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Original Article

Plasminogen deficiency causes reduced
angiogenesis and behavioral recovery
after stroke in mice

Jinghuan Fang1,2, Michael Chopp1,3, Hongqi Xin1 , Li Zhang1,
Fengjie Wang1, William Golembieski1, Zheng Gang Zhang1,
Li He2 and Zhongwu Liu1

Abstract

Plasminogen is involved in the process of angiogenesis; however, the underlying mechanism is unclear. Here, we inves-

tigated the potential contribution of plasmin/plasminogen in mediating angiogenesis and thereby contributing to func-

tional recovery post-stroke. Wild-type plasminogen naive (Plgþ/þ) mice and plasminogen knockout (Plg�/�) mice were

subjected to unilateral permanent middle cerebral artery occlusion (MCAo). Blood vessels were labeled with FITC-

dextran. Functional outcomes, and cerebral vessel density were compared between Plgþ/þ and Plg�/� mice at different

time points after stroke. We found that Plg�/� mice exhibited significantly reduced functional recovery, associated with

significantly decreased vessel density in the peri-infarct area in the ipsilesional cortex compared with Plgþ/þ mice. In

vitro, cerebral endothelial cells harvested from Plg�/� mice exhibited significantly reduced angiogenesis assessed using

tube formation assay, and migration, as evaluated using Scratch assays, compared to endothelial cells harvested from

Plgþ/þ mice. In addition, using Western blots, expression of thrombospondin (TSP)-1 and TSP-2 were increased after

MCAo in the Plg�/� group compared to Plgþ/þ mice, especially in the ipsilesional side of brain. Taken together, our data

suggest that plasmin/plasminogen down-regulates the expression level of TSP-1 and TSP-2, and thereby promotes

angiogenesis in the peri-ischemic brain tissue, which contributes to functional recovery after ischemic stroke.
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Introduction

As a serine protease, tPA catalyzes the conversion of

the zymogen plasminogen into the active plasmin to

lyse the fibrin component of a blood clot in the

intravascular space.1 Our previous studies have demon-

strated that tPA/plasmin system also acts as a neuro-

restorative agent for stroke.2–4

Angiogenesis plays a key role in the repair of brain

tissue after stroke.5,6 The process of angiogenesis is

controlled by the balance between various

angiogenesis-promoting factors and angiogenesis-

inhibiting factors,7,8 which led to the concept of

“angiogenesis switch”, that is, the activation of cerebral

endothelial cells depends on the regulation of angiogen-

ic factors and/or the reduction of angiogenesis inhibi-

tors.9 Studies indicate that the tPA/plasmin system is

indispensable in mediating angiogenesis in neurological
diseases and cancer.10–16 However, the specific mecha-
nism of tPA/plasmin system regulation and its contri-
bution of angiogenesis to neurological recovery after
stroke remain unclear.
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Thrombospondin (TSP)-1 and TSP-2 have similar
structure and function and are important inhibitors
of angiogenesis.17–23 Moreover, TSP-1 and TSP-2
have been postulated to impact post-ischemic angio-
genesis and functional recovery after stroke.23,24 Since
plasmin causes proteolytic cleavage of TSP-1,25 we
hypothesized that the tPA/plasmin system may be
involved in angiogenesis by regulating TSPs. As
plasminogen (Plg) is the precursor of the active
enzyme plasmin, in this study, plasminogen knockout
(Plg�/�) mice and their Plg-naive littermates (Plgþ/þ),
were used to investigate the expression of TSP-1 and
TSP-2 to elucidate the role of plasminogen in angio-
genesis after stroke. Here we report that lack of plas-
minogen causes upregulation of TSP-1 and TSP-2 after
ischemic stroke, thereby inhibiting angiogenesis in
the peri-ischemic brain tissue which leads to poor
functional recovery.

Materials and methods

All experiments were conducted in accordance with a
protocol approved by the Institutional Animal Care
and Use Committee of Henry Ford Hospital (IACUC
No. 1494), and complied with guidelines set forth in the
National Institute of Health’s Guide for the Care and
Use of Laboratory Animals, as well as the Animal
Research Reporting In Vivo Experiments (ARRIVE)
guidelines.26 All surgery was performed under isoflur-
ane anesthesia, and all efforts were made to minimize
suffering. Animal groups were blinded to investigators
who participated in behavioral tests and endpoint data
collections.

