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ABSTRACT 

 

Visual Prosody in Speech-Driven Facial Animation: Elicitation, Prediction, and 

Perceptual Evaluation. (May 2005) 

Marco Enrique Zavala Chmelicka, B.S., Army Polytechnic School 

Chair of Advisory Committee: Dr. Ricardo Gutierrez-Osuna 
 

Facial animations capable of articulating accurate movements in synchrony with a 

speech track have become a subject of much research during the past decade. Most of 

these efforts have focused on articulation of lip and tongue movements, since these are 

the primary sources of information in speech reading. However, a wealth of 

paralinguistic information is implicitly conveyed through visual prosody (e.g., head and 

eyebrow movements). In contrast with lip/tongue movements, however, for which the 

articulation rules are fairly well known (i.e., viseme-phoneme mappings, coarticulation), 

little is known about the generation of visual prosody. 

 

The objective of this thesis is to explore the perceptual contributions of visual prosody in 

speech-driven facial avatars. Our main hypothesis is that visual prosody driven by 

acoustics of the speech signal, as opposed to random or no visual prosody, results in 

more realistic, coherent and convincing facial animations. To test this hypothesis, we 

have developed an audio-visual system capable of capturing synchronized speech and 

facial motion from a speaker using infrared illumination and retro-reflective markers. In 
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order to elicit natural visual prosody, a story-telling experiment was designed in which 

the actors were shown a short cartoon video, and subsequently asked to narrate the 

episode. From this audio-visual data, four different facial animations were generated, 

articulating no visual prosody, Perlin-noise, speech-driven movements, and ground truth 

movements. Speech-driven movements were driven by acoustic features of the speech 

signal (e.g., fundamental frequency and energy) using rule-based heuristics and 

autoregressive models. A pair-wise perceptual evaluation shows that subjects can clearly 

discriminate among the four visual prosody animations. It also shows that speech-driven 

movements and Perlin-noise, in that order, approach the performance of veridical 

motion. The results are quite promising and suggest that speech-driven motion could 

outperform Perlin-noise if more powerful motion prediction models are used. In 

addition, our results also show that exaggeration can bias the viewer to perceive a 

computer generated character to be more realistic motion-wise. 
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1 INTRODUCTION1 
 

Facial animations capable of articulating accurate lip motion in synchrony with a speech 

track have become increasingly available during the past decade [1]-[2]. Visual speech 

(i.e., lip and tongue motion) is accompanied by a variety of motion, such as eyebrow 

raises, head shakes and nods, and eye gaze. These movements are the visual counterpart 

to the prosody of the spoken language (i.e., intonation, rhythm); hence they are 

commonly referred to as “visual prosody.” Visual prosody carries information that is 

complementary to that provided by the lexical content of the message. In contrast with 

visual speech, however, for which the articulation rules are fairly well known (i.e., 

viseme-phoneme mappings, coarticulation), little is known about the generation of visual 

prosody. It is for this reason that most speech-driven facial animations do not display 

visual prosody or resort to randomly generated movements. 

 

1.1 Research hypothesis 

The work presented in this thesis is preliminary study of the perceptual contributions of 

visual prosody in animated characters. Our main hypothesis is that visual prosody driven 

by acoustics of the speech signal, as opposed to random or no visual prosody, results in 

more realistic, coherent and convincing facial animations. 

 
This thesis follows the style and format of IEEE Sensors Journal. 
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1.2 Organization of the manuscript 

The remaining sections of this thesis are organized as follows. Section 2 provides an 

introduction to computer generated facial animation and the different techniques used to 

capture motion for animation. Section 3 describes the motion capture system build at the 

Texas A&M University Pattern Recognition and Intelligent Sensor Machines (PRISM) 

Lab, and the manner in which facial motion is determined to generate computer 

animation. Section 4 includes a brief description of the protocol designed to elicit visual 

prosody, as well as the two different computational models that were built to synthesize 

it. Section 5 describes the perceptual evaluation of the facial animation with different 

visual prosody conditions, as well as the statistical analysis of results. Finally, Section 6 

presents the conclusions of this research, and promising directions for future work. 

 



3 

 

2 BACKGROUND REVIEW 
 

This section provides a broad introduction to computer generated character animation, 

with special emphasis on facial parameterization and facial models. We also present an 

overview of the most commonly used techniques to capture facial motion for animation 

purposes. The issue of visual prosody is also reviewed in the final subsection. 

 

2.1 Computer facial animation 

One of the most interesting and challenging areas in computer animation is the synthesis 

of human faces. Computer facial animation has been an intense subject of study in a 

variety of scientific disciplines ranging from psychology to computer science, as well as 

in art. Interest from psychology stems from the acuity with which humans can recognize 

faces and extract meaning from facial expressions [3]-[6]. Interest within computer 

science tends to focus on the synthesis of facial avatars for the purpose of multimodal 

human-computer and computer-mediated interaction. Artists, on the other hand, are 

interested in aesthetic facets that can be used to convey emotion [7]. 

 

As processors and graphic accelerators have increased throughput, it has become easier 

and more affordable to create computer-animated human characters. Along with these 

advances, it has also become important to produce realistic images. Perceptual 

experiments have shown that the more photo-realistic the character appears, the less 
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forgiving the audience is to details in lip synchronization, saccadic movements, eyebrow 

motion, head motion and, in general, overall audio-video coherence [8]. Therefore, it has 

become pressing to study not only the synthesis of faces, but also the rules governing 

facial feature movement and their relationship with prosody content. 

 

2.1.1 Facial parameterization 

The earliest attempt to parameterize facial movements was the Facial Action Coding 

System (FACS), developed by Ekman and Friesen in 1978 to allow psychologists to 

study human emotions using facial movements/postures [9]. FACS is based on a detailed 

study of facial muscle physiology, and the necessary interactions needed in order to 

produce a visible (noticeable) displacement. In total, they isolated 66 Action Units (AU) 

that describe a single muscle movement or a group of muscles involved in the movement 

of a facial feature. For instance, a lowering eyebrow movement (see Fig. 1), is encoded 

as AU4 (Brow Lowerer). This Action Unit is composed of the union of three muscle 

strands that affect the forehead, the glabella region (root of nose) and the eyelids. The 

relevance of this system is that it allowed the description of facial movements in terms of 

parameters, which in turn nourished the development of computer-based facial 

animation models [10]. 
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(a) (b) (c) 

Fig. 1. Sample pictures borrowed from [9] of a person portraying Action Units (AU): (a) 

neutral face; (b) AU4 (eyebrow lowerer) sample I; and (c) AU4 sample II. 

 

Based on FACS parameters, Parke [11] developed a computer-generated character in 

1974, which has come to be most influential in the computer-animation community. 

Pearce et al. [12] extended the facial motion parameters of Parke’s talking head to 

support phoneme-based speech animation. The extension provided phoneme-based 

control by a direct mapping of phonemes into a set of parameters, as well as the timing 

for each one of them. Additionally, DiPaola [13] extended the parameterization 

descriptors to include a broader range of facial types and facial expression libraries, 

support for asymmetric faces, improved eye and ear modeling, and added facial hair and 

neck parameters. Essa [14] proposed an extension of facial coding called FACS+, which 

employed computer vision techniques to normalize head photo-shots and extract features 

based on optical flow. Following a similar approach to the AU coding in FACS, 

Magnenat-Talman et al. [15] proposed the Abstract Muscle Action (AMA) procedure, 
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which represents facial expressions by simulating specific face muscle actions that 

roughly correspond to a muscle or a bone structure. It is important to note, however, that 

AMA actions are not independent, and the order in which they are executed affects the 

final result. More recently, in 1999, the Moving Picture Expert Group (MPEG) 

established a standard for face animation with the MPEG-4 FAP specification [16]. 

Though controversial, this standard has stimulated the development of commercial 

applications such as Instant Messaging avatars, MPEG-4 compliant computer animated 

characters, and MPEG-4 player devices, to mention a few. [17]-[21]. 

 

2.1.2 Computer facial models 

Broadly speaking, there are three types of facial models: parameterized, muscle-based, 

and image-based. The first computer-generated faces were modeled by Parke in 1972 

[11], and belong to the class of parameterized models. Parke’s model consisted of a 

three-dimensional (3D) mesh of polygons whose movements were limited by physical 

constraints of the human face. For instance, polygons in the upper lip were adjacent to 

those in the lower lip, but they were not connected, thus a deformation in the lower area 

did not affect the upper part. This model aimed to quickly generate a convincing 

reproduction of a talking head without understanding the physiological events that 

produced the voice. Several descendants of Parke’s talking head have evolved: Sven 

from the Royal Institute Technology (KTH, Stockholm) [22], Baldi from the Perceptual 

Science Lab at the University of California Santa Cruz [23], and the Talking Head from 
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the Laboratory of Computational Engineering at the University of Helsinky [24], to 

mention a few. 

 

Waters and Terzopoulus [25] designed a facial model using an abstraction of 

physiological muscle behavior embedded in a non-uniform polygonal 3D structure. They 

argued that a lineal model could not accurately describe facial movement because 

muscle contraction and relaxation are inherently non linear. Their 3D physics-based face 

model with texture-mapped skin used estimates of primary facial muscle contractions as 

control parameters. In order to generate novel animation the system acquired muscle 

tension from 2D images in which the subject’s facial features (e.g., eyebrows, nasolabial 

furrow contours, chin) were highlighted with make-up to facilitate tracking, which was 

performed with snakes [26]. In addition, their model could be customized to a specific 

subject by texture mapping 3D scanned data from a Cyberware Color 3D digitizer. 

 

An interesting twist was introduced to the visage synthesis field by Bregler et al. [27]. 

