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MicroRNA Profile Differentiates Head and Neck
Keloid and Adjacent Normal Skin Tissue
Lamont R. Jones, MD, MBA,1 Albert M. Levin, PhD,2,3 Xiangguo Dai, PhD,1 Indrani Datta, MS,2,3

Jia Li, PhD,2,3 Congcong Yin, MD, PhD,4 and Qing-Sheng Mi, MD, PhD4

Keloid research and treatment are hindered by the lack

of keloid-specific biomarkers. Matched normal skin is

an important control to eliminate confounding. How-

ever, although clinically normal and accessible, there

are concerns about the use of either distant donor

sites because of the risk of keloid development or the

adjacent tissue, as it may harbor keloid tissue. A bio-

marker that distinguishes keloid and adjacent nor-

mal tissue would address these concerns and provide

a molecular standard that would improve comparabil-

ity across keloid research studies. Recently, there has

been a shift toward a deeper characterization of epige-

netic modifications to better understand keloid pathogen-

esis.1 Because of their specificity and ability to modulate

gene expression, microRNAs (miRNAs) are one such

class of epigenetic modifiers that could be utilized as a

functional molecular biomarker of keloids given that

miRNAs are known to influence keloids2. Therefore,

we sought to identify miRNA able to differentiate keloid

and adjacent normal tissue.

Fresh, primary, and untreated head and neck (H&N)

keloid and adjacent matched normal skin were obtained

through an approved IRB protocol. Adjacent normal

skin was determined clinically. Discovery and valida-

tion cohorts were composed of 15 and 7 patients, re-

spectively (Table 1). Total RNA was extracted, using

the Ambion RiboPure� kit. The TaqMan� MiRNA

array (card A & B), which profiles 752 miRNAs, was

used to determine miRNA expression in terms of negative

Delta Cycle Threshold values. Global mean normalization

was used to standardize miRNA measurements across

discovery cohort patients. TaqMan Advanced miRNA

real-time polymerase chain reaction assays were used

to validate differentially expressed miRNAs (DEMs), in

the validation cohort.

Univariate analysis was performed on the discovery

cohort, using linear regression models fit using general-

ized estimating equations to account for the paired na-

ture of the specimens. To account for multiple testing,

significant DEMs were identified at a false discovery

rate (FDR) of 0.05.3 Next, a panel of miRNAs was se-

lected to identify a multi-miRNA profile that best pre-

dicted the keloid diagnosis. We deployed a strategy of

feature selection based on the univariate analysis refined

with a minimum twofold change difference and detect-

able in ‡80% of the specimens, followed by multivar-

iable modeling to maximize sensitivity and specificity.

The multivariable prediction methods evaluated were sup-

port vector machine (SVM) and random forest (RF).

Model selection was performed in the discovery cohort

using a two-layer fivefold cross-validation scheme.4 The

inner layer identified the optimal number of miRNAs

and the outer layer measured model performance based

on the area under the receiver operator characteristic

curve (AUC). The individual DEMs and the accuracy of

the RF- and SVM-based multi-miRNA biomarkers were

evaluated in the validation cohort. To gain functional in-

sights into the DEMs, target gene analysis was performed

using Qiagen’s microRNA Target filter in Ingenuity Path-

way Analysis (IPA) (QIAGEN, Inc.).
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Univariate analysis identified 140 DEMs at an FDR

<0.05. The cross-validation scheme identified 16 and 17

of the DEMs as the optimal number of miRNA for the re-

spective SVM and RF classifiers (Table 2). Both models

demonstrated a high degree of differentiation (SVM

AUC = 0.969, RF AUC = 0.997; Fig. 1). In the validation

cohort, all but one DEM was validated, and both the RF

and SVM classification models achieved AUCs of 1.00 in

the validation cohort (Fig. 1). Thirteen of the DEMs were

upregulated in keloids (Table 2). The top 10 diseases and

biofunctions and networks identified by IPA are listed in

Supplementary Figure S1.

Of the 17 H&N keloid-specific DEMs, 10 previously

reported in the keloid literature (Table 2), including

mir-134-5p, mir-127-3p, mir-31-5p, mir-424-3p, mir-

424-5p, mir-382-5p, mir-377-3p, mir-503-5p, and mir-

429, which also had similar expression profiles. Target

gene analysis support a link between the DEMs and keloid

pathogenesis because of their predicted and experimen-

tally validated interactions with canonical pathways such

as transforming growth factor-b (TGF-b) and Wnt/b-

catenin signaling (Supplementary Table S1).

