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a b s t r a c t

The semi-allogeneic fetus develops in a uniquely immune tolerant environment within the uterus. For
successful pregnancy, both the innate and adaptive immune systems must favor acceptance of the fetal
allograft. Macrophages are the second most abundant immune cells after natural killer (NK) cells in the
decidua. In coordination with decidual NK cells and dendritic cells, macrophages aid in implantation, vas-
cular remodeling, placental development, immune tolerance to placental cells, and maintenance of tissue
homeostasis at the maternal-fetal interface. Decidual macrophages show the classical activated (M1) and
alternatively activated (M2) phenotypes under the influence of the local milieu of growth factors and
cytokines, and appropriate temporal regulation of the M1/M2 switch is vital for successful pregnancy.
Disturbances in the mechanisms that control the M1/M2 balance and associated functions during preg-
nancy can trigger a spectrum of pregnancy complications ranging from preeclampsia and fetal growth
restriction to preterm delivery. This review addresses various mechanisms of tolerance, focusing on
the basic biology of macrophages, their plasticity and polarization, and their protective roles at the
immune-privileged maternal-fetal interface, including direct and indirect roles in promoting fetomater-
nal immune tolerance.
� 2021 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights

reserved.

1. Introduction

Despite its allogeneic nature, the fetal allograft is not normally
rejected by the potentially hostile maternal immune system. The
mystery of immunological acceptance of the fetal allograft has
been the focus of many studies. There are various local and sys-
temic mechanisms that induce maternal tolerance. These include

production of transforming growth factor b1 (TGF-b1) and
interleukin-10 (IL-10) by the regulatory T (Treg) subset of CD4+/
CD25 cells, secretion of prolactin, gonadotropin and progesterone
by both fetal and endometrial cells, and expression of high levels
of complement regulatory proteins by fetal cells and expression
of inhibitory members of the B7 and the tumor necrosis
factor (TNF) family of ligands [1–3]. Fetal cells also produce
immunosuppressive cytokines, chemokines, and prostaglandins,
which dampen T lymphocyte proliferation, and secrete the
immunosuppressive hormone progesterone.

Importantly, trophoblast cells regulate the expression of classi-
cal major histocompatibility complex (MHC-Ia) and non-classical
(MHC-Ib) proteins. Conceptus-derived villous trophoblast cells do
not express highly polymorphic MHC-Ia and MHC class II mole-
cules. However, it has been shown in many species (for example,
human, mouse, rhesus macaque, baboon, cattle, etc.) that tro-
phoblast cells upregulate monomorphic and oligomorphic MHC-
Ib proteins in trophoblast cells. The human MHC-Ib molecule,
human leukocyte antigen G (HLA-G) provides inhibitory signals
to NK cells and other lymphocytes, macrophages, and monocytes
by interacting with various inhibitory receptors expressed by

https://doi.org/10.1016/j.humimm.2021.02.013
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leukocytes to induce immunosuppression and fetal survival [4,5].
Inhibitory leukocyte immunoglobulin-like receptor B (LILRB)
expression is enriched in myeloid cell populations and negatively
regulates myeloid cell activation. LILRB4 activation in monocytes
and macrophages attenuates Ca2+ influx resulting from CD11b,
HLA-DR, and Fcc-RIII acute activation in human myeloid cell lines
[6] and increases IL-10 while reducing IL-8 [7], supporting a role
for LILRBs in regulating innate immune inflammatory responses.

Macrophages serve as crucial players in immunological toler-
ance at the maternal fetal interface. In addition to their primary
role as major antigen presenting cells involved in both innate
and adaptive immunity in the decidua, they are actively involved
in trophoblast invasion, tissue and vascular remodeling during
early pregnancy, and phagocytosis of pathogens, debris, and dead
cells [8]. They are usually divided into pro-inflammatory (M1)
and anti-inflammatory (M2) types, depending upon the tissue
microenvironment. The local cytokine milieu and signals can
determine the polarity of macrophages.

In this review we discuss the roles of decidual macrophages,
and their plasticity and polarization in the context of pregnancy
and how these contribute to fetomaternal immunological
tolerance.