Animal stroke model

Plg heterozygous (Plgþ/–) mice (F1 generation) was
purchased from Jackson Laboratory (Bar Harbor,
ME). The Plgþ/– mice were intercrossed and their F2
offspring genotyped by Southern blot analysis of tail-
tip DNA. Male Plg�/� mice and their corresponding
Plgþ/þ littermates at 8-10 weeks of age were subjected
to permanent right intraluminal monofilament middle
cerebral artery occlusion (MCAo), which was induced
by advancing a 6-0 surgical nylon suture (8.0 to 9.0 mm
determined by body weight) with an expanded (heated)
tip from the right external carotid artery into the lumen
of the internal carotid artery to block the origin of the
MCA.27 We excluded Plg�/� mice exhibiting rectal pro-
lapse before or during the experiments. Within the first
week after surgery, 9 mice died out of the 75 subjected
to MCAo (3 in Plgþ/þ group and 6 in Plg�/� group).
The remaining mice were divided into different groups
according to their sacrifice date, i.e., 10 mice each in the
7 and 28 day group, 13 mice each in the 14 day group.

Additionally, 5 naive Plgþ/þ or Plg�/� mice each were
used as normal control for FITC labeling; 3 naive Plgþ/

þ or Plg�/� mice each were used for Western blot and 2
naive Plgþ/þ or Plg�/� mice each were used for tube
formation (a total of 95 mice).

Neurologic functional tests

We used Foot-fault test2 and Adhesive removal test27

to monitor neurological functional deficits and recov-
ery after stroke. An investigator who was blinded to the
experimental group performed these tests at 1 day prior
to MCAo (baseline) and at day 1, 7, 14, 28 after
MCAo. The Foot-fault test measures the accuracy of
forepaw placement on a non-equidistant grid as the
percentage of fault of the left forepaw to total steps.2

The Adhesive removal test is employed to detect the
sensorimotor deficits after MCAo; a small quarter-
circle adhesive-backed paper dot was placed onto the
impaired forepaw, and the time to remove the dot was
recorded.27

Measurement of FITC-perfused vessel density in
the peri-infarct cortex

In Plgþ/þ and Plg�/� mice without MCAo (n¼ 5/
group) or at day 7, 14 and 28 after MCAo (n¼ 10/
group), fluorescein isothiocyanate–dextran (FITC-dex-
tran; MW 2000 kDa; 25mg/ml, 0.1 ml/mouse; Sigma-
Aldrich, St. Louis, MO) was injected into a tail vain,
and the mice were sacrificed 10 minutes later. The brain
was removed and embedded in 4% paraformaldehyde
overnight and processed for vibratome traverse section
(100 mm). Since the vessels are unequally distributed in
the brain, especially in the striatum due to the struc-
tures of axonal bundles and nuclei, we focused on the
peri-infarct cortical area (200-300 mm away from the
infarct border) wherein vessel density was reduced after
stroke. The sections were digitized with an Olympus
laser-scanning confocal imaging system (FV1200;
Tokyo, Japan). Since there was no detectable change
in vessel density in the contralesional cortex (Data not
shown), and between non-stroke Plgþ/þ and Plg�/�

mice (Figure 2), the vascular lengths in the peri-
infarct cortical area in the ipsilesional cortex were mea-
sured with skeletonized FITC-perfused vessels on 16
single layer confocal images per mouse using ImageJ
software,28 and the density of microvasculature was
calculated and compared between animal groups.

Tube formation assay

The entire brains from both Plgþ/þ mice and Plg�/�

mice were collected. The cortical tissue was isolated
and digested in collagenase/dispase, and the microves-
sels were separated by centrifugation in a Percoll
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gradient (Sigma-Aldrich). Cerebral microvascular

endothelial cells were seeded in flasks coated with rat-

tail collagen (Sigma-Aldrich) and the medium was

changed every 2–3 days. Capillary tube formation

assay29 was performed. Briefly, 0.1 ml growth factor

reduced Matrigel (BD Bioscience, San Jose, CA) was

added per well to a 96 well plate, and microvascular

endothelial cells (2� 104 cells) were incubated for 5

hours (n¼ 6/group). For quantitative measurements

of capillary tube formation, Matrigel wells were digi-

tized under a 4� objective (Olympus BX40) for mea-

surement of total tube length of capillary tube

formation using ImageJ. The total length of tube for-

mation was quantitated as the average of randomly

selected 3 microscopic fields for each well.

