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Abstract: Hydro-power plants are able to produce electrical energy in a sustainable way. A known
format for producing energy is through generation scheduling, which is a task usually established
as a Unit Commitment problem. The challenge in this process is to define the amount of energy
that each turbine-generator needs to deliver to the plant, to fulfill the requested electrical dispatch
commitment, while coping with the operational restrictions. An optimal generation scheduling
for turbine-generators in hydro-power plants can offer a larger amount of energy to be generated
with respect to non-optimized schedules, with significantly less water consumption. This work
presents an efficient mathematical modelling for generation scheduling in a real hydro-power plant
in Brazil. An optimization method based on different versions of the Coral Reefs Optimization
algorithm with Substrate Layers (CRO) is proposed as an effective method to tackle this problem.
This approach uses different search operators in a single population to refine the search for an optimal
scheduling for this problem. We have shown that the solution obtained with the CRO using Gaussian
search in exploration is able to produce competitive solutions in terms of energy production. The
results obtained show a huge savings of 13.98 billion (liters of water) monthly projected versus the
non-optimized scheduling.

Keywords: generation scheduling; hydro-power plants; coral reefs optimization algorithm; meta-
heuristics; bio-inspired algorithms; energy efficiency

1. Introduction

Obtaining the optimal generation scheduling in a Hydroelectric Power Plant (HPP) is a
challenging problem, with direct implications in the plant’s energy production performance
and in the amount of water consumed in the generation process. Generation scheduling is
a kind of Unit Commitment (UC) problem [1], i.e., a family of mathematical optimization
problems in the electric energy generation, where the production of a set of turbine-
generators is somehow managed to achieve a common target, in this case particularized
for HPPs. In general, UC problems have some properties such as higher dimensionality,
non-linearity, a combinatorial and multimodal nature which are hard to solve efficiently,
respecting the existing operational constraints [2]. In the case of generation scheduling
in HPPs, it is necessary to have a production modeling for the power generation. The
hydro-power plant is composed of turbine-generator units in which each unit needs to
deliver part of the total demand dispatched. In this sense, the objective to be achieved is to
find the amount of efficient energy that each turbine-generator must generate (in MW) for
the system. Thus, the general goal is minimizing the costs and the usage of water resources,
whether fulfilling of power demand and respecting the restrictions [3].
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Most HPPs have a usual operating mode that works by equally distributing required
demand among the ready to use turbine-generators. Nevertheless, note that this equal
distribution generally does not lead to an efficient schedule for each turbine-generator,
because the generator may not be at its maximum efficiency point. Thus, finding the
maximum efficiency point of each turbine-generator set for the generation scheduling
problem in HPPs, can be a task considered to be highly complex [4,5]. Research on the
optimal operation of electric power systems started around the 1940s [4,6] and, from then,
it has been highly influenced by computer science and optimization theory.

In recent decades, different computational techniques and math modelings were
proposed to solve problems related to generation scheduling in HPPs. These approaches,
took into account that the UC is a NP-hard, non-linear, multi-stage and stringent constraint
problem [7]. Optimization models to maximize the power production in short-term hydro-
power unit commitment were proposed in [8] to perform the maximum power produced
storage for all possible combinations of turbines using Mixed-integer linear programming
(MILP). In [9] a proposed study to perform the maximum power produced storage for all
possible combinations of turbines was done. These both works solved the UC problem
without implementation of penstock losses. This fact has disadvantages for solving the
problem as it does not cover the real nature of hydro-power production.

The Linear Programming application [9], Lagrangian multiplier, in which this class
of method presents a set of sensitive aspects that often require time-consuming tuning
tasks [10], and the Branch-and-Bound with Projected Gradient methods [11] (in which it is
not clear how the penstock losses and operational coefficients of turbines were obtained)
are also common strategies for solving UC problems to minimize operational costs. These
deterministic methods have some advantages as a convergence guarantee, less computa-
tional effort, flexible formulation, and not requiring the calculation of second derivatives
(in Gradient methods). However, the aforementioned methods have characteristics which
are the linearization of the objective functions and the constraints imposed on the problem,
which have a non-linear nature, in which this process can cause losses of information and
inconsistency in the solutions.

Meta-heuristic approaches have also been applied to obtain the optimal operation
of power systems in UC problems, such as Particle Swarm Optimization (PSO) [12] that
provided the operation of multi-reservoir system, to minimize the energy shortages with
complying with the hydraulic and operational constraints. The Real coded Genetic Al-
gorithm (RGA) was proposed by [13] to make the optimal hydro-thermal scheduling
operation reaching a low computing time. The Differential Evolution algorithm (DE) was
implemented via the Parallel self-adaptive approach to provide optimal electric dispatch
in [14,15]. The study described by [14] indicates that the main goal of the optimization
process in UC problems was to satisfy the system demand for 24 h with a decreased usage
of water quantity per electrical energy unit reached. In [15] the results shows a significant
decreasing trend and extreme flood occurrences in a cascade UC approach.

The non-linear fuzzy methods are addressed by [16] to make a predictive control
system in the HPP and the current practice of using machine learning methods to solve
the UC problems [17,18]. Some approaches to assess dam releases from hydro-power
reservoirs with improving the power production presented solid results using evolutionary
algorithms as a solver [19,20]. Combinations of mixed programming with meta-heuristics
are addressed in [21], where the goal was to minimize the profit-based in competitive
electricity markets. In [22] it has proposed a coupled approach where an Evolutionary
Programming is used to optimize the cost functions in a refurbished power grid. Hybrid
techniques, such as mixing the Genetic Algorithms, and Differential Evolution have been
tested on a generation scheduling problem in an HPP with six turbine-generators [23]
showing that this approach achieves competitive results in solving UC problems.

In general, the largest advantage of using meta-heuristics over classical deterministic
techniques to solve UC-like problems is that no linearization is required. These techniques
allow including non-continuous, non-convex and non-differentiable objective functions,
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and they have an easy and robust implementation [24,25]. On the other hand, in some
modeling of the UC problem these techniques can become computationally expensive. This
fact occurs because they are based on a population of potential solutions to the problem [26].
Such methods are efficient in the search for solutions both global and local, being sensitive
to the fine-tuning parameters and the possibilities of premature convergence, when the
search space increases with respect to the number of generating units of the HPP to be
optimized [27].

In this work we solve the generation scheduling problem in a real hydro-power plant.
Specifically, we propose a generalist mathematical modeling to calculate hydraulic losses
for HPPs. The model was built using real data. From the dataset that was structured by
us, the concept of “learning from data” was applied. An approximation of the data was
performed via linear regression. This action corroborates the ideas present in machine
learning techniques. The realization of this approach minimizes the computational time
to obtain optimized solutions via meta-heuristics in the problem of addressing electrical
dispatch. Here, our objective is to maximize the power production in an HPP, saving as
much water as possible. For this, we are proposing the use of an effective method for
solving the generation scheduling in HPPs, by implementing different versions of the Coral
Reefs optimization (CRO) [28].

Conceptually, the CRO is an evolutionary-type (meta-heuristic) algorithm that is based
on the concept of reproductive behavior of corals on real coral reefs. This algorithm can
be considered to be a mix of the Simulate Annealing and Evolutionary algorithms [29].
The CRO algorithm proposed in this work can be tested with different search operators,
as exploration mechanisms, obtaining this a powerful evolutionary-like algorithm for
solving optimization problems. We have also tested an ensemble version of the algorithm,
called CRO-SL, in which all the searching algorithms are included together into a single
population, forming an efficient ensemble approach. To our knowledge, this is the first time
that the CRO algorithm is applied to solve generation scheduling problems in HPPs, as an
optimal system controller of the plant. We show its excellent performance in a real problem,
which is considered the generation scheduling of an HPP energy producing in Brazil.

The work structure follows: Section 2.1 presents the problem formulation of the gener-
ation scheduling problem in HPPs considered in this work, including a novel mathematical
model to operational control of plant taken into account hydraulic losses. Section 2.2
describes the CRO meta-heuristic and the different search operators defined to tackle the
generation scheduling problem in HPPs. Section 3 details main characteristics of HPP
studied in this work, and shows the design of experiments performed. Section 4 con-
ducts a discussion with a comparative analysis of algorithms using statistical inference
techniques. Section 5 presents the conclusions on the research carried out.

