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ABSTRACT

Modeling and Simulation of Film Blowing Process. (May 2005)

Ravisankar S. Mayavaram, B.E., Bharathiar University, Coimbatore, India; M.S.,

Indian Institute of Technology, Madras, India.

Chair of Advisory Committee: Dr. Junuthula N. Reddy

Film blowing process is a flexible mass production technology used for manu-

facturing thin polymeric films. Its flexibility in using an existing die to produce films

of different width and thickness, just by controlling process conditions such as, ex-

trudate velocity, excess pressure, and line speed, makes it an attractive process with

less capital investment. Controlling the process conditions to obtain a stable bubble,

however, is not a trivial task. It is a costly trial and error procedure, which could

result is a large wastage of material and other resources. Hence, it is necessary to

develop methods to simulate the process and design it using numerical experiments.

This important need of the industry defines the objective of this work. In this dis-

sertation, a transient, axisymmetric, nonisothermal, viscoelastic model is developed

to simulate the process, and it is solved using finite element method. Material be-

havior of polymer melt is described using a modified Phan-Thien-Tanner model in

the liquid–like region, and anisotropic Kelvin–Voight model in the solid zone, and

the transition is modeled using a simple mixture theory. Crystallization kinetics is

described using a modified Avrami model with factors to account for the influence

of temperature and strain. Results obtained are compared with available experimen-

tal results and the model is used to explore stability issues and the role of different

parameters. Software developed using this model comes with a GUI based pre- and

post-processor, and it can be easily adapted to use other constitutive models.
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CHAPTER I

INTRODUCTION

Modeling and simulation of polymeric film blowing process is the subject matter of

this doctoral dissertation. Principal objectives of the present work and the organi-

zation of the dissertation are presented in this chapter together with the necessary

introductory material. In the first section, a brief description of the process and

the key issues that concern film manufacturers are presented. These manufacturing

concerns define the objectives of this work, which is presented in Section B. In the

subsequent sections, the scope of the work and the organization of the dissertation

are described.

A. Description of the Process

Polymeric films are used in a wide variety of applications. These films are made of

thermoplastic polymers. Some of the important applications are in the packaging

industry, and products such as, garbage bags, carry bags, and thin plastic sheets are

often manufactured using film blowing process.

Film blowing process is a rapid and an economic method of manufacturing poly-

meric films. This process produces in polymeric sheets, which are thin and biaxially

oriented. The biaxial orientation of the film is one of the desirable features of the pro-

cess as it can be used to alter the strength characteristics of the film produced. Figure

1 shows the schematic of a typical film blowing process. To achieve biaxial stretching,

polymer melt extruded from an annular die is inflated along the azimuthal direction

This dissertation follows the style of Journal of Rheology.
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FIG. 1. Schematic of a typical film blowing process.
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and simultaneously stretched along the axial direction. The inflation of bubble is

actuated by forcing air into the bubble and increasing its volume. The stretching

along the axial direction is achieved by controlling the velocity of the nip rollers and

the mass flow rate at the die. These two stretchings occur simultaneously resulting in

an increase in the bubble radius and a decrease in the film thickness. The cylindrical

bubble is flattened using a series of guide rollers before it is drawn out via the nip

rollers. The bubble formed between the die and nip rollers is supported by additional

structure on which the guide rollers and nip rollers are mounted. This structure in

not shown in the figure and it is also used to mount the instrumentation for measuring

the film properties.

The complex dynamics of sustaining such a bubble is accomplished by cooling

the polymer melt using turbulent air jets. The temperature of the polymer melt is

approximately around 475 – 525 K at the die and it drops by 100 K before it reaches

the freeze-line. The radius of the bubble remains constant beyond the freeze-line.

The temperature of the film further drops by another 100 K before it is wound up as

lay-flat tubing.

Stretching of the film stops at the freeze line, where the film is parallel to the

centerline of the bubble. Beyond the freeze line no significant deformation is observed.

Depending on the nature of the resin and the cooling rate, crystalline structures are

formed in the film. This results in the change of refractive index of the film at the

frost line and can be observed with unaided eyes. The distinction between the frost

line and the freeze line is exaggerated in the figure 1 for the purpose of depiction.

Specification of initial conditions for the transient analysis in this work is based

on one of the techniques used to start the process. Figure 2 shows the details of this

procedure. From an annular die, a cylindrical tube is first extruded and as the tube

comes out, its end is capped and tied to a rope. This tube is then pulled upward
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FINAL STAGESTAGE 2STAGE 1

FIG. 2. Procedure used to start the process.
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towards the nip rollers carefully without tearing it. This accomplished by balancing

the pulling rate with the mass flow rate at the die. Once the tube reaches the nip

rollers, it is sealed by the pinching action of the rollers. Then the pressurized air is

injected into the tube to inflate into a bubble as shown in the figure. The amount

of air injected inside and the nip roller velocity are adjusted together with the other

system parameters to achieve a stable process. Hence, the analysis can be started

from a cylindrical tube extending from the die to the freeze line.

1. Terminology

Some of the terminology that are part of the film blowing industry’s lingua franca

and used in this dissertation frequently is described in this section:

• Blow–Up Ratio (BUR)

The BUR is the ratio of radius at the freeze line to the radius at the die. The

normal values range from 2–10.

• Draw–down Ratio (DR)

The DR is the ratio of the velocity at the nip rollers (or freeze line as the

velocity remains constant beyond this point) to the velocity at the die. This

value determines the stretching along the machine direction. This is also referred

to as Take–Up Ratio (TUR), as the speed of nip rollers are known as take-up

speed. Its value ranges from 5–20.

• Machine Direction (MD)

The MD is the tangential direction of the bubble surface (perpendicular to the

circumferential plane). This is the direction along which the polymer flows from

the die to the nip rollers. Stretching in the MD is primarily due to the DR.
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• Mils

The final film thickness is often expressed in thousandth of an inch or milli inch.

In SI units, it is 25.4× 10−6m.

• Thickness Ratio

The ratio of the final bubble thickness to the thickness at the die. It is equal to

the product of BUR and DR. Its values ranges from 10 to 100.

• Transverse Direction (TD)

Azimuthal direction is referred as TD. It is also known as the Circumferential

Direction (CD). The stretching along this direction is primarily due to the excess

air pressure and it is quantified by BUR.

2. Key Manufacturing Issues

A stable operation of a film blowing process depends on various process parameters.

Some of the important parameters are shown in the figure 3. The ultimate objective

of a manufacturer is to produce a film based on the customer’s specifications at the

maximum possible rate. The speed of the nip rollers directly determine the amount

of film produced in a second. Ideally, a manufacturer would like to maximize this

value without compromising on the product quality. It has been observed, however,

that a stable operation of the film blowing process is not always possible. Often tons

of resins are wasted before the parameters are tuned to obtain a stable processing

condition.

There are three key players (see Figure 4) the film processing industry. The

customer is the first who defines the product specifications based on his needs, the

second being the film manufacturer who tries to optimally produce the film with
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FIG. 3. Some critical process control parameters.

available equipments, and the third is the polymer manufacturer who supplies the

material. It should be noted that this work is supported primarily by the polymer

manufacturers.

The development of new techniques in polymerization has made available a wide

variety of polymeric materials for manufacturing polymeric films. The constitutive

behavior of these polymers directly affect many aspects of the process. The melt

strength of a polymer determines the range of stable operating conditions for the

process, the process becomes more stable as the melt strength increases. In general,

the influence flow and strength characteristics of the material used on the process

should be quantified to understand and control the process. In addition, this will

enable the polymer manufacturers to alter the materials based on the needs of the

film manufacturer.

The take-up speed (speed of the nip rollers) defines the productivity of the equip-
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FIG. 4. Key players, who define the film blowing industry.

ment in terms of meters of film produced per second and any film manufacturer would

like to maximize it. The mass flow rate at the die, which based on the die geome-

try determines the velocity at the die (Vdie). The draw ratio then determines the

amount of stretching in the machine direction. Even though the die geometry can

be changed, it may be quite economical to use the same die and produce films of

different specification by controlling other parameters. Excess pressure inside the

bubble is responsible for the stretching in the transverse direction. The type of and

nature of cooling used influence the phase change of the polymer, thereby altering its

strength characteristics. All these variables are coupled in a nonlinear way and pose

a daunting task to the film manufacturer in obtaining a stable operating zone.

The key issue that concerns the film producer is how to effectively control the

process and manufacture the film in an optimum manner. In this context, either

through experiments, experience, or theoretical investigations he would like arrive

the rules which would help him to determine the process parameters that would

give a stable operating zone and more importantly on how the process and polymer

characteristics affect the ultimate strength and behavior of the film produced.
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B. Objectives of the Study

1. To develop an accurate mathematical model of the film blowing process.

2. To develop a numerical algorithm to solve the mathematical model using the

finite element method and validate the solutions through comparison with ex-

perimental data.

3. To analyze instabilities that affect the process using the model developed.

1. Mathematical Model

The dynamics of film blowing process is transient, nonisothermal and nonlinear. The

process and the boundary conditions can be assumed axisymmetric in the region above

the die and below the guide-rollers when the process is running in a stable mode. This

assumption will be violated sometimes when the process is unstable and always when

the bubble collapses. The polymers used for this process are viscoelastic and often

they are semi-crystalline. Heat transfer plays a significant role in the process and the

material properties are temperature dependent. These aspects of the process to be

included in the model in order to study the process accurately. In this work most of

these features are included in the model developed. Details of the model developed

are presented in the fourth chapter. This model is derived by restricting the generic

equations in the curvilinear setting to the bubble surface and it is independently

validated using a derivation from control volume approach.

2. Numerical Method

The mathematical model developed is formulated using the finite element method

to solve the problem numerically and simulate the process. The model developed is
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time dependent, hence, the standard practice of using finite element approximation

for the space and finite difference approximation for time is used. This scheme results

in the so–called α-parameter family. Some of the equations in the model developed

are hyperbolic in nature and the Stream-wise Upwinding Petrov Galerkin(SUPG)

method is used to overcome the loss of best approximation property of the Galerkin

finite element method.

3. Instabilities

Experimental investigations have shown the existence of some instabilities which can

be still modeled under axisymmetric assumption. These instabilities will be ana-

lyzed using the code developed to quantify the cause–effect relationships between the

process parameters and these process instabilities.

C. Significance and Scope of the Study

The motivation and partial support for the present work is from the Polymer Film

Center (PFC), which is part of the industry consortium Polymer Technology Center

(PTC) of the Texas A&M University. One of the main goals of this consortium

is to pursue advanced research and enable the transfer of that technology to the

participating industries. It is expected that the present work will enable the industry

to do numerical runs on the computer and estimate the important process parameters.

These parameters can be further fine tuned using experiments if necessary. This

approach will benefit the industry and result in greater productivity.

The accuracy of a numerical simulation directly depends upon the accuracy with

which the mathematical model describes physical process. Some of the key issues

that affect this process are discussed below:
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Constitutive Behavior of the Polymer. Film blowing process uses thermo-

plastic polymers, which are often semi-crystalline. In addition, the biaxial stretching

falls under the category of strong flows. Most of the studies in the field of polymeric

flows focus on the shearing flows and the models working well in the regime of shear-

ing flow need not perform satisfactorily in the elongational flow. Both uniaxial and

biaxial extensional flows are strong as at least one of the eigen values of the veloc-

ity gradient tensor is positive. These flows are difficult not only for the theoretical

studies but also for the experimental investigations, especially in the case of biaxial

extensional flows.

In the present work choice of the model is made based on available literature and

no claim will be made that it is the best model. For polymers there is no single model

available to describe its behavior in all regimes of motion. In this work for liquid-like

zone of the polymer modified Phan-Thien-Tanner model is be used and for the solid

zone Kelvin–Voight model is used.

Kinematics. When film blowing process is operating in a stable condition,

the region interest for simulation can be classified as axisymmetric (about the z–axis

passing through the center of the annular die). This region of interest is the zone above

the die and below the guide rollers. This assumption is not valid when the process

is unstable or when the bubble is collapsing. To accurately model the problem in

all operating regimes it has to be in non-axisymmetric setting. In order to write

down the system of equations, the problem requires tools of differential geometry.

This becomes slightly complicated as the metric tensor becomes time dependent in

transient problems. Most of the published literature deals only with the analysis in

steady state and the equations are not rigorously arrived at by restricting the generic

equations in curvilinear coordinates to the bubble surface. The equations presented

in this dissertation are derived rigorously and cross verified by reducing to simplified
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setting and also with the equations derived from control volume like approach. To

be solved equations written in contravariant, covariant and mixed coordinates, are

finally written down in physical coordinates were one can verify equation further for

dimensional consistency.

Numerical Method. The system of equations which govern the process do not

fall under a single class. For instance, the constitutive model used is hyperbolic in

nature and the equation governing the heat transfer is advection dominated. Under

these conditions, a simple Galerkin finite element method may have problems ob-

taining convergence or it will require a very fine mesh. The Galerkin finite element

methods approximate the differential operators like central differences. This intro-

duces an error in the way of negative diffusion and often tackled by adding some

form of artificial diffusion. These terms added in principle should vanish as the mesh

becomes fine. In the present work this problem is handled using a simple version of

SUPG and reasonably fine meshes.

Boundary Conditions. Boundary conditions and process parameters are de-

termined using laboratory/field process conditions. But the value of the stresses at

the die exit poses a complexity due to the viscoelastic nature of the polymer. It is as-

sumed that the prior shearing history does not influence the behavior of the polymer.

Including this is beyond the scope of the current constitutive framework adopted by

this work, as strain does not directly play a role in the model for liquid zone.

Validation. Accuracy of the model developed and the numerical technique

used is established by comparison with the field data supplied by the members of the

Polymer Technology Consortium and published experimental results in the literature.

Instabilities. Experimental studies show that film blowing process can exhibit

different kinds of unstable behavior. Of the these instabilities, present work attempts

to capture the radius instability and melt–tension instability. Both of these instabili-
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ties satisfy the axisymmetry assumption and are simulated using the model developed.

D. Significant Contributions

1. A transient axisymmetric model describing film blowing process is derived from

the first principles using the tools of differential geometry.

2. A complete constitutive model for the process is proposed in this work. This

model describes the polymer from the die till the nip rollers, and includes a

model for the crystallization kinetics.

3. The viscous dissipation terms for the proposed constitutive model are derived

rigorously using the principles of thermodynamics.

4. The model developed is validated using experimental data and transient results

capturing instabilities are also presented.

5. Theory for a non-axisymmetric model is developed.

6. A software with complete pre– and post–processing tools is developed based on

the transient axisymmetric model.

E. Organization of the Dissertation

This dissertation is organized into eight chapters and four appendices. In the next

chapter, a detailed survey of the technical literature on the modeling, analysis, and

other different aspects of film blowing process is presented. The basis and structure of

the constitutive modeling used for the simulation are presented in the third chapter.

The development of the mathematical model is described in the fourth chapter with

all the required details, and the finite element formulation of the model developed is
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the topic of the fifth chapter. Validation of the model developed using available exper-

imental data is discussed in sixth chapter and the analysis of instabilities is presented

in seventh chapter. Finally, the eight chapter concludes the work with suggestions

for the future studies. In appendix A, the details of the differential geometry calcula-

tions used in the dissertation are described and appendix B summarizes the transient

axisymmetric model. An analysis of film blowing process using shooting method and

a critique of that approach is presented in appendix C. The last appendix presents a

non-axisymmetric model for film blowing process.

F. Summary

Modeling and analysis of film blowing process is a theoretically challenging problem

and very pertinent to the polymer industry. This work attempts to take a step to

make the modeling more accurate and validate the work using actual field data.
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CHAPTER II

REVIEW OF LITERATURE

A brief review of the literature pertaining to modeling and analysis of film blowing

process is presented in this chapter. This review is organized into few sections to ad-

dress the different issues that arise in this context. The first step in a theoretical study

is the development of a mathematical model describing the dynamics of the process

and this is discussed in Section A. The momentum equations are incomplete without

the understanding of how the stresses are related to the kinematics of the flow. The

missing link is the constitutive model of the material and the Section B describes

the developments and issues related to constitutive modeling. Film blowing process

involves phase change of the polymer from a liquid–like zone to a solid–like zone. This

adds complexity to the description of the material behavior. Often, semi–crystalline

polymers are used in the manufacture of films and to describe the constitutive behav-

ior of these polymers one has to consider the crystallization kinetics in the analysis.

These issues are discussed in the Section C. The model equations describing the

process can be solved using various approaches such as, the finite element and the

finite difference methods. The advantages and disadvantages associated with these

methods and some important questions that arise from the nature of the equations

are discussed in Section E.

A. Process Modeling

The dynamics of a process has to be expressed in the language of mathematics before

a theoretical solution can be attempted. Even the experimental methods use this

theoretical basis for its construction, and thereby the measurement. For instance,
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when an experiment measures viscosity, it assumes an apriori definition of it from

the mathematical model of the problem. An incorrect or a simplified model may

lead to experimental results which can not be generalized. The first and the most

important contribution to modeling film blowing process is by Pearson and Petrie

in their work Pearson and Petrie (1970a), (1970b). Till date with few exceptions

most of the published works have used their model equations except with changes

to the constitutive model [Campbell and Cao (1987)]. Their approach describe the

process using a steady state, axisymmetric, and isothermal model. In addition they

assume a simple linear constitutive behavior. Even though these assumptions do not

hold good in the actual process, they can be easily relaxed. Their work was one

of the most important in this field as they give the basic approach and structure

of the model to be used. Their first paper [Pearson and Petrie (1970a)] describes

the mathematical approach used to derive the model. It is quite relevant to this

dissertation as the present work extends that approach to develop a transient model.

However, the equations in the Part 1 are not simplified to a point where it can be

readily incorporated in a FEM code and solved. They address this issue in their

second part [Pearson and Petrie (1970b)], where the equations are derived based on

the physical understanding of the process.

Improvements over the Pearson and Petrie’s analysis have since been proposed

by Petrie(1975) and as well as by several other groups. Typically these extensions

include heat transfer analysis and using a viscoelastic or a generalized Newtonian

model to describe the polymer. The works by Yeow (1976) and Cain (1988) take a

look at the stability problems related to film blowing process. Analysis of Yeow is

restricted to linear fluids and the model equations are perturbed to solve a stability

problem. Perturbations are assumed to be axisymmetric in order to have a simpler

set of equations. Cain in his work besides the steady state analysis, studied the per-
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turbation problem extending it to nonisothermal and nonlinear constitutive behavior

(Marucci model). However, these studies do not attempt to capture the actual insta-

bilities that occur in the process. Their work is focused on stability around certain

fixed points of the solution using linear stability analysis. Considering the fact these

models do not match accurately with experimental results, stability analysis is not

so meaningful despite the claim that it will give an qualitative understanding of the

process. Besides the use of nonlinear model, considering phase change and crystal-

lization kinetics involve additional model equations, which are essential to model the

process accurately.

B. Constitutive Modeling

The model first proposed by Pearson and Petrie (1970b) used a Newtonian model to

describe the polymer. This is far from the actual behavior of the model. Following

key points should be kept in mind when approaching the constitutive modeling for

film blowing process:

• Flow in film blowing process is elongational and it is a strong flow.

• Polymers used for producing films are viscoelastic and semi–crystalline.

• The process involves phase change, from a liquid–like state to solid–like state.

These complexities in the flow makes it difficult to describe the constitutive be-

havior of the polymer accurately. Petrie (1979) provides a very detailed introduction

to the previous work done in that field. Film blowing process which is a biaxial

stretching is a strong elongational flow problem. Unlike the linear fluids such as,

water, which can be modeled easily with a single constitutive model (Newtonian),

nonlinear fluids pose an enormous complexity. There is no single model which can
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handle both shear flows and elongational flows effectively for a particular polymer,

let alone generalizing for all polymers.

Various different models were studied in the context of film blowing process.

Petrie (1975), for example, assumed that the polymer could be modeled as a purely

elastic fluid and that the effect of temperature could be accounted for by assuming

Arrhenius-like temperature dependencies for the density and modulus [Petrie (1975)].

He avoided the heat transfer and time-dependent aspects of the problem by assuming

that the axial temperature profile (the temperature dependence on z) could be deter-

mined apriori, and that the process has attained steady-state. Although the predicted

dependence of bubble shape and size on z were not too far from the experimental ones,

details such as velocity profiles and material properties, were incorrect. Interestingly,

Petrie found that the bubble shape predictions for a simple Newtonian liquid and

those for a perfectly elastic fluid bracketed the experimental ones, suggesting that a

more realistic polymer model could help close the gap between predicted and actual

bubble shapes.