In vitro scratch assay

The primary cerebral microvascular endothelial cells

isolated from Plgþ/þ and Plg�/� mice were seeded

into three 6-well chambers separately until confluent.

In vitro Scratch assay30 was performed by using a ster-

ile 200-ml pipette tip to scratch several straight lines on

the cell monolayer. Immediately after scratching, one

6-well chamber was washed with PBS and fixed with

4% paraformaldehyde for 20 minutes and used as a

baseline control. Cells in the other 6-well chamber

were fixed and incubated for 12h and 24h. The

images were captured using a fluorescence phase con-

trast microscope. The area of the wound healing was

measured using ImageJ, and the percentage of wound

closure was calculated for each time point.

Western blot assay

The right (ischemic) and left brain tissues were collect-

ed separately at 14 days after MCAo (n¼ 3/group).

Proteins were isolated using RIPA lysis buffer

(Sigma-Aldrich) containing protease inhibitor cocktail

I (Calbiochem; Billerica, MA), separated on 10% Bis-

Tris acrylamide gels and transferred onto PVDF mem-

branes. Membranes were incubated with either a pri-

mary monoclonal mouse anti-TSP-1 antibody (1:250,

BD Transduction Laboratories), a mouse anti-TSP-2

antibody (1:250, BD Transduction Laboratories), or a

mouse anti-actin antibody (1:500, BD Transduction

Laboratories), followed by a secondary alkaline phos-

phatase–conjugated anti-rabbit IgG antibody (1:5000,

Promega). Blots were imaged using chemiluminescence

and the Protein Simple Imager (Pierce, Rockford, IL,

USA). The experiment was repeated in triplicate.

b-Actin was used as the internal control. The densities

of bands were analyzed using ImageJ.31

Statistical analysis

Data analysis was performed using the statistical soft-

ware package PRISM (GraphPad, San Diego, CA,
USA). Shapiro-Wilk test was used to assess data distri-

bution for normality. All data are sufficiently normally

distributed and presented as mean� SD. One-way
analysis of variance (ANOVA) was performed to test

functional recovery measured for both behavioral task
(foot-fault test and adhesive removal test) between two

different genotype mice, vascular density at each time

point after MCAo, percentage of wound area, as well
as expression of TSP-1 and TSP-2 measured using

Western blot. Tube length in tube formation assay was
analyzed with the Student’s t-test. To test the relation-

ship between behavioral outcome and cerebrovascular
density, the correlation coefficients between the perfor-

mance scores of the stroke impaired forepaw and the

cerebrovascular density in the peri-infarct cortical area
were calculated by Pearson’s correlation coefficients after

MCAo. P< 0.05 was considered statistically significant.

Results

Motor functional recovery after ischemia stroke

is reduced in Plg deficient mice

To measure the neurological deficit and recovery, we
conducted Foot-fault test and Adhesive removal test

prior to stroke and on days 1, 7, 14, 28 after stroke.
As shown in Figure 1, the behavioral performance was

comparable in both Plgþ/þ and Plg�/� mice prior to
MCAo and on day 1 after MCAo. Of both genotypes,

the functional deficits reached peak at day 1 after

MCAo and then gradually recovered with time.
However, the recovery in Plg�/� mice post-stroke was

significantly worse than in Plgþ/þ mice, assessed in
Foot-fault test (A, p< 0.05 at day 14 and p< 0.01 at

day 28) and Adhesive removal test (B, p< 0.05 at day

7, p< 0.01 at day 14, p< 0.001 at day 28).

