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ABSTRACT 

 
 

The Influence of Tropical Adaptation and Breedtype on Adrenal  

and Testicular Function in Beef Bulls. (May 2004) 

Jeffrey William Koch, B.S., Texas A&M University;  

M.S., University of Nebraska - Lincoln 

Co-Chairs of Advisory Committee:  Dr. Ronald D. Randel 
     Dr. Thomas H. Welsh, Jr. 

 
 

  Bulls of various breedtypes including Angus (Bos taurus), Bonsmara (Sanga X 

Bos taurus), Brahman (Bos indicus), Romosinuano (Criollo), Tuli (Sanga) and Wagyu 

(Japanese Bos taurus) were utilized to evaluate the influence of tropical adaptation on 

adrenal and testicular function.  The objectives were to determine if tropical adaptation 

influenced: a) response to management stressors, b) organ and gland weights, adrenal 

and testis StAR and P450 content and total adrenal, medullary and cortical areas, c) 

basal and hCG-induced testosterone and d) testis and epididymal sperm concentrations. 

Blood samples were obtained within 5 min before and after transportation and 

during restraint every 15 min for 6 h to evaluate cortical response.  Angus, Brahman and 

Romosinuano bulls were slaughtered following sexual maturity.   

Cortical responses to transportation and restraint were not influenced by tropical 

adaptation.  Response to these stressors could be categorized into high responders 

(Angus, Brahman), intermediate responders (Romosinuano, Tuli) and low responders 

(Wagyu, Bonsmara).  Tropically-adapted breedtypes were not categorized into a single 
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group; therefore, cortical responses to management stressors were influenced by 

breedtype, but not by tropical adaptation.   

Most organ and gland weights (actual weight and weight corrected for BW) and 

the steroid precursors, StAR and P450, were not influenced by tropical adaptation, but 

were by breedtype.  Paired adrenal gland weight, total adrenal area, medullary and 

cortical areas were influenced by tropical adaptation.  Tropically-adapted breedtypes had 

lighter glands and smaller areas than the temperate Bos taurus breedtypes.   

 All breedtypes except Wagyu had similar basal concentrations of plasma 

testosterone prior to hCG administration; therefore, basal testosterone was not influenced 

by tropical adaptation, but only by breedtype.  Wagyu had greater basal concentrations 

of testosterone than other breedtypes.  Testosterone concentrations following hCG 

administration was similar between adaptation groups and breedtypes.   

As expected, testis and epididymal sperm concentrations were influenced by 

tropical adaptation.  Tropically-adapted breedtypes had greater testicular and epididymal 

sperm concentrations than the temperate Bos taurus breedtypes during the summer 

months.   

 In summary, adrenal weight and area and testicular and epididymal sperm 

concentrations were influenced by tropical adaptation.  Cortical response to management 

stressors, basal testosterone and StAR and P450 content were influenced by breedtype, 

not tropical adaptation. 
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CHAPTER I 

INTRODUCTION 
 
 

 Beef cattle operations represent a large portion of the agricultural economy in the 

United States.  Most of the beef cattle operations utilize Bos taurus cattle which include 

both British (such as Angus) and Continental breeds (such as the Simmental).  However, 

Brahman or Bos indicus cattle are utilized in the majority of the Gulf Coast region 

(Cartwright, 1980).  The British breeds and Continental breeds are examples of Bos 

taurus breeds of cattle that were developed in the temperate zones of the Northern 

Hemisphere.  The Brahman breed of cattle are members of the Bos indicus genus and are 

tropically-adapted.  Bos taurus cattle tend to be earlier maturing, faster growing and may 

yield a more tender carcass compared to Bos indicus cattle (Turner, 1980; Solomon et 

al., 1986).  Bos indicus cattle tend to be tick and disease resistant and are genetically 

adapted to utilize poor quality forages (Turner, 1980).  Brahman cattle are important in 

beef crossbreeding systems to increase heterosis and adaptation to hot climates and for 

their improved utilization of low quality forage (Koger, 1980). 

 Brahman influenced cattle often have decreased acceptability by cattle feeders 

and thus are discounted by cattle buyers.  Consequently, the scientific evaluation of 

alternative tropically adapted breeds may be warranted (Thrift, 1997).  Currently, there 

are several tropically-adapted breeds that should be evaluated for potential utilization in 

crossbreeding.  The Romosinuano is a tropically-adapted Bos taurus breed of beef cattle  

_______________ 
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developed from cattle of Spanish origin in the Sinú Valley of Colombia (Rouse, 1977). 

The Romosinuano is one of seven Colombian Criollo breeds adapted to tropical and 

subtropical conditions (Felius, 1995).  In Colombia, the Romosinuano breed is 

recognized for its fertility, heat tolerance, and ability to be utilized in cross-breeding 

systems with Bos indicus cattle (Elzo et al., 1998).  The Bonsmara and Tuli are 

tropically-adapted Sanga cattle breeds that originated in Southern Africa.  The Bonsmara 

is a composite breed which was developed in the Transvaal by Dr. Jan Bonsma and 

contains 3/16 Hereford, 3/16 Shorthorn and 5/8 Africander, which is considered to be a 

Sanga breed (Felius, 1995).  The Bonsmara are considered to be docile and a highly 

fertile beef breed (Payne and Hodges, 1997).  The Tuli is a Sanga breed that evolved 

from the mixing of Bos indicus and Bos taurus germplasm in Africa (Schoeman, 1989).  

Tuli cattle are considered to have good conformation, to be highly fertile and females are 

productive until at least 15 years of age (Payne and Hodges, 1997).  An additional breed 

that may be of economic importance in some crossbreeding systems is the Wagyu.  The 

Wagyu is a temperate Bos taurus breed of cattle that originated in Japan.  Wagyu cattle 

are referred to as Japanese black and are known for their extremely well-marbled 

carcasses.  The meat from Wagyu cattle is referred to as Kobe beef and is considered to 

be a delicacy (Felius, 1995). 

 Stress occurs during common management practices in beef cattle production.  

The response of a breed to management stressors such as transportation and restraint 

may determine if that breed will be advantageous in crossbreeding systems.  

Reproduction is also important in considering the inclusion of a breed of cattle in 
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crossbreeding systems.  Tropically-adapted Bos taurus cattle breeds such as the 

Romosinuano, Sanga influenced or Sanga breeds such as the Bonsmara and Tuli and 

temperate Bos taurus cattle such as the Wagyu may offer unique alternatives in beef 

cattle crossbreeding systems; however, stress and reproductive parameters must be 

evaluated to develop a better understanding of how these breeds can be used.  The 

experiments were designed to test the following hypotheses:  1) Tropical adaptation 

influences adrenal function in bulls and 2) Tropical adaptation influences testicular 

function in bulls.   

Objectives 

 This research was designed to evaluate stress and reproductive parameters in 

temperate Bos taurus (Angus and Wagyu), tropically-adapted Bos taurus (Romosinuano) 

and tropically-adapted Sanga (Bonsmara and Tuli) and Bos indicus (Brahman) bulls.  

More specifically these experiments were designed to: 

1)  Determine the influence of breed on response to the common management stressors 
transportation and restraint. 

 
2)  Determine if organ weights, adrenal Steroidogenic acute regulatory (StAR) protein 

and P450 side-chain cleavage enzyme and total adrenal, medullary and cortical areas 
of tropically-adapted Bos Taurus bulls are more similar to temperate Bos taurus bulls 
or tropically-adapted Bos indicus bulls. 

 
3)  Determine if differences exist in basal and induced concentrations of testosterone 

among tropically-adapted Bos taurus, Sanga, temperate Bos taurus and tropically-
adapted Bos indicus bulls. 

 
4)  Determine if the weights of reproductive organs, testis and epididymal sperm 

concentrations and content of testis StAR protein and P450 scc enzyme of tropically-
adapted Bos taurus bulls are more similar to temperate Bos taurus bulls or tropically-
adapted Bos indicus bulls. 
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CHAPTER II 

REVIEW OF THE LITERATURE 
 
 
 The stress and reproductive axes (Figures 1 and 2; respectively) are both 

important in beef cattle production systems.  The ability of animals to reproduce 

offspring is essential and necessary for beef cattle producers to stay in business.  The 

stress axis maintains homeostasis in the body; however, it can adversely affect 

reproduction as well as growth in cattle.  Different biotypes of cattle may respond 

differently to management stressors and/or may differ in various reproductive 

parameters. 

 The stress and reproductive axes both arise from the same embryonic origin.  

These axes both have similarities in the hormonal pathways from the hypothalamus to 

the anterior pituitary to the steroid-producing organ.  Steroidogenic pathways are also 

similar in the adrenal and the testis.  The following sections discuss various aspects of 

the hypothalamic-pituitary-adrenal axis and hypothalamic-pituitary-testis axis as well 

stimulators of these axes. 
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Hypothalamic-Pituitary-Adrenal Axis 

 The hypothalamic-pituitary-adrenocortical (HPA) axis is a major component of 

the neuroendocrine response to stressful events (Selye, 1973).  This relationship between 

stress and adrenocortical activation was one of the first recognized in the study of the 

endocrinology of stress (Selye, 1939).  Stress results in activation of both the HPA axis 

and the sympatho-adrenal medullary (SA) system.  Stress response results in production 

and secretion of glucocorticoids from the HPA axis and the catecholamines (epinephrine 

and norepinephrine) from the adrenal medulla.  In the HPA axis, corticotropin-releasing 

hormone (CRH) as well as other secretagogues such as vasopressin from the 

hypothalamus stimulate the secretion of adrenocorticotropic hormone (ACTH) from the 

corticotropes of the anterior pituitary (Vale et al., 1981).  ACTH then enters the systemic 

circulation and acts at the adrenal gland to stimulate the synthesis and secretion of 

glucocorticoids (Smith, 1930) and possibly aldosterone (McCarty, 1983) and adrenal 

androgens (Axelrod and Goldzieher, 1967; Thomas, 1968)). 

 As shown in Figure 1, the HPA axis is regulated by multiple negative feedback 

loops.  The first feedback loop consists of an ultrashort CRH-mediated loop in which 

CRH released from the hypothalamus acts back at the hypothalamus to inhibit CRH 

secretion (Calogero et al., 1988b).  The second feedback loop is a short hypothalamic 

proopiomelancortin (POMC) gene derived peptide loop which includes both ACTH and 

ß-endorphin inhibiting CRH secretion (Calogero et al., 1988b).  The last feedback loop 

is a long glucocorticoid-mediated feedback loop where the glucocorticoids act at the 
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hypothalamus to inhibit CRH and inactivate the POMC gene, and also at the anterior 

pituitary to inhibit ACTH secretion (Keller-Wood and Dallman, 1984). 

Corticotropin-Releasing Hormone (CRH) 

It has long been recognized that factors produced in hypothalamic neurons 

regulate the secretion of ACTH from the anterior pituitary (Guillemin and Rosenberg, 

1955; Saffran et al., 1955).  However, the chemical structure and description of the 41 - 

amino acid peptide forming CRH was reported just over 20 years ago (Vale et al., 1981).  

CRH is synthesized in, and secreted primarily from, parvocellular neurons of the 

paraventricular nucleus of the hypothalamus (Bloom et al., 1982; Olschowka et al., 

1982).   

The receptor for CRH has been detected in the brain, anterior pituitary, adrenal 

medulla as well as in sympathetic ganglia of the rat (Cummings et al., 1983) and primate 

(Valentino, 1988).  The CRH receptors concentrated in the corticotropes of the pituitary 

appear to be sensitive to circulating concentrations of glucocorticoids since receptor 

numbers decrease shortly after adrenalectomy (Wynn et al., 1985) or during chronic 

stress (De Souza and Battaglia, 1988).  CRH enters the hypothalamic-hypophyseal portal 

blood system to act at receptors on the corticotropes (Plotsky et al., 1985).  These 

receptors are G-protein specific and when bound to CRH the protein kinase A and 

protein kinase C pathways are activated (Millan et al., 1987). 

CRH secretion is regulated by several stimuli and factors.  Stimuli such as pain 

and blood pressure regulate CRH secretion.  Increases in blood pressure result in 

inhibition of CRH secretion whereas decreases in blood pressure result in increased 
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CRH secretion (Ganong, 1988).  CRH secretion is also regulated by several 

neurotransmitter systems.  Secretion of CRH is stimulated by norepinephrine, 

epinephrine, acetylcholine and serotonin (Calogero et al., 1988a) as well as cytokines 

such as Interleukin - 1, 2, 6 and tumor-necrosis factor (Woloski et al., 1985).  Calogero 

et al. (1988a) reported that gamma-aminobutyric acid (GABA), opioids, ACTH and 

glucocorticoids inhibit the secretion of CRH.  

Adrenocorticotropic Hormone (ACTH) 

ACTH is synthesized in and secreted from the corticotropes of the anterior 

pituitary.  Proopiomelanocortin (POMC) is the prohormone for ACTH (Mains et al., 

1977).  Expression of the POMC gene is stimulated by CRH and vasopressin.  These 

authors also report that POMC, in the anterior pituitary, is converted into ACTH, a 39-

amino acid fragment, and β-lipotropin, a 92-amino acid fragment.  ACTH is not only 

regulated by CRH, but also by arginine vasopressin, oxytocin, Angiotensin II, vasoactive 

intestinal polypeptide, and serotonin (Plotsky et al., 1985).  Glucocorticoids have been 

shown to inhibit ACTH secretion in vitro and in vivo (Keller-Wood and Dallman, 1984).  

CRH passes through the hypothalamo - hypophyseal portal vessels to act upon the 

corticotropes to stimulate secretion of ACTH.  ACTH then enters the systemic 

circulation and acts at the adrenal gland to stimulate the synthesis and secretion of 

glucocorticoids and aldosterone and adrenal androgens. 

 The adrenal gland consists of two regions, the outer cortical region and the inner 

medullary region.  The catecholamines, epinephrine and norepinephrine, are secreted 

from the chromaffin cells of the adrenal medulla (sympathomedullary system).  The 
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adrenal cortex can be divided into three morphologically distinct zones: the zona 

glomerulosa, zona fasiculata and the zona reticularis.  The primary product of the zona 

glomerulosa is the mineralocorticoid aldosterone.  The primary product of the zona 

fasiculata and zona reticularis is the glucocorticoid cortisol; however, the zona reticularis 

is also responsible for secretion of other steroids such as androgens 

(dehydroepiandrosterone, DHEA; testosterone) and estrogens (estradiol and estrone; 

Black, 1993).  Glucocorticoids, epinephrine, and norepinephrine act to inhibit glucose 

uptake, fatty acid storage, and protein synthesis at storage sites and stimulate the release 

of energy substrates, including glucose, amino acids, and free fatty acids, from muscle, 

fat tissue and liver (Munck et al., 1984).  This is paralleled by the stimulation of 

cardiovascular and pulmonary function (Yates et al., 1980) and suppression of anabolic 

processes such as digestion, growth, reproduction and immune function (Munck et al., 

1984). 

Administration of CRH and ACTH in Cattle 

 Studies describing CRH challenges in cattle are somewhat limited.  Boran heifers 

infected with Trypanosoma congolense and administered bovine CRH (bCRH) had a 

less responsive anterior pituitary and adrenal gland than heifers not infected with 

Trypanosoma congolense (Abebe et al., 1993).  Vesslier et al. (1999) reported that male 

Holstein calves administered 0.01 µg/kg bCRH did not increase plasma ACTH or 

cortisol concentrations, but administration of 0.03 µg/kg bCRH resulted in a five-fold 

increase in ACTH and cortisol and administration of 0.10 µg/kg bCRH resulted in a 

twenty-fold increase in ACTH and a ten-fold increase in cortisol concentrations.  These 
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same authors suggest that calves seem less sensitive to CRH than other animals since the 

threshold for a calf’s response to bCRH is 0.03 µg/kg compared to thresholds of 0.01 

µg/kg for humans (Orth et al., 1983) and pigs (Zhang et al., 1990).  Various doses of 

bCRH and arginine-vasopressin (AVP) administered together to Holstein male calves 

resulted in a marked increase in ACTH and cortisol concentrations above basal 

concentrations for at least 150 minutes following bCRH injection (Vesslier et al., 1999).  

These authors did not utilize a group receiving no AVP to compare the effects of AVP to 

bCRH on ACTH and cortisol concentrations.  However, AVP in addition to bCRH has 

been shown to have increased the integrated response and peak concentration of ACTH 

and cortisol in humans (DeBold et al., 1984), sheep (Pradier et al., 1986; Keller-Wood, 

1998), and pigs (Janssens et al., 1995). 

 Numerous studies investigating the influence of ACTH on adrenocortical 

response have been performed.  Various doses of ACTH have been utilized to evaluate 

adrenal cortical response.  Holstein-Friesian steer calves administered ACTH (0.01mg 

ACTH/100 kg body weight) at 6, 8, 10 and 15 months of age had greater concentrations 

of plasma cortisol at 8, 10, and 15, but not 6 months of age compared to Holstein-

Friesian bull calves receiving the same dose of ACTH over the same sampling period 

(Verkerk and Macmillan, 1997).  Barnes et al. (1983) reported no differences in peak 

plasma cortisol concentrations following ACTH (0.45 IU/kg BW) treatment in steers and 

bulls; however, concentrations of plasma cortisol remained elevated for a longer period 

of time in the steers.  Brahman heifers (Lay et al., 1996) and cows of various breeds 

(Friesian, Hereford, Ayrshire) (Alam et al., 1986) treated with varying doses of ACTH 
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(0.01, 0.03, 0.06, 0.12, 0.25, 0.50, 1.0, or 2.0 mg ACTH) had marked increases in 

plasma cortisol concentrations with cows receiving the lowest dose (0.01 mg ACTH) 

doubling pre-treatment cortisol concentrations at 0.5 and 3 h following injection.  These 

authors as well as others (Gwazdauskas et al., 1980) concluded that the increase in 

cortisol concentrations following ACTH treatment is directly dependent on the dose of 

ACTH with increased stimulation of the adrenal gland resulting from larger doses of 

ACTH.   

Breedtype influences cortisol response to ACTH treatments.  Koch et al. (2000) 

reported that the proportional response of concentrations of serum cortisol immediately 

prior to and 30 min following ACTH treatment was significantly greater for Bos taurus 

steers compared to ½ Bos taurus – ½ Bos indicus and Bos indicus steers but not ¾ Bos 

taurus – ¼ Bos indicus steers. 

Genetic Differences in the HPA 

 Differences in the HPA between breeds of cattle (Bruner et al., 1996; Carroll et 

al., 1996), goats (Engelbrecht et al., 2000), pigs (Desautes et al., 1999), strains of rats 

(Malendowicz, 1987; Sternberg et al., 1992; Moncek et al., 2001) and ethnic races 

(Yanovski et al., 1993; Yanovski et al., 1995; Yanovski et al., 1996) have been reported.  

These differences have been shown to be at various levels of the HPA including the 

hypothalamus and the pituitary gland as well as the adrenal glands.   

 Genetic differences concerning the hypothalamus have primarily been 

demonstrated in various strains of rats.  Lewis rats have been reported to have a 

markedly smaller CRH response to stress than that of the Fischer (F344) rats (Sternberg 
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et al., 1992).  These authors suggest this may be due to a decreased responsiveness of the 

CRF neurons to afferent stressful stimuli; however, Windle et al. (1998) suggest that 

differences in CRH release between the Fischer rat strain and the Lewis rat strain may be 

compounded by differences in pituitary sensitivity.   Following a restraint stress, CRH 

mRNA was significantly increased in the CFY strain of rats over Sprague-Dawley or 

Wistar strains (Harbuz et al., 1994). 

 Differences in the HPA are not only associated at the level of the hypothalamus, 

but also at the level of the anterior pituitary.  At the level of the pituitary the Lewis strain 

of rats had significantly lower POMC mRNA concentrations following restraint stress 

compared to the Fischer rat strain (Moncek et al., 2001).  These authors also reported 

significantly lower concentrations of ACTH in plasma of Lewis rats following restraint 

than that in Fischer rats.  This is similar to the findings of Dhabhar et al. (1997) reporting 

that the Fischer strain of rats had significantly higher ACTH following an acute stress 

than Sprague-Dawley rats or Lewis rats.  Differences have been reported in anterior 

pituitary gland weight between 3/4 Angus and 3/4 Brahman steers with 3/4 Angus steers 

having heavier anterior pituitary glands (Bruner et al., 1996; Carroll et al., 1996).  

Bruner et al. (1996) also reported that 3/4 Angus steers had higher concentrations of 

ACTH than did 3/4 Brahman steers. 