Why not use real human face photographs instead of trying to emulate it using computer 

graphics (CG) objects and skin textures? Using an audiovisual database of a subject, 

they were able to generate new footage of the subject producing new utterances not 

included in the training set. Their technique, called Video-rewrite, automatically mapped 

training video frames into audio phonemes and produced new sequences by combining 

these frames according to the desired new audio. Head position and orientation was 

tracked with computer vision techniques, and mouth images corresponding to new 
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utterances were stitched in the video using morphing techniques. Their model was able 

to achieve photorealistic results. In a similar fashion, Ezzat et al. [28] developed a video-

realistic speech animation system by means of a Multidimensional Morphable Model 

(MMM). The only requirement for generation of novel video in this system is to provide 

annotated and aligned text. Also along these lines, Cosatto [29] developed a 

photorealistic talking head with texture mapping over a 3D polygonal structure 

representing the face. 

 

2.2 Computer animation production 

Facial animation is the result of concatenating video frames featuring the synthetic 

actors/objects in different positions. Editing each frame manually can be a very time-

consuming task. Therefore, a number of tracking tools, ranging from partially to 

completely automatic, have been developed to facilitate the generation of motion for 

synthetic characters. These techniques include key framing, performance-driven 

animation, and speech-driven animation. Key framing is a process in which several 

video frames (known as key frames), and the interval between them, are provided as 

input; the resulting animation is produced by interpolating between key frames. Of more 

interest to our research are performance-driven and speech-driven animations, which are 

examined in more detail in the following subsection. 
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2.2.1 Performance-driven animation 

In performance-driven animation, the facial model is driven by data from a motion-

capture (mocap) system. These systems can be classified according to the number of 

cameras used for tracking motion, which range from multiple-camera systems to 

monocular video. Mocap systems can also be classified based on whether they employ 

visual markers, or rely on computer vision techniques to extract feature information 

(marker-less). The former, more intrusive method facilitates the tracking of facial motion 

by placing visual markers at strategic locations in the subject’s face (e.g., eyebrows, lips, 

chin), whereas marker-less techniques rely on complex computer vision algorithms to 

extract distinctive facial features and track their positions.  

 

Multiple camera tracking systems generally employ infrared strobe lights to illuminate 

passive retro-reflective markers, and cameras specially suited to record images in the 

infrared band. Several companies provide such systems and the required software for 

image processing and data editing [30]-[31]. These systems have become very popular in 

the entertainment industry since they allow computer animations to be generated in a 

very short time. Depending on the number and placement of the cameras, these systems 

allow a wide range of full-body performances, such as dance and fight scenes, or may be 

restricted to a confined region. Markers can be obviated at the expense of 

computationally-intensive processing algorithms such as optical flow [32] and disparity 

maps [33] to extract the 3D position of facial landmarks, in some cases requiring 

dedicated supercomputers [34]. 
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The motion-capture system used in this thesis is a semi-custom monocular tracking 

system with infra-red illumination and retro-reflective markers, an economical 

alternative to the prohibitive equipment employed in the entertainment industry. The use 

of a single camera comes at the expense of losing depth information, which prevents us 

from recovering the 3D position of facial landmarks. This limitation is partly overcome 

by using a head-mounted frame, which will be discussed in Section 3.2.1. 

 

2.2.2 Speech driven facial animation 

In speech-driven animation, facial motion is synthesized from an audio track containing 

speech utterances. There are two general approaches for audio-driven facial animation: 

phonetic and subphonetic. 

 

In phonetics-based approaches, a direct mapping from phonemes to visemes (the visual 

counterpart of a phoneme) is used. This technique requires that a phoneme transcription 

of the utterance be available by either manual annotation or automated speech 

recognition. Alternatively, a Text To Speech (TTS) system may be used to synthesize a 

speech utterance, which implicitly provides the phonetic transcription for the phoneme-

viseme mapping. The target configuration of a given viseme in natural speech depends 

not only on the corresponding phoneme but also on the context (i.e., forward and 

backward coarticulation). For this purpose, Cohen and Massaro [35] have proposed a 
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coarticulation model to improve the naturalness of facial animations produced by 

phoneme-viseme mappings. Their model uses the temporal dependence of visemes by 

means of so-called “dominance functions” to smooth the transition between viseme 

targets. 

 

In sub-phonetic approaches, synthesis of facial motion is performed by mapping acoustic 

parameters (e.g., Linear Predictive Coefficients) directly onto facial motion. Sub-

phonetic methods are advantageous because they preserve prosodic information (i.e., 

intonation, rhythm), which is otherwise lost when an utterance is transcribed into its 

phonetic sequence. On the other hand, sub-phonemic approaches are computationally 

intensive since they do not make use of the underlying language structure [36]-[37]. 

 

2.3 Visual prosody  

Human spoken communication not only uses voice, but also complements it with visual 

information in parallel. Many of the accompanying gestures filling the visual channel, 

such as head nodding, eyebrow raises, or pupil dilation, are innate movements that 

contribute to validate the message content. Cavé et al. [38] has argued that 

communication is trimodal, requiring the integration of verbal, vocal and gestural 

channels. The verbal component contains the choice of wording employed in a 

communicative context, whereas the vocal component embodies the pitch or tone in 
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which the speech is articulated, and the gestural constituent comprises the use of facial 

features in a semiotic fashion. 

 

The relationship between message content and visual prosody is complex and not well 

understood. Dohen et al. [39] have observed that in French there exists a correlation 

between the word of focus and visually perceptible signals such as jaw opening and lip 

closure. Granström et al. [40] have used facial gestures to convey affirmative and 

negative settings in Swedish. They have reported that smile, speech intonation, eyebrow 

rise, head nodding, and eye closure (in this order) contribute to discriminating the proper 

setting. In a cross-language study, Krahmer et al. [41] have shown that eyebrow 

movement accompanies pitch accents. In fact, for Dutch this signal aided in the 

localization of the word of focus, while in Italian it did not, probably due to prosodic 

language differences among both languages. Pelachaud et al. [42] have proposed a 

model for facial expression (eye and head motions) based on discourse semantics that 

takes into account several dimensions: phonemic, intonational, informational, and 

affectual. 

 

Recent work in facial dynamics and speech perception ([43] and references therein) has 

shown that humans are able to correctly identify the source of an utterance. When 

exposed to a sequence of audio followed by mute video of two speakers (one at a time) 

performing different utterances, subjects were able to correctly match faces and voices 

significantly above chance level. These results suggest that information in the speech 
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channel is coupled across the visual channel, aiding in the proper identification of the 

speaker. 

 

The contribution of visual prosody to message content is, without a doubt, an area that 

deserves further study. Breakthroughs in this area will not only increase the naturalness 

of virtual characters, but will also help understand human communication in a broader 

sense. In the next subsections the reader will find a detailed review of the different visual 

prosody channels not involved in speech production, such as head, eyes, and eyebrows. 

 

2.3.1 Head prosody 

No facial animation would be complete without the integration of head motion. Head 

motion is essential in the production of facial animation because not only gives it a sense 

of vitality, but also contributes to emphasize the message content and characterize the 

avatar personality [44]. Cosatto [45] noted that low frequency head movements extend to 

the length of words and phrases and are most probably related to a change of posture, 

whereas higher frequencies (in the order of 2 to 15Hz) are closely related to prosody 

content. Deng et al. [46] have developed a model for head motion driven by speech to 

facilitate animators in the production of novel head motion given new utterances and 

desired key frames. This model, as acknowledged by the authors, has limitations in its 

ability to generate head motion if the key frames are not among the information included 

in the training information, which is stored in the Audio-Head-motion Database (AHD). 
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Another factor that was not considered in this model is the effect of linguistic context on 

head motion. Albrecht et al. [47] used a mixed technique to drive head motion with pitch 

level combined with random tilts introduced from time to time to avoid monotony. 

 

In summary, although head motion is not intrinsically involved in the production of 

utterances in human spoken language, it provides discernible information that is related 

not only to voice pitch but also to the semantics of the speech and to the speaker itself. 

 

2.3.2 Pupil prosody (gaze) 

Lee et al. [48] has shown that gaze in a communication context serves mainly for: “1) 

sending social signals; 2) open a channel to receive information; and 3) regulate the 

flow of conversation”. The authors developed a statistical model for saccadic eye 

movement that synthesizes realistic gaze in two modalities: talking mode and listening 

mode. In a similar approach, Deng et al. [49] generated novel pupil animation using non-

parametric sampling techniques from a pool of stored pupil images. Although these 

models drive gaze autonomously without any input feedback from the environment, the 

resulting pupil motion looks very realistic. 

 

2.3.3 Eyebrow prosody  

Aside from the seminal contribution of Ekman [50], the work of Grammer et al. [51] is 

one of the earliest studies on eyebrow motion. Through a cross cultural analysis, the 
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authors showed that there is an innate eyebrow motion, referred to as an eyebrow flash, 

at the beginning of a human-human interaction that signals invitation or recognition. In 

addition, Krahmer et al. [41] have noted that eyebrow motion can serve not only as an 

asynchronous event prior to speech intercourse, but also as a gestural channel conveying 

complementary information (i.e., the word of focus) to the verbal channel. Eyebrow 

position, in conjunction with other facial feature postures was used by Ekman and 

Rosenberg to describe facial expressions that can be interpreted as emotional states [5]. 

Cosnier [52] also ascribed to eyebrows a role in inquisitive locution. Yet, further 

investigation is needed to decipher the intricacies of eyebrow function in gestural 

communication. 
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3 AUDIO-VISUAL PROCESSING SYSTEM 
 

This section presents the audio-visual capture system that has been developed by us over 

the past two years for the purpose of tracking facial motion, specifically head, lips, and 

eyebrows. The section starts with an overview of the imaging hardware based on IR 

retro-reflective markers, as well as software tools that facilitate the synchronized 

acquisition of audio and facial-motion. It also describes the detectors that have been 

developed to extract lip, head and eyebrow motion from raw motion-capture data. 

 

3.1 Audio and motion capture system 

An audio-visual system has been developed at the Texas A&M University Pattern 

Recognition and Intelligent Sensor Machines (PRISM) Lab over the past two years. The 

system was conceived as a low-cost (under $1,000) alternative to professional motion-

capture equipment (i.e., Vicon®), which have a price tag close to $50,000 circa 2004. 