2. Materials and Methods
2.1. Problem Definition and Generation Scheduling Modelling

In general, any UC-related task consists of finding an optimal scheduling for each
dispatched hour or the corresponding power demand for a different turbine-generator set,
with the objective of reducing operating costs, and respecting the constraints linked to the
problem. Specifically, in HPPs the UC is usually formulated as a generation scheduling
problem, in which the production function of a turbine-generator unit is related to its
efficiency, the water discharge needed and the height of the net water head. In the described
modelling in this work, the productivity is a quadratic function that has two dependent
parameters: the turbined water discharge and the net water head. Thus, in general terms,
Equation (1) describes the production of energy (in MW),

phjt = G · ηjt · hljt · qjt, (1)

where the power energy phjt is obtained (in MW/h) for each turbine-generator machine (j)
at time interval (t). The term G is a constant that matches the gravitational acceleration
(9.8 · 10−3 kg/m2 s2). Please note that gravity is presented here in this way in order to
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convert automatically kilowatts to megawatts. The term ηjt represents the productivity
performance (in terms of total efficiency, measured in %) for each turbine-generator (j) at
the time interval (t). The net water head hljt is the reservoir height (in m, without hydraulic
losses) for each turbine-generator at a time interval (t). The term qjt address the water
discharge (in m3/s) for each turbine-generator (j) at the time interval (t).

2.1.1. Hydraulic Losses Model

To obtain the value of the net water head, hljt, we propose a model for calculating
hydraulic losses along the pipeline, based on phenomena observed in Fluid Mechanics.
In this context, the reservoir head (Hb, in m) is calculated from the difference between
upstream and downstream levels [30]. Thus, we can obtain the hljt subtracting the value of
Hb of hydraulic losses. Local (∆Hl) and distributed (∆Hd) hydraulic losses are related to
water friction on the walls of penstocks (measured in m). The total accumulation of losses
can be obtained by (2),

∆Hjt = ∆Hd + ∆Hl . (2)

The penstock is formed by straight and curved sections that maintain a certain diame-
ter. Thus, the distributed losses are characterized by the friction of water in the straight
pipeline section. The Darcy–Weisbach equation calculates the distributed losses as

∆Hd = F
L
D

V2

2g
, (3)

where F is a penstock loss coefficient. L is the length of the penstock (in m). The term D
means the pipe diameter (in m). The water velocity (m2/s) is measured by V. Here, the
gravity g is a constant equal 9.8 m/s2. Therefore, F, in which ξ is the roughness in the
pipeline andR is the Reynolds number, can be obtained as follows:

F =

(
64
R )8 + 9.5

[
ln
(

ξ

3.7D
+

5.74
R0.9

)
−
(

2500
R

)6
]−16

 (4)

when the fluid particles mix in a non-linear movement, i.e., chaotically with the turbulence
and swirls, the flow is defined as turbulent. The Reynolds number,R, is a term that takes
into account the speed between the fluid that flows and the material that surrounds it.
The fluid velocity is given by V = q

A . In this case, the term q is the water discharge in

the interval(t) and A addresses the size pipeline area, in which A = π D4

4 . TheR number
is the ratio between the product of the fluid specific mass (ρ), fluid velocity (V) and the
pipeline diameter by the fluid viscosity (µ, in m3/s2) by, asR = ρVD

µ . Thus, the local losses
(4Hl) are determined by a rise in specific parts of the pipeline, and are obtained using
Equation (5),

∆Hl = λ
V2

2g
, (5)

where λ is the coefficient losses inside curves. The global losses amount, ∆Hjt, which
includes all sections of the pipeline can be modeled by Equation (6)

∆Hjt =
S(n)

∑
s=1

F
L
D

V2

2g
+

C(n)

∑
c=1

λ
V2

2g
. (6)

In the modeling, hydraulic losses described in this work, the parameter hljt can be
obtained by the difference calculated according to Equation (7)

hljt = Hbjt − ∆Hjt. (7)
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2.1.2. Adjustment of the Model from Data

Although different efficiency models in the literature exist, in this work the productiv-
ity modeling is described by the quadratic function shown in Equation (8),

ηjt = ρ0j + ρ1jhljt + ρ2jqjt + ρ3jhljtqjt + ρ4jhl2
jt + ρ5jq2

jt, (8)

where ηjt is the productivity (in %) of each turbine-generator (j) at interval (t). The terms
ρ0j, . . . , ρ5j are the production coefficients generated using information about the Hill Curve.
The term hljt is the net water head (in m) of each turbine generator (j) at time (t) and qjt is
the water discharge (in each turbine-generator (j) at interval (t).

This work addresses a real study in an HPP installed in Brazil where the plant has
a single Hill Curve. The power production (phjt) defines the unit’s global efficiency by
the product of the efficiencies of generators and turbines. Even though the generator’s
efficiency can be considered constant over a wide range of operations, the turbine efficiency
is dependent on the net head (hljt) and the turbine water discharge (qjt). The relationship
between these variables is relatively complex and typically described by a curve known
as the Hill Curve [11]. Keeping in mind that the Hill Curve contains the information of
water discharge, net head, and power generated, we performed a non-linear multi-variable
regression process to obtain the operational coefficients from the original Hill Curve data
depicted in Figure 1—left side. This strategy is considered a machine learning approach in
which it was possible to learn from data.

A pre-processing was performed from the Hill Curve. The image went through a
vectorization process, and thus we generated a 6969 point dataset (qjt, hljt, ηjt). For the
regression, the water discharged (qjt) boundaries adopted were [70, 140] (m3/s) and the
net water head (hljt) boundaries [32, 56] (m). These two parameters were considered the
regression independent variables. On the other hand, the dependent variable used was the
productivity (ηjt) with boundaries [83, 94] (%). Figure 1 shows the process described.

Figure 1. Hill Curve - Vectorized points. Left: Hill Curve for a plant using Kaplan and installed in
1956. Each level of productivity (efficiency) in the range [83, 94] % was redesigned and, based on a
vectorization algorithm, 6969 points were generated with the information regarding (qjt), (hljt) and
(ηjt). Right: graph plot generated using the 6969 points obtained in the vectorization.

In the adopted regression process a randomized sub-sample (996 points) of the created
dataset by vectorization method was used with Equation (8). The internal MATLAB statistic
algorithms of Levenberg-Marquardt [31,32] were used in the regression process. With an
adjusted R-Squared of 99%, general root-mean-square error (RMSE) equal to 0.00263 and a
general p-Value < 0.0001, the estimated coefficients obtained are shown in Table 1. These
values obtained show that the results are significant.
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Table 1. Operating Coefficients—Estimation by Nonlinear Regression.

Coefficient Estimation RMSE p-Value

ρ0j 0.1463 5.74× 10−3
<0.0001

ρ1j 0.018076 2.01× 10−4 <0.0001
ρ2j 0.0050502 4.75× 10−5 <0.0001
ρ3j −3.5254e-05 5.69× 10−7 <0.0001
ρ4j −0.00112337 2.07× 10−6 <0.0001
ρ5j −1.4507e-05 1.67× 10−7 <0.0001

Figure 2 shows the original (vectorized points—in black) data overlapping the calcula-
tion by regression process (applying Equation (8) with coefficients from Table 1 and the
6969 data points of (qjt) and (hljt)—in red). The graph shows that the approach realized is
satisfactory, giving credibility to the coefficients estimated by regression addressed here.

Figure 2. Hill Curve—Overlap: vectorized points of (qjt), (hljt) and (ηjt) and calculated points using
(qjt), (hljt) data, operative coefficients from regression (by Table 1) and Equation (8).

