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ABSTRACT 

 

Streamline-Based Production Data Integration in Naturally Fractured Reservoirs.  

(May 2005) 

Mishal Habis Al Harbi,  

B.S., King Fahd University of Petroleum and Minerals, Saudi Arabia; 

M.S., Stanford University 

Chair of Advisory Committee:  Dr. Akhil Datta-Gupta 

 

Streamline-based models have shown great potential in reconciling high resolution 

geologic models to production data. In this work we extend the streamline-based 

production data integration technique to naturally fractured reservoirs. We use a dual-

porosity streamline model for fracture flow simulation by treating the fracture and matrix 

as separate continua that are connected through a transfer function. Next, we analytically 

compute the sensitivities that define the relationship between the reservoir properties and 

the production response in fractured reservoirs. Finally, production data integration is 

carried out via the Generalized Travel Time inversion (GTT). We also apply the 

streamline-derived sensitivities in conjunction with a dual porosity finite difference 

simulator to combine the efficiency of the streamline approach with the versatility of the 

finite difference approach. This significantly broadens the applicability of the streamline-

based approach in terms of incorporating compressibility effects and complex physics.  

The number of reservoir parameters to be estimated is commonly orders of magnitude 

larger than the observation data, leading to non-uniqueness and uncertainty in reservoir 

parameter estimate. Such uncertainty is passed to reservoir response forecast which needs 

to be quantified in economic and operational risk analysis. In this work we sample 

parameter uncertainty using a new two-stage Markov Chain Monte Carlo (MCMC) that is 

very fast and overcomes much of its current limitations. The computational efficiency 

comes through a substantial increase in the acceptance rate during MCMC by using a fast 

linearized approximation to the flow simulation and the likelihood function, the critical 

link between the reservoir model and production data.  
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The Gradual Deformation Method (GDM) provides a useful framework to preserve 

geologic structure. Current dynamic data integration methods using GDM are inefficient 

due to the use of numerical sensitivity calculations which limits the method to deforming 

two or three models at a time. In this work, we derived streamline-based analytical 

sensitivities for the GDM that can be obtained from a single simulation run for any 

number of basis models. The new Generalized Travel Time GDM (GTT-GDM) is highly 

efficient and achieved a performance close to regular GTT inversion while preserving the 

geologic structure.  
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  1  
CHAPTER I 

INTRODUCTION 

 

 

1.1 Literature Review 

 

Natural fractures are known to play a significant role in subsurface flow and transport 

of fluids. In recent years, advances in key technologies such as seismic imaging and 

horizontal drilling revealed the true extent of fractures in many reservoirs and enabled 

operators to utilize novel ways to use fracture connectivity to enhance recovery. The 

number of reservoirs that are now considered to be naturally fractured has also risen 

significantly in recent years and there is a greater need for more robust fracture 

characterization methods that can integrate both static and dynamic data in an efficient 

manner.1 

Of late, discrete fracture network (DFN) techniques have gained increasing attention 

in the oil industry.2,3  The DFN is based on mapping fracture planes in 3D space using 

statistical properties of fracture swarms, fracture network geometry and flow 

characteristics. The advantage of the DFN models is the ability to incorporate complex 

fracture patterns based on field data such as cores, well logs, borehole images, seismic 

data and geomechanics. Although the DFN models can reproduce very realistic fracture 

geometry, it is important to condition these models to dynamic data such as well test, 

tracer and production data to reproduce the flow behavior in the reservoir. Such 

conditioning is particularly important for fractured reservoirs because only a small 

fraction of the fractures in the DFN model might carry bulk of the fluid flow.4,5  

Streamline models have shown great potential in integrating dynamic data into high 

resolution geologic models.6-10 A unique feature of streamline models has been the ability 

to efficiently compute the sensitivity of the production data to reservoir parameters such 

as porosity and permeability. These sensitivities are partial derivatives that quantify how  
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the production response will be affected by changes in reservoir properties. Integrating 

dynamic data into reservoir models typically involve the solution of an inverse problem 

and the sensitivities play a key role here. In our previous works, we have utilized the 

streamline-based sensitivities in conjunction with a generalized travel time inversion 

method to efficiently integrate production data into geologic models.7 Our approach has 

been successfully applied to a large number of field cases including a giant middle-

eastern carbonate reservoir.8 

Until recently, streamline models have been limited to single porosity systems and 

thus, were not suitable for modeling fluid flow in fractured reservoirs, particularly 

accounting for matrix-fracture interactions. A common way to model fluid flow in 

fractured reservoirs is through the dual media approach whereby the fracture and the 

matrix are treated as separate continua that are connected through a transfer function.11-13 

The transfer functions that describe the exchange of fluids between the matrix and the 

fracture system can be easily implemented within the framework of the current single 

porosity streamline models.14,15  This allows us to utilize much of the techniques related 

to production data integration developed for single porosity streamline models. However, 

compared to the single porosity systems, the propagation of the saturation front in the 

fracture is retarded significantly because of the exchange of fluid with the matrix in dual 

porosity systems. These effects must be accounted for while computing the travel time 

sensitivities for saturation fronts. The streamline-derived sensitivities can also be applied 

in conjunction with dual porosity finite difference simulators and allow us to combine the 

efficiency of the streamline approach with the versatility of finite difference simulation. 

The streamlines can be obtained from the fluid fluxes that are readily available during 

finite-difference simulation. This significantly broadens the applicability of the 

streamline-based approach in terms of incorporating compressibility effects and complex 

physics.16  

Our inverse problem is highly nonlinear and ill-posed17 and depending on the prior 

information, we can obtain a set of non unique solutions that honor both the prior 

constraints and conditioning data within the limits of uncertainty.  The uncertainty in 

reservoir parameters is translated into uncertainty in reservoir response forecast that 

needs to be addressed in economic and operational risk analysis. In order to assess the 
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uncertainty in estimated reservoir parameters we need to sample the parameters posterior 

distribution. The Bayesian formulation provides an excellent framework to perform this 

task.18 There are many methods proposed in literature.18 Generally, these methods either 

attempt to perform rigorous sampling of the posterior distribution, such as Markov Chain 

Monte Carlo (MCMC) methods and genetic algorithms19 or attempt to perform 

approximate sampling such as Randomized Maximum Likelihood (RML)17 and pilot 

point method.18  Rigorous methods, like MCMC, provide the most accurate sampling 

albeit at a high cost due to their high rejection rate and the need to run a full simulation 

for every proposed state. There is also a burn-in time needed for MCMC to assure that 

the starting state does not bias sampling which add to the cost. To avoid the high cost 

associated with rigorous methods, Oliver et al17 proposed a two step method with a high 

acceptance probability in the Metropolis-Hasting algorithm.  Their method accomplishes 

this by first proposing an unconditional realization of the reservoir parameters and then 

history matching this unconditional realization using a perturbed production response 

obtained from adding noise constrained to the data covariance matrix.  Due to the high 

acceptance rate of 95%, they suggested accepting all the proposed new state in the 

chain.17 

Fox and Nicholls20 proposed the use of MCMC with an approximate likelihood to 

calculate the acceptance probability for the Metropolis-Hasting algorithm. According to 

their method, if the new state is accepted then the exact likelihood of the proposed state is 

calculated and the algorithm proceeds according to Metropolis-Hasting. If the new state 

is rejected during the approximate MCMC, then a new state is proposed and the 

algorithm is iterated. The obvious advantage here is that for high rejection rate algorithms 

like the traditional MCMC, The cost of calculating the exact likelihood, which in 

reservoir parameter uncertainty studies mean a full simulation run, is substantially 

reduced. The cost of the approximate solution is orders of magnitude less than the exact 

solution which translates into substantial savings in large scale reservoir models. In our 

work, the proposed state likelihood is approximated using semi-analytical streamline-

based sensitivities and production response, both obtained from a single simulation run 

using the initial state. Our method retains the rigorous sampling of traditional MCMC 

while substantially reducing the high cost associated with it. 
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1.2 Objectives 

 

The main objective of this work is to extend proven single porosity inversion methods 

to dual porosity reservoirs. In addition, more efficient perturbation methods and 

uncertainty assessment are formulated and explored using the gradual deformation 

method (GDM) and approximate MCMC approach. The specific objectives are 

summarized as follows: 

• Derive a streamline-based analytical sensitivity method for dual porosity 

reservoirs. 

• Compare analytical sensitivities with perturbation derived sensitivity 

coefficients. 

• Incorporate the dual porosity streamline foreword model into the existing 

single porosity inversion algorithm. 

• Test the dual porosity inversion algorithm using both 2D and 3D models 

Reservoir models calibrated to dynamic data are not unique and carry uncertainty that 

need to be quantified for proper reservoir forecast assessment. To quantify uncertainty in 

reservoir parameters, we propose a two-stage MCMC that overcomes most of the 

traditional MCMC limitations and provide a fast and efficient parameter uncertainty 

assessment. The specific objectives of the proposed approach are as follows: 

• Derive a locally linearized approximation to the flow simulation to calculate 

an approximate likelihood function using streamline-based analytical 

sensitivities. 

• Generate geologically realistic proposals using global perturbation with the 

Gradual Deformation Method (GDM). 

• Compare the proposed method performance against traditional MCMC. 

• Test the proposed method using both synthetic 2D case and an actual 3D field 

case using Goldsmith dataset. 

To handle large models with large number of data points, the re-parameterization of 

the inverse problem using an improved gradual deformation framework will be adopted. 

The following steps will be followed:  
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• Derive a streamline-based analytical sensitivity for the general GDM 

formulation. 

• Improve the optimization workflow to increase sampling efficiency. 

• Write the algorithm code to perform the GDM with Generalized Travel Time 

(GTT) inversion and analytical sensitivity coefficients for both global and 

localized GDM. 

• Test the algorithm using synthetic case and compare with the existing gradient 

based inversion method. 

 

1.3 Dissertation Outline    

 

Chapter II discusses the approach followed in integrating dynamic data in naturally 

fractured reservoirs using dual porosity single permeability (DPSP) formulation and 

generalized travel time inversion.  Integrating dynamic data into high resolution fractured 

reservoirs involves the solution of an inverse problem which is computationally 

demanding. Solving the problem efficiently and reducing computational cost can be 

achieved by utilizing streamline-based sensitivities and the generalized travel time 

concept. Streamline and finite difference foreword models can be both used in our 

workflow which makes the approach applicable to a wide range of field conditions. 

 In Chapter III we discuss the mathematical formulation used in our approach. Dual 

porosity streamline-based analytical sensitivities is derived and compared to exact 

sensitivities obtained from numerical perturbation. We derived a general expression to 

account for cases where changing field conditions like infill drilling and rate fluctuations 

affect streamline distribution which is an extension to the robust single porosity 

formulation. 

Chapter IV demonstrates our methodology using a 2D 9 spot water flood and a large 

3D field with changing field conditions. In both cases we achieved a reasonable water cut 

match which shows the robustness of the approach under diverse field conditions.  

In Chapter V we discuss the problem of uncertainty in reservoir parameters. The 

solution of the inverse problem is not unique and other plausible solutions exist. Risk 

analysis studies require a quantification of such uncertainty which can be 
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computationally intractable for high resolution models. We proposed in this work a new 

method that substantially reduces the cost of sampling from reservoir parameter posterior 

distribution. The new method utilizes approximate likelihood to calculate Metropolis-

Hasting acceptance criteria which is extremely efficient and requires a matrix 

multiplication instead of running a full simulation run. By filtering out obvious rejections 

without the need to run the forward model, the method maintains a high acceptance rate 

compared to traditional MCMC leading to substantial cost reductions. The method shares 

the traditional MCMC robustness since every accepted proposal is validated by 

calculating the exact likelihood before promoting the sample from initial to proposed 

state.   

In Chapter VI we demonstrated the approximate MCMC method using both a 21x21 

2D 9-spot and a large 3D field case with a mesh size of 58x53x10 or 30,740 grid cells. 

We compared the proposed method performance to traditional MCMC and demonstrated 

the substantial cost savings achieved. 