Cerebrovascular density is decreased in Plg deficient

mice after stroke

Since the blood supply in the peri-ischemic brain area

is important for neurological recovery after stroke,32

we investigated the density of actively perfused cerebral

vessels in the peri-ischemic cortical area in both Plgþ/þ

and Plg�/� mice. As shown in Figure 2, there was no

difference in the cerebrovascular density between Plgþ/þ

mice and Plg�/� mice without MCAo (P> 0.05,
Normal). The cerebrovascular density in both genotypes

was significantly reduced at day 7 after MCAo and then
gradually increased with time. However, the increase of

cerebrovascular density in Plg�/� mice post-stroke was
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significantly less than that in Plgþ/þ mice (P< 0.05 at

day 7 and 28 P< 0.001 at day 14).

Behavioral recovery after stroke significantly

correlates to cerebrovascular density

Pearson’s correlation test was used to evaluate the cor-

relations between individual behavioral tests and

cerebrovascular density in the peri-infarct cortical area

(Figure 3). The results showed that both Foot-Fault test

and Adhesive Removal test were strongly negatively

correlated with cerebrovascular density in the peri-

infarct cortical area of Plgþ/þ and Plg�/� mice after

MCAo (p< 0.001), indicating that cerebrovascular den-

sity in the peri-infarct cortical area may contribute to

the motor and sensitive recovery after stroke.

Figure 1. Profile of behavioral deficit and recovery after MCAo. Motor performance of the stroke-impaired left forepaw was
assessed with Foot-fault test (a) for motor performance with accuracy of forepaw placement on a non-equidistant grid as the
percentage of foot-faults of the stroke-impaired forepaw to total steps; and Adhesive removal test (b) for sensory and motor deficits
of the stroke-impaired forepaw with a small quarter-circle adhesive-backed paper dot, as the time to remove the dot. Note that
significant behavioral deficits were evident one day post stroke, and were then followed by continuous, gradual, however, incomplete
recovery as assessed using both tests. Plg deficiency significantly reduced functional improvements compared with wild type mice
(n¼ 10/group; *p< 0.05, **p< 0.01, ***p< 0.001, one-way ANOVA).

Figure 2. Single layer confocal images showing FITC-perfused cerebral vessels in the cortex of normal and stroke Plgþ/þ and Plg�/�

mice (a). Cerebrovascular density in the peri-infarct cortical area between the infarct core and normal brain tissue indicated by dotted
lines was measured on 16 single layer confocal images per mouse using ImageJ software (b). Compared to Plgþ/þ mice, Plg deficient
mice exhibited a reduced cerebrovascular density in the peri-infarct cortical area at 7, 14, and 28 days after MCAo (n¼ 10/group;
*p< 0.05, **p< 0.001; one-way ANOVA). Scale bar¼ 100 mm.
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Tube formation is reduced in Plg deficient mice

In order to demonstrate that the post stroke decrease of

vessel density is due to reduced angiogenesis in Plg�/�

mice, we assessed the capillary-like vessel formation

ability of cerebral microvascular endothelial cells har-

vested from both Plgþ/þ and Plg�/� mice. As shown in

Figure 4, the capillary-like tubes formed by primary

capillary endothelial cells of Plgþ/þ mice aggregated

into distinct reticular structures, with obvious migra-

tion track and hollow cavities (a). In contrast, the

capillary-like tubes formed by primary capillary endo-

thelial cells of Plg�/� mice were dispersed. Although

there are migration trajectories and some hollow cavi-

ties, there is no obvious reticular structure formation

(b). The total length of capillary unit area in Plgþ/þ

mice was 9.2þ 1.1mm/mm2, while that in Plg�/�

mice was 5.9þ 1.4 mm/mm2 (c; P< 0.01).

Migration ability is reduced in Plg deficient mice

In order to demonstrate that the decrease of the vessel

formation of Plg�/� mice is due to reduced migration

of endothelial cells in Plg�/� mice, we assessed the

migration of microvascular endothelial cells harvested

from both Plgþ/þ and Plg�/� mice by conducting a cell

Scratch assay. As shown in Figure 5, the average per-

centage of wound area of microvascular endothelial

cells isolated from Plgþ/þ mice were 54.06� 5.56% at

12 h, 89.98� 3.44% at 24 h in culture. In parallel, the

average percentage of wound closure of microvascular

endothelial cells isolated from Plg�/� mice was 28.83�
4.60% at 12h, 44.38� 6.22% at 24h, indicating that Plg

deficiency significantly reduced the migration of vascu-

lar endothelial cells.