As the equations for calculating ηjt depend directly on the qjt and hljt, the production
function has been simplified and proposed here. The coefficients ρ0j, · · · , ρ6j generated in
our approach are characteristic parameters of Brazilian HPP. In our modeling Equation (9)
calculates the power production,

phjt = G · [ρ0j + ρ1jhljt + ρ2jqjt + ρ3jhljtqjt+ (9)

ρ4jhl2
jt + ρ5jq2

jt] · [Hbjt − ∆Hjt] · qjt,

where the phjt is electric power for each turbine-generator (j) at interval (t). G is gravity
(9.8 · 10−3 kg/m2 s2). The terms ρ0j, . . . , ρ5j are the productivity coefficients. The term hljt
is the net water head of each turbine-generator (j) at the interval (t). The qjt addresses the
water discharge of each turbine-generator (j) at an interval (t). The ∆Hjt means the losses
of pipelines for each turbine-generator (j) at an interval (t) and the reservoir head is given
by (Hb) for each turbine-generator (j) at an interval (t). Figure 3 shows the interpolated
graphical representation of Equation (9), using the operating coefficients given in Table 1.

As the only available data regarding the HPP under study were provided by means
of a Hill Curve, no hydro constraints, such as hydrological alterations caused by power
generation on HPPs [33], could be considered.
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Figure 3. Hill Curve—Surface obtained: meshgrid created from [70, 140] (qjt, in m3/s), [32,56] (hljt,
in m), [83,93] (ηjt, in %) intervals using Equation (8).

2.1.3. Optimization Modelling

The following model for maximizing hydroelectric productivity is then considered.
Let the decision variable transposed vector be denoted by

x = [q1t, q2t, . . . , qjt],

in which each decision variable qjt ∈ R is bounded by the lower and upper limits of the
water discharge (qmin

jt and qmax
jt , respectively), for each turbine-generator. The composed

objective function is presented by Equation (10)

Maximize F(x) =
∑

J(r)
j=1 phjt

∑
J(r)
j=1 qjt

, (10)

The adopted objective function, F(x), is the ratio between the total power generated
(∑

J(r)
j=1 phjt) and the total water (∑

J(r)
j=1 qjt) used to perform the electric dispatch. Keep in mind

that the smaller the amount of water needed to meet the generation demand, the higher
the productivity will be. This objective function is subject to the following constraints:

1. The power demand produced ((∑
J(r)
j=1 phjt)) can be considered approximately equal to

the power demand requested (D), with an acceptable error (ε = 0.15% MW).

D(1− ε) ≤
J(r)

∑
j=1

phjt ≤ D(1 + ε),

2. The water discharge boundaries for each turbine-generator (qmin
jt and qmax

jt ).

qmin
jt ≤ qjt ≤ qmax

jt ,

3. The electric power boundaries (phmin
jk and phmax

jk ) for each turbine-generator in oper-
ating zones (Zjk).

phmin
jk

∅j

∑
k=1

Zjk ≤ phjt ≤ phmax
jk

∅j

∑
k=1

Zjk,
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4. Each turbine-generator has only one operating zone: on or off (Zjk, on (1) or off (0)).

Zjk ∈ {0, 1},
∅j

∑
k=1

Zjk ≤ 1.

To satisfy these four constraints, we consider a penalty factor in the objective function,
so the final fitness function can be expressed as

f ′ = p
n

∑
i

max[0, phjt/qjt]
2. (11)

2.2. Evolutionary Meta-Heuristic Proposed: The Coral Reefs Optimization Algorithm

The Coral Reefs Optimization algorithm (CRO) is a type of evolutionary technique pro-
posed in [34,35] that has been successfully applied in several optimization problems [36–42].
The CRO uses a n×m grid R (i.e., the coral reef), where each square (denoted by its co-
ordinates (i,j)) can host a candidate solution to the problem x (i.e., a coral). The CRO’s
framework can be summarized as follows:

(1) Initialization. The algorithm is initialized by assigning random candidate solutions
to a random number of squares of the grid, leaving the rest empty. Each solution is
labeled with the problem’s objective function f (x) (i.e. the healthy function).

(2) Reef formation. It is an iterative process that takes place over κ iterations. At each
iteration several operators or search procedures are applied to emulate the corals’
reproduction in the reef. Therefore, new candidate solutions are obtained and try to
settle on the reef. If the square of the reef found (i,j) is free, the coral settles in the hole.
If the square is occupied, the candidate solution fights with the settled solution and
the one with higher health function stays in the hole. If the new candidate cannot
settle, it tries to find a new square, but after λ attempts without finding a place to
grow, the candidate solution is discarded.

(3) Predation. Once settlement of new corals has taken place, a predation phase may
occur with probability Pψ. Should predation happen, a percentage of the reef has
preyed and solutions previously settled are lost. Thus leaving holes for new candi-
date solutions (with bad health functions) from other areas of the search space, to
enter the reef (and escape from local minima).

(4) Stop. if halting criteria are satisfied; otherwise go to step (2) for the next cycle.
The best individual in the reef is considered to be the final solution to the problem.

The CRO algorithm can implement different search procedures during the reef’s
formation to obtain new candidate solutions (it is an algorithm defined in exploitation, not
in exploration). In this paper the operators selected as search procedures in the CRO are
the following:

• Harmony Search mutation (HS): Mutation is recreating the Harmony Search algo-
rithm [43]. New candidate is obtained: using the same values of the component from
other reefs’ coral, with a probability HMCR∈ [0, 1] (Harmony Memory Considering
Rate); or performing slight modifications to the candidate, with a probability PAR
(Pitch Adjusting Rate) ∈ [0, 1];

• Differential Evolution mutation (DE): Mutation implementing a Differential Evolution
algorithm [44]. New candidates are obtained by combining a reef’s coral x with a per-
turbation vector x′. Two different strategies have been used to find the perturbation:
DEB: x′i = xbest

i + F(x2
i − x3

i ) (using the best), and
DER: x′i = x1

i + F(x2
i − x3

i ) (on a random basis)
(where F stands for the evolution factor that weights the perturbation amplitude, in
our case F = 0.1);

• Differential Evolution mutation with crossover (DEX): Mutation recreating the Dif-
ferential Evolution algorithm [44]. New candidates are obtained after a crossover
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is applied between a coral from the reef x and a perturbation vector x′ generated
by DER.

• Gaussian mutation (GM): The new candidate is obtained by applying gaussian muta-
tion to a coral from the reef (x′i = xi + δNi(0, 1), where Ni(0, 1)) is a random number
following the Gaussian distribution. The Gaussian probability density function is:

fG(0,σ2)(x) =
1

σ
√

2π
e−

x2

2σ2 .

where σ value linearly decreases during the run, from 0.2 · (A− B) to 0.02 · (A− B),
being [B, A] the search domain. Therefore, at the beginning the mutation is strong
while at the end it is a fine tuning.

On the other hand, the Coral Reefs Optimization with Substrate Layer algorithm (CRO-
SL) [29,45] is a multi-method ensemble based on in the standard CRO algorithm, yet with
a structure that promotes competitive co-evolution using the layers deployed. Each layer
proposed implements a different search strategy, operator, constraint, repairing function,
etc., although the use of diverse search operators is the most common mechanism for the
CRO-SL. In this paper, each layer implements an exploration operator, and the procedures
used are the same as those described for the classic CRO. In Section 3, the nomenclature
used to refer to these layers is as follows: (1) CRO(1) for a layer implementing Harmony
Search mutation, (2) CRO(2r) for a layer using Differential Evolution mutation, (3) CRO(3r)
for a layer implementing Differential Evolution mutation with crossover (DEX), and (4)
CRO(4) for a layer using Gaussian mutation (GM). Figure 4 illustrates the experimental
design of the CRO algorithm.

Figure 4. (a) Reef’s setting process in CRO-SL. Each potential solution to the problem (larva) tries to settle down in any
substrate, regardless of its origin substrate. (b) Example of layered reef and their different search strategies implemented
(mutations and/or crossovers on each substrate).

