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Abstract: 

Stereoscopic vision lets us identify the world around us in 3D by incorporating data from depth signals into a clear 

visual model of the world. The stereo matching algorithm capable of producing the disparity or depth map in 

computer. This map is crucial for many applications such as 3D reconstruction, robotics and autonomous 

driving.The disparity map also prone to errors such as noises in the region which contains object occlusions, 

reflective regions, and repetitive patterns.So we propose this stereo matching algorithm to produce a disparity map 

and to reduce the errors by incorporating a deep learning approach. This paper focused on matching cost 

computation step as an initial step to produce the disparity or depth map. The proposed convolutional neural 

network designed with the output neurons in the classification part scaled-downin converging style. The raw cost 

generated aggregated by the normalized box filter. Then the disparity map computed using Winner Take All 

approach. The final disparity map refined using Weighted Median Filter. Overall quantitative results for the 

proposed work performed competitively compared to other established stereo matching algorithm based on the 

Middlebury standard benchmark online system. 

 

Keywords :convolutional neural network; matching cost computation, stereo matching 

.  

I. INTRODUCTION 

The study on stereo vision mainly focused on stereo matching[1]. Stereo matching remains as a challenging area in 

computer vision to this day ([2]–[4]). A stereo matching algorithm capable of producing disparity or depth map. In 

the development of the stereo matching algorithm, the main objective is to find the disparity value calculated based 

on the object in left and right image pairs. Disparity value obtained based on the differences in the pixel location of 

corresponding features recorded in the left and right image. The distance between camera and object revealed 

through the depth map [5]. The importance of depth perception by stereo matching also highlighted in 

[6].According to[6], the depth information enables us to use for multiple application such as scene reconstruction, 

virtual and augmented reality, obstacle avoidance and several other applications. The authors of[7] perform stereo 

matching for 3D face reconstruction. They used the spatial-temporal integral image (STII) for faster matching cost 

computation in stereo matching for the reconstruction process. According to [8] and [9], the information from the 

disparity map will provide a further study on 3D projective transformation. However, image noises and repetitive 

textures influenced the quality of the disparity map and led to inaccurate disparity map produced[10]. 

Another camera-based method to obtain depth-related information includes the monocular based 

method([11]–[13]). One of the great work on monocular depth estimation is done by [11]. The authors implement 

unsupervised learning in their monocular vision work. Their work also highlighted and compared in [6]. However, 

based on the results obtained by [6], the monocular depth method found to be less accurate as compared to their 

stereo-based method. Their stereo method capable of recovering more objects of interest as compared to the 

monocular vision method by [11]. The main caused highlighted by [6] was the differences in the size of the 

information. The multi-view processing can provide more information than a single view method.  

Another related method, Light Detection and Ranging (LiDAR) is one of the common methods for outdoor range 

sensing. It is a laser-based measurement technique and different from the camera-based technique (monocular and 
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stereo) for depth sensing. As highlighted by [14] LiDAR capable of producing 3D points accurately, but it is not 

very cost-effective and time-consuming. Moreover, this issue also mentioned in [15]. LiDAR also commonly used 

to produce training dataset, as mentioned in [16]. The demerits on the monocular and LiDAR methods motivate us 

to proceed with the work on stereo vision. 

As mentioned in [17], both local and global approach are the main categories in stereo vision algorithm. In the 

local method, disparity computation at any point in the image determined by the intensity values within a 

predefined support window. Because of this behaviour, the local method able to run faster with low computational 

complexity [17]–[20],[19],[20]. The global method is another interesting topic on stereo matching. According to 

[21], the global method produces disparity based on energy minimisation process, commonly based on Markov 

Random Field (MRF). The global method provides better accuracy for the disparity output. However, it will incur 

more computational complexity [22]. Energy minimisation was the critical function in a global method.The energy 

minimisation in global method focuses on data term and smoothness term [23].  

The previous study on stereo vision algorithm by [23], [17], [10], [24], [19]mentioned there are four main steps 

to produce disparity map from the stereo based algorithm. The matching step is the most crucial in stereo 

vision[25]. The summary of the general steps in stereo vision algorithm mentioned in [23]and [17] illustrated in 

Fig.1. 