In Chapter VII we discuss a different approach to dynamic data integration where 

geological structure is preserved using the gradual deformation method (GDM). In 

traditional GDM inversion, the number of deformed realizations is limited to two or three 

models due to the high cost of calculating numerical sensitivities. The limited number of 

realizations severely restricts the search direction and the use of GDM chains as a work 

around leads to even more inefficient workflow. We have derived streamline-based 

analytical sensitivities for GDM parameters that require a single simulation run 

regardless of the number of GDM parameters. The new method eliminates the need for 

GDM chains and maximizes the search direction by using a large number of basis 

models. We compared the new method to regular GTT inversion using both global and 

local GDM and showed that our method succeeds in achieving a match as good as the 

regular GTT while preserving the geologic structure.  
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  2   
CHAPTER II 

APPROACH TO PARAMETER ESTIMATION IN FRACTURED 

MEDIUM 

 

 

Our approach for integrating dynamic data in fractured reservoirs and estimating 

fracture parameters is based on the concept of generalized travel time inversion for 

production data integration.21 The approach has been shown to be computationally 

efficient, robust and suitable for large-scale field applications.7,22 The unique aspect here 

is the extension and validation of streamline-based analytic travel time sensitivity 

computations for fractured medium and accounting for matrix-fracture exchange 

mechanisms. The travel time sensitivities can be applied to both streamline and finite 

difference simulators. Thus, we can exploit the computational efficiency of the streamline 

approach and the versatility of the finite difference simulators in terms of handling 

compressibility and complex physics. This chapter will discuss the general approach 

followed in integrating dynamic data in fractured medium.   

 

2.1 Dual Porosity Fracture Flow Simulation 

 

For modeling fluid flow in fractured reservoirs, we can use either a 3D dual porosity 

streamline simulator or a finite difference simulator. The streamline approach has 

recently been extended to fractured reservoirs using the dual media approach.14,15 The 

streamline simulation uses an IMPES approach where fracture pressure is solved first 

then fracture saturation. Matrix saturation is updated using a transfer function that 

governs fluid exchange between the two mediums. The streamline approach decouples 

the transport calculation from the underlying heterogeneity thus simplifying the 

calculation. The solution is performed on the time of flight coordinate (TOF) and allows 

for larger time steps with fewer pressure updates without suffering from dispersion or 

numerical instability. When the underlying conditions are favorable, streamline 
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simulation can be orders of magnitude faster than conventional finite difference 

simulators. In particular, the dual porosity streamline models can be considerably faster 

than conventional finite-difference simulators when the primary exchange mechanism 

between the matrix and the fracture system is capillary imbibition.  The next chapter will 

cover the theory behind dual porosity streamline simulation in more depth.  

In cases where strong coupling between the matrix and the fracture system exist, the 

streamline models may not offer significant advantage and we can revert to conventional 

finite difference dual porosity flow simulation. The use of finite-difference models allows 

us to incorporate compressibility and other relevant physical mechanisms without any 

significant loss in computational efficiency.  

 

2.2 Efficient Generalized Travel-Time Inversion 

 

The misfit between the observed and computed production response is quantified 

using a previously proposed generalized travel time.7,21 In the generalized travel time 

approach, which is an average travel time match, we seek to find the best overall match 

between observed and calculated response by systematically shifting the response on the 

time scale. The travel time approach is more robust and efficient than the traditional 

amplitude approach where we try to match the data directly. There are several advantages 

to using the generalized travel time approach for integrating dynamic data. Firstly, 

generalized travel time has quasi-linear convergence properties leading to fast 

convergence and even if the prior model is not close to the solution.10 Secondly, the 

number of travel time matching data is reduced to the number of wells regardless of the 

number of data points per well leading to a more computationally efficient algorithm and 

less storage requirements. Finally, the generalized travel time is very effective in 

resolving large scale features in the reservoir. 

 

2.3 Sensitivity Computations 

 

A critical aspect of production data integration is calculation of sensitivities that 

define the relationship between production response and reservoir parameters. The 
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sensitivity simply quantifies the change in reservoir response when a given reservoir 

parameter is perturbed which is a critical input to gradient based minimization methods. 

A fast and efficient way to calculate the sensitivities is vital to integrating dynamic data 

in high resolution models. The analytical sensitivities we derived for dual porosity 

medium are highly efficient in terms of computation and memory storage. We compute 

these sensitivities analytically as one-dimensional integrals along streamline trajectories 

in the fracture network. For dual porosity streamline simulators, these trajectories are 

readily available and only a single simulation run is needed to calculate both data misfit 

and sensitivities. However, for finite difference models an additional step is necessary to 

compute the streamlines and time of flight based on the finite difference velocity field at 

specific time steps. These one dimensional calculations scale very favorably with respect 

to number of grid blocks. Thus, our approach is particularly well-suited for high 

resolution geologic models. 

 

2.4 Data Integration and Objective Function Regularization 

 

Our objective is to incorporate dynamic data into high resolution fracture models. As 

we have mentioned earlier, we have used a generalized travel time inversion approach 

that utilizes analytical sensitivities in conjunction with an iterative optimization scheme 

to minimize the travel time shift between calculated and observed data. We start with a 

geologic model that already integrates well logs, seismic and geologic data using 

geostatistical modeling or other methods. The process of inversion will reconcile the high 

resolution model with observed field response. In order to achieve this, we minimize a 

locally linearized and panelized data misfit function.6,19 

 

1 2ObjF δ δ β δ β δ= − + +d S R R L R ...........................................................(2.1) 

 

where δd  is data misfit, δR  is the change in reservoir parameter, S is the sensitivity 

matrix and L  is a second-order spatial difference operator. The weights 1β  and 2β  

determine the relative strengths of prior information and model roughness, respectively. 

The spatial operator is given by  
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2

1

( )
M

j
j

δ δ
=

= ∆∑L R R .........................................................................................(2.2) 

 

The roughness constraint penalizes for high frequency spatial fluctuations in reservoir 

parameters since inversion is more effective in reproducing large scale features. This is 

mainly due to the fact that the observed data is the integrated response of all reservoir 

parameters. The norm constraints is given by  

 

2

1

( )
M

j
j

δ δ
=

= ∑R R ..............................................................................................(2.3) 

 

and it penalizes large deviations from the prior model which already incorporates 

available static data. Minimizing deviation from the prior model insures that static data 

are also honored in the final model. 

As discussed earlier, this formulation has many favorable characteristics including 

quasi-linear properties that make it attractive for field applications.7,15 
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  3  
CHAPTER III  

MATHEMATICAL FORMULATION 

 

 

In this chapter we will cover the mathematical formulation adopted in integrating 

dynamic data in dual porosity reservoirs using the generalized travel time inversion 

approach. We will first cover the theory of dual porosity streamline simulation and the 

concept of travel time and generalized travel time inversion. Then we will develop the 

dual porosity streamline-based analytical sensitivity using the generalized travel time 

framework and account for changing field conditions. Finally, we will verify the derived 

dual porosity sensitivity by comparing it to the exact numerical perturbation method. 

 

3.1 Dual Porosity Streamline Simulation  

 

Streamline models have recently been generalized to model fluid flow in fractured 

reservoirs including matrix-fracture interactions.14,15  A common approach to include 

such interactions has been through the dual porosity conceptualization whereby the fluid 

flow is assumed to occur primarily through the high permeability fracture system and the 

matrix acts as the fluid storage as demonstrated in Figure  3.1.11-13  
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A matrix-fracture transfer function is used to model the exchange of fluids between 

the matrix and the fracture systems.  

 

3.1.1 Pressure Equations 

 

For a dual porosity dual permeability incompressible two phase flow, the transport 

equations that govern fluid flow in fracture and matrix are given by the following.12,13 
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ogλ and wgλ  are the gravity terms given by  

 

Fracture Fracture Fracture 

Matrix Matrix Matrix 

Injector Producer 

Figure  3.1 – Dual-porosity  single-permeability (DPSP) system 
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and oΓ  and wΓ  are the volumetric oil and water rates exchanged between the matrix and 

fracture systems.  If we neglect capillarity effects and combine the equations for each 

system, we arrive at the fracture and matrix pressure equations 

 

( )f tf f gf f t sfk P Z qλ λ∇⋅ ⋅ ∇ + ∇ + Γ = − ..............................................................(3.4) 

 

( )m tm m gm m t smk P Z qλ λ∇⋅ ⋅ ∇ + ∇ − Γ = − ...........................................................(3.5) 

 

where the combined terms are given by the following 

 

t o w

g og wg

λ λ λ
λ λ λ
= +
= +

.....................................................................................................(3.6) 

 

t o wΓ = Γ + Γ ......................................................................................................(3.7) 

 

For dual porosity system where we have no flow between matrix blocks and no 

source term, Eq.  3.5 reduces to  

 

0tΓ = .................................................................................................................(3.8) 

 

We can conclude from Eq. 3.7 and 3.8 that matrix and fracture transfer terms are 

equal and magnitude and opposite in direction 

 

o wΓ = −Γ ...........................................................................................................(3.9) 
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Since in dual porosity systems we have no flow between matrix blocks, streamlines 

will only be traced in the fracture network and only the fracture pressure equation is used. 

We can combine Eqs. 3.4 and 3.8 to arrive at the governing pressure equation for a dual 

porosity system. 

 

( )f tf f gf f sfk P Z qλ λ∇⋅ ⋅ ∇ + ∇ = − ...................................................................(3.10) 

 

Since the transfer term does not exist in the pressure equation, it will not affect 

streamlines trajectories. Eq 3.10 is used to solve for the velocity field which is used to 

trace streamlines. 

 

3.1.2 Saturation Equations  

 

If we consider incompressible flow in a non-deformable media, then the conservation 

equations for the fracture and the matrix in a dual porosity system can be written as 

follows, 12-15  

 

0wf
f t wf w

S u f G
t

φ ∂
+ •∇ +∇• +Γ =
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GG .................................................................(3.11) 

 

wm
w m

S
t

φ ∂
Γ =

∂
..................................................................................................(3.12) 

 

In Eqs. 3.11 and 3.12, the subscripts f and m represent the fracture and the matrix 

systems, respectively. In addition, the fractional flow, wff , and the gravity term, G , are 

defined as follows, 
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.................................................................................................(3.13) 
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where, 
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w

kλ
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t of wfλ λ λ= + ...................................................................................................(3.17) 

 

In order to solve for saturation advancement along streamlines, we need to transform 

Eq. 3.11 into time of flight coordinates. For 3D irrotational potential flow and curl u=0, 

we have the following relationship 

 

ψ χ= ∇ ×∇u ...................................................................................................(3.18) 

 

where u is velocity, ψ  and χ  are stream functions of flow in 3D space. Streamlines are 

defined as the intersection of stream surfaces in τ ,ψ , χ  space.  To calculate saturation 

advancement in time of flight coordinates, we need to transform streamlines from (x,y,z) 

grid coordinates to (τ ,ψ , χ ) coordinates23. Starting with the transformation of gradient 

operator, ∇ , from (x,y,z) coordinates to (τ ,ψ , χ ) coordinates 

 

τ ψ χ
τ ψ χ
∂ ∂ ∂

∇ = ∇ +∇ +∇
∂ ∂ ∂

........................................................................(3.19) 

 

The definition of time of flight is given by an integral along a streamline24 
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( , , )

0
( , , )

x y z
fx y z drφτ = ∫ u

.................................................................................(3.20) 

 

Eq. 3.20 can be rewritten in differential form  

 

fd
dr
τ φ
=

u
..........................................................................................................(3.21) 

 

d
dr
τ  is the change of τ as a tracer moves a infinitesimal distance of dr  along a given 

streamline.  Since dr is a vector in (x,y,z) space, we can use the chain rule to expand Eq. 

3.21 

 

fx y z
x r y r z r
τ τ τ φ∂ ∂ ∂ ∂ ∂ ∂

+ + =
∂ ∂ ∂ ∂ ∂ ∂ u

.......................................................................(3.22) 

 

ˆ ˆ ˆ ˆ ˆ ˆ fx y zi j k i j k
r r r x y z

τ τ τ φ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + ⋅ + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ u
......................................(3.23) 

 

If we examine the left hand side of Eq 3.23, we notice that the first part is a unit 

vector along the velocity vector, u, while the second part is τ∇ . We can rewrite Eq. 3.23 

now in a more simplified form 

 

fτ φ⋅∇ =u .......................................................................................................(3.24) 

 

The dot product of Eq. 3.19 with the velocity vector, u, gives the following 

 

τ ψ χ
τ ψ χ
∂ ∂ ∂

⋅∇ = ⋅∇ + ⋅∇ + ⋅∇
∂ ∂ ∂

u u u u .......................................................(3.25) 
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Recognizing that velocity vector is orthogonal to stream functions gradient, Eq. 3.25 

simplifies to the following form  

 

τ
τ
∂

⋅∇ = ⋅∇
∂

u u ..............................................................................................(3.26) 

 

We can now combine Eqs. 3.24 and 3.26 to arrive at the coordinate transform 

operator  

 

fφ τ
∂

⋅∇ =
∂

u ....................................................................................................(3.27) 

 

Finally, using the transform operator given Eq. 3.27, we can transform Eq. 3.11  in 

terms of streamline time of flight coordinate to arrive at the saturation equation for the 

fracture system  

 

0wf wf w

f f

S f G
t τ φ φ

∂ ∂ ∇• Γ
+ + + =

∂ ∂

G
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Eq. 3.28 together with the matrix saturation Eq. 3.12 describes the streamline 

transport equations for the dual porosity system. 