3. Experiments and Results

This section describes the specific aspects of the HPP studied and the design of
experiments realized to find good solutions for the UC problem by applying different
versions of the CRO algorithm. We considered data from a real hydroelectric plant installed
in São Francisco river, Minas Gerais state, Brazil. At the request of the plant manager,
mathematical modeling did not address the Unit Minimum up/Minimum down time
constraint, as the HPP must keep all its turbine-generators on. Difficulty to obtain data
from an HPP regarding the power production lead us to calculate them from the Hill Curve
of an HPP (see Section 2.1.2).
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3.1. Case Study and Parameter Settings

The HPP considered in this paper has a capacity to produce 396MW/h, operating with
six turbine-generators. The HPP presents constraints such as water discharge (qjt), water
discharge boundaries per turbine-generator (qmin

jt and qmax
jt ), and electricity produced per

generator (phjt). According to these constraints, qjt must be in the range [70, 140] m3/s and
phjt must be in the range [35, 66] MW. In the simulation reported in this work all the power
units were considered to be turned on to produce energy. The optimization algorithms
need to receive system inputs of reservoir head (Hb) value, which is the fall height (in m) of
the reservoir, in the range [32, 56].

The conducted experiments show the proposed modeling considering two stages: (1)
the first step was to test all algorithms performing the daily electric dispatch. The CRO
versions were compared in this case against two standard optimizers; and (2) the second
step verifies the results obtained by the algorithms in hourly electric dispatches.

The results in both cases show the best solution archived in the last generation of all
algorithms. After experimentation, inference methodology was conducted to investigate if
the differences between the tested algorithms exist or not, when tackling the generation
scheduling problem in this real HPP. We performed the computational simulation using an
Intel CoreTM i7 with CPUs@2.70 GHz and 16 GB RAM, with Windows 10 operating system.

To verify the performance of the results of the CRO algorithm versions applied in
this work, a real encoding Genetic algorithm (RGA) [46] and a Differential Evolution (DE)
approach [44] have been chosen to compare results. We chose these approaches since
RGA and DE have obtained good results in solving the UC problem in previous works.
The initialization parameters used for all algorithms were: population size equal to 120,
and the total number of generations equal to 120. Specifically for AG, a crossover rate
equal to 0.6 and a mutation equal to 0.5 were used, in which this operator performed
the polynomial mutation. In DE algorithms, F = 0.1 and CR = 0.5 are used in both
strategies: DE(best/1/bin) and DE(rand/1/bin). The CRO algorithm used as a probability
of death a value equal to 0.1, the number of jumps is equal to 3, and the number of depleted
corals is equal to 10% of the population. All parameters were defined empirically. Each
algorithm was performed 30 times to conduct the statistical analysis of the results. Figure 5
exemplifies the simulation strategy adopted.

3.2. Daily Dispatch Programming Experiment

This experiment conducts the daily operation for electric dispatch. The idea is to
verify if the algorithms find feasible solutions respecting the constraints. In our experiment,
the daily schedule used was totally random. Results obtained by each algorithm for
five main characteristics: water discharged, net water head, losses, efficiency,and power
produced (the terms in Equation (9) were used to construct response surface graphs via data
interpolation. In general, the amount dispatched by each generator cannot be drastically
changed, as it is not possible to decrease the speed of the generator to achieve this and
dramatic changes can damage the dam. The value adopted as an input system in relation
to the hydraulic head of the reservoir (Hb) was 55 (m), which means that the reservoir has
a higher level of capacity production. As it can be seen in response surfaces presented in
this section , in general, all the algorithms tested respect the limits of power and water
discharge rates, because the values found are between the range established by power
and water discharge constraints. The solutions found by the stochastic algorithms used
in this work report that it is possible to realize the operation using distinct dispatches per
turbine-generator.
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Figure 5. Simulation strategy adopted. The (upper) part of the figure exemplifies the Daily dispatch
programming experimentation. The (bottom) part of the figure exemplifies the Hourly dispatch
programming experimentation.

The graphics represent the values obtained for optimized water discharge in each hour,
as well as the values of net water head, penstock losses, efficiency, and power generated.
The small variations prove that the algorithms found solutions that do not drastically alter
the unit dispatch (turbine-generators). This fact is very important in terms of the HPP
generation and, indirectly, this dynamic minimizes the cost of maintaining these machines.
Therefore, an ideal pattern for graphics is seen when there is little discrepancy on the
response surface. We discuss here the behavior of some algorithms tested in this work.
Among the mutation strategies used in the CRO algorithm, when using Gaussian mutation
(CRO(4)), showed in Figure 6, we can notice that the response surface constructed from the
daily generation data has the least shape change.

Figure 6. CRO with Gaussian Mutation—CRO(4). Results of Water discharge (m3/s). Net water head (m). Penstock (m).
Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

This indicates that the optimized flow rates are different per generating unit, but it does
not change very abruptly with the change in demand every hour. In addition, it reached
the highest efficiency levels of each turbine-generator units among the tested algorithms.
The same behavior is observed when checking the response surface presented by the
DE/best/1/bin (DEB) and DE/rand/1/bin (DER) algorithms, showed by Figures 7 and 8.
The detail observed in the results of DEB and DER are similar to solutions archived by
CRO(4), with some sharp disturbances.
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Figure 7. Differential Evolution (best/1/bin)—DEB. Results of Water discharge (m3/s). Net water head (m). Penstock (m).
Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

Figure 8. Differential Evolution (rand/1/bin)—DER. Results of Water discharge (m3/s). Net water head (m). Penstock (m).
Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

The Real Genetic Algorithm (RGA—Figure 9) shows a sudden change in generation
every hour. The behavior of turbine-generators modifying the power generated, as well
as the CRO with Harmony mutation (CRO(1)—Figure 10) and CRO uses mutation based
on the DE strategies (CRO(2b) and CRO(2r)—Figures 11 and 12). When using the DE with
crossover, (CRO(3r)), we notice that the result is more stable than when using the two point
crossover operation as well, as can be seen in Figure 13.

After verifying the behavior of each mutation applied to the CRO separately, we
have shown that the CRO with a Gaussian mutation obtains the best results among all
algorithms tested. Thus, the CRO algorithm was applied to solve the problem using
substrates (CRO-SL) in order to verify the influence of the Gaussian mutation in combination
with other search operators. As we can see, the Gaussian mutation improves the results
of Harmony (Figure 14—(CRO(1,4)), both DE mutations implemented (Figures 15 and 16—
(CRO(2b,4)) and (CRO(2r,4)), respectively), and the DE with crossover (CRO(3r,4)), which can
be seen in Figure 17.

Figure 9. Real Genetic Algorithm—RGA. Results of Water discharge (m3/s). Net water head (m). Penstock (m). Efficiency
(%) and Power generated (MW/h). Daily dispatch (24 h).
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Figure 10. CRO with Harmony mutation—CRO(1). Results of Water discharge (m3/s). Net water head (m). Penstock (m).
Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

Figure 11. CRO with DE Mutation (best/1/bin)—CRO(2b). Results of Water discharge (m3/s). Net water head (m). Penstock
(m). Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

Figure 12. CRO with DE Mutation (rand/1/bin)—CRO(2r). Results of Water discharge (m3/s). Net water head (m).
Penstock (m). Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

Figure 13. CRO with DE Mutation/Crossover (rand/1/bin)—CRO(3r). Results of Water discharge (m3/s). Net water head
(m). Penstock (m). Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).
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Figure 14. CRO-SL with Harmony and Gaussian Mutations substrates—CRO(1,4). Results of Water discharge (m3/s). Net
water head (m). Penstock (m). Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

Figure 15. CRO-SL with DE(best/1/bin) and Gaussian Mutation substrates—CRO(2b,4). Results of Water discharge (m3/s).
Net water head (m). Penstock (m). Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

Figure 16. CRO-SL with DE(rand/1/bin) and Gaussian Mutation substrates—CRO(2r,4). Results of Water discharge (m3/s).
Net water head (m). Penstock (m). Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).

Figure 17. CRO-SL with (DEB/DER) and Gaussian Mutation substrates—CRO(3r,4). Results of Water discharge (m3/s). Net
water head (m). Penstock (m). Efficiency (%) and Power generated (MW/h). Daily dispatch (24 h).
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To check out the algorithm’s performance in terms of demand requested and total
water discharged, Figure 18 shows the results obtained with the different algorithms
considered. It is possible to see that the generated power demand of all meta-heuristics
was achieved respecting the constraints. Besides this, it is possible to see that all algorithms
respected the water discharge limits saving resources to perform the operation when
compared to the “usual mode of operation” system.