2. Innate immune cells at the maternal-fetal interface

Antigen-presenting cells are likely to be important players in
the mediation of immune tolerance in the decidua. The study of
decidual dendritic cells (dDCs) has been difficult, not only because
isolation of decidual cells, including dDCs, can be technically
demanding, but also because phenotypic definition of DCs is con-
troversial, as there is no single specific marker for DCs. Macro-
phages are specialized phagocytic cells of the innate immune
system and they are present in every organ of the body in one form
or another. Macrophages originate from bone marrow and enter
and circulate in peripheral blood [9,10]. Circulating monocytes,
both for homeostasis and during inflammation, migrate into tis-
sues and differentiate into macrophages when exposed to local
growth factors, pro-inflammatory cytokines, and microbial prod-
ucts. Macrophages, like DCs, are part of the monocyte-
macrophage system consisting of committed bone marrow precur-
sors, peripheral blood monocytes and DCs, and tissue macrophages
and DCs [11].

2.1. Placentation and cells in the decidua

During pregnancy, the uterus undergoes enormous transforma-
tion, starting at conception and continuing throughout gestation,
labor, and birth. The blastocyst invades the mother’s uterine endo-
metrium, endometrial stromal cells undergo decidualization and
create an environment favorable for trophoblast invasion [12].
Based on the apposition pattern and degree of contact of tro-
phoblast cells with the uterine lining, mammals have three types
of placentation: epitheliochorial, endotheliochorial, and hemocho-
rial [13]. Humans and mice have hemochorial placentas where the
fetal membrane is in direct contact with the maternal tissue and
blood. For successful pregnancy, a finely orchestrated balance of
immune cell subsets and the fetal interface is required for appro-
priate recognition and tolerance of the fetal allograft [14].

About 40% of the decidua is composed of maternal leukocytes
[15]. In the first trimester, the predominant leukocytes in the
decidua basalis (the site where endometrium interacts with tro-
phoblast cells) are decidual natural killer cells [dNK] (�70%) fol-
lowed by decidual macrophages, dendritic cells, and T cells
[14,16,17]. Almost 20–30% of leukocytes are decidual macro-
phages, which serve important functions, such as the promotion

of tolerance to the semi-allogeneic fetus, trophoblast invasion,
and tissue and vascular remodeling [18–21]. These macrophages
are recruited to the decidua in response to growth factors and
cytokines, such as colony-stimulating factor �1 (CSF-1), and gran-
ulocyte macrophage-colony stimulating factor (GM-CSF) secreted
by trophoblasts [22]. Recently, vascular endothelial growth factor
(VEGF) produced by macrophages, decidualized endometrial cells,
and trophoblasts has also been implicated in the regulation of
the migration and polarity of macrophages in the decidua and
other tissues [23–28]. VEGF, although essential for normal embry-
onic development, could also be a trigger for elevated placental
soluble FLT1 (sFLT1) leading to the preeclampsia symptoms as
shown in mice models. Placental sFLT1 has a protective role for
the placenta and the fetus through its sequestration of maternal
free VEGF [29,30].

2.2. Macrophage markers

Macrophages display distinct cell surface markers, such as
CD14, CD68, and human leukocyte antigens, such as HLA-DR
[31]. The phenotype of decidual macrophages is believed to be
influenced by trophoblasts which secrete chemokines and cyto-
kines. Human decidual macrophages are CD163+CD206+DC-SIGN
+ and predominantly express IL-10, CCL2 and CCL18 [32–35]. Com-
pared to the peripheral blood monocytes, decidual macrophages
express lower levels of the co-stimulatory molecule CD86 [31].
Lower expression of CD86, coupled with expression of indoleamine
2,3 dioxygenase (IDO), enables macrophages to exert an immuno-
suppressive effect on T cells [31].

3. The role of macrophages in pregnancy

Establishment and maintenance of an immunologically naïve
environment in the uterus to protect the semi-allogeneic fetus dur-
ing pregnancy is a challenge for the immune system. Uterine
mucosal and decidual macrophages play myriad roles during preg-
nancy. They participate in remodeling the decidua and spiral arter-
ies, a process that is triggered by growth factors, angiogenic
factors, and cytokines produced by decidual NK cells, the most
abundant immune cells during the first half of pregnancy. This pro-
motes trophoblast invasion into the endometrium and thus
increases the availability of maternal blood to the growing fetus
[36,37]. During vascular remodeling, spiral arteries lose smooth
muscle cells and endothelial cells in response to Fas ligand, TNF-
a, and matrix metalloproteinases (MMP)-2 and -9 secreted by
the invading trophoblast cells, leading to high-volume, low-
resistance utero-placental maternal blood flow [38,39]. Apoptosis
of endothelial smooth muscle cells is induced by Fas ligand
secreted by endothelial cells and macrophages/monocytes
[40,41]. Decidual macrophages also produce VEGF and MMP-9
in vitro, suggesting roles in angiogenesis and tissue remodeling
[35,42,43]. Disruption or impairment of vascular remodeling
results in pregnancy pathologies, such as preeclampsia and fetal
growth restriction [44].

