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ABSTRACT 
 
 

Design and Construction  

of a  

Magnetic Force Microscope. (May 2004) 

Sameer S. Khandekar, B.E., Walchand College of Engineering (India) 

Co-Chairs of Advisory Committee: Dr. Joseph H. Ross, Jr.  
                                                          Dr. K. Ted Hartwig, Jr. 

 

 A magnetic force microscope (MFM) is a special type of scanning force 

microscope which measures the stray field above a ferromagnetic sample with the help 

of a ferromagnetic cantilever. The aim of this project was to design and build a MFM 

head and interface it with a commercial scanning probe electronics controller with the 

help of an appropriate force sensor. The MFM head and the force sensor were to be 

designed to work at low temperatures (down to 4 K) and in high vacuum.  

 During this work, a magnetic force microscope (MFM) head was designed. Its 

design is symmetrical and modular. Two dimensional views were prepared to ensure 

proper geometry and alignment for the various modules. Based on these views, 

individual parts in the various modules were manufactured and combined for the final 

assembly of the head. This MFM head has many essential and advanced features which 

were incorporated during the design process. 

 Our MFM head has an outside diameter of 5 cm and thus has a low thermal mass. 

The head operates inside a 100 cm long vacuum can which is kept in a cold bath inside a 

superinsulated dewar. Other features of this MFM head include thermal compensation of 

the important parts, flexibility to use commercial MFM cantilevers and a large scan 

range compared to the previous designs. Some of the anticipated system specifications 

are: 1) room temperature scanning range of 175×  175 µm, 2) low temperature scanning 

range between 35-50 µm, 3) smallest detectable magnetic force in the range of one pN 

and 4) smallest detectable magnetic force gradient in the range of 10-3 to 10 -5 N/m. 
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 This MFM head was interfaced to a commercial scanning probe electronics 

apparatus by designing a fiber-optic interferometer as the sensor for the detection of the 

cantilever deflection. The fiber-optic sensor also has features of its own such as stability, 

compactness and low susceptibility to noise because of all-fiber construction. 

 With this MFM head, we hope to image many magnetic samples which were 

previously impossible to image at Texas A&M. 
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I.  INTRODUCTION 
A. ATOMIC FORCE MICROSCOPY (AFM) 

 The invention of scanning tunneling microscope (STM) in 19821 opened a new 

field of microscopy called scanning probe microscopy (SPM). One family of 

microscopes which falls under this category is scanning force microscopes (SFM). Such 

microscopes are based on the principle of detection of forces and hence the name 

scanning force microscopes. The most popular offspring of the SFM technique is atomic 

force microscope (AFM). It was called atomic force microscope by its inventors Binnig 

and Rohrer2 because it was capable of achieving atomic resolution by detecting forces 

between atoms. However, later it was realized that this type of microscope can be used 

to analyze not only atomic forces but also various short-range and long-range 

interactions. The various types of forces which can be analyzed include electric and 

magnetic forces as well. The microscope based on the principle of detection of magnetic 

forces is called magnetic force microscope (MFM). It is another popular, useful and 

important type of scanning force microscope. 

 The first part (A) of this section is a discussion on AFM. The main topics 

discussed are force interactions between the tip and the sample and the various modes or 

methods of doing AFM. 

The second part (B) of this section is a similar discussion on MFM. 

1. Force interactions in AFM 

 In AFM a sharp probe i.e. a tip attached to the end of a micro-cantilever is 

scanned in close proximity to the sample or vice versa. In this case the interactions 

taking place between the end atoms of the tip and surface atoms of the sample are 

mainly because of van der Waals forces. These can be short-range or long-range 

depending on the distance between the tip and the sample. AFM is sensitive enough to 

detect surface forces at a nanometer scale. 

 

        This thesis follows the style and format of Review of Scientific Instruments 
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 At a relatively large separation, long-range van der Waals interactions are 

evident. These lead to negative interaction potential or attractive forces. The three major 

factors on which these interactions depend include tip-sample material, tip-sample 

geometry and medium between tip and sample. The forces arising out of these 

interactions can be characterized by a reciprocal power law,3 usually of order greater 

than 3. 

 If the distance between the tip and the sample is reduced further there is a 

possibility of overlap of electronic wave functions of the atoms of the tip and the 

uppermost atoms on the surface of the sample. The tip is then said to be contacting the 

sample and gives rise to short-range repulsive forces. If the tip to sample distance is 

decreased further it leads to continuously increasing repulsive forces. These forces are 

very short range as they occur only when the distance between the tip and the sample is 

of the magnitude of the radii of atoms. 

 The net interaction potential is the sum of the long-range and short-range 

potentials. The three main regions which can be identified are a. only long range 

attractive interactions are dominant b. short range interactions balancing the long range 

ones giving rise to minima c. short range repulsive forces dominate. Typically it looks as 

shown in Fig. 1. The extent of contact regime is typically less than 1 nm from the surface 

while non-contact regime can extend up to 10 nm. 

 AFM microscope works in three modes 1) contact (or DC mode) 2) intermittent 

contact (or tapping mode) 3) non-contact (or AC mode). When the working mode is the 

contact mode, the cantilever is in the region ‘c’ where repulsive forces dominate. When 

AC mode is used the cantilever is in the region ‘a’ where long range attractive forces 

dominate. In tapping mode the cantilever is in region ‘b’.  
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FIG. 1. Schematic representation of different regimes in AFM (not to scale, contact regime    

 extends less than 1 nm from the surface while non-contact regime can extend up to 10 
 nm) 

 

 If there are other long range interactions such as electrostatic or magnetostatic 

interactions, they can be described by linearly superimposing them on the van der Waals 

potential. If there is a thin liquid layer (e.g. a water layer), other forces such as capillary, 

solvation and double-layer forces manifest themselves. The presence of a liquid layer 

can change the electrostatic interactions altogether. The total interaction in this case can 

not be described by linear superposition.4

c. Contact regime 

a. Non-contact regime 

Tip to sample separation 

Force 

b. Tapping mode regime 
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2. Contact mode 

 In contact mode AFM the cantilever experiences a repulsive force. It bends like a 

spring. Its behavior can be described by Hooke’s law which is the governing equation 

for contact-mode operation: 

 
K
Fz =∆  ,                                                                                                                    (1) 

where ∆z is the deflection of the cantilever with the spring constant K when the force 

acting on it is F. The principle of DC or contact mode is explained in Fig. 2. 

 

 

DC bending of 
the cantilever 

sample 

 

 

FIG. 2. Operating principle of DC mode. The tip is made to follow surface topography while 
maintaining a constant deflection via feedback 

As the cantilever is scanned across the sample it experiences a different force at 

each point in the scan due to the varying topography, so by monitoring the deflection of 

the cantilever the topography of the sample can be imaged. This is called the constant-

height method because the cantilever is scanned at a constant absolute height. The other 

method which can be used is called the constant-force method. In constant force method, 

the cantilever is scanned across the sample keeping its deflection (and so the force) 

constant. This is achieved by means of a feedback loop. The feedback signal lowers or 

raises the piezo on which the cantilever sits according to the topography underneath.  
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Here the height by which the piezo is raised or lowered gives the topography. In the 

constant force method, the feedback must have sufficient time to react to the changes in 

the topography, so here the scanning speed is limited by feedback reaction time.  

In contact mode, though the net force is repulsive, it is always the sum of the 

attractive force between tip and sample (electron-nucleus type interaction) and repulsive 

force between the end atoms of the tip and sample (electron-electron or nucleus-nucleus 

type interaction). The typical loading force is in the range of a few nN. The smaller the 

loading forces the better is the resolution. On soft samples, a large enough loading force 

can bring about plastic deformation (if the tip is sufficiently strong). Though undesirable 

while ‘imaging’ the sample, this feature opens up the interesting possibility of 

nanolithography.  

3. Non-contact or AC or dynamic mode 

 Non-contact or AC mode works in the domain of long-range attractive forces. 

Here the method of detection of force is completely different than in contact-mode. This 

mode always works in the feedback mode. It then maps out constant force (or force 

derivative) surfaces. The cantilever is vibrated near or at its resonant frequency by 

means of a piezoelectric-bimorph or a small piezoelectric plate. When this vibrating 

cantilever is brought sufficiently close to the sample (in the range of aforementioned 

attractive forces), its resonance frequency changes. This changes the vibration amplitude 

of the cantilever. This operating principle is explained in Fig. 3. 
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 As the cantilever is scanned across the sample, the feedback tries to keep the 

amplitude of the vibration of the cantilever constant. Similar to contact mode, this is 

again achieved by lowering or raising the cantilever according to the topography 

underneath. This height signal forms the topography image.  

 The governing equations for AC mode operation include the following equations 

(Note: These equations are nicely listed in Ref. 4) First: 

 ( ) ( tdd
t
d

Qt
d

ooo
2

o
o

2

2

ωωδω
ω

cos=−+
∂
∂

+
∂
∂ ) ,                                                             (2) 

where d is the instantaneous tip-sample distance, do is the tip-sample distance at zero 

oscillation amplitude, ωo is the resonance frequency of the cantilever, Q is the quality 

Driving frequency 

Decrease in 
vibration 
amplitude 

Vibration 
amplitude 

Shifted 
response 
curve Unperturbed  

response  
curve 

Frequency 

FIG. 3. Operating principle of AC mode. The interaction of tip with surface shifts the AC 
response curve of cantilever 
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factor of the cantilever defined as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ2

mwo , m is the lumped mass of the cantilever, γ is 

the damping factor, δ0 is the amplitude of the forced oscillation and ω is the frequency of 

the forced oscillation. 