The PRISM mocap system consists of the following components: 

• IBM Blue Eyes pupil camera. 

• Acoustic Magic microphone array. 

• Winnov Videum 1000 Plus audio/video acquisition card. 

• A Personal Computer (PC) (Pentium IV 2GHz, 512MB RAM was used for the 

experiments described here). 
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• A Graphical User Interface (GUI) developed with the help of senior-design 

students at Texas A&M University. 

• Retro-reflective adhesive markers, which are placed at key locations on the 

subject’s face, e.g., eyebrows, nose and lips. 

 

The camera and microphone are connected to a custom-off-the-shelf data-acquisition 

card (Winnov Videum 1000 Plus) capable of capturing hardware-synchronized audio-

visual streams at 30 video frames per second (fps) and audio at 16KHz. A GUI 

developed specifically to manage the capture process allows the user to select the desired 

procedure (e.g. video capture, video tracking, video playback, etc.). The system is able 

to record synchronized audio and video, and track facial points in real-time (at ½ video 

resolution) or off-line (at full resolution) to produce Facial Animation Parameter (FAP) 

streams that can be read by MPEG-4 compliant readers such as The Facial Animation 

Engine (FAE) from the University of Geneva [21]. 

 

In the next sub-sections the reader will find detailed information regarding necessary 

modifications that were performed to the camera in order to enhance the tracking of 

reflective markers, as well as the functional block diagram description of the managing 

software. 
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3.1.1 Camera enhancements 

The Blue Eyes PupilCam was designed at IBM Almaden Research Center to detect the 

pupil of a subject using the same principle by which one occasionally gets the annoying 

“red eyes” with flash pictures [53]. The PupilCam consists of two arrays of infrared 

Light Emitting Diodes (IR-LEDs): the first array is aligned on-axis (around the camera 

lens), whereas the second one is aligned off-axis (top hand side and bottom hand side), 

as shown in Fig. 2. The former is hardware-synchronized to illuminate the pupil area for 

even video frames (“red eyes”) while the latter illuminates during odd frames to ensure 

that the scene has equal illumination intensity. In this way, the pupils can be detected by 

a simple image subtraction [54]. 

 

The camera was slightly modified to allow tracking of small retro-reflective markers 

(less than 2x2mm) at full 30fps rates (as opposed to the 15fps rate for pupil tracking) by 

maintaining the on-axis LED array illuminated at all times and disconnecting the off-

axis LED array. In addition, an optical filter (Wratten no.87) was placed on the camera 

lens to filter out visible light while allowing infrared light to reach the CCD array. 

Finally, a fine coating of polytetrafluoroethylene (PTFE) was applied to the LEDs to 

diffuse their light emission and avoid saturation of the CCD array. All of these steps 

significantly contributed to enhance the contrast between infrared light reflected from 

the facial markers and the background, producing a clean image for subsequent 

segmentation. 
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Fig. 2. IBM’s Blue Eyes PupilCam system used to acquire motion capture. 

 



20 

 

3.1.2 Facial motion tracking manager 

A custom application has been developed at the Texas A&M University PRISM Lab to 

manage the acquisition, storage, and post-processing of audio and video. The original 

system was implemented by Karl Jablonski as part of his Undergraduate Honor’s Thesis 

in 2002-2003 [55]. The system was refined by Todd Belote, Bryan Harris, Aaron Brown, 

and Brad Busse, as part of their Computer Engineering Capstone Design project in 

Spring 2004. In addition to co-directing the Capstone Design project, the author’s 

contributions to the development of this software have been: 

 

• Improved memory management for extended video recording and processing (up 

to 4 minutes of video at 640x480 pixels and 30 fps). Due to the complexity of the 

application, several orphan memory allocations were created during a typical 

run-time execution; therefore, limiting the amount of resources available for 

subsequent processes and consequently the maximum video recording time. 

• Addition of video processing capabilities for editing, playback, and analysis of 

video subsections. This feature, not available in the previous implementation, 

enabled the user to select a desired subsection from a video or join different 

videos into a single file. Thus, allowing more flexibility for animation 

generation. 
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• Enabling of full-resolution off-line image processing (up to 640x480 pixels with 

the current camera). The original application was designed for real-time tracking, 

and could only operate at ½ resolution (320x240). 

• Detection of dropped frames and corresponding corrective procedures. Even 

tough the original application ensured that all the events generated by the 

capturing card were serviced -by means of a priority queue implementation-, lip 

synchronization was lost after prolonged recordings (typically three minutes or 

more). Later, it was determined that the true output from the video card at the 

maximum resolution (640x480 pixels) was 29.97 fps. Therefore, a copy of a 

previous frame was inserted in the video file to ensure 30 fps throughput. 

• Determination of MPEG-4 compliant facial expression parameters taking into 

account head motion and appearance using heuristic methods. The previous 

implementation used a plane transformation matrix based on [56] to project the 

feature points into the plane position at frame zero prior to compute the 

displacements. This approach was discarded in the current implementation due to 

a lack of naturalness in lip motion using an informal perceptual evaluation (MZC 

and RGO). 

 

The application allows live audio to be saved in a standard wave file format (WAV), 

whereas video can either be processed on-line (to yield MPEG-4 FAP) or saved in a 

proprietary format for off-line processing. In addition, the application allows the user to 
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play back a video sequence in slow motion as well as produce FAP streams with a 

variety of options. Fig. 3 shows the main screen of the application’s GUI. 
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Fig. 3. Graphical user interface for managing motion capture, process audio/video files, 

and generate new FAP stream files. The left-hand side of the screen shows a processed 

video frame with color markers overlaid at the location of the recognized landmarks. 

The right-hand side shows the user controls. 

 

As mentioned earlier, data acquisition is performed with a Winnov Videum 1000 Plus 

audio-video capture card. During initialization, the facial tracking GUI configures 
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various parameters of the capture card, including video frame rate, video codec, video 

resolution, audio sample rate and audio sample size. Once data-acquisition is started, 

video and audio events are fired periodically to capture new data. The audio/video 

events are handled directly by the GUI. Audio events are registered every second and are 

processed by saving the incoming information directly to disk each time they occur. 

 

Video events on the other hand, take place every time a frame is available which, at the 

current frame rate of 30 frames per second, is every 33.3 ms. These events can be 

handled either by (i) saving the data to memory or (ii) tracking the markers on-line. Each 

video event is spawned in its own thread and the data is stored in a circular queue until it 

can be saved to disk. This feature is particularly useful in cases where the thread cannot 

be serviced in a timely fashion due to operating system tasks in process. Such case is not 

unlikely considering that a typical hard disk drive access alone takes approximately 

15ms to 20ms, which represents almost 60% of the time allotted to process the video 

data before another frame becomes available. 

 

3.1.3 Video processing 

Video processing consists basically of extracting the location of the markers from the 

raw image and labeling each marker based on its position relative to the other markers in 

the image. The complete process can be performed on the fly at 30 fps for a maximum 

image size of 320x240 (one half of the camera resolution) with a Dell Pentium IV 2.0 
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GHZ, 512 MB RAM. Alternatively, the video can be saved at full resolution (640x480 

pixels @ 30 fps) and processed off-line, as mentioned earlier. 

 

Marker segmentation. The raw IR image is initially segmented with a pre-specified 

threshold to produce a binary image. Fig. 4 shows the detail of a reflective marker as 

seen by the camera before thresholding, and the binary result after applying the threshold 

criteria (1’s denote potential markers, 0’s denote background areas). A histogram 

analysis of a typical image is presented in Fig. 5. It can be seen that reflective marker 

pixel values have a high contrast when compared to the background. 

 

 

(a) (b) 

Fig. 4. Detail of a retro-reflective marker as seen by the camera. (a) Amplified gray scale 

image of the marker; and (b) corresponding binary map after filter application. 
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(a) 

 

(b) 

Fig. 5. Pixel values from a typical IR head image. (a) Gray scale values; and (b) detail of 

the normalized histogram for image in (a). 
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The entire image is scanned to find areas of 3x3 pixels with a density greater than or 

equal to 0.36, where density is defined as the ratio between the number of pixels with a 

value of 1 to the total pixel area. When a candidate area is found, its center is located 

using the following procedure:  

a) the searching area is increased from 3x3 pixels to 4x4 and so forth until 

the measured density falls below 0.36, up to a maximum size of 10x10   

b) the center of gravity of the area is determined using equations (1) and (2). 
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This simple procedure proved to be extremely reliable for tracking flat reflective 

markers as well as semi-spherical shaped markers in different orientations and positions 

relative to the camera. It is however possible that, due to partial occlusions or odd 

orientations relative to the image plane, a marker may go undetected. Error recovery 

from this situation is possible, and is carried by interpolating the last position at which 

the marker was still present and the first occurrence at which it is reacquired. 
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Marker labeling. The next step in video processing is labeling each marker based on its 

extracted position in the image. Such task can be very difficult if the target’s initial 

position is unknown. Therefore, the videotaped subject is first asked to wear a head-

mounted light-weight frame and pose with the tip of his/her nose pointing in the 

direction of the camera, looking at the camera lens, and maintain his/her head straight 

during the first seconds of recording (in as much as possible). In addition, the subject is 

also asked to keep his/her facial muscles in a relaxed state, with the lips together, and a 

closed jaw during this initial period. This neutral head position guarantees a relative 

location for all target markers. For instance, the frame markers are easily identified by 

selecting the two uppermost and the two bottommost markers in the image. In the same 

manner, the eyebrow markers are located immediately below the frame’s top markers. 