Han and Park (1975) assumed that the polymer could be modeled as a power-law

fluid and solved the problem under nonisothermal conditions. Their work includes

both radiative and conductive heat transfer from the film to the cooling air and the

surroundings. Furthermore, as in the study by Petrie, Han and Park assumed an

Arrhenius temperature-dependence for the polymer viscosity. But a power-law fluid

used in their work is inadequate to describe a viscoelastic material. In addition,

they do not consider the crystallization kinetics in their work. The predicted bubble

shape and temperature profiles though close to the measured ones for low-density

polyethylene (LDPE) blown films, disagreed considerably with data from high den-

sity polyethylene (HDPE) films; presumably because the model failed to account for

crystallinity in the films. Many different constitutive models were considered for stud-
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ies by different research groups, such as, the Marucci model [Cain and Denn (1988)].

Most of this work stop at the freeze–line. And make a tacit assumption that the

polymer is liquid–like till the freeze–line.

Cao and Campbell’s (1990) work developed a model which extended the analysis

beyond the freeze–line. They modeled the melt with a modified contravariant Maxwell

model and beyond the freeze–line used a Hookean solid. In their work, the freeze–line

is defined based on the yield stress of the material. It is one of the first attempts

to extend the analysis beyond the freeze–line. The change from liquid–like zone to

solid–like zone is digital in their work and there is no mushy zone in between. They

call this transition as plastic–elastic transition. In addition, their work does not

include crystallization kinetics, hence, restricted to amorphous polymers. Cao and

Campbell’s predictions of bubble radius, temperature, and velocity profiles are in

reasonably good agreement with Gupta’s (1980) experimental measurements using

amorphous polystyrene blown films. However, in the critique of shooting method

presented in appendix C, reasons behind these agreements are presented.

Among the many models available in the literature, Khan and Larson (1987)

point out that PTT model is one good models in predicting elongational flows. PTT

model is a variant of the contravariant Maxwell model and it is derived from a network

theory.

C. Phase Change and Crystallization Kinetics

Polymers can be either amorphous or semi–crystalline. The polymers used for pro-

duction of films are often semi–crystalline. Hence it is important to include the

crystallization kinetics in the modeling. The crystallization kinetics in film blowing

process is nonisothermal. In addition, the strain induced crystallization accelerates
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the rate of crystallization. A recent study by Rao (1999) has a detailed review of

the literature and presents a sophisticated method based on principle of multiple nat-

ural configurations. The principle of multiple natural configurations developed by

Rajagopal (vide Rao (1999)) is a natural and accurate way to model problems such

as this one. Take for instance the issue of reference frame for newly crystallizing

material, it can be assumed that it is formed in a stress free state in the absence of

gravity [Baldoni and Rajagopal (1997)] and can be used as the reference state for

that material, and this approach is used in the present work as it has a strong logical

basis. It is not necessary to have stress free state as a reference configuration, in

fact any configuration, even the one the body may not occupy, can serve a reference

configuration. But to be solvable, however, one chooses a stress free configuration,

otherwise the problem (which is already complex enough) will become intractable.

Modeling crystallization kinetics has a rich history and it is very well presented

in Eder et al. (1990). Most of the models used in the literature have Melvin Avrami’s

model as the starting point their analysis. This equation is modified to account for

nonisothermal effects and strain induced crystallization. A chief exception to this

approach is the one adopted by Rao (1999) and the model is derived here purely from

thermodynamic considerations.

In the case of film blowing process, Baranov et al. (1992) improved analysis

by explicitly including the effect of polymer crystallinity. These authors assumed

iso-kinetic crystallization and that the degree of crystallinity attained the maximum

level possible at the freeze–line. Baranov further assumed that beyond the freeze–line

the degree of crystallinity in an “oriented” blown polymer film is independent of the

position. Their bubble shapes and temperature profile predictions, though better

than Han and Park’s, still disagreed with the experimental results of oriented films.
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D. Instabilities

The term “instability” is used here to denote the experimentally observed instabilities

in film blowing process and not the studies which deal with linear stability theory

around certain fixed points in the solution [Cain and Denn (1988)]. It is reasonable to

do a stability analysis for problems which are posed accurately such as flow governed

by Navier–Stokes equation and draw conclusions from it. In this case, Cain and

Denn do not consider even the important aspects of film blowing like phase change

and crystallization kinetics, hence, it is not so meaningful do a perturbation analysis

and draw conclusions from it.

Kanai and White’s (1985) work on the stability of the film blowing process has

valuable experimental data and qualitative understanding of instabilities. They com-

pare the behavior of LDPE, LLDPE, and HDPE polymers. Their work concludes that

under similar conditions LDPE is the most stable and HDPE is the least stable for

the process. The instabilities observed in their work are non-axisymmetric in nature.

The work done by Minoshima and White is of great importance and gives three ex-

perimentally observed instabilities. These instabilities are: bubble–radius instability,

melt-tension instability, and helical stability. The first two of these can be assumed

to maintain axisymmetry, but the helical instability is non-axisymmetric.

Larson (1992) discusses some of the chief instabilities that affect film blowing

process. His review mainly covers the work done by Cain and Denn (1988) and

Minoshima and White (1986). Other related issues in film blowing process are the

scale up problems and draw resonance. Due to draw resonance, variations in the

film thickness are observed despite maintaining a constant extruder rate and take–

up velocity. This problem has received considerable attention in the field of fiber

spinning process [Jinan (1991); Kurtz (1992)]. Scale up problems arise when the
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results obtained in a experimental set up are translated to actual conditions. Often the

performance is not the same. This is essentially due to incorrect scaling parameters.

The nonlinear behavior of the polymer and the complexity of the process makes it

difficult to identify the scaling parameters, and very few studies have addressed this

problem [Simpson and Harrison (1991)]

E. Numerical Techniques

Solution to the model equations are obtained using numerical techniques. The model

equations governing film blowing process are nonlinear and coupled, hence an analyt-

ical solution to the problem is not possible. Numerical solution is an approximation

and its accuracy depends on the many factors. When a real life problem like film

blowing process is solved, approximations happen at two levels. The mathematical

modeling introduces the first level of approximation. It is practically impossible to

translate a real life event accurately into a mathematical statement. In the limit of

engineering accuracy, however, one can say the model equations are accurate. In the

case of film blowing process, one cannot even say that. The reason being the lack of

accurate description of the constitutive behavior. The second level of approximation

is introduced while solving the partial/ordinary differential (or integral) equations

describing the phenomenon.

Almost all numerical work in film blowing process use what is known as the

shooting method, the only exception is Cain and Denn (1988) who solved the problem

correctly using a finite difference method as a two point boundary value problem.

A description of shooting method can be obtained from many texts on numerical

methods [Issacson and Keller (1994); Keller (1976)]. It can accurately solve a two-

point boundary value problem like an initial value problem using an iterative approach
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only in the case of linear problems. The film blowing process is nonlinear and the

boundary conditions at both ends (die and nip) control the dynamics of the problem.

A delicate balance between the velocity of the nip rollers and the mass flow rate at

the die end is required to achieve a stable blowing process. In our previous work

[Mayavaram and Reddy (1996)] many of the flaws in using the shooting methods are

pointed out. In principle, shooting method is not applicable to this problem. A brief

summary of Mayavaram and Reddy (1996) is presented in appendix C.

Among the popular techniques used to solve partial differential equations, finite

difference methods and finite element methods are the most important. In the finite

element method solution is obtained by approximating the space in which is solution

is sought and in the case of finite difference method the differential operator is ap-

proximated. It can be shown that the finite difference scheme is a subclass of the

finite element method. Reddy (1993) is one of best introduction to the finite element

method and the finite element method applied to fluid mechanics problems is well

introduced in Reddy and Gartling (1994). The mathematical theory of FEM is well

developed for linear elliptic problems [Brenner and Scott (1994); Oden and Reddy

(1983)], for such class of problems the even studies in error estimation and adaptivity

are well studied [Ainsworth and Oden (2000)].

The equations describing the constitutive behavior are often hyperbolic in na-

ture. Finite element method looses its best approximation property for such equations

[Brooks and Hughes (1982)]. In simple words, it is like using a central difference ap-

proach to model an advection dominated problem for which it is ill-suited. This is

because the central difference schemes are under diffusive and to overcome this, tech-

niques such as, artificial diffusion, and upwinding are used. The ideal solution to

such problems in 1-D would be to use forward differences with CFL number 1 [Veque

(1992)]. This condition is rarely met in realistic problems. A popular approach in
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finite element method is the SUPG (streamwise upwind petrov galerkin) developed by

Hughes and his coworkers [Brooks and Hughes (1982); Hughes et al. (1986); Hughes

and Mallet (1986a,b)]. The SUPG technique upwinds the system in the direction of

the flow, hence it is called streamwise. The terms added to restore the best approxi-

mation property vanish to zero as the mesh size h tends to zero, i.e, that is when the

mesh is fine. In other words, when the mesh is very fine (which in turn will demand

smaller time step) one need not resort to such techniques. There are many variants

of these upwinding methods and SUPG is one of the best. In cases were one tracks

a front (like filling or phase change), SUPG smoothes the front. This undesirable

effect can be overcome by a method called discontinuity capture (DC) developed by

Hughes and Mallet (1986b), however, this will place restrictions on the time step and

the mesh size.

F. Other Issues

Heat transfer from the film to the turbulent cooling air from the air rings by con-

vection and surrounding by radiation is influences the dynamics of the process. In

laboratory scale experiments [Gupta (1980)] cooling is often achieved via natural

convection. Under such conditions radiative heat transfer becomes competitive and

comparable to the convection heat transfer. The lack of accurate data for the emissiv-

ity of the film is a definite setback for simulating the radiative heat transfer and the

variation in emissivity in a numerical experiment [Mayavaram and Reddy (1996)] did

affect the solutions significantly. In an industrial setting the heat transfer is achieved

by turbulent air jets from the air ring and here the radiation heat transfer can be

neglected. The heat transfer due to cooling jets can be estimated by solving the flow

around the bubble using a turbulent flow model. Campbell et al. (1992) and Rao
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(1998) estimate the heat transfer using such an approach. There are many commer-

cial flow solvers like FIDAP [Rao (1998)] which can give an quick estimate of the

heat transfer. However these studies do not consider the nonlinear coupling between

the flow and the bubble shape. The bubble shape depends on the properties of the

polymer which is a strong function of the temperature. The temperature distribution

depends on the heat transfer dynamics which is achieved using the turbulent air flow

and the flow dynamics depend on the bubble shape. Hence, an accurate analysis

should couple these phenomenon and iterate till a convergence is achieved. No such

analysis is available in the published literature.

G. Summary

A brief survey of literature pertaining to problem at hand was presented in this chap-

ter. Additional references to relevant works are cited as and when they are required.

The principal objectives of this survey is to make sure that the present work is new

and an improvement over previous studies, and understand the background and criti-

cal issues in the field. There are no studies simulating the problem in transient setting

and even in steady state there is no work analysis the problem as a two point bound-

ary value problem considering phase change and crystallization kinetics. Hence, the

proposed work is a new and an important contribution. The key issue in film blowing

process is not only to predict the bubble shape accurately but also the stresses. An

accurate estimate of stresses is required to establish structure–property relationship.

A transient study is required to capture the bubble instabilities which are observed

in the experimental studies. In order to understand bubble collapse and the unstable

behavior the problem should be studied in non-axisymmetric setting. A transient ax-

isymmetric model can capture only the radius and melt–tension instability. There is
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plenty of scope in film blowing process for further work to increase our understanding

of this process and develop better control procedure.
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CHAPTER III

CONSTITUTIVE MODELING

Accurate description of the material behavior during film blowing process is one of

the chief factors in determining the success of the numerical simulation. Viscoelas-

tic nature of the melt and the phase change/crystallization kinetics during the film

blowing process increases the complexity of describing the constitutive behavior of

the material. In this chapter, an overview of the constitutive model used for the sim-

ulation is described. In the following section, some of the critical issues that should

be addressed by a model for this class of problem is discussed and in the subsequent

sections, methodology used to resolve these issues are explained. Final section of this

chapter summarizes the model equations and the relevant boundary conditions.

A. Modeling Issues

Constitutive model used to describe the polymer used in film blowing process should

address the following fundamental questions that are relevant to this process:

• What is the criteria used to determine the transition from liquid–like zone to

the solid–like zone?

• What is the best model to describe the material behavior of the liquid–like

zone?

• What is the best model to describe the constitutive behavior of the solid–like

zone?

• How is crystallization kinetics modeled?
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• What is the effect of orientation and alignment on the material behavior?

• How is the mixture of crystalline and amorphous phases modeled?

• What portion of the stress is dissipated?

In the following sections these issues are addressed in detail.

1. Criteria for Phase Change

The question “what is a solid and what is a liquid?” is very fundamental and requires

a careful consideration [Dunn and Rajagopal (1995)]. In this dissertation, a simple

thermal basis will be used to distinguish the solid and liquid models. Polymers are

either semi–crystalline or amorphous. Semi–crystalline polymers are characterized by

both glass transition temperature and melting temperature. Unlike metals, polymeric

solids are rarely completely crystalline. They exist as a mixture of both amorphous

and crystalline zones. Below the glass transition temperature, the amorphous zones in

the material are frozen and they behave like a viscoelastic solid. And above the glass

transition temperature the amorphous zones behave like a liquid. The crystalline

zones in the material remain solid till the melting temperature and above that tem-

perature these zones melt. Hence, the glass transition temperature and the melting

temperature of the polymer form the criterion for switching between the liquid–like

zone and the solid–like zone.

T ≤ Tg Solid–like behavior

T ≥ Tm Liquid–like behavior

Tm > T > Tg Transition zone
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Even though Tg is ideally the temperature at which the amorphous zones of

the polymer freeze, from experimental observations, the material ceases to flow at

a temperature higher than Tg and it is referred to as “no–flow temperature”, Tnf .

Hence, for computational purposes this Tnf will be used instead of Tg.

Solid–like zone in the film–line is characterized as a mixture of amorphous and

crystalline phases. The degree of crystallization attained depends on the process

dynamics and a nonisothermal model is used to describe the crystallization kinetics

(see section E). When the temperature is above the melting point Tm the polymer

melt exists as a viscoelastic liquid. The transition zone is modeled as a mixture of

viscoelastic liquid and crystalline solid. This framework is general enough to admit

different models to be used for the liquid and the solid zones. The choice of actual

models used is based on the available literature and the computational convenience.

In this work, Phan-Thien-Tanner (PTT) model is used to describe the viscoelastic

melt and a modified Kelvin-Voight (KV) two element solid will be used to describe

the solid zone. The basis for this decision is discussed in the subsequent sections.

B. Liquid Zone: Phan-Thien-Tanner Model

The field of rheology is abundant with constitutive models describing the polymer’s

behavior’s under various conditions. Unlike linear fluids which are uniquely described

by the Stokes model, nonlinear fluids exhibit a wide range physical dynamics which

are quite difficult to capture. As it was mentioned in Chapter II, film blowing pro-

cess falls under the classification of bi–axial extensional flow which is a strong flow.

Many models which predict shear flows (weak flows) satisfactorily, fail to predict the

extensional flow accurately. Previous studies [Khan and Larson (1987)] indicate that

Phan–Thien–Tanner model predicts the extensional flow problems satisfactorily and
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hence, it is chosen for this work. In the framework developed it is possible to use

a different model instead of Phan–Thien–Tanner model. It should be noted that

most of the models used in the literature are minor variants of contravariant Maxwell

model (popularly known as Upper Convected Maxwell model), hence implementing

these variations is relatively easy once a robust framework is present.

Phan–Thien–Tanner model is a network model which assumes that the poly-

mer molecules form a network due to strong local attractions. In this network the

junctions are formed and destroyed continually. And the model ignores the effects

due to the stray chains and loose ends in the network. Besides these assumptions,

incompressibility is assumed. One of the important feature of PTT model is it allows

non-affine motion. In this context, non-affine motion is understood as follows: if the

continuum suffers a velocity gradient L then the individual polymer chains need not

strictly adhere to this motion and they can experience a slip. If there is no slip, then

the motion is affine, which is the case in most other models. From these assumptions.

PTT model is derived using the standard methods, and following equation describes

the final form of the model.

λ

[
dτ

dt
− Lτ − τLT

]
+ Y τ +HT

dT

dt
τ = 2λGD (1)

L = L− c1D (2)

Y = exp [c2Trace(τ )] (3)

where, L is the velocity gradient tensor, D is the rate of deformation tensor (sym-

metric part of L), λ is the relaxation time, G is the elongational modulus, and c1 and

c2 are constants. The term HTdT/dtτ accounts for the nonisothermal behavior. It is
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not enough to consider the properties such as, viscosity and modulus as functions of

temperature to extend the model to non-isothermal realm, and the additional term

involving HT should also be considered. This accounts for the dependence of the

connector force on temperature in the underlying model [Peters and Baajens (1997)]

and should be considered in the analysis. This term is often neglected due to the lack

of data.

C. Crystalline Solid Model

The polymeric melt begins to crystallize below the melting point of the polymer. The

model that describes this crystalline solid should account for the anisotropy resulting

from the orientation and reference configuration for the crystallizing material. Often,

the stress free configuration is assumed to be the reference configuration for the

analysis. Even though this not necessary from a theoretical stand point, it is quite

important to simplify the computation. For the present problem, it is assumed that

the newly formed crystalline solid is stress free. This assumption is true only in the

absence of gravity. The gravity effects in this context are ignored in this analysis.

The orientation of the crystalline structures formed is strongly influenced by the flow.

It is assumed in this study that the orientation of the crystallizing molecules coincide

with the principal axes of the rate of deformation tensor at that point. This greatly

simplifies the computational implementation.

In this work, modified Kelvin’s model is used to describe the crystalline solid.

Figure 5 shows the mechanical description of Kelvin Voight model, which is a spring

element is connected in parallel to the dash-pot. The following equation describes

the model.
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σ = Eε+ ηeD (4)

G η

2

1

FIG. 5. Kelvin’s two element viscoelastic solid is used to model the solid zone.

where E is the elongational modulus tensor and ηe is the elongational viscosity. The

modulus tensor brings in the effect of orientation of the crystalline structure. The

strain tensor ε in the domain is computed from the velocity distribution at every

instant, and D is the rate of deformation tensor. Since the equations are solved in

the principal coordinates, matrices arising out of these tensors are diagonal.

This model is sometimes known as the Kelvin-Voight model. The initial response

of this model is liquid-like, however, the ultimate response is like a solid [Petrie

(1979)]. More details about the strengths and weaknesses of this model is discussed

in [Findley et al. (1976)]. This model was chosen for the analysis because it is simpler

to implement among the available viscoelastic models for solid. In the model equation
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4, both E and ηe depend on temperature and the transformation is achieved using

Arrhenius function.

Below the Tg the same model is used to describe the amorphous phase, but

with an isotropic E tensor. This implies that below glass transition temperature, the

material is a mixture of isotropic and anisotropic Kelvin-Voight model.

E = E(T0)exp

(
AE

T

)
ηe = ηe(T0)exp

(
Aη

T

)
In the above expressions, AE and Aη have the units of temperature, and referred

to as temperature sensitivity. It is the ratio of activation energy to universal gas

constant R.

D. Strain Computation

Using the fundamental relations in continuum mechanics, strain tensor ε is computed.

The deformation gradient tensor F is given by the equation F = ∂x/∂X, where BX

refers to the reference configuration and x refers to the current configuration. A strain

free configuration is chosen as the reference configuration and it is assumed that the

material solidifies in a strain free state.

For the purposes of this analysis Eulerian strain tensor is computed and it is given

by ε = 1/2(1−(FFT )−1). In order to compute F, the equation dF/dt = LF is solved.

From the deformation gradient tensor, the strain tensor is then easily computed as

the tensors are diagonal in the principal coordinate system.
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E. Degree of Crystallinity

The equation governing crystallization kinetics should be derived based on a thermo-

dynamic analysis of the system such that it minimizes the dissipation function. But

often a simpler empirical approach starting from the Avrami equation is adopted.

The form crystallinity equation used for the present analysis is.

dχ

dt
= f1(T )f2(χ)f3(τ )

where the degree of crystallinity is expressed as a function of temperature, degree

of crystallinity, and the stress tensor. The starting point for the particular form

used in this analysis is the Avrami’s model [Avrami (1939)] with corrections to the

crystallization rate K. The original Avrami’s model is given by,

χ(t) = 1− exp(−Ktn).