 Genetic differences have been reported for CRH-induced ACTH secretion in 

various ethnic groups of people.  Higher concentrations of ACTH following CRH 

administration have been reported in African-American women compared to Caucasian 

women (Yanovski et al., 1993) and African-American men compared to Caucasian men 
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(Yanovski et al., 1995).  Yanovski et al. (1996) also reported higher ACTH 

concentrations following CRH administration in prepubertal and early pubertal African-

American girls compared with prepubertal and early pubertal Caucasian girls.  In each of 

these studies involving ethnic races of people, only ACTH but not cortisol was 

significantly elevated in African-American people compared to Caucasian people. 

 Genetic differences at the level of the adrenal gland have been associated with 

adrenal gland weights, adrenal gland morphology as well as cortisol production in 

various species.  Bruner et al. (1996) reported 3/4 Angus steers had heavier paired 

adrenal gland weight, greater plasma cortisol concentrations and larger total adrenal 

area, medullary area and cortical area than 3/4 Brahman steers.  Brown Norway rats had 

heavier adrenal weights compared to Wistar, Fischer 344 rats and F1 hybrid Brown 

Norway X Fischer 344 rats (Sarrieau et al., 1998).  These authors also reported that the 

Brown Norway rats had the lowest concentration of corticosterone compared to the other 

three rat strains.  Engelbrecht et al. (2000) reported Angora goats had lower cortisol 

concentrations following ACTH administration compared to Boer goats or Merino 

sheep.  Angora goats also have lower adrenal mitochondrial P450 content compared to 

Boer goats and Merino sheep (Engelbrecht and Swart, 2000).  Basal cortisol 

concentrations as well as ACTH-induced cortisol concentrations are higher in Chinese 

Meishan pigs compared to large white pigs (Desautes et al., 1999).  Differences were 

reported in both adrenal weight and volumes of zona fasiculata and zona reticularis 

between the CFY and Wistar rat strains (Malendowicz, 1987).  Wilkinson et al. (1999) 
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reported Dark Agouti rats had a significantly smaller zona reticularis compared to 

Sprague-Dawley and Wistar rats.   

 Genetic differences have been reported at all levels of the HPA axis.  These 

genetic differences indicate that heredity may play an important role in controlling the 

mechanisms that lead to different physiological responses to stress.  Consequently, an 

animal's genotype or genetic make-up may affect its susceptibility and/or resistance to 

stressors. 

Factors Stimulating the Stress Response 

 The stress response can be stimulated by many factors called stressors in normal 

livestock production systems.  A stressor is defined as an environmental factor that 

contributes to, or elicits, stress responses which can threaten or adversely affect the 

health of the body.  Stressors can be physiological (Dobson and Smith, 1995) or 

psychological (Grandin, 1997).  Many, but not all, of these stressors are caused by 

normal or poor management practices.  Normal management practices which elicit a 

stress response include handling and restraining animals in squeeze chutes, hot iron 

branding of animals (Lay et al., 1992a), change in housing (Friend et al., 1987) as well 

as transportation of animals (Jacobson and Cook, 1998).  Poor management practices 

include nutritional deprivation and overcrowding of animals (Ewing et al., 1999).  An 

additional type of stressor, thermal stress, involves extreme temperatures and is a direct 

result of the environment.   

 Various stressors will elicit a stress response in livestock.  These stressors can 

primarily be placed into one of three categories, transportation stress, handling and 
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restraint stress and thermal stress.  The following sections will detail each of these 

categories. 

Transportation Stress 

 A common management technique in beef cattle production systems is 

transportation of cattle to a new destination.  These destinations can include transporting 

weaned calves to stocker programs, stocker calves to feedlots, fed cattle to slaughter 

facilities, as well as cows and bulls from ranch to ranch or to sale barns.  Transportation 

is a stressor that has been identified as a physical stressor (Dobson and Smith, 1995) or a 

psychological stressor (Grandin, 1997) because of the possible fear-factor encountered 

by cattle that have had a bad experience previously.  Jacobson and Cook (1998) suggest 

that transportation involves both physical and psychological types of stressors.  The 

primary physiological indicators used to assess the response of livestock to transport are 

changes in plasma hormones (Reid and Mills, 1962), live weight (Shorthose et al., 

1972), heart rate (Stephens and Toner, 1974) and factors involved in immune function 

(Gwazdauskas et al., 1978). 

 The stress response most commonly reported in transportation stress is that of 

increased circulating cortisol concentrations.  Zavy et al. (1992) reported that weaned, 

Bos indicus influenced (Angus X Brahman, Hereford X Brahman), castrated, male beef 

calves had higher concentrations of cortisol prior to transportation than weaned Bos 

taurus (Angus X Hereford) steer calves; however, no differences in cortisol 

concentration were detected following transportation. Calves that were transported for 

12 h immediately following weaning had increased cortisol concentrations (for 24 h and 
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remained constant for 24 h) for a prolonged time (return to initial or pre-transportation 

concentrations between d 4 and 7) compared to calves that were weaned with no 

transportation or calves that were weaned two weeks early in order to stabilize and 

become acclimated prior to transportation (Crookshank et al., 1979). Cortisol 

concentrations were greater in crossbred Friesian steers and bulls following 1 h of 

transportation compared with stationary confinement on the trailer for one h with no 

transport (Kenney and Tarrant, 1987a, b). Mitchell et al., (1988) reported that 

Brahman/Hereford/Afrikander cross heifers and steers 15 to 18 mo of age had greater 

concentrations of cortisol following a 180-km transportation stress compared to control 

animals which were not transported.   

In addition to circulating cortisol, weight loss and percentage of shrink is 

commonly measured.  This is usually a result of increased urination and defecation. 

Zavy et al (1992) reported that weaned steers lost 8.1% of their body weight but this 

weight loss was not related to genotype. Lay et al., (1996) reported that pregnant 

Brahman cows that were subjected to transportation had a greater (4%) shrink at 60 d 

gestation compared to pregnant Brahman cows that were administered ACTH (1 IU/Kg 

BW; 2% shrink) or sham (2% shrink); however, the cows receiving ACTH had higher 

concentrations of cortisol than did transported or sham cows.   Friend (2000) reported 

that horses which were transported for 30 h without water had a greater percentage 

shrinkage than horses provided water during transportation.   

Transportation results in changes in the immune system.  Kent and Ewbank 

(1986a) reported significant increases in neutrophil and lymphocyte numbers in two 
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groups of 1 to 3 wk old calves transported for 6 or 18 h (sampled during and after the 

trip) compared to non-transported calves of the same age. Similar results were reported 

with goats (Kannan et al., 2000) and horses (Stull and Rodick, 2000).  Angus and Angus 

X Brahman feeder steers subjected to a 14 h transportation stress also had increased 

mature neutrophils but decreased mononuclear cells and eosinophils compared to control 

feeder steers which were not transported (Blecha et al., 1984).   

Heart rate usually increases following transportation.  Suckling calves (2-4 mo) 

transported for one h had an average increase in heart rate from 80 beats per min (prior 

to transportation) to 110-115 beats per min following transportation (Stephens and 

Toner, 1974). Friesian bulls that were loaded onto a trailer five times (held on trailer for 

at least 15 min) over a 2 wk period had a lower heart rate during loading but not 

following a 2 h transportation experience than bulls not acclimated to the trailer  (Cook 

and Jacobson, 1998). These same authors reported greater circulating concentrations of 

lipid (g/liter), lactate (mmol/liter) and glucose (mmol/liter) but not total protein (g/liter) 

in transported animals compared to the control animals.  

Restraint and Handling Stress 

 Restraining cattle is necessary to perform management practices such as 

implanting, dehorning, branding, castrating, and deworming.  Restraint is also utilized in 

operations where artificial insemination and pregnancy determination are performed.  

Restraint has been classified as a psychological stressor (Dobson and Smith, 1995; 

Grandin, 1997).  Grandin (1997) suggests that procedures such as restraint in a squeeze 

chute do not usually cause significant pain, but fear may be a major psychological 
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stressor in cattle that are raised in extensively managed beef operations.  During 

restraint, animals are often separated and isolated from other animals. 

 Zavy et al. (1992) reported that Brahman-cross (Angus X Brahman, Hereford X 

Brahman) steers had higher cortisol concentrations when restrained in a squeeze chute 

for one h than English-cross (Angus X Hereford) steers.  Crossbred heifers and steers 

(15 to 18 mo Brahman/Hereford/Afrikander) that were handled and restrained for 15 min 

had increased concentrations of ACTH, cortisol and triiodothyronine (T3) as well as 

increased lipid, lactate, and glucose concentrations compared to animals that had 

previously been fitted with an indwelling jugular catheter and were not handled or 

restrained (Mitchell et al., 1988).    Crookshank et al., (1979) reported that weaned 

crossbred calves became used to handling over a 16 d time period as the calves became 

less excitable over the sampling period.  In addition, the calves had lower concentrations 

of cortisol.  Holstein heifer calves (seven to sixteen weeks old) had increased cortisol 

concentrations 30 min following restraint in a squeeze chute and a 2-3 min application of 

either an unheated or heated electrical dehorner to the horn stumps compared to cortisol 

concentrations from blood samples collected from the animals in their individual pens 

prior to restraint and stimulus (Boandl et al., 1989).   

Holstein and Jersey cows that were freeze-branded or hot-iron branded had 

greater heart rates and plasma cortisol concentrations from 5.5 min to 25.5 min after 

branding compared to cows subjected to a brand maintained at room temperature (Lay et 

al., 1992a).  The cows subjected to freeze-branding had similar concentrations of 

epinephrine compared to hot-iron branded cows but greater than that of the sham-
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branded cows 1 min postbranding and greater concentrations of norepinephrine 

compared to hot-iron branded or sham-branded cows 0.5 min after branding.  Crossbred 

calves (1/2 Simmental, ¼ Hereford, ¼ Brahman; Lay et al., 1992b) and Angus calves 

(Lay et al., 1992c) acclimated to restraint and subjected to freeze-branding, hot-iron 

branding or sham-branding all had increased concentrations of plasma cortisol compared 

to plasma cortisol concentrations prior to applying the stimulus and hot-iron branded 

calves (both Angus and crossbred) had greater plasma concentrations of epinephrine at 

0.5 min after branding than freeze-branded or sham-branded calves.   

Friesian and crossbred beef calves (1-3 mo of age) that were surgically castrated 

had greater concentrations of salivary cortisol after castration compared to salivary 

cortisol concentrations in calves that were castrated via application of rubber bands or 

intact controls (Fell et al., 1986).  Similar findings were reported for plasma cortisol 

concentrations in Angus, Hereford, and Brahman bulls (approximately 20-21 mo old) 

castrated surgically or by latex rubber band (Chase et al., 1995).  These authors also 

reported that white blood cell counts were higher in animals castrated (surgically or 

banding) than in intact control animals. 

 Thermal Stress 

 Climate can influence the efficiency of cattle production systems.  Breeds of 

cattle differ in their degree of heat or cold tolerance and thus some cattle suffer at 

extreme environmental temperatures.  It has long been recognized that breeds of cattle 

that are considered to be heat tolerant have greater weight gains under hot conditions 

than breeds that are not heat tolerant (Ragsdale et al., 1957).  Cattle living in naturally 
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hot climates, or those subjected to artificially hot environments, must become adapted or 

acclimated and must undergo homeostatic adjustments to maintain thermal balance 

(Rhynes and Ewing, 1973).  Rectal temperature as well as respiration are often 

associated with thermal stress responses. 

 Thermal stress affects several bodily functions.  Nonlactating Holstein cows 

exposed to a constant environmental temperature of 43°C for 4.5 h had increased rectal 

temperature and concentrations of epinephrine and norepinephrine, but decreased 

concentrations of glucocorticoids compared to a 4.5 h exposure at 40°C (Alvarez and 

Johnson, 1972).  These same authors also reported similar findings (increased rectal 

temperature and concentrations of epinephrine and norepinephrine, but decreased 

glucocorticoid concentrations) in nonlactating Holstein cows subjected to 35°C for 24 d 

compared to nonlactating Holstein cows kept at 18°C for the same period of time.   

Heifers representing heat-tolerant breeds (Brahman, Santa Gertrudis, Criollo and 

Brown Swiss X Zebu) and dairy breeds (Holstein, Guernsey, Ayrshire and Jersey) 

exposed for 6 h to 40.5°C had greater rectal temperature and respiratory rate during 

nighttime and daytime readings compared to heifers of the same breeds kept at 25°C for 

6 h (Alba and Sampaio, 1988).  Rhynes and Ewing (1973a) found that Hereford bulls 

(approximately 2 years of age) had decreased concentrations of plasma cortisol but 

similar plasma corticosterone concentrations during a 7 wk exposure to 35.5°C 

compared to 7 wk at 21°C.  The reports of Christison and Johnson (1972) conflict with 

some of the previous results.  These authors reported that mature non-lactating Jersey 

cows exposed to 35°C for 4 h had a significant increase in plasma cortisol in the first 20 
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min of exposure.  Plasma cortisol continued to rise for two hours and plateaued between 

2 and 4 h following the onset of heat exposure.  Christison and Johnson (1972) also 

reported that skin temperature sharply rose in the first 20 min and then continued to rise 

very slightly during the remainder of the exposure period.   

Cattle that are cold tolerant are stressed during periods of high temperatures. 

Similar findings, reported by Rhynes and Ewing (1973a) reported that rectal temperature 

and respiration rate were stable and constant in Hereford bulls for seven weeks at 21°C 

but rapidly rose and remained significantly elevated for seven weeks at 35.5°C.  It is 

important to note that the majority of the studies evaluating heat stress in cattle were 

performed in climatic laboratories.  The results from these studies using climatic 

laboratories may be extrapolated to indicate likely responses in natural environments.  

Murray (1982) reported that Hereford and Santa Gertrudis heifers had greater rectal 

temperature and respiratory rate during an exposure period of 4 h at 40°C in a climatic 

laboratory compared to a natural setting or a natural setting including enforced 

movement of the cattle.  These differences were likely due to differences in temperature 

(40°C in climate laboratory and approximately 10°C lower in the natural or field 

setting).  However, Murray (1982) did report that the Hereford and Santa Gertrudis 

heifer each with the lowest rectal temperature and respiratory rate in the climatic 

laboratory exhibited the highest rectal temperature and respiratory rate in the field as 

well as in the field following enforced movement.  

Temperature stress is not always a result of breeds that are not adapted to 

extreme heat conditions. Brahman calves placed at 4°C immediately following birth for 
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two h had greater concentrations of plasma glucose, lactate, blood urea nitrogen, 

triglyceride, triiodothyronine, thyroxine and cortisol compared to crossbred (1/2 

Simmental X ¼ Brahman X ¼ Hereford) calves placed at 4°C or 31°C for 2 h following 

birth or Brahman calves placed at 31°C for 2 h following birth (Godfrey et al., 1991).  

Berardinelli et al. (1992) reported that Brahman (from Texas) and Hereford (from 

Montana and Nebraska) bulls located in Montana had greater serum cortisol 

concentrations than the same breeds of bulls (from the respective origin) located in 

Nebraska or Texas.  Thermal stress therefore affects various hormone concentrations and 

bodily functions and is an environmental stressor that can be reduced by having 

tropically and /or subtropically adapted cattle. 

Tropical Adaptation 

 The ability to survive and continue efficient production in tropical and 

subtropical regions is referred to as tropical adaptation.  Cattle coming from temperate 

climates fail to adapt and consequently become unproductive in subtropical and tropical 

areas (Rhoad, 1935; Bonsma, 1949; Bonsma, 1951).  Several factors including sweat 

glands, hair follicles, sweating rate and respiration rate must be considered in cattle that 

are tropically adapted. 

 The number of sweat glands, shape of the sweat glands and hair follicle 

characteristics have been shown to be different in tropically-adapted cattle and cattle 

from temperate climates.  Nay and Hayman (1956) reported that Bos indicus X Bos 

taurus crossbred cattle have larger and more sweat glands per unit area of the skin than 

pure-bred Bos taurus cattle.  The activity of the sweat gland is dependent upon the 
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shape.  It has been reported that tropically-adapted Bos indicus cattle have baggy shaped 

sweat glands, whereas Bos taurus breeds have tubular or coiled sweat glands and 

crossbred cattle have club shaped sweat glands (Yeates et al., 1975).  Indigenous tropical 

cattle had a lower sweat gland length to diameter ratio than European cattle (Jenkinson 

and Nay, 1972; Jenkinson and Nay, 1973).  These authors also suggest that the smaller 

sweat glands of tropically-adapted cattle may also be indicative of greater activity.  Hair 

follicles appear to play a role in tropical adaptation of cattle.  Jenkinson and Nay (1972 

and 1973) reported that tropically - adapted cattle have shallower hair follicle depths as 

well as thicker hair follicles than cattle from temperate regions. 

 Respiration rates and sweating rates are important in thermoregulation of 

tropically-adapted cattle.  Finch (1986) demonstrated that indigenous tropically-adapted 

cattle were able to lower resistance to internal heat transfer and regulate body 

temperature during high levels of heat stress better than Bos taurus from temperate 

regions.  Tropically-adapted Bos indicus cattle have been reported to have greater 

sweating rates compared to temperate Bos taurus cattle in which the sweating rates tend 

to reach a plateau after the first increase (Finch, 1986).  Additionally, resistance of the 

hair coat to environmental heat is greater in temperate Bos taurus cattle, thus resulting in 

greater accumulation of heat at the skin (Finch, 1986).  Carvalho et al. (1995) reported 

that Bos indicus cattle as well as Simmental cattle native to tropical conditions had lower 

respiration rates than Simmental cattle imported into tropical regions. 

 The studies in this section demonstrate the importance of the number and shape 

of the sweat glands, the hair follicle depth and dynamics, as well as sweating and 
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respiration rates in tropical adaptation of cattle.  All of these factors play a role in 

dissipating heat to help regulate body temperature in tropical and subtropical climates.  

Tropical adaptation is not only important in reducing heat stress but also has an effect on 

several production related parameters. 

Hypothalamic-Pituitary-Gonadal Axis 

 Function of the reproductive system depends on the hypothalamic-pituitary-

gonadal (HPG) axis (Senger, 1997) (Figure 2).  This section will primarily focus on the 

HPG axis of the male.  The hypothalamus synthesizes and secretes the 10-amino acid 

neuropeptide gonadotropin releasing hormone (GnRH) (Matsuo et al., 1971).  GnRH 

then acts upon the gonadotropes of the anterior pituitary to regulate the synthesis and 

secretion of the gonadotropins; luteinizing hormone (LH) (Mongkonpunya et al., 1974) 

which is a 245-amino acid glycoprotein and follicle-stimulating hormone (FSH) 

(Amann, 1983) which is a 207-amino acid glycoprotein.  LH and FSH have two subunits 

an α-subunit (96-amino acids; Liu et al., 1972a; Sairam et al., 1972a; Shome and 

Parlow, 1974a), which is identical for all glycoprotein hormones, and each has a specific 

β-subunit (149-amino acids for LH and 111-amino acids for FSH) which is the active 

form (Liu et al., 1972b; Sairam et al., 1972b; Shome and Parlow, 1974b).  LH secretion 

in bulls occurs in a pulsatile fashion with three to eight pulses randomly occurring in a 

24 h period (Amann, 1983).  The gonadotropins must enter the systemic circulation to 

act on the gonads to regulate steroidogenesis and spermatogenesis.  LH binds to the 

plasma membrane receptors at the Leydig cells to activate the cAMP-protein kinase 

second messenger system which results in the production of steroids, especially 
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androgens such as testosterone (Hafez, 2000).  Testosterone synthesis increases 

approximately 30 min after increased concentrations of LH and consequently is also 

released in a pulsatile fashion (Amann, 1983).  However, continuous exposure of Leydig 

cells to high concentrations of LH causes them to become refractory and thus less 

testosterone is produced (Bergfeld et al., 1996).  Testosterone produced from Leydig 

cells is transported into the Sertoli cells where it is then converted into estradiol (Hafez, 

2000).  FSH acts upon the Sertoli cells located in the seminiferous epithelium to 

influence Sertoli cell functions which include nourishment of maturing spermatids 

(Hochereau-de Reviers et al., 1987).  The Sertoli cells produce and secrete various 

compounds including androgen binding protein (ABP), a protein that transports 

testosterone; sulfated glycoproteins (SGP) 1 and 2, which are thought to be associated 

with fertility acquisition (SGP1), and aid cellular and fluid movement through the 

testicular tubular network; transferrin, which transports iron and is thought to be 

necessary for the process of spermatogenesis and inhibin, which is a hormone that is 

involved in suppressing FSH at the level of the anterior pituitary via a negative feedback 

mechanism (Hochereau-de Reviers et al., 1987).  Testosterone and estradiol act through 

a negative feedback mechanism at the level of the hypothalamus and the anterior 

pituitary to inhibit or suppress GnRH, LH and FSH synthesis and secretion (Gooren, 

1989).  The physiological functions of androgens (testosterone) consist of differentiation 

and development of the male urogenital system, the accessory sex organs, the external 

genitalia and secondary sex characteristics (Hafez, 2000).  Testosterone is also involved 
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in spermatogenesis and has anabolic actions on skeletal and cardiac muscle fibers 

(Hafez, 2000). 