Subsequently, cheeks, nose, and lips are identified in a similar fashion. Fig. 6 shows a 

dummy face and the marker identification result (e.g., lips with blue and cyan diamonds 

and yellow and magenta x’s). 
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(a) (b) 

Fig. 6. Images of a dummy head wearing reflective markers. (a) Taken with a normal 

digital camera; and (b) as seen by the IBM Pupilcam with a color overlay of the position 

and identification of the markers (e.g., lips in blue and cyan diamonds and yellow and 

magenta x’s). 

 

The labeling of markers in subsequent frames is facilitated by the spatial locality of the 

problem. For instance, a mark identified as Upper-Right eyebrow in the first frame will 

most likely be found in or near the same area in the following frame, thus allowing an 
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easier marker labeling procedure while relaxing constraints for head orientation in 

subsequent frames. 

 

After the markers are labeled, their 2D position is stored in a file, and used subsequently 

to generate the appropriate parameters for the MPEG-4 facial animation engine, as 

described in the next section. At this point, the video file, which grows at a rate of 1GB 

every 2 minutes of 640x480 at 30 fps, is no longer needed and can be discarded. 

 

3.2 Facial motion determination 

The MPEG-4 standard [57] includes a series of Facial Animation Parameters (FAP) that 

allow facial expressions to be parameterized. There are a total of 68 FAPs categorized in 

ten groups shown in TABLE 1. These parameters are defined as relative displacements 

from a reference face in which the muscles are relaxed, the lips are closed, the upper 

teeth are in contact with the lower ones, the head is oriented frontally towards the 

camera, the eyelids are open, and the pupil diameter is 1/3 of the iris diameter (see Fig. 

7). This reference face is normally referred to as a neutral face. 
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TABLE 1  

FAP groups adapted from [16], pp 20 

Group Number of FAPs 
Visemes ands expressions 2 
Jaw, chin, inner lower lip, corner lips, mid lip 16 
Eyeballs, pupils, eyelids 12 
Eyebrow 8 
Cheeks 4 
Tongue 5 
Head rotation 3 
Outer-lip positions 10 
Nose 4 
Ears 4 

 

 

Fig. 7. Neutral face and referential distances used to compute facial animation 

parameters (adapted from [21]): eye separation (ES0), eye to nose separation (ENS0), 

mouth to nose separation (MNS0), and mouth width (MW0). 
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3.2.1 Placement of retro-reflective markers 

The placement of markers was optimized to facilitate tracking of facial motion in regions 

most relevant to our perceptual studies, which are described in Section 4.3. These 

regions include eyebrows, cheeks, nose, lips, and chin. Eyebrow motion was initially 

tracked by placing markers at each of the six feature points defined in the MPEG-4 

standard (see figure Fig. 8). 

 

Right eyebrow feature points Left eyebrow feature pointsRight eyebrow feature points Left eyebrow feature points

 

Fig. 8. The six feature points -marked with red squares- defined in the MPEG-4 standard 

for eyebrow motion. 
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However, it was later found that the outer markers were not easily tracked because, due 

to their orientation with respect to the camera plane, they would oftentimes disappear 

during yaw rotations (refer to Fig. 9). For this reason, it was finally decided that only 

mid and inner eyebrow markers would be used. Similarly, lip motion was initially 

tracked with eight markers, but this often caused the marker-labeling algorithm to swap 

labels due to the proximity of the markers. Therefore, it was later decided that only four 

markers at the extremes of the oral cavity would be used to track lip motion: top, bottom, 

right, and left. 

 

  

(a) (b) 

Fig. 9. Illustration of marker occlusion caused by head rotation: (a) Styrofoam head in 

frontal orientation; and (b) with a yaw rotation (note that the right outer eyebrow is 

almost unnoticeable). 
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To determine the displacement of a feature relative to the neutral face, it is first 

necessary to decouple non-rigid motion (e.g., lip motion, facial expressions) from rigid 

motion (e.g., head rotations). This can be resolved by placing reference markers at 

locations that are unaffected by non-rigid motion. Initially, the nose tip was used to 

determine the new head position. However, it was found that the estimates of head pose 

were not accurate enough to recover subtle facial movements such as eyebrow raises. 

For this reason, it was decided to assist the process with a head-mounted light-weight 

frame as shown in Fig. 6(a). 

 

 

 

 

(a) (b) 

Fig. 10. Placement of retro-reflective markers and wearable frame on subject’s head: (a) 

on the FAE [21] default model marked in red; and (b) on a styrofoam head (note the 

flash reflection on the markers). 



34 

 

3.2.2 Estimation of head pose 

Fig. 11 shows the three canonical head rotations that can be estimated by the system. 

Head roll can be estimated directly from the markers on the left and right posts of the 

wearable frame as depicted in Fig. 12. First, the orientation of the left post in the head-

mounted frame is determined from markers TL and BL, and the direction of right post 

from markers TR and BR. An average of these two orientations (at frame t) is computed 

using equation (3). Later, the angle between the head’s vertical orientation tVPostAvg  

and the camera vertical direction y
�

 is determined with a dot product operation. 

Additionally, a conversion factor is applied since the FAP head rotation units are given 

in 10-5rad (refer to equation (4)). 
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Fig. 11. Canonical head rotations (a) pitch, (b) yaw, and (c) roll. 
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Fig. 12. Head roll is determined by the angle between the vertical ( y
�

) and the average 

direction between left and right posts ( tVPostAvg ). 
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Determination of pitch and yaw angles is not straightforward since a 2D image does not 

provide depth information. However, an approximate measure of these rotations can be 

computed by exploiting perspective projection. The approach is illustrated in Fig. 13. 

Two line segments with the same length, one at a distance d and the other at a distance 

d+∆d from the plane of projection, will have a different apparent length on the image 

plane. The farther the line segment is from the plane of projection, the smaller it appears. 

A similar effect is produced in the projection of the reference frame when the head 

orientation changes due to pitch or yaw rotations. Using this rationale in the reference 

frame’s appearance problem, we find that when the head is leaned forward the distance 

between TL and TR markers is greater than the distance between BL and BR markers, as 

shown in Fig. 14(b). Analogously, the distance between TR and BR markers appears 

larger than the distance between TL and BL markers when the head is turned left (cf. 

Fig. 14(c)). 

 

Fig. 15 illustrates the effect of pitch rotations on the relative distance between top 

markers (TL-TR), and bottom markers (BL-BR) in the frame. The left image shows a 

head in the neutral pose, whereas the right image portraits the same head leaned forward, 

both images as captured by the camera. 
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Fig. 13. Perspective projection. A segment at a distance d from a plane of projection 

appears larger than the same segment placed at a distance d+∆d. 
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(a) (b) (c) 

Fig. 14. Frame appearance in different head orientations. (a) Head in neutral posture; (b) 

head leaning forward makes the top post distance appear larger than the bottom post 

distance; and (c) head turned left makes the right post distance appear larger than the left 

post distance. 
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(a) (b) 

Fig. 15. Actual frames from a motion capture showing the effect of perspective 

projection on head appearance and HRatio (refer to equation (5)). (a) Head in neutral 

posture, HRatio=1.049; and (b) head with a pronounced pitch inclination, HRatio=1.148. 

 

It can be seen that the horizontal ratio at a given frame t, HRatiot, of the top distance to 

the bottom distance changes as a result of pitch angle, in this case 1.049 for the neutral 

position and 1.148 for the leaned forward head. The same heuristic can be applied to 

approximate yaw rotation, in this case by comparing the magnitude between the left and 

right posts. Equations (5) and (6) define the horizontal and vertical ratios respectively: 
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Conversion of these ratios into actual head rotation FAP units is performed using 

equations (8) and (10). The constant values for the conversion were obtained through 

calibration. For instance, the pitch constant kp in equation (7) was experimentally 

determined to be 0.15 using the styrofoam head model in Fig. 10(b) and leaning it 

forward and backward 17°, ( radPitch 296.0max =θ ). Angles greater than 17° for the case 

of head pitch were considered out of range during a normal interview process. The same 

applies for head yaw. The only difference was that the maximum angle allowed was 8° 

( radYaw 139.0max =θ ) and the constant ky was determined to be 0.05. It is important to 

note that that pitch and yaw motion are tightly coupled; hence, the corresponding FAP 

values computed using the proposed method are just mere approximations. 
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3.2.3 Estimation of lip motion 

Lip motion is estimated from four markers placed at the top and bottom lips, and the 

right and left corners of the mouth. Mouth opening at any given frame t, Vlipt, could in 

principle be determined from the vertical distance between top and bottom markers on 

the lips. Unfortunately, this distance varies not only with mouth aperture but also with 

head orientation (particularly pitch movements) as a result of the projection onto the 

image plane (cf. Fig. 13). For this reason, a correction factor is applied to account for the 

coupling with pitch angles. The correction factor has the same magnitude whether the 

pitch movement is forward or backward. Therefore, the parameter tHRatio  in equation 

(5) was slightly modified to account for this fact as shown in equation (11), and used to 

determine the correction factor in equation (12). 
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In addition, a non-lineal transformation was applied afterwards to the lip motion 

depending on the measured aperture of the mouth. Several transformations were 

considered, as shown in Fig. 16. Using an informal perceptual evaluation (MZC and 

RGO), it was concluded that the best performance was achieved with the Gaussian 

shaped function defined in equation (13), which filters out small lip openings (jitter) and 

amplifies larger ones: 
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In summary, the vertical opening of the mouth is determined by: 

(1) subtracting from the raw lip aperture ( tVLip ) the aperture recorded at the 

initial frame 0VLip , since MPEG-4 FAPs are a measure relative to the 

neutral face. 

(2) applying the multiplicative term rctionFactoPitchCorre  to account for 

coupling with pitch rotations of the head: 

1024
0

0

MNS
VLipVLip

rctionFactoPitchCorreipOpeningCorrectedL t
t

−×=  (14) 

(3) applying the Gaussian transformation in equation (13) to emphasize 

larger openings of the oral cavity: 

( )tt ipOpeningCorrectedLGLLipOpening ,200=  (15) 
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Fig. 16. Various transformations considered to smooth the effect of aliasing and head 

rotation coupling in lip aperture determination (shown normalized). The green curve 

shows the original values without modification. The red and cyan curves do not achieve 

the desired smoothing effect while the blue curve, Gaussian shaped, attenuates values 

below 0.3 and reaches the apex zone rapidly for values above it. 