This model assumes that the crystalline phase is nucleated by the germ nuclei

that already exists in the melt. The density of the germ nuclei diminishes through

the activation of some of them to become growth nuclei for grains of the crystalline

phase and the ingestion of the others by the growing crystals. The crystals cease to

grow when they impinge on each other. In this model, if the rate of crystallization

K is written as
∫
K(T )dt and the equation is rewritten, we get

dχ

dt
= nK(T )(1− χ) (−loge(1− χ))

n−1
n .

This equation is further modified by including the effect of flow in the model.

Experimental investigations show a dramatic increase in the crystallinity rate due to

the flow. This is approximately represented by an exponential term depending on the

effective deformation rate of the flow.
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dχ

dt
= nK(T )(1− χ) (−loge(1− χ))

n−1
n exp(cχIID) (5)

In the above equation cχ is a constant and IID is the second invariant of the rate

of deformation tensor. There are different approaches to specify the FIC [Kulkarni and

Beris (1998)]. Since the focus of this dissertation is not on developing a crystallinity

model, a simpler model is implemented. It should be noted, however, that the nature

of dependence can be modified and implemented in the present framework quite easily.

The crystallinity rate K(T) is defined by the following equation based on Lambrigger

(1998).

K(T ) = K(T0) exp(−Aχ

T
).

Instead of Arrhenius like dependence, one can use alternative specification as in Kulka-

rni and Beris (1998) which uses a Gaussian function to describe the dependence. The

science of modeling crystallization kinetics is still in the state of development, hence

a plethora of different models with varying physical justifications exist.

F. Mixture Calculations

Below the melting point temperature, the polymeric material is modeled as a mixture

of a amorphous region and semi-crystalline region. Following assumptions are invoked

for doing the mixture calculations:

1. The amorphous and the crystalline zones are modeled as a constrained mixture

and they move together. This is an reasonable assumption as it is possible

for the same polymer molecule to traverse both the crystalline and amorphous

zone.

2. A point in the mixture is described in an averaged sense, i.e., it may have n%
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crystalline zone and (100-n)% amorphous zone. Hence, the co-occupancy of

both the phases are permitted.

3. Locally the mixture is at equilibrium between the two phases. This is enforced

for both thermal and momentum dynamics.

The ratio of the mixture is computed using the degree of crystallinity. The

effective stress is in this region is computed using the following equation.

τ = (1− χ)[τ Phan–Thien–Tanner model] + χ[τ Kelvin’s Model]. (6)

In the above equation, the degree of crystallinity will never become 1, as the

polymer is semi-crystalline. Hence, even beyond the glass transition temperature,

the material will be treated as a mixture of anisotropic and isotropic Kelvin’s solid

with χ = χmax, as described by the following equation.

τ = (1−χmax)[τ isotropic Kelvin’s model]+χmax[τ anisotropic Kelvin’s Model] (7)

G. Viscous Dissipation

In the case of viscoelastic fluids not all the stress work, trace(σD) is converted into

heat and dissipated in the system. The amount of stress work that is dissipated has

to be calculated based on the model equations using the second law of thermodynam-

ics. In this section, details of these calculations are presented. Constitutive model

developed in this chapter is a combination of PTT model (for liquid-like behavior)

and modified KV model (for crystalline solid).

In the case of the modified KV model it is easy to arrive at the partition. The

stress tensor computed using this model is written as σ = σe +σv, and as there is no
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entropic effect in memory of the material, it is then concluded that only Trace(σvD)

is dissipated. Hence, the viscous dissipation term due to KV model is ηE Trace(DD).

For Phan–Thien–Tanner model, the following approach is adopted to compute

the viscous dissipation terms. The first step is to identify the possible list of inde-

pendent variables that affect the constitutive behavior of material. Then the second

of law thermodynamics is used to determine those variables which really matter. For

instance, Helmholtz free energy f may not depend on ∇̇T and it is determined using

a standard approach which is described in most text books on continuum mechanics

[Bowen (1989)]. Using this procedure, the restrictions on the model to satisfy the

Clausius-Duhem inequality are identified. Based on this the constitutive form for the

internal energy (u) is determined and hence, the amount dissipated is also estimated.

The first law of thermodynamics is written as,

ρu̇ = −∇ • q + ρr + Trace(σD), (8)

where u is internal energy, q is heat flux vector, r is radiation term and the final term

is the stress work. And the second law of thermodynamics is written as,

ρT ṡ− ρu̇+ Trace(σD)− q • ∇
T

≥ 0. (9)

Above equation is rewritten in terms of Helmholtz free energy (f) which is given

by f = u − Ts and ḟ = u̇ − T ṡ − Ṫ s. Using in the second law of thermodynamics

following equation is obtained.

−ρ(ḟ + sṪ ) + Trace(σD)− q • ∇
T

≥ 0. (10)

The flow is assumed to be isochoric and density is steady. And the following in-

dependent variables are probable factors that may influence the constitutive behavior
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of the material:

• Velocity gradient tensor, L

• Temperature, T

• Temperature gradient, ∇T

• Network strain tensor, B

Phan–Thien–Tanner model is a network model and the network can undergo a

non-affine motion. Vector, R is the connector of two junctions and the network strain

tensor is given by B =< RR >. The model defines Ṙ = L •R − c1D •R − β1 •R

and the last two terms make the motion non–affine. The rate of B is given by

Ḃ = (L− c1D− β1) •B + B • (LT − c1D− β1).

Helmholtz free energy, f is now written as a function of these independent vari-

ables, f = f(L,B, T,∇T ). And ḟ is expressed as,

ḟ = Trace(
∂f

∂L
• L̇) + Trace(

∂f

∂B
• Ḃ) +

∂f

∂T
Ṫ +

∂f

∂∇T
• ∇̇T .

Substituting the above expression in the second law following equation is obtained.

− ρ Trace(
∂f

∂L
L̇)− ρ(

∂f

∂T
+ s)Ṫ − ρ Trace(

∂f

∂∇T
• ∇̇T )

− ρ Trace(
∂f

∂B
•

(
(L− c1D− β1) •B + B • (LT − c1D− β1)

)
+ Trace(σD)− q • ∇

T
≥ 0.

From the above equation, using the standard approach, it can be shown that, ∂f/∂T =

−s, (∂f/∂L = 0, and ∂f/∂∇T = 0. The stress, σ is written as σ = σv + σe, where
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σv is purely viscous contribution and σe is the elastic stress of the network.

Trace

(
(−2ρB • ∂f

∂B
+ σe) •D

)
+ Trace((2ρB • ∂f

∂B
) • (c1D + β1)

+ Trace(σvD)− q • ∇
T

≥ 0,

and σe = 2ρB•∂f/∂B. And the final form the inequality is expressed by the following

equation.

Trace (σv •D) + Trace (σe •A)− q • ∇
T

≥ 0. (11)

The slip tensor A is given by A = c1D + β1. Internal energy u is expressed in terms

of σe. Internal energy also depends only on B and T , hence,

ρu̇ = ρ
∂u

∂T
Ṫ + ρ Trace(

∂u

∂B
• Ḃ).

Using u = f + Ts and s = −∂f/∂T , it is shown that,

∂u

∂B
=
∂f

∂B
+ T

∂2f

∂T∂B

and

ρu̇ = ρ
∂u

∂T
Ṫ + Trace

(
(σe − ρT

∂σe/ρ

∂T
) • (D−BA)

)
.

It should be noted that in the standard PTT model σ = σe, that is, the network

stress is same as the total stress and there is no additional pure viscous stress term. It

is shown that ∂σe/∂T = HT . The nonisothermal term of Phan–Thien–Tanner model

is written as,

HT =
1

ρ

∂ρ

∂T
+
α

T

and using Cv = ∂u/∂T , the final form of the energy equation is obtained.

ρCvṪ = −∇ • q + α Trace(σ •D) + (1− α)Trace(σ •A). (12)
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The material function α is obtained from experiments. Depending on the value of α

the nature of memory effect is decided. When α = 1, the contribution to the internal

energy is from the “so-called” energy elasticity and when α = 0 it is from the entropic

effects. Nature of the partition arrived at depends on the assumptions made in the

calculations. It is possible to alter some of the assumptions and come to a different

result.

H. Summary

Constitutive model developed in this chapter addresses the key issues that are essen-

tial to model a polymer undergoing film blowing process. Material behavior of the

polymer in the liquid zone is described using PTT model, in the transition zone as a

mixture of PTT and anisotropic Kelvin–Voight model, and in the solid zone as a mix-

ture of isotropic and anisotropic Kelvin–Voight solid model. Degree of crystallinity

is estimated using a simple model for crystallization kinetics and the orientation of

the crystalline structures is assumed to be aligned with the principal axes. Viscous

dissipation calculations starting from laws of thermodynamics, partition the model

correctly to account for the dissipation terms in the energy equation.
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CHAPTER IV

TRANSIENT AXISYMMETRIC MODEL

Development of a transient, nonlinear, axisymmetric model of film blowing process is

presented in this chapter. In Section A, underlying assumptions of the model and its

consequences are discussed in detail. In the subsequent section a brief discussion of

the coordinate system used and the metric tensor is presented, however, the details of

the computations including the derivation of the Christoffel symbols are relegated to

Appendix A. In Section C the derivation of rate of deformation tensor is presented.

This tensor contains transient terms and is a key entity in the model development.

Derivation and significance of the governing equations are presented in Section D. In

the final sections of this chapter, boundary and initial conditions obtained from the

process conditions are described.

A. Modeling Assumptions

1. Axisymmetry

Domain of analysis and the process conditions are axisymmetric. In order to obtain

an uniform film thickness and lay–flats, an operational film blowing process has to

maintain axisymmetry from the die exit up to the guide rolls. Beyond the guide

rolls the symmetry pattern changes to plane symmetry. Attention of the present

simulation is focused on the region between the die exit and the guide rolls. Hence, in

principle, the assumption that the process is axisymmetric is valid. The axisymmetric

assumption implies that the variables and their derivatives do not change with the

azimuthal angle, φ, which is expressed by the following equation.
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∂[·]
∂φ

= 0. (13)

There are two distinct experimentally observed instabilities [Minoshima and

White (1986)] that are axisymmetric. They are the bubble diameter oscillation insta-

bility (Figure 6) and the melt tension instability (Figure 7). Both these instabilities

can be simulated using the model developed. This approach, however, will not be able

to predict the behavior of the process under non-axisymmetric disturbances and bub-

ble collapse. It is important to investigate the causes of these instabilities, whether

they arise from the complex constitutive behavior of the polymer or from some ex-

ternal disturbances. In the case of latter, is it reasonable to expect an order like

axisymmetry from a disorder? The axisymmetry of the process is often lost due to

the unbalanced die exit velocity resulting from the uneven distribution of melt in the

die. Design of the film blowing die is crucial in creating an axisymmetric annular

extrudate. Often this is not the case and a variation in thickness in the order of 5%

to 15% arises out of this error.

2. Thin Membrane Approximation

Variation of properties and process conditions across the thickness of the film is

ignored. Since the thickness of the film is small in comparison with the radius of the

bubble and both the radii of curvature, thickness averaging can be used to reduce the

dimensionality of the problem. This assumption implies that the variables and their

derivatives do not vary significantly across the film thickness.
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FIG. 6. Periodic fluctuation of bubble diameter.
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FIG. 7. Melt tension instability.



44

Thin membrane approximation limits the models ability to include the crystal-

lization kinetics of the process. Under this assumption it is not possible to simulate

processes that control crystallization kinetics using variable cooling on internal and

external surfaces of the film.

3. Extrudate Swell

Analysis does not include the effect of extrudate swell. Extrudate swell at the die exit

is ignored in this analysis. Most polymers exhibit extrudate swell (often incorrectly

referred to as die swell) and this is a mark of their viscoelastic nature. Depending on

the Deborah and Weissenberg number, it could be due to the memory or the normal

stress effects. It is not possible to include this without simulating the flow inside the

die.

Issues. Experimental observations stress the importance of the extrudate swell

in the film blowing process. The effect of extrudate swell is ignored due to the

computational complexity in incorporating it. Even the studies that are specifically

devoted to extrudate swell phenomenon indicate the problems in modeling it and the

present lack of knowledge. This problem can temporarily overcome by developing

thumb rules based on experimental studies on extrudate swell. It is well known that

the extrudate swell can be directly correlated to the first normal stress difference (if

memory effects are negligible). This can serve as a starting point in the analysis to

include the effects of extrudate swell.

4. Transient Behavior

Film blowing modeled as a transient process. Model developed in this study includes

the transient terms in the governing equations. In principle, with a transient analysis,

it is possible to capture some of the instabilities that are experimentally observed in
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the film blowing process.

5. Inertia Terms

Inertia terms are included in the model. Inclusion of the inertia terms in the model

equations will introduce geometric non–linearity in the problem. Significance of these

terms depend on the ratio of inertia to viscous forces in the momentum equation, and

the ratio of advection to conduction heat transfer in the energy equation. If

ρ‖v2‖
‖τ‖

� 1,

then the inertia terms can be neglected in the momentum equations. Similarly if,

ρCpvL

k
� 1

then the advection terms can be ignored. In the present model the inertia terms

are not ignored. Using the above equations, it can be shown that inertia terms are

important.

6. Gravity

Gravitational forces are considered in the analysis. The significance of the role of

gravity on the process operation has to be investigated. It is reasonable assume that

gravitational forces may play a role when the process is unstable, or when the bubble

collapse occurs. In the present model, the terms arising due to gravitational forces

are included in the momentum equations.
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7. Surface Tension

Surface tension forces are not included in the analysis. Importance of surface tension

forces is determined by capillary number, which is the ratio of surface tension force to

the viscous force. It can be shown that this number is small enough to be neglected.

One of the chief problems in including the surface tension effects in the analysis is the

lack of availability of the surface tension coefficient data as a function of temperature.

In the present model the terms arising due to these forces are not considered.

8. Constitutive Behavior

Constitutive behavior of the polymer is modeled using a combination of Phan–Thien–

Tanner (with some modifications) and Kelvin–Voight Model. Success or failure of the

analysis depends to a large extent on the appropriate choice of the constitutive model.

In the present case, this is further complicated by the phase change phenomena. A

single constitutive law cannot accurately model both the liquid–like and solid–like

states of the polymer. This can be shown using the symmetry arguments. In the

present study Phan–Thien–Tanner model is used for the modeling the liquid like

state, anisotropic Kelvin–Voight model is used for modeling the crystalline solid, and

amorphous Kelvin–Voight model is used for modeling the amorphous solid. Details

of constitutive modeling are described in the previous chapter.

9. Heat Transfer

Radiation heat transfer is included in the analysis. Importance of the radiation heat

transfer was clearly shown in the preliminary analysis (see Appendix C). Radiation

heat transfer plays a dominant role when forced convection cooling is not used. It is

expected to play a minor role if the forced convection cooling at high cooling rates
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using turbulent air jets are used. The effect of radiation shape factor (whether the

surface sees itself or not) is not included in the analysis.

The lack of accurate emissivity data is a major setback in including the contri-

bution of the radiation heat transfer accurately. The radiation shape factor can be

included in the analysis by approximating the bubble as a cylinder or sphere. How-

ever, the lack of accurate emissivity data is bound to create a greater error and hence

the shape factor computations are ignored.

Conduction terms are included in the heat transfer model. The inclusion of axial

conduction terms will change the nature of the energy equation from parabolic to

elliptic. This will bring in an additional complication of specifying the boundary

condition at the nip end.

Viscous dissipation terms are included in the model. Including the viscous dis-

sipation terms is not straight forward as material under consideration is viscoelastic.

One has to thermodynamically arrive at the portion of the stress that is recoverable

(hence elastic and not dissipated) and that is dissipated. A detailed derivation of this

partition is presented in Chapter III.

B. Coordinate System and Metric Calculations

Analysis of film blowing process is carried out in principal coordinates. Cylindrical

coordinate system is not a good choice for two reasons: i) it results in a stress tensor

with off diagonal terms and ii) the velocity vector has two non–zero components.

These disadvantages increases the computational complexity. They not only increase

the number equations to be solved, but also make the computation of items such as,

the convective derivative more complex.

The above mentioned disadvantages are overcome by using the principal coordi-
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nate system. Principal coordinates, ξi are defined as follows:

• ξ1 ≡ Machine Direction (MD),

• ξ2 ≡ Transverse Direction (TD), and

• ξ3 ≡ Normal direction (ND).

In an axisymmetric analysis, the azimuthal angle φ coincides with ξ2. The normal

and machine directions will depend on the axial location, z of the bubble from the

die end and it is characterized by the slope angle, θ. Coordinate system used in

the analysis is depicted in Figure 8. This coordinate system under consideration is

represented using a simple parametrization X(z, φ, t), which is expressed as

X(z, φ, t) = (r(z, t) cosφ, r(z, t) sinφ, z).

Time dependence of the parametrization increases the complexity of the subsequent

calculations. This also leads to a time dependent rate of deformation tensor D.

C. Rate of Deformation Tensor

Derivation of the rate of deformation tensor for the transient axisymmetric model is

presented in this section. Overall procedure of deriving d involves the following steps:

Step 1: Prove that C = GIJU
I ⊗UJ

Step 2: Show that D = 1
2
dC/dt

Step 3: Push forward D to current coordinates

Step 4: Write the details of d

Step 5: Express d in physical coordinates
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FIG. 8. Coordinate system used for the computation.

Rate of deformation tensor is first derived in a Lagrangian framework and then

transformed (pushed forward) to the Eulerian framework. This step involves the

definition of “convected derivatives”. The subsequent step involves expanding the

covariant derivatives and writing the details of rate of deformation tensor. And the

final step is the writing out the tensor in physical coordinates for the numerical

computation.
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1. Lagrangian Framework

Entities in the reference configuration are denoted by uppercase letters. For instance,

the metric tensor on the reference surface is denoted by G and the tangent plane is

spanned by the vectors UI and UJ . This convention is also followed for the indices

of vectors and tensors.

Let X be the coordinate system on the reference configuration and x denote the

current coordinate system at time t, then the deformation gradient is given by

F =
∂x

∂X
= F i

Iui ⊗UI =
∂xi

∂cXI
ui ⊗UI ,

and the Green deformation tensor, which is also known as the right Cauchy–Green

tensor is defined by

C = FTF = F I
kF

k
J UI ⊗UJ = gabG

AC ∂xa

∂cXC

∂xb

∂cXB
UA ⊗UB.

This implies that CI
J = F I

kF
k
J , which is rewritten as C = CIJU

I ⊗UJ . It can also be

shown that CIJ = GIJ and details of this derivation is found in Marsden and Hughes

(1994). Hence,

C = GIJU
I ⊗UJ

and

GIJ = Pull back of (gij) = gij
∂xi

∂cXI

∂xj

∂cXJ
.

2. D in Lagrangian Framework

Rate of deformation tensor D in reference coordinates is defined as

D =
1

2

dC

dt
. (14)
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Details of this definition are available in Marsden and Hughes (1994), refer to the

definition 3.26 (page 61). The factor 2 is introduced for numerical convenience of the

linearized theory. This definition is equivalent to the traditional

D =
1

ds

d(ds)

dt
, (15)

where ds is the deformation. In current coordinates ds2 = dx.dx and this can be

rewritten as ds = (FX)T (FX). This can be further simplified as ds = X.(FTF).X =

X.C.X. Using the standard definition of D, we can show the identity of the above

two definitions.

3. Push Forward to Eulerian System

Rate of deformation tensor in Eulerian framework is the push forward of D.

D =
1

2

dG

dt
=

1

2

dGIJ

dt
UI ⊗UJ .

Further,

dG

dt
=

d

dt

[
gij

∂xi

∂cXI

∂xj

∂cXJ

]
,

and

dGIJ

dt
=

[
dgij

dt

∂xi

∂cXI

∂xj

∂cXJ
+ gij

∂vi

∂cXI

∂xj

∂cXJ
+ gij

∂xi

∂cXI

∂vj

∂cXJ

]
.