Decidual macrophages are major phagocytes which phagocy-
tose and clean up apoptotic trophoblasts, cell debris, and foreign
pathogens, thus preventing proinflammatory reactions at the
maternal-fetal interface [45]. Decidual macrophages are plastic
cells that possess pattern recognition receptors (PRRs) on their sur-
faces. In the presence of pathogens, these PRRs, such as CD163 (he-
moglobin scavenger receptor), CD206 (mannose receptor), and
CD209 (DC-SIGN), promote polarization of these plastic cells
toward the M1 phenotype, suggesting they play a canonical
antimicrobial role in protecting the fetus against infections [46].
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Infection by diverse pathogens induces recruitment of circulat-
ing monocytes and macrophages to the sites of inflammation,
which involves the pathogen-associated molecular patterns
(PAMPs) released from invading pathogens and damage-
associated molecular patterns (DAMPs) released from damaged
or dead cells. Furthermore, tissue resident memory T cells activate
and secrete inflammatory cytokines and chemokines, which also
triggers macrophage recruitment [47,48]. Other factors that con-
tribute to the development and activation of the phenotypic profile
of macrophages in the pregnant uterus of mice and humans are
IFN-c, produced by uterine NK cells, and CSF-1 (M�CSF), secreted
by uterine epithelial and stromal cells [49,50].

4. Decidual macrophages, NK cells, and T cells: a crosstalk

Endometrial NK cells are differentiated into activated decidual
NK cells through the secretion of IL-15 by decidual macrophages
[51]. Activated dNK cells induce expression of Tregs which sup-
press maternal alloreactive T cells. Interaction between decidual
macrophages and NK cells also leads to secretion of interferon-
gamma (IFN-c) by dNK cells, which, in turn, induces IDO in macro-
phages, further suppressing T cell activation and inducing differen-
tiation of Tregs [52]. Decidual macrophages interact with PD-1 on T
cells through B7-H1 and B7-DC (B7 family costimulatory mole-
cules) and negatively modulate the activity of T cells contributing
to dampened immune responses during early human pregnancy
[53]. Furthermore, B7-1 and -2 on macrophages also interact with
CTLA-4 on Tregs leading to immunosuppressive functions and
upregulating IDO in macrophages. Therefore, dNK cell-
macrophage, and T cell-macrophage interactions contribute to
maternal-fetal immune tolerance [54] (Fig. 1).

5. Macrophage polarization and pregnancy as a paradigm

Macrophages possess remarkable plasticity and are capable of
switching from one phenotype to another [55–57]. Macrophages
are functionally classified as classically activated (M1) and alterna-
tively activated (M2) phenotypes, depending on their cytokine pro-
duction [58,59]. The M1 phenotype is proinflammatory and

induced by pathogen (lipopolysaccharide) exposure and tissue
damage through IFN-c and tumor necrosis factor (TNF). In contrast,
M2 macrophages are regulatory/homeostatic and anti-
inflammatory in nature and are induced by Th2 cytokines such
as interleukin-4 (IL-4) and interleukin-13 (IL-13), and anti-
inflammatory IL-10, as well as apoptotic cells (ACs), and macro-
phage colony-stimulating factor (MCSF or CSF-1) [14,55,59].
Macrophage subsets predominantly producing inducible nitric
oxide synthase (iNOS) over arginase are of the M1 phenotype,
and those producing arginase over iNOS are of the M2 phenotype.
M2 subsets enhance Treg accumulation and are subgrouped into
M2a, M2b, M2c, and M2d based on the applied stimuli and the
resultant transcriptional changes [60]. M2a subsets are activated
by IL-4 and IL-13, resulting in increased expression of IL-10, TGF-
b, CCL17, CCL18, and CCL22. These macrophages enhance endo-
cytic activity and promote cell growth, and tissue repair. M2b
macrophages are induced by immune complexes, Toll-like receptor
(TLR) ligands, and IL-1b and secrete both pro- and anti-
inflammatory cytokines and chemokines. M2c macrophages are
referred to as inactivated macrophages and are activated by IL-
10, TGF-b, and glucocorticoids. These cells are capable of clearing
early ACs more efficiently than other macrophage subsets. Mer
Tyrosine Kinase (MerTK) is a major macrophage apoptotic cell
marker and a member of the TAM (Tyro3, Axl, Mer) subfamily of
receptors specifically involved in removal of early ACs [61,62].
MerTK makes M2c cells and M2c-like cells highly capable of clear-
ing ACs with enhanced IL-10 secretion by M-CSF driven macro-
phages following Gas6 ligation and therefore maintaining anti-
inflammatory conditions. M2d subsets are induced by TLR antago-
nists, leading to the release of IL-10 and VEGF, which promote
tumor progression and angiogenesis [63]. Characteristics of M1
and M2 macrophages and their subtypes are summarized in
Table 1.