Figure 18. Typical plot of power generated (MW/h)/water discharged (m3/s) through time in the Daily dispatch (24 h).

Table 2 shows the results of water (in m3/s) projection savings in energy production.
It is possible to verify that for all demands considered, the meta-heuristics save important
amounts of water. If we focus on the details of the best proposed approaches, we can see
that CRO(4) delivered the demand requested per hour; it used a much lower volume of
water than the other approaches in the energy production process. Please note that the
CRO(4) strategy was able to save 116.92 m3/s over the course of the day. In a projection,
this saving is equivalent to 420 million(mi) liters of water per day. Analyzing the table
we can also see that, using the sub-layer approach, Gaussian Mutation contributed to
an improvement in results when combined with the other mutation strategies used in
this work. Especially when used with the DE(2b) mutation option followed by DE(2r),
Harmony and DE(3r) saving respectively more: 76.1 mi, 67.6 mi, 30 mi and 13.7 mi litters
of water per day as shown in Table 2.

3.3. Hourly Dispatch Programming Experiment

The simulation objective in hourly dispatch is to find the possible differences between
the algorithms. To verify this behavior, for each meta-heuristic applied in this work, a
demand of 325MW/h was established. This choice is based on the results presented in
Table 2, in which 325MW/h achieved the greatest savings.



Energies 2021, 14, 2443 16 of 24

Table 2. Water saved in daily (d) power production. Million liters (mi). In bold the best results found.

D RGA DEB DER CRO(1) CRO(2b) CRO(2r)

255 0.40 0.71 0.70 −0.36 1.19 0.79
265 1.20 1.68 1.75 −0.25 0.93 1.87
275 2.49 2.66 2.49 4.91 3.61 2.76
285 2.98 3.46 3.43 2.01 3.11 3.59
295 2.14 4.12 3.88 4.78 4.32 4.30
305 3.43 4.62 4.25 3.52 5.53 4.68
315 2.95 4.93 4.78 3.06 4.85 5.07
325 3.03 4.57 4.76 3.66 6.23 5.22
335 3.50 4.54 4.03 2.01 4.49 5.02
345 3.09 4.35 4.51 3.50 3.27 4.63
355 3.27 3.72 3.73 8.36 2.78 3.88
365 1.17 2.64 2.49 3.20 2.33 2.87
365 1.35 2.58 2.69 3.20 3.06 2.87
355 3.37 3.19 3.78 8.36 3.74 3.91
345 4.10 4.47 4.52 3.50 4.32 4.63
335 4.46 4.81 5.11 2.01 4.81 5.06
325 3.59 5.04 5.02 3.66 6.21 5.19
315 3.17 4.45 4.97 3.06 5.71 5.09
305 3.66 4.62 4.56 3.52 5.29 4.75
295 2.67 4.06 4.18 4.78 4.27 4.22
285 2.99 3.46 3.46 2.29 3.59 3.58
275 2.33 2.66 2.58 4.91 3.60 2.82
265 1.37 1.74 1.82 2.10 1.22 1.85
255 0.61 0.71 0.70 −0.36 1.48 0.84

ASW (m3/s) 63.3 83.8 84.2 79.4 89.9 89.5
ASW (L/day) 227.9 mi 301.7 mi 303.1 mi 285.9 mi 323.8 mi 322.2 mi

D CRO(3r) CRO(4) CRO(1,4) CRO(2b,4) CRO(2r,4) CRO(3r,4)

255 0.85 1.59 0.69 1.42 1.68 0.71
265 1.73 2.83 1.88 2.80 2.69 1.72
275 2.71 3.76 2.70 3.52 3.69 2.83
285 3.06 4.65 3.37 4.55 4.55 3.47
295 4.23 5.33 4.16 5.10 5.30 4.26
305 4.05 5.94 4.55 5.06 5.75 4.79
315 5.04 6.37 4.80 6.08 5.96 4.90
325 4.90 6.39 5.15 5.06 5.93 4.89
335 5.02 6.24 4.85 6.12 5.95 4.78
345 4.57 5.78 4.62 5.63 4.89 4.62
355 3.73 5.33 3.70 4.92 2.50 4.04
365 2.71 4.10 2.88 3.94 3.74 2.84
365 2.95 4.12 2.88 4.18 3.99 2.83
355 3.86 5.13 3.70 5.14 3.63 5.88
345 4.59 6.10 4.60 5.82 5.30 4.59
335 5.02 6.32 5.03 6.22 6.27 5.12
325 5.25 6.52 5.37 5.86 6.28 5.13
315 5.14 6.21 5.10 6.09 6.19 5.31
305 4.49 5.94 4.55 5.44 5.83 4.85
295 4.25 5.33 4.35 5.29 5.34 4.37
285 3.54 4.70 3.57 4.64 4.62 3.68
275 2.82 3.69 2.70 3.62 3.75 2.64
265 1.66 2.83 1.88 2.80 2.74 1.86
255 0.79 1.74 0.69 1.80 1.71 0.71

ASW (m3/s) 87.0 116.9 87.8 111.1 108.3 90.8
ASW (L/day) 313.2 mi 420.9 mi 315.9 mi 399.9 mi 389.8 mi 326.9 mi
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4. Discussion

This section will address a comparative discussion of the performance of meta-
heuristics applied to solve the UC problem. Each algorithm was run 30 times to verify
normality. To satisfy an effective test of the obtained solution samples, this work ap-
plied statistical inference to check the normality of samples and use some statistical tests
that could reflect the mean differences of the applied algorithms. To test the normal-
ity of samples (N = 30) we used the Kolmogorov-Smirnov test (see [47]). We adopted
α = 0.05 in all cases. Figure 19 shows the test results in which the algorithms CRO(4)
and DE(best/1/bin) indicated that the behaviour of the sample is non-normal. This data
proves that Kolmogorov-Smirnov with a p-Value metric results was bigger than 0.05 in
these two cases. The other algorithms have a normal distribution according to the empirical
distribution function (CDF) presented in Kolmogorov-Smirnov results. A non-parametric
inference methodology was adopted to investigate the presence of differences (or not) in
averages of algorithms solutions.

Figure 19. Empirical CDF of the meta-heuristics considered. Results obtained from 30 runs of
each algorithm.

Figure 20 shows scatter and boxplot graphics for the 30 runs obtained for each algo-
rithm. The scatter helps us understand the outliers that were identified in the boxplot chart
on the RGA, CRO(1), CRO(2b) and CRO(3r). Boxplot is a descriptive and non-parametric
statistical test which depicts the 25th percentile, 50th percentile (median), 75th percentile,
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and min and max values, and outliers (if present). Although some boxplots may show the
location of the mean in relation to the median and quartiles, boxplots do not provide infor-
mation about the true difference among means. However, since an overlap of the boxes
can be seen for fitness values of algorithms tested, a statistical test needs to be performed
in order to identify whether there is a difference among the algorithms. Keeping this point
in mind and observing Figure 20, it is possible to argue that:

• visually we can see differences among the true means of CRO(4) and the rest of the
algorithms, favouring CRO(4) version, but cannot perceive the overlap with others;

• it is not possible to conclude if a statistical significant difference of the means computed
of RGA, CRO(1), CRO(2b), CRO(2r), and CRO(3r) algorithms exists (or not).

CRO-SL version is an ensemble approach, which works with sub-layers working as
searching operators. Because of that, after observing the good result from the CRO with
Gaussian mutation (the CRO(4) strategy), we investigated the influence of this mutation
together with the other exploration mechanisms considered. Figure 21 shows the results
combining a Gaussian mutation with Harmony and DE strategies.