 Testosterone production has been reported to be stimulated via exogenous 

sources such as human chorionic gonadotropin (hCG) (Sundby et al., 1975) and GnRH 

(Mongkonpunya et al., 1975).  GnRH acts directly to stimulate LH secretion which then 

acts on the cells of Leydig to stimulate testosterone production.  Human chorionic 

gonadotropin (hCG) exhibits LH-like activity and acts directly on the cells of Leydig to 

stimulate testosterone production.  The common dose of hCG that is administered to 

stimulate production of testosterone is 750 to1000 IU, with intravenous administration 

being faster acting and more effective than intramuscular administration (Sundby 1981).  

GnRH has been administered intramuscularly at a dose of 200 µg (Godfrey et al., 1990).  

Both hCG- and GnRH- induced testosterone production allow for consistent methods to 

induce testosterone production in male animals. 

Spermatogenesis 

 Spermatogenesis is the process whereby spermatozoa are formed from 

spermatogonia and occurs in the seminiferous tubule of the seminiferous epithelium 

(Berndtson, 1977).  Spermatogenesis can be subdivided into spermatocytogenesis, 

meiosis and spermiogenesis which each consist of specific cellular divisions (Berndtson, 

1977).  The process of spermatocytogenesis initiates at the basal membrane of the 

seminiferous tubule with A1 spermatogonia (Berndtson and Desjardins, 1976).  A pool 

of stem cells mitotically divide to provide a continual source of A1 spermatogonia 

(Abdel-Raouf, 1961).  The A1 spermatogonia undergoes a mitotic cell division resulting 
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in A2 spermatogonia and continues until A4 spermatogonia are present (Knudsen, 1958).  

A4 spermatogonia divide into intermediate (I) spermatogonia and then the I 

spermatogonia divide into B spermatogonia (Knudsen, 1958).  The last division of 

spermatocytogenesis and the last occurring in the basal compartment is the division of 

the B spermatogonia into primary spermatocytes (Knudsen, 1958).  All of these 

divisions are a result of mitosis.   

The first division in the adluminal compartment is a meiotic (I) division of 

primary spermatocytes into secondary spermatocytes.  Spermiogenesis then begins with 

a rapid meiotic (II) division of secondary spermatocytes into spherical spermatids 

(Amann, 1962).  The spermatids must undergo four phases to mature into spermatozoa.  

These phases also occur during the process of spermiogenesis and include the Golgi 

phase, cap phase, acrosomal phase and the maturation phase (Senger, 1997).  During the 

Golgi phase, the first steps in development of the acrosome and axoneme occur (Senger, 

1997).  The cap phase results in the formation of a “cap” over the anterior portion of the 

nucleus.  The tail begins to protrude towards the lumen during the cap phase.  The 

spermatid nucleus begins to elongate and the acrosome eventually covers the majority of 

the anterior nucleus during the acrosomal phase with the spermatids embedding 

themselves deeply into the Sertoli cells and their tails projecting into the lumen of the 

seminiferous tubule (Senger, 1997).  Within the acrosome are hydrolytic enzymes such 

as acrosin, hyaluronidase, zona lysin, esterases and acid hydrolases that are required for 

fertilization to occur (Hafez, 1987).  The last phase is the maturation phase.  During the 

maturation phase, the final events including mitochondria assembled around the 
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flagellum to form the middle piece and dense outer fibers of the flagellum and the 

fibrous sheath are produced to complete the assembly process (Hafez, 1987).  Amann 

(1988) suggests that maturation is not final until motility has been acquired by the 

spermatozoa.  Following maturation of the spermatozoa, the process of spermiation, or 

release of spermatozoa into the lumen of the seminiferous tubule, occurs.  Breakage of 

the cytoplasmic bridges occur during the release of the spermatozoa into the lumen of 

the seminiferous tubule.  The complete process of spermatogenesis takes approximately 

61 days in the bull (Berndston and Desjardins, 1976). 

Spermatozoa that are released into the lumen of the seminiferous tubule are 

collected in the rete testis and then pass through the vas efferens to get to the caput 

epididymus (Foote, 1962).  The spermatozoa then pass through the corpus epididymus to 

the cauda epididymus (Foote, 1962).  The epididymus functions to transport, mature, 

concentrate and store spermatozoa.  Spermatozoa leave the cauda epididymus through 

the vas deferens which connects to the urethra that serves as an exit out of the body for 

the spermatozoa (Foote, 1962).     

Daily Sperm Production and Extra-Gonadal Sperm Reserves 

 The technique for determining testis and epididymal (caput, corpus, and cauda) 

sperm concentrations in the bull was first described by Amann and Almquist (1962) and 

these authors described the calculation for determining daily sperm production in bulls.  

Daily sperm production and extra-gonadal sperm reserves are affected by breed, age and 

plane of nutrition in bulls.  Seven  yr old Angus bulls had greater spermatozoal reserves 

in the caput, corpus and cauda epididymus compared to Hereford bulls of the same age 
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but less epididymal spermatozoal reserves than six yr old Charolais bulls (Weisgold and 

Almquist, 1979).  These same authors reported that three yr old Charolais bulls had less 

epididymal spermatozoal reserves than did six yr old Charolais bulls. 

 The level of nutrition, particularly energy, has been shown to affect epididymal 

spermatozoal reserves.  Angus and Hereford yearling bulls receiving a medium energy 

diet had greater epididymal sperm reserves than Angus and Hereford yearling bulls 

receiving a high energy diet (Coulter and Bailey, 1988).  Similar findings were reported 

for 15 mo old Angus and Hereford bulls (Coulter et al., 1987) as well as for two yr old 

Angus and Hereford bulls (Coulter and Kozub, 1984).     

Stress and Reproduction 

 Activation of the HPA axis during stress can affect reproductive function at all 

three levels of the hypothalamic-pituitary-testicular axis as well as at the end-organs 

(target tissues) for the sex steroids (Rabin et al., 1990).  At the level of the 

hypothalamus, endogenous and exogenous CRH and glucocorticoids have been shown to 

inhibit the secretion of GnRH in the rat (Rivier and Vale, 1984)).  Exogenous CRH or 

glucocorticoid administration has also been shown to inhibit GnRH secretion in the 

human (Rivier and Rivest, 1991).  Rabin et al. (1990) suggests that opioid peptides 

administered exogenously or produced during stress or after administration of CRH, also 

suppress GnRH secretion.  However, this can be reversed in the rat by the prior 

administration of naloxone (Rivier and Vale, 1984).  The inhibition of GnRH secretion 

by CRH and glucocorticoids results in a decrease in LH and FSH secretion from the 
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anterior pituitary and ultimately a decrease in testosterone production by the cells of 

Leydig and an alteration in the spermatogenic process. 

 There is considerable evidence in vivo and in vitro that the glucocorticoids can 

act directly upon the pituitary gonadotropes of domestic animals to reduce the secretion 

of gonadotropins, especially LH (Moberg, 1987).  It has been reported that only 

prolonged exposure of the pituitary to glucocorticoids seems to have an effect on the 

basal secretion of LH (Padmanabhan et al., 1983 and Suter and Schwartz, 1985).  

Moberg (1991) suggests the primary action of the glucocorticoids on the gonadotropins 

appears to be blockage of the ability of GnRH to stimulate secretion of LH.  Although 

this mechanism is not understood, there have been several proposed mechanisms.  The 

first mechanism was proposed by Kamel and Kubajak (1987) and they suggest that the 

glucocorticoids inhibit LH secretion by interfering with the hydrolysis and turnover of 

phospholipids by blocking the enzymatic activity of phospholipase A2, thus depressing 

arachidonic acid release.  A second mechanism proposed by Moberg (1991), suggests 

that glucocorticoids may alter gonadotropin function by modifying the feedback of the 

gonadal steroids onto the gonadotrophs.  Administration of ACTH to adrenalectomized 

rams has been shown to prevent exogenous GnRH from stimulating the secretion of LH 

(Fuquay and Moberg, 1983).  However, Matteri et al. (1986) reported that treating ovine 

pituitaries in vitro with synthetic ACTH altered gonadotroph function in a biphasic 

manner both stimulating basal secretion of the gonadotropins and at the same time 

diminishing the amount of gonadotropins released in response to a subsequent GnRH 

challenge. 
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 There are several components from the HPA that have an effect at the gonadal 

level.  CRH has been shown to inhibit testosterone synthesis in the rat Leydig cell 

(Leers-Sucheta et al., 1999) yet stimulates steroidogenic acute regulatory protein (StAR) 

and steroid synthesis in the murine Leydig cell (Huang et al., 1997).  Acute treatment 

with ACTH inhibits testosterone secretion by the bovine (Johnson et al., 1982) and ovine 

(Juniewicz et al., 1987) testis, but stimulates testosterone secretion from the testes of 

boars and rabbits (Liptrap, 1993).  In bulls, there is an inverse relationship between 

plasma concentrations of glucocorticoids and the amount of testosterone secreted in 

response to exogenous LH (Welsh et al., 1979).  It appears that most of the influence of 

the adrenal axis in regulating the gonads is through altered gonadotropin secretion. 

The Affects of High Ambient Temperature on Spermatogenesis 

 It has long been known that increased scrotal temperature, either due to high 

ambient air temperature or scrotal insulation, affects spermatogenesis.  Spermatogenesis 

in both beef and dairy bulls appears to be affected.  Casady et al. (1953) reported sterility 

lasting at least 100 d in one Guernsey bull and temporarily reduced semen quality in 

another Guernsey bull following 17 d of exposure to 100ºF ambient temperature in a 

heat chamber.  Hereford bulls exposed to scrotal insulation for 24 or 72 h were reported 

to have a decrease of approximately 65% in number of live sperm and a 60% decrease in 

normal sperm in the second and third wk following insulation compared to non-insulated 

control bulls (Austin et al., 1961).  Similar results were reported in Shorthorn bulls 

exposed to 10 or 20 h of scrotal insulation (Ross and Entwistle, 1979).  A decrease in 

motile sperm and an increase in abnormal cells was reported in yearling Angus bulls 
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exposed to 35ºC for 8 h or 31ºC for 16 h (Meyerhoeffer et al., 1985); however, these 

differences were not as large as those reported by others (Austin et al., 1961; Ross and 

Entwistle, 1979) but tended to have a longer recovery period.  Skinner and Louw (1966) 

reported that spematozoal characteristics (% live sperm, % abnormal sperm) in 

Afrikander (Sanga) bulls were not as severely affected as that of Friesland (Bos taurus) 

bulls after various exposure times to 40ºC; however, optimum spermatogenesis was 

impaired in both breeds.  Increased ambient air temperature has been shown to influence 

secretion of LH and testosterone and thus possibly impair spermatogenesis.  Minton et 

al. (1981) reported a decrease in average LH concentrations 6 days following initiation 

of a 15 d exposure to 34ºC.  Concentrations of plasma testosterone in bulls exposed to 

35.5ºC for seven wk were reported to fall to 43% of that of control bulls during the first 

two wk of heat exposure (Rhynes and Ewing, 1973b).  
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CHAPTER III 

RESPONSE TO MANAGEMENT STRESSORS AND ADRENAL CORTEX 
 

 CONTENT OF STEROIDOGENIC ACUTE REGULATORY PROTEIN  
 

DIFFERS IN TEMPERATE AND TROPICALLY-ADAPTED Bos taurus AND  
 

Bos indicus BULLS 
 
 

Introduction 

 In livestock production systems, the stress response can be stimulated by many 

factors called stressors.  A stressor is defined as an environmental factor that contributes 

to a stressful circumstance or elicits stress responses which can threaten or adversely 

affect the health of the body.  Stressors can be physiological (Dobson and Smith, 1995) 

or psychological (Grandin, 1997).  Many, but not all, of these stressors are caused by 

normal or poor management practices.  Normal management practices which elicit a 

stress response include handling and restraining animals in squeeze chutes, hot iron 

branding of animals (Lay et al., 1992a), as well as transporting of animals (Jacobson and 

Cook, 1998). Breed of cattle can also affect the level of response to a stressor.  Zavy et 

al. (1992) reported that British x Brahman steers had greater plasma cortisol 

concentrations following restraint and transportation than did British cross steers.  Not 

only have differences been detected in cortisol concentrations among breeds, differences 

in organs of the hypothalamo-pituitary-adrenal axis have been detected.  Bruner et al. 

(1996) reported that paired adrenal weight in ¾ Angus (Bos taurus) was 15 % higher 

than in ¾ Brahman (Bos indicus) steers and that morphometric analysis of adrenal gland 

cross-sections indicated that total, cortical, and medullary areas were greater for ¾ 
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Angus than for ¾ Brahman steers.  These same authors also report that the anterior 

pituitary gland weighed more in ¾ Angus relative to ¾ Brahman steers which is 

consistent with the findings of Carroll et al. (1996).  Producers could select breeds or 

types of animals which might be better suited to withstand the stressors inherent in their 

production systems provided that comparative information was developed.  A better 

understanding of response to stressors by tropically-adapted Bos taurus and tropically-

adapted Sanga cattle as well as the temperate Wagyu cattle is necessary to determine 

how they can best fit into beef crossbreeding systems.  Therefore, the objectives of this 

study were to 1) determine the influence of breedtype on response to common 

management stressors which include transportation and restraint and 2) determine if 

organ weights, adrenal steroidogenic acute regulatory (StAR) protein and P450 side-

chain cleavage enzyme and total adrenal, medullary and cortical areas of tropically-

adapted Bos taurus bulls are more similar to that of temperate Bos taurus bulls or to 

tropically-adapted Bos indicus bulls.   

Materials and Methods 

Experiment 1 

Animals 

Bulls of six different breeds, Bonsmara (n = 8; Sanga type), Romosinuano (n = 

10; Bos taurus), Tuli (n = 10; Sanga), Brahman (n = 8; Bos indicus), Angus (n = 7; Bos 

tuarus) and Wagyu (n = 10; Bos taurus), were utilized for this experiment.  Bulls arrived 

at the Texas Agricultural Experiment Station in Overton, Texas following weaning.  

Upon arrival, bulls were pastured together and managed similarly during a 5 mo 
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acclimation period.  There were several important cooperators that generously supplied 

bulls for this study.  The cooperators were Dr. Chad Chase at the Subtropical 

Agricultural Research Station (Angus and Romosinuano bulls; Brooksville, FL.), the 

Texas Agricultural Experiment Station (Brahman bulls; Overton, TX.), Mr. George 

Chapman (Bonsmara bulls; Amarillo, TX.), and Mr. Kent Briggs (Tuli and Wagyu bulls; 

Rice, TX.).  

 After reaching sexual maturity (defined as two consecutive semen samples 

collected via electroejaculation at 2 week intervals containing > 500 million sperm per 

ejaculate as well as > 50 % motility of viable spermatozoa), bulls were weighed, body 

condition scored as described by Godfrey et al. (1988; 1-9 scale; 1 = emaciated and 9 = 

obese) and subjected to a transportation stress and a serial blood collection.  Bulls 

representing each breed were utilized during all sampling periods.  Body condition 

scores were assessed by the same two people.  During each subjected stressor, bulls from 

each breed were represented.  A heparinized blood sample was collected via tail vessel 

puncture immediately prior to transporting.  The transportation stress consisted of a pre-

determined trip which was 30 km long and lasted 30 min (average speed was 60 km/h).  

The transportation stress was done in replicates using three bulls which were loaded on a 

7.3-m trailer so that each bull had his own compartment (2.0 m by 2.4 m). The 

transportation stress was applied at approximately the same time each day (1600 h + 45 

min).  Following the transportation stress, bulls were weighed and an additional 

heparinized blood sample was collected via tail vessel puncture.  Bulls were then fitted 

with an indwelling jugular catheter (o.d. = 1.7 mm, i.d. = 1.1 mm; Teflon, TFE, Cole-
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Parmer, Chicago, IL) as described by Lay et al. (1996).  Bulls were randomized for the 

trailer compartment and the fitting of the indwelling catheter by the order in which they 

went through squeeze chute.  Bulls were confined together and allowed to rest overnight 

before the serial blood samples were collected.  The serial blood collection took place 

the next day to ensure that cortisol concentrations from the restraint stressor were not 

elevated as a result of the transportation stress.   

Heparinized blood samples were collected every 15 min for 6 h to determine 

concentrations of cortisol in the systemic circulation.  The blood samples were placed on 

ice and centrifuged (20 min at 2700 rpm) within 30 min of collection.  Plasma was 

harvested and stored at -20°C until radioimmunoassays could be performed. Area under 

the curve was calculated for cortisol using the trapezoidal rule.   

Hormone Radioimmunoassay Procedure 

 Plasma concentrations of cortisol were determined by radioimmunoassay as 

described by Willard et al. (1995, See Appendix 1 for complete description).  Antiserum 

(rabbit anti-cortisol) was purchased from Pantex, Inc. (Santa Monica, CA) and tritiated 

hydrocorticosterone was purchased from New England Nuclear, Inc. (Boston, MA).  The 

cross-reactivity of the antiserum was approximately 60%, 48%, 0.01%, 0.01 % and 

0.01% with corticosterone, deoxycorticosterone, progesterone, androstenedione and 

estradiol, respectively.  The cortisol was purchased from Steraloids (Wilton, NH) and 

standards were made which had concentrations ranging from 3.9 pg/ml to 16,000 pg/ml,.  

The intraasssay coefficient of variation was 5.4 % and the interassay coefficient of 

variation was 7.2%.   
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Statistical Analysis, Experiment # 1 

 Differences in percent shrink, pre-transportation cortisol concentrations, post-

transportation cortisol concentrations, absolute change in cortisol concentrations from 

pre-transportation to post-transportation, cortisol area under the curve and average, 

lowest and highest cortisol concentrations during the restraint period were analyzed 

using the GLM procedure for analysis of variance (SAS, 1992).  The plasma 

concentrations of cortisol during the first 2 h, second 2 h and third 2 h of restraint were 

analyzed using the repeated measures procedure of SAS (1992).  Mean separation was 

accomplished using the PDIFF option of SAS (1992).  

Experiment # 2 

Animals 

 Angus (n = 10), Brahman (n = 8) and Romosinuano (n = 10) bulls were fed an 

8.85:1.0:0.15 corn:soybean meal:limestone ration for a minimum of 69 d (range was 69 

– 111 d) following the serial blood collection.  The range in time on feed existed due 

date availability to slaughter at the slaughter facility.  These bulls were penned together 

and given Coastal bermuda grass hay and water ad libitum.  Following the feeding 

period, the bulls were transported to the Texas A&M University Rosenthal Meat Science 

and Technology Center where they were processed for food utilization.  Every breed was 

represented at each slaughter date.  The dates of slaughter, number of head slaughtered 

and the average daily temperature at slaughter are included in Table 1. 
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Table 1.  Slaughter dates, number of head slaughtered and the average daily temperature 
at slaughter   

Slaughter date Number of head 
slaughtered 

 

Average temperature of 
each slaughter date 

(°F) 
 

 
May 30, 2000 

 
8 

 

 
82.5 

 
June 13, 2000 

 
6 

 

 
80 

 
July 13, 2000 

 
6 

 

 
88.5 

 
August 8, 2000 

 
5 

 

 
86.5 

 
September 5, 2000 
 

 
3 

 

 
92.5 

 

 

Tissue Collection 

 Upon slaughter, whole pituitary glands and adrenal glands were collected and 

stored on ice until weights could be obtained.  Weights (+ 0.1 g) were also obtained for 

the liver, spleen, heart and lungs (trachea included).  Adrenal glands were trimmed free 

of adherent tissue, weighed (+ 0.01 g) and a cross-sectional slice of the right adrenal 

gland was fixed in 4 % paraformaldehyde for histology.  The cortical component was 

dissected from the medullary component and a piece weighing approximately 0.5 g was 

snap frozen in liquid nitrogen and stored at -80°C until analysis for StAR protein and 

P450 side – chain cleavage enzyme.  Morphometrical analysis of the histology section 
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was used to determine total, cortical and medullary areas of the adrenal gland.  Pituitary 

glands were cleaned of adherent tissue, weighed (+ 0.01 g) and the anterior pituitary 

were dissected from the whole pituitary and weighed (+ 0.01 g). 