Decidual macrophages also display polarization throughout
pregnancy. M1 macrophages predominate during the peri-
implantation period but transition to a mixture of M1 and M2 cells
during vascular remodeling and trophoblast invasion and persist-
ing until early second trimester [64]. During this time, placenta
develops, ensuring prevention of fetal rejection. Also, around this

Fig. 1. Decidual macrophages secrete IL-15 inducing differentiation of endometrial NK cells into active decidual NK cells. dNK cells suppress maternal alloreactive immune
responses through induction of Tregs. Macrophages by effect of dNK-secreted IFN-c produce IDO which further suppress T cell activation and induces differentiation of Tregs.
Decidual macrophages interact with PD-1 on T cells through B7-H1 and B7-DC (B7 family costimulatory molecules) and negatively modulate the activity of T cells.
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time, the regulatory/homeostatic, immunomodulatory, and anti-
inflammatory M2-like phenotype predominates promoting
immune tolerance to the fetus for a successful pregnancy [14,18].
Regulation of macrophage differentiation during early pregnancy
involves programmed death-1(PD-1)/PD-ligand-1 (PDL-1) signal-
ing which promotes polarization toward the M2 phenotype [65].
When cultured in 1st trimester gravid serum, M1 macrophages
switch to M2 and lose expression of procalcitonin (a marker for
evaluating bacterial infections), suggesting that macrophages
acquire different functional phenotypes different local environ-
ments [66] (Fig. 2).

5.1. Macrophages in pregnancy complications

Alteration or perturbation of the M1/M2 balance and associated
functions during pregnancy may result in complications, such as
preeclampsia, fetal growth restriction, preterm delivery, and
increased risk of future cardiovascular disease [67]. Preeclamptic
women have fewer M2 macrophages, and most are classically acti-
vated M1 macrophages that secrete pro-inflammatory cytokines

[68,69]. In preeclamptic pregnancies, macrophages express surface
receptors characteristic of the M1 phenotype, suggesting that the
systemic inflammation and excess cytokine production in these
pregnancies may result from polarization of macrophages toward
the M1 phenotype [68,70,71].

Furthermore, the myometrium in preeclamptic and preterm preg-
nancies show higher CD14+/CD68+ cells compared to decidua, where
CD14-/CD68+ cells are more abundant [72]. In another study, the
macrophages in the decidua basalis of preterm preeclamptic preg-
nancies, showed higher expression of CD14 and CD163 when com-
pared with that of preterm control pregnancies [73].

Inappropriate macrophage polarization has also been associ-
ated with recurrent spontaneous abortion [74,75] and preterm
labor [76]. In addition, macrophage dysregulation has been impli-
cated in recurrent miscarriage and recurrent spontaneous abortion.
Goto et al. in 2014 showed that decidual macrophages of recurrent
miscarriage patients had decreased levels of Cathepsin E, which
may be a trigger for miscarriage [77].

Another protein that may play a role in the regulation of decid-
ual macrophage function, thromboplastin 1 (TSP1), is mainly

Table 1
Biological and physiological characteristics of M1 and M2 macrophages.

Phenotypes Stimuli Cytokines/Chemokines Functions References

M1 IFN-c, TNFa, LPS IL-12, IL-1b, TNF-a, IL-6, NO, CXCL10,
CCR7

Embryo-implantation, Pro-inflammatory Th1 response, [27,65]

M2a IL-4, IL-13 Fibronectin, Arginase-1, IL-10, IL-6, CCL-
17, CCL-18

Anti-inflammatory, Tissue remodeling/repair, Th2 activation [68]

M2b Immune complexes, TLR
ligands, IL-1b

IL-10, IL-6, IL-1b, IL-12low Immunoregulatory and Th2 activation [68]

M2c TGF-b, IL-10, glucocorticoids IL-10, TGF-b, CCL16, CCL18, CXCL13 Phagocytosis of apoptotic cells,Immunotolerance, matrix
remodeling and repair

[68]