The seven DEMs not previously reported in the literature

offer new insights into keloid pathogenesis. For example,

mir-323a-3p targets TGF-b and TGF-a, and its overexpres-

sion suppresses lung fibrosis.5 mir-1291, a tumor suppres-

sor,6 regulates epithelial mesenchymal transition and

fibrosis in endometriosis7. These findings suggest potential

roles for mir-323a-3p and mir-1291 in the keloid tissue

microenvironment.

Diagnostic biomarkers that simultaneously identify

keloid and distinguish normal skin define a precise

molecular phenotype to improve consistency on keloid

definition across studies, could provide further insight

into keloid pathogenesis, and identify novel keloid

therapeutic targets. In our study, we identified and val-

idated DEMs able to distinguish keloid and adjacent

normal skin from the H&N. The findings are notewor-

thy as this is the first reported diagnostic biomarker

profile specific to keloids. Nevertheless, the results

should be validated in larger cohorts of patients and

the functional significance of the component miRNA

should be further explored.
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Table 1. Test and validation cohorts

Cohort Age Gender Race Location

Discovery
1 86 M CA Neck
2 25 F AA Ear
3 28 F CA Ear
4 23 M AA Ear
5 21 F CA Ear
6 46 F AA Neck
7 21 F CA Ear
8 52 M AA Cheek
9 15 F AA Ear
10 32 M AA Ear
11 33 M AA Ear
12 87 F AA Ear
13 51 F AA Postauricular
14 17 M AA Ear
15 19 M AA Ear

Validation
1 31 M AA Ear
2 30 M AA Neck
3 20 F AA Ear
4 21 M AA Ear
5 22 F AA Ear
6 21 F HA Ear
7 29 F AA Ear

AA, African American; CA, Caucasian American; HA, Hispanic
American.

Table 2. Differentially expressed microRNA in keloid
compared to matched normal tissue

DEM

Test cohort Validation cohort

Adjusted
p value

FC
K:N

Adjusted
p value

FC
K:N

hsa-miR-127-3p <1.0E-16 2.32 1.14E-3 2.82
hsa-miR-424-3p <1.0E-16 3.72 3.57E-3 5.13
hsa-miR-377-3p <1.0E-16 2.17 1.08E-3 4.11
hsa-miR-382-5p <1.0E-16 3.21 1.41E-3 3.66
hsa-miR-503-5p 1.11E-16 3.16 2.02E-4 4.35
hsa-miR-154-5p 8.88E-16 2.17 1.6E-4 1.87
hsa-miR-323a-3pa 1.11E-15 3.54 7.48E-4 4.59
hsa-miR-652-3pa 2.00E-15 �3.15 1.41E-3 �3.45
hsa-miR-494-3pa 2.00E-15 3.17 2.86E-05 3.81
hsa-miR-424-5p 1.65E-13 2.33 1.6E-4 5.01
hsa-miR-485-3pa 7.21E-13 2.55 01.31E-2 3.30
hsa-miR-134-5p 6.61E-10 2.42 7.48E-4 3.27
hsa-miR-487b-3pa 7.89E-10 3.21 2.39E-2 4.10
hsa-miR-429 1.53E-09 �3.97 0.948 0.277
hsa-miR-31-5p 3.23E-08 2.72 0.011 3.56
hsa-miR-378a-3pa 3.57E-08 �4.02 0.043 �1.22
hsa-miR-1291a 3.04E-07 �2.36 0.384 �1.01

aNovel to keloids.
FC, fold change; K, keloid; N, normal.
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Fig. 1. (a) Heat map showing the tissue expression level of 17 differentially expressed miRNAs in keloids
with matched normal skin controls in training data. (b) A panel of miRNAs that best discriminate keloids
from matched normal skin controls based on the RF and SVM analysis. ROC analysis discriminates keloid
from matched controls using fivefold cross-validation and independent validation. The estimated AUC is
0.98 using RF and AUC is 0.96 using SVM in fivefold cross-validation. AUC is 1 on independent validation
data. (c) Heat map showing the tissue expression level of 17 differentially expressed miRNAs in keloids with
matched normal skin controls in independent validation data. AUC, area under the curve; miRNA,
microRNA; RF, random forest; ROC, receiver operating characteristics; SVM, support vector machine.
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