Western Blot Analysis 

 A 200 mg section of adrenal cortical tissue was homogenized in 0.25 M sucrose 

buffer which contained 0.1mM EDTA and 10mM Tris (See Appendix D for complete 

description).  Sample buffer (25mM Tris/Cl, pH 6.8, 1% SDS, 5% β-mercaptoethanol, 

1mM EDTA, 4% glycerol and 0.01% bromophenol blue) was used to solubilize protein 

pellets and subsequently loaded onto a 12.5% SDS-PAGE mini-gel.  The samples were 

then electophoresed at 200 V for 45 min using standard SDS-PAGE buffer.  Transfer of 

proteins from the SDS-PAGE mini-gel to a polyvinylidene diflouride membrane (PVDF; 

Bio-Rad Hercules, CA) occurred electrophoretically at 100 V for 2 h.  The PVDF 

membrane containing the proteins was exposed to an antibody specific for StAR.  This 

polyclonal StAR antibody used for Western blot analysis was generated in rabbits 

against a recombinantly produced StAR human protein which lacks the first 62 amino 

acids.  This N-62 antibody was generously supplied by Dr. Walter L. Miller (UC San 

Francisco).  Preincubation of the membrane in a blocking buffer [phosphate buffered 

saline (PBS) buffer with 4% Carnation non-fat dry milk and 0.5% Tween-20] occurred 

for 1 h at room temperature followed by a 1 h incubation in fresh buffer containing the 

primary antibody.  PBS buffer containing 0.5% Tween-20 was then used to wash the 

membrane three times for 10 min per wash.  Following the washes, the membrane was 

placed in fresh blocking buffer containing the second antibody (donkey-anti-rabbit 
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immunoglobin G) conjugated with horseradish peroxidase (Amersham, Arlington 

Height, IL).  The membrane then underwent an additional three washes with PBS buffer 

containing 0.5% Tween-20 for 10 min per wash.  Chemiluminesence via the 

Renaissance Kit (Dupont-New England Nuclear) was used to detect the specific signal 

emitted by the antibody.  A BioImage Visage 2000 analytical system was used to 

quantitate the bands and express the bands as integrated optical density (IOD) units.  

After completion of the analysis, the membranes were stripped of the StAR antibody 

using a buffer containing: 2% SDS, 62mM Tris and 100mM β-mercaptoethanol.  The 

membranes were then reprobed using an antibody specific for P450 scc (Chemicon, 

Temecula, CA) following an identical procedure used to probe the blots for the StAR 

protein. 

Adrenal Morphometric Analysis 

 Entire cross sections of the right adrenal gland fixed in 4% paraformaldehyde 

were sectioned at 5 micron intervals and stained with hematoxilin and eosin (H & E; 3 

sections per slide).  The H&E sectioned images were visualized using an Olympus SZH 

Zoom Stereo Microscope and acquired by a Sony 960MD 3-CCD color camera attached 

to the microscope.  A PowerMac 8100 computer system using a LG3-8-bit frame 

grabber (Scion Corp.) which was under the control of the NIH Image Program was used 

for image acquisition from the Sony color camera.  NIH Image (Scion Image Software, 

Scion Corp.) was used to determine morphometric measurements for total adrenal area, 

medullary and adrenal artery areas.  The total, medullary and adrenal artery areas were 

measured three times for each of the three H&E sections per slide.  An average was 
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calculated for the nine measurements for each of the total medullary and adrenal artery 

areas.  Adrenal artery area was subtracted from the total adrenal area and medullary area.  

The adrenal cortical area was calculated as follows: Adrenal Cortical Area = Total Area 

– (Medullary Area + Adrenal Artery Area).   

Statistical Analysis, Experiment # 2 

 Differences in weights of whole pituitary glands, anterior pituitary glands, 

adrenal glands, differences in total, cortical and medullary areas of adrenal glands and 

differences in StAR protein and P450 side – chain cleavage enzyme content were 

determined using the GLM procedure for analysis of variance (SAS, 1992).  Mean 

separation was accomplished using the PDIFF option of SAS (1992).  

Results, Experiment # 1 

Transportation Stress 

 A significant (P<0.001) breed affect was detected for average body condition 

score (BCS) prior to transportation.  Brahman and Angus bulls had higher (P<0.05) 

average BCS than Bonsmara, Romosinuano, Tuli, and Wagyu bulls (Table 2). 
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Table 2.  Body condition score (LS mean + SE) for sexually mature Angus, Bonsmara, 
Brahman, Romosinuano, Tuli, and Wagyu bulls 

Breed Average body  
condition score 

Brahman 6.3+0.1a 

 
Angus 6.1+0.1a 

 
Tuli 5.8+0.1b 

 
Bonsmara 5.7+0.1b 

 
Wagyu 
 

5.7+0.1b 

Romosinuano 5.5+0.1b 

 
Different superscripts within a column differ P<0.05 

 

 Percent shrink of bodyweight following transportation was significantly (P<0.05) 

influenced by breed.  Brahman and Angus bulls had greater (P<0.05) shrink than 

Bonsmara or Wagyu bulls with the Romosinuano and Tuli bulls being intermediate 

(Table 3).  
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Table 3.  Transportation shrinkage (LS mean + SE) of sexually mature Angus, 
Bonsmara, Brahman, Romosinuano, Tuli, and Wagyu bulls 
Breed Shrink (%) 
Brahman 1.24+0.19a 

 
Angus 1.20+0.20a 

 
Tuli 0.84+0.17a,b 

 
Romosinuano 0.82+0.17a,b 

 
Bonsmara 0.63+0.19b 

 
Wagyu 
 

0.53+0.17b 

Different superscripts within a column differ P<0.05 

 

 Plasma cortisol concentrations prior to transportation were significantly (P<0.05) 

influenced by breed.  Angus and Brahman bulls had greater (P<0.05) plasma 

concentrations of cortisol prior to transportation than Wagyu and Bonsmara bulls with 

Romosinuano and Tuli bulls being intermediate (Table 4). 

 There was a significant (P<0.0002) breed influence on plasma cortisol 

concentrations following transportation.  Romosinuano, Brahman, Angus and Tuli bulls 

had greater (P<0.02) concentrations of plasma cortisol following transportation than 

Wagyu and Bonsmara bulls (Table 4). 

  Absolute change in plasma concentrations of cortisol from pre-transportation to 

post-transportation was significantly (P<0.0007) influenced by breed.  Bonsmara was the 

only breed that did not show an increase of pre-transportation to post-transportation 

cortisol concentrations.  Wagyu bulls had a significantly (P<0.05) lower absolute change 

in concentrations of plasma cortisol from pre-transportation to post-transportation than 
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the Romosinuano and Brahman bulls which had the greatest increase in cortisol 

concentrations (Table 4).  Tuli and Angus bulls had similar absolute change in 

concentrations of plasma cortisol from pre-transportation to post-transportation to 

Wagyu bulls but were greater (P<0.05) than the Bonsmara bulls.  A non-significant 

(P<0.08) elevation in plasma cortisol concentration was detected in Wagyu compared to  

Bonsmara bulls.  

 

Table 4.  Cortisol concentrations (ng/ml; LS mean + SE) prior to and following 
transportation  and the absolute change in post transportation and pre transportation 
cortisol concentration for sexually mature Angus, Bonsmara, Brahman, Romosinuano, 
Tuli, and Wagyu bulls 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Different superscripts within a column differ a,b,c P<0.05, x,y P<0.02  
 
  

 
 

Breed Cortisol concentration 
prior to transportation 

(ng/ml) 

Cortisol concentration 
following transportation 

(ng/ml) 

Change in cortisol 
concentration for post 
and pre transportation 

(ng/ml) 
 
Angus 

 
14.72+2.79a 

 

 
24.52+3.14x 

 

 
9.80+2.96a,b 

 
 
Bonsmara 

 
3.62+2.61c 

 

 
2.28+2.94y 

 

 
-1.33+2.77c 

 
 
Brahman 

 
12.19+2.61a,b 

 

 
25.17+2.94x 

 

 
12.98+2.77a 

 
 
Romosinuano 

 
9.69+2.34b 

 

 
25.20+2.63x 

 

 
15.51+2.47a 

 
 
Tuli 

 
7.42+2.34b,c 

 

 
18.44+2.63x 

 

 
11.02+2.47a,b 

 
 
Wagyu 

 
4.67+2.34c 

 

 
9.41+2.63y 

 
4.74+2.47b,c 
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Cannulation 

 Placement of a jugular cannula can be a stressor and there was a difference 

(P<0.0002) in response to this stressor due to breed.  Wagyu and Bonsmara bulls were 

less responsive (P<0.0002) to this stressor than all other breeds examined (Table 5). 

 

Table 5.  Cortisol concentration (ng/ml; LS mean + SE) following cannulation for 
sexually mature Angus, Bonsmara, Brahman, Romosinuano, Tuli, and Wagyu bulls 

Breed Cortisol concentration following 
cannulation (ng/ml) 

Romosinuano 21.11+2.29a 

 
Tuli 20.84+2.29a 

 
Angus 19.83+2.73a 

 
Brahman 19.71+2.56a 

 
Wagyu 
 

4.95+2.29b 

Bonsmara 4.12+2.56b 

 
Different superscripts within a column differ P<0.0002 

 

Restraint 

 There were no breed differences over the entire 6 h sampling period.  However, a 

significant (P<0.03) breed influence over time was detected during the first h of restraint 

(Figure 3).  There were no differences over time during hour 2 - 6 of restraint.  However, 

there was a significant (P<0.05) time * breed interaction for the first and second h of 

restraint.  No (P<0.08) difference was detected for a time * breed interaction for the third 

h of restraint.   
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There was no significant breed affect detected for average or lowest plasma cortisol 

concentrations in the bulls over the 6 h restraint period.  A significant (P<0.05) breed 

influence was detected for maximum concentration of plasma cortisol in the bulls during 

the 6 h restraint period.  Brahman and Romosinuano bulls had greater (P<0.05) 

maximum concentrations of plasma cortisol during the 6 h restraint period than 

Bonsmara and Wagyu bulls with Angus and Tuli bulls being intermediate (Table 6).   

 

Table 6.  The range (maximum, average, and lowest) of cortisol concentrations (ng/ml; 
LS mean + SE) during the 6 h of restraint for sexually mature Angus, Bonsmara, 
Brahman, Romosinuano, Tuli, and Wagyu bulls 

Breed Maximum cortisol 
concentration (ng/ml) 

Average cortisol 
concentration (ng/ml) 

Lowest cortisol 
concentration 

(ng/ml) 
Brahman 24.83+3.64a 9.67+1.65 

 
3.12+0.65 

Romosinuano 22.30+3.25a 7.56+1.47 

 
1.45+0.59 

Angus 21.63+3.89a,b 8.97+1.76 

 
1.70+0.70 

Tuli 20.80+3.25a,b 7.27+1.47 

 
1.40+0.59 

Bonsmara 12.89+3.64b 5.00+1.65 

 
1.17+0.65 

Wagyu 12.11+3.25b 5.16+1.47 0.90+0.59 
 

Different superscripts within a column differ P<0.05 
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Figure 3.  Average concentrations of plasma cortisol in Angus, Bonsmara, Brahman, Romosinuano, Tuli, and Wagyu bulls 
during the 6 h restraint period.  Time*breed interaction (P<0.05).  Plasma samples taken every 15 min during the 6 h restraint 
stress to determine cortisol concentrations.  Time 0 was the initial sample taken. 
 

0
5

10
15
20
25

0 60

120

180

240

300

360

Tim e (m in)

C
or

tis
ol

 
C

on
ce

nt
ra

tio
ns

 (n
g/

m
l)

Ang
Bon
Bra
Rom
Tul
W ag



 

 

48

There was a significant (P<0.06) breed affect for area under the curve over the 6 

h restraint period (Fig. 3).  Brahman and Angus bulls had greater (P<0.05) area under the 

curve over the 6 h restraint period than Bonsmara and Wagyu bulls with Romosinuano 

and Tuli bulls being intermediate (Table 7).  

 

Table 7.  Area under the curve (LS mean + SE) for cortisol concentrations during the 6 h 
restraint stress for sexually mature Angus, Bonsmara, Brahman, Romosinuano, Tuli, and 
Wagyu bulls 

Breed Total area under the curve 
(arbitrary units) 

Brahman 3483.4+549.0a 

 
Angus 3339.8+586.9a   

 
Romosinuano 2543.0+491.0a,b 

 
Tuli 2302.3+491.0a,b 

 
Bonsmara 1758.5+549.0b 

 
Wagyu 1488.4+491.0b 

 
Different superscripts within a column differ P<0.05 

 

 There was a significant breed influence on average (P<0.03) as well as maximum 

(P<0.02) plasma cortisol concentrations during the first h of restraint.  Brahman, 

Romosinuano, Angus and Tuli bulls had greater (P<0.05) average concentrations of 

plasma cortisol during the first h of restraint than Wagyu bulls with the Bonsmara bulls 

being intermediate to all breeds except Brahman bulls (Table 8).  Brahman, 

Romosinuano, Angus and Tuli bulls had greater (P<0.05) maximum concentrations of 

plasma cortisol during the first h of restraint than Wagyu bulls with Bonsmara bulls 
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being intermediate to Tuli and Wagyu bulls (Table 8).  Wagyu bulls tended (P<0.09) to 

have the lowest plasma cortisol concentration during the first h of restraint compared to 

Angus, Romosinuano and Brahman bulls (Table 8).  There was no breed influence 

detected for average, highest or lowest plasma cortisol concentrations for the second h, 

third h, fourth h, fifth h or sixth h of restraint. 

 

Table 8.  The range (maximum, average, and lowest) cortisol concentrations (ng/ml; LS 
mean + SE) during the first h of restraint for sexually mature Angus, Bonsmara, 
Brahman, Romosinuano, Tuli, and Wagyu bulls 
Breed Highest cortisol 

concentration 
(ng/ml) 

Average cortisol 
concentration 

(ng/ml) 

Lowest cortisol 
concentration (ng/ml) 

Brahman 24.21+3.73a 18.02+3.16a 

 
11.66+2.83 

Romosinuano 22.30+3.34a 16.79+2.83a,b 

 
11.61+2.54 

Angus 22.05+3.99a 15.70+3.38a,b 

 
10.97+3.03 

Tuli 20.68+3.34a,b 14.21+2.83a,b 

 
9.38+2.54 

Bonsmara 12.56+3.73b,c 9.37+3.16b,c 

 
6.54+2.83 

Wagyu 9.05+3.34c 5.07+2.83c 2.20+2.54 
 

Different superscripts within a column differ P<0.05 

 

Results, Experiment # 2 

Slaughter Weight 

 Slaughter weight and hot carcass weight were significantly (P<0.0002) 

influenced by breed. Brahman bulls were heavier (P<0.0004) at slaughter and had a 

heavier (P<0.0004) hot carcass weight than Angus and Romosinuano bulls (Table 9).  
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Dressing percentage was significantly (P<0.004) influenced by breed. Brahman and 

Angus bulls had greater (P<0.05) dressing percentages than Romosinuano bulls (Table 

9).   

 

Table 9.  Slaughter weight, hot carcass weight, and dressing percent (LS mean + SE) of 
Angus, Brahman, and Romosinuano bulls at 69-111 d following sexual maturity 

Breed Slaughter weight 
(kg) 

Hot carcass weight 
(kg) 

Dressing percent 
(%) 

Brahman 527.39+19.04a 318.08+13.25a 60.25+0.63x 

 
Angus 415.10+17.03b 244.06+11.85b 58.65+0.57x 

 
Romosinuano 385.27+17.03b 220.55+11.85b 57.02+0.57y 

 
Different superscripts within a column differ a,b P<0.0004; x,y P<0.05 

 

Endocrine Organ Weights 

 Whole pituitary gland weights and whole pituitary gland weight on a body 

weight (BW) basis (mg/kg BW) differed significantly (P<0.03) between breeds. 

Romosinuano and Angus bulls had heavier (P<0.05) whole pituitary glands than 

Brahman bulls (Table 10).  On a BW basis, Romosinuano had a heavier (P<0.02) whole 

pituitary gland than Angus which were heavier (P<0.02) than Brahman bulls (Table 10). 
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Table 10.  Whole pituitary gland weights and whole pituitary gland weight on a BW 
basis (mg/kg BW; LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 
d following sexual maturity 

Breed Pituitary weight (g) Pituitary weight     
(mg/kg BW) 

Romosinuano 2.05+0.09a 5.33+0.18x 

 
Angus 1.94+0.09a 4.68+0.18y 

 
Brahman 1.65+0.12b 3.16+0.20z 

 
Different superscripts within a column differ a,b P<0.05; x,y,z P<0.02 

 

There were no breed differences for anterior pituitary gland weights (Table 11); 

however, anterior pituitary gland weight (BW basis; mg/kg BW) was significantly 

(P<0.0002) influenced by breed.  Romosinuano bulls had a heavier (P<0.02) anterior 

pituitary gland on a BW basis than Angus bulls which were heavier (P<0.02) than 

Brahman bulls (Table 11). 

 

Table 11.  Anterior pituitary gland weights and anterior pituitary gland weight on a BW 
basis (mg/kg BW; LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 
d following sexual maturity 

Breed Anterior pituitary weight 
(g) 

Anterior pituitary weight    
(mg/kg BW) 

Romosinuano 1.56+0.09 4.05+0.17a 

 
Angus 1.43+0.09 3.45+0.17b 

 
Brahman 1.33+0.10 2.53+0.19c 

 
Different superscripts within a column differ a,b P<0.02 
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Paired adrenal gland weights and paired adrenal gland weight on a BW basis 

were significantly (P<0.02) influenced by breed.  Angus had heavier (P<0.02) paired 

adrenal gland weights than Romosinuano and Brahman bulls which were similar (Table 

12).  However, on a BW basis, Angus and Romosinuano had heavier (P<0.0002) paired 

adrenal gland weights than Brahman bulls (Table 12). 

 

Table 12.  Paired adrenal gland weights and paired adrenal gland weight on a BW basis 
(mg/kg BW; LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 d 
following sexual maturity 

Breed Paired adrenal  
weight (g) 

Paired adrenal weight 
(mg/kg BW) 

Angus 17.35+0.67a 42.10+1.54x 

 
Romosinuano 14.86+0.67b 38.79+1.54x 

 
Brahman 14.82+0.75b 28.25+1.72y 

 
Different superscripts within a column differ a,b P<0.02, x,y P<0.0002 

 

 There were no breed differences in liver weights (Table 13); however, 

liverweight on a BW basis was significantly (P<0.0005) influenced by breed. 

Romosinuano and Angus bulls had heavier (P<0.005) liver weights on a BW basis than 

Brahman bulls (Table 13). 
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Table 13.  Liver weights and liver weight on a BW basis (g/kg BW; LS mean + SE) for 
Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed Liver weight (kg) Liver weight (g/kg BW) 
Romosinuano 5.4+0.3 13.9+0.5a 

 
Angus 5.3+0.3 12.8+0.5a 

 
Brahman 5.6+0.3 10.6+0.5b 

 
Different superscripts within a column differ P<0.005 

 

Actual spleen weights as well as spleen weight per unit BW basis were 

significantly (P<0.01) influenced by breed.  Brahman and Romosinuano had heavier 

(P<0.003) spleen weights than Angus bulls (Table 14).  Romosinuano had heavier 

(P<0.006) spleen weights on a BW basis than Angus and Brahman bulls (Table 14). 

 

Table 14.  Spleen weights and spleen weight on a BW basis (g/kg BW; LS mean + SE) 
for Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed Spleen weight (kg) Spleen weight (g/kg BW) 
Angus 0.78+0.04b 1.90+0.08y 

 
Brahman 0.98+0.04a 1.89+0.09y 

 
Romosinuano 0.89+0.04a 2.28+0.08x 

Different superscripts within a column differ a,b P< 0.003; x,y P<0.006 

 

A significant (P<0.03) breed influence was detected for heart weight, but not for 

heart weight on a BW basis (Table 15). Brahman and Angus bulls had heavier (P<0.03) 

actual heart weights than Romosinuano bulls (Table 15). 
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Table 15.  Heart weights and heart weight on a BW basis (g/kg BW; LS mean + SE) for 
Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed Heart weight (kg) Heart weight (g/kg BW) 
Angus 1.7+0.1a 6.4+1.5 

 
Brahman 1.7+0.1a 3.2+1.7 

 
Romosinuano 1.4+0.1b 3.7+1.5 

Different superscripts within a column differ a,b P<0.03 

 

There was no breed influence detected for lung weight (including the trachea, 

Table 16); however, lung weight (including the Trachea) on BW basis was significantly 

(P<0.005) influenced by breed.  Romosinuano and Angus had heavier (P<0.04) lung 

weights on a BW basis than Brahman bulls (Table 16). 

 

Table 16.  Lung weights and lung weight on a BW basis (g/kg BW; LS mean + SE) for 
Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed Lung weight (kg) Lung weight (g/kg BW) 
Romosinuano 5.2+0.2 13.57+0.43a 

 
Angus 5.2+0.2 12.65+0.43a 

 
Brahman 5.9+0.2 11.20+0.48b 

 
Different superscripts within a column differ a,b P<0.04 

 

Adrenal StAR and P450 Content and Adrenal Morphometrics 

 Adrenal StAR content was significantly (P<0.03) influenced by breed. Angus 

had a greater (P<0.007) adrenal StAR content than Brahman with Romosinuano bulls 

being intermediate (Table 17).  Breed differences were not detected for adrenal P450 
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content (Table 17).  A western blot of the adrenal StAR protein and the P450 scc enzyme 

with three bulls representing each breed is shown in Figure 4. 