We can see that the Gaussian mutation improves the results of CRO in the CRO-SL
approach. If we consider the CRO-SL including a combination of Gaussian and Harmony
substrates (CRO(1,4)), the boxplot presents a lower dispersion of results, as well as the
combinations made with the DE strategies, when comparing the results presented in the
versions shown in Figure 20. According to our previous analysis, a statistical test needs
to be performed in order to identify whether there is a difference among the algorithms.
A Kruskal-Wallis [48] test and a non-parametric Tukey-type test [49] were used to test for
differences among the mean ranks of the nine treatments/algorithms. Kruskal-Wallis
results show with a p-Value of 2.04 × 10−52 that there exists a statistically significant
difference, with α = 5%, between the algorithms results. The Kruskal-Wallis test tells us
if the obtained results are significantly statistical, but does not indicate where differences
are in the groups tested. The Tukey test [49] can be carried out to check if groups shows
differences. The test conducts a full pairwise comparison, as shown in Figure 22. Figure 22
shows the result of the Tukey test confirming that CRO(4) configurations generate solutions
with a higher fitness function values. However, we cannot say if there is a clear distinction
between the CRO(2b,4) and CRO(1,4) solutions. Figure 23 shows plots of typical fitness
evolution for each CRO-SL approach. It is possible to see the algorithm’s convergence in
120 generations. We can analyze the graphs and assert that the algorithms stabilized the
average convergence starting with the 48th, 55th and 100th generations, to a fitness value
equal to 0.50158 (CRO(4)), 0.50148 (CRO(1,4)) and 0.50152 (CRO(2b,4)), respectively.

Table 3 contains the dispatch report of the algorithms. The saving resources can be
addressed as follows: CRO(1,4) generates an economy of 5.05 m3/s, CRO(2b,4) perform an
economy of 5.15 m3/s and CRO(4) show the best results saving 5.32 m3/s. In a monthly
projection, the savings achieved by the CRO versions reach an amount of 13.27 billion
liters of water using CRO(1,4) approach, 13.53 billion liters of water using the solution of
CRO(2b,4), and 13.98 billion liters of water using the solution by the CRO(4) strategy. To
supply a city of 300.000 citizens, it is necessary to have, on average, 1.1 billion liters [50]. In
a city with a population of 2.4 million residents, for example, in a simple analogy, 13.98
billion liters are enough to guarantee the water supply for almost 1.5 months approximately.
Please note that all turbine-generators worked in the maximum level of efficiency.

Finally, we would like to state that the CRO(4) version performed the electric dispatch
operation in HPP, achieving competitive solutions. In results addressed here the CRO(4)
obtained the highest water savings in a projection when compared to the results of standard
evolutionary algorithms compared in this work and present in [50,51].
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Figure 20. Scatter and Boxplot chart for the CRO with a single layer approach. Results obtained after
30 runs of the algorithm.

Figure 21. Scatter and Boxplot chart for the CRO-SL with Gaussian, Harmony and DE strategies.
Results obtained after 30 runs of the algorithm.
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Figure 22. Tukey test results obtained from 30 runs of the algorithm.

Figure 23. Best evolution’s obtained by CRO-SL algorithm with three different search strategies.
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Table 3. General simulation report of 325 MW/h. The results in bold mean the maximum effi-
ciency achieved.

CRO(1,4)|(Hb) = 55m

UN phjt (MW) qjt (m3/s) ηjt (%) hljt (m) ∆Hjt (m)

1 54.6 109.00 0.93 54.76 0.24
2 55.7 111.00 0.93 54.81 0.19
3 54.5 108.73 0.93 54.81 0.19
4 53.2 106.01 0.93 54.82 0.18
5 53.7 107.02 0.93 54.81 0.19
6 53.3 106.3 0.93 54.80 0.20

SUM 324.99 648.05 Flow in SCM: 653.1 (m3/s)
SUB −0.01 5.05 Productivity index: 0.50148

CRO(2b,4)|(Hb) = 55m

UN phjt (MW) qjt (m3/s) ηjt (%) hljt (m) ∆Hjt (m)

1 54.6 109.00 0.93 54.76 0.24
2 54.2 108.00 0.93 54.8 0.20
3 53.9 107.42 0.93 54.81 0.19
4 53 105.63 0.93 54.82 0.18
5 54.2 108.06 0.93 54.84 0.18
6 53.1 109.92 0.93 54.84 0.18

SUM 325.01 648.04 Flow in SCM: 653.1 (m3/s)
SUB +0.01 5.15 Productivity index: 0.50152

CRO(4)|(Hb) = 55m

UN phjt (MW) qjt (m3/s) ηjt (%) hljt (m) ∆Hjt (m)

1 53.6 107 0.93 54.77 0.23
2 54.7 109 0.93 54.8 0.20
3 54.3 108.2 0.93 54.81 0.19
4 53.9 107.4 0.93 54.81 0.19
5 53.7 107.4 0.93 54.82 0.18
6 54.7 109.02 0.93 54.81 0.19

SUM 324.92 647.78 Flow in SCM: 653.1 (m3/s)
SUB −0.08 5.32 Productivity index: 0.50155

5. Conclusions

In this paper, we have dealt with a specific version of the generation scheduling by
unit commitment problem in hydro-power plants (HPPs). This work describes an efficient
mathematical modeling for including hydraulic losses in penstocks at HPPs, allowing a
more accurate calculation of the power production. This new formulation of the problem
has been applied in an active generation scheduling problem in a real HPP in Brazil. A
fresh meta-heuristic, the Coral Reefs Optimization algorithm (CRO) has been proposed
for solving this problem, testing different variants of the algorithm, including a different
exploration for the coral reef’s population. Upon the application of the model and the
respective analysis of results, the contributions are:

• Proposal of an effective mathematical modeling to power electric dispatch in HPP.
The proposed model extends the electric power equation (Equation (9)), bringing
modularity to the obtaining of ηjt (using regression fit) and hljt (fluid mechanics’
model) terms. This modeling has been described and discussed in detail, being easily
replicable.

• Inclusion of a hydraulic losses model in the mathematical modeling, to bring greater
reality to the dynamics of the electric dispatch problem. In this sense, net water head
(hljt) was obtained (Equation. (7)).
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• Generation of a dataset, using regression techniques, featuring power plants’ Kaplan-
type turbines. Operating Coefficients in Equation (8) were estimated using Nonlinear
Regression and presented in Table 1.

• Proposal and testing of the CRO algorithm using a combination of search operators or
search operators independently. In this work, the latter has concluded on best results
when the CRO with Gaussian mutation was used, outperforming real encoded genetic
algorithms and differential evolution.

• Proposal of a statistical inference methodology to compare results from the meta-
heuristics has been applied. To test the samples’ normality, the Kolmogorov-Smirnov
test was implemented, showing that the behaviour using CRO(4) and DE(best/1/bin)
algorithms is non-normal. Also, Kruskal-Wallis test was used to determine the differ-
ences among the mean ranks, resulting in statistically significant difference between
the algorithms results. Finally, Tukey test was performed, confirming that CRO(4)
configurations generate solutions with higher fitness function values.

The experimental results obtained show that the proposed methods based on the
CRO algorithm converged for satisfactory results. The best performing CRO approach
was the CRO with Gaussian mutation, which showed a competitive performance, bet-
ter than previous algorithms for this problem such as real coded genetic algorithms or
Differential Evolution approaches. The CRO-SL also showed a good performance, but
it was not possible to statistically confirm that CRO-SL outperforms the CRO with the
Gaussian Mutation (CRO(4)). In the daily dispatch experiment, the CRO(4) obtained the
best results, followed by the CRO-SL with Gaussian Mutation and DE mutation CRO(2r,4)
and by CRO(3r) CRO with DE with mutation/crossover. We also conducted an hourly
power dispatch in which the CRO with Gaussian Mutation obtained again the best result,
producing a solution able to save approximately 13.98 billion liters of water every month,
in respect to the current HPP operating mode. Future works comprise the proposal of
local search procedures to improve the performance of the CRO meta-heuristic. Also,
research on new solving schemes to UC-related problems, in a cascade power production
system, and the inclusion of hydro-logical alterations caused from power generation, will
be pursued in the near future.

