposition 1.1 The identity in (16) follows from EP(ϕ0) = λ + || f0||2L2

together with the commutation relations (44) and (45). That D(N ) ⊆ D(N − Aϕ0)

follows from

∣
∣
∣
∣Aϕ0η

∣
∣
∣
∣F = ∣

∣
∣
∣Pφ(G ·)Rφ(G ·)ϕ0 ⊗ η

∣
∣
∣
∣
H ≤ C

∣
∣
∣
∣(N + 1)η

∣
∣
∣
∣F (95)

which is proven the sameway as the bound for the l.h.s. of (84). Using (83) one further
finds

∣
∣
〈
η,

[
Aϕ0 , N

]
η
〉
F

∣
∣ ≤ C

〈
η, Nη

〉
F (96)

for all η ∈ F0 withF0 ⊆ F denoting the dense subspace of all Fock space vectors that
have only finitelymany nonzero components. SinceF0 is a core of the number operator
N , we can infer that N − Aϕ0 is essentially self-adjoint by a variant of Nelson’s com-
mutator theorem [5, Corollary 1.1]. Alternatively one could conclude self-adjointness
of N − Aϕ0 from the criteria for self-adjointness of Fock space operators found in [4].

��
In the following two proofs we make use of the bound

TrH1

∣
∣TrH2 |�〉〈�|∣∣ ≤ ||�||H1⊗H2 ||�||H1⊗H2 (97)

whereH1,H2 are two separable Hilbert spaces and�,� ∈ H1⊗H2. The inequality
follows from the variational characterization of the trace. For a proof see [8, Appendix
D].

Proof of Corollary 1.3 We recall �α(t) = e−i HF
α tϕ0 ⊗ W (α f0)∗η0 and write

∣
∣�α(t)

〉〈
�α(t)

∣
∣ = ∣

∣e−i H
ϕ0
α t�α(0)

〉〈
e−i H

ϕ0
α t�α(0)

∣
∣

+ ∣
∣�α(t)

〉〈
(e−i HF

α t − e−i H
ϕ0
α t )�α(0)

∣
∣

+ ∣
∣(e−i HF

α t − e−i H
ϕ0
α t )�α(0)

〉〈
e−i H

ϕ0
α t�α(0)

∣
∣. (98)
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Since e−i H
ϕ0
α t acts nontrivially only on the Fock space,

TrF
∣
∣
∣e−i H

ϕ0
α t�α(0)

〉〈
e−i H

ϕ0
α t�α(0)

∣
∣
∣ = |ϕ0〉〈ϕ0|. (99)

Applying (97) to the two last terms in (98) thus leads to

TrL2

∣
∣
∣TrF

∣
∣�α(t)

〉〈
�α(t)

∣
∣ − ∣

∣ϕ0
〉〈
ϕ0

∣
∣
∣
∣
∣ ≤ 2

∣
∣
∣
∣
(
e−i HF

α t − e−i H
ϕ0
α t)�α(0)

∣
∣
∣
∣
H . (100)

Together with Theorem 1.2 this proves the corollary. ��
Proof of Corollary 1.4 For E ∈ R we write

∣
∣W (α f0)�α(t)

〉〈
W (α f0)�α(t)

∣
∣

= ∣
∣ϕ0 ⊗ e−iα−2(N−Aϕ0 )tη0

〉〈
ϕ0 ⊗ e−iα−2(N−Aϕ0 )tη0

∣
∣

+ ∣
∣W (α f0)�α(t)

〉〈
W (α f0)�α(t) − ϕ0 ⊗ e−iα−2(N−Aϕ0+E)tη0

∣
∣

+ ∣
∣W (α f0)�α(t) − ϕ0 ⊗ e−iα−2(N−Aϕ0+E)tη0

〉〈
ϕ0 ⊗ e−iα−2(N−Aϕ0+E)tη0

∣
∣.