 Equation (2) is the equation of motion of the cantilever in the absence of 

interaction with the sample. However, if the distance do is such that the tip interacts with 

the sample, an additional force term has to be added to the above equation. Here, 

 ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
t
ddFF , ,                                                                                                           (3)                            

where d is again the instantaneous tip-sample distance and 
t
d
∂
∂ is the derivative with 

respect to time. 

 If a first order Taylor approximation is used, then the next equation tells us that 

the spring constant of the cantilever is modified according to the force gradient in the 

vertical direction 

 
z
FKKeff ∂
∂

−= .                                                                                                          (4) 

 If the force gradient i.e. 
z
F
∂
∂  is positive, the effective spring constant is reduced 

and this softens the cantilever.  If the force gradient is repulsive, the cantilever stiffens in 

a similar way. This changes the resonance frequency of the cantilever in the following 

way   

 

z
F

K
11o ∂
∂

−= ωω .                                                                                                (5) 

 This equation can be approximated to give the change in the resonant frequency 

of the cantilever when 
z
F
∂
∂ <<K as follows, 

 
z
F

K2
1

∂
∂

−≈ω∆   .                                                                                                       (6) 
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 It should be noted that the force gradient which brings about the change in the 

resonance frequency of the cantilever does not necessarily have to be atomic. Other 

types of long-range forces such as electrostatic or magnetic (or more appropriately their 

derivatives) affect the resonance frequency the same way as described above. Thus this 

effect is used not only to detect atomic forces (topography) but other forces as well. 

 The change in the resonance frequency of the cantilever changes its amplitude of 

vibration according to the following equation, 

 
( ) 22222

2
0

4 ωγ+ω−ω

ωδ
=δ

o

o  ,                                                                                        (7) 

where δ is the instantaneous amplitude of oscillation of the cantilever, δ0 is the amplitude 

of the forced oscillation, ωo is the resonance frequency of the cantilever and γ is the 

damping factor. 

 The change in the resonance frequency not only changes the amplitude but also 

the phase of the instantaneous oscillation. This can be described by the following 

equation, 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
= 2

0
2

2
ωω

γωα arctan  .                                                                                             (8) 

 The above described quantities viz. ∆ω, δ and α can be monitored to plot the 

lateral variation of
z
F
∂
∂ . The change in amplitude is usually used to detect the change in 

resonance frequency and is used as a feedback variable. At the same time, a map of 

‘phase signal’ also gives important information not included in the topography signal. In 

most cases, it produces nice contrast at the ‘edge’ of features. It also gives a map of the 

MFM signal in both ‘retrace’ and ‘plane scan’ methods, to be discussed later. 

 There are two methods by which the local variation of slope can be detected. One 

is called ‘Amplitude Modulation’ or AM detection. The other method is ‘Frequency 

Modulation’ or FM detection. 

 In the AM detection technique, the cantilever is vibrated at or near its resonant 

frequency. The gradient of the force from the sample changes the spring constant of the 
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cantilever giving rise to change in resonant frequency and amplitude as described earlier. 

The changing amplitude of the cantilever as it is scanned along the sample is used as the 

feedback signal. This signal holds the tip-sample distance constant. This way we can 

measure constant force derivative profiles along the sample. 

  The minimum force gradient which can be measured in this case is given by, 5  

 2
rmso

B

Q
TKK2

z
F

δω
β

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

min

,                                                                                             (9) 

where K is the spring constant of the cantilever, KB is the Boltzmann constant, T is the 

temperature, β is the bandwidth of measurement, ωo is the resonant frequency of the 

cantilever, Q is the quality factor of the cantilever and δrms is the rms amplitude of 

vibration. 

 It can be easily seen that one of the ways of increasing the sensitivity would be to 

increase the Q of the cantilever. This limits the bandwidth of the measurement as the 

bandwidth and Q are related by the following equation, 

 
Q2

1 oω
τ

β == ,                                                                                                            (10) 

where τ is the approximate length of time required to settle to a new steady state 

oscillation value. 

 In the FM detection, 6 a self oscillating cantilever acts as the frequency-

determining component of an oscillator (for e.g. the bimorph which vibrates the 

cantilever in AC mode). The cantilever is kept vibrating at its resonant frequency by 

what is called an oscillator control amplifier. This ensures a positive feedback to the 

cantilever. It also has a facility to control the amplitude of vibration at a constant level. 

A FM demodulator detects the changes in the oscillator frequency brought about by the 

change in the force gradient
z
F
∂
∂ . This signal is fed back to the piezo which controls the 

distance between the sample and the tip. The suggested methods for measuring the 

oscillator frequency are a digital frequency counter, gated timer or phase-locked loop 

(PLL).  
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 The minimum detectable force gradient in this case is6

  2
rmso

B

Q
TKK4

z
F

δω
β

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

min

.                                                                                          (11) 

 This is 2  times smaller than for AM detection. It can be compensated by using 

a cantilever with high Q. Higher values of Q are possible in this case because the 

bandwidth is not limited by Q as is the case with AM detection. 

4. Tapping mode 

 The operating range of the tapping mode varies between that of contact and AC 

mode. The contact mode does have potential to achieve atomic resolution. However, it 

exerts a relatively large force on the sample, so it can potentially destroy soft samples. 

AC mode applies minimum force on the sample while imaging. However,, its lateral 

resolution is limited by the tip-sample spacing.  

 The tapping mode combines the features of both modes of microcopies. Here the 

tip is vibrated such that it intermittently contacts or taps the surface. For most part of its 

oscillation the tip is off the surface. Only at the end of its motion it comes in contact with 

the surface and still the tip experiences the full range of interaction potential described 

previously. The topographic signal is still given by the amplitude signal. Here the slope 

changes sign as the tip enters from the attractive force region into the repulsive force 

region and vice versa. Thus the interaction in tapping mode is much more complicated 

than in above two modes. 

 The main advantage of the tapping mode is that the energy dissipation in this 

case is much lower than in contact mode. The tapping mode prevents the destruction of 

the sample by minimizing the shear force, as the tip is pulled sideways when it is not in 

contact unlike in the contact mode. Another advantage of this mode is its large, linear 

operating range which makes the feedback system highly stable.7  

The resolution for the tapping mode is usually comparable or better than the non-

contact mode. The choice between tapping mode and AC mode is sometimes difficult. 

There are no definite rules about the specific usage of any mode. As is evident in most 
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cases it depends on the kind of tip and sample, the medium between them and the kind 

of information expected from the image. 

B. MAGNETIC FORCE MICROSCOPY (MFM) 

Magnetic force microscopy (MFM) detects the magnetic force between a tip and 

a sample. This is done by using a magnetic tip which scanned across a magnetic sample 

(usually ferromagnetic). The adaptation of AFM as MFM was done in 1987.8 The tip can 

either be made from magnetic material or a small magnetic particle could be attached to 

a non-magnetic tip. The most common way is to coat the tip with appropriate magnetic 

material. Most of the commercially available magnetic cantilevers use this method of 

preparation. The magnetic material could be hard such as Co or soft such as FeCoNi 

alloy. The selection of the magnetic material used for coating depends on its intended 

use. A magnetically hard coating can influence the sample magnetization but at the same 

time gives a strong signal; a soft coating is used to make sure that the sample 

magnetization is not influenced while imaging. 

MFM can be carried out in two ways viz. DC mode or AC mode. The most 

common method is to use AC mode. When in AC mode, MFM measures the gradient of 

the magnetic force. In DC mode it measures the normal component of the magnetic force 

between the tip and the sample. In both the modes the cantilever is vibrated at or near its 

resonance frequency. It is the method of detection of magnetic component which 

separates them as DC or AC. The working of both modes can be better explained with 

the help of Fig. 4 which shows a magnetic force (Fm) superimposed on the van der 

Waals force (Fv).  
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FIG. 4. Schematic view of the typical forces acting on a cantilever in MFM. Typical ranges for 
 Van-der Waals force and magnetic forces are 10 nm and up to 100 nm respectively 
 

1. DC mode MFM 

DC mode MFM is also called near-field MFM. This works in the region where 

the absolute value of the magnetic force is greater than the absolute value of the van der 

Waals force, but the gradient of the van der Waals force is greater than the gradient of 

the magnetic force.9 When the tip is scanned across a magnetic sample, it follows the 

variation of the normal component of magnetic force and bends accordingly. The 

detection of DC bending of the cantilever gives the MFM signal. Simultaneously, AC 

detection, i.e. the detection of changes in amplitude of oscillation of the cantilever 

similar to NC AFM, gives the topography signal. 

Tip to sample separation 

Attractive magnetic force 

DC mode MFM regime 

AC mode MFM regime 

Van-der Waals force 

Repulsive magnetic force 

Force 
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Since near-field MFM involves operating with the tip close to the sample, the 

risk of snap-ins is much greater. One way to avoid this is to use stiff cantilevers. 