There are many forms for the transfer function in literature. In this study, we are 

assuming a countercurrent imbibition mechanism where the amount of water imbibed 

into the matrix block is equal to the amount of oil expelled into fracture. The 

conventional transfer function that model this exchange mechanism is given by25,26 

 

( )wf om
w s m cm cf

wf om

F k P Pλ λ
λ λ

Γ = −
+

......................................................................(3.29) 

 

where sF  is the shape factor and for a rectangular matrix block with all sides exposed to 

imbibition the following relationship is used12 
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If we combine Eq. 3.28 with Eqs. 3.29 and 3.12, we arrive at the saturation equations 

for fracture and matrix blocks 
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....................................................(3.32) 

 

To account for gravity effect, we employ the operator splitting technique27 and split 

Eq. 3.31 into two parts, the first part is the convective term which account for viscous 

forces along streamlines and is given by 

 

( ) 0wf wf s m wmf om
cm cf

f wmf omf

S f F k f P P
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λ λ
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.............................................(3.33) 

 

The second part of the equation accounts for gravity effects only 

 

. 0wf f

f
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t φ

∂ ∇
+ =
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During simulation, the convective term in Eq. 3.33 is solved first for saturation which 

is then used as an initial condition in Eq. 3.34 to calculate the final saturation during each 

time step. Eqs. 3.12 and 3.33 can be solved explicitly using the following discretization15 
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3.1.3 Streamline Tracing Steps 

 

As mentioned earlier, the fluid flow occurs only in the fracture system in dual 

porosity systems and we need to trace streamlines only for the fractured medium. The 

tracing of streamlines for the dual porosity system is identical to that of the single 

porosity system.28  The basic steps can be summarized as follows: (1) Starting with the 

fracture permeability field (Figure  3.2a), source/sink configuration and boundary 

conditions, a pressure field is generated as in conventional finite-difference simulation 

(Figure  3.2b). (2) Next, the velocity distribution in the reservoir is obtained using Darcy’s 

law and the streamlines are traced using the Pollock approach28 (Figure  3.2c). The time of 

flight or travel time along streamlines is also obtained at this stage and the isochrones 

represent the front propagation (Figure  3.2d). (3) The fracture saturation distribution is 

obtained by solving the 1-D saturation Eq. 3.31(without the gravity term) along each 

streamline as shown in Figure  3.3a. Gravity effects can be accounted for in the same 

manner as in single porosity streamline simulation by using operator splitting 

techniques.27 Figure  3.3b shows the saturation distribution along a streamline as a 

function of matrix-fracture transfer rate in Eq. 10. For sF = 0, there is no interaction with 

the matrix and the solution reverts back to the single porosity formulation. Clearly, the 

net effect of the matrix-fracture transfer function is to impede the water saturation front 

advancement in the fracture system. The matrix saturation equation is solved along the 

streamline at the same time and is shown in Figure  3.3c. (4) The matrix and fracture 

saturations are then mapped back onto the grid (Figure  3.3e and Figure  3.3f). Again, the 
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rapid propagation of the saturation front in the fracture system in the absence of transfer 

to the matrix ( sF = 0) can be clearly seen in Figure  3.3d. (5) The streamlines may be 

updated to account for changing well conditions such as infill drilling, rate changes etc. 

As in single porosity simulation, fracture and matrix saturations are mapped from 

streamlines onto the grid before each update, followed by pressure solution, streamline 

generation and re-initialization.  

 

Inj 

P 
(a) Permeability field 

P 

inj  (b) Pressure solution 
P

Inj (c) Streamlines  (d) TOF 

Figure  3.2 – Streamline and time of flight calculations 
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Figure  3.3 – Saturation evolution along streamlines – single and dual 

porosity examples 
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3.1.4 Pressure and Streamlines Updating 

 

In field applications, streamlines trajectories will be change over time due to 

changing field conditions7. Changes ranges from moderate in cases of production and 

injection rates fluctuations to the more drastic in cases of infill drilling which completely 

changes streamlines configuration in affected areas. Even if conditions are assumed 

constant, the evolution of saturation over time will alter total mobility which in turn will 

affect streamlines trajectories. To account for all of these changes, streamlines need to be 

updated whenever necessary by remapping saturations back onto the grid and updating 

the pressure and velocity fields in order to regenerate streamlines.  

 

3.2 Data Misfit Calculation 

 

The first step in integrating production data is to quantify of the data misfit. Data 

misfit is a measure of discrepancy between observed and calculated responses. In our 

approach, we define a ‘generalized travel time’ at each well for this purpose. We seek an 

optimal time-shift t∆ at each well so as to minimize the production data misfit at the 

well.21 This is illustrated in Figure  3.4a where the calculated water-cut response is 

systematically shifted in small time increments towards the observed response and the 

data misfit is computed for each time increment. The optimal shift will be given by 

t∆ that minimizes the misfit function, 
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or, alternatively maximizes the coefficient of determination given by the following 
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Thus, we define the generalized travel time as the ‘optimal’ time-shift t∆ � that 

maximizes the R2 as shown in Figure  3.4b. It is important to point out that the 

computation of the optimal shift does not require any additional flow simulations. It is 

carried out as a post-processing at each well after the calculated production response is 

obtained from flow simulation. The overall production data misfit can now be expressed 

in terms of a generalized travel time misfit at all wells as follows  

 

Figure  3.4 – Illustration of generalized travel-time shift  
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The generalized travel time approach has been successfully applied to many field 

cases.  It leads to a robust and efficient inversion scheme because of its quasi-linear 

properties.7,21 

 

3.3 Sensitivity for Dual Porosity Systems 
 

One of the important advantages of the streamline approach is the ability to 

analytically compute the sensitivities of the generalized travel time with respect to 

reservoir parameters. Streamline-based sensitivities have made it feasible to integrate 

dynamic data into high resolution geological models6-8. Analytical sensitivities will form 

an integral part of our data integration approach. In this work, we will extend dynamic 

data integration methods to dual porosity systems by developing an expression for dual 

porosity analytical sensitivities.   

We have seen that during generalized travel time computation we shift the entire 

fractional flow curve by a constant time. Thus, every data point in the fractional-flow 

curve has the same time shift, 1 2t t tδ δ= = = ∆ �"  (Figure  3.4a). We can average the 

travel time sensitivities of all data points to obtain a rather simple expression for the 

generalized travel time sensitivity with respect to fracture parameters m as follows,7 

 

( )/,1

N dj
t mt i jj i

m N dj
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== −

∂

�
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All that remains now is to calculate the dual porosity travel time 

sensitivities, , /i jt m∂ ∂ , of various water-cut at the producing well. In the following 

sections we will derive and verify an analytical expression for travel time sensitivities in 

dual porosity systems. 
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3.3.1 Dual Porosity Analytical Sensitivities 

 

Perturbing fracture parameters will greatly affect the convective transport of fluids in 

the fracture network. We have seen earlier that Eq. 3.33 models the convective part of 

saturation evolution along streamlines in the fracture network. Using the operator 

splitting technique, we can split Eq. 3.33 into two parts: a predictor that models transport 

along streamlines and a corrector that accounts for matrix-fracture fluid exchange as 

follows 

 

0wf wfS f
t τ

∂ ∂
+ =

∂ ∂
 : Predictor ...........................................................................(3.41) 

 

0wf w

f

S
t φ

∂ Γ
+ =

∂
 : Corrector ............................................................................(3.42) 

 

Perturbing fracture parameters will affect the transport along streamlines which is 

modeled by the predictor part.  Rearranging Eq. 3.41 and using the chain rule, 

 

wf wf wf

wf

S f S
t S τ

∂ ∂ ∂
= −

∂ ∂ ∂
........................................................................................(3.43) 

 

If we assume that small perturbations to fracture parameters do not shift streamlines 

in space, then the change in saturation at the streamline outlet node is the sum of dynamic 

change and parameter perturbation effect, 

 
T
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S SS t
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τδ δ δ
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∂ ∂ ∂⎡ ⎤= + ⎢ ⎥∂ ∂ ∂⎣ ⎦
m

m
.................................................................(3.44) 

 

The propagation of a fixed saturation is found by setting 0wfSδ =  
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Combining Eqs. 3.43 and 3.45 and differentiating the expression with respect to a 

given reservoir parameter, m, we arrive at the following expression for the travel time 

sensitivity in terms of time of flight sensitivity 

 

wf
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t m
fm
S

τ∂
∂ ∂=

∂∂
∂
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It should be noted that the fractional flow derivative, wf

wf

f

S

∂

∂
, is evaluated after 

saturation is updated using Eq. 3.42 to account for matrix-fracture fluid exchange. If 

gravity is included, then an additional updating is required to account for gravity 

segregation before the sensitivities are computed.27 The Time Of Flight (TOF) sensitivity 

is calculated from the definition of time of flight given in Eq. 3.20 which can be readily 

evaluated after a single simulation run. For example, the TOF sensitivity with respect to 

fracture permeability can be derived by substituting the Darcy velocity definition, 

 

 ( ) ( )t fk Pλ= ∇u x x ........................................................................................(3.47) 

 

into Eq. 3.20 
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k P
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Here, ∑  stands for performing the integration over the length of a given streamline.  

Differentiating Eq. 3.48 with respect to fracture permeability gives the required 
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sensitivity (x accounts for the fact that the integration is one dimensional along a 

streamline), 

 

2
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  ...............(3.49) 

 

This integral can be evaluated as a summation over a given streamline, 

 

2
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f t f

x
k k P
τ φ

λ
∂
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x x x
  ................................................................(3.50) 

 

Note that the quantities in the summation expression are either contained in the initial 

reservoir model or are available after the forward simulation run. The negative sign in Eq. 

3.50 is consistent with the fact that increasing fracture permeability will reduce time of 

flight, hence giving a negative sensitivity.  

 

3.3.2 Verification of Dual Porosity Sensitivity 

 

In order to verify our DPSP travel time sensitivity in Eq. 3.46 we compared our 

results with sensitivities obtained by numerical perturbation. For this purpose, we 

simulated water injection in a quarter five-spot pattern. A dual porosity medium with 

homogeneous fracture permeability represented by 21x21 grid cells was used for this 

comparison. We perturbed every grid block permeability by 5%, one grid block at a time 

and numerically computed the partial derivative of the arrival time of a fixed water cut 

with respect to permeability. Figure  3.5 shows the results for water cuts of 0.10 and 0.20. 

Clearly, we obtain a good agreement between analytical travel time sensitivities 

calculated from Eq. 3.46 and numerical travel time sensitivities. The perturbation method 

shows some artifacts partly because the results depend on the magnitude of perturbation 

whereas the analytical sensitivities are symmetric and smooth.  The differences are also 

because of the approximations inherent in the analytical computations, particularly the 

assumption that the streamlines do not shift because of small perturbation in reservoir 



 28

properties.  Nevertheless, as we will see later, the streamline-based sensitivities are 

adequate for history matching purposes under a wide variety of conditions.  

 

Figure  3.5 – Comparison of numerical and analytical sensitivities in 

a ¼-five spot pattern 

Numeric WC=20% Numeric WC=10% 

Analytical WC=10% Analytical WC=20% 
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3.3.3 Accounting for Changing Field Conditions 

 

The analytical sensitivities we have derived earlier does not account explicitly for 

saturation distributions along streamlines. During pressure updates, which account for 

changing field conditions, permeability perturbations will affect saturation distributions. 

We can account for such conditions using the same approach used in single porosity 

systems.7 Changes to the streamline outlet node saturation are now a function of dynamic 

changes, parameter perturbation and initial water saturation at the beginning of the 

pressure update cycle. Extending Eq. 3.44, 
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...................................(3.51) 

 

where n and n+1 represent previous and current pressure updates, respectively. Here, 
n

wfS are the initial fracture saturations for the current pressure update along a streamline. 