 

Table 17.  Adrenal StAR protein and P450 scc enzyme content (LS mean + SE) for 
Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed Adrenal StAR content 
 (IOD units) 

 

Adrenal P450 content  
(IOD units) 

 
 
Angus 

 
0.223+0.010a 

 

 
0.128+0.01 

 
 
Romosinuano 

 
0.199+0.010a,b 

 

 
0.139+0.01 

 
Brahman 

 
0.177+0.012b 

 

 
0.141+0.01 

 
Different superscripts within a column differ P<0.007 

 

 

 

 

           Angus           Brahman       Romosinuano   MA10 Marker 
 
Figure 4. Western blots of adrenal StAR protein and P450 scc for Angus, Brahman, and 
Romosinuano bulls 69-111 d following sexual maturity. 
 
 

StAR  

P450 
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Total adrenal gland area, adrenal medullary area and adrenal cortical area were 

significantly (P<0.05) influenced by breed.  Angus bulls had a greater total adrenal area 

(P<0.02), adrenal medullary area (P<0.06) and adrenal cortical area (P<0.02) than 

Brahman and Romosinuano bulls (Table 18). 

 

Table 18.  Total adrenal area (LS mean + SE) for Angus, Brahman, and Romosinuano 
bulls 69-111 d following sexual maturity 

Breed Total adrenal 
area (µm) 

 

Medullary adrenal 
area (µm) 

 

Cortical adrenal 
area (µm) 

 
Angus 82.00+3.36a 

 
25.29+1.16m 

 
56.32+2.66x 

 
Brahman 68.51+3.75b 

 
21.90+1.29n 

 
46.11+2.97y 

 
Romosinuano 65.51+3.36b 20.49+1.16n 44.49+2.66y 

 
Different superscripts within a column differ a,b P<0.002, m,n P<0.06 and x,y P<0.02. 
Note:   Adrenal artery area was subtracted from the total adrenal area and medullary area.  
The adrenal cortical area was calculated as follows: Adrenal Cortical Area = Total Area 
– (Medullary Area + Adrenal Artery Area). 
 
 
Discussion 

 The intent of these experiments was to determine if tropical adaptation influences 

adrenal function in bulls and to evaluate how temperate Bos taurus, tropically-adapted 

Bos indicus, tropically-adapted Sanga and tropically-adapted Bos taurus bulls respond to 

two different types of common management stressors and to determine if organ weights 

of tropically-adapted Bos taurus are more similar to temperate Bos taurus or tropically-

adapted Bos indicus bulls.  Consequently, various breeds were utilized to determine if 

differences exist among different biotypes.  Results from experiment # 1 indicate that 

breed differences do exist in response to different types of management stressors; 
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however, tropical adaptation was not influenced by these management stressors.  The 

response to two different management stressors was similar for each individual breed; 

however, not all breeds responded in exactly the same fashion.  Animals respond to 

stressors by stimulating the hypothalamic-pituitary-adrenal axis.  In this axis, stress 

stimulates CRH released from the hypothalamus which acts at the corticotropes of the 

anterior pituitary to synthesize and secrete ACTH.  ACTH then enters systemic 

circulation and acts at the adrenal gland to release the glucocorticoids, cortisol and 

corticosterone. Results from experiment # 2 indicate that the weights of organs and 

adrenal StAR content of tropically-adapted Bos taurus bulls tend to be more similar to 

that of temperate Bos taurus than that of tropically-adapted Bos indicus bulls; however, 

paired adrenal weight (actual weight), total adrenal area, medullary and cortical area 

were similar to that of tropically-adapted Bos indicus bulls and thus these parameters 

were influenced by tropical adaptation. 

 The reasons why breeds of cattle respond differently are not completely 

understood, although genetics may potentially be an underlying factor.  In the present 

study, only cortisol, and not ACTH or CRH, was assayed in bull plasma.  Consequently, 

it is unknown as to where in the HPA Axis the differences in cortisol concentrations 

originate, although central and/or peripheral mechanisms may contribute to this 

difference.  Hypo-or hyperreactivity of the HPA axis may be a result of factors such as 

negative feedback efficiency, concentrations of ACTH secretagogues in the median 

eminence, differences in pituitary sensitivity to CRH and/or adrenal sensitivity to ACTH 
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or factors associated with receptor dynamics as well as availability of steroidogenic 

enzymes. 

 Although the HPA axis is similar in all animals, genetic differences have been 

reported at all levels within the HPA axis.  At the level of the hypothalamus, Lewis rats 

have a significantly smaller CRH response to stress than that of the Fischer rats 

(Sternberg et al., 1992).  Additionally, CRH mRNA significantly increased following a 

restraint stress in CFY rats compared to Sprague-Dawley and Wistar rats (Harbuz et al., 

1994).  Bonsmara X Angus steers had lower amplitude of cortisol following CRH 

administration than Angus, Bonsmara and Brahman steers; however Angus steers had a 

greater peak plasma cortisol than Bonsmara and Bonsmara X Angus steers, but not 

Brahman steers (Hollenbeck et al., 2003).  Theses authors also reported Angus and 

Bonsmara X Angus steers displayed a more rapid cortisol peak response to CRH than 

Brahman or Bonsmara steers and plasma cortisol returned to basal concentrations more 

slowly in Bonsmara steers than Angus, Brahman or Bonsmara X Angus steers.  ACTH 

concentrations have been reported to be lower in Lewis rats following a restraint stress 

than in Fischer rats (Moncek et al., 2001) and Sprague-Dawley rats (Dhabhar et al., 

1997).  ACTH and cortisol concentrations have been reported to be higher in 3/4 Angus 

steers compared to 3/4 Brahman steers (Bruner et al., 1996).  However, in the present 

study no differences in cortisol concentrations between Angus and Brahman were 

detected.  Selection plays a key role in the genetic differences of the HPA.   

Animals that handle stress well and have good temperaments have better growth 

traits and may have more efficient immune systems.  Baker et al. (2003) reported 



 

 

59

weaned calves that had a bad temperament and a fast “exit velocity” from the chute lost 

an average of 11 pounds in the first 50 d after weaning while weaned calves that had a 

good temperament and a slow exit velocity gained an average of 30 pounds in the 50 d 

following weaning.  This could be important in selecting cattle that can be efficient 

performers in the stocker and feedlot segments of the beef industry. 

 Transportation of livestock not only results in stimulation of the HPA axis, but 

also stimulates shrinkage of live weight. Cattle that are transported typically encounter a 

loss in body weight (shrink) that may be due to long trips without feed and water, 

excessive heat as well as increased urination and defecation during transport.  Shrinkage 

of live weight is important in the beef industry as cattle are transported to slaughter 

facilities.  Shrinkage in live weight results in lighter animals at slaughter and can 

potentially result in reduced profit.  Additional body weight shrinkage can occur at the 

slaughter facility when cattle are co-mingled without feed and water and penned 

together.  Kreikemeier et al. (1998) reported that 36 to 84 h may pass from the time 

animals arrive at the slaughter facility until they are slaughtered and that many slaughter 

facilities do not provide feed or water to the cattle unless it is expected to be longer than 

36 h before the cattle are slaughtered.   

The percent shrink in body weight detected in the bulls in the present study was 

considerably lower than that reported in other cattle of various ages (Lay et al., 1996; 

Zavy et al., 1992 and Warriss et al., 1995).  A 4% shrink in bodyweight was reported in 

pregnant Brahman cows which had been transported (Lay et al., 1996).  Warriss et al. 

(1995) reported a 4.6-7.0% shrink in 12-18 mo old Hereford X Friesian steers and 
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Limousin cross steers which were transported 5, 10, or 15 h.  British cross and British X 

Brahman weaned steers had an 8.1% shrink in body weight (Zavy et al., 1992).  It is 

unknown why the bulls in the present study had lower percent shrink in body weight but 

it may possibly be a result of a shorter duration of transportation as well as cooler 

temperatures at the beginning of the experiment.  Additionally, these cool temperatures 

lasted for a longer period of time than normal for the geographic region.  The bulls in the 

present study had access to ad libitum hay and water until immediately prior to 

transportation.  Shrink in bodyweight, following transportation, was not influenced by 

tropical adaptation. 

 Transportation is a stressor that typically elicits a stress response.  This stress 

response from transportation, like that of body weight shrinkage, has a commercial 

component as well.  Preharvest stress from transportation and coupled with the 

additional stress of co-mingling cattle can result in dark cutters in animals that do not 

handle stress well (Scanga et al., 1998).  The preharvest stress depletes muscle glycogen 

stores and thus reduces the glycogen needed to produce lactic acid that reduces the pH of 

postmortem muscle which consequently results in an undesirable, dark, firm and dry cut 

lean surface (McVeigh and Tarrant, 1982).   

In the present study, Angus, Brahman, Romosinuano, Tuli and Wagyu bulls all 

either doubled or almost doubled the concentrations of plasma cortisol from those prior 

to transportation.  A similar doubling response in plasma cortisol concentrations was 

reported in steers transported for five h (Warriss et al., 1995); however, the plasma 

cortisol concentrations in these steers following transportation was much lower than that 
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detected in the bulls in the present study.  It was surprising that the Bonsmara bulls in 

the present study actually had a lower plasma cortisol concentration following 

transportation compared to the plasma cortisol concentrations prior to transportation.  

Blecha et al. (1984) reported similar findings in that Angus feeder steers also had 

decreased cortisol concentrations following 10 h of transportation.  These authors 

suggest that it was likely that this was due to the animals acclimating to the trailer.  

Warriss et al. (1995) reported that cattle transported 10 or 15 h had an increase in plasma 

cortisol concentrations but the increases were slight and decreased with longer duration 

of transportation.  Knights and Smith (2003) reported that transportation stress results in 

an increase followed by a gradual suppression of ACTH secreted by the anterior 

pituitary accompanied by a decrease in anterior pituitary responsiveness to CRH and 

arginine vasopressin stimulation.  In the present study, bulls were transported for only 30 

min.  It is possible that the Bonsmara bulls may have acclimated to transportation; 

however, the likelihood of acclimation occurring during a short trip is not likely. 

 Cannulation is a procedure that is not commonly performed during management 

in beef cattle operations; however, it is an important and a necessary technique utilized 

for research purposes.  The technique of cannulation also served as an additional 

handling procedure.  Little research has evaluated the technique of jugular cannulation as 

a potential stressor to cattle.  Angus, Brahman, Romosinuano and Tuli bulls had similar 

concentrations of plasma cortisol following cannulation to the plasma cortisol 

concentrations following transportation.  Bonsmara bulls doubled the plasma cortisol 

concentrations from post-transportation to post-cannulation and had cortisol 
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concentrations similar to that prior to transportation.  The Wagyu bulls; however, had a 

decrease of 50% in plasma cortisol concentrations following cannulation compared to 

that following transportation.  These results clearly indicate that the cannulation 

procedure may elicit a response similar to that of transportation.  It is unclear if the stress 

response resulted from the cannulation itself or possibly the handling of the area around 

the neck and head.   

 Restraint, unlike jugular cannulation, is a management practice that is commonly 

utilized for multiple reasons in beef production systems.  In the present study, 

differences in average and maximum plasma cortisol concentrations were only detected 

during the first h of restraint.  The maximum plasma cortisol concentration during the six 

h restraint period was detected in the first h of restraint for all breeds of bulls.  The 

maximum plasma cortisol concentration detected was similar to the concentrations of 

plasma cortisol following transportation for all breeds of bulls except for the Bonsmara 

bulls which had nearly a 5-fold higher plasma cortisol concentration during the first h of 

restraint compared to post-transportation cortisol concentrations.  However, the average 

cortisol concentrations for Bonsmara bulls were similar to that reported by Hollenbeck et 

al. (2003) in Bonsmara steers in the 2 h duration prior to CRH administration.  A 

possible explanation for the maximum cortisol concentration occurring during the first h 

of restraint is that the bulls were gathered from pens, placed in a chute alley, extensions 

were placed on cannulas and cannulas were checked to make sure they worked 

adequately.  The restraint and blood sampling period began after all cannulas for a set of 

bulls were connected and working properly.  Following the first h of restraint, plasma 
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cortisol concentrations gradually decreased for approximately three h, plateaued for one 

h and then slightly increased during the last h of restraint.  The decreased cortisol 

concentrations were likely due to the bulls becoming acclimated to the restraint as well 

as to the blood collection.  The slight increase of plasma cortisol concentrations between 

the fifth and sixth h of restraint may be due to fatigue encountered by the bulls.  The 

bulls also appeared to be uncomfortable at this time since a constant switching from 

standing to lying down and vice versa occurred with the bulls.  The low responses of the 

Bonsmara and Wagyu bulls to transportation, cannulation and restraint are likely a result 

of selection for docile cattle which occurred over many years and generations (Bonsma 

1951 and Felius, 1995).  Hollenbeck et al. (2003) reported that relative to other 

breedtypes (Angus and Brahman), the Bonsmara and Bonsmara X Angus steers 

maintained lower plasma cortisol throughout the 2 h prior to and 2 h immediately 

following CRH administration.   

 Experiment # 2 was conducted to evaluate if organ weights, adrenal StAR protein 

and P450 scc enzyme content, total adrenal area, medullary area and cortical area of 

tropically-adapted Bos taurus bulls is more similar to that of temperate Bos taurus bulls 

or tropically-adapted Bos indicus bulls.  Since sexual maturity occurs later in life in 

Brahman cattle, Brahman bulls were older and thus had a heavier weight at slaughter as 

well as a heavier hot carcass weight than Angus and Romosinuano bulls.  Brahman bulls 

also had a greater dressing percentage.  This was similar to the trend reported in the 

study conducted by Chase et al. (2001).  They noted that Brahman X Angus bulls had 

greater hot carcass weights (271 kg) and dressing percentages (55.1 %) than Senepol X 
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Angus bulls (225 kg, 52.8 %, respectively) or Tuli X Angus bulls (225 kg, 52.7 %, 

respectively); however, these values were slightly lower than those reported in the 

present study.  Slaughter characteristics including slaughter weight, hot carcass weight 

and dressing percentage were not influenced by tropical adaptation. 

 When obtaining organ weights from animals of different breeds, it is important to 

consider BW and put the actual weights on a BW basis since some animals may be older 

and heavier at similar physiological endpoints.  This allows animals of different weights 

and sizes to be compared on an equal basis.  The whole pituitary gland weight reported 

for Romosinuano bulls in the present study was similar to those reported in British X 

Continental bulls and steers of slaughter weight (Doornenbal, 1974).  The heavier 

anterior pituitary gland weight reported for Angus compared to Brahman bulls in the 

present study was similar to the findings reported in ¾ Angus and ¾ Brahman steers 

(Carroll et al., 1996; Bruner et al., 1996).  A larger anterior pituitary gland may result in 

the ability to produce and secrete more ACTH as seen in higher concentrations of ACTH 

in 3/4 Angus compared to 3/4 Brahman steers as reported by Bruner et al. (1996).   

 Paired adrenal gland weight is influenced by tropical adaptation.  Paired adrenal 

glands were reported to be heavier in ¾ Angus compared to ¾ Brahman steers (Bruner et 

al., 1996).  These are similar to trends reported in the present study with Romosinuano 

bulls having similar paired adrenal gland weights to that of Brahman bulls.  The paired 

adrenal gland weights reported for bulls in the present study were slightly lower than 

those reported in ¾ Angus and ¾ Brahman steers (Bruner et al., 1996) but similar to 

those reported in British X Continental bulls and steers (Doornenbal, 1974).  Large 
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adrenal glands may result in greater sensitivity to ACTH; however, this is beyond the 

scope of this research and further research is required.  Bruner et al. (1996) reported that 

3/4 Angus steers had higher concentrations of cortisol compared to 3/4 Brahman steers. 

 The rate-limiting step in steroidogenesis is the transfer of cholesterol from the 

outer to the inner mitochondrial membrane by the StAR protein (Stocco and Clark, 

1996).  Differences in StAR content among breeds may result in differences in the 

ability of an animal to produce glucocorticoids.  No differences in adrenal StAR content 

were detected in male or female fetal Angus and Brahman calves (Green, 1999).  

Although differences in adrenal StAR content were detected among breeds of bulls in 

the present study, no differences were detected in concentrations of plasma cortisol at 

slaughter or adrenal P450 scc content among the breeds of bulls.  Similarly, no 

differences in adrenal P450 scc were detected between fetal Angus and Brahman calves 

(Green, 1999).  One might expect for P450 scc content to parallel StAR content as it 

follows next in the process of steroidogenesis.  A possible explanation that P450 scc 

does not parallel StAR protein is the way in which they may be regulated.  In the rat 

ovary, following stimulation by PMSG and hCG, StAR was reported to be acutely 

regulated while P450 scc was reported to be chronically regulated (Sandhoff and 

McLean, 1996).  Cholesterol concentrations were reported to be higher in tropically-

adapted calves compared to temperate calves (O'Kelley and Wallace, 1979).  This 

suggests that tropically-adapted cattle may not need as much StAR to move cholesterol 

since more cholesterol is readily available. 
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 Total adrenal area, medullary area and cortical area for Angus and Brahman bulls 

were similar to that reported by Bruner et al. (1996) in 3/4 Angus and 3/4 Brahman 

steers. This is likely a direct result of the size of the adrenal glands.  The larger adrenal 

glands would be expected to have larger total, medullary and cortical areas.  The heavier 

and larger adrenal gland may possibly have the potential to produce and secrete greater 

amounts of cortisol.  Koch et al. (2000) reported that the proportional response of 

concentrations of serum cortisol immediately prior to and 30 min following 

administration of ACTH was greater for Bos taurus (Angus) steers compared to ½ Bos 

taurus – ½ Bos indicus and Bos indicus (Brahman) steers but not ¾ Bos taurus – ¼ Bos 

indicus steers.  Bruner et al. (1996) reported that ¾ Angus had higher mean 

concentrations of plasma cortisol than ¾ Brahman steers.  However, results from 

experiment # 1 of the present study show no differences in plasma cortisol 

concentrations between Angus and Brahman bulls. 

 Various organs, including the liver, spleen, heart and lungs (including the 

trachea) were weighed to determine if tropically-adapted Bos taurus bulls are more 

similar to temperate Bos taurus bulls or to tropically-adapted Bos indicus. The actual 

weights of the heart and liver in the present study are approximately 33% lower than 

those reported in 13 mo old Simmental bulls which were produced in vitro (McEvoy et 

al., 1998).  Cattle produced in vitro usually have larger organs than cattle produced in 

vivo.  The heavier organ weights (corrected for BW) from Romosinuano bulls may 

possibly be similar to a heterosis effect where crossbred calves have greater body 

weights than the purebred counterparts.  The Romosinuano bulls may have a similar 
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phenomenon to that of heterosis since they are tropically-adapted yet they are also Bos 

taurus cattle.  It is possible that the larger organs may be advantageous to Romosinuano 

cattle in handling extreme heat and thermal stress via respiration and heart rate.     

Conclusion 

 It is concluded that various breeds of bulls respond differently to management 

stressors, but tropical adaptation does not influence these management stressors.  

However, bulls within a breed had similar responses to both transportation and restraint.  

Consequently, either transportation or restraint can be utilized to rank cattle as high, 

intermediate or low responders.  This can be important in the selection of animals.   

 Most organ and gland weights corrected for BW are not influenced by tropical 

adaptation; however, actual paired adrenal gland weight, total adrenal area, medullary 

and cortical areas of tropically-adapted Bos taurus are more similar to those of 

tropically-adapted Bos indicus bulls and consequently are influenced by tropical 

adaptation.  Adrenal StAR content was not influenced by tropical adaptation.  

Tropically-adapted Bos taurus breeds may offer a unique alternative to beef 

crossbreeding systems.  It appears that heredity may play an important role in controlling 

the mechanisms that lead to the physiological response to stress.  Also, genotype may 

affect an animals’ resistance and/or susceptibility to stressors 
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CHAPTER IV 

BASAL AND INDUCED TESTOSTERONE CONCENTRATIONS,  
 

REPRODUCTIVE ORGAN WEIGHTS, TESTIS STEROIDOGENIC ACUTE  
 

REGULATORY PROTEIN CONTENT, AND TESTIS AND EPIDIDYMAL  
 

SPERM CONCENTRATIONS OF TROPICALLY-ADAPTED AND  
 

TEMPERATE Bos taurus AND TROPICALLY-ADAPTED Bos indicus BULLS 
 
 

Introduction 

Reproduction is critical and essential in beef production systems.  Functions of 

the reproductive system depend on the hypothalamic-pituitary-gonadal (HPG) axis 

(Senger, 1997).  The hypothalamus synthesizes and secretes gonadotropin-releasing 

hormone (GnRH) which acts at the gonadotrophs of the anterior pituitary to secrete the 

gonadotropins, luteinizing hormone (LH) (Mongkonpunya et al., 1974) and follicle-

stimulating hormone (FSH) (Amann, 1983).  The gonadotropins enter the circulation and 

act on the gonads to regulate steroidogenesis and spermatogenesis.  LH acts at the 

Leydig cells in the testis to produce testosterone (Amann, 1983).  In bulls, LH and 

testosterone are released in a pulsatile fashion with testosterone concentrations 

increasing approximately 30 min following increased LH concentrations (Amann, 1983). 