 

 

Fig.1.Stereo Vision Algorithm Steps 

 

Szeliski and Scharstein (2002) in[23] also described that different algorithms might employ different step 

sequence combination. The aggregation step was often skipped in global approach due to the redundant purpose of 

global smoothness constraint when it performs the optimization step after the disparity computation step[23]. In 

general, the main steps for stereo vision algorithm as follows: 

 Matching Cost Computation:  

This step involves the calculation of the cost of assigning a special disparity to each pixel[25]. The examplesof 

traditional handcraft method for this step are Sum of Absolute Difference algorithm (SAD), Sum of Squared 

Difference (SSD), Normalized Cross-Correlation (NCC), Zero Mean Normalized Cross-Correlation (ZNCC), 

rank transform and census transform (CT) as explained in [23] and [17]. 

 Cost Aggregation 

Mostly related to the local approach, the cost aggregation step involves summing or averaging over a support 

region in the disparity space image (DSI)[26]. The mainobjective of this step is to reduce noise in the matching 

cost. [3] aggregate the cost using low pass filters such as box filter and Gaussian filter. Another type of filter 

used for the purpose is the edge-preserving filters such as bilateral filter (BF), guided filter (GF), which preserve 

good edge and better results in the aggregation process ([3], [17], [26]). Other variations of the GF based filter 

used also mentioned in [27] and [28].  

 Disparity Computation/Optimization 

This step responsible to assign the disparity map value ([17], [19], [29],[30],[20]). The commonly used method 

used for this step is Winner Take All (WTA) optimization ([31]–[38]). In WTA, the disparity associated with the 

lowest cost value chosen at each pixel location ([17], [39]). Other examples for the optimization stage are 

dynamic programming (DP), simulated annealing (SA), scanline optimization (SO) and graph cut (GC) as 

mentioned by Scharstein and Szeliski (2002) in [23].  

 Disparity Refinement 

After the third step, the generated disparity or depth map may contain noises, errors such as invalid matches, and 

occlusion. Some of the methods implement slanted plane smoothing for the occlusion problem ([40], [41]). 

Left-to-right-consistency check (LRC) used to detect invalid pixels ([3], [17]). At this step, multiple filtering 

techniques used to refine the output before producing the final disparity map. Median filter techniques are 

commonly used for local refinement as implemented in [34]–[37], [42]–[45]. This last step also might introduce 

extra timing to the overall process due to its complexity. 

 

Matching cost computation Cost aggregation
Disparity computation/ 

optimization
Disparity refinement
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As mentioned in [46], artificial intelligence AI has become a concentrated topic in exaggerated publicity by the 

mass media. One of the interesting area in artificial intelligence area these days is machine learning.  The beauty of 

the machine learning algorithm is the capability to instruct the computer to react or deciding on particular condition 

without having to program the computer explicitly. Due to the flexibility of the machine learning algorithm to learn 

via self-train, analysis, observation and experience. Machine learning algorithm capable of adapting new situation 

through pattern and trend detection for better results.  

In recent years,deep learning as a subset of machine learning has become the catalyst to evolve the stereo vision 

area. Deep learning implementation has boosted the performance of stereo vision application as described by [47]. 

Furthermore, as mentioned in [48] and [49], the traditional stereo vison cannot match the human performance for 

recognition tasks. However, with the assimilation of deep learning into their algorithm, they can match human 

performance. Since then, researchers around the globe have been working to refine and implement deep learning in 

real-world stereo visionapplication. Concerning the stereo matching works, deep learning also has been applied in 

two ways. Some researcher mix convolutional neural network (CNN) with traditional handcraft algorithm and 

some also proposed a new end to end CNN based networks ([6], [15], [50]–[56]). 

We propose a new CNN based method matching cost computation. Inspired by [31], we use the base architecture 

of MC-CNN-acrt as in [31] where it has been used by other researchers to calculate matching cost computation for 

their stereo matching algorithm ([10], [33], [36], [37], [45], [57]).  

As published by the authors of [42], their work inspired many other researchers on the usage of deep learning for 

matching cost computation and other stereo matching steps. Their MC-CNN-acrt architecture outperforms other 

stereo matching conventional methods. The MC-CNN-acrt contains several layers combined as a Siamese network. 

As illustrated in Fig. 2, L1 is the convolutional layer (with 32 kernels of 5x5) and L2-L8 made of fully 

connected(FC) layers. L2 and L3, the FC layers contain 200 neurons each. Left and right feature output from L3 

concatenated together to form a single 400-dimensional vector. L4-L7 contains 300 neurons each. 

Zbontar&LeCunmould the matching cost computation as a binary classification problem at L8 with two neurons 

produces good and bad matches. They verified the effectiveness of using CNN for matching cost computation by 

replacing it with other methods such as SAD, CT, and NCC for Middlebury and KITTI (2012 & 2015) benchmark. 