(101)

From here we proceed similarly as in the proof of Corollary 1.3. Taking the partial
trace in the first line gives

TrL2

∣
∣
∣ϕ0 ⊗ e−iα−2(N−Aϕ0 )tη0

〉〈
ϕ0 ⊗ e−iα−2(N−Aϕ0 )tη0

∣
∣
∣

= ∣
∣e−iα−2(N−Aϕ0 )tη0

〉〈
e−iα−2(N−Aϕ0 )tη0

∣
∣. (102)

Using (97) for the second and third line then leads to

TrF
∣
∣
∣TrL2

∣
∣W (α f0)�α(t)

〉〈
W (α f0)�α(t)

∣
∣

− ∣
∣e−iα−2(N−Aϕ0 )tη0

〉〈
e−iα−2(N−Aϕ0+)tη0

∣
∣
∣
∣
∣

≤ 2
∣
∣
∣
∣W (α f0)�α(t) − ϕ0 ⊗ e−iα−2(N−Aϕ0+E)tη0

∣
∣
∣
∣
H . (103)

Setting E = EP(ϕ0) we can employ (16) and use the unitarity of W (α f0) to see
that the last line equals

2
∣
∣
∣
∣W (α f0)(�α(t) − e−i H

ϕ0
α t�α(0))

∣
∣
∣
∣
H = 2

∣
∣
∣
∣
(
e−i HF

α t − e−i H
ϕ0
α t)�α(0)

∣
∣
∣
∣
H .

(104)

The corollary now follows from Theorem 1.2 together with the identity

∣
∣e−iα−2(N−Aϕ0 )tη0

〉〈
e−iα−2(N−Aϕ0 )tη0

∣
∣ = ∣

∣UVα(t)η0
〉〈
UVα(t)η0

∣
∣, (105)
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which we shall prove below.

Proof of (105). For ε = ∫
R3(2π |k|)−2||R1/2e−ikxϕ0||2L2dk it holds that

exp
( − iα−2(N − Aϕ0 + ε)t

)
η0 = UVα(t)η0. (106)

To show this we follow closely the argument from [2, Lem. 2.8 and App. B] where
a similar identity was proven in the context of the dynamics of weakly interacting
bosons. The argument is based onwell-known facts about Bogoliubov transformations
and quasi-free states and a general result about the dynamics generated by quadratic
Hamiltonians [23, Prop. 7].

At this point it is useful to introduce the pointwise annihilation and creation oper-
ators ak, a∗

k defined by the requirement that

a(g) =
∫

R3
g(k) ak dk, a∗(g) =

∫

R3
g(k) a∗

k dk (107)

for any g ∈ L2(R3, dk). The commutation relations (3) now read

[ak, a∗
l ] = δ(k − l), [ak, al ] = [a∗

k , a
∗
l ] = 0 ∀ k, l ∈ R

3. (108)

Using (17), (107) and (108) a short computation leads to

N − Aϕ0 + ε = d�(1 − G) − 1

2

∫

R3

∫

R3

(K(k, l) a∗
k a

∗
l + K(k, l) akal

)
dkdl (109)

where d�(1−G) denotes the second quantization of the one-body operator 1−G, i.e.,

d�(1 − G) =
∫

R3

∫

R3

(
δ(k − l) − G(k, l)

)
a∗
k al dkdl, (110)