Using the relationship,

∂vi

∂cXI
=

∂vi

∂cxl

∂xl

∂cXI

and rearranging the indices one gets

dG

dt
=

[
dgij

dt
+ glj

∂vl

∂cxi
+ gil

∂vl

∂cxj

]
∂xi

∂cXI

∂xj

∂cXJ
UI ⊗UJ .
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Hence, rate of deformation tensor in current coordinates is

d =

[
dgij

dt
+ glj

∂vl

∂cxi
+ gil

∂vl

∂cxj

]
ui ⊗ uj, (16)

and in other words,

dij =

[
dgij

dt
+ glj

∂vl

∂cxi
+ gil

∂vl

∂cxj
.

]
(17)

4. Details of d

Components of d: d11, d22, and d33 are written in detail expanding the convected

derivatives. The expressions resulting from this are not very complex as many of the

Christoffel symbols vanish. Components of d are,

dij =
∂gij

∂t
+ glj

[
∂vl

∂xi

+ vmΓl
mi

]
gik

[
∂vk

∂xj

+ vnΓk
nj

]
.

The metric tensor g is diagonal, hence, the above equation simplifies to,

d11 =
∂g11

∂t
+ 2g11

[
∂v1

∂x1

+ v1Γ1
11 + v2Γ1

21 + v3Γ1
31

]
d22 =

∂g22

∂t
+ 2g22

[
∂v2

∂x2

+ v1Γ2
12 + v2Γ2

22 + v3Γ2
32

]
d33 =

∂g33

∂t
+ 2g33

[
∂v3

∂x3

+ v1Γ3
13 + v2Γl

23 + v3Γl
33

]
and this can be further simplified by substituting for Christoffel symbols. The final

form of rate of deformation tensor d in covariant representation (d = diju
i ⊗ uj) is

given by the following equation.
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d11 =
∂2R

∂z2

∂R

∂t
+
∂V 1

∂z
(1 +

∂R

∂z

2

) + V 1∂
2R

∂z2

∂R

∂z
+ V 3H

∂2R

∂z2
cos θ

d22 = R
∂R

∂t
+RV 1∂R

∂z
− V 3RH cos θ

d33 = H

(
∂H

∂t
+ V 1∂H

∂z

)
.

It can be shown that the terms associated with V 3 are much smaller than the other

terms, hence they are ignored.

5. Tensor d in Physical Coordinates

Numerical computation has to be done only in the physical coordinates and there are

standard approaches to convert the tensors and vectors in contravariant or covariant

settings to the physical coordinates. Using these methods [Aris (1962)] the final

equations for rate of deformation tensor are written below.

D11 =
∂2R
∂z2

1 + ∂R
∂z

2

∂R

∂t
+ cos θ

∂V1

∂z
(18)

D22 =
1

R

(
∂R

∂t
+ V1 cos θ

∂R

∂z

)
(19)

D33 =
1

H

(
∂H

∂t
+ V1 cos θ

∂H

∂z

)
(20)

These results agree with the results presented in Yeow (1976), and here it has been

derived rigorously using the standard continuum mechanics approach.

D. Governing Equations

Equations governing the dynamics of the film blowing process are presented in this

section. Derivation of these equations is described in detail and the approximations
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made are highlighted. These model equations can be developed either using a control

volume approach or it can be arrived at by restricting the equations of motion in

a general curvilinear coordinates to the bubble surface. Former approach is error

prone, however, it is useful in verifying the terms in the equation and understand

their physical significance, especially when used together with the latter. Following

is the list of variables that are of interest to a designer and they are computed by the

developed mathematical model.

1. Variables of Interest

• Radius of the bubble, R

• Velocity of the film in the machine direction, V1

• Thickness of the bubble, H

• Pressure, P

• Principal stresses, τ11, τ22, τ33

• Temperature, T

• Degree of crystallinity, χ

Of these variables, the kinematic quantities R, H, and V , and the thermal variable

T are easily measurable using experimental techniques and hence, can be used to

validate the model. The stresses are required to correlate the structure–property

relationship.
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FIG. 9. Control volume used for the analysis.

2. Control Volume

Figure 9 shows the the control volume over which the mass, momentum and energy

balances are carried out. Unlike the standard control volume whose dimensions are

independent of the spatial coordinates, control volume used for deriving the equations

for the film blowing process depends on the spatial coordinate z.

R = R(z, t)

H = H(z, t)

θ = θ(z, t)

The thin membrane approximation ignores the explicit dependence of the system

variables on the thickness of the film. However, while deriving the system of equations,

dependence on thickness comes into play. In the subsequent discussions it should be

borne in mind that the R describes the radius of the inner surface of the film and the

thickness, H is measured in the normal direction from this surface. The slope angle,
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θ is angle made by the tangent to the inner surface with the z axis. This definition

of θ can be written as,

tan θ =
∂R

∂z

In the present problem, H << R and it is much smaller than the both the radii

of curvature. Hence, it is reasonable to conclude that ∂H
∂z

∆z is smaller in comparison

with the thickness H. These assumptions will simplify the calculation of the area of

faces at z + ∆z. For instance,

Area of base at z = (A1)z = 2πRH

and

Area of base at z + ∆z = (A1)z+∆z = 2πRH(1 +
∂H
∂z

∆z

H
+

∂R
∂z

∆z

R
+

∂R
∂z

∂H
∂z

∆z2

RH
)

above equation can be simplified using the above assumptions and rewritten as,

(A1)z+∆z = 2πRH(1 +
1

R

∂R

∂z
∆z)

In reference to this control volume, the coordinate, ξ3 is in the thickness direction,

ξ2 is the azimuthal angle, and the coordinate, ξ1 is along (tangential) the inner surface.

The surface area of the control volume normal to the direction i is referred as Ai.

A1 = 2πRH

A2 = h∆ξ1 = H sec θ∆z

A3 = 2πR∆ξ1 = 2πR sec θ∆z

and the volume, V of the control volume is given by

V = 2πRHδξ1 = 2πRH sec θδz
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In the above calculation some simplifying assumptions are imposed, such as, the

variation in R along the inner surface is small over the ∆ξ1, etc. The control volume

approach was primarily used to verify the terms in the equations and understand

their significance.

3. Conservation of Mass

The law of conservation of mass is one of the fundamental laws of physics. Mass is

neither created nor destroyed is the basis (ignoring the relativistic E = mc2!) of this

equation. In the present work, the polymer melt is treated as an incompressible fluid

and the variations in mass density of the polymer due to the changes in temperature

are ignored in the context of the conservation law. The general form the equation of

conservation of mass in curvilinear coordinates is given below [Aris (1962)].

dρ

dt
+ ρ∇.v +

ρ

2g

∂g

∂t
= 0. (21)

In the above equation, g = g11g22g33, substituting the appropriate expressions

for g (see appendix A) it can be shown that,

ρ

2g

∂g

∂t
= ρ

(
1

sec θ

∂sec θ

∂t
+

1

R

∂R

∂t
+

1

H

∂H

∂t

)
.

Since the polymer mass density is assumed to be a constant, the term dρ/dt vanishes.

The remaining term ρ∇.v is expanded as follows.

∇.v =
1
√
g

(
∂(
√
gv1)

∂z

)
The other two velocity components in the equation vanish. For computational purpose

it is important to express the final equation in physical coordinates. For instance, in

physical coordinates, velocity in the MD V1 = v1/h1. The final form of the equation
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of conservation of mass in physical coordinates is given by the following equation.

1

sec2 θ

∂sec θ

∂t
+

1

R

∂R

∂t
+

1

H

∂H

∂t
+

1

RH sec θ

∂(RHV1)

∂z
= 0. (22)

The above equation is verified using a control volume approach.

Rate of change of mass inside the control volume =

Rate at which mass enters the control volume−

Rate at which mass leaves the control volume (23)

For instance the mass entering the control volume through face 1 at z is given by ρA1v1

and the leaving the control volume through face 1 at z+∆z is give by ρA1v1 + ∂ρA1v1

∂ξ1
.

Hence the net mass entering in the direction 1 is −∂ρA1v1

∂ξ1
. Using similar approach for

other directions we can write the following terms

Rate of change of mass in the volume:

∂(ρδV )

∂t
= ρ2πδz

∂RHsecθ

∂t
,

along ξ1:

[ρA1V1]− [ρA1V1 +
∂(ρA1V1)

∂ξ1
∆ξ1] = −[

∂(ρA1V1)

∂ξ1
∆ξ1],

along the ξ2:

[ρA2V2]− [ρA2V2 +
∂(ρA2V2)

∂ξ2
∆ξ2] = −[

∂(ρA2V2)

∂ξ2
∆ξ2],

and along the ξ3:

[ρA3V3]− [ρA3V3 +
∂(ρA3V3)

∂ξ3
∆ξ3] = −[

∂(ρA3V3)

∂ξ3
∆ξ3].
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Due to axisymmetry and thin membrane approximation the terms representing the

variation along directions 2 and 3 will vanish. Hence the balance of mass equation

can be written as

∂(δV )

∂t
+
∂2πRHV1

∂ξ1
∆ξ1 = 0. (24)

Above equation can be rewritten after expanding all the terms as,

1

R

∂R

∂t
+

1

H

∂R

∂t
+

1

sec2 θ

∂sec θ

∂t
+

V1 cos θR
∂H

∂z
+ V1 cos θV H

∂R

∂z
+HR cos θ

∂V1

∂z
= 0. (25)

4. Conservation of Momentum

Momentum is a vector quantity and it has three components. In this subsection,

equations of momentum is derived in the principal coordinate system. The three

equations derived in this section will be used calculate V1, P and R. The Momentum

equation in vector form general curvilinear coordinates can be written as follows.

ρaiui = f iui +∇ •
(
σijui ⊗ uj

)
(26)

In the above equation f iui is the body force term and the gravitational force is

incorporated through it. The covariant derivative is clearly represented by including

the basis vectors in the equation. Starting from the equation 26, momentum equations

in physical coordinates are derived. Let us first consider the left hand side term,

acceleration. This term can be written as,

a = aiui =

(
∂vi

∂t
+ vj ∂v

i

∂βj
+ vlvkΓi

lk

)
and Γi

lk are the Christoffel symbols which are derived in detail in Appendix A. Right

hand side of the above equation can be written in physical coordinates using the
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standard approach [Aris (1962)].

a(i) =
∂V (i)

∂t
+
V (j)hi

hj

∂

∂βj

(
vi

hi

)
+
V (l)V (k)

hlhk

Γi
lk (27)

Physical components of the acceleration is computed by direct substitution into the

above equation.

The total stress tensor σ is decomposed into the deviatoric component τ and

the spherical component p and it is written as,

σ = σijui ⊗ uj =
(
−pgij + τ ij

)
ui ⊗ uj

and the same equation in physical coordinates will translate to,

σ(ij) = −p+ τ(ij).

Hence, the right hand side of the equation can be written as (excluding the body

force term),

∇ •
(
σijui ⊗ uj

)
=

(
∂σij

∂βj
+ Γi

jkσ
ij

)
ui

and in physical coordinates as,

∂σ(ij)

∂βj
=
hi

g

∂

∂βj

(
g

hihj

σ(ij)

)
+

hi

hjhk

Γi
jkσ(jk) (28)

Combining the right hand side and left hand side the final form of momentum equation

can be written as,
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ρ

[
∂V (i)

∂t
+
V (j)hi

hj

∂

∂βj

(
vi

hi

)
+
V (l)V (k)

hlhk

Γi
lk

]
=
hi

g

∂

∂βj

(
g

hihj

σ(ij)

)
+

hi

hjhk

Γi
jkσ(jk) (29)

It is important to note that the equations are represented in principal coordinates,

hence all the cross terms like σ(ij) will vanish when i 6= j. By substituting for the

Christoffel symbols (many of them vanish due to the orthogonal parametrization),

this equation can be further simplified. In the subsequent paragraphs the momentum

equations in the three principal directions will be presented in a simplified form.

ξ1: Machine Direction. Momentum equation in the machine direction is used

to solve for V1

ρ

[
∂V1

∂t
+ V1 cos θ

∂V1

∂z
+ V1V3 cos θ

∂θ

∂z

]
= −rhogcosθ +

1

RH

∂

∂z
(RH cos θσ11) + sin θ

∂θ

∂z
σ11 (30)

ξ2: Transverse Direction. As a consequence of the axisymmetry assumption,

the equation of motion along the azimuthal direction degenerates to the following

form. This equation is used to solve for the pressure.

p = τ22 (31)

ξ3: Thickness Direction. In the case of thickness equation, instead of the fol-

lowing equation, the equation arising out the bubble equation is used for the analysis.

This bubble equation (33) is derived by integrating the momentum equation.



62

ρ

[
∂V3

∂t
− V3

∂H

∂t
+

V1V3

H sec θ

∂V3H

∂z
+ V 2

1 cos θ
∂θ

∂z

]
= −ρgsinθ − cos θ

∂θ

∂z
σ11 +

cos θ

R
σ22 (32)

∆pr sec θ + ρgrh tan θ + (γ + hσ11)
∂

∂z

[
∂r

∂z

]
− (γ + hσ33) (33)

5. Conservation of Energy

The equation of conservation of energy is used to compute the temperature distribu-

tion. Polymer melt comes out of the die at a high temperature (500–550 K) and it is

cooled rapidly by the turbulent air jets from the cooling ring. In an industrial scale

process most of the cooling is achieved by the turbulent cooling air. On the other

hand, laboratory scale experiments use natural convection heat transfer aided by ra-

diation heat transfer. Hence it is important to include both modes of heat transfer in

the equation. Polymers under consideration for the film blowing process have a low

thermal conductivity ( ∼ 10−1 ) hence, conduction is not bound to play a dominant

role. The terms arising out of conduction heat transfer are included for the sake

of completeness. Following equation describes the heat transfer in the medium in a

generic form.

ρCp
dT

dt
+ source/sink terms = −∇ • q + viscous dissipation terms. (34)

Including viscous dissipation in the analysis is a tricky issue. In the case of viscoelastic

liquids, not all the stress is dissipated into heat. Elastic part of the stress is recoverable

and not dissipated. If this is not accounted the model will not truly reflect the reality.

One can estimate the amount of stress that is dissipated using the thermodynamic
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analysis of the constitutive model. The heat flux q is given by −k∇T . This term can

be further expanded as,

q = qiui = −k ∂T
∂βi

ui = −k ∂T
∂βj

gijui.

in other words, qi = −k ∂T
∂βj g

ij. In this particular case, gij = 0 if i 6= j. This further

simplifies the expression, for instance, q1 = −k ∂T
∂z
g11. The term ∇ • q in equation 34

can be expanded as follows,

∇ • q =
∂qi

∂βi
+ Γk

kiq
i

=
∂qi

∂βi
+

1
√
g
qi∂

√
g

∂βi

=
1
√
g

∂

∂βi

(
qi√g

)
=

gij

√
g

∂

∂βi

(√
g

hi

∂T

∂betaj

)
It can be easily shown that Γk

ki = 1√
g

∂
√

g

∂βi and in this case g is given by g =
√
g11g22g33.

In physical coordinates q(i) = qi/hi, using this and invoking other conditions (axisym-

metry and thin membrane approximation) the right hand side of the equation can be

rewritten as,

∇ • q =
cos θ

RH sec θ

∂

∂z

(
RH

∂T

∂z

)
The left hand side of the energy equation 34 can be rewritten as,

ρCp
dT

dt
= ρCp

∂T

∂t
+ ρCpv.∇T = ρCp

∂T

∂t
+ ρCpv

i ∂T

∂βi
= ρCp

∂T

∂t
+ ρCpv

1∂T

∂z

and the source terms arise from the heat transfer between the film surface and the

surroundings. Contribution to this heat transfer by radiation and convection are con-

sidered. Heat convected away by the cooling air is given by hc(T − Tc), where hc is

the heat transfer coefficient and Tc is the temperature of the cooling air. Heat radi-



64

ated to the surroundings is given by CSBε(T
4− T 4

w), where CSB is Stefan-Boltzmann

constant, ε is the emissivity of the bubble surface, and Tw is the surrounding wall

temperature. Heat generation during crystallization due to the latent heat is given by

ρLh
dχ
dt

. Including these terms, the equation of conservation of energy can be written

as follows.

ρCp
∂T

∂t
+ ρCpv

1∂T

∂z
+
hc

H
(T − Tc) +

CSBε

H
(T 4 − T 4

w) =

− 1
√
g

∂

∂z

(
qi√g

)
(35)

This equation has to be written in physical coordinates in order to be solved. Using

q(i) = −khi
∂T
∂βj g

ij, final form of the equation is obtained.

ρCp
∂T

∂t
+ρCpV1 cos θ

∂T

∂z
+
hc

H
(T −Tc)+

CSBε

H
(T 4−T 4

w) =
cos θ

RH

∂

∂z

(
kRH

∂T

∂z

)
(36)

6. Constitutive Modeling

Constitutive model used is described in detail in the previous chapter. In this section

those equations are presented in physical coordinates with some additional details

which enable the numerical calculation. The following set of equations define the

Phan-Thien-Tanner model in physical coordinates. The second time dependent term

on the left hand side will vanish when the motion is affine.

∂τ11
∂t

+ V1 cos θ
∂τ11

∂z
+ 2L11τ11 − 2τ11 cos θ sin θ

∂θ

∂t
+
Y

λ
τ11 = 2GD11 (37)

∂τ22
∂t

+ V1 cos θ
∂τ22

∂z
+ 2L22τ22 − 2

τ22
R

∂R

∂t
+
Y

λ
τ22 = 2GD22 (38)

∂τ33
∂t

+ V1 cos θ
∂τ33

∂z
+ 2L33τ33 − 2

τ33
H

∂H

∂t
+
Y

λ
τ33 = 2GD33 (39)
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E. Process Conditions

1. Initial Conditions

Initial conditions for the analysis is specified based on one of the actual procedures

used for starting the film line. This procedure is discussed in detail in Chapter I.

Typically a film line is started by extruding the polymer melt through the die in the

form of a hollow tube. The tip of this tube is then tied to a rope and pulled to nip

rollers and passed via the roller drums. In this position, the set up looks as if the

cylinder is being pulled uniaxially. Then the pressurized air is blown in the tube to

inflate it (see Figure 2).

Based on this understanding, initial conditions are specified using uniaxial exten-

sion approximation as shown in Figure 10 and specified by the following equations.

R = Rdie (40)

V1 = Vdie + z
vnip − vdie

L
(41)

H = Hdie + z
hnip − hdie

L
(42)

T = Distribution based on simple convection analysis (43)

χ = Based on temperature profile (44)

Initial condition for the stresses are computed using a steady state solver using the

above conditions to specify the kinematics. Variants of this initial condition are used

to study the sensitivity of the model to initial conditions.
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L

FIG. 10. Initial Condition used in the analysis.

2. Boundary Conditions

In this section a brief discussion on boundary conditions is presented. This is based on

the physical understanding of the process and the results of variational formulation

presented in chapter V. Boundary conditions specified at the die end is shown in

figure 11. This figure is not drawn to scale and it is exaggerated to show the effect

of extrudate swell. This effect is neglected in this study (see section A), however, if

necessary, it can be included in an approximate way using the available experimental

investigations. Following conditions are unambiguously at the die end:

• Radius of the die, Rdie is determined from the die geometry. Depending on

the convention used (see Appendix A) either the inner or outer radius of the

annulus is used. In this analysis, outer radius of the die gap opening is taken
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FIG. 11. Boundary conditions at the die end.

as Rdie.

• Velocity at the die, V1 is computed directly from the mass flow rate of the

polymer. This value is one of the user controlled parameters.

• Thickness of the film at the die end, Hdie is determined from the die gap.

• Temperature of polymer at the die end, Tdie is determined experimentally. Other

alternative is to numerically determine by simulating the polymer flow in the

die.

• Degree of crystallinity, χ is specified as 0 as the die end. This is based on the

fact the polymer comes out as a melt from the die.

Stresses are not specified at the die end and it is automatically determined from

the kinematics. If the strain history at the die end is known through prior simulation,

then it can be included to determine the stresses accurately at the die end.
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Boundary conditions at nip end is not as unambiguous as the die end. Chiefly

the radius equation offers two alternatives: either to specify Dirichlet or Neumann

boundary condition. The actual condition used depends on the nature of the study,

whether it an analysis of an existing process or a new design. Boundary conditions

specified at the nip end is shown in figure 12.

Following conditions are specified at the nip end:

• Velocity at the nip end is a user specified parameter, it directly determines

the production of the film line. Hence, this condition is imposed as Dirichlet

boundary condition.

• Either the radius or its derivative can be specified at the nip. If the study is an

analysis of an existing and operating film line, radius can be specified. On the

other hand, for the given process conditions if one wishes to determine the final

diameter then the Neumann condition, ∂r
∂z

= 0 can be imposed.