The change to saturation at the outlet node is mainly a function of its own initial 

saturation rather than the initial saturations of other nodes. Rewriting Eq. 3.51,  
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.........................................(3.52) 

 

It was found that this approximation has minimal impact on the sensitivity 

calculation7. Including the effect of reservoir parameter perturbation on initial saturation 

through the chain rule we get the following form, 
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Using the same approach we did earlier, we set 1 0n
wfSδ + =   for a fixed saturation. 

 



 30

1 1 1

0
TTn n n n

wf wf wf wf
n

wf

S S S St
t S

τδ δ δ
τ

+ + + ⎡ ⎤∂ ∂ ∂ ∂ ∂⎡ ⎤= + + ⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
m m

m m
...................................(3.54) 

 

To find sensitivities, we differentiate Eq. 3.54 with respect to a given reservoir 

parameter, m, to get the following expression after rearrangement. 
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Substituting Eq. 3.43 into the above expression gives us the sensitivity expression 
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where 
n

t

m

∂

∂

⎡ ⎤
⎢ ⎥⎣ ⎦

 is the sensitivity at the end of the last pressure update cycle. For the first 

cycle or in the case of a single pressure update cycle, 
n

t

m

∂

∂

⎡ ⎤
⎢ ⎥⎣ ⎦

is set to zero. As the 

previous sensitivity expression, Eq. 3.56 requires only a single simulation run to be 

evaluated. 

 

3.4 Dynamic Data Integration 

 

Data inversion various approaches have been proposed in the literature for the 

integration of production data via inverse modeling.29-33 These can be broadly classified 

into ‘deterministic’ and ‘Bayesian’ methods. Both methods have been successfully 

applied to history matching of field data. In this work, we have adopted a Bayesian 

formulation whereby we minimize the following penalized misfit function, 
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In Eq. 3.57, ∆t�  is the vector of generalized travel-time shift at the wells; DC  and MC  

are the data error covariance and the prior model parameter covariance, respectively. The 

minimum in Eq. 3.57 can be obtained by an iterative least-squares solution to the linear 

system34 
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where G  is the sensitivity matrix containing the sensitivities of the generalized travel 

time with respect to the reservoir parameters and Pm represents the prior model.  We use 

an iterative sparse matrix solver, LSQR, for solving the augmented linear system in Eq. 

3.58. The LSQR algorithm is well suited for highly ill-conditioned systems and has been 

widely used for large-scale tomographic problems in seismology.35 

An important consideration in the solution of Eq. 3.58 is calculation of the square-

root of the inverse of the prior covariance matrix. We have used a numerical stencil that 

allows for an extremely efficient computation of 1/ 2
MC − and is applicable to a wide range 

of covariance and variogram models.36 
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  4  
CHAPTER IV 

APPLICATION OF DUAL POROSITY INVERSION 

 

 

In this chapter we will cover the application of dual porosity dynamic data integration 

using both 2D and 3D models.  We will cover first the modeling part using discrete 

fracture network modeling where a realistic high resolution fractures models can be 

generated using field derived data. 

 

4.1 2D 9-Spot Water Flood Pattern 

 

To illustrate our approach, we will use an example that involves integration of water 

cut data in a 9-spot pattern. We started with the discrete fracture network shown in Figure 

 4.1a. The model exhibits complex connectivity patterns common to naturally fractured 

reservoir where the distribution of fracture swarms determines the shape and intensity of 

fractured regions. A moving window is used to calculate the fracture density for each grid 

cell which is then converted to a fracture permeability multiplier using a non-linear 

transform.37 The fracture permeability is calculated using the multiplier and a 

predetermined fracture permeability range. We generated the permeability field show in 

Figure  4.1b using a 21x21 grid. We used a dual porosity streamline simulator for 

modeling fluid flow in the fractured medium for this example. In Figure  4.2, which 

shows well locations and generated streamlines for the reference model, we can see how 

the streamlines are more concentrated in highly fractured regions to the South West of the 

model. Wells 1,2 and 4 are more connected to the injector than the rest of the producers 

which will lead to earlier breakthrough as we will see later. 

We can randomly extract various percentages of fracture swarms and fractures within 

the swarms to generate prior models with varying degrees of fracture information. 

Because production data is more appropriate for characterizing large scale features, 

fracture swarms location is more critical than the detailed connectivity of individual  
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fractures within a cell. To generate a 2D prior model of fracture patterns, we randomly 

draw 50% of the fracture swarms and 50% of fractures inside each swarm.  Figure  4.3a 

shows the prior fracture permeability model. 

We match the water cut response from the reference model for the first 500 days 

using the generalized travel time inversion. Starting with the prior model, we minimize 

the travel time shift at each producer iteratively to match the reference production data. 

Figure  4.2 – Well locations and streamlines 

1 2 3 

4 5 

6 8 7 

(a) Discrete fracture network (b) Reference fracture permeability 

Figure  4.1 – Reference model for the 9-spot 2D case 
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Figure  4.3b shows the final fracture permeability model. Figure  4.4 shows the observed 

data, initial model response and the matched response after performing the generalized 

travel time inversion.  

 
The process has not only matched the breakthrough times but also the amplitude of 

the water cut response for all the wells. Also, Figure  4.3b shows that after inversion we 

are able to recover the permeability contrast in the reference model and reproduce the 

dominant fracture connectivity while retaining most of the features of the prior model. 

For example, integration of production data has connected the two distinct high 

permeability regions in the prior model. This is clearly an important feature in the 

reference model in terms of fluid flow response.  Finally, Figure  4.5 shows the 

convergence of the inversion algorithm. The data misfit is reduced by almost an order of 

magnitude in only five iterations. 

 

(a) Prior permeability model (b) Final match model 

Figure  4.3 – Prior and match models 
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Figure  4.4 – 2D case water cut match 
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Figure  4.5 – Data misfit vs. iterations 
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4.2 Large Scale 3D Model 

 

This 3D synthetic example is designed after a carbonate reservoir in west Texas. The 

dual porosity reservoir model used here has a mesh size of 58x53x10 with a total of 

30,740 grid cells that represent the fracture permeability distribution. To start with, we 

generated a reference fracture pattern distribution using a discrete fracture network 

(DFN) model. The DFN model was generated on a layer by layer basis using pre-

specified distributions that control fracture length, height, aperture and azimuth inside 

elliptical fracture swarms. The motivation behind using the DFN model is that we can use 

fracture parameters derived from seismic lineament maps, image logs, regional stress 

studies etc. to generate realistic fracture distribution constrained to field data. The 

discrete fracture pattern was then converted to a continuum model using grid block 

permeability multipliers as discussed before. Figure  4.6 shows the reference fracture 

permeability for the ten layers. Clearly, the layers 2, 4, 7 and 9 are highly fractured and 

will have a significant impact on the flow behavior. For comparison purposes, Figure  4.7 

shows the discrete fracture networks for layers 2, 4 and 7. The fracture permeability 

varies over three orders of magnitude from a minimum of 2.5 md to a maximum of 1600 

md.  The matrix permeability was fixed at 1 md.  

Figure  4.8 shows relative permeability data for the matrix and fracture systems. The 

matrix and fracture relative permeability were borrowed from literature12 and describes a 

matrix system with irreducible water saturation of 0.2 and irreducible oil saturation of 

0.30.  
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Figure  4.6 – Reference fracture permeability 

distribution 
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Figure  4.7 – Discrete fracture layers converted to permeability (left 

panel) using fracture intensity 

(b) Layer 4 

(c) Layer 7 

(a) Layer 2 
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Figure  4.8 – Relative permeability for matrix and fracture systems 
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There are 31 producers and 11 injectors in the model which consist of 11 inverted 5-

spot patterns covering 320 acres. The detailed production rates and well schedule 

including infill drilling, well conversion and well shut-ins can be found elsewhere.7  

Figure  4.9a shows the well locations and the streamlines at the end of 7500 days of 

simulation.  Just as in streamline simulation, we generate the streamlines only when there 

are significant changes in the well events or boundary conditions.  These streamlines are 

then used to compute the time of flight and travel time sensitivities in Eq. 3.56.  For this 

example we used 11 streamline updates to account for changing well conditions during 

the sensitivity computations. We have used a commercial finite difference simulator 

(ECLIPSE38) as a forward model. 

For demonstration of our production data integration approach, we will start with two 

different prior models and match the water-cut history obtained from the reference 

permeability field.  The first model was generated using 50% of the fractures and fracture 

swarms in the reference fracture distribution (Figure  4.7). Thus, the prior model 

contained altogether about a quarter of all the fractures in the reference model. The 

second model contained 75% of the fracture and fracture swarm information and thus had 

approximately half of all the fractures in the reference model. The fracture porosity was 

kept fixed at 0.03.  
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Figure  4.9 – (a) Top view shows well locations and streamlines at the end 

of the last update.  (b) 3D streamlines traverse layers in 3D space 

 

(a) Well locations and streamlines 

(b) 3D streamlines 
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4.2.1 Prior Model-1: 50% Fracture Information 

 

In this example we retain 50% of the information in the reference fracture pattern 

(Figure  4.7). Both the fracture swarm location and the fracture density within the swarms 

were included as part of the prior information.  The discrete fracture pattern generated is 

shown in Figure  4.10 for layers 2, 4 and 7. The prior permeability distribution is shown in 

Figure  4.11a. As expected, the prior model exhibits less connectivity and fewer 

preferential flow paths compared to the reference model.  

 

Layer#7 

Layer#2 

Layer#4 

Figure  4.10 – Discrete fracture networks for 3 different layers with 50% 

fracture information 
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Figure  4.11 – Permeability distribution with 50% fracture information 

(a) Prior model (b) Match model 
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wells showed better water cut match after inversion
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The final permeability field after matching water-cut response at the producers is 

shown in Figure  4.11b. The water-cut response from the prior model for 30 producers is 

shown in Figure  4.12. In the same figure we have superimposed the water-cut response 

from the reference model. Clearly, we see a large discrepancy in the production response 

because of the lack of fracture connectivity and permeability contrast in the prior model. 

After inversion, a close agreement is obtained between the reference and the calculated 

production response as shown in Figure  4.12.  On comparison of the final permeability 

field with the reference permeability distribution, we see that we are able identify the 

dominant flow paths in the reference model through the integration of production data. 

For example, in layers 2 and 7 (Figure  4.13), the inversion process re-establishes the high 

contrast and recovers some of the connected pathways seen in the reference model.  We 

can see similar effects across many of the layers. However, the results also underscore the 

inherent non-uniqueness in the solution, particularly in 3-D because of the large degree of 

freedom for these flow paths. This makes prior information vital to the success of the 

inversion. Finally, Figure  4.14 shows the convergence of the inversion as a function of 

number of iterations.  Both travel time misfit and overall water-cut misfit are reduced 

significantly after 20 iterations. The entire history matching took 3.2 hours in a PC (Intel 

Xeon 3.06 GHz Processor). 
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Reference Prior model Final match 

L#2 

L#7 

Figure  4.13 – Two layers illustrating that integration of water cut data 

re-established permeability contrast and identified major flow paths 

while preserving the prior information 
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Figure  4.14 – Data misfit vs. iterations (prior model-1)    
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4.2.2 Prior Model-2 : 75% Fracture Information 

 

The prior model for this example was generated by retaining 75% of the information 

regarding fracture swarms and fracture density within swarms. Again, the discrete 

fracture network generated for layers 2, 4, and 7 are shown in Figure  4.15. The 

permeability distribution is shown in Figure  4.16a. As expected, the prior model for this 

case shows a closer resemblance to the reference permeability field. This is also reflected 

in the computed water-cut response shown in Figure  4.17. Clearly, the production  

Layer#7 

Figure  4.15 – Discrete fracture network for 3 layers with 70% 

fracture information 

Layer#2 

Layer#4 
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Figure  4.16 – Permeability distribution for the prior model with 75% fracture 

information 

(a) Prior model  (b) Match model  
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response for this model is much closer to the reference production history compared to 

the previous model. Although many of the wells show good match, the lack of fracture 

connectivity and permeability contrast still impacts the production response of several 

wells, for example, wells 2, 3, 8, 9 and 14, among others. After inversion, we obtain 

excellent agreement for all wells as shown in Figure  4.17. The final permeability field 

after inversion is shown in Figure  4.16b.  On closer observation, for example, layers 3 

and 5 (Figure  4.18), we see that we are able to match the production data with minimum 

deviation from the prior model. This is expected because of the higher fracture 

information in the prior model. Also the inverse algorithm by design attempts to preserve 

prior information to maintain geologic realism.34,39 Figure  4.19 shows the misfit 

reduction as a function of the number of iterations for this example.  Again, the misfit is 

reduced by almost an order of magnitude. 