M2d TLR ligands, adenosine
receptor ligands

IL-10, VEGF Tumor progression, proangiogenic [68]

Fig. 2. Macrophages polarize to M1 and M2a, M2b, M2c, and M2d phenotypes under different cytokine milieu (A). Macrophages display different phenotypes during
pregnancy. M1 macrophages are dominant during peri-implantation stage. M1 and M2 both phenotypes are present during implantation and early 1st trimester. M2
phenotypes predominate during late first trimester and maintenance of pregnancy during 2nd trimester. M2 begin to decline and M1 again increase during 3rd trimester and
parturition (B).
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expressed in platelets and can bind surface receptors such as CD36,
CD47, and heparin sulfate proteoglycan on macrophages [78]. TSP-
1 is a potent inducer of IL-10 expression in decidual macrophages,
as shown in vitro, thereby implying it plays a role in IL-10 secretion
and promotes immune tolerance at the placental-uterine interface
[79]. In patients with recurrent spontaneous abortion, decreased
TSP-1 expression and decreased IL-10 production in decidual
macrophages has been observed, suggesting TSP-1 plays a crucial
role in immune tolerance at the interface.

5.2. M1/M2 polarization and therapeutic potential

Macrophages are activated as pro-inflammatory M1 pheno-
types in response to TLR ligands and IFN-c. Contrary to this, they
differentiate into homeostatic, regulatory, and anti-inflammatory
M2 phenotype in response to IL-4 and IL-13 [55,59,60,80–82].
The ability to alter macrophage polarization suggests a promising
therapeutic approach for inflammatory diseases specifically, by
increasing M2 polarization. Several naturally occurring compounds
have been shown to regulate M1 and M2 polarization and can be of
therapeutic value for pregnancy-related and other disorders. For
example, diosgenin glucoside (Dios), a saponin compound found
in the extracts of Tritulus terrestris L strongly inhibits the expres-
sion of M1 markers and genes that promote inflammation in acti-
vated microglial cells [83]. Another compound, crocin, an active
component of Crocus sativus L, exerts anti-inflammatory effects
by inhibiting nuclear factor-kappa B (NF-jB) expression by sup-
pressing NF-jB p65 translocation into the nucleus [84]. Crocin
has been shown not only to suppress expression of inflammatory
cytokines, such as TNF-a and IL-6, but also to promote expression
of M2 markers, such as CD68 and CD206, and anti-inflammatory
cytokines IL-10 and TGF-b. These results indicate that dios and cro-
cin can be used as potential therapeutic agents in M1 and M2
polarization strategies. Several other compounds driving M1 to
M2 polarization have demonstrated therapeutic potential. A few
of them are capsaicin, lupeol or fargarsterol, malibatol A, and ger-
aniin [85–88]. Using these strategies to modulate macrophage
polarization at the maternal-fetal interface may alleviate preg-
nancy complications. In preeclampsia, non-classical monocyte-
induced inflammation, as well as pro-inflammatory M1 macro-
phages predominate; with the use of M1 to M2 polarization mod-
ulators the effects of M1 dominance can be alleviated. These agents
driving M1 to M2 polarization consequently may be highly effec-
tive anti-inflammatory therapeutic agents.

6. Conclusions

Macrophages play a significant role in immune tolerance to the
fetal allograft via a variety of mechanisms. One aspect of immune
tolerance derives from trophoblasts and endometrial cells, which
secrete immunomodulatory hormones and regulate the expression
of classical and non-classical MHC class I proteins. However,
another major aspect of immune tolerance involves the remark-
ably plastic decidual macrophages. M1 macrophages promote
embryo implantation during early pregnancy and are involved in
presentation of foreign, pathogen-derived peptides to T cells for
subsequent adaptive immune-mediated killing and thus protection
of the fetus. M2 macrophages and their subsets induce an
immunotolerant environment within the uterus for the fetus
throughout pregnancy through a crosstalk with decidual NK cells
and T cells. M1/M2 polarization is a unique feature of macrophages
and the relative balance of these two phenotypes regulates the
physiology of normal and pathologic pregnancies. They are hetero-
geneic but plastic and versatile cells which integrate multiple sig-
nals, including those from dead and damaged cells, debris, and the

normal tissue microenvironment. Plasticity and switching of
macrophage polarity could be therapeutically harnessed to
develop anti-inflammatory approaches to treat pregnancy compli-
cations. More in-depth investigation of mechanisms by which M1/
M2 phenotypes can be modulated by various compounds and their
application in pathologic pregnancies will aid in development of
novel therapeutics.
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