• Inclusion of conduction terms in the energy equation creates the difficult ne-

cessity of specifying a boundary condition at the nip end. Since the thermal

conductivity of the polymer is low, one would except the sensitivity of the re-

sult to this boundary condition will be small. Numerical experiments performed

in the study show that the condition specified at the nip end for temperature

has no influence on the results. Thus provides the satisfactory reason for not

including these terms in the analysis.

F. Closure

Detailed derivation of a transient, axisymmetric, nonisothermal model to simulate

film blowing process is presented in this chapter. In the next chapter finite element
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FIG. 12. Boundary condition at the nip end.

formulation of these equations and the methodology used to obtain the solution are

explained.
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CHAPTER V

NUMERICAL FORMULATION

A. Introduction

Model equations developed in the previous chapter are solved numerically using the

finite element method. This chapter describes the finite element formulation of these

partial differential equations and the solution algorithm used to solve the resulting

algebraic system of equations. In the following section, formulation of each of the

model equations is presented. In the subsequent section, special techniques such as

SUPG smoothing and the strain computation are described in detail. In Section

D, the approach adopted to compute the transient terms is discussed. In Section E,

solution algorithm used solve the system of nonlinear algebraic equations is presented.

The final section presents the summary and some relevant issues pertaining to the

convergence and robustness of the solution procedure.

B. Finite Element Formulation

Finite element method is a powerful numerical technique for solving partial differ-

ential equations and one of the elegant features of this method is the natural way

in which the boundary conditions are implemented. An introduction to the finite

element method can be found in Reddy (1993) and the mathematical aspects of the

method relevant to this work can be found in Brenner and Scott (1994). In this

dissertation, film blowing process is described using a transient axisymmetric model.

Hence, the problem at hand is one-dimensional in space and time dependent. The

space dimension is approximated using quadratic finite elements. Figure 13 shows
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FIG. 13. Depiction of a 1–D, 3-noded quadratic finite element.

this finite element and the shape functions associated with is element are given by

following equation.

ψ1 =
ξ(ξ − 1)

2
;ψ2 = ξ2 − 1; ψ1 =

ξ(ξ + 1)

2
(45)

Using these functions, for example, temperature distribution in an element is de-

scribed as T =
∑3

i=1 ψiTi.

1. Film Thickness

The equation of conservation of mass is used to compute the thickness of the film.

This equation is hyperbolic in nature and the information of propagation is along the

z direction and the time axis. In a steady state process, the z direction will have a

time like nature and can be mapped to the time axis, however, this does not hold

true for a transient problem. The initial formulation using the traditional Galerkin

approach for this equation resulted in loss of numerical stability and produced a highly

oscillatory solution. Hence, it was modified using the Stream–wise Upwind Petrov

Galerkin (SUPG) method to smooth the solution. The difference between the above

two schemes lies in the choice of the test function, φi. For Galerkin method, test

function is same as the trial function i.e., φi = ψi. The specific form of φi used for

SUPG method is described in Section E.

The thickness of the film, H is approximated in an element using the trial func-
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tions as expressed by H =
∑3

i=1 ψiHi. The equation describing the thickness of the

film can be written as follows.

LH(z, t) =
∂H

∂t
+ V1 cos θ

∂H

∂z
+

H

(
1

sec θ

∂sec θ

∂t
+

1

R

∂R

∂t
+ cos θ

∂V1

∂z
+
V1 cos θ

R

∂R

∂z

)
= 0 (46)

The above equation is solved to determine the film thickness, H such that H ∈

H1(Ω); and H = Hdie on Γdie. With this requirement, the thickness equation is

formulated in the master coordinates using the test function, φi.

∫ +1

−1

LH(ξ, t)φiJ dξ = 0 (47)

The test function used in the formulation is modified to account for upwinding.

φi = ψi +
Cupeh

2

∂ψi

∂ξ

1

J

This results in,

M e
ij =

∫ +1

−1

φiψjJ dξ

Ke
ij =

∫ +1

−1

V1 cos θφi
∂ψj

∂ξ
dξ

+

∫ +1

−1

(
1

sec θ

∂sec θ

∂t
+

1

R

∂R

∂t
+
V1 cos θ

R

∂R

∂z
+ cos θ

∂V1

∂z

)
φiψjJ dξ

f e
i = 0

Some of the issues in solving the above equation is the estimation of the time

derivatives. The term involving “sec θ” can be expanded using the relationship tan θ =

∂R/∂z, however, that will lead to second derivative of R. The value of Cup is decided

based on the severity of the problem and it lies in the range of 0 and 2.
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2. Velocity Vector

In the principal coordinate system velocity vector has only one non-zero component

which is along the machine direction. The equation of momentum along the direction

ξ1 (MD) is used to compute this velocity, V1. The initial formulation of this equation

had no viscous terms as the stress terms is solved separately of the constitutive model

(PTT) and this led to the loss of numerical stability. In order to improve the stability

of the problem, a viscous term was added to this equation, and this equivalent to

solving the problem with a Oldroyd-B like model. In essence, the extra stress term is

split into a purely viscous part and its viscoelastic complement, and the viscous part

of the extra stress is written out explicitly in the momentum equation.

S = −p1 + τ V E + τ viscous = σ + τ viscous (48)

The traditional Galerkin weighted residual scheme is used to formulate the problem,

that is, φi = ψi. The equation governing the machine direction velocity is written as,

LV (z, t) =
∂V1

∂t
+ V1 cos θ

∂V1

∂z
+ gcosθ

− 1

ρRH

∂

∂z

(
RHµ2 cos2 θ

∂V1

∂z

)
− 1

ρ
sin θ cos θ

∂θ

∂z
µ2

∂V1

∂z

− 1

ρRH

∂

∂z
(RH cos θσ11)−

1

ρ
sin θ

∂θ

∂z
σ11 = 0. (49)

Above equation is solved to find V1 ∈ H1; V1 = V die at z = 0 and V1 = V nip at

z = L. The standard Galerkin FEM formulation of the above equation results in,
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M e
ij =

∫ +1

−1

ψiψjJ dξ (50)

Ke
ij =

∫ +1

−1

ψi
∂ψj

∂ξ
V1 cos θdξ (51)

+

∫ +1

−1

cos2 θµ2

ρ

∂ψi

∂ξ

∂ψj

∂ξ

1

J
dξ

−
∫ +1

−1

sin θ cos θµ2

ρ
ψi
∂ψj

∂ξ
dξ

f e
i =

∫ +1

−1

−g cos θψiJ dξ (52)

−
∫ +1

−1

cos θ

ρ
σ11

∂ψi

∂ξ
dξ

+

∫ +1

−1

sin θ

ρ

∂θ

∂z
σ11ψiJ dξ

+
1

ρ
cos θψiS11

∣∣∣∣∣
+1

−1

The boundary conditions for the equations naturally arise out of the diffusion

terms while applying differentiation by parts to those terms. In the case of film blow-

ing, values of the velocity at the nip and the die ends are known unambiguously from

the process data. Hence, the primary variable is specified on both the boundaries.

V1 = V die at z = 0

V1 = V nip at z = L

3. Bubble Radius

The equation governing the radius of the film is derived from the momentum equation

along the normal direction. This equation can be expressed in more than one way

for the purpose of FEM formulation. This is based on how the tan θ = ∂R/∂z is
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expressed. In order to extract more information from the formulation the term tan2 θ

is expressed as ∂R/∂z tan θ, so that its contribution will go to the operator matrix.

Hence, the equation of R is written as,

LR(z, t) =
∂2R

∂z2
(σ11 − ρV 2

1 ) cos θ +
∂R

∂z
tan θ

(
∆P

H
−
σ22

R
+ ρg sin θ

)
+

(
∆P

H
−
σ22

R
+ ρg sin θ

)
= 0. (53)

Subjecting the above equation to standard FEM formulation the operator matrix and

the load vector are obtained.

Ke
ij =

∫ +1

−1

(σ11 − ρV 2
1 )
∂ψi

∂ξ

∂ψi

∂ξ

1

J
dξ

−
∫ +1

−1

(
∆P

H
−
σ22

R
+ ρg sin θ

)
tan θψi

∂ψj

∂ξ
dξ and

f e
i =

∫ +1

−1

ψi

(
∆P

H
−
σ22

R
+ ρg sin θ

)
J dξ + ψi(σ11 − ρV 2

1 )
∂R

∂z

∣∣∣∣+1

−1

.

This equation is elliptic and requires boundary condition for radius on both

the die and the nip end. The boundary term arises from differentiation by parts of

the second order term. There are two possible choices for the boundary conditions.

Radius of the bubble at the die end is known without any ambiguity. Hence, Dirichlet

boundary condition is applied at the die end. On the other hand the nip end condition

can be Dirichlet or Neumann. If the film radius is specified at the nip end as shown

in the following equation, then the kinematic conditions are fixed on both the ends

and this is the preferred boundary condition.
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R = Rdie at z = 0 and

R = Rnip at z = L .

If the radius at the nip end is not known then the logical alternative is to specify

the Neumann condition as shown in the following equation. In this case the final

radius is predicted by the code.

R = Rdie at z = 0 and

∂R

∂z
= 0 at z = L.

4. Constitutive Model

Total Stress. Stresses are computed using mixture theory as a combination of

stresses computed by the PTT model describing the liquid–like region and Kelvin-

Voight model describing the solid-like zone. Of these, only the computation of the

PTT model requires FEM formulation and the rest are algebraic equations.

PTT Model - τ11. The model is solved in principal coordinates, it reduces

the number of equations for stresses from 6 to 3. Since the formulation of these

equations are identical, only the equation for the component along machine direction

is presented here. The equation describing the viscoelastic stress in the MD based on

the PTT model can be written as,

Lτ11(z, t) =
∂τ11

∂t
+ V1 cos θ

∂τ11

∂z
− 2L11τ11 − 2τ11 cos θ sin θ

∂θ

∂t
+
Y

λ
τ11 − 2GD11 = 0.

The equation for stresses also require SUPG smoothing, hence the test function
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is not same as the trial function. The FEM formulation of the above equation can be

written as:

M e
ij =

∫ +1

−1

φiψjJ dξ

Ke
ij =

∫ +1

−1

φi
∂ψj

∂ξ
V1 cos θdξ

−
∫ +1

−1

2 cos θ sin θ
∂θ

∂t
φiψjJ dξ

+ (
Y

λ
− 2L11φiψjJ dξ

f e
i =

∫ +1

−1

2GD11φidξ

Equation for the stresses require only the initial condition. Since velocities are

specified at both the nip and the die end, there is no need for specifying the stresses.

Even the initial condition for stresses can be computed based on the initial velocity

field. This approach, however, would not account for the stress history prior to the

film blowing process.

5. Temperature

Heat transfer in the film blowing process is dominated by advection. In a typical

problem Pe number is in the order of 106 or more. Also there is a distinct direction,

along machine direction, of information propagation. Hence, the role of conduction

is limited. The formulation, however, considers the conduction term for the sake of

completeness. Numerical experiments show that there is no effect on the solution

by the condition imposed on the nip end. This is another reason, why the energy

equation requires some kind of upwinding scheme to add numerical dissipation. The

specific form of upwinding used here is the SUPG technique. The equation describing
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the heat transfer in the film blowing process is written as,

LT (z, t) =
∂T

∂t
+ V1 cos θ

∂T

∂z
+

hc

ρCpH
(T − Tc) +

CSBε

ρCpH
(T 4 − T 4

w)

− cos θ

ρCpRH

∂

∂z

(
kRH

∂T

∂z

)
= 0. (54)

Finite element formulation of the above equation results using the test function

φi results in the following element matrices.

M e
ij =

∫ +1

−1

φiψjJ dξ,

Ke
ij =

∫ +1

−1

φi
∂ψj

∂ξ
V1 cos θdξ

+

∫ +1

−1

φiψj
hc

HρCp

J dξ

+

∫ +1

−1

∂φi

∂ξ

∂ψj

∂ξ

k cos θ

ρCpJ
dξ, and

f e
i =

∫ +1

−1

CSBε

HρCp

(T 4 − T 4
w)φiJ dξ

+

∫ +1

−1

φi
hc

HρCp

TcJ dξ

+

∫ +1

−1

φi
Lχ

Cp

∂χ

∂t
J dξ

+
k cos θ

ρCp

φi
∂T

∂z

∣∣∣∣+1

−1

.

The equation for temperature can take Dirichlet or Neumann conditions. At the

die temperature of the melt is known and hence, it is specified (Dirichlet). At the nip

end, some approximation has to be made. Either the temperature based on the data

or the flux condition can be specified. Considering the fact k ≤ ρCp the boundary

term is very very small, even if it is included its effect on the solution will negligibly
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small.

6. Degree of Crystallinity

The equation describing the crystallization kinetics is written as follows,

Lχ(z, t) =
∂χ

∂t
+V1 cos θ

∂χ

∂z
−nK(T )(1−χ) (−loge(1− χ))

n−1
n exp(cχIID) = 0. (55)

Above equation is advection dominated and requires some kind of upwinding tech-

nique to overcome the loss of best approximation property of the Galerkin method.

Hence, the test function is based on the SUPG method and it is not same as the trial

function. Finite element formulation of the above equation results in the following

element matrices.

M e
ij =

∫ +1

−1

φiψjJ dξ,

Ke
ij =

∫ +1

−1

φi
∂ψj

∂ξ
V1 cos θdξ

+

∫ +1

−1

φiψj nK(T ) (−loge(1− χ))
n−1

n exp(cχIID)J dξ, and

f e
i =

∫ +1

−1

nK(T ) (−loge(1− χ))
n−1

n exp(cχIID)φiJ dξ.

The model used for predicting the crystallization kinetics does not naturally

include the maximum crystallinity limit. This limit is forced on the solution, i.e., if

χ > χmax then χ = χmax. One of the associated quantity of degree of crystallization is

the orientation of the crystalline structures formed. Typically, this orientation tensor

is computed using additional equations which describe the evolution of this tensor.

Without this tensor, the degree of crystallinity will be degenerate to the degree of
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solidification. Here, additional equations are not solved for computing the orientation

of this tensor. Instead, it is assumed that the crystalline structures formed assume the

orientation along the principal directions at that point. This orientation is retained

and it is convected away. To illustrate this consider the following situation. Let

the degree of crystallinity be 0.2 at z = z1, and next node be situated at z1 + ∆z.

Let χ increase by 0.01 in this element. This new material, which has crystallized

in this element, assumes the orientation of the element’s principal directions. And

this % of the material retains this orientation as it is advected along the machine

direction. This particular approach does increase the computationally complexity of

the algorithm. This is accomplished by using an integral (or summation) approach

from the die to the point of interest, and this is done in an incremental manner.

C. Special Techniques

1. SUPG Smoothing

For certain classes of problems, Galerkin finite element method loses its best approxi-

mation property, hence the resulting solutions have spurious modes and unacceptable

wiggles. This typically happens when the flow is advection dominated or if the equa-

tion under consideration is hyperbolic. Such instances often manifest through the

loss of symmetry in the stiffness matrix. A simple but a computationally intensive

way to overcome this problems is to use a very fine mesh, where such effects would

not play an important role at an element level. This approach, however, is not always

feasible. Hence, techniques such as SUPG method is used compensate for the loss

of best approximation property of the traditional Galerkin method. In this work the

technique used is based on the SUPG method, which is described in detail in Brooks

and Hughes (1982).
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φi = ψi +
Cupeh

2

v • ∇ψi

‖v‖
(56)

where eh is the characteristic element size, α is a parameter taking a value between

0 and 2, and v is the velocity vector. The extra term added to ψi is a function of

the element size and will vanish when eh → 0. Since the problem is one dimensional

and the velocity is always +ve in the machine direction, the above equation can be

written as:

φi = ψi +
Cup

2

∂ψi

∂ξ
(57)

Element size is taken as the determinant of the Jacobian of the element and it is

canceled by the J in the denominator of the derivative of the trial function. There

are other classes of upwind methods, which use a similar idea. For instance, some

techniques apply this Petrov–Galerkin test function only to the advection terms and

use the standard Galerkin test function for other terms. The differences, however,

become significant only in multi–dimensional setting.

2. Strain Computation

Computation of strain requires an integral approach starting from the die end to the

nip end. The procedure to compute the strain tensor is described below:

1. First, the rate of deformation tensor, D is computed at all nodes. Since the

computation is done in principal coordinate system this is same as the velocity

gradient tensor, L.

2. From the velocity gradient tensor, deformation gradient is computed by inte-

grating Ḟ = LF.
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3. Using the deformation gradient tensor, F the Eulerian strain tensor ε is com-

puted.

These computations are simple in a principal coordinate system, which otherwise

could be more difficult to implement. Besides the use in the Kelvin–Voight model, it

can be used along with the stresses to determine structure–property relationship.

D. Time Formulation

The α parameter approximation is used to model the transient behavior. The choice

of α will determine the accuracy of the solution (first or second order) and its stability.

For the studies presented in this work, α = 0.5 is used. Consider the element equation

for bubble thickness, H which is written as,

[MH ] {Ḣ}+ [KH ] {H} − {fH} = 0. (58)

Using the above mentioned approach, following equation is obtained.

(
[MH ] + α∆t

[
Kn+1

H

])
{Hn+1} =(

[MH ]− (1− α)∆t
[
Kn+1

H

])
{hn}+ ∆t

(
α{fn+1

H }+ (1− α){fn
H}

)
. (59)

Above equation is rewritten as,

[
K̂H

]
{hn+1} = {f̂H}, (60)

where, [
K̂H

]
=

(
[MH ] + α∆t

[
Kn+1

H

])
(61)

and

{f̂H} =
(
[MH ]− (1− α)∆t

[
Kn+1

H

])
{hn}+ ∆t

(
α{fn+1}+ (1− α){fn}

)
. (62)
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E. Solution Algorithm

The algorithm used for solving the algebraic equations resulting from the finite el-

ement formulation has a time loop which drives the transient algorithm (see figure

14), and within this time loop a nonlinear loop (see figure 15) is used the solve the

equations using an segregated algorithm.

This transient driver is implemented with the capability to control the time step

automatically based on the convergence of nonlinear iterations and revert back to the

previous step if the nonlinear iterations did not converge to accepted tolerance. This

step is attempted thrice with the time step reduced by a factor each time and if the

solution is still unacceptable, then solution procedure stops.

One of the issue associated with the nonlinear loop is the segregated algorithm

which is known for its lack of convergence in severe nonlinear problems. This can be

controlled by using smaller value for the time step or through relaxation of solution

between the nonlinear iterations. It should be noted that the some of the equations

(such as, the equation for bubble thickness) has time derivative occurring in the load

term. This is computed accurately using solution at two previous time steps, that

is, using a quadratic fit between values at tn+1, tn, and tn−1. At the beginning of

each nonlinear iteration, solution at n + 1th step is assumed to be same as the nth

step, hence time derivative is computed for this iteration is extrapolated from the

solution at nth and n − 1th steps. This is error is automatically corrected after the

first nonlinear iteration.

The actual sequence of operations in each nonlinear iteration is listed below:

1. Compute strain.

2. Solve for temperature.
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i = i+1

Print Solution and exit

Has the solution
attained steady state?

NO

is i > Max_Time_Steps?
NO

YES

YES

TIME LOOP 

Nonlinear Loop

Initialize Data

For  i = 1     to    Max_Time_Steps

FIG. 14. Transient driver used for the analysis.
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i = i+1

Converged?

NO

is i > Max_Nlinear_steps?
NO

YES

YES

Solve for
Velocity
Radius
Thickness

Stresses

and

Temperature

For  i = 1     to    Max_Nonlinear_Steps

Continue

Has the solution

NONLINEAR LOOP

FIG. 15. Algorithm for nonlinear iterations.
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3. Solve for viscoelastic stresses.

4. Compute total stress using mixture theory.

5. Solve for bubble radius.

6. Solve for the velocity in machine direction.

7. Solve for bubble thickness.

A fixed sequence may introduce a bias in the solution scheme, however, this can

be overcome by altering this sequence after each nonlinear iteration.