Author Contributions: Conceptualization, C.G.M., S.J.-F. and S.S.-S.; methodology, C.G.M., C.C.-G.,
S.J.-F. and S.S.-S.; software, C.G.M. and C.C.-G.; validation, C.G.M., C.C.-G., S.J.-F. and S.S.-S.; formal
analysis, C.G.M., S.J.-F. and S.S.-S.; investigation, C.G.M., C.C.-G., S.J.-F. and S.S.-S.; resources, C.G.M.,
S.J.-F. and S.S.-S.; data curation, C.G.M., S.J.-F. and S.S.-S.; writing—original draft preparation, C.G.M.;
writing—review and editing, S.J.-F. and S.S.-S.; visualization, C.G.M., S.J.-F. and S.S.-S.; supervision,
S.J.-F. and S.S.-S.; project administration, S.J.-F. and S.S.-S.; funding acquisition, C.G.M., S.J.-F. and
S.S.-S. All authors have read and agreed to the published version of the manuscript.

Funding: This project has received funding from the European Union’s Horizon 2020 research
and innovation program under the Marie Skłodowska-Curie grant agreement No 754382. This
research has been partially funded by Ministerio de Economía y Competitividad of Spain (Grant Ref.
TIN2017-85887-C2-2-P), by Comunidad de Madrid, PROMINT-CM project (grant No. P2018/EMT-
4366), and Brazilian research agencies: CAPES (Finance Code 001) and CNPq for support. “The
content of this publication does not reflect the official opinion of the European Union. Responsibility
for the information and views expressed herein lies entirely with the author(s)”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank UAH and UFRJ for the infrastructure used to conduct
this work.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2021, 14, 2443 23 of 24

References
1. Padhy, N. Unit Commitment—A Bibliographical Survey. IEEE Trans. Power Syst. 2004, 19, 1196–1205. [CrossRef]
2. Yang, L.; Li, W.; Xu, Y.; Zhang, C.; Chen, S. Two novel locally ideal three-period unit commitment formulations in power systems.

Appl. Energy 2020, 284, 1–19.
3. Arce, A.; Soares, S.; Ohishi, T.; Cicogna, A. Unit Commitment of Hydro Dominated Systems. Electr. Power Syst. Res. 2008, 9, 1–17.
4. Brito, B.; Finardi, E.; Takigawa, F. Unit-commitment via logarithmic aggregated convex combination in multi- unit hydro plants.

Electr. Power Syst. Res. 2020, 81, 1–7. .
5. Ceran, B.; Jurasz, J.; Wroblewski, R.; Guderski, A.; Ztotecka, D.; Kazmierczak, L. Impact of the Minimum Head on Low-Head

Hydropower Plants Energy Production and Profitability. Energies 2020, 13, 6728. [CrossRef]
6. Abdi, H. Profit-based unit commitment problem: A review of models, methods, challenges, and future directions. Renew. Sustain.

Energy Rev. 2020, 1, 1–28. [CrossRef]
7. Kong, J.; Skjelbred, H.; Fosso, O. An overview on formulations and optimization methods for the unit-based short-term hydro

scheduling problem. Electr. Power Syst. Res. 2020, 118, 1–14. [CrossRef]
8. Daadaa, M.; Seguin, S.; Demeester, K.; Anjos, M. An optimization model to maximize energy generation in short-term hydropower

unit commitment using efficiency points. Int. J. Electr. Power Energy Syst. 2021, 125, 1–8. [CrossRef]
9. Yoo, J.H. Maximization of hydropower generation throught the application of a linear programming model. J. Hydrol. 2013,

376, 182–187. [CrossRef]
10. Bento, P.; Mariano, S.; Calado, M.; Ferreira, L. A Novel Lagrangian Multiplier Update Algorithm for Short-Term Hydro-Thermal

Coordination. Energies 2020, 13, 6621, 1–19.
11. Finardi, E.; da Silva, E.L. Unit commitment of single hydroelectric plant. Electr. Power Syst. Res. 2005, 75, 116–123. [CrossRef]
12. Zhang, R.; Zhow, J.; Ouyang, S.; Wang, X.; Zhang, H. Optimal operation of multi-reservoir system by multi-elite guide particle

swarm optimization. Int. J. Electr. Power Energy Syst. 2013, 48, 58–68. [CrossRef]
13. Na, F.; Zhou, J.; Zhang, R.; Liu, Y.; Zhang, Y. A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for

short-term optimal hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 2014, 62, 617–629.
14. Glotic, A.; Glotic, A.; Kitak, P.; Pihler, J.; Ticar, I. Parallel Self-Adaptive Differential Evolution Algorithm for Solving Short-Term

Hydro Scheduling Problem. IEEE Trans. Power Syst. 2014, 29, 2347–2358. [CrossRef]
15. He, Z.; Zhou, J.; Jia, H.; Lu, C. Long-term joint scheduling of hydropower station group in the upper reaches of the Yangtze River

using partition parameter adaptation differential evolution. Eng. Appl. Artif. Intell. 2020, 81, 1–13. [CrossRef]
16. Zhang, R.; Chen, D.; Yao, W.; Ba, D.; Ma, X. Non-linear fuzzy predictive control of hydroelectric system. IET Gener. Transm.

Distrib. 2017, 11, 1966–1975. [CrossRef]
17. Yang, Y.; Wu, L. Machine learning approaches to the unit commitment problem: Current trends, emerging challenges, and new

strategies. Electr. J. 2021, 34, 369–389.
18. Nan, Y.; Di, Y.; Zheng, Z.; Jiazhan, C.; Daojun, C.; Xiaoming, W. MResearch on modelling and solution of stochastic SCUC under

AC power flow constraints. IET Gener. Transm. Distrib. 2018, 12, 3618–3625. [CrossRef]
19. Cioffi, F.; Gallerano, F. Multi-objective analysis of dam release flows in rivers downstream from hydropower reservoirs. Appl.

Math. Model. 2013, 36, 2868–2889. [CrossRef]
20. Doganis, P.; Sarimveis, H. Optimization of power production through coordinated use of hydroelectric and conventional power

units. Appl. Math. Model. 2014, 38, 2051–2062. [CrossRef]
21. Reddy, K.; Panwar, L.; Panigrahi, B.; Kumar, R. Binary whale optimization algorithm: A new metaheuristic approach for

profit-based unit commitment problems in competitive electricity markets. Eng. Optim. 2019, 51, 369–389. [CrossRef]
22. Perumal, R.; Krishnan, m.; Subramanian, K. A hybrid LR-FA technique to optimize the profit function of gencos in a restructured

power system. Electr. Power Syst. Res. 2012, 32, 113–120. [CrossRef]
23. Singh, A.; Khamparia, A. A hybrid whale optimization-differential evolution and genetic algorithm based approach to solve unit

commitment scheduling problem: WODEGA. Sustain. Comput. Inform. Syst. 2020, 28, 1–10. [CrossRef]
24. Marcelino, C.; Baumann, M.; Carvalho, L.; Chibeles-Martins, N.; Weil, M.; Almeida, P.; Wanner, E. A combined optimisation and

decision-making approach for battery-supported HMGS. J. Oper. Res. Soc. 2020, 71, 762–774. [CrossRef]
25. Marcelino, C.; Almeida, P.; Wanner, E.; Baumann, M.; Weil, M.; Cavalho, L.; Miranda, V. Solving security constrained optimal

power flow problems: A hybrid evolutionary approach. Appl. Intell. 2018, 48, 3672–3690. [CrossRef]
26. Sharma, D.; Trivedi, D.; Srinivasan, D.; Thillainathan, L. Multi-agent modeling for solving profit based unit commitment problem.

Appl. Soft Comput. 2013, 13, 3751–3761. [CrossRef]
27. Dhaliwal, J.; Dhillon, J. Profit based unit commitment using memetic binary differential evolution algorithm. Appl. Soft Comput.

2019, 81, 1–20. [CrossRef]
28. Salcedo-Sanz, S. A review on the coral reefs optimization algorithm: New development lines and current applications. Prog.