see (25) and (26) for a definition of K(k, l) and G(k, l), respectively. To the opera-
tor on the right side of (109) we can apply [23, Prop. 7]. The requirements of this
proposition are satisfied since 1 − G : L2(R3, dk) → L2(R3, dk) is bounded and
K : L2(R3, dk) → L2(R3, dk) is a Hilbert–Schmidt operator which can be verified by
means of (77). By part (iii) of [23, Prop. 7] it follows in particular that for any quasi-
free state η0 ∈ F , the time-evolved state ηα(t) = exp(−iα−2(N − Aϕ0 + ε)t)η0
is again quasi-free (the bound 〈ηα(t), Nηα(t)〉 ≤ C exp(c|t |α−2) can be checked
directly by means of Gronwall’s inequality). It is further not difficult to verify that
the state UVα(t)η0 is also quasi-free (η0 = UW�0 for some Bogoliubov map W
and thus UVα(t)η0 = UVα(t)◦W�0 with Bogoliubov map Vα(t) ◦ W). To show
equality between the quasi-free states ηα(t) and UVα(t)η0 we compare their reduced
one-body densitymatrices. This is sufficient because of thewell-known fact that quasi-
free states are uniquely determined by their reduced one-body density matrices. For
ξ ∈ F the reduced one-body density matrices γξ : L2(R3, dk) → L2(R3, dk) and
αξ : L2(R3, dk) → L2(R3, dk) are defined by
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〈
f , γξ g

〉
L2 = 〈

ξ, a∗(g)a( f )ξ
〉
F ,

〈
f , αξ g

〉
L2 = 〈

ξ, a(g)a( f )ξ
〉
F (111)

for all f , g ∈ L2(R3, dk). In order to show γηα(t) = γUVα(t)η0 and αηα(t) = αUVα(t)η0

we argue that they solve the same pair of differential equations with the same initial
condition γη0 and αη0 , respectively, and then use that the solution to this pair of
differential equations is unique (the latter was shown in [23, Prop. 7]).

Instead of computing the time derivative of γηα(t) and αηα(t), and similarly
for UVα(t)η0, it is more convenient to determine the time derivative of

〈
ηα(t),

A(F1)A(F2)ηα(t)
〉
F with A(F) the generalized annihilation operator as defined above

(21). For F1, F2 ∈ L2(R3, dk) ⊕ L2(R3, dk) we have

i
d

dt

〈
ηα(t), A(F1)A(F2)ξα(t)

〉
F = α−2〈ηα(t),

[
N − Aϕ0 , A(F1)A(F2)

]
ξα(t)

〉
F
(112)

and it follows by a straightforward computation that

[
N − Aϕ0 , A(F1)A(F2)

] = A(AF1)A(F2) + A(F1)A(AF2) (113)

with

A =
(
1 − G K
−K −1 + G

)

. (114)

Next we use U∗
V A(F)UV = A(V−1F), cf. (23), to obtain

〈
UVα(t)η0, A(F1)A(F2)UVα(t)η0

〉
F = 〈

η0, A(V−1
α (t)F1)A(V−1

α (t)F2)η0
〉
F . (115)

By means of (i∂tV−1
α (t))Vα(t) = −V−1

α (t)(i∂tVα(t)) together with i∂tVα(t) =
α−2AVα(t), we can compute the time derivative

i
d

dt

〈
η0, A(V−1

α (t)F1)A(V−1
α (t)F2)η0

〉
F

= 〈
η0,

(
A(−i∂tV−1

α (t)F1)A(V−1
α (t)F2) + A(V−1

α (t)F1)A(−i∂tV−1
α (t)F2)

)
η0

〉
F

= α−2〈η0,
(
A(V−1

α (t)AF1)A(V−1
α (t)F2) + A(V−1

α (t)F1)A(V−1
α (t)AF2)

)
η0

〉
F

= α−2〈UVα(t)η0,
(
A(AF1)A(F2) + A(F1)A(AF2)

)
UVα(t)η0

〉
F . (116)

Comparing (112) and (113) with (115) and (116) we see that the pairs of reduced
one-body density matrices (γηα(t), αηα(t)) and (γUVα(t)η0 , αUVα(t)η0) solve the same
differential equation. Since the solution to this equation is unique, see [23, Prop.
7], and since ηα(0) = UVα(0)η0 = η0, we conclude their equality. This implies
ηα(t) = UVα(t)η0 and hence proves the claimed identity. ��
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