F. Closure

Finite formulation of the model equations is presented in this chapter. This numerical

formulation is implemented in the software in an object–oriented approach using the

language C++. This implementation is supported with a user interface for pre and

post–processing and this interface is written using a combination of Tcl/Tk and C

language.
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CHAPTER VI

STEADY STATE RESULTS

A. Introduction

Experimental validation of the model developed and additional parametric studies of

the process are presented in this chapter. Experimental validation is accomplished

using two sets of data: i) Gupta’s laboratory scale experimental data [Gupta (1980)]

and ii) Exxon’s experimental data. Latter was provided to the Polymer Technology

Consortium of Texas A&M University. One of the significant differences between

these two sets is the cooling mechanism used. Exxon’s process uses forced convec-

tion cooling with turbulent air jets. On the other hand, Gupta’s experiments rely

on natural convection heat transfer, hence, the heat loss through radiation becomes

a significant mechanism of heat transfer in his experiments. Parametric studies pre-

sented in this chapter investigate the role of different process conditions and their

relevance to process stability.

B. Comparison with Gupta’s Experimental Data

1. Background

Gupta performed his experiments using “Styron666”, which is the commercial name

for Polystyrene made by Dow Chemical company. Data presented by Gupta included

the results from both isothermal and nonisothermal experiments. In this chapter, only

the nonisothermal data is used for comparison. The experimental setup used consisted

of an one inch (0.0254m) mandrel die with an annular gap of 0.04 inches (0.001016m

≈ 1mm). Of the 20 different sets of experimental data presented in Gupta’s work,
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TABLE I. Process conditions used in Gupta’s experiments.

Data Value

Mass flow rate 2.90× 10−4 kg/s

Diameter of the die 2.54× 10−2 m

Annular die gap 1.016× 10−3 m

Velocity at the die exit 3.577× 10−3 m/s

Temperature at the die exit 458.15 K

Freeze line height 0.12 m

Axial force at the nip 0.217 kg

Excess pressure inside the bubble 196.2 Pa

the run #20 (see table I) is used in this chapter for comparison. Reasons for choosing

this data set are: i) experiment was performed under nonisothermal conditions, ii)

blow up ratio, BUR > 1, and iii) results for comparison were available for radius of

the bubble, temperature, velocity, and shear rate.

Material data of Styron666 is presented in table II. Density of the polymer

does not change significantly in the temperature range of interest. Its value at the

base temperature 298.15 K ( 25 deg C) is 1050 kg/m3. Below the glass transition

temperature, density decreases at the rate 2.65 × 10−4 kg/m3/K and above this

temperature at the rate of 6.05 × 10−4 kg/m3/K. This variation is not significant

enough make a difference in the solution, hence the density is set to a constant value

of 1000kg/m3. Variation in thermal conductivity and specific heat with temperature

of Styron 666 is ignored as they are insignificant.

The two viscosity parameters µ1 and µ2 are related by the constraint µ2(T ) >

µ1/8. Former is associated with the relaxation time and the latter with the re-
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TABLE II. Material data of Polystyrene (Styron666) used in the analysis.

Data Value

Density at 298.15 K 1050 kg/m3

Specific heat 2100 J/kg/K

Thermal conductivity 0.123 W/m/K

Viscosity see the discussion

Modulus see the discussion

Melting point temperature 373 K

Glass transition temperature 373 K

No flow temperature 393 K

tardation time. Based on the data in Gupta’s work, µ1(T ) is specified as 8.8 ×

104 exp [18904(1/T − 1/443)] (which is internally specified as 2.582×10−14 exp(18904/T ))

as shown in figure 16. This curve fit to Arrhenius model is obtained from Cao and

Campbell (1990). The second or retardation viscosity, µ2 is assumed to have an iden-

tical behavior except with a modifying factor. Influence of this factor is described in

the section on parametric studies. Further these two are shear viscosities, hence, they

can be corrected by an internal factor of 3.4, which is a modified version of Trouton

ratio based on molecular arguments [Doi and Edwards (1988)].

Figure 17 shows the variation of modulus as a function of temperature. Exper-

imental data is fitted using an exponential model. As in the case of viscosity, one

should use elongational modulus instead of the shear modulus.

G(T ) = 217369 exp (−0.04(T − 393.15)) (63)
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FIG. 16. Viscosity as a function of temperature. Experimental data is fitted using

Arrhenius model.
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FIG. 17. Modulus of the polymer as a function of temperature. Data is fitted using

an exponential model.
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FIG. 18. Relaxation time as a function of temperature.

Figure 18 shows the relaxation time as a function of temperature. The retar-

dation time, which is the ratio of Oldroyd viscosity and modulus follows the same

trend.

Table III lists the data used by the phase change model. Role of these parameters

on crystallization kinetics is addressed in the section on parametric studies. The

crystallization kinetics model implemented for semi–crystalline polymers is used with

suitable modifications to model the phase change of amorphous polymers. These

changes are: a) modulus tensor of the solidified polymer is specified as isotropic

and b) flow induced crystallization factor is turned off. Table IV lists the remaining

process data used in the analysis.
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TABLE III. Crystallization kinetics data used in the analysis.

Data Value

Latent heat of solidification 1000 J/kg

Rate of phase change 0.011/s

Power-law exponent 3.0

Flow induced change factor 0.0

2. Estimating Heat Transfer Coefficient

In Gupta’s experiments heat transfer from the bubble is achieved via natural convec-

tion and radiation heat transfer. Natural convection heat transfer coefficient for such

flow configurations will be in the order of 1 – 10 Wm−2K−1. In order to gain a better

understanding of the distribution of the heat transfer coefficient, natural convection

heat transfer is solved using finite element method using a commercially available

solver. Figure 19 shows the distribution of heat transfer coefficient along the machine

direction. In the analysis, this coefficient is specified as a constant value along the

machine direction, hence, an average value is used.

3. Comparison with Gupta’s data

Following figures compare the results of the analysis with the experimental data. Since

the model developed is transient, in order to attain steady state results, solution is

allowed to evolve over time. In the next chapter, details pertaining to transient

analysis are presented. In this chapter, for all the cases presented – solution evolved

to stable steady state. Figure 20 compares the radius of the bubble computed by the

model developed with experimental data.
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FIG. 19. Heat transfer coefficient along the axis computed using a commercial soft-

ware.
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FIG. 20. Comparison of bubble radius computed by the model with Gupta’s experi-

mental data.
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TABLE IV. Other process conditions used in the analysis.

Data Value

Convection heat transfer coefficient 5.4 W/m2/K

Temperature of the cooling air 300 K

Emissivity of the bubble surface 0.2

Temperature of the surrounding walls 300 K

Acceleration due to Gravity 0 m/s2

Material type Amorphous

PTT model slip factor 0.1

PTT model stretch factor 0.01

Unlike most numerical studies available in the literature, which use shooting

method, the model used here solves the problem as a two point boundary value

problem. Hence, it allows specification of boundary conditions at both nip and die

ends. If the radius of the bubble is not constrained at the nip end, then the results

diverge from the experimental data. This is seen in Figure 21. Experimental data

shows a slight dip near the die exit. In order to capture this dip some special strategies

such as, process data varying along the MD has to be used. As shown in Appendix C,

it is possible to force the bubble to conform to this dip. However, such an approach

will make the model dependent on experimental results. It is shown in Section 3,

under some conditions, this dip naturally forms in the numerical analysis as well.

Figure 22 shows the temperature distribution along the axis of the bubble. Even

though the energy equation includes conduction terms in modeling heat transfer,

this process is strongly advection dominated and condition specified at the nip end

for temperature does not play any significant role. For all practical purposes, heat
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FIG. 21. Radius of the bubble with Neumann condition imposed at the nip end.

conduction terms in the equation can be ignored.

In order to get a better comparison for velocity data, value of the retardation vis-

cosity has to be set to a very low value. Otherwise, velocity will show an exponential

trend, unlike the near linear distribution seen in Figure 23. Effect of the retardation

viscosity on the solution is further explored in Section D-2.

C. Comparison with Exxon’s Data

Exxon’s experimental data is significantly different from Gupta’s laboratory scale

data. It uses forced convection heat transfer by cooling the bubble with turbulent

air jets. Depending on the jet velocity, under standard conditions, heat transfer

coefficient could vary by an order of magnitude. Figure 24 shows variation of heat

transfer coefficient for different air velocities. This result was computed using finite

element analysis of forced convection heat transfer using a commercial solver with

RNG k − ε model. Table V lists some of the important process data used in the

analysis.
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FIG. 24. Heat transfer coefficient along the axis computed using a commercial solver.
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TABLE V. Process conditions used for the analysis of Exxon data.

Data Value

Mass flow rate 2.90× 10−4 kg/s

Diameter of the die 7.62× 10−2 m

Annular die gap 1.524× 10−3 m

Velocity at the die exit 3.2× 10−2 m/s

Velocity at the nip end 0.1 m/s

Temperature at the die exit 489.0 K

Freeze line height 0.8 m

Excess pressure inside the bubble 40.0 Pa

Convection heat transfer coefficient 50 W/m2

Temperature of the cooling air 290 K

Emissivity of the bubble surface 0.2

Temperature of the surrounding walls 290 K

Acceleration due to Gravity 0 m/s2

Material type Crystalline

PTT model slip factor 0.3

PTT model stretch factor 0.01
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FIG. 25. Comparison of bubble radius with Exxon experimental data. Results with

and without cone condition is shown in the figure.

One of the special features of the Exxon process is, it uses a conical ring near

the die exit, which forces the material to flow over the surface cone. This leads to

a smoother expansion of the air bubble. In order to simulate this, a cone boundary

condition was implemented. Using this condition forces the radius of the bubble to

conform to the cone as shown in figure 25. The same cone condition is used to force

the data in some of the other runs to extend the flow past the extrudate swell region,

by specifying a constant diameter.
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D. Parametric Studies

1. PTT vs Oldroyd-B

This issue arises largely due the way the equations are solved. In the case of Navier-

Stokes equation, diffusion terms are accounted for directly in the momentum equation

and their contribution during formulation goes to the operator matrix as well as the

forcing function (through boundary conditions). On the other hand, when solving

the momentum equation using standard PTT model, viscous effects do not directly

enter the operator and they occur only in the forcing function. This makes the

equation inherently unstable and has to be smoothed. This can be accomplished by

more than one way. Figure 26 shows the velocity distribution along axial distance.

The model is subjected to boundary condition on both ends, die and nip rollers. It

is clear from the plot that without SUPG correction to the momentum equation,

model shows oscillation and it also has difficulty adapting to the condition on the nip

rollers end. Even though SUPG correction smoothes it out, it is still not adequate to

produce stable results and the model will crash by going out of bounds in few time

steps. The most stable approach for this issue is to use a modified constitutive model,

τ = 2µ2D+τPTT . This is similar to the Oldroyd-B model. This model is denoted as

the modified PTT model. The second viscosity µ2 is denoted as Oldroyd viscosity.

2. Sensitivity to Oldroyd Viscosity

Sensitivity of the results to retardation viscosity depends on the other model param-

eters. In the typical case, given the high viscosity of thermoplastic polymers, the

effect of this is felt only when the viscosity ratio is over ten thousand (see Figure 27).

Value used for this parameter should be as low as possible to obtain more accurate

results. Higher values result in excessive smoothing of the velocity distribution.
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FIG. 26. Velocity distribution along the axial distance under different smoothing con-

ditions. The most stable of these approaches is the Modified PTT model,

which presents the constitutive model like Oldroyd-B model.
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FIG. 27. Velocity distribution along the axial distance for different values of Oldroyd

viscosity.
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FIG. 28. Excess pressure in the bubble controls the stretch in azimuthal direction.

3. Excess Pressure

Excess pressure in the bubble controls the stretch in the circumferential direction.

The value used is in the order of 100 Pa gauge pressure. Actual shape of the bubble

depends on the combination of excess pressure and other parameters such as, velocity

at the nip and die, and temperature (see Figure 28).

The dip caused near the die is observed in experiments. This can be reproduced

by many combination of parameters. One of the key requirements to reproduce the

dip noted in Gupta’ experimental data is to vary the process conditions such as, heat

transfer rate and excess pressure along MD.
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FIG. 29. The effect of PTT slip factor on MD stress.

4. The Effect of Slip Factor

Slip factor is a term specific to models such as PTT, it signifies non-affine motion.

In this context, non-affine motion is understood as follows. If the continuum suffers

a velocity gradient L then the individual polymer chains need not adhere to this

motion and they can experience a slip. The actual value of this factor depends on

the material under consideration and has to be calibrated using experimental data.

Based on the available literature, a value in the range 0.2–0.3 is recommended. In this

particular example, model fails when the slip factor is over 0.80. Following figures

(29, 30, 31) show the effect of slip factor on the stresses and the radius of the bubble.
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FIG. 30. The effect of PTT slip factor on AD stress.
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FIG. 31. The effect of PTT slip factor on the radius of the bubble.
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FIG. 32. The effect of PTT stretch factor on MD stress.

5. The Effect of Stretch Factor

Stretch factor is a term specific to models such as PTT. It brings in the extensional

effect. Higher values of this factor, makes the model unstable. for most of the analysis,

value less than 0.1 is used. Following figures (32, 33, 34) show the effect of stretch

factor on the stresses and the radius of the bubble.

6. The Effect of Heat Transfer

Of all the parameters that affect the stability of the process, the rate of heat transfer

from the bubble is the most important parameter. In the plot shown below (Figures

35 and 36), bubble collapsed for rates higher than 25W/m2. As it will be shown in

chapter VII, the only way heat transfer rate can be increased is by increasing the
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FIG. 33. The effect of PTT stretch factor on AD stress.
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FIG. 34. The effect of PTT stretch factor on the radius of the bubble.
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FIG. 35. The effect of convection heat transfer coefficient on the process. Plot shows

the temperature distribution for three values of convection coefficients.

die/nip velocity. This can be directly related to particle residence time in the process

window. The reason why heat transfer plays a critical role is because of the strong

dependence of material properties on temperature of the melt.

Effect of radiation heat transfer is comparable to natural convection heat transfer.

If external mechanisms such as, cooling rings are used, then radiation heat transfer

is negligible and can be ignored.

7. The Effect of Dirichlet vs Neumann BC

Figure 37 shows the effect of Dirichlet vs Neumann condition for bubble radius at the

die exit. When the Neumann condition is imposed, radius of the bubble aligns to most

natural state possible for that set of process conditions. On the other hand, Dirichlet
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FIG. 36. The effect of convection heat transfer coefficient on the process. Plot shows

the bubble shape for three values of convection coefficients.



113

0 0.02 0.04 0.06 0.08 0.1
Axial distance (m)

0.01

0.012

0.014

0.016

0.018

0.02

B
ub

bl
e 

ra
di

us
 (m

)

Dirchlet condition 
Neumann condition

FIG. 37. Difference in the bubble shape due to nip side boundary condition. Analysis

used a high heat transfer coefficient of 25W/m2.

condition forces the value of the radius at the nip end. From a practical standpoint,

it is will not be possible to say what is correct. This is because, in reality, the bubble

is constrained at the nip end. However, it is not constrained to the freeze line radius.

Ideal approach to this problem is to solve the system of equation with both types of

boundary conditions and judge whether the process conditions are optimal for that

desired freeze line radius.

E. Closure

Model developed compares well with the available experimental data. Parametric

studies conducted highlight different aspects of the model. This model is solved using
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FIG. 38. Pre–processor for the software developed. Together with the software de-

veloped, it is called FilmLine.

finite element method and the software is written in C++ using object–oriented

methodology. This enables ease of extension and provides ability to add different

constitutive models to the existing code with few modifications. Software developed

comes with pre and post–processing interfaces shown in figures 38 and 39.
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FIG. 39. Post–processor for the software developed. If experimental data is available

it can compare the results with it.
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CHAPTER VII

TRANSIENT ANALYSIS

A. Introduction

Goal of this chapter is to bring out some of the significant aspects of film blowing

process using the transient model described in Chapter IV. It is important to analyze

the temporal behavior of the process to produce uniform quality films. Results in

this chapter show that even if the process data is not time dependent, solution does

show transient behavior with fluctuation the radius and thickness of the bubble.

Model equations are discretized in time direction using fully implicit Crank–

Nicholson scheme. Due to presence of transient terms, RHS of some of the equations

have terms with time derivatives. These terms are computed using a three-point

cubic curve fit with values of at tn−1, tn, and tn+1. Time derivative at tn is computed

based on this curve. At t = 0, a simple linear approach is used. Figures 40 – 42 show

how the solution evolves to steady state. If the process conditions lead to a stable

steady state, then model typically reaches steady state solution in the matter of few

seconds. The default time step size used by the model 0.01s.

In this chapter three issues pertaining to transient dynamics of the film blowing

process are studied. They are a) sensitivity to perturbations initial conditions, b)

radius instability, and c) melt tension instability. In addition, effect of the size of

time step on the solution is also discussed.
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FIG. 40. Evolution to steady state – plot shows temperature as a function of time at

three different locations.
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FIG. 41. Evolution to steady state – plot shows velocity as a function of time at three

different locations.
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FIG. 42. Evolution to steady state – plot shows velocity as a function of time at three

different locations.

B. Size of Time Step

Fully implicit Crank-Nicholson scheme is used for time discretization. This makes

the system not sensitive to the time step size. The size of time step used, however,

is critical if the boundary data is time dependent. Following example shows the role

of time step in an analysis with temperature of the polymer melt has a sinusoidal

disturbance at with 1% magnitude and 2s cycle time. Three values of steps: 0.01,

0.1, and 1s is used. It is clear from the figures (43 – 45) that for this problem, optimal

value of time step is 0.1s. It provides the best balance between computational time

and accuracy. One interesting feature of the model is revealed in the anomaly in

Figure 45. This is due to the fact that the radius equation is not an explicitly

time dependent equation. Its time dependence derives from the stress terms in the

equations, which occur as a ratio and hence, at higher time steps one does see any

improved accuracy.
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FIG. 43. Sensitivity to time step size. Plot shows temperature at z = 0.05 as function

of time.
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FIG. 44. Sensitivity to time step size. Plot shows velocity at z = 0.05 as function of

time.
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FIG. 45. Sensitivity to time step size. Plot shows radius at z = 0.05 as function of

time.

C. Sensitivity to Initial Condition

Some of the process conditions can vary as a function of time. These are the velocity

of the melt and the temperature at the die exit. In addition to this, there may slight

variation in the polymer itself due to the differences in the batch, and mixing stages

of extruder. In this section, sensitivity to sinusoidal oscillations in the velocity and

temperature data is first considered separately and also together.

Velocity at the die is described used a mean component Vdie and the sinusoidal

oscillation added to it as shown in Figure 46. The oscillation is controlled by a scale

factor Vsf , which varies from 0 to 0.2 (20%) and the frequency of oscillation, f (1/s).

Both these are varied to see the sensitivity of the process to this data. Sensitivity

is tested for factors 0.1, 0.15, and 0.20. And factor 0.10 is analyzed at different

frequencies, 0.5, 1.0, and 2.0, which in cycles/s would be 2, 1, and 0.5 (see figures 47

- 48)
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FIG. 46. Velocity boundary condition at the die end. Velocity is made of a mean

component and sinusoidally varying component.

Vdie(t) = Vdie(1 + Vsf sin(2π f t) (64)

Sensitivity to temperature of the melt is studied under similar conditions. Results

indicate that any irregularities in the temperature at the die has greater effect on

the system stability than the velocity. Since temperature affects the melt properties

drastically, it is the single important entity that needs to be controlled in the analysis.

In this example presented (see figures 49 - 50), bubble collapse occurs for disturbances

greater than 5%. Failure is dependent on both the magnitude and the frequency of

the disturbance. For instance, the bubble collapse occurred when the frequency was

1 and for the magnitude 5%, however, it fails for frequencies less than 0.5. Plot list

the frequency in terms of cycle time (1/frequency).
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FIG. 47. Behavior of the system to velocity disturbances of different magnitude. Sys-

tem stabilizes itself for disturbances with amplitude less than 20%. Plot

shows the radius distribution at 0.05m from the die exit.

0 2 4 6 8 10
Time (s)

0.01

0.015

0.02

0.025

0.03

B
ub

bl
e 

ra
di

us
(m

)

10% 0.5 s
10% 1s
10% 2s

FIG. 48. Behavior of the system to velocity disturbances of different frequencies. Plot

shows the radius distribution at 0.05m from the die exit.
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FIG. 49. Behavior of the system to temperature disturbances of different magni-

tude/frequencies. Plot shows the radius distribution at 0.05m from the

die exit.