Expression of TSP-1 and TSP-2 are upregulated in

Plg deficient mice

To identify molecular regulators of the suppressed

angiogenesis in Plg deficient mice, we examined the

expression of TSP-1 and TSP-2 in the brain in

normal and stroke mice. As shown in Figure 6, in

mice without MCAo, the expression of both TSP-1

and TSP-2 were significantly increased in Plg�/� mice

compared to that in Plgþ/þ mice (p< 0.001). After

MCAo, the expression of TSP-1 and TSP-2 significant-

ly increased in both ipsilesional and contralesional

brain tissues of Plgþ/þ and Plg�/� mice compared to

that in their normal mice, respectively (p< 0.05).

Moreover, compared to Plgþ/þ mice after MCAo, the

expression of TSP-1 and TSP-2 in the Plg�/� group was

significantly increased, especially in the ipsilesional

brain tissue in Plg�/� mice (p< 0.01).

Figure 4. The capillary-like tubes formed by primary capillary endothelial cells of Plgþ/þ mice aggregated into distinct reticular
structure, with obvious migration track and hollow official cavity (a), while endothelial cells from Plg�/� mice displayed a dispersed
reticular structure formation (b). Ratio of tube length to the area of unit was calculated as an index for tube density. Compared to
Plgþ/þ endothelial cells, the ability to form tubes was significantly reduced from that from Plg deficient mice (c, n¼ 6/group; *p< 0.01;
Student’s t-test).

Figure 3. Correlations between cerebrovascular density and
behavioral recovery. Pearson correlation analysis showed signif-
icant correlations between cerebrovascular density in the peri-
infarct cortical area and performance of the Foot Fault test (a)
and the Adhesive Removal test (b) in both Plgþ/þ and Plg�/� mice
at 28 days after MCAo.
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Discussion

In the present study, to directly examine the role of
plasminogen in angiogenesis and neurological recovery
after stroke, we investigated the differences of

behavioral outcome and cerebrovascular density in

young adult Plgþ/þ and genetically matched Plg�/�

mice subjected to MCAo, as well as the angiogenic-

like endothelial cell tube formation potential of micro-

vessels harvested from both Plgþ/þ and Plg�/� mice.

Figure 5. Representative images showing migration of cerebral microvascular endothelial cells isolated from Plgþ/þ and Plg�/� mice
at 0 h, 12 h and 24 h (a). The gap area was measured with ImageJ. Quantitative data show that Plg deficiency significantly reduced
endothelial cell migration than that from Plgþ/þ mice (b, *p< 0.001 vs. WT; n¼ 6). Scale bar¼ 200 mm.

Figure 6. Western blots showing TSP-1 and TSP-2 expression in the brain of Plgþ/þ and Plg�/� mice. Note that on day 14 after
MCAo, the expression of TSP-1/2 significantly increased in both contralesional and infarcted brain tissues of both genotype mice
compared to that in non-stroke mice (*P< 0.05, **P< 0.01, ***p< 0.001), while Plg�/� mice showed substantially higher expression
of TSP-1/2 than Plgþ/þ mice in groups of non-stroke and stroke mice, especially in the ipsilesional brain tissue (n¼ 3/group; #P< 0.05,
##P< 0.01, ###P< 0.001 vs WT; one-way ANOVA).
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Our data indicated that mice lacking plasminogen
showed reduced neurological recovery and decreased
cerebrovascular density in the peri-ischemic cortical
area after stroke, as well as reduced in vitro endothelial
cell tube formation. Moreover, Plg deficiency upregu-
lated the expression of TSP-1 and TSP-2 after ischemic
stroke. This suggests that the lack of plasminogen
reduces migration of endothelial cells and thus reduces
post-stroke angiogenesis.