Finally, comparing the results of inversion using the two different prior models, we 

can clearly see the role of prior information in our ability to predict fluid flow through 

fractured reservoirs. Although we were able to match the production history reasonably 

well starting with 50% fracture information, the results improved significantly when 

additional fracture data were incorporated.  This observation is true for inverse modeling 

in general; however, the impact is expected to be more pronounced for fractured 

reservoirs because of the high contrast between the fracture and matrix permeability and 

the role of preferential fracture flow paths on the overall flow behavior. The inverse 

problem is ill-posed and we can not expect to reproduce the details of the fracture pattern 

in the reference model. However, we can reduce the non-uniqueness by anchoring the 

solution close to the prior model. By starting with different prior models and matching 

different ‘realizations’ of the production data, we can explore the uncertainty space by 

sampling from the posterior distribution.40 
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Figure  4.17 – Water cut match and initial response for 30 wells for prior 

model-2 
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Prior model Final match 

Layer#3 

Layer#5 

Figure  4.18 – Two layers illustrating changes to the 

prior model for matching production data.  Note that 

much of the prior model remains unchanged to 

preserve geologic realism 
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  5   
CHAPTER V 

UNCERTAINTY ASSESSMENT USING APPROXIMATE MCMC  

 

 

5.1 Uncertainty Assessment Methods 

 

In practice, the uncertainty in reservoir response due to uncertainty in reservoir 

parameters is evaluated by simulating the response of multiple random realizations that 

hopefully bracket the underlying variability. Obviously, the validity of such methods is 

highly dependent of the distribution of the random realizations and if, indeed, they 

sample the correct distribution of reservoir parameters. Rigorous sampling methods of 

reservoir parameters, such as MCMC and hybrid MCMC, have been applied successfully 

by Omre et al.41, Oliver et al.42 and Bonet-Cunha et al.43. Approximate methods, like 

Randomized Maximum Liklihood (RML)44,45 and Pilot Point46,47,48, attempt to be more 

efficient than the rigorous methods while providing realizations that approximate the 

target distribution. All methods require running the flow simulation which, for high 

resolution models, can be very expensive.  

Due to the high computational cost associated with uncertainty assessment methods, 

several authors have investigated the use of an upscaled model to approximate the high 

resolution model response.49,50  The response from such low resolution models require 

correction due to errors introduced by upscaling. Variance correction49 has been 

investigated to account for variance reduction in upscaled models and some studies have 

been done to evaluate the effect of model calibrations from a statistical perspective.51,52 

Omre and Loedon50 have formulated a more rigorous approach to correct for upscaling 

bias which affects produced volumes and recovery calculations. While such methods try 

to correct for errors introduced by using a proxy model, in this case an upscaled version, 

it is clear that upscaling adds more uncertainty to the problem since it requires proper 

calibration which depends on additional and yet to be determined statistical parameters.  
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In this study we developed a highly efficient streamline-based approximate MCMC 

method that works on high resolution models. The method has a higher acceptance rate 

than traditional MCMC while eliminating most of the cost associated with rejections. The 

method works on both streamline and finite difference simulators which makes it 

applicable to wide range of practical field conditions. This chapter will cover the 

mathematical formulation of the approximate MCMC method in detail. 

 

5.2 Mathematical Formulation 

 

We will cover the theoretical basis of traditional MCMC method and show how it 

could be extended using an approximate formulation. We will then cover the Gradual 

Deformation Method (GDM) which is used for generating proposals using an optimized 

set of basis realizations that insures proper coverage of the reservoir parameter space.  A 

new efficient workflow will be discussed later. Our approach is quite general and is able 

to handle both streamline and finite difference simulators.  

 

5.2.1 Traditional MCMC  

 

In 1953, Metropolis et al.53 proposed an algorithm to asymptotically sample a space 

according to Gibbs-Boltzmann distribution. The algorithm, known as Metropolis 

Algorithm, followed simple probabilistic rules to perform a biased random walk 

transition steps.  The transition sequence is a Markov chain simulation where the 

probability of the new state depends only on the previous state. The transition probability 

insures that after a finite number of transitions, called a burn-in time, the sequence will 

converge to the desired distribution regardless of the initial starting state. In practical 

applications such burn-in time can be significant and may require thousands of iterations 

which make MCMC costly to implement.  

In the traditional MCMC algorithm, the following steps are performed: 

• Propose an initial state, 1m . 

• Propose a transition state, *m , from the parameter pdf, ( | )iq m⋅  

• Generate u  from a uniform distribution (0,1)U  
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• Check transition acceptance;  if *( , )iu m mα≤ ⇒  promote to proposed state 
*m  otherwise reject *m  and propose a new transition state. 

There are many acceptance criteria available for our use but the most common and 

widely used is the Metropolis-Hasting criterion 

 
* *

*
( | ) ( )min 1,
( | ) ( )

i

i i
q m m f m
q m m f m

α
⎡ ⎤⋅

= ⎢ ⎥⋅⎣ ⎦
........................................................................(5.1) 

 

( | )q ⋅ ⋅  is the proposal distribution of transitioning from one state to the next one in the 

Markov chain sequence and ( )f ⋅  is the reservoir parameter likelihood distribution. It 

should be noted that if the chain is symmetric (i.e. the transition from im to jm has the 

same probability as the transition from jm to im ) then ( | )q ⋅ ⋅  will cancel out in Eq. 5.1 

leaving only the likelihood distribution, ( )f ⋅ , to be calculated. Also, the transition 

probability does not depend on the normalization constant. Such formulation lends itself 

very well to computer iteration.  

Production data is related to reservoir parameters through the relationship, ( )d g m= , 

where g  is a nonlinear transfer function that calculates reservoir response. Typically, 

finite difference or streamline simulators are used. If we assume that production data and 

reservoir parameters follow a multi-Gaussian distributions, the posterior distribution can 

be modeled using the following relationship17,19 
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1

1( ) exp[ ( ) ( )
2
1 ( ( ) ) ( ( ) )]
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prior M prior

obs D obs

f m m m m m

g m d g m d

−

−

∝ − − −

− − −

C

C
..............................................(5.2) 

 

where priorm is the prior model, MC is the parameter covariance, DC is the data 

covariance and obsd is the observed response. Notice that the proportionality constant will 

vanish in Eq 5.1. 
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5.2.2 Approximate MCMC 

 

Fox and Nicholls20 proposed a method to perform MCMC using approximate 

likelihood calculation for the acceptance criteria in a modified Metropolis-Hastings 

algorithm. In their proposed procedure, if a proposal is accepted, the exact likelihood is 

calculated as in traditional MCMC but if the sample is rejected then a new sample is 

drawn and the procedure is iterated. The steps are exactly the same as traditional MCMC 

with the exception of adding the approximate likelihood check for rejection which filters 

out rejected samples before performing exact acceptance check. The procedure does not 

compromise the rigorousness of traditional MCMC but simply eliminates most of 

rejected samples and avoid paying the cost of running the exact MCMC except for 

samples that have a higher chance of being accepted.  

As discussed in chapter III, the streamline analytical sensitivity defines the change in 

travel time response as a function of change in a given reservoir parameter, 

 

wf

wf

t m
fm
S

τ∂
∂ ∂=

∂∂
∂

.......................................................................................................(5.3) 

 

Let us denote the change in values in transition from im to *m  by * im m mδ = − . 

For small perturbation to reservoir parameters, mδ , we are going to make the following 

linearized approximation, 

 
* * *( ) ( ) ( )i ig m g m m g m mδ δ= + +G� .........................................................(5.4) 

 

where G  is the sensitivity given by Eq. 5.3 and * *( )g m  is the approximation to the 

reservoir response corresponding to *m .  Using Eq. 5.4, we can rewrite the acceptance 

criteria in  Eq. 5.1 
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* * *
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( | ) ( )min 1,
( | ) ( )
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i i
q m m f m
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where * *( )f m  is given by  

 

* * 1

* * 1 * *

1( ) exp[ ( ) ( )
2

1 ( ( ) ) ( ( ) )]
2

prior M prior

obs D obs

f m m m m m

g m d g m d

−

−

∝ − − −

− − −

C

C
........................................(5.6) 

 

5.2.3 Parameter Perturbation Using Gradual Deformation 

 

There many methods proposed for sampling from parameter space. Some local 

perturbation methods use two points swapping where two parameter values from two 

different grid blocks are swapped to generate a proposal. Global perturbation methods 

perturb all parameters in the model for each proposal generated. Oliver et al.42 have 

showed that local perturbation is more efficient for generating realizations for Markov 

chains when the problem is highly nonlinear while global perturbation is more efficient 

for  linear or slightly nonlinear problems. Since the approximation we derived for 

approximate MCMC linearizes the problem locally, global perturbation will be the more 

efficient approach. 

The gradual deformation method54 provides an excellent framework for performing 

global perturbation. The method was originally developed to gradually deform or change 

Gaussian related stochastic reservoir models while preserving their covariance structure. 

The method has been later extended to non-Gaussian mixtures55 and has been applied to a 

wide range of problems including dynamic data integration and uncertainty assessment. 

Let ( )Z x be a multi-Gaussian random function known at N locations nx where 

1,2,..,n N= with a covariance ( )hρ . Let ( )iS x be a series of independent standard 

multi-Gaussian random functions with the same covariance function as ( )Z x . We can 

construct conditional random functions using the following, 
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* *( ) ( ) ( ) ( ) 1,2, ,i i iY x Z x S x S x i I= + − ∀ = … ............................................(5.7) 

 

where *( )Z x  is simple kriging of ( )Z x , 

 
*( ) ( ) ( )n n

n

Z x x Z xλ= ∑ ...................................................................................(5.8) 

 

and *( )iS x  is simple kriging of ( )iS x , 

 
*( ) ( ) ( )i n i n

n

S x x S xλ= ∑ ...................................................................................(5.9) 

 

and the kriging weights are given by the kriging system, 

 

1

( ) ( ) ( ) 1,2, ,
N

i n i n
i

x x x x x n Nλ ρ ρ
=

− = − ∀ =∑ … ........................................(5.10) 

 

Journel and Huijbregts56 have shown that ( ) 1,2, ,iY x i I∀ = … are series of standard 

multi-Gaussian random functions with the same covariance as ( )Z x . ( )iY x , however, 

are not independent as they are conditioned to the same random variable, 

( ) ( 1,2, , )nZ x n N= … . The cross-covariance of a pair ( )iY x  and ( )jY x  where 

i j≠ depends on the location x and x h+  and given by the following, 
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........................................(5.11) 

 

A linear combination of ( )iY x will also be a multi-Gaussian random function, 
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( ) ( )i i
i

Y x Y xα= ∑ ..........................................................................................(5.12) 

 

We can combine Eq. 5.7 and Eq. 5.12, 

 
* *( ) ( ) [ ( ) ( )]i i i i

i i

Y x Z x S x S xα α= + −∑ ∑ ..................................................(5.13) 

 

Examining Eq. 5.13, it is clear that for ( )Y x to be conditioned to the data vector, 

( ) ( 1,2, , )nZ x n N= … , the weights has to sum to unity, 

 

1i
i

α =∑ ..........................................................................................................(5.14) 

 

Eq. 5.14 is the conditioning constraint.  The covariance of ( )Y x  can be written with 

the conditioning constraint as follows, 

 

2 * 2[ ( ) ( )] ( ) ( , ) 1i i
i i

E Y x Y x h h x x hρ α ρ α⎛ ⎞+ = + + −⎜ ⎟
⎝ ⎠

∑ ∑ ...........................(5.15) 

 

Examining Eq. 5.15, we can deduce that ( )Y x will have the same covariance of 

( )iY x under the following constraint, 

 
2 1i

i

α =∑ ..........................................................................................................(5.16) 

 

Eq. 5.16 is the covariance constraint. When the two constraints above are satisfied, 

the linear combination given by Eq. 5.12 will preserve the covariance structure. The set 

of weights to satisfy the constraints can be obtained parametrically by finding the 

intersection of a hyper plane and a hyper sphere in multidimensional space. For the 
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simple case of a combination of three models, the parametric form of the weights under 

the constraints 
3

2 1i
i

α =∑  and 
3

1i
i

α =∑  are given by  

 

1

2

3

1 2 cos( )
3 3
1 2 sin( ) ( , )
3 3 6
1 2 sin( )
3 3 6

t

t t

t

α

πα π π

πα

= +

= + − + ∈ −

= + − −

.........................................................(5.17) 

 

For the case of independent realizations, only the covariance constraint is needed and 

a general form for combination of M+1 realizations is given by  

 

0

( ) ( ( ) )
M

Y i i Y
i
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− = −∑ .....................................................................(5.18) 

 

where we deform the residuals around the mean, Ym . The weights satisfy the covariance 

constraint for any choice of ti,  
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5.2.4 Selection of Basis Realizations 

 

While gradual deformation works on any set of realizations with the same covariance 

structure, care need to be taken when selecting the set of basis realizations to be used for 

sampling. Liu and Oliver57 assessed the efficiency of the GDM in sampling from an 

attribute space using two realizations mixtures and a simple linear model to minimize 
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simulation cost.  They concluded that the GDM does produced an acceptable distribution 

when compared with other sampling methods and compared very well with the MCMC 

distribution which is known to reflect the true distribution. They raised concerns about 

the method efficiency in generating proposals due to the need to add random realizations 

during the inner iterations which introduce an arbitrary search direction that may not be 

favorable. They also concluded that using a larger number of realizations will improve 

efficiency dramatically. In our method, we are using GDM to generate proposals for high 

resolution models and efficiency is a major concern. To address these concerns and 

design an efficient sampling algorithm, several decisions were made. First, we are going 

to use a mixture of a large number of stochastic realizations to improve convergence and 

sampling efficiency and eliminate the need to introduce random realizations within the 

iteration loop. Second, since the iteration will be performed without updating search 

directions, we need to choose an “optimum basis” of realizations that insure proper 

coverage of the parameter space.   