 Testosterone is involved in spermatogenesis as well as the development of 

accessory sex glands and secondary sex characteristics.  Exogenous hormones such as 

human chorionic gonadotropin (hCG; Sundby et al., 1975) and GnRH (Mongkonpunya 

et al., 1975) have been shown to induce testosterone secretion in bulls.  Inducing 

testosterone secretion in this manner allows for testosterone production to be measured 
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in different breeds of bulls.  Breed can have an affect on testosterone concentrations.  

Godfrey et al. (1990) reported lower basal concentrations of testosterone in Brahman 

bulls compared Hereford bulls. 

 Determining testicular and epididymal sperm content enables daily spermatozoa 

production (DSP) to be calculated as well as an understanding of the capacity of 

spermatozoa storage in the epididymus (Amann and Almquist, 1961).  A difference in 

DSP has been reported in Angus, Hereford and Charolais bulls (Weisgold and Almquist, 

1979).  Knowledge of differences in DSP among various breeds could be important in 

selecting the best bull for a particular system.  A better understanding of reproductive 

traits in tropically-adapted Bos taurus bulls is necessary to determine how they would 

best fit into crossbreeding programs.  Therefore, the objectives of this study are to 1) 

determine if differences exist in basal and hCG-induced concentrations of testosterone 

among tropically-adapted Bos taurus, Sanga, temperate Bos taurus and tropically-

adapted Bos indicus bulls and 2) determine if the weights of reproductive organs, testis 

and epididymal sperm concentrations and content of testis StAR protein and P450 scc 

enzyme of tropically-adapted Bos taurus bulls is more similar to that of temperate Bos 

taurus bulls or tropically-adapted Bos indicus bulls.  
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Materials and Methods 

Experiment 1 

Animals 

Bulls of six different breeds, Bonsmara (n = 8), Romosinuano (n = 10), Tuli (n = 

10), Brahman (n = 8), Angus (n = 7) and Wagyu (n = 10), were utilized for this 

experiment.  Bulls arrived at the Texas Agricultural Experiment Station in Overton, 

Texas following weaning.  Upon arrival, bulls were pastured together and managed 

similarly during a 5 mo acclimation period.  There were several important cooperators 

that generously supplied bulls for this study.  The cooperators were Dr. Chad Chase at 

the Subtropical Agricultural Research Station (Angus and Romosinuano bulls; 

Brooksville, FL.), the Texas Agricultural Experiment Station (Brahman bulls; Overton, 

TX.), Mr. George Chapman (Bonsmara bulls; Amarillo, TX.), and Mr. Kent Briggs (Tuli 

and Wagyu bulls; Rice, TX.).  

After reaching sexual maturity (defined as two consecutive semen samples 

collected via electroejaculation every other week containing at least 500 million sperm 

per ejaculate as well as at least 50 % motility of viable spermatozoa), bulls were then 

fitted with an indwelling jugular catheter (o.d. = 1.7 mm, i.d. = 1.1 mm; Teflon, TFE, 

Cole-Parmer, Chicago, IL) as described by Lay et al. (1996).  Bulls were confined 

together and allowed to rest overnight before the serial blood samples were collected. 

 Blood samples were collected every 15 min for the first seven h and every 30 

min for the next five h.  At the end of the first six h, human chorionic gonadotropin 

(hCG, Chorulon, Intervet, Millsboro, DE) was administered (1000 IU total; 10 ml 
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consisting of 100 IU/ml) via the indwelling jugular catheter.  The blood samples were 

placed on ice and centrifuged within 30 min of collection.  Plasma was harvested and 

stored at -20°C until radioimmunoassays can be performed.  Area under the curve was 

calculated for testosterone using the trapezoidal rule. 

Hormone Radioimmunoassay Procedure 

 Plasma harvested from blood samples collected during the first six h (prior to 

hCG administration) and after hCG administration were analyzed via radioimmunoassay 

to determine basal concentrations of testosterone as described by Godfrey et al. (1990)  

(see Appendix 1 for complete description).  Antiserum (11-BSA # S – 250) was 

purchased from Dr. G. D. Niswender (Colorado State University, Fort Collins, 

Colorado) and tritiated testosterone was purchased from New England Nuclear, Inc. 

(Boston, MA).  The cross-reactivity of the antiserum is approximately 0.01 %, 0.01 %, 

0.11 % and 1.7 % with pregnenolone, progesterone, estradiol and androstenedione, 

respectively.  The testosterone was purchased from Steraloids (Wilton, NH) and 

standards were made which had a concentration ranging from 3.9 pg/ml to 16,000 pg/ml.  

The intraasssay coefficient of variation was 9.1 % and the interassay coefficient of 

variation was 11.3 %.  The extraction efficiency was 84.12 %. 

Statistical Analysis, Experiment # 1 

 The plasma concentrations of testosterone (basal) were analyzed using ANOVA 

specific for repeated measures procedures of SAS (1992).  Average, lowest (prior to 

hCG administration), highest concentration of testosterone and area under the curve 

(prior to and following hCG administration) were analyzed using the GLM procedure for 
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analysis of variance (SAS, 1992). Mean separation was accomplished using the PDIFF 

option of SAS (1992). 

Experiment # 2 

Animals 

Angus (n = 7), Brahman (n = 8) and Romosinuano (n = 10) bulls were fed an 

8.85:1.0:0.15 corn:soybean meal:limestone ration for a minimum of 69 d (range was 69 

– 111 d) following the serial blood collection.  The range in time on feed existed due 

date availability to slaughter at the slaughter facility.  These bulls were penned together 

and given Coastal bermuda grass hay and water ad libitum.  Following the feeding 

period, the bulls were transported to the Texas A&M University Rosenthal Meat Science 

and Technology Center where they were processed for food utilization.  Every breed was 

represented at each slaughter date.  The dates of slaughter, number of head slaughtered 

and the average daily temperature at slaughter are included in Table 1.  

Tissue Collection 

 Upon slaughter, testicles (including the epididymus), seminal vesicles and whole 

pituitaries were collected and stored on ice until weights could be obtained.  The testes 

and epididymus were cleaned of adherent tissue, the epididymus was dissected from the 

testis and weights (to nearest 0.01 g) were obtained for both the testis and epididymus.  

A tissue slice from the right testis was fixed in 4 % paraformaldehyde and used for 

histology to measure seminiferous tubule diameter.  A piece of tissue (approximately 0.2 

g) was cut from the testis, snap frozen in liquid nitrogen, and stored at -80°C until 

analysis for StAR protein and P450 side – chain cleavage enzyme protein content could 



 

 

73

be performed.  The right testis and right epididymus were frozen at -20° until testis 

sperm concentration and epididymal sperm concentrations from the caput, corpus, and 

caudal sections of the epididymus could be determined.  Pituitary glands were cleaned of 

adherent tissue, weighed (to nearest 0.01 g) and the anterior pituitary was dissected from 

the whole pituitary and weighed (to nearest 0.01 g). 

Testis and Epididymal Sperm Concentrations 

 Concentrations of sperm from the right testis and right epididymus were 

determined using procedures described by Amann and Almquist (1961).  Testis and 

epididymal tissues were removed from the freezer and thawed at room temperature.  A 

piece of testicular parenchyma weighing 1.5 to 1.7 g was obtained.  The tissue was 

placed in a plastic weigh boat and minced thoroughly using a scalpel followed by 

scissors.  The minced tissue was then diluted in 150 ml of homogenization fluid (See 

Appendix 3 for complete description) and placed in a Waring blender (Model: #7009; 

New Hartford, CT) and blended for 2 min.  The epididymus was separated into three 

sections, the caput, corpus and cauda, and homogenized separately in 150, 150 and 200 

ml of homogenization fluid, respectively.  Each section was minced as previously 

described and homogenized for 2 min and 15 sec.  Following homogenization, the fluid 

was poured into a 250 - ml Erlenmeyer flask, sealed with parafilm and refrigerated for 

24 h at 4°C.  Following refrigeration, the flasks were shaken vigorously and a sample 

was removed using a glass Pasteur pipette and one side of the hemacytometer chamber 

was filled.  The process was repeated for filling the other side of the hemacytometer 

chamber.  The hemacytometer was then placed within a humidified petri dish for 2 to 3 
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min.  An inverted phase microscope (Model # IMT-2 Olympus Optical Co., LTD, 

Tokyo, Japan) was utilized to count sperm cells at 400X.  The spermatids counted from 

the testis included all homogenization resistant sperm nuclei, which for the bull includes 

stages VI, VII and VIII of the cycle of the seminiferous epithelium.  The spermatids 

counted from the caput, corpus and cauda epididymus included all sperm present in the 

hemacytometer grid.  All sperm counts (testis and epididymus) were made by the same 

person.  A new sample for both sides of the hemacytometer was utilized if there was 

greater than 15 % difference noted between counts (each side of the hemacytometer 

chamber) to insure accuracy of counts.  The homogenized sample was diluted 1:6 for 

caput epididymus and 1:2 for cauda epididymus because the number of spermatids was 

too great to count.  Sperm content of testis (per g and total) and regions of the 

epididymus were calculated based on tissue weight fluid (dilution if necessary) and 

spermatid counts.  Daily sperm production (DSP) and daily sperm production/gram 

(DSP/g; efficiency of sperm production) were then calculated by dividing the testis 

sperm content by 5.32 (Amann, 1970).  The number 5.32 represents the number of days 

for production of spermatozoa represented by the spermatids counted in the testicular 

homogenate (Amann et al., 1974).  To calculate DSP, it was assumed that testicular 

parenchyma constituted 87.2 % of gross testis weight (Swierstra, 1970).  

Testicular Histological Measurements 

 Sections of the right testis fixed in 4% paraformaldehyde were sectioned at 5 

micron intervals and stained with hematoxilin and eosin (H & E; at least 3 sections per 

slide).  The H&E sectioned images were visualized using an Olympus SZH Zoom Stereo 
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Microscope and acquired by a Sony 960MD 3-CCD color camera attached to the 

microscope.  A PowerMac 8100 computer system using a LG3-8-bit frame grabber 

(Scion Corp.) which is under the control of the NIH Image Program was used for image 

acquisition from the Sony color camera.  Fifty randomly chosen, circular, seminiferous 

tubules with lumens were evaluated for each bull.  The diameter (micrometers) of the 

seminiferous tubule and the diameter of the lumen of the seminiferous tubule were 

measured using NIH Image (Scion Image Software, Scion Corp.).  The diameter of each 

seminiferous tubule and lumen were an average of two perpendicular measurements.  

Western Blot Analysis 

 The western blot analysis was the same as described in Chapter III.  

Statistical Analysis, Experiment # 2 

 Differences in weights of testis, epididymus, seminal vesicles, whole pituitary 

and anterior pituitary, diameter of seminiferous tubules and lumen, daily sperm 

production, daily sperm production/gram, sperm concentration in the testis, caput 

epididymus, corpus epididymus and cauda epididymus and differences in StAR protein 

and P450 scc enzyme content were determined using the GLM procedure for analysis of 

variance (SAS, 1992).  Mean separation was accomplished using the PDIFF option of 

SAS (1992).  
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Results, Experiment # 1 

 Basal concentrations of testosterone differed (P<0.04) between breeds over the 6 

h sampling period prior to hCG administration (Figure 5). 

There was a significant (P<0.04) breed difference for average concentrations of 

plasma testosterone during the 6 h prior to administration of hCG.  Wagyu bulls had 

greater (P<0.05) average plasma testosterone concentrations during the 6 h prior to hCG 

administration than Tuli, Bonsmara, Angus, Brahman and Romosinuano bulls (Table 

19). 

There was no significant breed influence (P > 0.10) for highest concentrations of 

plasma testosterone during the 6 h prior to hCG administration; however, Wagyu bulls 

tended (P<0.07) to have higher plasma concentrations of testosterone than did the 

Romosinuano bulls during this period (Table 19). 

 No breed differences (P > 0.10) were detected for lowest plasma testosterone 

concentrations during the 6 h period prior to hCG administration (see Table 19). 

A significant (P<0.05) breed influence was detected for area under the curve for 

the 6 h prior to hCG administration.  Wagyu bulls had greater (P<0.05) area under the 

curve prior to hCG administration than Tuli, Bonsmara, Angus, Brahman and 

Romosinuano bulls (Table 19). 
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Figure 5.  Plasma concentrations of testosterone prior to hCG administration in sexually mature Angus, Bonsmara, Brahman, 
Romosinuano, Tuli, and Wagyu bulls.  Plasma samples taken every 15 min during the 6 h interval to determine testosterone 
concentrations.  Time 0 was the initial sample taken.
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Table 19.  The range (maximum, average, and lowest) and area under the curve for testosterone concentrations (ng/ml; LS 
mean + SE) prior to administration of hCG in sexually mature Angus, Bonsmara, Brahman, Romosinuano, Tuli, and Wagyu 
bulls 

Breed Mean 
testosterone 

concentration 
(ng/ml) 

Highest testosterone 
concentration (ng/ml) 

Lowest testosterone 
concentration 

(ng/ml) 

Pre area under the 
curve 

 (arbitrary units) 

Wagyu 4.33+0.59 b 10.63+1.40  1.24+0.45 1525.9+214.1b 

Tuli 2.62+0.59 a 

 
7.86+1.40  

 
1.78+0.45 

 
912.7+214.1a 

 

Bonsmara 2.41+0.66 a 

 
7.47+1.56  

 
0.71+0.50 

 
865.6+239.4a 

 

Angus 2.02+0.70a 

 
5.16+1.67 

 
0.76+0.53 

 
717.5+256.0a 

 

Brahman 1.88+0.66 a 

 
6.68+1.56  

 
0.72+0.50 

 
646.9+239.4a 

 

Romosinuano 1.70+0.59 a 

 
4.71+1.40  

 
0.61+0.45 

 
596.8+214.1a 

 
Different superscripts within a column differ P<0.05
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Figure 6.  Plasma testosterone concentrations following hCG administration in sexually mature Angus, Bonsmara, Brahman, 
Romosinuano, Tuli, and Wagyu bulls.  Time * breed interaction (P<0.0002).  Plasma samples taken every 15 min during hour 
1 and every 30 min during next 5 h to determine testosterone concentrations following hCG administration.  hCG was 
administered immediately prior to Time 0 which was the initial sample taken.
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There was no significant (P>0.10) breed influence over time following hCG 

administration; however, there was a significant (P<0.0002) time* breed interaction 

(Figure 6). 

 The maximum concentration of plasma testosterone as well as area under the 

curve following hCG administration did not differ (P > 0.10) among breeds (Tables 20). 

 

Table 20.  Maximum plasma concentration of testosterone (ng/ml; LS mean + SE) and 
area under the curve following administration of hCG in sexually mature Angus, 
Bonsmara, Brahman, Romosinuano, Tuli, and Wagyu bulls 

Breed Maximum plasma 
testosterone (ng/ml) 

 Area under the curve 
(arbitrary units) 

Brahman 17.46+1.14 

 
4888.20+311.92 

 
Bonsmara 15.14+1.14 

 
4179.88+311.92 

 
Angus 14.77+1.22 

 
3997.88+333.46 

 
Romosinuano 14.26+1.02 

 
3961.60+278.99 

 
Tuli 13.81+1.02 

 
3878.85+278.99 

 
Wagyu 13.20+1.02 3990.81+278.99 
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Results, Experiment # 2 

Slaughter Characteristics 

 A significant (P<0.0002) breed influence was detected for BW at slaughter and 

hot carcass weight (HCW). Brahman were heavier (P<0.003) at slaughter and had a 

heavier (P<0.003) hot carcass weight than Angus and Romosinuano bulls (Table 21).  

There was a significant (P<0.003) breed influence on dressing percent.  Brahman and 

Angus bulls had higher (P<0.05) dressing percentages than Romosinuano bulls (Table 

21). 

 

Table 21.  Slaughter weight, hot carcass weight, and dressing percent (LS mean + SE) of 
Angus, Brahman, and Romosinuano bulls at 69-111 d following sexual maturity 

Breed Slaughter weight 
(kg) 

Hot carcass weight 
(kg) 

Dressing 
percent (%) 

Brahman 527.39+19.04a 

 
318.08+13.25a 

 
60.25+0.63x 

 
Angus 431.37+19.97b 

 
254.11+13.93b 

 
58.81+0.65x 

 
Romosinuano 385.27+17.03b 220.55+11.85b 57.02+0.57y 

 
Different superscripts within a column differ a,b P<0.003, x,y P<0.05 

 

Tissue Weights 

 There was a significant breed influence for whole pituitary gland weight 

(P<0.015) as well as whole pituitary gland weight on BW basis (P<0.0002). 

Romosinuano and Angus had heavier (P<0.02) whole pituitary gland weight than 

Brahman bulls (Table 22).  On a BW basis, Romosinuano had heavier (P<0.03) whole 
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pituitary gland weights than Angus which had heavier (P<0.03) pituitary weights than 

Brahman bulls (Table 22). 

 

Table 22.  Whole pituitary gland weights and whole pituitary gland weight on a  
BW basis (mg/kg BW; LS mean + SE) for Angus, Brahman, and  
Romosinuano bulls 69-111 d following sexual maturity 
Breed Whole 

pituitary gland 
weight (g) 

Whole pituitary  
gland weight  
(mg/kg BW) 

Romosinuano 2.05+0.09a 5.32+0.17x 

 
Angus 2.02+0.11a 4.70+0.21y 

 
Brahman 1.65+0.10b 3.16+0.19z 

 
Different superscripts within a column differ a,b P<0.02, x,y,z P<0.003 

 

A breed difference was not detected (P > 0.10) for anterior pituitary gland weight 

(Table 23), but anterior pituitary gland weight on a BW basis was significantly 

influenced (P<0.0002) by breed.  Romosinuano had heavier (P<0.04) anterior pituitary 

glands on a BW basis than Angus which were heavier (P<0.04) than Brahman bulls 

(Table 23). 
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Table 23.  Anterior pituitary gland weights and anterior pituitary gland weight on a BW 
basis (mg/kg BW; LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 
d following sexual maturity 

Breed  Anterior 
pituitary gland  

weight (g) 

Anterior pituitary 
gland weight 
(mg/kg BW) 

Romosinuano 1.56+0.09 4.05+0.17a 

 
Angus 1.49+0.11 3.45+0.21b 

 
Brahman 1.33+0.10 2.52+0.19c 

 
 Different superscripts within a column differ a,b,c P<0.04 

 

 There was significant breed influence for paired testis weights (P<0.0002) and 

paired testis weight on a BW basis (P<0.024). Brahman had heavier (P<0.0002) paired 

testis weights and heavier (P<0.02) paired testis weights on a BW basis than Angus and 

Romosinuano bulls (Table 24). 

 

Table 24.  Paired testis weights and paired testis weight on a BW basis (g/kg BW; LS 
mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 d following sexual 
maturity 

Breed  Paired  
testis weight (g) 

 

Paired testis weight 
(g/kg BW) 

Brahman 315.18+16.96a 1.23+0.07x 

 
Angus 213.30+18.13b 0.97+0.08y 

 
Romosinuano 185.20+15.17b 0.98+0.06y 

 
Different superscripts within a column differ a,b P<0.0002, x,y P<0.02 
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A significant (P<0.0002) breed influence was detected for length and diameter of 

the right testis.  Brahman had longer (P<0.0007) testes and larger (P<0.0002) diameter 

of the testes than Angus and Romosinuano bulls (Table 25). 

 

Table 25.  Right testis length and diameter (mm; LS mean + SE) for Angus, Brahman, 
and Romosinuano bulls 69-111 d following sexual maturity 

Breed  Right testis  
length (mm) 

 

Right testis  
diameter (mm) 

Brahman 136.01+4.05a 69.43+1.52x 

 
Angus 112.24+4.32b 58.09+1.63y 

 
Romosinuano 108.44+3.62b 57.10+1.36y 

 
  Different superscripts within a column differ a,b P<0.0007, x,y P<0.0002 

 

A significant breed influence was detected for paired epididymal weights 

(P<0.0002) and for paired epididymus on a BW basis (P<0.038). Brahman had heavier 

(P<0.0002) paired epididymal weight and heavier (P<0.04) paired epididymal weight on 

a BW basis than Angus and Romosinuano bulls (Table 26). 
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Table 26.  Paired epididymal weights and paired epididymal weight on a BW basis 
(mg/kg BW; LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 d 
following sexual maturity 

Breed  Paired  
epididymal weight (g) 

Paired epididymal  
weight (mg/kg BW) 

Brahman 57.39+2.49a 110.46+5.47x 

 
Angus 39.49+2.66b 91.07+5.85y 

 
Romosinuano 35.57+2.23b 92.91+4.90y 

 
Different superscripts within a column differ a,b P<0.0002, x,y P<0.04 

 

 Significant breed influences were detected for seminal vesicle weights 

(P<0.0004) and seminal vesicle weights on a BW basis (P<0.033).  Brahman and Angus 

had heavier (P<0.004) seminal vesicle weights than Romosinuano bulls (Table 27).  