 

Finally, this lip vertical opening was proportionally converted into displacements for the 

bottom lip, top lip, right, and left lip FAPs using empirically-determined weights, as 

given in equations (16) to (19). 
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tt LipOpeningAPBottomLipF ×−= 9.0  (16) 

tt LipOpeningTopLipFAP ×−= 1.0  (17) 

tt LipOpeningPRightLipFA ×−= 4.0  (18) 

tt LipOpeningLeftLipFAP ×−= 4.0  (19) 

 

The horizontal aperture of the mouth is determined by subtracting the distance between 

the right and left markers on the lips in the current frame ( tHLip ), from that in the 

neutral frame 0HLip . Although head rotations and perspective projection have an effect 

on this magnitude, a decision was made to keep this FAP computation as simple as 

possible since its contribution to lip synchronization and lip animation was at this point 

quite acceptable. Therefore, the horizontal displacement for these parameters is given by 

equations (20) and (21). 

 

1024
2

1
0

0

MW
HLipHLip

APHRightLipF t
t

−
×=  (20) 

1024
2

1
0

0

MW
HLipHLip

PHLeftLipFA t
t

−×=  (21) 

 

It must be noted that the manner in which the lip FAPs are computed reproduces real lip 

motion quite accurately, but it is unable to capture asymmetric lip movements, nor 

idiosyncratic grins and smiles accompanying speech. 
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3.2.4 Estimation of eyebrow motion 

The MPEG-4 standard employs six FAP parameters to describe eyebrow motion. As 

noted earlier, a decision was made to remove the outer eyebrow markers since these 

were frequently missed by our trackers. (cf. Section 3.2.1). Two additional parameters 

are introduced at this point, the distance between the marker at the nose bridge and the 

midpoint between inner eyebrows, tVIEyebr  (defined in equation (22)), and the distance 

between the marker at the nose bridge and the middle eyebrows denoted as tVMEyebr , 

defined in equation (23). These parameters, which are illustrated in Fig. 17, will be later 

used to compute the eyebrow displacements. 

 

 

Fig. 17. Parameters associated with eyebrow motion . VMEyebr is defined as the vertical 

distance between the nose bridge and the mid-point of the middle eyebrows. VIEyebr is 

defined as the distance between the bridge and the inner eyebrows mid-point. Finally, 

ENS0 is the eye to nose separation in the neutral posture. 
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),distance( NoseBridgetowsMidPoinInnerEyebrVIEyebr tt =  (22) 

),(distance NoseBridgentrowsMidPoiMiddleEyebVMEyebr tt =  (23) 

 

As it occurs with vertical lip motion, eyebrow displacements are subject to coupling with 

pitch rotation. Unfortunately, the correction factor applied for lips was found not to work 

well for eyebrows. This phenomenon is attributed to the fact that the fiduciary point 

(nose bridge) does not lie in the same vertical line as the eyebrow points but is oblique 

and consequently the compensation factor applied for head pitch does not correct the 

distortion caused by head yaw. After some experimentation, a custom correction factor 

based on tVPostAvg (equation (24)) was applied to the measured distances tVIEyebr  and 

tVMEyebr . 

2

tt

t

LeftPostRightPost
VPostAvg

+
=  (24) 

 

This correction factor simply attempts to neutralize the difference in appearance caused 

by head motion on the parameters tVIEyebr  and tVMEyebr  at frame t, prior to the 

subtraction to the reference parameters at frame zero, ( 0VIEyebr  and 0VMEyebr ). This is 

achieved by multiplying the terms at the current frame by tVPostAvgVPostAvg /0 . 

Subsequently, a Gaussian shaped transformation (equation (25)) was applied in the same 

fashion as for lip FAPs. 
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Corrected displacements were computed using equations (26) and (27), and later 

converted (equations (28) and (29)) to obtain the final FAP displacements for eyebrow 

motion. 
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−��
�
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×
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( )tt wnnerEyebroCorrectedIGEyebrowFAPInnerLeftE ,50=  (28) 

( )tt owiddleEyebrCorrectedMGEEyebrowFAPMiddleLeft ,100=  (29) 

tt yebrowFAPInnerLeftEEyebrowFAPInnerRight =  (30) 

tt EyebrowFAPMiddleLeftPtEyebrowFAMiddleRigh =  (31) 

 

Finally, to eliminate high-frequency jitter, a non-causal average filter was applied to the 

estimated eyebrow FAPs. The window size for the filter was set to 5 frames (or 167ms) 
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since typical “eye-greeting” lasts approximately 160ms, whereas “eyebrow flash” 

persists approximately 300ms [51]. Fig. 18 shows the eyebrow motion signals at 

different stages during the process. 
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(a) 

Fig. 18. Waveforms from a real motion capture. (a) Inner eyebrow motion without 

correction factor; (b) inner eyebrow motion after the application of the correction factor; 

(c) following Gaussian squashing; and (d) following average filtering. 
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(b) 
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(c) 

Fig. 18. Continued. 
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(d) 

Fig. 18. Continued. 
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4 ELICITATION AND PREDICTION OF VISUAL PROSODY 
 

This section describes the protocol that was devised to elicit and capture natural facial 

motion from English speakers, as well as the two computational models that were built 

to generate visual prosody. The two different forms of visual prosody: randomly 

generated movements, which served as the baseline stimulus, and speech-driven prosody 

by means of heuristics and autoregressive models. 

 

4.1 Prosody elicitation protocol 

Using the motion capture system described in the previous section, nine interviews were 

carried out to acquire facial motion data. Due to the limitations of the tracking system, 

some constraints were introduced at the time of motion capture: a) the use of eyeglasses 

was not allowed during the whole interview, and b) male subjects had no facial hair, 

such as beard or moustache. Small adhesive reflective markers (less than 2x2mm) were 

placed on the individual’s face at thirteen points previously defined, (refer to Section 

3.2.1, Fig. 10(b) for more details). 

 

An interview protocol was designed to establish a baseline for facial motion across 

subjects. The process consisted of three distinct sections: 

1. Description of a childhood game or a life threatening experience. This section 

was intended to familiarize the individual with the overall motion-capture 
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process, the reflective markers and the head frame. Since the topic was selected 

by the subject, this greatly helped him/her get relaxed in front of the camera and 

microphone. 

2. View of a selected video sequence, in this case a Looney Tunes cartoon entitled 

“Putty Tat Trouble” [58]. This section served to establish a common story-telling 

scenario. 

3. Scene description. The person was asked to describe the Tweety/Silvester 

cartoon in front of the camera. No specific format was followed. The aim of this 

stage was to elicit and capture idiosyncratic visual prosody from the subject. 

 

Each recording session lasted approximately two hours. After each session, the data was 

processed in order to store the relative position of each marker during the recording, and 

later generate FAP displacements. About ten minutes of animation were produced for 

each individual, containing several narrations and the common story-telling of the 

cartoon. In most cases, little or no intervention was needed or recorded from the 

interviewer’s side. 

 

4.2 Video selection 

Two videos were manually selected from among the nine recordings for further study 

due to their quality in terms of head and eyebrow motion. The remaining videos had to 

be discarded since they only displayed subtle facial motion and, hence, less opportunity 
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to exploit and acquire meaningful relationships between utterances and visual prosody. 

The two selected segments (those of subjects S2 and S7) have high variance on the head 

and eyebrow articulators, as shown in TABLE 2. However, higher variance does not 

necessarily equate to ‘pleasant’ animation. Such is the case of segment S9, in which the 

motion appears rhythmic and more the result of nervousness than natural story-telling. 

 

TABLE 2  

Statistics from selected FAP features in video samples 

Video 
Name Gender Duration 

mm:ss Statistic
Inner 

eyebrow 
FAP 31,32

Middle 
eyebrow 

FAP 33,34

Head pitch 
FAP 48

Head yaw 
FAP 49

Head roll 
FAP 50

S1 Male 1:20 std. dev. 0.14 6.07 1281.31 2159.74 1842.55
mean -0.01 -1.02 -204.04 6141.41 -2320.05

S2 Male 1:48 std. dev. 11.81 11.81 3890.67 4677.11 3267.26
mean 5.54 5.54 -1102.69 -2575.43 -1489.92

S3 Male 2:05 std. dev. 5.55 4.77 2653.34 3901.66 3063.32
mean 0.60 0.37 -3164.00 -852.93 987.31

S4 Male 1:35 std. dev. 2.57 0.13 1281.49 2234.09 2601.38
mean 0.17 0.01 -903.16 1850.82 4977.86

S5 Male 1:24 std. dev. 0.40 0.00 752.93 854.61 408.18
mean 0.18 0.00 -3545.07 -1312.69 110.82

S6 Male 3:40 std. dev. 10.86 13.83 1911.56 995.31 1176.29
mean -15.93 -26.35 -6495.01 4412.84 -2906.73

S7 Male 1:26 std. dev. 12.75 12.75 3615.77 4291.83 3385.36
mean 6.59 6.59 -640.30 -1789.50 -1205.07

S8 Male 1:34 std. dev. 1.34 2.31 1833.98 3822.31 3706.54
mean 0.28 0.51 1411.45 -1744.87 7132.25

S9 Female 1:49 std. dev. 13.26 11.79 4756.03 4333.57 5254.98
mean 7.00 3.14 131.30 6475.49 -4354.76  
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4.3 Visual prosody models 

In order to investigate the perceptual role of head and eyebrow motion in the context of 

facial avatars, four animations were produced for each of the two video snippets that 

were selected in the previous section: 

• No visual prosody (NO_PROSODY) 

• Random visual prosody (RANDOM) 

• Speech driven visual prosody (SPEECH_DRIVEN) 

• Ground truth visual prosody (GROUND_TRUTH) 

 

In the four cases, lip movement was produced using the ground truth from video, since 

lip articulation was not a variable of interest in the present study. 