A set of realizations are considered optimum if their GD mixture “span” the 

parameter space. We know from linear algebra that for an N dimensional space, we need 

N spanning vectors or realizations in our case. What we are attempting to find is an 

optimum set, i.e. a set of size M N<< that maximize the coverage of the N dimensional 

parameter space. The procedure will start by generating a large number of stochastic 

realizations using geostatistical algorithm like Sequential Gaussian Simulation. Next, we 

are going to extract only a subset of size M of those stochastic models that provide the 

maximum coverage of parameter space. These models will be used as basis models in 

GDM for generating proposals.  

Generating such an optimum basis requires special attention.  Starting with a large set 

of stochastic models, ( ) ( 1,2, , )iY x i K= … , we want first to extract a subset M, 

ˆ ( ) ( 1,2, , )iY x i M K= <… , that maximize the sum of difference norm among all 

possible combinations of M. Mathematically, 
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It should be noted that the difference norm matrix is triangular of size K*K. Once the 

difference norm matrix is calculated, the optimization becomes independent of model 

size and dependent only on the number of models.  The resulting optimized subset M will 

give the boundary points of the stochastic scatter cloud. Let us examine a simple case of 

2-dimensional model to gain insight into the process. If we assume that we have a 

standard bi-Gaussian random variable, we can draw random 100 points (models) from the 

bi-Gaussian distribution. The result is shown in Figure  5.1.  

 

Figure  5.1 – Drawing 100 bi-Gaussian points 
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Figure  5.2 – 20 points subset from Eq. 5.20 
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Figure  5.3 – 10,000 gradual deformation samples 

(c) 20 points + median point 

(b) 20 points + 3 interior points 

(a) 20 points basis subset 
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We want to find a subset of 20 points that maximize the objective function given in 

Eq. 5.20.  Running the algorithm produced the set shown in red in Figure  5.2. We want to 

use the 20 points as basis for GDM and examine the interpolation and extrapolation 

power when only this reduced subset is used. Using gradual deformation with Eq.  5.19, 

we drew 10,000 samples using the 20 points subset as basis models. The result in Figure 

 5.3a shows that most of the GDM sampling is at the boundary of the scatter cloud 

indicating a strong influence of the 20 points subset on sampling.  We want GDM 

sampling to have better coverage of parameter space which requires adding interior 

points. Figure  5.3b shows the effect of adding three interior points to the GDM basis 

models. The points have a strong attraction effect and may lead to less efficient sampling 

of extreme values. If we only add the median of the 100 original points to the subset, a 

more even sampling is achieved as shown in Figure  5.3c where a larger concentration of 

sampling is close to the median while at the same time achieving better sampling of 

extreme values. Figure  5.3c shows also that the GDM can extrapolate beyond the scatter 

cloud which improves the sampling efficiency. Figure  5.4 shows the plot of the objective 

function given by Eq. 5.20.  An initial 20 points set were drawn randomly followed by 

the optimization loop were 100,000 swaps between subset and non subset points were 

performed. A total of 99 successful swaps were needed to maximize the objective 

function. The algorithm was optimized during iterations to calculate only the incremental 

difference resulting from a two-points swap to update the double summation given by Eq. 

5.20.  
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5.3 Approximate MCMC Workflow 

 

In the previous sections, we covered the mathematical formulation of the approximate 

MCMC. In this section we are going to outline the workflow we followed in applying the 

method. Figure  5.5 shows the flowchart diagram for approximate MCMC method with 

GDM sampling. The loop shown ends when a predefined number of samples are 

collected or a maximum number of iterations are reached. The main advantage and 

efficiency of approximate MCMC is experienced at the first conditional statement when 

potentially unacceptable proposals are filtered out using approximate acceptance check. 

Proposals that pass the approximate acceptance check are reevaluated using a full blown 

simulation run to calculate the exact likelihood similar to traditional MCMC. The effect 

is an accelerated convergence at a fraction of the cost of a traditional MCMC without 

Figure  5.4 – Objective function maximization for optimum subset 

Successful swaps 

Obj 
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sacrificing rigorousness. Both streamline and finite difference simulation can be used 

which cover a wide range of applications. Approximating the response using Eq. 5.4 

requires few seconds even for large models which makes the method very efficient and 

practical for large field cases. Most importantly, the approximate response calculations 

do not require additional flow simulation. It is based on the response from the previously 

accepted state and the changes in parameter values proposed in the new state. In the next 

chapter, we will demonstrate the application of approximate MCMC using both 

streamline and finite difference simulators and compare the performance with respect to 

the traditional MCMC.  
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Figure  5.5 – Approximate MCMC flowchart 
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  6   
CHAPTER VI 

APPROXIMATE MCMC: FIELD APPLICATIONS  

 

 

6.1 Approximate and Full MCMC Performance Comparison 

 

A 2D mesh of 21x21 was used with a total of 441 grid cells to study the performance 

of approximate MCMC when compared with full MCMC.  The reference model is shown 

in Figure  6.1a. The model exhibit complex connectivity patterns which will condition the 

movement of flood front across the model.  We used gradual deformation for proposals 

generation by performing small perturbations to the deformation parameters. A total of 

100 basis stochastic models were used for deformation. Figure  6.1b shows the initial 

model used for both approximate and full MCMC. To compare the performance of 

approximate MCMC with full MCMC, we performed two runs where all parameters are 

fixed except for using the approximate Metropolis-Hastings acceptance check for the 

approximate MCMC.  We used a standard deviation of 1% to calculate the covariance 

matrix, dC  , of water cut data in the objective function 

 
0 0 1 0( ( )) ( ( ))T

r d rd g m C d g mψ −= − − ................................................................(6.1) 

 



 72

 
Note that we did not include the prior term in the objective function since all 

proposals are conditioned to model covariance by design which is one of the advantages 

of using the gradual deformation method.  Figure  6.2 shows the objective function 

reduction for both runs as a function of accepted proposals. The advantage of 

approximate MCMC is obvious in accelerating the minimization of the objective function 

where the burn-in time has been reduced by more than 50%.  

Figure  6.1 – 2D case: Reference and initial model 

Inj 

Prod 

(a) Reference Model 

(b) Initial Model 
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The same effect is observed in RMS error reduction shown in Figure  6.3.  

Approximate MCMC will have the effect of filtering out the obvious rejections without 

paying the cost of running a full simulation. Such filtering does not ensure acceptance but 
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Figure  6.3 – RMS error reduction 
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Figure  6.2 – Objective function reduction 
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will increase the probability of finding good proposals and thus, increasing MCMC 

efficiency.  

Figure  6.4 shows the acceptance rate for both methods where total accepted proposals 

divided by total proposals. Approximate MCMC exhibit acceptance rate above 90% 

initially while full MCMC fluctuates below 50%.  The decline in acceptance rate 

indicates that the approximation is more accurate in filtering out rejections during burn-in 

time when the acceptance criteria ratio calculated by Eq. 5.1 has a high contrast between 

accepted and rejected proposals.  

Figure  6.5 shows the final water cut match for the approximate MCMC. The full 

MCMC has the same initial WC and almost identical final match so it was not shown in 

the plot. 

The results show the advantage of using approximate MCMC in accelerating the 

process and lowering the cost of MCMC.  

Figure  6.6a shows convergence of permeability values in selected grid cells after 

burn-in time.  The algorithm converged after approximately 300 iterations. Figure  6.6b 

shows convergence of some GDM parameters which were initialized with the same 

value. Samples are collected after parameters convergence to ensure that values are not 

biased by the initial values. 
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Figure  6.5 – Water cut match 
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Figure  6.6 – Convergence of parameters for approximate MCMC 

(a) Permeability convergence 

(b) GDM parameters convergence  
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6.2 2D Example : Quarter 5-spot Waterflood 

 

In order to examine the sampling efficiency of approximate MCMC, we are going to 

use a quarter 5-spot model similar to the one used in section 6.1. Figure  6.7 shows the 

reference 21x21 model used. The problem is symmetric and the symmetry line is shown 

as a dashed line in Figure  6.7. Due to this symmetry, a model and its mirror image will 

give the same response leading to a bimodal distribution of permeability.   

 
We applied the approximate MCMC as outlined in the flowchart in Figure 5.5 with a 

streamline simulator. 400 stochastic models were generated using Sequential Gaussian 

Simulation (SGSIM). 30 basis realizations where extracted for GDM using the optimum 

basis selection algorithm outlined in section 5.2.4. The reference model was created 

separately and was not part of the 400 initial models dataset.  A total of 150 outer 

iterations were executed and a maximum of 300 inner iterations were allowed before 

rejecting the initial proposal. The samples were accepted if the RMS error is reduced 

below 0.02. A low standard deviation of 1% was used for water cut data. Figure  6.8 

Figure  6.7 – 2D case: Reference model 

Inj 

Prod 
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shows the reduction of the objective function for one of the samples as a function of 

proposals. Out of the 150 iterations, 59 samples were collected or a 39.3% of the total.  
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Figure  6.8 – 2D case: Objective function reduction 



 79

 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
59 samples Water Cut Match

Days

W
C
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Figure  6.10 – 2D case: Selected samples 

Reference Model 
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Figure  6.9 shows the final water cut distribution for all 59 samples with the reference 

response. The narrow distribution is due to the low RMS error used as stopping criteria. 

A total of 14 selected samples are shown in Figure  6.10 indicating a wide range of 

possible permeability distributions and showing the uncertainty range.  All these models 

honor static data, share the same covariance model and conditioned to observed dynamic 

data. Risk analysis can be performed using these models to bracket the uncertainty 

associated with reservoir response forecasting. 

Figure  6.11 shows mean and variance for both the 30 GDM basis models used for 

sample proposals and the 59 collected samples. The effect of conditioning models to 

dynamic data is to reduce the samples variance since the additional information carried 

by the dynamic data narrows the range of permeability uncertainty as shown in Figure 

 6.11b and Figure  6.11d. The process is computationally efficient and can be performed 

on a desktop PC due to the low memory requirements for calculating and storing 

analytical sensitivities. We used a fast streamline simulator for this particular 2D case and 

the total time needed to perform 150 iterations was 6.7 hours on AMD 3.2+ 64bit  

machine.   

 

 



 82

 
 

Figure  6.11 – 2D case: Mean and variance of samples 

(b) 59 Samples variance (a) 59 Samples mean

(c) Basis models mean (d) Basis models variance 
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6.3 3D Example: Goldsmith Field Case 

 

The 3D example is for the Goldsmith field case, a carbonate West Texas reservoir. 

The study area is discretized using a 58x53x10 mesh with a total of 30,740 grid cells.  