However, that also means reducing the intensity of MFM signal. The better way is to 

apply a voltage bias between the tip and the sample.9 The absolute value of this force is 

much greater than van der Waals force which becomes negligible. The value of the bias 

is adjusted such that the overall interaction is always repulsive. In this case the magnetic 

signal is superimposed on the top of constant coulombic force. For near field MFM 

separating topographic and magnetic features can be a challenge. Applying bias helps in 

this regard too. 

 To calculate the magnetic force, the tip can be considered as a single domain 

with a permanent magnetic moment. With this approximation, a direct interaction 

between the tip and the sample magnetization ( 1m and 2m  respectively) can be 

considered. Then the normal force acting on the tip will be given by10

 ( ) ∫∫=
sampletip

rdrdzF 2
3

1
3   

( )( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝
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−

⋅⋅
∂
∂

⎟
⎠
⎞
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⎛

3
21

5
21o

r
mm

r
mrmr3

z4π
µ

 ,                               (12) 

where is the vacuum permeability and oµ 21 rrr −= inside the integral. 

From the above equation it can be easily deduced that there is no normal force 

acting on the tip if it is scanned over a region of uniform magnetization (constant 

magnetic field). The forces manifest themselves when the tip approaches a domain wall 

separating two regions of different magnetizations. Ideally MFM would not be sensitive 

to the surface roughness as long as the surface roughness is small compared to length of 

magnetic domain of the tip (which is supposed to be equivalent to the physical length of 

the tip in most cases).  

2.  AC mode MFM 

 This is also called as far-field MFM.  Here the vibrating cantilever is held on the 

order of hundreds of angstroms from the sample surface. In this region, both the absolute 

value and the gradient of the magnetic force dominate van der Waals force and its 

gradient. Thus when AC signal is read in this case it should represent the magnetic 
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signal and not the topography signal. Here also the application of bias between the 

sample and the tip is useful to ensure the dominance of magnetic force term. The other 

popular method to ensure that this is the case is called ‘Plane Scan’. One of the first uses 

of this technique was to image vortices in YBCO superconductors.11 In this method, a 

topographic image of the sample area is taken. Based on this image an appropriate 

average height is decided to raise the cantilever for the next pass. Then the cantilever is 

scanned over a raised plane on the sample to acquire MFM image. While doing the plane 

scan, the feedback is usually turned off. 

 AC mode detection of MFM can also be done in near-field region. This is 

possible because of the Retrace or Lift method. Here also two passes are made over a 

single line of the sample. During the first pass the topography of the sample is acquired. 

During the second pass, the cantilever follows the stored topography but at a greater 

height, so during this pass the topographic signal is eliminated. Hence it is possible to 

get MFM signal more easily. The Retrace or Lift method can be understood by the 

following simple diagram. 

 
FIG. 5. Principle of Retrace or Lift mode MFM. The computer generates a second trace with the 

cantilever lifted to a specific height above the surface, and records the cantilever 
response 

 

  

First pass = topography 

Second pass = MFM 
Retrace 

Lift 
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 This is the most preferred method because it always ensures clear distinction 

between topographic and magnetic signals with a good resolution.  It can easily image 

non-conducting or patterned samples. It can image soft as well as hard samples without 

any perturbation by choosing appropriate lift height.11 One of its biggest operational 

advantages is that it is less prone to snap-ins, so this has evolved into the most preferred 

method of doing MFM. 

 To calculate the magnetic signal quantitatively, again it is useful to assume that 

the tip is a dipole with magnetic moment m . If the magnetic field of the sample is B  

then the force on the tip is given by the gradient of energy which is 

 ( )BmF m ⋅∇=                                                                                                           (13) 
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 If the motion of the tip is assumed to be only along the Z direction then the first 

two components in equation (13) become irrelevant and this expression reduces to 
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 If the components mx and my are assumed to be zero (i.e. if the tip dipole is 

assumed to be along the Z direction) then the magnetic force acting on the tip can be 

given by the simplified expression12  
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 The AC detection is sensitive to the Z derivative of the total force which can be 

written as13

 2
z

2

z
m

z
Bm

z
F

∂
∂

=
∂
∂

.                                                                                                      (16) 

 

 



 16

II. USES OF MFM 

A. OVERVIEW 

 MFM when introduced as a new method of magnetic imaging was used for 

imaging a thin film recording head.8 From that time, the most popular application of 

MFM has been the study of magnetic recording media. The higher density of data 

storage demands high resolution. The high resolution of MFM (20-50 nm) compared to 

other magnetic imaging methods is thus helpful. The fact that this method routinely 

gives good results under ambient conditions for bulk samples also proved to be 

important. There is a great deal of effort going on to develop new materials for magnetic 

data storage not only with high density but with controlled grain and domain structure 

also. MFM is used primarily to detect stray fields above such samples. There are three 

fundamental limitations of MFM which one has to deal with. First, the exact state of tip 

magnetization is unknown. Second, its fringing fields can perturb the sample. Finally, 

the process of obtaining sample magnetization from the mapped stray field above the 

sample is non-trivial. Even if the field is mapped accurately over sufficient area, the 

magnetization obtained from it may not be unique.14 On the other hand; there are certain 

distinct advantages as well. The topographic and magnetic information can be imaged 

simultaneously. It is possible to understand domain structures from MFM images. The 

relationship of domains to grain structure can also be studied. Because of the availability 

of the topographic information, the influence of surface defects and morphology on 

magnetic information can be studied. The mapping of stray fields alone is also important 

in many cases.15

 There are various possibilities when doing MFM imaging. Initially researchers 

used various home grown films to test the capabilities of MFM. These included CoPt 

tracks defined on Si by e-beam lithography, 9 TbFe and TbFeCo magneto-optic media.16 

The thin film Permalloy which is an important soft magnetic material was imaged to see 

closure domains and Bloch lines.17 The domain walls in various materials like NdFeB 

and CoCr18 were studied. D. Rugar et al.19 tried to study the ‘erase band’ associated with 

overwrite behavior. They used high density CoSm on textured Al and particulate γ-



 17

Fe2O3 in polymer binder. Kuo et al.20 also used MFM to study erasure of bit transitions 

in high density particulate media. They used zip disks for the same. In particular, they 

studied the avalanche dynamics theory that had been proposed. All these researchers 

helped to find techniques to overcome the problem of separation of topographic and 

magnetic data. Also many quantitative models were developed to explain the results. 

 MFM was also used to study the relation between recorded magnetic structures 

and the reproduced noise properties on CoCrTa media.21 The effect of different thickness 

and Cr concentration on the quality of CoCrTa media was also looked at.22 It was found 

that increased medium thickness broadens the transition width and increasing Cr 

concentration decreases the remanence. A similar study involving epitaxial Ni/Cu thin 

films was also done. Here Bochi et al.23 investigated magnetic anisotropy as a function 

of Ni thickness and alloy composition. R. Giles et al.24 performed MFM on a computer 

hard disk in liquids. The purpose was to simulate the real environment for technological 

and biological processes. High density recording media were studied in the presence of 

magnetic fields as well.25 Various stages of bit erasure were noted for different values of 

applied fields. Also it was proposed that the orientation of the tip can be controlled and 

coercivity can be obtained in situ by measuring the hysteresis loop. Magnetization 

reversal mechanisms in individual barium ferrite particles were studied.26 These 

measurements were used as a basis to investigate their nucleation and intrinsic switching 

modes. 

 MFM was used also for sensing dynamic effects of thin film recording heads. 

The stray field of such heads was mapped while passing A.C. current through them.27 

Sensing of stray fields by MFM is useful because the tip experiences the same fields as 

does a read head. Another use was to see the effect of localized magnetic field created by 

the tip on the poles of the recording head. The Bloch wall motion because of the tip 

magnetization was also observed. Imaging of magnetically soft thin films is useful for 

the characterization of magneto-resistive heads. Garnet films, a kind of soft magnetic 

material, are technologically important for bubble type memories. These can also be 

investigated by MFM. There are many other phenomena involving magnetic materials 
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which have been studied and are being studied by MFM. It is impossible to cover all of 

them.  

 Below are given some of the examples of the MFM imaging done at room 

temperature in Dr. Ross’ lab. The topographic image and the MFM image are both 

acquired at the same time using retrace mode. The magnetic force microscope used was 

a commercially available MFM from Nanotec Electronica, Spain. 