 

The first and fourth models are straightforward, and are described in the next two 

paragraphs. Random and speech-driven models are more involved, and deserve separate 

treatment in independent subsections. 

 

4.3.1 No visual prosody 

The production of the first animation model is trivial, since it only involves setting to 

zero the corresponding FAP values for inner eyebrows (FAP 31, FAP 32), middle 

eyebrows (FAP 33, FAP 34), head pitch (FAP 48), head yaw (FAP 49), and head roll 

(FAP 50). 
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4.3.2 Ground truth visual prosody 

The production of the last animation model is also trivial, as it employs the head and 

eyebrow movements that were extracted from the video. This animation model is 

important, as it provides a best-case scenario for visual prosody. 

 

4.3.3 Random visual prosody 

Randomly generated head and eyebrow motion employed a special noise function 

widely used in computer animation, known as Perlin Noise [59]- [62]. This special type 

of noise function has also been used by Perlin and Goldberg [63] in a scripting system to 

generate real-time animated characters capable of displaying behavioral motion. Perlin 

Noise is based on a fractal summation of pseudo-random functions: 

( )�
=

=

××=
octavesi

i

ii inputfrequencyNoiseepersistencePerlinNois
#

0  (32) 

 

The behavior of this noise function is controlled by means of the persistence and 

frequency parameters, as well as with the number of octaves. To better understand the 

function of persistence, frequency, and number of octaves an example is adapted from 

reference [61]. Fig. 19 shows the gradual summation of noise functions to produce a 

given output. As it can be seen, the persistence parameter diminishes the power of 

subsequent octaves, so called because the frequency of an octave is a multiple of the 

previous one. The persistence regulates the influence of subsequent octaves in the total 



55 

 

summation, while the sampling frequency changes its frequency content. The number of 

octaves can be interpreted as the level of granularity desired. 

 

Fig. 19. Two examples of Perlin noise generation with a different persistence parameter. 

The final output is the summation of several octaves with a decreasing magnitude (due 

to a persistence parameter) and increasing seed frequency (due to a frequency modifier). 

Adapted from [61]. 

 

In order to generate eyebrow motion, the number of octaves was set to 6, while 

persistence was set to 0.8 and the seed was a function of the frame number as shown in 

equations (33) and (34). These values were set empirically to approximate typical values 

of eyebrow motion from the real motion captured data. 
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The same noise function was used for head motion, with scale factors and frequency 

values adjusted to account for differences in units since eyebrow FAPs use the eye to 

nose separation (ENS0/1024) as a displacement unit whereas head rotations use 10-5rad 

as the angular unit. In addition, negative values were allowed, as opposed to eyebrow 

generated motion in which negative values were neglected. Finally, each head 

inclination (head, yaw, and roll) contained a different frameOffset. Fig. 20 shows the 

final trajectories of the randomly generated visual prosody for one of the subjects; 

obviously, these trajectories are uncorrelated with the ground truth motion, but 

nonetheless have similar frequency content. 
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Inner eyebrow motion (FAP 31,32) for S7
Ground Truth (thick blue line) and Speech-Driven (thin red line)
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(a) 

Head pitch motion (FAP 48) for S7
Ground Truth (thick blue line) and Random (thin red line)
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(b) 

Fig. 20. Ground truth data (solid blue line) compared to random motion (dashed red line) 

for a video segment of 600 frames (40 seconds) containing S7 idiosyncratic for: (a) inner 

eyebrow motion; (b) pitch motion; (c) yaw motion; and (d) roll motion. 
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Head yaw motion (FAP 49) for S7
Ground Truth (thick blue line) and Random (thin red line)
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(c) 

Head roll motion (FAP 50) for S7
Ground Truth (thick blue line) and Random (thin red line)
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(d) 

Fig. 20. Continued. 
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4.3.4 Speech driven visual prosody 

Cavé et al. [38] have shown that there is a high correlation between rising Fundamental 

Frequency (F0) events and eyebrow rising-falling movement. Nonetheless, that study 

also showed that eyebrow motion can occur in silent segments as well as in flat F0 

regions, which were attributed to linguistic communicational choices. This result 

suggests that the relationship between F0 and eyebrow motion is non-trivial. Even 

though full recovery of the visual prosody from speech acoustics may not be possible, 

we hypothesize that visual prosody driven by simple acoustic features (e.g., pitch and 

energy contours) may still be perceptually more realistic than randomly-generated or no 

visual prosody at all. To test this hypothesis, two simple computational models were 

used to generate eyebrow and head movements. Eyebrows were animated using a rule-

based heuristic, whereas head movements were predicted using a linear autoregressive 

model. 

 

4.3.4.1 Generation of eyebrow movements 

Eyebrow motion was driven by the fundamental frequency component and the energy of 

the speech signal. Both variables were computed using the PRAAT tool from Boersma 

and Weenink [64]. Fig. 21 shows the analysis of the sound channel for video segment 

S7. The top signal in solid black line represents the corresponding Pulse Code 

Modulation values, while the bottom drawn in cyan line represents the fundamental 

frequency candidate computed for voiced segments. 
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Fig. 21. Screen sample from the PRAAT tool from Boersma and Weenink [64] showing 

the fundamental frequency (F0) analysis for the test segment S7. 

 

Since F0 values for unvoiced segments such as the ones produced by certain consonants 

(e.g., /p/ or /t/) are not defined, the undefined segments were treated as missing points, 
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and interpolated values were obtained using a cubic spline. Consequently, transitions 

between F0 regions were smoothed. In addition, the resulting function was cropped to 

limit its values between zero and the original maximum frequency to avoid outliers: 

�
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where spline() refers to the output of the interpolating function. Fig. 22 shows an 

example of the raw and conditioned fundamental frequency for an audio signal at two 

different time scales. The spline follows the original signal during voiced segments, and 

provides a gross reconstruction during unvoiced utterances. 

 

Once F0Conditioned was obtained, the rising edges were analyzed to determine if a pre-

set limit of 207Hz was crossed. If such condition occurred, an eyebrow-rising event was 

automatically triggered. The eyebrow FAP displacement magnitude was determined as a 

scaled version of the fundamental frequency signal, with an appropriate offset value. In 

addition, the eyebrow displacement was maintained for a minimum of 300ms and 

terminated once the energy level dropped below 45dB with a gradual motion to neutral 

state that lasted three additional video frames. 
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(a) (b) 

Fig. 22. Fundamental frequency waveforms from the audio channel of a motion capture. 

In blue dotted line the original F0 signal, while the conditioned signal is displayed in 

solid red line. (a) First 5 seconds of a motion capture; and (b) another time segment 

belonging to the same motion capture section. 

 

Fig. 23 to Fig. 25 show the audio parameters (F0 and energy) for a motion capture 

segment and the corresponding speech driven eyebrow motion. It must be noted that the 

eyebrow displacement during the lapse between 10 and 20 seconds is an instance of 

eyebrow displacement hold due to an energy level above the threshold. 
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Fig. 23. S7 segment’s F0Conditioned signal (refer to Eq. 35) for use in speech-driven 

facial animation. 
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Fig. 24. S7 segment’s energy signal for use in speech-driven facial animation. 
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Inner eyebrow motion (FAP 31,32) for S7
Ground Truth (thick blue line) and Speech-Driven (thin red line)
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Fig. 25. Portion of the inner eyebrow motion (FAP 31 and 32) generated using the 

conditioned fundamental frequency and the energy parameters extracted from audio. 

 

4.3.4.2 Generation of head movements 

Head movements were generated using an autoregressive (ARX) model [65], which uses 

a linear combination of past input and output signals to compute the output signal at a 

later time. The model is specified by: 
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where na=4, nb=4, and nk=1 in our implementation. The input signals u, which serve as 

independent variables for the regression, were: 

• previous predictions of head movements (pitch, yaw, and roll),  

• energy level of the speech signal,  

• F0Conditioned, as described in the previous section,  

• the product of energy and F0Conditioned, to allow for simple non-linear effects  

• mean-filtered energy and F0 contours (window width of 30 frames or 1 second), 

to allow the ARX model to operate at two different time scales. 

 

The output consisted on the three desired head motion values: pitch, yaw, and roll 

movement. Fig. 26 shows a sample of audio-driven visual prosody generated for the 

video segment S7. 
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Head pitch motion (FAP 48) for S7
Ground Truth (thick blue line) and Speech-Driven (thin red line)
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(a) 

Head yaw motion (FAP 49) for S7
Ground Truth (thick blue line) and Speech-Driven (thin red line)
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(b) 

Fig. 26. Speech driven facial animation parameters generated for video segment S7 (first 

600 frames, or 40 seconds). (b) Head pith; (c) head yaw; and (d) head roll. 
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Head roll motion (FAP 50) for S7
Ground Truth (thick blue line) and Speech-Driven (thin red line)
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(c) 

Fig. 26. Continued. 
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5 PERCEPTUAL EVALUATION OF VISUAL PROSODY 
 

This section describes the final perceptual evaluation of the four visual prosody models 

using a pool of subjects. The goal of the experiment was to determine whether there 

exists statistically significant differences between the models, and determine whether 

speech-driven visual prosody produced a more realistic, coherent and convincing 

animations than randomly generated movements, i.e., the main hypothesis of this work. 

 

5.1 Stimulus presentation 

Stimuli were presented in pairs with the same underlying audio track. For this purpose, a 

software interface was developed by the author to drive two instances of the Facial 

Animation Engine (FAE) [21] in synchrony with two separate motion data files. The 

basic code used to send commands to the FAE was taken from [66]. The perceptual 

experiments were carried on a Notebook Intel Pentium IV 3.08 GHz with 512MB RAM. 