Angus bulls had heavier (P<0.01) seminal vesicle weights on a BW basis than 

Romosinuano with Brahman bulls being intermediate (Table 27). 

 

Table 27.  Seminal vesicle weights and seminal vesicle weight on a BW basis (mg/kg 
BW; LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 d following 
sexual maturity 

Breed  Seminal  
vesicle weight (g) 

Seminal vesicle 
weight (mg/kg BW) 

Angus 69.93+4.61a 163.20+8.92x 

 
Brahman 76.80+4.31a 145.16+8.35x,y 

 
Romosinuano 49.84+3.86b 130.15+7.47y 

Different superscripts within a column differ a,b P<0.004, x,y P<0.01 
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Seminiferous Tubule Diameter, Testis Sperm Content and Daily Sperm Production 

 No significant (P<0.08) difference among breeds was detected for seminiferous 

tubule diameter or diameter of the lumen of the seminiferous tubule (Table 28). 

 

Table 28.  Seminiferous tubule diameter (µm) and seminiferous tubule lumen diameter 
(µm; LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 d following 
sexual maturity 

Breed  Seminiferous tubule  
diameter (µm) 

Seminiferous tubule  
 lumen diameter (µm) 

Angus 215.43+5.79 88.91+3.87 

 
Romosinuano 207.32+4.49 79.28+3.00 

 
Brahman 197.21+5.02 76.89+3.35 

 
 

 

 Testis sperm content per g and total testis sperm content were significantly 

(P<0.02) influenced by breed.  Romosinuano had greater (P<0.006) testis sperm content 

per g of tissue than Angus with Brahman bulls being intermediate (Table 29).   Brahman 

had greater (P<0.009) total testis sperm content than Romosinuano and Angus bulls 

(Table 29).  

Daily sperm production per g (DSP/g) of tissue and total daily sperm production 

(DSP) were significantly (P<0.02, P<0.002, respectively) influenced by breed.  

Romosinuano had greater (P<0.006) DSP/g than Angus with Brahman bulls being 

intermediate (Table 29).  Brahman had greater (P<0.009) DSP than either Romosinuano 

or Angus bulls (Table 29). 
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Table 29.  Testis sperm content per g of tissue, daily sperm production per g of tissue, total testis sperm content, and daily 
sperm production (LS mean + SE) for Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed  Testis sperm 
content  

per g of tissue 
(106) 

Daily sperm 
production  

per g of tissue  
(106) 

 Total testis  
sperm content  

(109) 

Daily sperm 
production  

(109) 

Angus 56.86+4.37b 10.69+0.82b 

 
20.61+3.88y 

 
3.87+0.73y 

Brahman 64.61+3.78a,b 12.15+0.71a,b 

 
41.63+3.36x 

 
7.82+0.63x 

Romosinuano 73.80+3.38a 13.87+0.64a 28.48+3.00y 5.35+0.56y 

 

Different superscripts within a column differ a,b P<0.006, x,y P<0.009
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Caput, Corpus, and Cauda Epididymal Sperm Content 

 No breed differences (P > 0.10) were detected for caput epididymus sperm 

content per g of tissue (Table 30), but a significant (P<0.004) breed influence was 

detected for total caput epididymus sperm content (Table 31).  Brahman had greater 

(P<0.004) total caput epididymus sperm content than Romosinuano and Angus bulls 

(Table 31). 

 There was a significant (P<0.0002) breed influence on corpus epididymus sperm 

content per g of tissue (Table 30) and total epididymal sperm content (Table 31).  

Brahman had greater (P<0.006) corpus epididymus sperm content per g than 

Romosinuano which were greater (P<0.006) than Angus bulls (Table 30).  Brahman had 

greater (P<0.0002) total corpus epididymus sperm content than Romosinuano and Angus 

bulls (Table 31). 

Significant breed differences were detected for cauda epididymal sperm content 

per g of tissue (P<0.0004, Table 30) and total cauda epididymal sperm content 

(P<0.0021, Table 31).  Romosinuano had greater (P<0.007) cauda epididymal sperm 

content per g than Brahman and Angus bulls (Table 30).  Brahman tended (P<0.07) to 

have greater cauda epididymal sperm content per g than Angus bulls (Table 30).  

Brahman and Romosinuano had greater (P<0.002) total cauda epididymal sperm content 

than Angus bulls (Table 31).  
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Table 30.  Caput, corpus, and cauda epididymus sperm content per g of tissue (LS mean 
+ SE) for Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed  Caput epididymus 
sperm content per g 

of tissue 
(106) 

 Corpus epididymus 
sperm content per g 

of tissue 
(106) 

 Cauda epididymus 
sperm content per 

g of tissue 
(106) 

Angus 426.08+72.99 

 
179.64+51.78c 

 
852.95+174.12y 

 
Brahman 572.61+63.21 

 
650.88+44.84a 

 
1307.90+150.79y 

 
Romosinuano 517.68+56.53 381.91+40.11b 1915.30+134.87x 

 
Different superscripts within a column differ a,b,c P<0.006, x,y P<0.007 

 

Table 31.  Total caput, corpus, and cauda epididymus sperm content (LS mean + SE) for 
Angus, Brahman, and Romosinuano bulls 69-111 d following sexual maturity 

Breed Total caput 
epididymus  

sperm content  
(109) 

Total corpus 
epididymus  

sperm content  
(106) 

Total cauda 
epididymus  

sperm content  
(109) 

Brahman 6.02+0.53a 1662.33+90.99m 7.03+0.75x 

 
Romosinuano 3.69+0.47b 427.43+81.38n 6.87+0.67x 

 
Angus 3.36+0.61b 219.52+105.06n 2.84+0.86y 

 
Different superscripts within a column differ a,b P<0.004, m,n P<0.0002, x,y P<0.002 
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Plasma Testosterone Concentration at Slaughter and Testis StAR and P450 Content 

 Concentrations of plasma testosterone at slaughter were similar among breeds of 

bulls (Angus, 3.77+2.05; Brahman, 2.64+1.92; Romosinuano, 5.78+1.71).  Significant 

breed influences for testis content of StAR (P<0.0043) and P450 (P<0.05) was detected.  

Romosinuano and Angus had greater (P<0.006) testis StAR protein content than 

Brahman bulls (Table 32).  Angus had greater (P<0.02) testis P450 scc enzyme content 

than Brahman with Romosinuano bulls being intermediate (Table 32).  A western blot of 

the testis StAR protein and P450 scc with three bulls representing each breed is shown in 

Figure 7).   

 

Table 32.  Testis StAR protein content (LS mean + SE) for Angus, Brahman, and 
Romosinuano bulls 69-111 d following sexual maturity 

Breed Testis StAR content 
 (IOD units) 

 

Testis P450 content  
(IOD units) 

 
Angus 0.155+0.018a 

 
0.036+0.007x 

 
Brahman 0.079+0.17b 

 
0.012+0.006y 

 
Romosinuano 0.156+0.015a 0.028+0.006x,y 

Different superscripts within a column differ a,b P<0.006, x,y P<0.02 
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  Angus Brahman         Romosinuano  MA10 Marker 

Figure 7. Western blots of testis StAR protein and P450 scc for Angus, Brahman, and 
Romosinuano bulls 69-111 d following sexual maturity. 
 

Discussion 

 The intent of experiment # 1 was to determine if basal differences exist among 

concentrations of plasma testosterone as well as plasma testosterone concentrations 

following hCG administration in tropically-adapted Bos taurus, Sanga, temperate Bos 

taurus and tropically-adapted Bos indicus bulls.  The intent of experiment # 2 was to 

determine if reproductive organ weights, testis sperm content, daily sperm production, 

epididymal sperm content and testis content of StAR protein and P450 scc enzyme of 

tropically-adapted Bos taurus bulls are more similar to those of temperate Bos taurus 

bulls or tropically-adapted Bos indicus bulls.  Results from experiment # 1 indicate that 

differences were detected for average concentrations of plasma testosterone among 

breeds during the 6 h prior to hCG administration.   

 Basal concentrations of plasma testosterone during the 6 h interval were not 

influenced by tropical adaptation.  The average basal concentrations of plasma 

testosterone during the six-hour sampling period were similar to those reported in Angus 

X Hereford bulls (Rawlings et al., 1978) and in Hereford and Brahman bulls (Godfrey et 

StAR 

P450 
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al., 1990), but slightly lower than those reported in Norwegian Red bulls (Sundby and 

Tollman, 1978).  Wagyu bulls had the greatest average and highest concentrations of 

testosterone during the 6 h sampling period with Tuli and Bonsmara bulls being 

intermediate and Brahman, Angus and Romosinuano bulls having the lowest 

testosterone concentrations. Differences in basal testosterone concentrations may be due 

to several factors.  The first factor may be genetic differences in the hypothalamic-

pituitary-gonad axis.  A likely assumption may be that these differences are due to 

differences in LH concentrations; however, LH concentrations were not quantified in 

this study.  In conjunction with LH, insulin-like growth factor 1 (IGF-1) acts to assist in 

Leydig cell maturation in mice (Wang et al., 2003).  These authors suggest that this may 

ultimately affect testosterone production.  Strauch et al. (2002) reported that sexually 

mature Angus bulls tended to have increased testicular IGF-1 mRNA expression 

compared to sexually mature Brahman and Romosinuano bulls.  These same authors 

reported that no difference existed in testicular expression of LH-receptor mRNA 

between sexually mature Angus and Romosinuano bulls.  Genetic differences in mean 

testosterone concentrations have been reported in African-American men and Caucasian 

men.  African-American men have higher concentrations compared to Caucasian men 

(Ellis and Nyborg, 1992).  The higher concentrations of testosterone in Wagyu bulls may 

be consistent with a rapid precocious puberty (Tatman, 2002) or a higher level of libido 

(Whitworth, 2002).  During a 90 d controlled breeding season (April 15 – July 15, 1999), 

Wagyu bulls sired three times more offspring than Tuli bulls and nearly two times more 

than Bonsmara bulls (79 calves sired by Wagyu, 24 sired by Tuli, and 44 sired by 
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Bonsmara; Whitworth, 2002).  A pronounced increase in concentrations of testosterone 

in Africander bulls is consistent with a higher level of fertility compared to Brahman 

cross and Hereford X Shorthorn bulls during natural mating in Australia (Post and 

Bindon, 1983). 

Thibier (1976) reported that the average number of testosterone peaks during a 

24 h period in mature dairy bulls ranged between 3 and 7 peaks.  Similarly, Godfrey et 

al. (1990) reported an average of 1.3-2.3 testosterone peaks during an 8 h period in 

Brahman and Hereford bulls.  In the present study, very few testosterone peaks were 

detected in the 53 bulls sampled during a 6 h sampling period; however, several bulls 

appeared to be on the decline of a testosterone peak at the commencement of sampling 

since the testosterone concentrations further declined until a basal concentration was 

achieved.   

 A possible explanation as to why very few peaks of testosterone were detected in 

bulls in the present study may be due to stress and high concentrations of plasma cortisol 

encountered by the bulls when they were placed in the alleyway and during the period 

when extensions were added to the cannulas and when the cannulas were checked to 

ensure proper functioning.  However, this should have only been a temporary 

suppression and should not have affected testosterone peaks later in the 6 h sampling.  

Increased serum cortisol concentrations as a result of administration of ACTH (Johnson 

et al., 1982) or electroejaculation (Welsh and Johnson, 1981) have been reported to 

suppress secretion of testosterone.  Testosterone suppression was also reported in bulls 

following administration of dexamethasone (Thibier and Rolland, 1976).  The 
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suppression of testosterone was a result of LH suppression due to increased 

concentrations of corticosteroids and possibly increased concentrations of progesterone 

(Welsh and Johnson, 1981; Johnson et al., 1982).  Peaks of testosterone occurred 6 h 

following ACTH treatment (Johnson et al., 1982) or electroejaculation (Welsh and 

Johnson, 1981) after cortisol concentrations were back to a basal concentration. 

 Testosterone concentrations following hCG administration were not influenced 

by tropical adaptation.  The testosterone concentrations following hCG administration 

found in bulls in the present study were similar to those reported in 7 mo old (Sundby, 

1981) and 1.5-3 year old (Sundby et al., 1975) Norwegian Red bulls.  These data as well 

as the data from the present study indicate that various breeds challenged with hCG have 

similar capabilities to produce and secrete testosterone.  A possible explanation for this 

is that a similar number of Leydig cells were stimulated by the hCG.  Another possible 

explanation is that the hCG quantity was such that it saturated all the Leydig cells in the 

testis of all the bulls, thus resulting in similar testosterone production and secretion. 

 Results from experiment # 2 indicate that the weights of the reproductive organs 

of tropically-adapted Bos taurus bulls are more similar to that of temperate Bos taurus 

bulls but that testis and epididymal sperm concentrations are intermediate to tropically-

adapted Bos indicus bulls and temperate Bos taurus bulls.  Consequently, testicular and 

epididymal sperm concentrations were influenced by tropical adaptation.  This would be 

expected since a key concept of tropical adaptation is the ability to reproduce in tropical 

or subtropical climates.  As expected from weights at slaughter, Brahman had a heavier 

hot carcass weight than Angus and Romsinuano bulls.  Chase et al. (2001) reported that 
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Brahman X bulls had heavier slaughter and hot carcass weights than Tuli X Angus and 

Senepol X Angus bulls.  The heavier weight at slaughter can be attributed to the 

Brahman bulls being older and thus heavier at sexual maturity.   Dressing percentages of 

Brahman X Angus were greater than Tuli X Angus and Senepol X Angus bulls (Chase et 

al., 2001); however, these were slightly lower than that reported in the present study. 

 Organ weights were not influenced by tropical adaptation.  When obtaining 

organ weights from animals of different breeds it is important to consider the BW and to 

examine the organ weights on a BW basis since some animals may be older and heavier 

at similar physiological endpoints.  This ensures that all animals are compared on an 

equal basis.  The whole pituitary gland weight reported for Romosinuano bulls in the 

present study was similar to those reported in British X Continental bulls and steers 

(Doornenbal, 1974).  The anterior pituitary gland weight has been reported to be heavier 

in ¾ Angus compared to ¾ Brahman steers at slaughter weights (Bruner et al., 1996; 

Carroll et al., 1996).  Larger anterior pituitary gland may result in the ability to produce 

and secrete more LH.  This differs from data of the present study since no differences 

were detected in anterior pituitary weight between Angus and Brahman bulls.  A 

possible explanation for these different findings may be that the ¾ Angus and ¾ 

Brahman steers were slaughtered at a common weight whereas the bulls in the present 

study were slaughtered after reaching a common physiological endpoint (sexual 

maturity).  Consequently, there was approximately 100 kg difference in BW between 

Angus and Brahman bulls in the present study. 
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 The similarities in actual paired testis weight, corrected paired testis weight, 

testis length and testis diameter of Romosinuano and Angus bulls is likely due to the 

similarity in bodyweight at slaughter.  This indicates that these parameters of the Angus 

and Romosinuano bulls are proportionate to their body size and BW.  This is also true 

for the Brahman bulls as they had heavier BW and thus larger and heavier testes.  The 

paired testis weights of the Angus bulls in the present study are similar to those reported 

in yearling Angus bulls (Coulter and Bailey, 1988).  Paired testis weight of the Brahman 

bulls in the present study were slightly higher than those reported in Brahman bulls by 

Chase et al. (1994).  This is likely due to the Brahman bulls in the present being slightly 

older and heavier than those reported by Chase et al. (1994).  In the present study, Angus 

and Romosinuano bulls had similar epididymal weights (actual and adjusted for BW), 

which was due to the proportionality of the size of the testis.  This was also seen in 

Brahman bulls which had heavier paired epididymal weights due to having larger testes.  

Paired epididymal weights previously reported in Brahman (Chase et al., 1994) and 

Angus (Weisgold and Almquist, 1979) were similar to those in the present study.  

The rate-limiting step in steroidogenesis is the transfer of cholesterol from the 

outer to the inner mitochondrial membrane by the StAR protein (Stocco and Clark, 

1996).  Differences in testis StAR content among breeds may influence the ability of an 

animal to produce androgens.  Green (1999) reported that testis StAR protein and P450 

scc enzyme of fetal Angus and Brahman bull calves during various time points of 

gestation in which fetal Angus bull calves had greater StAR and P450 scc enzyme 

content at some time points and fetal Brahman having greater StAR and P450 scc 
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enzyme concentrations at other time points.  This differs from the present study where 

sexually mature Angus had greater testis StAR and P450 content compared to sexually 

mature Brahman bulls.  An explanation for the differences between the present study and 

that of Green (1999) is that in the present study StAR protein and P450 scc enzyme were 

measured at one time point and in the study by Green (1999) examined 7 different time 

points.  One reason for the inconsistency our data and that reported by Green (1999) is 

likely due to the low numbers compared at each time point during gestation.  The 

concentrations of plasma testosterone reported for bulls at the time of slaughter in the 

present study were variable between bulls within breed.  The problem may not only be 

genetic related but also hormonally related.  Wang et al. (2003) reported that IGF-1 

stimulates maturation of adult Leydig cells in conjunction with LH by increasing 

steroidogenic enzyme expression and decreasing androgen-metabolism by 5-alpha 

reductase-1.  

 Testicular sperm content is an estimation of the total number of sperm cells in the 

parenchyma of the testis.  Daily sperm production is the amount of sperm an animal is 

capable of producing each day.  Daily sperm production per g of tissue in Angus bulls in 

the present study was similar to that reported in 7 yr old Angus bulls (Weisgold and 

Almquist, 1979) but lower than that reported in 15 mo old Angus bulls (Coulter et al., 

1987).  Daily sperm production in Angus bulls in the present study was approximately 

50% of that reported for 15 mo old Angus bulls (Coulter et al., 1987).  Angus bulls in the 

present study as well as those evaluated by Weisgold and Almquist (1979) and Coulter 

et al. (1987) were slaughtered between May and September.  The lower daily sperm 
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production in Angus bulls in the present study may be due to the high environmental 

temperatures experienced in Texas from May to September.  High ambient temperatures 

have been shown to have detrimental effects on spermatogenesis in Angus 

(Meyerhoeffer et al., 1985) and Hereford bulls (Austin et al., 1961).  This is particularly 

important in beef cattle operations that have a controlled breeding season from May to 

July or in situations where the bulls is with the cows year around and expected to breed 

females that come into heat during the summer months.  Testis sperm concentrations and 

daily sperm production by the Romosinuano bulls in the present study indicate that 

indeed this breed is tropically-adapted and are not greatly affected by high ambient 

temperatures. 

 The lowered epididymal sperm concentrations detected in the Angus bulls in the 

present study could be a result of high ambient temperature affecting spermatogenesis in 

the testis and thus decreasing the concentrations of spermatozoa in the three sections of 

the epididymus.  Epididymal sperm concentrations in the Romosinuano bulls indicate 

that they are tropically-adapted and are not greatly affected by high ambient 

temperatures. 

Conclusion 

 It is concluded that various breeds of bulls have different basal concentrations of 

plasma testosterone; however, basal testosterone concentrations were not influenced by 

tropical adaptation.  Various breeds of bulls have similar concentrations of plasma 

testosterone following administration of hCG which also was not influenced by tropical 

adaptation.  In experiment #2, it is concluded that the weights of reproductive organs and 
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testis StAR protein and P450 scc enzyme of tropically-adapted Bos taurus bulls are more 

similar to tropically-adapted Bos indicus bulls than to temperate Bos taurus bulls and 

thus not influenced by tropical adaptation.  Testis and epididymal sperm concentrations 

were influenced by tropical adaptation.  Tropical adaptation is important in regards to 

reproduction in beef crossbreeding operations along the Gulf Coast.  
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CHAPTER V 

CONCLUSIONS 
 
 

The majority of beef cattle crossbreeding operations along the Gulf Coast utilize 

cattle that are tropically-adapted due to the hot and humid climate of that region.  