 Fig. 6 shows the MFM images of two different hard disks. The difference in the 

size of the magnetic domains is evident in this case with the new hard disk having 

smaller domain size and the old hard disk having the larger domain size. 
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FIG. 6. MFM images showing the difference in size of the magnetic domains in two hard disk 

samples, new and old respectively 
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 Figs. 7, 8 and 9 show topographic and MFM images of different regions in 

Co-Ni-Al smart materials (sample courtesy of Dr. Ibrahim Karaman from Mechanical 

Engineering Department, Texas A&M University). 
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FIG. 7. Topographic (left) and MFM (right) images of a martensitic twin in Co-Ni-Al smart 

materials 
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FIG. 8. MFM images of two different regions in Co-Ni-Al sample showing a series of  

martensitic bands 
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FIG. 9. Left to right: topography, MFM with no field applied, and MFM in the presence of a 

magnetic field, for the same region of a Co-Ni-Al sample 
 

 Apart from these, there are certain unique MFM applications have evolved along 

with the better understanding of MFM in recent years. MFM based current contrast 

imaging (CCI) is a contact-less tool for observing internal circuit function and failure 

analysis of integrated circuits. It is very useful for studying voltage influence of biased 

interconnection lines in ICs.28 MFM may prove useful for imaging biological samples 

such as magnetotactic bacteria. Earlier studies in the fluid environment are the 

foundation for these studies. A new tool developed for imaging active or live heads is 

High Frequency MFM (HFMFM). It allows detecting frequencies up to 1 GHz. DI has 

patented the modulation technique to separate the low and high frequency MFM 

response in this case. This facilitates probing of frequency dependence of magnetic 

samples with the same spatial resolution as of MFM.29 Two other new techniques 

patented by DI are Magnetic Dissipation Microscopy (MDM) and Magnetoresistance 

Sensitivity Mapping (MSM). MDM probes energy losses associated with cyclic and 

hysteretic perturbation of sample. With MSM, the MFM probe can be used as field 

source that excites the MR sensor in a recording head. Then the symmetry and 

sensitivity of GMR sensors can be investigated. 

 There are more recent techniques using MFM which truly use the resolution 

capabilities of MFM. The magnetizations reversal of two-dimensional arrays of parallel 

ferromagnetic Fe nanowires embedded in nonporous alumina templates have been 
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studied.30 Isolated single molecule Mn12 magnets (SMM) on the surface of polymeric 

nanocomposite have been observed.31 Imaging of carbon nanotubes in high performance 

polymer composites has also been tried. The rapid examination of the dispersion of 

carbon nanotubes into polymer composites is of particular interest.32 MFM is proving to 

be an invaluable tool in the field of nanotechnology which makes it indispensable for 

nano scale magnetic work. 

 The low temperature use of MFM (LTMFM) can be considered as a separate 

field. There are numerous advantages of doing LTMFM one of which is improved SN 

ratio due to reduced thermal fluctuation and phonon scattering. Chung et al.33 have used 

LTMFM images to show the paramagnetic to ferromagnetic phase transition in 

La0.7Ca0.3MnO3 film on a LaAlO3. They also examined evolution of magnetic domains 

and magnetic ripples near the edge of Co film on a Si substrate. H. J. Hug et al.34 studied 

magneto optical disks with LTMFM. The real advantage of LTMFM is that it is able to 

look into superconducting phenomena which occur only at low temperature. Numerous 

phenomena in this field have been studied until now. It has helped greatly to improve the 

knowledge about superconductivity. This application of MFM has been discussed below. 

B. MFM ON SUPERCONDUCTORS 

 The levitation of a magnet over a superconductor is a well known phenomenon. 

It manifests itself because of the Meissner effect. The magnetic tip also experiences a 

repulsive force on a superconductor. This was the principle used to investigate 

superconductors initially. One motivation to use MFM instead of STM was that MFM 

does not require a conducting surface. This factor proves significant for imaging of high-

Tc superconductors. To my knowledge, the first such study was performed by A. P. 

Volodin et al.35 This group did measurements on the conventional superconductor Sn 

and type II BSCCO. They recorded the deflection in the cantilever (due to a repulsive 

force) positioned relatively far away from the sample as it was cooled at the onset of 

superconductivity. Also the different values of repulsive force between the tip and the 

sample were noted as a function of tip height. This long range interaction was noted to 

have logarithmic distance dependence rather than the estimated reciprocal power law. 
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Also there were some perturbations in the measurements which were attributed either to 

structural defects or penetration of magnetic field of the tip into the sample. A similar 

study was done by H. J. Hug and A. Moser et al., 36, 37 but they used YBCO single 

crystal. They also showed a decreasing value of the repulsive Meissner force with 

increasing temperature. They also did some measurements to distinguish between the 

Meissner and Shubnikov phase. They were able to do so by noting the different nature of 

the force response from these two phases as predicted previously.  It is interesting to 

note that levitation of a magnet over a type II superconductor between Hc1 and Hc2 was 

successfully shown as early as 1988.38 This group also presented the theory which 

calculated the levitation force based on either complete flux penetration or expulsion. 

 The next step was to image vortices by MFM. The vortices are technologically 

important because motion of vortices causes dissipation. This results in lowering of the 

critical current, a highly undesirable effect in many applications. With vortices, STM 

could not give reproducible results on HTSC materials because STM is susceptible to 

chemically degraded surfaces. The complex structure and short coherence lengths of the 

superconductors and high mobility of vortices adds to the complications. The detection 

of a vortex via MFM was deemed feasible because a vortex has a large penetration depth 

and thus large magnetic diameter. The vortex bundles were imaged by using tunneling 

stabilized MFM.39 The first successful attempt to image an individual vortex was in 

1995 on an YBCO thin film at 77 K.40  Not only did they observe vortices but also found 

that their number increases linearly with the applied magnetic field. They calculated the 

value of the flux carried by each vortex which was very close to one fluxon 

( ). They also showed that depending on the direction of the external 

field the interaction between the tip and a vortex could be either repulsive or attractive. 

By observing a stable vortex glass phase, they were able to conclude that no vortices 

were nucleated or dragged around by tip. This is a point of concern for MFM 

measurements of vortices. They also calculated the lateral force on the vortex exerted by 

the tip based on their earlier theoretical work.41 In this work, they had improved upon the 

earlier model which assumed complete screening of flux by the superconductor. They 

Wb7
0 102 −×=φ
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found that the lateral force exerted by the tip was almost two orders of magnitude less 

than the typical valued of the pinning force which is given by  

 djF 0p φ= ,                                                                                                               (17) 

where Fp is the pinning force, j is the critical current density and d is the thickness of the 

film. Using the London model, they also calculated the magnetic diameter of a vortex at 

77 K. Yuan et al.42 also studied YBCO and BSCCO thin films made by laser ablation 

and MBE respectively. They imaged vortices with radii of around 1 µm, a value greater 

than expected. They attributed this to the thin film factor of 2λ/d and the spreading of 

magnetic field above the sample. They also observed some correlation between the 

topographic defects and the pinning site. There were two surprising results in their study. 

One, instead of seeing a vortex as a circular or elliptical shape, they found some 

associated internal structure. This was attributed to the tip being a hard magnetic dipole 

with a fixed magnetic moment independent of the local field, with its axis tilted away 

from the surface normal. Second, they observed vortices in YBCO film at a temperature 

of 78 K which is very close to its Tc (81 K). This was attributed to flux trapped by some 

strong pinning sites. They were able to notice the movement of the vortex after a contact 

mode topography scan. 

 The observation of an Abrikosov vortex lattice was reported in 1998 in NbSe2 

superconductor.43 Apart from the problem that MFM tip can drag weakly pinned 

vortices, the other problem to overcome was the decrease of the MFM contrast due to 

overlap between magnetic fields of neighboring vortices. This group used tips with a 

double layer coating which has been shown to improve the contrast. The flux line lattice 

spacing of the Abrikosov lattice they measured was very close to the theoretical value. 

 They also showed the change from irregular vortex lattice structure to the 

Abrikosov lattice structure with increasing magnetic fields. At high fields, there are 

more number of vortices and so their mutual interaction decides the lattice shape rather 

than individual pinning sites. The ability of imaging vortices at relatively weak magnetic 

fields was attributed to the collective pinning effect. Here all the vortices within a single 

domain counteract collectively the force exerted by the tip of MFM. Moser et al.11 did 
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further studies on YBCO thin films. Here they imaged the single vortices and also 

determined their pinning centers. They found that the vortex positions were determined 

by pinning centers rather than by vortex-vortex interactions. The vortices were pinned at 

grain boundaries, as was confirmed by correlating topographic and magnetic image. 

They showed decreasing contrast in imaging of vortices due to increasing λ with the 

increasing temperature. Forced motion of vortices was achieved by using the MFM tip to 

apply a dragging force greater than the pinning force. Also a vortex bundle consisting of 

50 vortices was nucleated by cooling the sample in the field of the tip. It was remarked 

that three types of control experiments 1) measurement of the dependence of number of 

the vortices on external field and calculation of flux associated with each vortex 2) 

disappearance of vortices with the temperature increasing beyond Tc and their re-

nucleation 3) exhibition of attractive or repulsive interactions depending on the external 

field, must be done every time to ascertain that the images are indeed of vortices. 

 Volodin et al. further studied the evolution from a disordered towards an ordered 

state of vortex lattices.44 In thin Nb films, they observed an irregular vortex arrangement 

with strong random pinning. However, on NbSe2 they found a change from disordered to 

the ordered state which was attributed to collective pinning. The attempt to image 

growing vortex lattice grains with increasing magnetic field was not successful because 

of the limitation on the scan size. Also they found the vortex density slightly greater than 

expected value of 0extB φ/ . It was explained with the help of the existence of an offset 

field because of the tip. This was confirmed by the data taken in zero field. 