The two FAE instances were run as separate high-priority threads, side by side, as shown 

in Fig. 27. 
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Fig. 27. Software interface based on [66] modified to drive two high priority instances of 

the Facial Animation Engine (FAE) [21] to play two animations in synchrony. 

 

5.2 Experiment 1 

The four stimuli (NO_PROSODY, RANDOM, SPEECH_DRIVEN, and 

GROUND_TRUTH) were presented to five subjects in a pair-wise fashion, for a total of 

32 pairs (4x4 combinations, times two segments: S2 and S7). The subjects were asked 

the following question: “Which animation do you consider to be more realistic motion-

wise?” The subjects were also instructed to dismiss any lip motion differences because 

the utterances for both talking heads were synchronized and the lip motion was the same. 

In order to discard any bias due presentation order or position (right or left), the stimulus 

pairs were presented in a random order, as shown in TABLE 3. 
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TABLE 3  

Sample order for presentation of stimulus pairs 

Order Left Panel Right Panel Order Left Panel Right Panel
1 RANDOM SPEECH_DRIVEN 17 RANDOM SPEECH_DRIVEN
2 SPEECH_DRIVEN NO_PROSODY 18 SPEECH_DRIVEN NO_PROSODY
3 GROUND_TRUTH RANDOM 19 RANDOM GROUND_TRUTH
4 SPEECH_DRIVEN SPEECH_DRIVEN 20 NO_PROSODY GROUND_TRUTH
5 NO_PROSODY RANDOM 21 NO_PROSODY NO_PROSODY
6 RANDOM NO_PROSODY 22 SPEECH_DRIVEN RANDOM
7 GROUND_TRUTH SPEECH_DRIVEN 23 NO_PROSODY RANDOM
8 GROUND_TRUTH NO_PROSODY 24 SPEECH_DRIVEN GROUND_TRUTH
9 NO_PROSODY NO_PROSODY 25 RANDOM RANDOM
10 SPEECH_DRIVEN RANDOM 26 GROUND_TRUTH NO_PROSODY
11 RANDOM RANDOM 27 NO_PROSODY SPEECH_DRIVEN
12 NO_PROSODY SPEECH_DRIVEN 28 SPEECH_DRIVEN SPEECH_DRIVEN
13 NO_PROSODY GROUND_TRUTH 29 RANDOM NO_PROSODY
14 RANDOM GROUND_TRUTH 30 GROUND_TRUTH SPEECH_DRIVEN
15 SPEECH_DRIVEN GROUND_TRUTH 31 GROUND_TRUTH RANDOM
16 GROUND_TRUTH GROUND_TRUTH 32 GROUND_TRUTH GROUND_TRUTH

Presentation of S7 segmentPresentation of S2 segment

 

 

The survey results are presented in TABLE 4 for S2 video and TABLE 5 for S7 video in 

the form of a confusion matrix. A letter (A) in the cell means that the stimulus in the left 

panel was judged to be more realistic than the stimuli in the right panel. For instance, the 

comparison between GROUND_TRUTH and NO_PROSODY, located in the 1st column 

and 4th row, reads ‘AAABB’, which means that 3 out of 5 subjects preferred the 

GROUND_TRUTH animation. The results of this preliminary survey, collapsed by the 

number of ballots each model received, are shown below in TABLE 6, where the score 

equals the number of times a particular model was selected as more realistic motion-wise 

(regardless of whether it was displayed on the left or the right panel). 
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TABLE 4  

Confusion matrix results for video S2 in experiment 1 

NO_PROSODY RANDOM SPEECH-DRIVEN GROUD_TRUTH
NO_PROSODY BAABB BBBBB BBBBB BBBBB
RANDOM AAAAA BBBBA AAAAA ABBAB
SPEECH_DRIVEN AAAAA ABBBA BABBB BBBAB
GROUD_TRUTH AAABB AAAAA AAAAA ABAAA

S2 Video pair-wise 
comparison

Right panel animation
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TABLE 5  

Confusion matrix results for video S7 in experiment 1 

NO_PROSODY RANDOM SPEECH-DRIVEN GROUD_TRUTH
NO_PROSODY AAABA BABAA BBBBB BBBBB
RANDOM AAAAA ABABB AABAB BBAAB
SPEECH_DRIVEN AAAAA BBABA BBBBB BBBBA
GROUD_TRUTH ABAAA BABBB BBAAB BAAAB

S7 Video pair-wise 
comparison

Right panel animation
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TABLE 6  

Collapsed number of ballots for experiment 1 

Model  S2 Score  S7 Score  S2&S7 Score
NO_PROSODY 7 9 16
RANDOM 25 24 49
SPEECH_DRIVEN 18 23 41
GROUND_TRUTH 30 24 54

Total 160  
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These results show that the NO_PROSODY model is perceived as the least realistic, 

whereas the GROUND_TRUTH model scores the highest, followed by RANDOM and 

SPEECH-DRIVEN models. A student’s T-test was performed on the ratings to 

determine if these differences are statistically significant. The data was collapsed per 

person surveyed, i.e. five surveys (four degrees of freedom). The statistics in TABLE 7 

confirm that for both videos (S2 and S7) the NO_PROSODY animation model is 

statistically different from RANDOM, SPEECH-DRIVEN, and GROUND_TRUTH 

models (e.g., refer to Pair 1, Pair 2, Pair 3, Pair7, Pair 8, Pair 9 significance). On the 

other hand, the difference between the remaining three models (RANDOM, SPEECH-

DRIVEN, and GROUND_TRUTH) was found to be not statistically significant. 

 

TABLE 7  

T-test pair-wise mean comparison for experiment 1 

-3.6000 .89443 .40000 -4.7106 -2.4894 -9.000 4 .001
-2.2000 .44721 .20000 -2.7553 -1.6447 -11.000 4 .000
-4.6000 1.67332 .74833 -6.6777 -2.5223 -6.147 4 .004
1.4000 .89443 .40000 .2894 2.5106 3.500 4 .025

-1.0000 1.73205 .77460 -3.1506 1.1506 -1.291 4 .266
-2.4000 1.67332 .74833 -4.4777 -.3223 -3.207 4 .033
-3.0000 1.87083 .83666 -5.3229 -.6771 -3.586 4 .023
-2.8000 1.78885 .80000 -5.0212 -.5788 -3.500 4 .025
-3.0000 1.00000 .44721 -4.2417 -1.7583 -6.708 4 .003

.2000 2.68328 1.20000 -3.1317 3.5317 .167 4 .876

.0000 1.00000 .44721 -1.2417 1.2417 .000 4 1.000
-.2000 1.92354 .86023 -2.5884 2.1884 -.232 4 .828

S2_NO_PR - S2_RANDOPair 1
S2_NO_PR - S2_SP_DRPair 2
S2_NO_PR - S2_GRD_TPair 3
S2_RANDO - S2_SP_DRPair 4
S2_RANDO - S2_GRD_TPair 5
S2_SP_DR - S2_GRD_TPair 6
S7_NO_PR - S7_RANDOPair 7
S7_NO_PR - S7_SP_DRPair 8
S7_NO_PR - S7_GRD_TPair 9
S7_RANDO - S7_SP_DRPair 10
S7_RANDO - S7_GRD_TPair 11
S7_SP_DR - S7_GRD_TPair 12

Mean
Std.

Deviation
Std. Error

Mean Lower Upper

95% Confidence Interval of
Mean Difference

Paired Differences

t df
Sig.

(2-tailed)
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5.2.1 Discussion 

Surprisingly, the results in TABLE 6 show that RANDOM prosody scores as high as the 

GROUND_TRUTH model for S7 video, and appears more realistic than SPEECH-

DRIVEN for both videos. Further analysis of the head and eyebrow motion trajectories 

reveals differences in mean and variance between each model, as shown in TABLE 8. It 

is interesting to note that the standard deviation of the head motion is largest in the 

RANDOM model for both videos (S2 and S7), which might explain the results in 

TABLE 6, where RANDOM received 49 ballots compared to 41 for 

SPEECH_DRIVEN. Thus, it appears that the subjects used the amount of head 

movements (i.e., standard deviation) as a strategy to select the preferred facial 

animation, rather than coherence between these movements and the speech track. For 

this reason, a new perceptual experiment was designed in which the mean and standard 

deviation of all the animations was normalized to the same values. 
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TABLE 8  

Statistics for video snippets used in experiment 1 

Subject Variation Statistic Inner 
eyebrow

Middle 
eyebrow

Head 
pitch Head yaw Head 

roll
S2 GROUND_TRUTH st dev 5.54 2.75 2803.69 3482.31 1743.25

mean -2.38 -0.96 -916.94 5061.64 -1741.52
S2 RANDOM st dev 11.60 11.60 3644.63 4431.30 3052.26

mean 5.32 5.32 -961.85 -2260.03 -814.10
S2 SPEECH_DRIVEN st dev 21.78 21.78 1441.66 1573.01 1039.17

mean 15.10 15.10 -1544.10 4613.23 -2722.44
S7 GROUND_TRUTH st dev 17.05 6.51 1563.21 1560.67 1589.00

mean 15.45 2.82 491.78 -1843.58 -865.86
S7 RANDOM st dev 13.47 13.47 3534.11 4276.10 3047.89

mean 6.75 6.75 -1648.90 -1524.91 -92.81
S7 SPEECH_DRIVEN st dev 17.18 17.18 666.93 1049.36 665.11

mean 10.70 10.70 2034.31 -1823.35 -1281.07  

 

5.3 Experiment 2 

For the second experiment, new animations were generated by scaling and adding an 

appropriate offset to the head motion parameters so that the FAPs for the three 

conditions (RANDOM, SPEECH-DRIVEN and GROUND_TRUTH) contained the 

same standard deviation and mean statistics. Fourteen (14) surveys were conducted. Six 

of them were conducted showing the 16 pairs for video S7 first, followed by the 16 pairs 

for video S2, whereas the remaining eight surveys were conducted in the opposite order. 