We have previously shown that the volume of cere-
bral infarction induced by the same model of stroke as
used in the present study, i.e., permanent occlusion of
the MCA,2 does not differ between Plgþ/þ and Plg�/�

mice. In the present study, the required vibratome
processing of brain tissue for confocal microscopy
and Western blots precluded using the present tissue
for analysis of infarct volumes. The volumes of cerebral
infarction for Plgþ/þ mice are 20.4� 3.9% (Range 15.8
to 26.2%) and for and Plg�/� mice are 22.6� 4.1%
(Range 13.4 to 27.3%).2

In normal non-stroke Plgþ/þ and Plg�/� mice, there
were no apparent differences in the cerebrovascular
density between Plgþ/þ mice (741� 0.40 mm/mm2) and
Plg�/� mice (718� 0.17 mm/mm2). We also conducted
several behavioral tests on both genotype sets of mice.
The results showed that there was no significant differ-
ence in functional scores between the two groups prior
to MCAo, which demonstrates that the absence of
plasminogen did not change the development of post-
natal neuromotor ability, motor coordination and
spontaneous activity in mice.33

Angiogenesis occurs within 4 to 7 days in peri-
infarct regions after cerebral ischemia.32,34 In our
study, FITC labeling was performed to identify those
vessels that are actively perfused by the circulation
after ischemic stroke in both genotype mice. We also
observed the functional recovery of mice improved
alongside angiogenesis after ischemic stroke. With the
increase of vessel density, the functional performance
of the stroke-impaired forelimb gradually improved.
Pearson’s correlation test was used to evaluate the cor-
relations between individual behavioral tests and cere-
brovascular density in the peri-infarct cortical area.
Our results showed that the functional performance
of stroke-impaired forelimb was highly positively cor-
related with cerebrovascular density after MCAo
(p< 0.001), supporting the hypothesis that post-
ischemic angiogenesis contributes to the functional
recovery after stroke. Our results are consistent with
numerous studies that showed that post-ischemic
angiogenesis contributes to neuronal remodeling to
improve functional recovery by affecting microves-
sels.34 In addition, angiogenesis also affects neurogen-
esis by supplying oxygen, nutrients, and soluble factors
to support the migration of neural stem/progenitor

cells toward the peri-infarct region.34–36 Since the func-
tional recovery and vessel density in Plg�/� mice were
reduced compared to Plgþ/þ mice, our data suggest
that the lack of plasminogen affects vessel density
after cerebral ischemia, leading to poor functional
prognosis. Interestingly, the foot-fault test data suggest
that at the subacute stage of cerebral infarction (7 days
after MCAo), there was no significant difference in
motor outcome between the two groups, at a time
that cerebrovascular density between these groups
were significantly different. This may, in-part be attrib-
uted to the possibility that in the early stage after
stroke, blood flow was not fully restored, because the
newly born cerebral vessels are not fully functional as is
the mature cerebrovasculature prior to ischemia.37,38

The vessel density in the peri-ischemic area in plas-
minogen deficient mice was less than that in wild type
mice after ischemic stroke. To support the hypothesis
that the decreased vessel density is due to reduced
angiogenesis in Plg�/� mice, we performed tube forma-
tion assay to assess the vessel formation ability of pri-
mary capillary endothelial cells of both Plgþ/þ and
Plg�/� mice. We found that compared to Plgþ/þ

mice, aggregated reticular structure and the density of
capillary-like tubes formed from endothelial cells har-
vested from the Plg�/� mice were significantly
decreased, indicating that the angiogenesis ability of
Plg�/� mice was reduced compared with Plgþ/þ mice.
This finding is consistent with a previous study per-
formed in an in vivo mouse corneal model showing
that capillary germination rates are significantly
reduced in Plg�/� genotype mice,39 indicating that plas-
minogen may play as a key factor in angiogenesis.