 Recently some additional experiments have been done to study the vortex 

pinning. The vortex has a normal core with a size comparable to that of the coherence 

length. The vortex pinning is usually achieved by overlapping these with the defects in 

the superconductor. A spatially random distribution of defects is not so efficient to 

optimize the pinning. Therefore nano-engineered regular pinning arrays are better for 

this purpose. The long term motivation to do so is to verify how the quantum 

confinement of vortices results in increased critical currents and fields in the 

superconductors.45 Roseman and Grutter et al.46 investigated a superconducting Nb thin 
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film patterned with a square array of antidots. They observed lattice matching as a 

function of applied magnetic field and temperature, up to the third matching field. At the 

matching field, the lattice spacing becomes commensurate with that of antidots so that 

most of the vortices get trapped in antidots as quantized fluxons. In another study,47 the 

same authors estimated the values of magnetic penetration depth of a similar sample 

(conventional superconductor) using constant height MFM. This was significant because 

uptil now only HTSC superconductors were used for this purpose. The fact that the 

radius of a vortex is not in general equal to the penetration depth but is instead a function 

of Ginzburg-Landau parameter ξλκ /= was also taken into account. There was some 

discrepancy between the experimental and theoretical results. This was attributed to the 

fact that the observed vortex profile is a convolution between the vortex stray field and 

the extended tip geometry. Van Bael et al.48, 49, 50 studied vortex pinning by 

ferromagnetic pinning arrays. The different possibilities of ferromagnetic structures were 

considered in combination with a low Tc type-II superconductor. MFM was particularly 

used to characterize the magnetic patterns. Other measurements such as of critical 

current were done by bulk methods. 

 Roseman et al.51 determined the Tc of a superconducting Nb film with MFM. It is 

known that the resonance frequency of the cantilever changes due to the gradient of the 

repulsive Meissner force. In this study the sample was cooled below its Tc and the jump 

in the resonance frequency was recorded. This directly gave the value of Tc. Vortices 

were nucleated by bringing the tip close to the sample. The nucleation was evident 

because of the reduction in the resonance frequency of the cantilever due to attractive 

interaction initiated because of the nucleation of a vortex. It was remarked by the authors 

that the theoretical work needed to recreate the experimental data was non-trivial. They 

also confirmed the linear variation of the number of nucleated vortices with the applied 

magnetic field. Volodin et al.52 studied vortex pinning at grain boundaries in 

superconducting Nb and YBCO thin films. They were able to identify the exact location 

of vortices within 10 nm by taking into account the asymmetry of the magnetic charge of 

the tip. In Nb films the preferential pinning at locations between the grains was more 
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pronounced for thinner films. In thicker films, on the other hand, vortex-vortex 

interaction seemed to dominate. They were able to see an ordered Abrikosov lattice in 

thicker films. It was stated that the pinning mechanisms in Nb and YBCO are different 

because of the difference in their coherence lengths. 

 In conclusion, MFM studies of vortices have opened up many interesting 

possibilities. In situ nucleation of vortices is interesting. The dependence of penetration 

depth on the temperature is an important parameter to study to test superconductivity 

theories. The motion of vortices and dissipation therein will also give some interesting 

results in the future.53
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III. METHODS OF FORCE DETECTION AND DESIGN OF FIBER-

OPTIC INTERFEROMETER 

A.  DIFFERENT FORCE DETECTION SYSTEMS 

 There are numerous techniques for detecting the deflection of the cantilever and 

ultimately detecting the force. These methods have evolved over a period of time. The 

first method used was electron tunneling.2 Later other methods such as optical (including 

beam-bounce and various types of interferometric systems) and piezoresistive detection 

were developed. All of these techniques have merits and demerits with respect to 

complexity, sensitivity, low-frequency stability, types of cantilevers that can be used, 

compatibility with different microscope set-ups and environments and the applicability 

to the two modes of force microscopy. Some of the most commonly used methods are 

discussed below in short. The comparison with each other is presented wherever 

possible.  

1. Tunneling detection 

 The working principle of tunneling detection can be explained as follows. A 

tunneling tip is positioned at the back of the force sensing lever. The distance between 

the tip and the cantilever is on the order of a few angstroms and it is controlled precisely 

throughout. The tunneling tip is also sometimes called auxiliary conducting tip. The 

application of a bias voltage between the tunneling tip and the lever produces a tunneling 

current through the air gap separating the two.  The deflection of the cantilever varies the 

distance between these two, so the current variation is a measure of the lever deflection. 

This variation is similar to the variation of current which occurs in an STM experiment. 

This current is used to track and control the position of the lever (i.e. for feedback) 

producing an image of the force distribution across the surface of a sample.54 A great 

importance is attached to this method because of its original design during the invention 

of first AFM. Also this was the first method to map atomically resolved insulating 

surfaces. This method is suitable for low temperature systems as well because it 

dissipates very little energy.55 The tunneling detection can be further classified according 

to the geometrical arrangement of the tip and the lever. The arrangements could be 
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perpendicular, crossed, parallel or serial. The tunneling current density j, used for 

tracking and positioning the lever, can be approximated by 
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−= 56,                                                                              

(18) 

where e is the electronic charge, κo is the inverse decay length of the wavefunction 

density outside the surface, V is the bias voltage, z is the effective tunneling distance in 

angstroms. 

 The problems associated with the tunneling detection are numerous. The current 

between the tunneling tip and the force sensing lever depends on the presence of a 

medium in between them, so the presence of contamination on either of them introduces 

irregularities in the measurement. It is very difficult to control and position the tip 

accurately. The tunneling tip drifts towards the force sensing lever and eventually 

measures the topography of the lever, so the other methods developed use non-

conducting, remote sensing and time averaging techniques to overcome these 

drawbacks.54  

2. Piezo-based detection 

 The force detection methods based on piezo effects fall into two categories viz. 

piezoelectric57 and piezoresistive methods. Out of these, piezoresistive methods are more 

popular. These have been used at UHV58 and at low temperature.59 The piezoresistive 

method is explained below. 

2.1 Piezoresistive detection 

 The basic principle behind piezoresistive detection is the bulk piezoresistive 

effect demonstrated by silicon. Here the microscopic cantilever itself is made such that 

one of its layers is made of doped silicon which is a piezoresistive material. Such a 

cantilever can be micro fabricated. This cantilever forms one arm of the external 

Wheatstone’s bridge.60 The deflection of the cantilever changes the resistance of the 

cantilever and so the voltage across the bridge. This voltage is used to drive the feedback 



 29

and to map the images. This method is suitable for both DC and AC mode of detection. 

The sensitivity is also comparable to that of other methods. 

 The obvious advantage with this method is that it does not involve any external 

detection scheme. The method is very simple and reliable. One of the unique advantages 

it has is that it is suitable for imaging photosensitive materials, like semiconductors. The 

optical detection methods in this case can strongly perturb the surface properties.61 The 

micro cantilevers can be batch fabricated, so it is economical to build these integrated 

sensors. 

 Due to manufacturing limitations, there is a limited range of available spring 

constants and resonance frequencies with these types of cantilevers. Also with these 

types of cantilevers there is always a concern because of relatively higher power 

dissipation.43 The application of this sensor to UHV is not so straightforward if UHV 

preparation of the cantilevers is intended.62 This makes piezoresistive cantilevers less 

attractive for cryogenic work. 

3. Optical detection 

 The optical detection systems can be divided into beam-bounce and 

interferometric detection. The interferometric systems can be classified into homodyne 

(non-fiber, fiber coupled or all fiber) and heterodyne (non-fiber or fiber coupled) 

detection schemes. A short description of each method is given in this section while all-

fiber type is discussed in some detail in the next section. The optical detection scheme is 

capable of monitoring the vibration amplitude of lever of several hundred angstroms, 

which is difficult to do with the tunneling technique because of the close proximity of 

tunneling tip to the vibrating cantilever.63

a. Deflection detection or beam-bounce detection 

 This system falls under optical detection systems. It is the most common 

detection system in room temperature heads. The room temperature Nanotec commercial 

system in Dr. Ross’ lab uses beam-bounce detection and was used to acquire the images 

shown earlier. The working of beam-bounce detection can be explained with the help of 

Fig.10.  
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FIG.  10. Schematic of the beam-bounce detection method 

 A collimated laser beam is focused at the back of the force sensing lever and 

allowed to reflect back. The reflected beam is used to generate the photocurrent with the 

help of photo detectors. In the earlier versions two closely spaced diodes were used for 

this purpose. In the recent systems a single photodiode with 2 or 4 quadrants is used.64, 65 

The deflection of the lever as it is scanned across the sample shifts the position of the 

reflected laser beam across the photo diode active area. This causes change in the 

photocurrent proportional to the lever deflection and force. To make the back side of the 

cantilever more reflective, it can be coated with aluminum or gold. There are two steps 

necessary to make the deflection detection operational every time an experiment is done. 

First the laser beam has to be adjusted accurately at the back of the cantilever. Usually 

this is done with the help of an optical microscope. Then the photodiode position is to be 

adjusted to receive the maximum intensity. 

 One of the advantages of this system is that all the optical elements are at a large 

distance from the lever, so they are protected from tip crashes unlike in tunneling 
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detection. The other major advantage comes with the use of 4 quadrant photodiode. Here 

the vertical movement of the laser beam gives the value of the ‘normal force’ while the 

horizontal displacement corresponds to the ‘shear force’.66 This opens up the interesting 

possibility of shear force microscopy which is unique to this system. Usually normal and 

shear force values are measured simultaneously with different channels. The deflection 

detection system is stable compared with the tunneling system. The position control is 

much simpler. It has a large magnification because of the macroscopic optical path. It 

can be used for imaging in fluids. 