Their method outperforms different pure handcraft algorithm.  

Chen et al.[58]proposed another method of matching cost computation. In contrast to [42], the authors compute 

similarity in the Euclidean space using a dot product. The process enables calculation time faster than MC-CNN. 

However, the accuracy obtained less than the MC-CNN. The employed inner product of which indicate matching 

score that will be large in case of a similar patch and vice versa.  

Chen & Yuan in[32]highlighted the issues of using fix size patches and equal weight. According to them, using a 

larger patch, however, will lead to better accuracy in the texture-less region with ahigher computational cost. 

Following [42], they modified the network by adding several CNN subnetwork for cost computation. They found 

that having a multi-scale approach in their network produce better output accuracy and also maintain efficiency in 

term of test time. Based on their output also, it is proven that a larger input patch producesa more accurate result as 

compared to a smaller patch. 

 

 

Fig. 2.MC-CNN-acrt architecture [31] 
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Wen in[36] stated that the main reason to implemented CNN is because of the feature extraction capabilities 

available in CNN. They apply Siamese network as described in [59] and also performed in [31], [42]. It contains 

two branches that share the same architecture. The image patches from left and rightsent to the network in two 

different branches. Left and right image patches supplied to the three convolution layers per branch where for each 

layer, the ReLUactivation function equipped for each convolution process. They cast the problem as a binary 

classification problem where the final output of the overall network is binary output 0 or 1 to indicate the similarity 

between input left and right.  

This paper focuses on the effect of converging the classification part of the architecture to calculate the matching 

cost. This paper arranged as follows. The next section will describe the proposed method. Section III will explain 

the results and the discussions based on Middlebury version 3 [60] stereo benchmarking evaluation system. Section 

IV will conclude the paper with the overall conclusions of the work. 

II. THE PROPOSED ALGORITHM 

 

The four stages of our proposed algorithm as follows:  

 

A. Matching Cost Computation 

 

Our approach on the matching cost computation inspired by the original works of [31], [42]. We use architecture 

mentioned in the MC-CNN-acrt, as illustrated in Fig. 2as the baseline for this work. Our main focus is on the 

classification part of this Siamese base network (refer Fig. 2). We redesigned the classification part of the baseline 

architecture by scaling down the output neurons in a fully connected layer in a converging manner, as illustrated 

inFig. 3. The output neuron for layer 5 (FC5) reduced to 300 neurons. The next layer FC6 set to 250 neurons, and 

the FC7 will produce 100 neurons. A similar approach to the original baseline, the output neurons for last layer 8 

(FC8) set to 2 for binary similarity classification. All layers except the input layer and final layer equipped with 

Rectified Linear Unit (ReLU) activation function.  

The output of the network will provide a similarity score, which provides binary classification. Softmax function 

has been used as the activation function in the last layer to provide good and bad matches. It will return the value of 

good and bad matching. 

 

CCNN(p, 𝑑)  =  −s( 𝑃𝑁
𝐿(p), 𝑃𝑁

𝑅(p −  𝑑) )          (1) 
 

The matching cost value CCNN(p, 𝑑) represent the matching cost at each position p for all disparities, d. It comes 

from the output of the CNN network where the inputs coming from NbyN left image input patch, 𝑃𝑁
𝐿  and N by N 

right image input patch with, 𝑃𝑁
𝑅. The minus sign will convert the similarity score to the matching cost. 

 

 

Fig. 3.The Proposed Architecture 
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B. Cost Aggregation 

In order to produce a more accurate disparity map, we need to refine the raw matching cost. Inspired by [61]we 

implement cost aggregation steps using normalised box filter from the OpenCV library[62]. The output of the cost 

aggregation step labeled as CAGG(p,d). CAGG(p,d) is the cost volume after aggregation, 

 

𝐶𝐴𝐺𝐺 =  ∑ 𝐶𝐶𝑁𝑁

𝑘,𝑙

(𝑝, 𝑑)ℎ(𝑘, 𝑙) 
(2) 

The kernel, h(k,l)is the normalised box filter kernel of 5x5 size applied to the initial matching cost computed, CCNN.  

C. Disparity Computation / Optimization 

For the disparity computation step, we computed the final disparity map by using WTA optimization. We employ 

WTA optimization as per the following equation. 