Brahman cattle are a tropically-adapted Bos indicus breed that has primarily been 

utilized in this region.  However, newly introduced tropically-adapted breedtypes such as 

Bonsmara (Sanga X Bos taurus composite breed from Southern Africa), Romosinuano 

(Criollo breed from Colombia) and Tuli (Sanga breed from Southern Africa) as well as 

the temperate Japanese Bos taurus breed of Wagyu (which may be of economic value) 

need to be studied as viable options in crossbreeding systems in the Gulf Coast region.   

In livestock production systems, management practices such as transportation 

and restraint elicit a response from the animals’ hypothalamic-pituitary-adrenal axis.  

These practices act as stressors to the animal.  The response of a breed to management 

stressors such as transportation and restraint may determine if that breed will be 

advantageous in crossbreeding systems.  Additionally, functions of the reproductive 

system depend on the hypothalamic-pituitary-gonadal axis.  The ability of an animal to 

reproduce in the hot, humid climate of the Gulf Coast region may determine if that breed 

can successfully be utilized in crossbreeding systems.  The present studies were 

conducted to examine if tropical adaptation influences adrenal and reproductive function 

in bulls. 

  The cortical responses to transportation and restraint stress were not influenced 

by tropical adaptation.  The response to both of these stressors could be categorized into 
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high responders (Angus, Brahman), intermediate responders (Romosinuano, Tuli) and 

low responders (Wagyu, Bonsmara).  The tropically-adapted breedtypes were not 

categorized into a single group.  Therefore, it was concluded that response to both 

transportation and restraint stress was influenced only by breedtype.  This may be a 

result of some breedtypes being selected heavily for docility.  This is only speculation 

and further research is required to better understand these findings. 

 Testosterone production and secretion is important in the process of 

spermatogenesis.  All breedtypes except the temperate Japanese Bos taurus had similar 

concentrations of testosterone.  Therefore, it was concluded that tropical adaptation did 

not influence basal concentrations of plasma testosterone, but that it was influenced by 

breedtype.  The temperate Japanese Bos taurus bulls had greater basal concentrations of 

testosterone than other breedtypes examined.  This was likely a result of two things, 1) 

the precocious puberty and rapid sexual maturation exhibited by this breedtype (Tatman, 

2002) and 2) a higher level of libido amongst this breedtype (Whitworth, 2002).   

While it was concluded that basal testosterone concentrations prior to hCG 

administration were affected by breedtype, testosterone production following hCG 

administration was similar between all of the breedtypes.  Therefore, it was not 

influenced by breedtype or tropical adaptation.  This may be due to similar number of 

Leydig cells being stimulated by hCG in all of the bulls or that the hCG quantity was 

such that it saturated all of the Leydig cells in the testis of all the bulls, thus resulting in 

similar testosterone production and secretion. 
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 Most organ and gland weights (actual weight and weight corrected for BW) and 

the steroid precursors, StAR protein and P450 scc enzyme, were not influenced by 

tropical adaptation.  It was concluded that these parameters were influenced only by 

breedtype since the tropically-adapted breedtypes were not similar.   

Actual paired adrenal gland weight, total adrenal area, medullary and cortical 

areas were influenced by tropical adaptation.  The tropically-adapted breedtypes had 

both lighter glands and smaller areas than their temperate Bos taurus counterpart 

breedtypes.   

 To better understand the stress response and how to manage it, future research 

should possibly include stress-related genes and markers and also the inclusion of 

catecholamines from the adrenal medulla and their involvement in stress responsiveness.  

The possibility of locating genes involved with temperament may warrant the attention 

of researchers in the future.  

Testis and epididymal sperm concentrations were influenced by tropical 

adaptation.  The tropically-adapted breedtypes had greater testicular and epididymal 

sperm concentrations than the temperate Bos taurus breedtype counterparts during the 

summer months.  This would be expected since a key concept of tropical adaptation is 

the ability to reproduce in tropical or subtropical climates. 

 Future research should possibly focus on the growth axis, the ability to perform 

in feedlots located in the high plains (Midwest) and carcass characteristics of tropically-

adapted breedtypes as well as the temperate Japanese Bos taurus Wagyu breedtype.  
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This would provide a better understanding if these breedtypes can economically fit into 

crossbreeding systems in the Gulf Coast region. 

In summary, adrenal gland weight, adrenal gland area (total, medullary, and 

cortical), and testicular and epididymal sperm concentrations were influenced by tropical 

adaptation.  However, cortical response to transportation and restraint, basal testosterone 

concentrations, other organ weights (actual and BW basis) and testis and adrenal StAR 

and P450 content were influenced by breedtype, not tropical adaptation. 
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APPENDIX A 

RADIOIMMUNOASSAY PROCEDURE FOR PLASMA CONCENTRATION OF 

CORTISOL 

 
Assay Solutions 

PBSG    1 L 

NaCl    8.17 g 

NaH2PO4H2O   0.856 g 

Na2HPO4    0.54 g 

EDTA    3.72 g 

Thimerosal Powder  0.1 g 

1) Dissolve all of the above in 900 ml D-D H2O in 1000 ml beaker. 

2) Adjust pH to 7.4. 

3) Weigh 1.0 g gelatin (Knox) and add to a 1 L bottle and add EDTA-PBS solution. 

4) Dissolve gelatin by placing bottle on magnetic stirrer/hot plate on “low” heat and 

moderate stirring speed for approximately 2 h. 

5) PBSG is ready to use after cooling to room temperature. 

6) Store at 4°C. 

Charcoal Dextran Suspension  500 ml 

Charcoal Norit SPXX   3.125 g 

Dextran Pharmacia T-70   0.3125 g 

PBSG     500 ml 
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1) Combine dextran, charcoal and PBSG in 1000 ml beaker. 

2) Make up charcoal the day before it is needed and allow mixture to stir for at least 

6 h. 

3) Stir mixture for 1 h prior to use. 

Sample Methodology 

1) Sample Preparation 

a. Pipet 10 µl sample in duplicate into appropriately labeled plastic 12 x 75 mm  

tubes 

b. Add 490 µl of PBSG to each tube and vortex. 

c. Place in 70°C water bath for 1 h. 

d. Allow sample to cool down for 1 h to room temperature and then proceed 

with setting up the assay. 

2) Setting up the Assay 

a. Pipet 800 µl, 600 µl, 500 µl PBSG in duplicate into appropriately labeled 

tubes (T, N, 0 respectively). 

b. Pipet 500 µl of standard into appropriately labeled plastic tubes in duplicate. 

c. Add 100 µl of tritiated hydrocorticosterone (approximately 12000-13000 

cpm) to all tubes. 

d. Add 100 µl of antibody to all tubes except the T and N tubes and vortex. 

e. Store in refrigerator at 4°C for 12 to 18 h. 
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3) Day 2 

a. Add 5 ml Ecolume (ICN, Aurora, OH) cocktail to mini-vials and label caps 

for vials. 

b. Add 200 µl of charcoal dextran suspension to all tubes except T tubes (This 

step should be performed in the cold room). 

c. Vortex tubes and allow to sit for 15 min. 

d. Centrifuge (Sorvall Instruments, Model RC3C, Newton, CT) for 20 min at 

2800 rpm (2282 x g). 

e. Keep tubes at 4°C after centrifugation. 

f. Decant supernatant into the mini-vials and count each vial for 1 min in beta 

counter. 
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APPENDIX B 

RADIOIMMUNOASSAY PROCEDURE FOR PLASMA CONCENTRATION OF 

TESTOSTERONE 

 
Assay Solutions 

PBSG    1 L 

NaCl    8.17 g 

NaH2PO4H2O   0.856 g 

Na2HPO4    0.54 g 

EDTA    3.72 g 

Thimerosal Powder  0.1 g 

1)  Dissolve all of the above in 900 ml D-D H2O in 1000 ml beaker. 

2) Adjust pH to 7.4. 

3) Weigh 1.0 g gelatin (Knox) and add to a 1 L bottle and add EDTA-PBS solution. 

4) Dissolve gelatin by placing bottle on magnetic stirrer/hot plate on “low” heat and 

moderate stirring speed for approximately 2 h. 

5) PBSG is ready to use after cooling to room temperature. 

6) Store at 4°C. 

Charcoal Dextran Suspension  500 ml 

Charcoal Norit SPXX   3.125 g 

Dextran Pharmacia T-70   0.3125 g 

PBSG     500 ml 
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1) Combine dextran, charcoal and PBSG in 1000 ml beaker. 

2) Make up charcoal the day before it is needed and allow mixture to stir for at least 

6 h. 

3) Stir mixture for 1 h prior to use. 

B. Assay Methodology 

1. Ether Extraction of Sample 

a. Pipet 200 µl of unknown sample into appropriately labeled 18 x 150 mm 

glass tubes. 

b. Label additional set of 12 x 75 mm glass tubes to match large tubes. 

c. Add 5 ml anhydrous ether (EM Science, Cincinnati, OH) to each 18 x 150 

tube.  Keep tubes under a fume hood. 

d. Vortex 4-6 tubes by hand (only vortex 12-24 tubes prior to extracting) for 1 

min. 

e. Place 4 tubes into a rack in a styrofoam ice chest containing liquid nitrogen 

(usually 1.5-2 inches high to cover liquid in tube) for 10-15 s (until plasma 

freezes). 

f. Remove tubes from liquid nitrogen and decant liquid into appropriately 

labeled 12 x 75 glass tube. 

g. Place 12 x 75 mm tube into nitrous gas dryer (Multivap Analytical 

Evaporator, Organomation, South Berlin, MA) containing 37°C distilled 

water.  Once dryer is full, tubes should be placed in a rack and kept under 

hood. 
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h. Rotate tubes into dryer as other tubes dry.  Place dry tubes in rack and keep 

under hood until rack is full. 

i. Add 500µl PBSG to each dried tube, vortex each tube and store at 4°C. 

2) Setting up the Assay 

f. a. Pipet 800 µl, 600 µl, 500 µl PBSG in duplicate into appropriately labeled 

tubes (T, N, 0 respectively). 

g. Pipet 500 µl of standard into appropriately labeled plastic tubes in duplicate. 

h. Pipet 50 µl of the extracted sample in duplicate into appropriately labeled 12 

x 75 plastic tubes. 

i. Add 450 µl of PBSG to each tube.  

j. Add 100 µl of tritiated testosterone (approximately 12000-13000 cpm) to all 

tubes. 

k. Add 100 µl of antibody to all tubes except the T and N tubes and vortex. 

l. Store in refrigerator at 4°C for 12 to 18 h. 

3) Day 2 

g. Add 5 ml Ecolume (ICN, Aurora, OH) cocktail to mini-vials and label caps 

for vials. 

h. Add 200 µl of charcoal dextran suspension to all tubes except T tubes (This 

step should be performed in the cold room). 

i. Vortex tubes and allow to sit for 15 min. 

j. Centrifuge (Sorvall Instruments, Model RC3C, Newton, CT) for 20 minutes 

at 2800 rpm (2282 x g). 
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k. Keep tubes at 4°C after centrifugation. 

l.    Decant supernatant into the mini-vials and count each vial for 1 min in beta      

counter. 
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APPENDIX C 

PROCEDURE FOR DETERMINATION OF SPERM CONTENT FROM 

TESTICULAR AND EPIDIDYMAL HOMOGENATES 

 
Homogenization Fluid:    For 10 L  
 150 mM NaCl     87.66 g 
 3.8 mM NaN3     2.47 g 
 0.05 % Triton x-100    5.00 ml 
 Bring to volume with D-D H2O 
 
Testis: 

1) Obtain 1.5 to 1.7 g sample of thawed testicular parenchyma. 

2) Mince very well with a scalpel blade followed by scissors. 

3) Dilute with 150 ml homogenization fluid and homogenize for 2 min. 

4) Pour mixture into 250 - ml Erlenmeyer flask, cover and refrigerate at 4°C 

for 24 h. 

Epididymus: 

1) Separate epididymus into caput, corpus and cauda sections. 

2) Weigh each section. 

3) Mince each section very well with a scalpel blade followed by scissors. 

4) Dilute each section of the epididymus with homogenization fluid (caput = 

150 ml, corpus = 150 ml, cauda = 200 ml) and homogenize separately for 

2 min and 15 s. 

5) Pour mixture into 250 – ml Erlenmeyer flask and refrigerate at 4°C for 24 

h. 
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  Determination of Sperm Content 24 h later: 

1) Shake flasks vigorously so that homogenate is mixed together well. 

2) Use a glass Pasteur pipette to obtain a sample of the homogenate and fill 

one side of hemacytometer chamber.  

3) Repeat steps 1 and 2 to fill other side of hemacytometer chamber. 

4) Place hemacytometer on top of two wooden sticks in a petri dish with a 

damp piece of filter paper (humidified chamber) for 2 to 3 min. 

5) Using an inverted phase microscope, view hemacytometer grid at 400X. 

6) Count the sperm in all 25 squares in both hemacytometer chambers. 

7) Dilute as necessary if too many sperm are present to count. 

8) If there is greater than 15 % difference in counts (from each chamber), 

repeat steps 1 through 6. 

9) Calculate sperm content: 

Testis: Sperm Content/g = .01 x (volume + sample weight) x ave. # counts 
      Sample weight 

Epididymal Regions: Sperm Content/g = .01 x (volume + tissue weight) x ave. # counts 
        Tissue weight 

Ave. # counts = adding counts from both chambers of the hemacytometer chamber and 
dividing by 2. 
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APPENDIX D 

WESTERN BLOT ANALYSIS 

FOR StAR AND P450 

 

Stock Solutions 

A. Acrylamide/bis (30% T, 2.67% C) 
87.6 g acrylamide (29.2 g/100 ml) 
2.4 g N’N’-bis-methylene-acrylamide (0.8g/100 ml) 
Make to 300 ml with distilled water.  Filter and store at 4°C in the dark (30 d 
maximum) 

 
B. 1.5 M Tris-HCl, pH 8.8 

27.23 g Tris base 918.15 g/100 ml) 
~80 ml distilled water 
 
Adjust to pH 8.8 with 1N HCl.  Make to 150 ml with distilled water and store at 4°C. 

 
C. 0.5 M Tris-HCl, pH 6.8 

6 g Tris base 
~ 60 ml distilled water 
 
Adjust to pH 6.8 with 1N HCl.  Make to 100 ml with distilled water and store at 4°C. 

 
D. 10% SDS 

Dissolve 10 g SDS in water with gentle stirring and bring to 100 ml with distilled 
water. 

 
E. Sample Buffer (SDS reducing buffer) (store at room temperature) 

 
Distilled water   4.0 ml 
0.5 M Tris-HCl, pH 6.8  1.0 ml 
Glycerol    .80 ml 
10% (w/v) SDS   1.6 ml 
2-b-mercaptoethanol  0.4 ml 
0.05% (w/v) bromophenol blue 0.2 ml 
 
Dilute the sample at 1:4 with sample buffer, and heat at 95°C for 4 min. 
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F. 5X electrode (Running) buffer, pH 8.3 (enough for 10 runs) 

 
Tris base    9 g  (15 g/l) 
Glycine    43.2 g  (72 g/l) 
SDS    3 g  (5 g/l) 
To 600 ml with distilled water  
 
Store at 4°C.  Warm to 37°C before use if precipitation occurs. 
 
Dilute 60 ml 5X stock with 240 ml distilled water for one electrophoretic run. 

 
Procedure for Western Blot 
 
1. Trim tissue from -80°C freezer to 200 mg.  
 
2.  Homogenize in 0.25 M sucrose buffer which contain 0.1mM EDTA and 10 mM 

Tris. 
TRIS-SUC-EDTA (for homogenizing tissue): 
 .607 g   trisbase 
 42.79 g  sucrose 
 .145 g   EDTA 
 Adjust to pH 7.4 
 Bring to 500 ml in volumetric 
 

3. Freeze sample at -80°C. 
 
4. Thaw sample to room temperature. 
 
5. Run a regular 1 dimensional polyacrylamide gel; be sure to run prestained MW 

markers on each gel.  MW STDS:  20 ul marker + 8 ul 4X sample buffer.  Load 5 ul 
per well. 

 
6. Remove the gel and notch accordingly.  Remove the stacker. 
 
7. Put the gel in cold 1X TRANSFER BUFFER for 5 minutes.  While the gel is 

equilibrating, wearing gloves and using forceps, cut the PVDF membrane to the 
exact size of the gel. 
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TRANSFER BUFFER (1X) 
 20 mM TRIS (FW 121)  2.42 gm/liter 
 150 mM Glycine (FW 75.07)  11.24 gm/liter 
 10% MEOH    100 ml/liter 
 .01% SDS    .1 gm/liter 

 
8. First – wet the PVDF in methanol 

Second – soak the PVDF in water until saturated 
Third – wet the PVDF in transfer buffer 

 
9.  Now you’re ready to set up the transfer apparatus – make sure you follow the order 

exactly 
 YOU 
  Plastic grid (clear-mini) 
  Sponge pad 
  3 MM paper 
  PVDF 
  Gel 
  3 MM paper 
  sponge pad 
  plastic grid (black-mini) 
 
 LAB BENCH 
  Wet thoroughly in transfer buffer 
  Cut the 3 MM paper the same size as the sponge 
  Very important – flip the gel over so the back side is facing up 
  Notch the PVDF to match the notch in the gel 
 After placing PVDF on gel, fill a test tube with transfer buffer and pour 

over PVDF, then steam roll the tube over the membrane to remove ALL 
bubbles; repeat after the 2nd 3 MM paper 

 
10.  Place grids into transfer apparatus making sure the current is running in the right 

direction:  negative (black) to positive (red) – gel is next to black and PVDF is next 
to red. 
Fill transfer apparatus with cold transfer buffer, add stir bar and put on a stir plate 
and run in the cold. 

 
11. Set at 100 volts and run for 2 h. (replace ice block after 1 hour) 
 
12. After the transfer, remove the PVDF membrane and soak while shaking in blocking 

buffer overnight or for at least 1 h at room temperature. 
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BLOCKING BUFFER 
 4% milk soln. In PBS+TWEEn 
 (4 gms Carnation powdered milk + 100 mls PBS+TWEEN) 
 
PBS+0.25% TWEEN 
 8 gm NaCl 
 0.2 gm KCl 

1.44 gm Na2HPO4 
0.24 gm KH2PO4 
Bring up to 1 liter:  pH 7.4  Add 2.5 mls TWEEN 20. 

 
13. Make up PRIMARY Ab in 2% milk solution: 

(2 gms powdered milk + 100 mls PBS+TWEEN) 
We use a 1:1000 dilution – 100 ul Ab + 50 mls 2% milk solution 

14. Remove the PVDF from the overnight blocking buffer and put into the primary Ab 
solution.  Shake for 1 h at room temperature.  You can discard the overnight 4% 
blocking buffer. 

 
15. Remove primary Ab solution and save – can be stored in refrigeration and reused.  

Wash PVDF 3 times – 5 min each – with PBS+TWEEN (shake). 
 
16. Pour off last wash and put PVDF into 2nd Ab solution and shake for 30 min at room 

temperature:  we use 1:15,000 dilution 
(3.3 ul + 50 mls 2% milk solution) 

 
17. Remove 2nd Ab solution and save – can be stored in refrigerator and reused.  Wash 

PVDF 2 times – 30 min each – with PBS+TWEEN (shake). 
 
18. Remove PVDF from wash and proceed with Chemiluminescence: 

- mix solutions according to directions (we use 4 mls of each) 
- blot excess wash from PVDF 
- add PVDF – protein side down – wash for 1 min 
- blot dry 
- put PVDF between protector sheet – protein side up 

 
19. Place into cassette immediately with film. 

Try different exposure times to get the best results. 
   
 
 
 
 
 
 



 

 

134

 
PROCEDURE FOR STRIPPING AND RE-BLOTTING WESTERNS 
 
Strip Buffer: 
 
 SDS  2 g (2 % SDS) 
 Trizma Base .757 g (62.5 mm tris) 
 B-mercap 700 µl  (100 mm BME) 
 Bring up to 100 mls with distilled water; pH 6.8 
 
Wash Buffer: 
 
 Trizma base .12 g  (10 mm Tris) 
 NaCl  .876 g  (150 mm NaCl) 
 Bring up to 100 mls with distilled water; pH 7.4 
 
1. Soak the PVDF membrane in strip buffer for 30 min at 70°C; shake or swirl every 10 

min. 
 
2. Then, wash the PVDF membrane in wash buffer 2X for 10 min each at room 

temperature, using a shaker or rotator of some sort. 
 
3. Rinse the PVDF membrane with PBS-tween 1X for 5 min. 
 
4. Block the membrane as usual with 4% milk solution and proceed as usual with the 

Ab staining procedure. 
 
If you are planning to restain with your original first Ab, you can strip the membrane 
using .1 M Glycine at pH 2.6 for 5-10 min at room temperature; rinse with PBS-tween; 
block and restain as usual. 
 
If the PVDF membrane has dried out considerably before you are ready to strip, just wet 

the membrane in methanol very quickly and then begin soaking in strip buffer. 
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