 The problems associated with this system include thermal and mechanical drifts. 

There is always some noise from the stray reflections of the laser beam from the sample. 

It can be minimized by using low coherence length laser source. Because of the presence 

of many optical components the system is less suitable than piezoresistive or 

interferometric detection for low temperature usage. The alignment of the laser beam on 

the cantilever and the reflected beam on the photodiode is to be maintained. This proves 

to be very difficult. If the low temperature adjustment of these components is intended it 

has to be fully remote controlled because the access to optical components is not 

available62 (This is one of the reasons why we did not choose this method for our low 

temperature MFM head). Theoretically it has been shown that under optimal conditions 

beam-bounce deflection is just as sensitive as the interferometric detection.67 It was 

further shown that from a physical point of view, both methods are equivalent. For this 

the authors argued that the laser beam of the optical beam-bounce detection reflecting 

from the cantilever is equivalent to the interference of the two laser beams, one at the 

base of the cantilever while the other at the tip. In a way similar in the interferometric 

detection, the displacement of the tip results in shifting the interference pattern, thereby 

giving the means to measure the signal. Therefore the expression for the signal-to-noise 

ratio for the two systems is also similar. 
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b. Optical detection with all fiber construction or fiber-optic interferometer 

 The optical detection with all fiber construction works on the principle of a 

Fabry-Perot interferometer. It can be described with the help of Fig. 11. 

 

Tip 

 
 
 
 

 The optical fiber lying very close (typically within half a µm) to the back of the 

cantilever forms a part of the Fabry-Perot cavity. The first mirror is formed by the fiber-

air interface where around 4 % of the light is reflected back into the fiber forming the 

first interferometer beam. The other mirror is the back of the cantilever which reflects 

light back toward the fiber. The interference between the first beam and this reflected 

light which goes back into the fiber gives the interferometer signal. This signal is a 

function of the distance between the cantilever and the fiber.  

c. Homodyne detection 

 The principle of operation of this method is explained nicely in reference 2. In 

the homodyne detection system, a polarized laser beam is passed through a beam splitter. 

Fabry-Perot 
cavity First mirror = fiber-air interface 

Second mirror = cantilever
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FIG. 11. Principle of the fiber-optic detection method 
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The undeflected beam is incident in the optical cavity formed by the back of the 

cantilever and an optical flat. The reflected beam also passes through the same beam 

splitter and then onto the photodiode. This generates a photocurrent used to image the 

force acting on the tip. In the improved differential detection, two beam splitters are 

used. The first one diverts a portion of the beam called the reference beam which goes 

directly to the reference photodiode. The second beam splitter carries the undeflected 

portion of the laser beam which goes to the cavity formed by the backside of the 

cantilever and an optical flat. The reflected beam goes back to the second photodiode 

called the signal photodiode. The difference in the photocurrents of these two 

photodiodes is the required signal. The differential operation helps to cancel the laser 

noise. A system using just one photodiode but otherwise similar to the one described 

above was also used.68 Use of a phase sensitive detector is also an option. This method is 

also suitable for contact and non-contact modes. In AC mode the photodiode generates a 

current at the frequency at which the cantilever is vibrated. 

 The presence of many mechanical components makes this system susceptible to 

drift related problems. Use of a fiber coupled laser reduces the possibility of instability 

due to differences in optical path length.69 The all-fiber construction eliminates the 

problem altogether though the principle of operation is same. In general the 

interferometric technique provides an absolute calibration of cantilever deflection, using 

the laser wavelength as a reference. Such a feature is important for quantitative 

measurements.70 

d. Heterodyne detection 

 This method was first used in 1987.63 There are two beam splitters in this system. 

The first beam splitter divides the light into two components. One of the beams passes 

through an acousto-optic modulator that shifts the beam frequency. The other part is 

reflected onto a mirror and is used as a reference beam. The beam with the shifted 

frequency is the signal beam. It is further passed through a polarizing beam splitter, a 

quarter-wave plate and lastly through a microscope objective that focuses it onto the 

back of the cantilever. The lever reflects the beam back through the microscope 
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objective and quarter-wave plate. Then it again goes back through beam splitter and an 

analyzer that adjusts the relative power of the beam incident on the photo detector. The 

reference beam is deflected by two mirrors, passes through the beam splitter and an 

analyzer to fall back on the photo detector. These two interfere to form interference 

pattern consisting of a spectrum of frequencies. The photo current is fed into a single 

side-band receiver driving a phase-sensitive detector that provides the signal for the 

force detection. The phase locked loop (PLL) has been used for this purpose.16

 Heterodyne detection has a distinct advantage over homodyne detection in that it 

is immune to the time dependent drift in the optical path length.63 The resolution and 

sensitivity is comparable to the homodyne detection scheme.  

 These are just a few of the detection methods employed over the years. There are 

other less commonly used systems such as capacitance detection (useful for electric 

force microscopy), polarization detection, laser diode feedback detection which are not 

discussed. These days majority of the researchers prefer either the optical beam-bounce 

or fiber interferometric detection system as their methods of choice. The obvious reason 

is that the optical beam-bounce is very simple and easy to use while fiber-optic 

interferometer is very suitable for special cases such as low temperature environments. 

B. DESIGN OF THE FIBER-OPTIC INTERFEROMETER 

In our MFM head design a fiber-optic interferometer sensor is used for 

measuring cantilever deflection. The fiber-optic interferometer detection is advantageous 

for cryogenic use because only a single fiber runs down the length of the cryostat. The 

advantage of running only the fiber along the length of the microscope is that it reduces 

the sensitivity of the sensor to the electrical pick-up and the temperature extremes 

encountered in the microscope. All the electronics stays outside. Moreover the 

adjustment of the fiber is not as critical as in the case of tunneling.62 The interferometer 

schematically shown in the Fig. 11, is suitable for both dc and ac modes of force 

microscopy. As a result of using a laser diode as a light source and all-fiber construction, 

the sensor is compact, mechanically robust and exhibits good low-frequency noise 

behavior. There is no air path between optical components (except for the micron-sized 
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path between the cleaved end of the fiber and the cantilever); the instrument is much less 

susceptible to instabilities caused by air currents and acoustic noise. The peak to peak 

noise in a DC to 1 kHz is less than 0.01 nm as reported routinely by various groups. 

  One of the first instances of use of this design was in 1993.71 The basic 

construction and working of the interferometer can be explained as follows. A 

multimode laser [Appendix 1] with single mode fiber [Appendix 1] is used as a light 

source. The laser diode we have used operates at 1310 nm wavelength, has a power 

rating of 3 mW, and is powered by a precision current source [Appendix 1] from 

Thorlabs Inc. A stable current source for the laser diode helps to avoid damage due to 

current spikes. The light is coupled into a 2×2 single mode directional coupler 

[Appendix 1] through a Faraday isolator [Appendix 1]. The signal from one arm of the 

coupler is used as a reference and goes into the reference photodiode [Appendix 1]. The 

other arm carries the light to the fiber end and cantilever. Approximately 4% of the light 

is reflected from the glass-air interface at the cleaved end of the fiber (earlier called the 

fiber-air interface). The rest of the light is carried into the cavity between the fiber end 

and the back of the cantilever. This beam impinges on the back of the cantilever and a 

part of it is scattered back into the fiber. The beam reflected from the fiber-air interface 

and the beam scattered from the back of the cantilever form an interference pattern. This 

is the output signal which goes into the signal photodiode.  

 The photodiodes we have used have an active area of diameter 80 µm and 

responsivity of 1 A/W at the laser frequency. The power reaching the reference 

photodiode is on the order of 250 mW (equivalent to a current of 250 mA), and the 

power reaching the signal photodiode is on the order of 50 mW (equivalent to a current 

of 50 mA). The current signals from both the photodiodes are converted into amplified 

voltages (hereafter referred to as signal and reference voltage respectively) using low 

noise OP-AMPS [Appendix 1] in trans-impedance configuration as I-V converters. The 

signal voltage from the signal photodiode can be directly used in the feedback circuit. 

The laser diode noise is prominent at low frequencies. This can be cancelled by 

subtracting the reference voltage from the signal voltage. The resulting signal is further 
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amplified using a low noise instrumentation amplifier [Appendix 1] in differential mode 

to match it with the input level of the Dulcinea electronics which is the commercial 

electronics box we use to control the scanner. This signal is used to drive the feedback 

circuit as well as form the images.  

 The schematic of the fiber-optic interferometer, the signal processing circuit 

board and its interfacing scheme are shown in the Figs. 12 and 13 respectively. 
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FIG. 12. Schematic of the fiber-optic interferometer and the circuit board  

 

 

 

 

 

 



 37

 

  

 

 

 

 

 

 

 

 

 

 

 

FIBER 

FC-APC  
CONNECTOR 

FEEDBACK 
SIGAL 

DB 
37 

 
 
DB 9 

FIBER INTERFEROMETER 
                  & 
CIRCUIT BOARD 

5 PIN DIN 5 PIN DIN 

Bias and Tap 
Voltages to 

Cantilever holder 

+/- X, Y and Z 
Voltages to Scanner 

To Fiber Piezo 

From 
Dulcinea 

From 
Fiber Piezo 
power supply

AL BOX To  
CANTILEVER 

 

FIG. 13. Interface  box 

 

The current design includes many improvements over the first one. For e.g. in the 

earlier designs conventional lasers were used. In such instruments the low frequency 

noise is because of the phase noise and the noise due to stray reflections. Using a diode 

laser helps because its coherence length can be small compared to conventional lasers.72 

The laser diode we have chosen also has very small coherence length of 1.7 mm. 