0 2 4 6
Axial distance (m)

0

0.01

0.02

0.03

0.04

0.05

B
ub

bl
e 

ra
di

us
(m

)

2% 1s
5% 2s

FIG. 50. Behavior of the system to temperature disturbances of different magni-

tude/cycle times. Bubbles oscillates wildly and collapses for the disturbance

of 5% magnitude and 2s cycle time. Plot shows the radius distribution at

0.05m from the die exit.
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D. Radius Instability

Under certain process conditions, radius of the bubble starts oscillating and this

phenomenon, which is observed in experiments, is known as the radius instability.

This instability could arise simply because of fluctuations at the die exit, which is

often the most probable cause. This is seen in figures 49 and 50.

These type of disturbance can arise, even if the process conditions are the die

exit is steady. One of the possible causes for this type of instability, based on the

current numerical investigation, is the combination of high extrudate velocity at the

die and higher rate of heat transfer from the bubble. This initially reduces the radius

of the bubble and with a corresponding increase in the thickness of the bubble. Latter

lowers the rate of heat transfer, which in turn leads to a larger radius and smaller

thickness. One such instance is shown in figures 51 – 53. In this example, radius is

not constrained at the nip roller end and it is subjected to Neumann condition. Even

though some of the oscillations are wild, it never lead to the collapse of the bubble.

A correction to this problem will call for fine tuning of the extrudate velocity and

largely by slowing it down.

E. Melt Tension Instability

Under certain process conditions, the bubble tends to lift itself up and begins to

oscillate between a wine cup like shape and normal bubble. Reason for a wine glass like

shape in a steady bubble is due to the high melt strength and deformation begins after

some thinning of the tube by a simple uniaxial deformation. With model developed

this instability could not be reproduced using Gupta’s data. However, the results in

the previous section did show an tendency to a oscillation that had elements of melt

tension instability.
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FIG. 51. Radius instability due to high die exit velocity and higher heat transfer

rates – plot shows radius of the bubble at three different locations.
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FIG. 52. Radius instability due to high die exit velocity and higher heat transfer rates

– plot shows velocity of the bubble at three different locations. Velocity

at the nip end is specified using Dirichlet boundary condition, hence the

oscillations are less near the nip end.
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FIG. 53. Radius instability due to high die exit velocity and higher heat transfer

rates – plot shows temperature of the bubble at three different locations.

F. Summary

Results presented in this section highlight the value of transient analysis. One of

the key parameter that largely causes instability or the lack of it is the rate of heat

transfer. This is due to the fact that melt strength is a strong function of temperature

and change in the melt properties influence the product quality significantly. Another

aspect of bubble stability is the right combination of residence time and heat removal

rate. Higher cooling should always accompany higher die velocity. Otherwise the

bubble will collapse. Since film blowing process is a highly nonlinear process sensitive

to many parameters, especially the constitutive model, it is not possible to develop

universal correlations on these stability aspects. Hence, the best approach is to use

the software developed under specific circumstances and evaluate the process settings

and possible variations in the process parameters.
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CHAPTER VIII

CONCLUSIONS

A mathematical model to simulate film blowing process as a transient, axisymmetric,

nonisothermal, viscoelastic two-point boundary value problem is developed in this

dissertation. Based on the research conducted using this model following conclusions

are presented:

1. Model developed compares well with the available experimental data. All the

analyses presented in Chapter VI are done using the transient model and solu-

tion evolved in all those cases to a stable steady state.

2. Effect of process conditions at the nip roller end, such as the line speed, is

a critical process parameter and it controls the solution through a nonlinear

equation. Hence, this problem has to be modeled as a two point boundary

value problem. Modeling it using shooting method will not capture the complex

balance of nip roller speed and die exit velocity. Stability of the process is

achieved using such a balance.

3. Heat transfer plays a vital role in the process. Controlling the heat transfer rate

alone can bring stability to the process. Heat transfer rate from the process

and the residence time of the particles should be in balance. Hence, higher line

speeds need higher heat transfer rates.

4. Disturbances in the melt velocity as it exits the die is not very critical if it is

less than 10% of the mean value. Typically the bubble stabilizes as it moves

towards freeze–line.
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5. Disturbances in the melt temperature is quite critical to the process. Since the

melt data is a strong function of temperature, any fluctuation in this value is

critical.

6. For cyclic disturbances, which will often be the case, cycle times become critical

if it is less than 0.5 seconds – that is – if the disturbances are rapid.

7. Time step used in the analysis plays a role in the solution accuracy. This is

due to the presence of transient terms in the RHS. This particular aspect of the

model needs further investigation and improvement.

8. With the constitutive model implemented, a low value for retardation viscos-

ity must be used to compare well with experimental data. It should be just

enough to provide stability to the momentum equation. Increasing this value

will smoothen the velocity distribution and will also make the solution more

robust.

9. Model developed is able to capture radius instability quite easily. One of the

possible causes for this instability is higher heat transfer rates in conjunction

with higher nip roller velocity.

10. The melt tension instability instead of manifesting as a separate category, it

manifest along with the radius instability.

11. Model developed can be extended easily to use other constitutive models and

include different solution techniques. Software developed based on this model

is also easily extendable and comes with a GUI.



129

A. Suggestions for Future Work

Following suggestions offer a logical development path to the current work:

1. Since the focus of the current work is transient dynamics of the process, a basic

model is used for crystallization kinetics. This model should be replaced with

a more comprehensive model. And there are models available in the literature,

which are more comprehensive and accurate. They can be implemented in the

current framework. In addition, in the current work it is assumed that the

newly crystallized material crystallizes with orientation aligned with the local

MD and AD. This assumption can also be relaxed and actual orientation can

be computed using the evolution equation for orientation tensor.

2. Analysis of heat transfer through thickness of the film will be useful to study

the effects of variable internal and external cooling. This technique is employed

in commercial scale film blowing process.

3. Model developed can be extended to analyze non-axisymmetric instabilities.

In order to do this, Radius, R in the parametrization should be a function of

both MD and AD. This explicit dependence of the AD, φ will lead to non-zero

diagonals and additional non–zero terms in Christoffel symbols. Using a non–

axisymmetric analysis, helical instability and other modes of bubble collapse

can be studied.

4. Software using the model developed can be used in conjunction with optimiza-

tion software such as, Altairr HyperStudyr to do both DOE and optimization

studies. Such studies can help to control the process parameters automatically.

Prelimnary optimization studies using the software developed showed promising
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results and the ability to identify stable process parameters. These results are

not included in this dissertation as it digress from the main focus.

5. Some of the model parameters may not be constant along MD. Varying these

parameters, such as, excess pressure, heat transfer, coefficient, etc. will make

the analysis of more complex situations possible.
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APPENDIX A

GEOMETRY CALCULATIONS

Calculation of the metric tensor, radii of curvature, Christoffel symbols, and the rate

of deformation tensor are presented in this appendix. The details of these calcu-

lations and the conditions in which they are applicable can be found in do Carmo

(1976). The axisymmetric assumption leads to orthogonal parametrization. Hence,

the metric tensor is diagonal and the Christoffel symbols are greatly simplified. These

calculations can be used to arrive the model equations from the general setting in

curvilinear coordinates by imposing the restrictions pertaining to the bubble surface

under consideration.

The mathematical formalism used for these calculations are described in the

following paragraph.

Cartesian Framework

The coordinates and the basis vectors are denoted by (x1, x2, x3) and (i1, i2, i3). In

this space, the basis and its reciprocal are identical. When there is no ambiguity, the

conventional notation (x,y,z) for the coordinates and (i, j,k) for the unit vectors will

be used.

Surface Coordinates

The curvilinear coordinates on the bubble are indicated by (ξ1, ξ2, ξ3), these are associ-

ated with the contravariant vectors defined on the surface (u1,u1,u3). The coordinate

ξ2 is identical to the azimuthal angle φ and co-ordinate ξ3 is identical to the thickness

parameter h. The parametrization associated with the surface is denoted (β1, β2, β3)
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and where there is no ambiguity, (z, φ, h) is used. Similarly the covariant vectors will

be denoted as (uz,uφ,uh) wherever it improves readability.

First Fundamental Form and Metric

Let X be a vector valued function defining the position vector of points on the polymer

film. This function depends on the axial coordinate z, the azimuthal coordinate φ

and the normal coordinate h.

X(z, φ, h) = (R cosφ+Hh cos θcosφ)i + (R sinφ+Hh cos θ sinφ)j + (z −Hhsinθ)k

(65)

In the above equation, R denotes the radius of the bubble and H denotes the

thickness of the bubble. The axial coordinate z is measured from die exit and the

thickness coordinate h is measured from the outer surface of the bubble to inner

surface. Even though we are interested in the equations restricted to the bubble

surface, the parametrization is written for the three-dimensional bubble in order to

capture all the terms. This will become evident as we proceed further with the

calculations.

From this definition all the other details can be derived using the standard tools

of differential geometry. The radius R and the thickness H do not depend on φ due

to axisymmetry. The Partial derivatives of X with respect to the parameters give the

basis vectors. Of these, the vectors uz and uφ span the tangent plane at this point.

These vectors are covariant vectors and they transform like a function. The surface

coordinates are denoted by ξ1 and ξ2. The coordinate ξ1 runs along the machine

direction and ξ2 coincides with the azimuthal coordinate.
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uz =
∂X

∂z
=

(
∂R

∂z
cosφ+

∂H

∂z
h cos θcosφ−Hh sin θ cosφ

∂θ

∂z

)
i

+

(
∂R

∂z
sinφ+

∂H

∂z
h cos θ sinφ−Hh sin θ sinφ

∂θ

∂z

)
j

+

(
1− h

∂H

∂z
sin θ − hH cos θ

)
k

This equations simplified to the following form when the thin membrane approxima-

tion is invoked.

uz =
∂R

∂z
cosφ i +

∂R

∂z
sinφ j + k

The complete details of the derivation with terms involving h will not be pre-

sented here. However, the computations retain these terms and only in the end the

restriction h = 0 is imposed.

uφ =
∂X

∂φ
= −R sinφ i +R cosφ j

uh =
∂X

∂h
= H cos θ cosφ i +H cos θ sinφ j−H sin θ k

The vectors (uz, uφ, uh) are contravariant and it can be proved easily from the

definition. Any vector on the tangent plane can be represented as a combination of

uz and uφ and the inner product of these vectors form the components of the metric

tensor which is used in measuring the distances on the surface. Let P be a point of

the surface, from the first fundamental form, the inner product < . >p on the tangent

plane Tp is defined. For the sake of simplicity, suffix p is omitted.

g11 = E =< uz,uz >= (1 +
∂R

∂z

2

)
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g12 = g21 = F =< uz,uφ >= 0

g22 = G =< uφ,uφ >= (R)2

It can also be shown that g33 = H2 and g13 = g23 = 0.

g = giju
i ⊗ uj (66)

The metric tensor is time dependent as the bubble radius R and the thickness H

are functions of time. We assume that the changes with respect to time are smooth

and regular. This assumption is in agreement with the experimental observation of

the process.

Second Fundamental Form and Radii of Curvature

The principal radii of curvature, the mean and Gauss curvature, and other interesting

details like the type of the bubble surface can be calculated from the second funda-

mental form. The bubble surface under consideration has all the nice properties like

orientability, smoothness, etc. At a point P on the surface of the film, a tangent

plane with a basis uz and uφ was defined.

The rate of change of tangent in the case of a curve embedded in a R3 will give

the curvature. This information in the case of a surface can be computed from the

rate of change of the normal to the tangent plane. The second fundamental form and

the related theorems provide the machinery to do these calculations. Details of the

these theorems is be found in the reference cited in the prelude of this appendix. The

principal radii of curvature can be calculated as follows.
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∂uz

∂z
= Xzz =

∂2R

∂z2
cosφ i +

∂2R

∂z2
sinφ j

∂uz

∂φ
= Xzφ = Xφz = −∂R

∂z
sinφ i +

∂R

∂z
cosφ j

∂uz

∂h
= Xzφ =

(
∂H

∂z
cos θ cosφ−H sin θ cosφ

∂theta

∂z

)
i

+

(
∂H

∂z
cos θ sinφ−H sin θ sinφ

∂theta

∂z

)
j

+

(
∂H

∂z
sin θ −H cos θ

∂theta

∂z

)
k

∂uφ

∂φ
= Xφφ = −R cosφ i−R sinφ j

∂uφ

∂h
= Xφh = Xhφ = −H cos θ sinφ i +H cos θ cosφ j

∂uh

∂h
= Xhh = 0

From the above second derivatives and the normal, using the second fundamental

form, one can compute the radii of curvature.

e =< N,Xzz > =
∂2R
∂z2√

1 + ∂R
∂z

2

f =< N,Xzφ > = 0

g =< N,Xφφ > =
R√

1 + ∂R
∂z

2

In the above equations, N is the normalized uh. Since the parametrization is

orthogonal, f is zero. From the values of the e, f , g, and E, F , G we can compute

the radii of curvature. It is important to observe here that the curvature informa-

tion is buried in the rate of change, dN and it is extracted via e,f , and g (note

that Nz,Xz >=< N,Xzz >, likewise for the other two derivatives). The Gaussian

curvature K and the mean curvature H are given by the following equations. These

relationships can be arrived at from the direct computation of the matrix represen-
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tation of dN in the natural basis of the tangent plane,{uz and uφ}.

Gaussian Curvature, Cg =
eg − f 2

EG− F 2
= −

∂2R
∂z2

(1 + ∂R
∂z

)2R

Mean Curvature, Cm =
1

2

eG+Ge+ Ff

EG− F 2
=

1

2

 1

R
√

1 + ∂R
∂z

2
−

∂2R
∂z2

(1 + ∂R
∂z

2
)

3
2 )


From the Gaussian and the mean curvatures, the principal curvatures can be ob-

tained by solving the characteristic equation. The roots of the characteristic equation

can be guessed in this case from the expressions of Cg and Cm.

k1 = −
∂2R
∂z2

(1 + ∂R
∂z

2
)

3
2 )

(67)

k2 =
1

R
√

1 + ∂R
∂z

2
(68)

And the radii of curvature are the reciprocal of the curvatures given by the above

expressions.

R1 = −
(1 + ∂R

∂z

2
)

3
2 )

∂2R
∂z2

(69)

R2 = R

√
1 +

∂R

∂z

2

(70)

The bubble surface curves in two principal directions, first along the machine

direction and it is in the direction of Xz and other along the azimuthal direction

(along Xφ). The curvatures along these directions are k1 and k2 respectively. Sign of

the Gaussian curvature indicates the nature of the surface. In this case it depends

on the sign of the second derivative of the radius R. Beyond the freeze-line R can
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be assumed constant, even if it varies slightly (increasing) it is linear. Hence, the

surface is parabolic beyond the freeze line. Above the die and below the freeze-line,

the behavior of the surface is complex. Radius of the bubble increases continuously

from the die to the freeze-line when the process is successful, however, this does not

help in determining the sign of the second derivative of the radius. In a typical case,

points on the surface along the machine direction changes in the followng sequence:

parabolic, elliptic, parabolic, hyperbolic and then finally to parabolic.

Christoffel Symbols

The basis vectors uz and uφ are not constants. Hence, unlike the cartesian framework,

computing the derivatives involve differentiating the basis vectors themselves. For

instance, consider the vector a:

a = aiui

∂a

∂βj
=
∂ai

∂βj
ui + ai ∂ui

∂βj

and,

∂ui

∂βj
= Γk

ijuk

hence,

∂a

∂βj
=
∂ai

∂βj
ui + aiΓk

ijuk

The coefficients Γk
ij are called the Christoffel symbols. The notation used here

follows Aris (1962), even though it is compact, it is not as elegant as the one used
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by do Carmo (1976). For the given surface these coefficients can be computed easily.

The axisyymetry assumption, which leads to the orthogonal parametrization, reduces

the number of non-zero Christoffel symbols. It should be noted that the Christoffel

sybols, even though written like a tensor, is not a tensor. The following equation is

used to compute the Christoffel symbols.

Γi
jk =

1

2
gip

(
∂gpj

∂βk
+
∂gpk

∂βj
− ∂gjk

∂βp

)
(71)

The summation convention is used in the above equation. Due to the orthogonality

of the parametrization, gij = 0 if i 6= j. This simplifies the computations to a great

extent. Another important point that should be borne in mind is the simplification

h = 0 should be invoked only after computing the derivative of gij. This calculation

can be made simple in the following way.

∂gjk

∂βp
=

∂

∂βp
(< uj,uk >) =<

∂uj

∂βp
, Buk > + < uj,

∂uk

∂βp
>

and for instance,

∂g11

∂h
= 2 < u1,

∂u1

∂h
>

and in this case we can simplify it by restricting both u1 and its derivative ∂u1

∂h
to

the surface at h = 0. If the derivative of u1 with respect to h is computed after

restricting to the surface imposing h = 0, then the derivative will vanish. Hence is it

is important to carry out the calculations in full three-dimensional form till the last

step. The following set of equations give the Christoffel symbols for the axisymmetric
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bubble surface.

Γ1
11 =

∂2R
∂z2

∂R
∂z

1 + ∂R
∂z

2 = tan θ
∂θ

∂z
(72)

Γ2
11 = 0 (73)

Γ3
11 = − 1

H

∂2R
∂z2√

1 + ∂R
∂z

2
= − 1

H
sec θ

∂θ

∂z
(74)

Γ1
12 = 0 (75)

Γ2
12 =

∂R

∂z

1

R
=

tan θ

R
(76)

Γ3
12 = 0 (77)

Γ1
13 = H cos θ

∂θ

∂z
(78)

Γ2
13 = 0 (79)

Γ3
13 =

1

H

∂H

∂z
(80)

Γ1
21 = Γ1

12 = 0 (81)

Γ2
21 = Γ2

12 =
tan θ

R
(82)

Γ3
21 = Γ3

12 = 0 (83)

Γ1
22 =

−R∂R
∂z

1 + ∂R
∂z

2 =
−R tan θ

sec2 θ
(84)

Γ2
22 = 0 (85)

Γ3
22 =

R

H
cos θ (86)

Γ1
23 = 0 (87)

Γ2
23 = −H

R
cos θ (88)

Γ3
23 = 0 (89)
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Γ1
31 = Γ1

13 = H cos θ
∂θ

∂z
(90)

Γ2
31 = Γ2

13 = 0 (91)

Γ3
31 = Γ3

13 =
1

H

∂H

∂z
(92)

Γ1
32 = Γ1

23 = 0 (93)

Γ2
32 = Γ2

23 = −H
R

cos θ (94)

Γ3
32 = Γ3

23 = 0 (95)

Γ1
33 = − H

sec2 θ

∂H

∂z
(96)

Γ2
33 = 0 (97)

Γ3
33 = 0 (98)

Using the above equations, the covariant derivative on the bubble surface can

be computed. It should noted that of the 27 components, there are only 13 non-zero

terms. The reasons for this simplification are , the problem under consideration is on

a surface instead of a generic curvilinear setting, and the orthogonal parametrization.