In order to demonstrate that the decrease of the
vessel formation ability of Plg�/� mice may in-part be
attributed to reduced migration of microvascular endo-
thelial cells in Plg�/� mice, we performed an in vitro
Scratch assay in cultured primary microvascular endo-
thelial cells harvested from both Plgþ/þ and Plg�/�

mice. The migration of microvascular endothelial cells
of Plg�/� mice was significant reduced than it of Plgþ/þ

mice in the Scratch assay. This result indicates that
plasminogen deficiency decreases endothelial cell
migration, and therefore reduces the process of angio-
genesis. Plasmin specifically binds to the adhesion mol-
ecule avb3 through the kringle domains and induces
migration of endothelial cells.40 In addition, as the
plasminogen/plasmin system contributes to proteolysis,
our results are consistent with a prior study showing
migration of endothelial cells is associated with signif-
icant upregulation of proteolysis.13

TSP-1 and TSP-2 are well-known antiangiogenic
factors and their upregulation after ischemia in rats
has been postulated to regulate angiogenesis.41,42

Therefore, to better understand the mechanism that
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plasminogen plays in angiogenesis, we used Western
blot assay to examine the expression of TSP-1/2 in
both genotypes of mice before and 14 days after
MCAo. In naı̈ve mice without MCAo, expression of
TSP-1 and TSP-2 was increased in Plg�/� mice com-
pared to Plgþ/þ mice, although there were no signifi-
cant differences detected in cerebrovascular density and
sensorimotor performance between Plgþ/þ mice and
Plg�/� mice. However, our observation indicated a fur-
ther increased expression of TSP-1 and TSP-2 in the
ipsilesional side of the brain 14 days after MCAo in
Plg�/� mice in association with reduced behavioral out-
come and reduced vascular density in the peri-ischemic
area. This may, at least in part, be explained by the
proteolytic cleavage of plasmin to TSP.25 Thus, our
results provide a potential therapeutic target to pro-
mote neurological recovery after stroke, via enhancing
plasmin-TSPs regulated angiogenesis in the peri-
ischemic area of the brain.

There are a number of caveats and limitations of the
present studies which include the following considera-
tions. Since there is no significant influence of gender
on angiogenesis response in Plg�/� mice,39 we only
used male mice in the present study. We chose 14
days after MCAo as the time point to measure the
expression of TSP-1 and TSP-2, because prior reports
demonstrated that TSP-1 reached peak at 1 and 72
hours after focal cerebral ischemia, while TSP-2
peaked at 14 days after focal cerebral ischemia.31

Angiogenesis occurs within 4 to 7 days in peri-infarct
regions after cerebral ischemia.32,34 Therefore, meas-
urements of TSP-1 and TSP-2 at 14 days after MCAo
seemed reasonable. Since our observation showed a
higher TSP expression in non-stroke Plg�/� mice than
that in Plgþ/þ mice, but no difference in vessel density
as well behavioral outcomes between the phenotypes,
consideration of potential differing roles of TSPs
during development and recovery after lesion warrant
investigation. In addition, it has been well demonstrat-
ed that pro-angiogenic factors such as vascular endo-
thelial growth factor and erythropoietin play a pivotal
role in the tightly controlled angiogenic process.43,44

Thus, further investigations on dynamic regulation
between such angiogenic factors and inhibitory TSP
signaling are warranted to better understand the recov-
ery process post-stroke. The present study only exam-
ined the effects of Plg deficit on angiogenesis and
neurological recovery after stroke. Further studies on
the effects of Plg on neurogenesis, oligodendrogenesis
and neural plasticity are warranted. In addition, we
cannot exclude the possibility that the reduced func-
tional recovery of the Plg deficient mice may also be
attributed to its effect on other restorative processes.
Due to technical difficulties of specifically measuring
the vessel density in the peri-infarct area with irregular

shape on 3D images where the vessel density is reduced

after stroke, we employed an effective method using

ImageJ software,28 to manually identify the peri-

lesion area on single layer confocal images. We then

measured the length of skeletonized FITC-labeled ves-

sels in this area, and calculated the vessel density within

the area. However, more advanced measurement of the

density at the 3D level requires development and imple-

mentation in future studies.
In summary, we conclude that although the lack of

plasminogen does not alter the postnatal development

of neuromotor ability, motor coordination and spon-

taneous activity, plasminogen deficiency up-regulates

the expression of TSP-1 and TSP-2, thus reduces

post-stroke angiogenesis, which contributes to reduced

functional recovery. Taken together, our data suggest

that the plasminogen/plasmin system contributes to

neurorestorative angiogenesis via down-regulation of

expression level of TSP-1 and TSP-2, which may play

an important role in functional recovery after stroke.
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