Associated with a laser there is inherent noise due to unwanted back reflections. The 

Faraday isolator prevents reflections from filtering back into the laser diode. The isolator 

was used for the first time in 1993.71 The Faraday isolator is insensitive to mechanical 

vibrations and does not complicate the operation of the SFM. Also, with the Faraday 

isolator any cantilever can be used in any position since the back reflections no longer 

matter. Use of the directional coupler helps by reducing the birefringence introduced by 

fiber bends. Thus it does not disturb the operation of the sensor. The fiber length in the 

each arm of the directional coupler is kept intentionally different to decrease the relative 

coherence of the residual stray reflections from the fiber ends.73 APC connectors which 
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have fiber-air junctions intentionally cut at an angle) are used instead of PC at places 

wherever possible. This helps to reduce the noise due to stray reflections of light at the 

fiber-air interface inside the different connectors. Since light emerging at an angle from 

FC-APC connectors can miss the sensitive area of the photodiode detectors, signal loss 

was reduced by using a non-angled connection (FC-PC) to connect the fiber to the 

photodiode. 

 The response of the interferometer has been described by various mathematical 

models. In the simplest case interferometer response can be modeled as a simple two 

component interference since multiple reflections in the interferometer cavity can be 

ignored due to relatively low reflectivity. The current from the signal photodiode is 

given by 
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where λ is the laser wavelength and d is the fiber to cantilever spacing. V is the fringe 
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where io is the midpoint current given by 72
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 The most sensitive operating point is where the phases of the two reflected 

components are in quadrature or d=λ/8, 3λ/8, 5λ/8... At quadrature, the response for 

small changes in distance, ∆d, and wavelength, ∆λ, is given by 
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 The power variation at this point is given by the linear relation 
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 In general if the interferometer distance is set to its most sensitive point, the force 

resolution of the microscope only depends on the force constant of the cantilever used 

and on the resolutions of the interferometer optical system.   

 There are some miscellaneous issues regarding the operation of fiber-optic 

interferometer which are worth mentioning. The active core diameter of the fiber is 

about 5-10 µm (8.3 µm in our case) and SFM cantilevers are generally only a few 

hundred microns long and a few tens of microns wide. Thus precise positioning of the 

optical fiber over the cantilever and easy cantilever replacement are thus major concerns 

in any interferometer design.75 In our system this is done at room temperature with the 

help of an optical microscope. While looking through the microscope the stainless steel 

plate on which the cantilever sits is positioned with the help of tweezers so that the 

cantilever is above the fiber in X-Y plane. The spacing between the cantilever and the 

fiber along the Z-axis is maintained as small as possible. This is later readjusted for the 

final positioning. 

 The more critical requirement for the low temperature design is maintaining 

adequate alignment while cooling to low temperature.76 Since no provision is made for 

lateral re-alignment of the fiber and cantilever after cooling in our instrument, fiber 

alignment done at room temperature must be maintained throughout the cooling process. 

To achieve this, misalignment of the cantilever and fiber due to thermal contractions is 

minimized by the symmetric design of the cantilever and fiber-positioning mechanisms. 

These components are laterally symmetric about an axis along the length of the 

cantilever. With this geometry, thermal contractions result in relative motion of the fiber 

and cantilever which has virtually no component in the X-Y plane perpendicular to the 

axis of the cantilever.73 However, in the Z-direction, relative motion of several microns 
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may occur upon cooling despite the thermal compensation described below. Thus it is 

necessary to perform final approach of the cantilever and sample at low temperature.70 In 

our instrument this is done using one screw for the coarse approach and the fiber piezo 

for fine approach. In practice while doing the final adjustment, the fiber is typically 

brought up to the cantilever until it just touches (oscillations stop) the fiber. Then the 

fiber is backed by a micrometer or so as necessary to be at the most sensitive part of the 

signal curve (i.e. where the distance is a multiple of λ/8). However, the stability of the 

microscope is always limited by the Z-drift of the cantilever to fiber spacing. 

 The fiber is very susceptible to breaking during adjustment, so the fiber needs to 

be strain relieved close to its end. Our first approach was to use a ceramic ferrule 

separated from the standard FC-PC fiber connector as the fiber supporting capillary. 

However, to make this approach successful the fiber needs to be stripped free of its 

plastic coating (which increases its susceptibility to breaking manifolds). This bare fiber 

is glued ‘inside’ the ferrule which makes the ferrule useless if the fiber breaks. To avoid 

this we have now used hypodermic stainless steel tubing as a fiber supporting capillary 

through which the fiber can be passed with its plastic coating intact. With this method, it 

is necessary to glue the fiber only at the base of the tubing and the steel tubing itself can 

be easily replaced. Virtually any length of the fiber can be used between the active 

components and the interferometer cavity, which is simply formed by reflections 

between the cleaved fiber end and reflective back surface of the cantilever. Every time 

the fiber breaks the end of the fiber is cleaved accurately perpendicular, using a 

commercial cleaving tool. 

 The subtraction approach for the noise reduction mentioned earlier is 

advantageous only in the contact mode. In the frequency range important for the contact 

mode, laser shot noise may be significant and this is reduced by the subtraction 

approach. On the other hand, in the frequency range important for the AC mode, the 

noise level of the interferometer is limited by the thermal noise of the cantilever which 

exhibits a peak near resonance as is always the case in AC mode. 
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  This noise is relatively large in the range of 10-3-10-1Å/ Hz 72 at room 

temperature compared to the shot noise of the laser diode given by69

  (2eSPavg∆f) 1/2 ,                                                                                                         (24)        

where S is detector responsivity in (Å/W) and is independent of the frequency of the 

cantilever.  

 The next section describes the issues in the design of any MFM system in general 

and actual design of our MFM head based on these design parameters. 



 42

IV. MFM HEAD DESIGN 
A. FUNDAMENTALS 

 Ever since the introduction of scanning force techniques a decade ago, a 

substantial amount of effort has been made to use them not only at room temperature and 

atmospheric pressure, but also in high vacuum and at low temperatures. Though MFM 

has produced very interesting images at room temperature and atmospheric pressure, 

working under the above special conditions has advantages. 

Advantages of using a vacuum environment: 

In high vacuum conditions relatively clean surfaces can be prepared and imaged. 

Moreover the quality factor of the cantilever increases substantially which helps in 

increasing the strength of the signal. Piezoelectric positioners have a tendency to arc 

usually between the pressures of 1 torr and the millitorr region because of the high 

voltage applied, so having a high vacuum environment ensures safe working conditions 

for the piezo material. 

Advantages of working at low temperature: 

Operating at low temperatures has the advantages of improved signal-to-noise 

ratio, elimination of thermal drift, increased stability, and the possibility of investigating 

low temperature phenomena. The signal to noise ratio increases because the amplitude of 

the cantilever’s thermal noise decreases as T . To put that into perspective, at LN2 

temperatures the thermal noise reduces by a factor of 2 and data collection is 4 times 

faster than at room temperature. Not only does the thermally activated drift of the 

mechanical construction decrease as temperature decreases, but the creep of the piezo 

and hence image distortions also decrease. Furthermore, interesting low temperature 

phenomena which are exclusively accessible only to low temperature MFM include 

superconductivity, many magnetic phase transitions and surface diffusion of 

molecules.77

 Various designs for the MFM working in these conditions have been proposed. 

Each has its own particular characteristics because of different:  a) methods of scanning 

the sample and tip with respect to each other,64, 78 b) systems used to measure the 
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cantilever deflection, c) range of operating temperatures and pressures,79 d) scanning 

ranges, e) size, shape, material and construction of the instrument, f) cost and 

optimization of the use. Thus it is difficult to compare one design with another. There 

are still new designs emerging with their own advantages and limitations. 

The design of a magnetic force microscope has requirements which differ in 

certain respects from those of the design of a generic atomic force microscope. The 

magnetostatic interaction produces forces and force gradients considerably smaller than 

produced by van der Waals forces so MFM requires a deflection sensor of good stability 

and low noise characteristics. Also though atomic resolution is not essential in AFM, a 

large scan range is required to study micromagnetic features and relate them to 

topographical features.80 Scanning force microscopes invariably have modular design 

due to its obvious advantages. Our MFM head has several modules. The starting point 

for the design process was several previously reported designs.40, 72, 81 In this work, I 

have combined and improved upon, various features of these designs. Specifically, I 

used AutoCAD as the drafting software for this design work, and 2-D views were used 

to establish the proper geometry and alignment of the various parts inside each module 

and the modules themselves. Most of the parts for each module were manufactured in 

the physics workshop. Individual modules and the MFM head were assembled in Dr. 

Ross’ lab. In the end, except for some minor adjustments individual modules and the 

head as a whole has thus far worked as we had planned. 