 

𝑑 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝑑∈𝑑𝑟

(𝐶𝐴𝐺𝐺(𝑝, 𝑑)) (3) 
 

The maximum disparity value of drobtained from the ground truth of data. As mentioned earlier, in the WTA 

approach, disparity associated with the lowest cost value chosen at each pixel location 

D. Disparity Refinement 

 For the disparity refinement step, multiple processing steps involved. Inspired by the application of the Weighted 

Median(WM) filter in [61], we apply the WM filter to remove outliers while maintaining the edges. Firstly the 

initial disparitymap applied with Weighted Median Filter (WMF) from [62]. Next, we used LRC to detect invalid 

pixels. After that,we applied WMF again to help refine the final disparity map. We did not implement the exact 

post-processing method implemented in [31] for both baseline (in [31]) and the proposed method. 

 

III. EXPERIMENTAL RESULTS  

 

The implementation of the architecture to produce a disparity map done using Python, Keras, TensorFlow, and 

OpenCV library running on top of Ubuntu Linux 18.04. We executed the code on a hardware platform of consists 

of a personal computer with Intel Core i5 3.0 GHz processor and equipped with 16GB DDR3 RAM and GPU 

NVidia GTX1060 3GB. The inference process of the CNN network performed using GPU for matching cost 

calculation while the other stage 2 until 4 of the algorithm run using CPU. We train the network using the Adam 

optimization algorithm, with the learning rate set to 0.0001. Batch is size set to 128 and trained for 50 epochs. 

 The inference process performed to calculate matching costs using the stereoimages from Middlebury online 

benchmarking system.The Middlebury v3 [60] dataset contains 30 sets of stereo images (15 training, images, and 

15 testing images). These training images were developed to determine theperformance of an algorithm and can be 

uploaded several times. However, the testing imagesare only for the final evaluation. 

We evaluated the proposed method using Middlebury v3 stereo benchmark system to test the accuracy of the 

disparity map generated using proposed architecture. We compared the proposed architecture with the original 

baseline architecture published in [31]. Both architectures have been applied with the same process to show the 

effectiveness of the architecture for matching costs. Here we provide qualitative as well as the quantitative result 

for the comparison. Refer toTable Iand  

Table II, which contains the result from the Middlebury benchmark system [60] to compare the effectiveness of 

the proposed architecture. The table contains results obtained for NonOccerror (error of invalid disparity values in 

non-occluded pixel) and All error (error of invalid disparity values in all pixels). 

Based on the quantitative result obtained in Table I and  

Table II, the proposed architecture outperform the original baseline architecture. For the error of invalid disparity 

values in all pixels, the proposed architecture performed better than the baseline for all 15 images. For the error of 

invalid disparity values in non-occluded pixels, there is a significant improvement shown for 11 out of 15 images as 

compared to the baseline architecture. 
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(a)Ground Truth Image 

 

(b) Output from Baseline 

 

(c) Output from Proposed 

Fig. 4.Comparison Disparity Output with the Ground Truth from Middlebury- ArtL Image 

For a qualitative comparison between the proposed and baseline architecture, we present in the following Fig. 4. 

The figure contains a comparison of the disparity output between ground truth, baseline, and the proposed method. 

The qualitative comparison focused on the region of interest (ROI), as highlighted in the orange line box. The table 

also highlighted the error in baseline method output, as highlighted in ROI-B. The proposed architecture capable of 

reducing the error in ArtL image in the highlighted ROI-C. 

Both Table I and II also contain a performance comparison with other algorithms. The overall performance in 

terms of NonOccerror, the proposed architecture performed better thanLS_ELAS[64] and PSMNet_ROB[52]. As 

for All error, the proposed method produces more accurate results than LS_ELAS[64], MC-CNN-fst[42], 

PSMNet_ROB[52], and MC-CNN-WS [63]. It shows that the proposed architecture is competitive with other 

stereo matching algorithms. 

IV. CONCLUSIONS 

In this work, we focus on improving the architecture of original work by [31]. The result shows that the proposed 

method which based on converged classification on CNN for matching cost computation steps and equipped with 

other post-processing steps capable of producing comparable results to other established methods. Even though it 

performs lower than the results of the final MC-CNN-acrt algorithm in the Middlebury benchmark standard, but it 

proves that the proposed method at the classification part improves overall results. Furthermore, it performs better 

than the original baseline with simple stereo matching post-processing steps applied. Overall results of the 

proposed method show competitive results compared to other stereo matching algorithms. We hope to further 

advance the architecture with different dilation to the CNN layer and equip it with better stereo matching steps. We 

also want to enhance the cost aggregation and disparity refinement steps using a new image enhancement method 

in the future. 
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