There are nine inverted 5-spot patterns covering 320 acres with average thickness of 100 

ft. The model has 11 injectors and 31 producers but only 9 producers showed significant 

water cut production in the first 20 years of waterflooding and will be used for water cut 

match. Figure  6.12 shows the well configuration of the study area and Figure  6.13 shows 

well schedule with infill and conversions. 

 
 

Figure  6.12 – 3D case: Well configuration 
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Collocated sequential Gaussian simulation was used to stochastically generate 200 

permeability realizations collocated with a prior porosity model. A total of 100 

realizations were retained using the GDM basis optimization program. Figure  6.14 shows 

the prior porosity model and three basis permeability realizations used for GDM.  

 

Figure  6.13 – 3D case: Well schedule 

P-1 
P-2 
P-3 
P-4 
P-5 
P-6 
P-7 
P-8 
P-9 

I-3 
I-8 
I-1 
I-10 



 85

 

Figure  6.14 – 3D Case: Porosity and permeability models 

Three stochastic permeability models

Porosity model 

Layer # 2 
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The 100 basis models exhibit a wide range of variability and connectivity patterns 

which will enable the GDM to generate proposals with a wide range of permeability 

distributions. Figure  6.15 shows four samples generated by GDM using random 

deformation parameters. The models range from the highly heterogeneous to the 

relatively smooth and from the highly connected to the patchy. All the models, however, 

honor the same static data and can be gradually deformed to a new state using a small 

perturbation to the GDM parameters. The covariance function was not preserved since 

the models are conditioned to static data, and hence dependent. We, however, assumed 

that that covariance structure is unknown and hence, contributes to the underlying 

uncertainty. The wide range of structures generated by using this approach increased the 

sampling efficiency while still honoring static data. This approach does not strictly follow 

the GDM method but it proved to be more efficient in sampling the parameter space by 

allowing the covariance structure to vary.  

We ran approximate MCMC using the commercial finite difference simulator 

Eclipse. A maximum limit of 150 total runs, including approximate and full simulation 

runs, per inner iterations was used and the target RMS error was set to 2.7.  A total of 17 

outer iterations were performed in 10 days on a dual Xeon 3.06 PC and 13 samples were 
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Figure  6.15 – 3D case: GDM samples 
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collected.  Figure  6.16 show the RMS error reduction as a function of full simulation runs 

performed for the 13 samples. The relatively fast drop in RMS is due to the increased 

acceptance rate as obvious rejections are filtered out during the approximate likelihood 

calculation.   

 

Figure  6.16 – RMS reduction 
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The improved acceptance rate can be seen clearly in Figure  6.17 where we ran both 

approximate and full MCMC using the same initial model. Figure  6.17 shows the 

acceptance rate as the ratio of accepted proposals over total proposals. Approximate 

MCMC maintained a high acceptance rate during the 40 simulations runs needed to 

converge to an RMS error of 2.7.  Full MCMC, however, required 110 simulation runs to 

lower the RMS to the same level. The speed up gained by approximate MCMC will lead 

to a shorter burn-in time and a higher convergence rate.  

 

Figure  6.17 – Acceptance rate for full and approximate MCMC 
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It should be noted that the total number of iterations is comparable for both cases if 

we consider the approximate evaluations which requires only few seconds to calculate.  

Figure  6.18 shows a comparison between full and approximate MCMC RMS error  

 
 

Figure  6.18 – 1st sample: RMS reduction for full and approximate MCMC 
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reduction for the first sample collected.  When considering the total number of iterations, 

both methods evaluated a comparable number of proposals. The approximate MCMC, 

however, required only 40 simulation runs compared to 110 for the full MCMC which 

translates to 64% reduction in computational cost for this particular run. Figure  6.19 

shows three samples collected using approximate MCMC with the corresponding RMS 

reduction. As expected, the integration of dynamic data reduced the variability 

considerably while still maintaining the geologic realism. All the samples collected honor 

static data at their location by design while still being conditioned to the observed 

dynamic data. 

 
Figure  6.19 – Approximate MCMC: Three collected samples  
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The integration of dynamic data should reduce the uncertainty observed in 

unconditioned models and produce samples that reflect the true uncertainty. In Figure 

 6.20, variance for five selected layers is shown for both the GDM basis models and the 

approximate MCMC samples. The reduction in uncertainty is clear where the variance 

has been reduced significantly when compared to the original basis models that were 

used to generate proposals.  

The reduction in uncertainty is also reflected in samples water cut response as shown 

in Figure  6.21.  The initial water cut responses shown in Figure  6.21a are for the initial 13 

realizations that are conditioned to static data. The final match shown in Figure  6.21b for 

the approximate MCMC samples shows the reduction in reservoir response uncertainty  
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Figure  6.20 – Permeability variance reduction   

(a) Basis realizations (b) Approximate MCMC samples 
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Figure  6.21 – Initial and final water cut response   

(b) Final match 

(a) Initial match 
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  7  
CHAPTER VII 

GENERALIZED TRAVEL TIME INVERSION USING GRADUAL 

DEFORMATON METHOD 

 

 

7.1 Introduction 

 

Integration of dynamic data into high resolution geological models is performed 

through an inverse problem. Specifically, we attempt to minimize an objective function 

that quantifies the deviation of a model response from an observed response. This is done 

by perturbing reservoir parameters such as permeability and porosity and using a data 

misfit measure such as travel time or response amplitude error.  There are many methods 

available in literature to handle such problems and they are generally fall into three 

categories; randomized, enumerative and gradient based methods. Randomized methods 

such as simulated annealing57 and genetic algorithms58 attempt to find the global 

minimum by integrating a random process into the workflow to avoid getting trapped in 

localized minima. While these methods are theoretically capable of reaching the global 

minimum, they are generally slow and can be extremely expensive and inefficient for 

high resolution models. Enumerative methods calculate the objective function over a 

discredited parameter space and retain the sample associated with the minimum. For 

large problems with many parameters, such methods can be the least efficient and the 

most expensive if not intractable. Gradient based methods are localized methods where a 

local minimum is sought in the vicinity of a prior model.  The use of streamline-based 

analytical gradients6-8, which requires a single simulation run to obtain, has made such 

methods extremely practical for history matching high resolution geological models. 

Practical applications of streamline-based gradient methods require using additional 

constraints to regularize the solution and preserve the geological structures obtained from 

static data. In the deterministic approach8, a norm constraint is used to insure that the 

final match is close to the prior model which incorporates all the static data, conceptual 
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framework and seismic data. A roughness constraint is also added to control model 

smoothness which regularize the solution and account for the fact that inversion is more 

appropriate in retrieving large scale structures rather than small scale fluctuations.  

Gradient based methods attempt to match observed response by performing travel 

time, amplitude or generalized travel time shift.8 It has been shown6,59-60 that travel time 

inversion  possess quasilinear properties making it more robust and computationally 

efficient  compared to amplitude inversion which can be highly non-linear. This leads to 

a rapid convergence even if the prior model is not close to the final match. Moreover, 

sensitivities between wells are more uniform in travel time inversion while amplitude 

sensitivities are more localized around wells. Such localization of sensitivities leads to 

over-correction around wells.  The Generalized Travel Time inversion (GTT) improves 

upon travel time inversion by reducing the problem into minimizing a single parameter 

per well, the generalized travel time misfit.60  GTT retains the favorable characteristics of 

travel time inversion while reducing the size of the problem considerably. Studies have 

shown that GTT performs amplitude match close to the solution which explains its 

success in matching arrival times and response amplitude without the need to resorting to 

a two-step iterative matching.8 

Optimization using the Gradual Deformation Method (GDM) has been investigated 

by several authors.54,61 The main advantage of GDM is that it generates models that are 

constrained to both spatial data and the covariance structure which helps in preserving 

geological structures and realism. While in its general formulation the method can be 

used to generate a deformed model from a large number of basis models, published 

studies were limited to deforming only two or three models at a time. This is mainly due 

to the use of numerical perturbation to calculate sensitivities which can be expensive for 

high resolution models.  In this work, we will formulate the generalized travel time 

inversion using the gradual deformation method.  The method will require a single 

simulation run to calculate the GTT sensitivities to the GDM parameters making it 

computationally efficient. Unlike other gradient methods, matched model will preserve 

the conditioning static data and spatial covariance structure while matching dynamic data 

at the same time. 
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7.2 Mathematical Formulation 

 

In section  5.2.3 we introduced the mathematical formulation for the GDM.  A 

gradually deformed model can be calculated as a linear combination of 1m +  basis 

models. Eq. 5.18 is used for any number of basis models. 
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Y x m Y x mα
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− = −∑ .....................................................................(5.18) 

 
There are m GDM parameters needed to calculate the 1m +  weights, iα , in Eq. 5.18.  

The weights are calculated fro any number of parameters using Eq. 5.19 
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To calculate reservoir parameter sensitivity to GDM parameters, we need to combine 

Eqs. 5.18 and 5.19 and differentiate with respect to GDM parameters. The derivation is 

shown in Appendix A where the sensitivities to the kth GDM parameter is given by the 

following, 

 

0
1

1

1 1

1

sin( ) cos( )

sin( )sin( ) cos( )

cos( ) cos( )

m

k i i k
ik

k m

k i j j k i
i j i

m

k j k
j k

Y t t Y
t

t t t Y

t t Y

≠
=

−

≠
= = +

= +

∂ ⎡ ⎤= −⎢ ⎥∂ ⎣ ⎦
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

⎡ ⎤
+ ⎢ ⎥
⎣ ⎦

∏

∑ ∏

∏

................................................(7.1) 

 

With reservoir parameters sensitivity to GDM parameters available, we can derive 

GTT sensitivities to GDM parameters using the chain rule, 
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where t
Y

∂∆
∂

�  is given by Eq. 3.40.   

We can use the deterministic formulation8 to solve the minimization problem. In the 

deterministic approach, we seek to minimize the following data misfit function 

 

1 2Obj t S t t L tδ β δ β δ= ∆ − + +� ................................................................(7.3) 

 

where S is GTT sensitivity of reservoir response to GDM parameters given by Eq. 7.2. 

Since the gradually deformed model honors static data and covariance structure, there is 

no need to have the norm or roughness constraints. The greatly reduced size of the 

problem also negates the need for regularization measures. The new deterministic 

objective function is now reduced to the following form 

 

Obj t S tδ= ∆ −� ...............................................................................................(7.4) 

 

which is essentially fitting the response to observed data. The system of equations to be 

solved is now simply, 

 

S t tδ = ∆ � ...........................................................................................................(7.5) 

 

The system of linear equations given by Eq. 7.5 does not depend on the size of the 

model but on the number of GDM parameters. In regular GTT inversion, if we have J 

wells and a model of size M then the size of S is J*M. Adding the additional constraints 

will make the size of the linear system of equations to be solved of size (J+2*M)*M. For 

GTT-GDM, however, the size of the linear system of equations given by Eq. 7.5 is only 

J*K where K is the number of GDM parameters regardless of model size.  Eq. 7.5 can be 
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solved using any of the iterative methods available in literature due to its relatively small 

size. In our work, however, we used the lsqr35 method due to its robustness.  

 

7.3 2D-Example: 9-Spot Water Flood 

 

To illustrate the method, we used a 2D 9-spot water flood model with a mesh size of 

21x21. The reference and prior models are shown in Figure  7.1. The reference model was 

created by randomly deforming 100 unconditional stochastic models generated using LU 

simulation (LUSIM) and a spherical variogram model with a range of 30 ft and no nugget 

effect. The prior model was generated by randomly deforming a subset of 25 stochastic 

models which are also used for global and local GTT-GDM inversion. Normal GTT 

inversion using the same prior model has been performed for comparison. 

 

 

Figure  7.1 – Reference and prior models 
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During GTT-GDM inversion, we gradually deformed the standard normal deviates 

and then used LU simulation with Cholesky decomposition to impose structure. 

Deformed models were then converted from standard normal deviates to permeability 

values using lognormal transform with a log mean of -0.093 and standard deviation of 

1.36. LU simulation, or any other simulation method that separates structure from 

stochastic components, is needed for local GDM to avoid surface discontinuities between 

regions. For large problems, the LU algorithm can be expensive and other efficient 

methods like FFT-MA62 can be used instead.  Figure  7.2 shows regular GTT inversion 

match. 

Most wells achieved a good match except well#4 due the prior model being 

substantially different than the reference model in the area around it.  Most of the change 

is around well#8 which achieved an excellent match. Regular GTT used the deterministic 

formulation with norm and roughness constraints to regularize the problem and produce a 

match that is close to the prior and exhibit smoothness that help reproduce large scale 

features.  Figure  7.3 shows global GTT-GDM inversion match where the whole model is 

deformed during iterations. The match is not as good as regular GTT due to the structure 

constraints and the inflexibility of global GDM albeit almost all wells show an improved 

match. The matched model honors the structure which imposes a constraint on the 

problem that is stricter than the norm and roughness constraints used in regular GTT. 