Artif. Intell. 2017, 6, 1–15. [CrossRef]
29. Garcia-Hernandez, L.; Garcia-Hernandez, J.; Salas-Morena, L.; Carmona-Munoz, C.; Alghamdi, N.; Valente de Oliveira, J.;

Salcedo-Sanz, S. Addressing Unequal Area Facility Layout Problems with the Coral Optimization algorithm with Substrate
Layers. Eng. Appl. Artif. Intell. 2020, 93, 1–11. [CrossRef]

30. Massey, B. Mech. Fluids; Spon Press: Abingdon, VA, USA, 2012.

http://doi.org/10.1109/TPWRS.2003.821611
http://dx.doi.org/10.3390/en13246728
http://dx.doi.org/10.1016/j.rser.2020.110504
http://dx.doi.org/10.1016/j.epsr.2019.106027
http://dx.doi.org/10.1016/j.ijepes.2020.106419
http://dx.doi.org/10.1016/j.jhydrol.2009.07.026
http://dx.doi.org/10.1016/j.epsr.2005.01.008
http://dx.doi.org/10.1016/j.ijepes.2012.11.031
http://dx.doi.org/10.1109/TPWRS.2014.2302033
http://dx.doi.org/10.1016/j.engappai.2019.01.013
http://dx.doi.org/10.1049/iet-gtd.2016.1300
http://dx.doi.org/10.1049/iet-gtd.2017.1845
http://dx.doi.org/10.1016/j.apm.2011.09.077
http://dx.doi.org/10.1016/j.apm.2013.10.025
http://dx.doi.org/10.1080/0305215X.2018.1463527
http://dx.doi.org/10.2316/Journal.203.2012.3.203-4930
http://dx.doi.org/10.1016/j.suscom.2020.100442
http://dx.doi.org/10.1080/01605682.2019.1582590
http://dx.doi.org/10.1007/s10489-018-1167-5
http://dx.doi.org/10.1016/j.asoc.2013.04.001
http://dx.doi.org/10.1016/j.asoc.2019.105502
http://dx.doi.org/10.1007/s13748-016-0104-2
http://dx.doi.org/10.1016/j.engappai.2020.103697


Energies 2021, 14, 2443 24 of 24

31. Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168.
[CrossRef]

32. Marquardt, D. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 1963, 11, 431–441.
[CrossRef]

33. Braun-Cruz, C.; Tritico, H.; Beregula, R.; Girard, P.; Zeihofer, P.; Ribeiro, L.; Fantin-Cruz, I. Evaluation of Hydrological Alterations
at the Sub-Daily Sacale Caused by a Small Hydroelectric Facility. Water 2021, 13, 206. [CrossRef]

34. Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-Lopez, S.; Portilla-Figueras, J.A. The coral reefs optimization algorithm: A novel
metaheuristic for efficiently solving optimization problems. Sci. World J. 2014, 2014, 1–15. [CrossRef] [PubMed]

35. Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-Lopez, S.; Portilla-Figueras, J.A. The coral reefs optimization algorithm: An
efficient meta-heuristic for solving hard optimization problems. In Proceedings of the 15th International Conference on Applied
Stochastic Models and Data Analysis (ASMDA2013), Mataró (Barcelona), Spain, 25–28 June 2013; Volume 1, pp. 751–758.

36. Garcia-Hernandez, L.; Salas-Morera, L.; Carmona-Muñoz, C.; Abraham, A.; Salcedo-Sanz, S. A Hybrid Coral Reefs Optimization -
Variable Neighborhood Search Approach for the Unequal Area Facility Layout Problem. IEEE Access 2020, 8, 134042–134050.
[CrossRef]

37. García-Hernandez, L.; Salas-Morera, L.; Carmona-Muñoz, C.; Abraham, A.; Salcedo-Sanz, S. A novel multi-objective Interactive
Coral Reefs Optimization algorithm for the Unequal Area Facility Layout Problem. Swarm Evol. Comput. 2020, 55, 100688.
[CrossRef]

38. Camacho-Gómez, C.; Marsá-Maestre, I.; Giménez-Guzmán, J.; Salcedo-Sanz, S. A Coral Reefs Optimization algorithm with
substrate layer for robust Wi-Fi channel assignment. Soft Comput. 2019, 23, 12621–12640. [CrossRef]

39. Durán-Rosal, A.; Gutiérrez, P.; Salcedo-Sanz, S.; Hervás-Martínez, C. A statistically-driven Coral Reef Optimization algorithm for
optimal size reduction of time series. Appl. Soft Comput. 2018, 63, 139–153. [CrossRef]

40. Sánchez-Montero, R.; Camacho-Gómez, C.; López-Espí, P.; Salcedo-Sanz, S. Optimal Design of a Planar Textile Antenna for
Industrial Scientific Medical (ISM) 2.4 GHz Wireless Body Area Networks (WBAN) with the CRO-SL Algorithm. Sensors 2018,
18, 1982. [CrossRef] [PubMed]

41. Salcedo-Sanz, S.; García-Díaz, P.; Del-Ser, J.; Bilbao, M.; Portilla-Figueras, J. A novel Grouping Coral Reefs Optimization algorithm
for optimal mobile network deployment problems under electromagnetic pollution and capacity control criteria. Expert Syst.
Appl. 2016, 55, 388–402. [CrossRef]

42. Salcedo-Sanz, S.; Camacho-Gómez, C.; Mallol-Poyato, R.; Jiménez-Fernández, S.; Del Ser, J. A novel Coral Reefs Optimization
algorithm with substrate layers for optimal battery scheduling optimization in micro-grids. Soft Comput. 2016, 20, 4287–4300.
[CrossRef]

43. Geem, Z.; Kim, J.; Loganathan, G. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.
[CrossRef]

44. Storn, R.; Proce, K. Differential Evolution - A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

45. Salcedo-Sanz, S.; Camacho-Gómez, C.; Molina, D.; Herrera, F. A coral reefs optimization algorithm with substrate layers and
local search for large scale global optimization. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2016,
Vancouver, BC, Canada, 24–29 July 2016; pp. 3574–3581.

46. Deb, K.; Deb, D. Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Comput. 2014, 4, 1–28.
[CrossRef]

47. Justel, A.; Pena, D.; Zamar, R. A multivariate Kolmogorov-Smirnov test of goodness of fit. Stat. Probab. Lett. 1997, 35, 251–258.
[CrossRef]

48. Kruskal, W.; Wallis, W. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [CrossRef]
49. Tukey, J. Comparing Individual Means in the Analysis of Variance. Biometrics 1949, 5, 99–114. [CrossRef] [PubMed]
50. Marcelino, C.; Carvalho, L.; Almeida, P.; Wanner, E.; Miranda, V. Application of Evolutionary Multiobjective Algorithms for

solving the problem of Energy Dispatch in Hydroelectric Power Plants. Lect. Notes Comput. Sci. 2014, 4, 403–417.
51. Marcelino, C.; Wanner, E.; Almeida, P. A novel mathematical modeling approach to the electric dispatch problem: Case study

using Differential Evolution algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Cancun,
Mexico, 20–23 June 2013;Volume 1, pp. 400–407.

http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.3390/w13020206
http://dx.doi.org/10.1155/2014/739768
http://www.ncbi.nlm.nih.gov/pubmed/25147860
http://dx.doi.org/10.1109/ACCESS.2020.3010577
http://dx.doi.org/10.1016/j.swevo.2020.100688
http://dx.doi.org/10.1007/s00500-019-03815-9
http://dx.doi.org/10.1016/j.asoc.2017.11.037
http://dx.doi.org/10.3390/s18071982
http://www.ncbi.nlm.nih.gov/pubmed/29933585
http://dx.doi.org/10.1016/j.eswa.2016.02.032
http://dx.doi.org/10.1007/s00500-016-2295-7
http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1504/IJAISC.2014.059280
http://dx.doi.org/10.1016/S0167-7152(97)00020-5
http://dx.doi.org/10.1080/01621459.1952.10483441
http://dx.doi.org/10.2307/3001913
http://www.ncbi.nlm.nih.gov/pubmed/18151955

	Introduction
	Materials and Methods
	Problem Definition and Generation Scheduling Modelling 
	Hydraulic Losses Model
	Adjustment of the Model from Data
	Optimization Modelling

	Evolutionary Meta-Heuristic Proposed: The Coral Reefs Optimization Algorithm

	Experiments and Results
	Case Study and Parameter Settings
	Daily Dispatch Programming Experiment
	Hourly Dispatch Programming Experiment

	Discussion
	Conclusions
	References