147

APPENDIX B

SUMMARY OF THE MODEL

Important equations in the transient axisymmetric model developed in this work are

summarized in this appendix. These equations are presented along with the relevant

boundary conditions in physical coordinates. The equations presented are:

1. Rate of deformation tensor (D)

2. Conservation of mass (to compute H)

3. Conservation of momentum in machine direction (to compute V )

4. Conservation of momentum in transverse direction (to compute P )

5. Conservation of momentum in normal direction (to compute R)

6. Constitutive model (to compute τ )

7. Conservation of energy (to compute T )

8. Crystallinity Model (to compute χ)

Directions

1. Principal direction 1: Machine direction z or β1.

2. Principal direction 2: Transverse direction φ or β2

3. Principal direction 3: Normal direction h
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Rate of Deformation Tensor

D11 =
1

sec θ

∂sec θ

∂t
+ cosθ

∂V1

∂z
(99)

D22 =
1

R

∂R

∂t
+
V1 cos θ

R

∂R

∂z
(100)

D33 =
1

H

∂H

∂t
+
V1 cos θ

H

∂H

∂z
(101)

Radii of Curvature

R1 = − sec3 θ

∂θ/∂z
(102)

R2 = R sec θ (103)

Equation for H – Conservation of mass

1

sec θ

∂sec θ

∂t
+

1

R

∂R

∂t
+

1

H

∂H

∂t
+

cos θ
∂V1

∂z
+
V1 cos θ

R

∂R

∂z
+
V1 cos θ

H

∂H

∂z
= 0 (104)

Conservation of Momentum in MD

ρ

[
∂V1

∂t
+ V1 cos θ

∂V1

∂z

]
= −ρgcosθ +

1

RH

∂

∂z
(RH cos θσ11) + sin θ

∂θ

∂z
σ11 (105)

Equation for P – Conservation of Momentum in CD

P = τ22 + Pdrag (106)
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Equation for R – Conservation of Momentum in ND

∆Pexcess

H
+ ρ

V 2
1

R1

= −ρgsinθ +
σ11

R1

+
σ22

R2

(107)

Conservation of Energy

ρCp
∂T

∂t
+ρCpV1 cos θ

∂T

∂z
+
hc

H
(T−Tc)+

CSBε

H
(T 4−T 4

w) =
cos θ

RH

∂

∂z

(
kRH

∂T

∂z

)
(108)

Crystallization Kinetics

∂χ

∂t
+ ρCpV1 cos θ

∂χ

∂z
= nK(T )(1− χ) (−loge(1− χ))

n−1
n exp(cχIID) (109)

Phan–Thien–Tanner Model

∂τ11
∂t

+ V1 cos θ
∂τ11
∂z

+ 2L11τ11 − 2τ11 cos θ sin θ
∂θ

∂t
+

Y

λ
τ11 = 2GD11 (110)

∂τ22
∂t

+ V1 cos θ
∂τ22

∂z
+ 2L22τ22 − 2

τ22
R

∂R

∂t
+

Y

λ
τ22 = 2GD22 (111)

∂τ33
∂t

+ V1 cos θ
∂τ33
∂z

+ 2L33τ33 − 2
τ33

H

∂H

∂t
+

Y

λ
τ33 = 2GD33 (112)

Kelvin-Voight Model

τ11 = E11ε11 + ηeD11 (113)

τ22 = E22ε22 + ηeD22 (114)

τ33 = E33ε33 + ηeD33 (115)
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APPENDIX C

A CRITIQUE OF SHOOTING METHOD

Introduction

Numerical simulation of film blowing process using the shooting method is inadequate

to capture the essential dynamics of proces. This appendix discusses the drawback

that plagues this approach. The analysis presented in this appendix is based on

the recent works using shooting method for simulating film blowing process (Cao

and Campbell, 1990). The main drawback of shooting method is its inability to

include the effect of the boundary conditions from the nip roller side. Hence, it is

not possible to specify the nip roller velocity, which is the most important process

condition as it directly affects the productivity. The Plastic–Elastic–Transition (PET)

model developed by Cao and Campbell (1990) is used to describe the constitutive

behavior. Even though the idea behind this approach is physically reasonable, the

model in its present form is far from satisfactory as the assumptions beyond the PET

line force the solution to behave in the desired manner.

Modeling Assumptions

1. Bubble is axisymmetric. The analysis domain begins just after the extrudate

swell and stops just before the guide rolls. At the guide rolls geometry changes

from axisymmetric to plane symmetry, hence modeling cannot be carried out

till the nip rolls with the present model.

2. Field constitutive equations are averaged over the thickness leading to a thin

membrane approximation. This assumption is based on the observation that
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the thickness is much smaller than the bubble radius and both the radii of

curvature.

3. Inertia effects are ignored. In a typical process it can be shown that Reynolds

number is very small.

4. Process is assumed to be steady.

5. Polymer considered in the analysis is amorphous.

6. Deborah number is of the order of one, hence, the polymer melt is treated as

a viscoelastic material. Constitutive model developed by Cao and Campbell

(1990) is used.

7. Fourier number is very small, hence the temperature variation across the thick-

ness are neglected.

8. The effects of surface tension and gravity are neglected in the present model.

Kinematics

Velocity gradients are calculated using local coordinates shown in Figure 54. Detailed

description of the calculations can be found in Pearson and Petrie (1970a & 1970b).

The local cartesian coordinates (ξ1, ξ2, ξ3) are defined such that origin is in the inner

surface of the film and at the die exit. Let (v1, v2, v3) be the components of velocity

in this coordinate system. At ξ2 = 0, velocity v2 = 0 and at ξ2 = h, v2 = dh/dt and

it represents the thinning down of the film. The velocity gradients are given by

∂v2

∂ξ2
=

dh
dt
− 0

h− 0
=

1

h

dh

dt
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dr
dz = tan θ
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FIG. 54. Coordinate system used in the analysis.
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∂v3

∂ξ3
=

2π dr
dt

2πr
=

1

r

dr

dt

and using the continuity equation

∂v1

∂ξ1
+
∂v2

∂ξ2
+
∂v3

∂ξ3
= 0

the third velocity gradient can be obtained

∂v1

∂ξ1
= −[

1

r

dr

dt
+

1

h

dh

dt
]

These relationships can be further simplified as

dh

dt
=
∂h

∂t
+
∂h

∂ξ1

∂ξ1
∂t

+
∂h

∂ξ2

∂ξ2
∂t

+
∂h

∂ξ3

∂ξ3
∂t

=
dh

dz

dz

dξ1

dξ1
dt

= v1 cos θ
dh

dz
,

∂v2

∂ξ2
=
v1 cos θ

h

dh

dz

Similarly,

∂v3

∂ξ3
=
v1 cos θ

r

dr

dz
,

∂v1

∂ξ1
=
v1 cos θ

v1

dv1

dz

Hence, the rate of deformation tensor D can be written as

D = v1 cos θ


1
v1

dv1

dz
0 0

0 1
h

dh
dz

0

0 0 1
r

dr
dz

 (116)
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Force Balance

Since inertia terms and the transient terms in the momentum equations are neglected,

they reduce to simple force balance equations. Balance of the axial forces between a

section at z and the freeze line height, zf ( or above) will give

2πrhσ11 cos θ − πr2∆p = Fz − πr2
f∆p.

Differentiating the above equation with respect to z will result in

dσ11

dz
= −σ11

1

r

dr

dz
− σ11

1

h

dh

dz
− σ11

dr

dz

dθ

dz
− ∆p

h cos θ

dr

dz
.

The normal force balance can be written as

hσ11

R1

+
hσ33

R2

= ∆p

and substituting for the radii of curvature, R1 and R2 (see appendix B) we get

−hσ11
dθ

dz
+
σ33h

r
= ∆p sec θ.

Rearranging the above equation, an expression to compute the angle θ can be obtained

as

dθ

dz
=

σ33

rσ11

− ∆p sec θ

hσ11

(117)

This equation can be used to eliminate the excess pressure, ∆p from the axial force

balance equation, and we obtain

dσ11

dz
=
−σ11

h

dh

dz
+
σ33 − σ11

r

dr

dz

It can be further rearranged to obtain an equation for the thickness h
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dh

dz
=

h

σ11

dσ11

dz
− h(σ33 − σ11)

rσ11

dr

dz
(118)

Constitutive Model

Constitutive model developed by Cao and Campbell (1990) is used in here. This

model describes the transition from liquid–like behavior to solid–like behavior based

on a rheological constraint rather than the kinematic constraint dr/dz = 0. The

transition is identified as Plastic–Elastic Transition ( PET) and this need not coincide

with the freeze line which is based on a kinematic constraint. This model incorporates

strain hardening behavior and describes the rheology of the liquid zone through a

modified contravariant Maxwell model and the solid zone through a modified Hookean

model.

The effect of strain hardening is incorporated into the model through the align-

ment strength, ψ. Cao and Campbell present a modified definition of alignment

strength taking into account of the fact that alignment is strong in uniaxial elonga-

tional flows, weak in biaxial elongational flows, and neutral in planar and shear flows.

It is given by

ψ = |I1 − I2|
I1
I2

where I1 and I2 are the first and second invariants of the finger tensor C−1 and defined

by

I1 = Trace of C−1(t, t′)

I2 = Trace of C(t, t′)
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A structure memory function ζ is defined to quantify the effects of alignment

strength and elongation rate on yield strength, modulus, and viscosity:

ζ = Ch

∫ t

−∞

√
ΠDψ exp [−(t− t′)/λeff ]dt

′

where ΠD is the second invariant of D. Effective modulus, viscosity, relaxation and

yield stress are defined by following equations.

Geff = G(1 + ζ)

λeff = ηeff/Geff

ηeff =
η

1− Yeff /
√

3√
Πτ

Yeff = Y ζ

where Πτ is the second invariant of τ . Using the above definitions constitutive

model is developed along these lines.

σ11 = −p+ τ11

σ22 = −p+ τ22 = 0 ⇒ p = τ22

σ33 = −p+ τ33

If
√

Πτ > Yeff/
√

3 then modified Maxwell’s model is used to describe the material
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otherwise modified Hookean model is used. This condition marks the Plastic-Elastic

Transition (PET) line. Hence, below the PET line the constitutive equation is of the

form

λeff

5
τ +τ = 2ηeffD (119)

which can be written down as,

dτ11
dz

=
2

v

dv

dz
τ11 +

2ηeff

λeff

1

v

dv

dz
− τ11

λeffv cos θ
(120)

dτ22

dz
=

2

h

dh

dz
τ22 +

2ηeff

λeff

1

h

dh

dz
− τ22

λeffv cos θ
(121)

dτ33

dz
=

2

r

dr

dz
τ33 +

2ηeff

λeff

1

r

dr

dz
− τ33

λeffv cos θ
(122)

and below PET line modified Hookean model as described below is used.

τ11 = 2Geffε11

τ22 = 2Geffε22

τ33 = 2Geffε33

where ε11, ε22 and ε33 are defined based the deformation at the PET line. Continuity

of r, h and v are ensured through the boundary conditions.

ε11 =

(
τ11

2Geff

)
PET

+ ln

(
v

vPET

)

ε22 =

(
τ22

2Geff

)
PET

+ ln

(
h

hPET

)
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ε33 =

(
τ33

2Geff

)
PET

+ ln

(
r

rPET

)

Heat Transfer

The equation that describes the temperature distribution can be obtained through en-

ergy balance on an element of the film. Heat transfer to the cooling air via convection

heat transfer and to the surrounding walls via radiation heat transfer are considered.

In the equation presented the latent heat contribution due to crystallization is not

included as the first model concerns itself with amorphous polymers. In the present

model viscous dissipation terms are ignored The present model assumes the absence

of internal cooling. Under these assumptions the energy equation is given by

dT

dz
=
−U(T − Ta)

ρCphv cos θ
− −Λε

ρCphv cos θ
(T 4 − T 4

a ) (123)

Numerical Scheme

The mathematical model described in the previous section results in a two–point

boundary value problem with a system of coupled nonlinear ordinary differential

equations (summarized in appendix C). In principle, the equations for velocity v and

the pressure p can be eliminated in the given model resulting in a set of 7 equations.

However, when some of the assumptions used in the model development are removed

such a reduction is not possible. Hence, the complete set of 9 equations is solved

without further simplification.

The given two–point boundary value problem is posed as an initial value problem

and solved using the shooting method. A detailed discussion on various approaches

to solve two point boundary value problem can be found in Keller (1976).
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In film blowing process, beyond the freezeline it is reasonable to assume that the

deformation of film ceases beyond the freezeline. Hence, the radius of the film does

not change significantly beyond the freezeline (dr/dz=0). Boundary condition at the

nip roll end can be specified either as the take–up force or as the velocity of the film.

Cain and Denn (1988) report that specification of velocity often leads to a stable

solution. In the present model, the problem is not solved as a two–point boundary

value problem, but as an initial value problem. All the boundary conditions are

specified only at the die exit. The force balance equation in the principal direction 1

is integrated to bring in the effect of take–up force Fz and modified suitably to specify

the initial condition for σ11

σ11 =
Fz + π∆p(r2

o − r2
f )

2πr0h0 cos θ0

(124)

In the above equation, the presence of the unknown freeze line radius rf leads to an

iterative approach. Hence, to solve the problem, freezeline radius has to be assumed.

Solution to the problem is obtained by marching from the die exit to the freezeline

using a fourth order Runge-Kutta scheme. Often, the freezeline is determined by the

condition dr/dz = 0. The predicted value of the freezeline radius is used to restart the

solution process at the die exit, and the iterations are continued till ||rnew
f − rold

f || <

tolerance. In the model developed by Cao and Campbell, beyond the PET line,

dθ/dz is assumed to be zero and θ is forced to be a small positive number (close to

zero). These assumptions, force the radius behave linearly with axial distance with

slope dr/dz = tan θ. Hence, in the present model the PET line and the freeze line

coincides. However, if these assumptions are removed, the standard condition could

be used.



160

Process Data

Initial Conditions

At the die exit, z = 0, the following initial conditions are applied to solve the problem:

the suffix 0 denotes the value at z = 0 and the suffix f denotes the value at freezeline

height.

h = h0

r = r0

v = v0 =
ṁ

2πr0h0 cos θ0

θ = θ0

σ11 =
Fz + π∆p(r2

o − r2
f )

2πr0h0 cos θ0

σ33 = σ33|0

p = 0

T = T0

At the die exit, the finger tensor is assumed to be the unit tensor. This in effect

ignores all deformation history prior to that point. From the above equation, it can

be seen that radius at the freezeline height is required to specify one of the initial

condition. Hence it calls for an iterative approach to obtain the solution. The values

θ0 and σ33|0 are unknown and they are treated as parameters. Other parameters in

the problem:

• Excess pressure inside the bubble, ∆p

• Axial force at the nip rolls, Fz

• Mass flow rate, ṁ
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• Heat transfer coefficient, U

• Cooling air temperature, Ta

• Emissivity, λ

• Surrounding wall temperature, Tw

• Hardening coefficient, Ch

• Modulus coefficient, CG

• Step size, ∆z

The modulus coefficient is introduced in the expression for modulus by Cao and

Campbell (1990) to adjust its value in order to match the experimental results. This

modification has no physical basis. The value of material properties depend on the

polymer resin under consideration. In the present appendix, properties of amorphous

polystyrene is used to compare the results with the experimental results (Gupta,

1981).

Material Properties

The following material properties are used in the study:

• Modulus = (8× 104 + (393− T )× 103)Pa

• Viscosity = 8.8× 104 exp[18904(1/T − 1/443)]Pa.s

• Yield stress = 1× 10−15 exp[20000/T ]Pa

• Density = 1050kg/m3

• Specific heat = 1910J/kg.K

The format of the data file used for the simulation is presented in appendix D.



162

Results and Discussions

Performance of the model developed is evaluated by comparing the results of the

simulations with the experimental results of Gupta(1981). The experiments reported

by Gupta (1981) were conducted on a laboratory scale film blowing equipment. A one

inch die was used (r0 = 0.0127m) in the experiments to blow films using amorphous

polystyrene under both isothermal and non-isothermal conditions. The process did

not rely on forced convection heat transfer for cooling the film and it was achieved

via natural convection and radiation heat transfer. Of the various experimental runs,

only the runs #18, #19, and #20, had a blow–up ratio greater than one. For the

purpose of comparison results of run #18 were considered.

Figure 55 shows the comparison of the radius profile with experimental results.

Excellent agreement between the simulation and the experiment is partly due to the

apriori knowledge of the experimental results. Figure 56 shows the distribution of

the slope angle θ. From these figures and the information available in the work of

Cao and Campbell (1990), following inferences can be made.

The initial condition for θ is chosen in order to get a better match with the

experimental results. This value changes for different experimental runs. In a steady

state model it is not possible to estimate the value θ through theoretical analysis of

the problem. On the other hand, a transient finite element analysis need not address

this question and the simulation can be started with a more realistic initial condition.

In the Cao and Campbell’s work, at the PET line, not only the constitutive

model switches from upper convected Maxwell to modified Hookean model, governing

equations are also altered and few additional assumptions are made. The value of

θ is chosen as a constant whose value is assumed to be a small positive number.

Arbitrariness of this assumption is clearly seen in Figure 56. Hence the variation of
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FIG. 55. Comparison of the radius profile obtained using the numerical simulation

with the experimental results of Gupta (1981)
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FIG. 56. Variation of slope angle θ along the bubble surface
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FIG. 57. Variation of the velocity along the bubble surface

the radius beyond the PET line is predetermined to behave like a straight line with

a small slope (tan θ). Hence, the condition dr/dz = 0 will never be achieved and the

freezeline will have to coincide with the PET line. These assumptions greatly modify

the solution behavior beyond the freeze line. Hence, the claim that the PET model

extends the solution beyond the freezeline (Cao and Campbell, 1990) is incorrect.

From Figure 56, it clear that for the value of θ at the freeze line solution behavior is

much higher than zero and the film will tend diverge. Without the assumptions that

are made beyond the freezeline, convergence is difficult to obtain. The variation of

velocity and thickness is shown in figures 57 and 58. The assumptions beyond PET

line affect the nature of these variations.

Figure 59 compares the performance of three different constitutive model. When
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FIG. 58. Variation of film thickness along the bubble surface
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FIG. 59. Comparison of the radius profiles predicted by different constitutive models

the simple upper convected Maxwell model extended beyond the freezeline the film

collapses and the property values has to be changed even to obtain an agreement

with the existing experimental result. In some case the instead of collapsing, the

solution can also diverge. Even in the case of modified upper convected model, the

performance is not satisfactory. As it was discussed in the previous paragraph, the

better performance of the PET model is purely due the assumptions beyond the PET

line and not its ability to model the process better.

Figure 60 shows the distribution of the temperature of the polymer film. Heat

transfer analysis includes the heat loss due to convection and radiation. In the ex-

periments conducted by Gupta, cooling was purely due to natural convection as no

external air cooling was used. Hence, the contribution of radiation heat transfer in
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the analysis is significant. However, the value of emissivity of the polymer film is

difficult to measure and exact specification of its value is necessary to eliminate the

source of errors in the analysis. Since the value was not mentioned in Cao and Camp-

bell (1990), analysis was carried out for different values of emissivity and the table VI

clearly indicates the importance of this issue. Figure 61 shows the radius distribution

when the heat loss due to radiation is neglected. Since the heat loss from the film to

surrounding air is via natural convection, the role of radiation heat transfer is very

important. Since the material property descriptions depend on the temperature of

the film, by altering the heat transfer rates, the plastic–elastic transition can be de-

layed. Due to the reduced heat loss, plastic–elastic transition is delayed. The bubble

tends to collapse before the PET line under these conditions and the abrupt change

in the behavior of the bubble after PET line is clearly indicates the incorrectness of

the assumptions used at the PET line.

The film heat transfer coefficient is often assumed to be uniform along the bubble

surface and it is value is changed by 50–100% to match the experimental results (Cao

and Campbell, 1990).

Shooting method fails to simulate film blowing process accurately due to its

inability in enforcing the conditions like dr/dz = 0 beyond the freezeline in a natural

manner. It is also not possible to prescribe the velocity boundary condition at the

nip roller end using the present model. This is a very critical parameter and it is a

direct measure of the productivity of the system. Attempting to simulate film blowing

using the shooting method is like attempting to the blow the bubble and achieve a

stable film blowing process by only controlling the conditions at the die end in an

experimental facility, which is not possible. The accuracy of the simulation indeed

depends on the constitutive model and the material property descriptions. However,

the inaccuracies due to the numerical method used should not go unnoticed.
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FIG. 60. Comparison of the temperature profile obtained using the numerical simu-

lation with the experimental results of Gupta (1980)
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FIG. 61. Variation of bubble radius in the absence of radiation heat transfer



171

TABLE VI. The influence of radiation heat transfer on the process.

Emissivity zPET rPET TPET

in cm in cm in K

0.0 17.0 0.591 435

0.1 12.3 1.859 434

0.2 7.8 2.103 440

0.3 7.4 1.971 439

0.4 5.9 1.953 441

0.5 5.3 1.887 440

0.6 4.4 1.827 440

0.7 4.2 1.805 440

0.8 4.4 1.770 440

0.9 4.2 1.743 440

1.0 4.2 1.725 440

Summary

Simulation of polymer film blowing process using a steady state model was presented.

The shooting method used pose the two point boundary value problem derived from

the model into an initial value problem is one of the sources of error, this method not

only fails to naturally extend itself beyond the freezeline it is incapable of simulating

the process below the freezeline accurately. The PET model used to describe the con-

stitutive behavior of the polymer, in its present form uses unreasonable assumptions

to force the desired behavior on the solution. The nature of the assumptions beyond

the PET line, like θ is a small non-zero constant forces dr/dz to be non-zero, would
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naturally result in the identification of PET line with the freeze line which may not

be incorrect. The sensitivity of the solution to process data like emissivity and initial

condition of the slope angle, which are not known accurately reduces the reliability of

the simulation as a design tool. However, as mentioned in the previous section, many

of the disadvantages associated with the present model can be removed by properly

posing the problem.
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