All viewers were instructed to rate the animations based on the following question: 

“Which of the animations displays head motion and eyebrow motion that is more 

coherent/consistent with the spoken segment?” As in the previous experiment, the 
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audience was informed that lip motion was the same for all models, and that it was the 

original motion captured from video. The survey is summarized in TABLE 9 for S2 

video and TABLE 10 for S7 video. The collapsed results are shown in TABLE 11. 

 

TABLE 9  

Confusion matrix for experiment 2 using video S2 

NO_PROSODY RANDOM SPEECH-DRIVEN GROUD_TRUTH

NO_PROSODY
BBABBBB 
ABABBBA

BBBBBBB 
BBBBBBB

BBBBBBB 
BBBBBBB

BBBBBBB 
BBBBBAB

RANDOM
AAAAABA 
BAAAAAA

BBBABAB 
AAAAAAB

BBAABAB 
BBBBABB

BBBBABB 
BBABAAB

SPEECH_DRIVEN
AAAAAAA 
AAAAAAA

AABBBBB 
BBAABBB

AAAAABB 
AAABBBA

BAABBAB 
ABABBBB

GROUD_TRUTH
AAAAAAA 
AAAAAAA

BAABBAA 
AAAABAB

ABABAAA 
BAAAAAB

BAABBAA 
ABABAABL
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S2 Video pair-wise 
comparison

Right panel animation

 
 

TABLE 10  

Confusion matrix for experiment 2 using video S7 

NO_PROSODY RANDOM SPEECH-DRIVEN GROUD_TRUTH

NO_PROSODY
BABAAAB 
ABBBAAB

BBAABBB 
BBBBBBA

BBBBBBB 
BBBBBBB

BBBBBBB 
BBBBBBB

RANDOM
AAAAAAA 
AAAAAAA

BAABABA 
ABBABBA

BBBABBA 
AAABAAB

BBBBBBB 
ABBBBBB

SPEECH_DRIVEN
AAAAAAA 
AAAAAAA

AAABABA 
AAAAABB

AAAAABA 
ABBABBB

BAABBBB 
BABBABA

GROUD_TRUTH
AAAAAAA 
AAAAAAA

AAAAAAA 
AAAABBA

ABBBABA 
AABBAAA

ABBBBAB 
ABABABAL

ef
t p

an
el

 a
ni

m
at

io
n

S7 Video pair-wise 
comparison

Right panel animation
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TABLE 11  

Collapsed number of ballots for experiment 2 

Model S2 Score S7 Score  S2&S7 Score
NO_PROSODY 17 23 40
RANDOM 63 53 116
SPEECH_DRIVEN 65 70 135
GROUND_TRUTH 79 78 157

Total 448  

 

These scores consistently show that GROUND_TRUTH motion is more coherent than 

the other models, followed by SPEECH_DRIVEN, RANDOM and NO_PROSODY. In 

addition, the Student’s T-test, shown in TABLE 12, reveals that the differences between 

all pairs are statistically significant, with the sole exception of RANDOM vs. 

SPEECH_DRIVEN for the case of S2. In that case, SPEECH_DRIVEN rates just a little 

bit better than RANDOM. This could be explained by the fact that the model structure 

used to generate head and eyebrow motion was not optimized for each subject separately 

but was identical for both. Could better performance be obtained for S2 if the model 

structure was optimized (e.g., through cross-validation)? 
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TABLE 12  

T-test pair-wise mean comparison for experiment 2 

-3.2857 1.38278 .36956 -4.0841 -2.4873 -8.891 13 .000
-3.4286 1.15787 .30945 -4.0971 -2.7600 -11.079 13 .000
-4.4286 1.01635 .27163 -5.0154 -3.8417 -16.304 13 .000

-.1429 2.14322 .57280 -1.3803 1.0946 -.249 13 .807
-1.1429 1.74784 .46713 -2.1520 -.1337 -2.447 13 .029
-1.0000 1.51911 .40600 -1.8771 -.1229 -2.463 13 .029
-2.5714 1.28388 .34313 -3.3127 -1.8301 -7.494 13 .000
-3.7857 1.12171 .29979 -4.4334 -3.1381 -12.628 13 .000
-4.7857 .89258 .23855 -5.3011 -4.2704 -20.061 13 .000
-1.2143 2.04483 .54650 -2.3949 -.0336 -2.222 13 .045
-2.2143 1.25137 .33444 -2.9368 -1.4918 -6.621 13 .000
-1.0000 1.56893 .41931 -1.9059 -.0941 -2.385 13 .033

S2_NO_PR - S2_RANDOPair 1

S2_NO_PR - S2_SP_DRPair 2

S2_NO_PR - S2_GRD_TPair 3

S2_RANDO - S2_SP_DRPair 4

S2_RANDO - S2_GRD_TPair 5

S2_SP_DR - S2_GRD_TPair 6

S7_NO_PR - S7_RANDOPair 7

S7_NO_PR - S7_SP_DRPair 8

S7_NO_PR - S7_GRD_TPair 9

S7_RANDO - S7_SP_DRPair 10

S7_RANDO - S7_GRD_TPair 11

S7_SP_DR - S7_GRD_TPair 12

Mean
Std.

Deviation
Std. Error

Mean Lower Upper

95% Confidence Interval
of Mean Difference

Paired Differences

t df
Sig.

(2-tailed)

 

 

5.3.1 Discussion 

The results of experiment 2 thus are quite promising yet inconclusive. As shown by the 

analysis of S7 (cf. TABLE 11), visual prosody driven by acoustic utterances show 

improvements over random prosody. However, the fact that our hypothesis can not be 

confirmed for the S2 animations indicates that this relationship might be subject-

dependent or that it is somewhat more complex than the one assumed in the speech-

driven model used for the experiments. 

 

Additionally, the higher rating given to SPEECH_DRIVEN vs. RANDOM in the case of 

normalized variance across models, reaffirms our belief that experiment 1 biased the 



78 

 

viewers to rate as more acceptable the RANDOM animation model due to exaggerated 

motion (i.e., standard deviation, cf. TABLE 8) This brings another discussion topic for 

consideration: to what extend can exaggeration in visual prosody used to generate 

perceptually more acceptable human characterizations? 
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6 CONCLUSIONS AND FUTURE WORK 
 

Facial avatars are a promising technology for future multimedia human-computer and 

computer-mediated interaction. In order for facial animations to gain broad acceptance, 

they have to display accurate visual speech (lip and tongue movements) but also exploit 

background channels that we employ during face to face communication, including 

head, eyebrow and eye motion, as well as facial expressions and hand gestures. Research 

on the use of these non-verbal movements for facial animation is, however, hampered by 

the lack of an underlying language model. 

 

This thesis has explored the use of two of these channels (head and eyebrow motion) to 

improve facial avatars. Our main hypothesis was that visual prosody driven by speech 

acoustics produces perceptually more realistic, coherent and convincing facial 

animations. Our work has encompassed all aspects of the system, from audio-visual 

data-acquisition to perceptual evaluation, from speech processing to computer vision. To 

achieve our goal we have: 

• developed a complete motion capture system from the grounds up using off-the-

shelf equipment under $1,000, and substantially engaged undergraduate 

engineering students in the design and implementation process. 



80 

 

• designed an experimental protocol to elicit visual prosody from naïve subjects. 

Inspired from techniques used in gesture research [67], subjects are presented 

with a short cartoon and subsequently asked to narrate the story. 

• implemented two different computational models of visual prosody, the first one 

driven by Perlin noise, and second one driven by acoustic features of the speech 

signal. 

• developed an interface to perform pair-wise perceptual evaluations of the 

animation stimuli, and performed statistical analysis of these experiments. 

 

Our results are quite promising: using very simple computational models for the 

prediction of visual prosody from speech (e.g., rule-based heuristics and linear 

autoregressive models) as well as simple acoustic features (e.g., fundamental frequency 

and energy contours), we show that speech-driven facial prosody is perceptually 

comparable and in some cases superior to movements generated with Perlin noise. We 

expect that improved speech-driven performance may be obtained by tuning the model 

structure individually for each subject by means of a cross-validation stage, and also by 

using more powerful prediction models. In addition, we showed that exaggerated visual 

prosody can bias the viewer to perceive the avatar motion as more realistic. 

 

There exist several important directions for future work. First, this work has been limited 

by the spatial (17 markers) and temporal (30 fps) resolution of the acquisition system, 

which is unable to capture subtle or fast facial phenomena. This calls for the use of high-
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end motion capture equipment capable of tracking more facial markers (up to 100 in 

some cases) at high frame rates (200 fps). In addition, the use of multiple cameras may 

allow us to recover 3D position of these markers and avoid the use of the head-mounted 

frame. Second, improved prediction results may be obtained by using more powerful 

prediction models for the audio-visual prosody mapping. In particular, nearest neighbor 

and input-output Hidden Markov Models have been shown to work well for the 

prediction of lip motion [1]-[2]. Further prediction improvements may be achieved by 

extracting more informative features from the speech acoustics, such as shape-based 

descriptors of the F0 and energy contours, rhythm and speaking rates, and segmental 

features (e.g., syllable boundaries). Third, the perceptual evaluations explored in this 

work have been of a subjective character. More objective evaluations are required to 

assess the benefits of visual prosody in facial animation, such as improvements in speech 

intelligibility or task-related performance. 

 

It has been proposed that supra-segmental speech features are closely related to the 

syntax and semantics of sentences [68], thus indicating that these features could in some 

cases serve as an indirect measurement with which to articulate semantically correct 

visual prosody. However, it is important to realize that not all visual prosody can be 

predicted from the utterances of the speaker. This includes movements related to more 

complex semantics or affective state, head movements associated with emblems 

(nodding or shaking for agreement/disagreement), or those associated with maintaining 

the flow of conversation (turn taking system), to mention a few [42]. In these case “data-
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driven” visual prosody models, such as the ones explored in this thesis, may have to be 

complemented with those already explored in the context of conversational agents [69]. 
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