Norm and roughness constraints penalize the objective function when values move away 

from the constrained direction while the structure constraint does not allow moving in 

any direction except if it honors the imposed covariance structure which is achieved by 

design. Local GDM gives more flexibility by independently deforming local regions 

which makes it possible to maintain a match in a local area while deforming other parts 

of the model. Figure  7.4 shows the results obtained with local GTT-GDM which is close 

to the level of water cut match obtained from regular GTT method. The final model 

reproduces the structure by design while matching the performance of regular GTT.  In 

Figure  7.5, we compare RMS error reduction using the three methods. Regular GTT 

converges smoothly due to the regularization constraints imposed. Different norm and 

roughness weights were tested and the run shown is for the best match. Global GTT-

GDM fluctuates due to its relative inflexibility where a good match in a specific area can 
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be lost when the whole model is deformed. This is less of a problem with local GTT-

GDM where a good local match is maintained while other parts of the model are being 

perturbed leading to better convergence and over all match as shown in Figure  7.5.   

 

 
Figure  7.2 – Regular GTT inversion match 
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Figure  7.3 – Global GTT-GDM inversion match 
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Figure  7.4 – Local GTT-GDM inversion match using four local regions 
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The performance of local GTT-GDM is equivalent to regular GTT in this particular 

problem while giving a better model in terms of honoring the geological structure. In 

cases where structure parameters are not known or there is a large uncertainty associated 

with them, we can include them as unknown fitting parameters. Sensitivity to structural 

parameters (e.g. correlation range) can be calculated numerically and one possible 

approach is to use two nested iteration loops for deformation parameters and structural 

parameters.  

Figure  7.5 – RMS reduction comparison 
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  8  
CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS  

 

 

8.1 Conclusions 

 

Integration of dynamic data in petroleum reservoirs is a challenging endeavor, yet 

critical for reservoir management and development. The existence of natural fractures 

imposes an extra challenge due to their high impact on fluid sweep and recovery. The 

need to integrate dynamic data into naturally fractured reservoirs has gained greater 

attention recently as data collected from mature fields suggest that fractures are playing a 

greater role in conditioning fluid flow than previously thought.  

In this work, we have proposed a streamline-based production data integration 

technique for naturally fractured reservoirs using the dual porosity approach. The 

principal features of our method are the extension of streamline-derived analytic 

sensitivities to account for matrix-fracture interactions and the use of our previously 

proposed generalized travel time inversion for history matching. Our proposed workflow 

has been demonstrated by using both a dual porosity streamline simulator and a 

commercial finite difference simulator. The approach is computationally efficient and 

well suited for large scale field applications in naturally fractured reservoirs with 

changing field conditions. The use of the generalized travel time concept enabled us to 

match both the breakthrough and amplitude of the reference response in one step.  As a 

result, the method has proven to be well-suited for large scale field applications under 

diverse conditions and can be applied routinely to integrate dynamic data during reservoir 

characterization and management. 

While the integration of dynamic data produces a conditioned model that could be 

used for forecasting reservoir response, assessing the uncertainty associated with such a 

response is critical to risk analysis and future development studies.  Assessing uncertainty 

involves sampling the reservoir parameter a posterior probability density function that is 
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conditioned to both static and dynamic data. Rigorous sampling methods like MCMC are 

known to give correct distributions but require full simulation run for every proposal 

made which can be extremely expensive for high resolution models.  In this work, we 

have formulated a streamline-based approximate MCMC method that achieves a high 

acceptance rate while preserving the robustness of the traditional MCMC method. 

Streamline-based sensitivities are used to approximate the likelihood in the Metropolis-

Hastings algorithm and streamline or finite difference simulators can be used in our 

workflow to calculate the exact likelihood. Such flexibility lends itself very well to a 

broad range of field applications and conditions and can be integrated in risk analysis 

studies with minor modification to existing workflows.  

The specific conclusions of our study are summarized as follows. 

 

• On streamline-based dynamic data integration in naturally fractured reservoirs 

 

1. Streamline-based analytic sensitivity computations have been extended to naturally 

fractured reservoirs using the dual porosity approach. The matrix-fracture interactions 

are accounted for using predictor-corrector steps that involve convection along 

streamline followed by matrix-fracture exchange.  

2. A comparison of the streamline-based sensitivities with those computed using the 

numerical perturbation method shows close agreement, indicating the validity of our 

approach. The streamline-based sensitivity computation is extremely efficient and 

requires a single forward simulation. 

3. We have used the streamline-derived sensitivities in conjunction with a previously 

proposed generalized travel time inversion for integration of production data in 

fractured reservoirs. The generalized travel-time inversion is robust, computationally 

efficient and eliminates much of the time-consuming trial-and-error associated with 

manual history matching.  

4. We have combined the streamline-derived sensitivities with a dual porosity finite-

difference simulator to exploit the efficiency of the streamline approach and the 

versatility of the finite-difference simulator. Use of finite-difference simulation 
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allows us to include compressibility effects, strong matrix fracture coupling and 

cross-streamline mechanisms. 

5. We have demonstrated the power and efficiency of our proposed method using 2-D 

and 3-D examples designed after realistic field conditions. For the 3-D application, 

the results indicate the role of production data and prior information in terms of 

reproducing the fracture connectivity and fluid flow response in the reservoir. 

 

• On streamline-based uncertainty assessment using approximate MCMC 

formulation 

 

1. A streamline-based approximate MCMC method has been formulated. The method 

shares the robustness of traditional MCMC methods while reducing significantly the 

computational cost involved. 

2. The proposed method is computationally efficient and can handle high resolution 

models under diverse field operating conditions which lend itself very well to a broad 

range of practical field applications. 

3. Streamline or finite difference simulators are used in our work flow which makes the 

method applicable to existing risk analysis workflows with minor modifications. 

4. The method requires a single simulation run to obtain both reservoir response and 

reservoir parameter sensitivities which substantially reduce the computational cost 

involved.  

5. Since the method performs an exact likelihood calculation for all proposals accepted 

by the approximate likelihood step using the same acceptance probability level, the 

method does not compromise the rigorousness experienced with the traditional 

MCMC method. 

6. The efficiency of our proposed method has been demonstrated using both 2-D and 3-

D examples with realistic field conditions. The method maintained high acceptance 

and convergence rates when compared with the full MCMC method which translates 

into substantial cost savings for high resolution models. 
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• On generalized travel time inversion with gradual deformation method (GTT-

GDM) 

 

1. Analytical streamline-based sensitivities are derived for the gradual deformation 

parameters.  Analytical sensitivities can be calculated using a single simulation run 

for both global and local deformation parameters. 

2. Current GDM inversion methods are limited to a combination of only two or three 

models due to the computational cost of numerical sensitivities which leads to slow 

convergence and limited search direction. Our method is completely general and can 

be used for any number of basis models which leads to faster convergence and much 

broader search direction. Since the method requires only a single simulation run, it is 

much faster than even the basic GDM inversion which combines two models and 

requires two simulation runs to calculate numerical sensitivities. 

3. Local GDM leads to better convergence compared to global GDM.  Its ability to 

perturb regions independently from each other leads to better overall match. 

4. Using GDM and generalized travel time match reduces the size of the problem 

significantly. The number of system of linear equations to be solved is equal to the 

number of wells while the number of unknowns is equal to the number of GD 

parameters regardless of model size and number of data points.  

5. The performance of the method has been demonstrated using a 2D 9-spot water flood. 

The method performance was comparable to regular GTT for this particular problem 

while producing a match that preserved the geological structure.  

6. For large problems with local GDM, methods more efficient than LU simulation 

should be used. One area to investigate is using the stencil based algorithm for 

calculating covariance matrix inverse which can improve LU simulation efficiency 

for large problems. 
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8.2 Recommendations 

 

The integration of field data in reservoir characterization studies is still an active 

research area. We have extended proven dynamic data integration methods to fractured 

reservoirs using the dual porosity single permeability (DPSP) formulation which is 

widely used to model naturally fractured reservoirs.  In situations where fluids flow in 

both the matrix and the fracture systems, the dual porosity dual permeability (DPDP) 

formulation should be used and the joint sensitivities for both systems need to be derived. 

The complex interaction between the two systems and its effect on sensitivity should be 

further explored.  

Current formulation for the streamline-based sensitivity is currently limited to two-

phase water/oil flow. While such formulation works well in most of the pressure 

maintenance cases, it needs to be extended for cases with significant gas production.  

Three-phase flow streamline simulation is still an active research area and deriving 

streamline-based sensitivities for such systems will be required before extending dynamic 

data integration methods to such cases. 

Uncertainty assessment methods are still an active research area due to the high cost 

associated with such methods and the need to evaluate reservoir forecast uncertainty in 

risk analysis studies.  The streamline-based approximate MCMC method demonstrated a 

promising potential and further research should explore the optimization of important 

parameters that affect efficiency such as step size. 

The gradual deformation method is an excellent framework to honor structural 

parameters if such parameters can be extracted reliably from geologic and seismic data.  

The inefficiency of the GDM method is largely due to the use of numerical sensitivities 

which make the method restricted to deforming two or three basis models at a time. In 

our work, the derivation of fast streamline-based analytical sensitivities and the use of 

generalized travel time inversion have obtained a performance in par with the more 

robust GTT inversion while honoring the geological structure. Local GDM should be 

used whenever possible to obtain a better overall match and achieve faster convergence. 
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NOMENCLATURE 

 
 

t~∆  = Vector of generalized travel time shift 
τ = Time of flight 
αi,j = Probability of accepting transition in the Markov chain 
µm = Viscosity of (m) phase, m stands for oil and water  
γm = Specific weight of (m) phase, m stands for oil and water  
ρm = Density of phase m, m stands for oil and water 
ρmsc  = Density of phase m at standard conditions 
λt = Total mobility ratio 
∆t = Time step 
∆tj  = Time shift at well j 

∆xi, ∆yj, ∆zk = Cartesian grid block sizes 
Cd = Data covariance matrix  
CM = Prior covariance matrix of the model parameter 
D = Depth 

dobs = Column vector with observed data 
f(dobs) = Marginal probability distribution 

f(dobs/m)  = Likelihood probability distribution given the prior distribution 
f(m)  = Prior probability distribution 

f(m/ dobs) = Posterior probability distribution given the observed data 
Fw = Fractional flow of water 

g(m) = Column vector with calculated reservoir performance data 
S = Sensitivity matrix 
I = Identity matrix 
K = Permeability 

Krm = Relative permeability to phase (m); m stands for oil or water  
M = Number of model parameters 
m = Column vector of the reservoir parameter  

MAP = Maximum a posteriori estimate 
MC = Markov chain 

MCMC = Markov chain Monte Carlo 
mp = Column vector with prior knowledge of reservoir parameter  
nd = Number of data points 
Nd =Number of data points 
Ndj = Number of data points at well j 
nw = Number of wells 
Nw = Number of wells 

Nx, Ny, Nz = Number of grid blocks in the x, y, and z direction  
Obj(m) = Objective function of Bayesian formulation 

P = Pressure 
φ = Porosity 
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qij = Probability of proposing transition to another state in the Markov 
chain 

qm = rate of m phase, m is for oil and water 
R2 = Coefficient of determination 

RML = Randomize maximum likelihood 
s = Slowness 

Sm = Saturation of m phase, m stands for water and oil 
ti = ith GDM parameter 

Ti,j = travel time at well j and observed point i 
Vb = Bulk volume 
wi,j = Data weight for each data point (i) and at well (j)  
yj

cal = Calculated data at well j 
yj

obs = Observed data at well j 
obs
jy  = Average of observed data 
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APPENDIX A 

GENERALIZED TRAVEL TIME SENSITIVITIES FOR THE 

GRADUAL DEFORMATION METHOD 

 

Starting with the gradual deformation linear equation  
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where the weights are given by following equation, 
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Combining Eq. A-1 and A-2,  
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Sensitivity of parameter Y to perturbation to parameter kt  can be found by 

differentiating A-3 with respect to kt .  For example, if we differentiate with respect to 3t  

we get the following expression, 
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Examining Eq. A-4, we can construct a general expression for the sensitivity to any 

GDM parameter kt  
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