 In the following section, the various issues, parameters and constraints involved 

in the MFM head design are discussed with respect to each module. Then each of our 

modules is described on the basis of relevant design parameters.
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B. DESIGN ISSUES IN GENERAL 

The capability for low-temperature operation places additional requirements on 

the design of the instrumentation, in addition to any room temperature requirements. 

Low temperature systems can be built with a vacuum environment without exchange 

gas. In a vacuum environment such as this, temperature control issue is more critical 

because there is no fluid to exchange the heat. The method of heat transfer is either 

conduction or radiation.  

The prominent issues are mechanical stability, spurious mechanical resonance 

frequency and external vibration sensitivity. The suggestions of M. D. Kirk et al.9 as 

follows: 1) elimination of differential thermal contractions which could cause 

misalignment of the cantilever and the detection mechanism (in our case the optical 

fiber) 2) small size and rigid construction to enable the instrument to fit into a helium 

dewar with minimal vibration isolation 3) an ultra fine mechanical approach system to 

accommodate the reduced response of the piezoelectric transducers at low temperatures. 

The combined problem of vibration isolation and cooling is harder to solve than either 

problem alone. The vibration isolation/damping can be introduced either inside the 

cryostat just for the microscope or outside the entire cryostat. For immersion microscope 

with a vacuum environment (as is the case with this MFM) outside vibration isolation is 

a practical solution. However, effective vibration decoupling of gas and vacuum lines is 

required to achieve noise free cryostat operation.   

Proper control of the actual tip and sample temperature can be very hard to 

achieve. Thus the aim of any design is to make the head compact. The small size not 

only makes the instrument rigid but also reduces thermal mass. Our MFM head has an 

outside diameter of 5 cm. This compact design ensures the necessary rigidity.  

Any scanning force microscope working at low temperatures should be 

symmetric about the cantilever. This helps in minimizing the problem of unequal 

contraction of the parts while cooling to low temperature. At temperatures well below 

the LN2 temperature, expansion coefficients tend to decrease to practically zero,82 so the 

only differential contraction problem for very low temperature operation is the shift 
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during cooling. Thus a thermally compensated design simplifies the approach. This 

feature is also present in our MFM head.  

The coarse sample approach and the coarse fiber approach in our case are 

manual. This eliminates the use of a motor and makes the design simple, with little 

compromise in functionality. A key design challenge was to make the head thermally 

stable with low drift by thermally compensating the important parts. The design 

incorporated a fiber-optic interferometer sensor, which is most convenient in high 

vacuum and low temperature environments. Thus this choice of deflection sensing 

method relieved us of other constraints on the design of this MFM. 

  The cantilever holder is capable of using different commercial cantilevers. This 

feature should prove useful to investigate samples with widely varying properties. We 

have used a super-insulated dewar [Appendix 1] as a bath cryostat for low temperature 

operation. Vibrations produced by a bath cryostat are much lower than a flow cryostat. 

Other advantages of a bath cryostat are low LHe consumption and no sample 

contamination from residual gases due to the cold environment. The sample handling or 

microscope handling itself becomes difficult as the sample sits at the bottom of a long 

tube. In our case, since the microscope was not designed for the in-situ exchange of the 

sample, this issue is not important.  
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One of the advantages of a super-insulated dewar is elimination of noise created 

by boiling nitrogen which is required for cooling. Noise from boiling helium can be 

eliminated by pumping the helium bath temperature below λ point77 or temporarily by 

over-pressuring the bath. This MFM works in the dynamic detection mode which has 

higher sensitivity than the DC mode. It is possible to use stiff cantilevers which are 

easier to stabilize at low scan heights. 

C. DESIGN AND FEATURES OF INDIVIDUAL MODULES 

1. Sample coarse approach  

 This is a manual approach. For this design, ultra fine screws [Appendix 1] are 

used to achieve as small a step as possible. These screws rest on a plate called the 

‘Lower Plate’ which houses the scanner on which the sample rests. The material of the 

main body, which includes three plates as well as the coarse approach screws of the 

microscope, is non-magnetic 304-stainless steel. Using non-magnetic construction 

materials is imperative for MFM and choosing an appropriate material of construction 

was one of the design challenges. A survey of available construction materials revealed 

that materials like Invar have much lower thermal contraction coefficients (needed for 

low temperature operation), but they are useless for our purpose because they are 

magnetic while the inverse is true for materials like plastics. Comparison of the relative 

merits and demerits of different materials is shown with the help of table I, which gives 

the values of relative thermal contraction for different materials and compares the 

properties of these materials with those of stainless steel. 
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TABLE I. Liner thermal contraction of materials at 60 K relative to 293 K (adapted from G.K. 
White, Experimental Techniques in Low Temperature Physics, Oxford Science Publications, 
1987) in units of   and comparison of different materials with stainless 
steel based on suitability as a material of construction for MFM 

( ) 293293
410 L/LL T−×

 

 Material Relative thermal  Comparison with S. Steel 
  Contraction 
   
 Stainless Steel 29.1 ------------ 

 Aluminum 40.6 Higher thermal contraction 

 Copper 31.2 Lower strength and rigidity, 
   comparable thermal contraction 

 Titanium 14.8 Lower thermal contraction, 
   higher cost and  difficult to machine 

 Invar   4.9 Lower thermal contraction, 
   magnetic 

 Plastics >100 Higher thermal contraction 

 Macor approx. 5 Very low tensile strength, 
   very difficult to machine 

 EBL-3 approx. 5 Piezoceramic material, not a  
   material for bulk construction 
  

  

 This is why we have used 304-stainless steel (which is non-magnetic for all 

practical applications and has relatively lower coefficient of thermal contraction) as the 

material of construction for the main body.  

 The sample approach screws are accessible from outside the vacuum with the 

help of the long screwdriver. The screwdriver shafts are made to have good thermal 

contact with the cold vacuum can which serves as the heat sink for the heat conducted 

along their length.  

2. Fiber coarse approach  

 This also features a manual approach mechanism similar to the sample coarse 

approach mechanism and has the same material of construction. These ultra fine screws 

pass through a plate called the ‘Upper Plate’ and rest on a plate called the ‘Middle Plate’. 
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The ‘Upper Plate’ houses the fiber inside the fiber piezo. The ‘Middle Plate’ houses the 

cantilever on an angled slot milled at its center. One of the fiber approach screws is 

accessible from outside the vacuum. This screw also sinks its heat to the cold vacuum 

can. Thus we have tried to minimize the thermal path from cantilever to the optical fiber 

to optimize resolution and stability. Drift is also minimized because of the use of 

materials having similar expansion coefficients (e.g. piezo ceramic and macor).79, 83 It 

was expected that lateral thermal drift of the fiber with respect to the cantilever would be 

minimal due to the symmetric design of the instrument.70 Hence there is no provision for 

the lateral alignment of the fiber and cantilever as is already discussed in detail section 3. 

3. Scanner piezo 

The single tube piezo scanner is a common feature in any SFM system. It has the 

distinct advantage of being small and rigid as compared to other piezo based motors. Our 

piezo tube is made of EBL-3 [Appendix 1], which has the highest gain (d31) of 26.2 

Å/V.84 The length of the tubes (L) chosen is 7.5 cm, one of the longest ever reported. 

The thickness (d) is chosen to be small (0.5 mm). The scanning range for the piezos can 

be given by85

)**/()***( dIDLVd22yxor 2
31 π∆∆ = .                                                            (25) 

From equation (25) it can be easily seen that the scanning range is directly 

proportional to gain and length and is inversely proportional to thickness. That is why 

we have chosen the piezo material with highest gain and the length of the tubes is kept 

long. The scanning range also depends on the value of the electric field (V/d) applied. 

With our electronics we can apply voltages up to +/- 300 V. Value of the typical 

breakdown voltage (or more correctly field) for the piezo materials is 1000 V/mm. So 

the smallest value for the thickness (d) of the piezo tubes we could have chosen would 

be around 0.3 mm. However, the piezo tubes are very fragile, so the thickness of the 

tubes was chosen to be 0.5 mm due to strength considerations. This strength 

consideration proved to be very useful during the assembly as we found that even with 

0.5 mm thickness the piezo tubes should be handled very carefully to avoid breaking. 
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 This four quadrant scanner is used for the final approach of the sample and 

scanning as well. A single four-quadrant scanner tube is usually used to raster the sample 

with respect to cantilever or vice versa. Our scanner has concentric piezo tubes to 

effectively improve the scanning range (the scanning range at room temperature is 175×  

175 µm). At low temperatures the scanning range of the piezo tubes decreases by a large 

amount (reduction factors of 3-8 have been reported76, 86). This has been compensated by 

concentrically mounting two piezo tubes and connecting them in parallel. The 

arrangement of concentric piezo tubes is also useful for thermal compensation of the 

scanner in two ways: 1) the relative contraction of piezoceramic material from room 

temperature to 60 K is approximately 1/6 that of stainless steel [Table 1] which is the 

material of the main body of the MFM head. This large difference can introduce 

unwanted thermal stresses in the scanner. It can also increase the chances of accidental 

contact of the cantilever and the sample while cooling the head (explained in detail in 

subsection 5 which discusses design of the sample holder) 2) the relative contractions of 

piezoceramic material and macor (from which the supporting flanges for the scanner are 

made) are only approximately the same. However, for a large scanner length of 7.62 cm 

the resulting difference in contraction is still significant. The concentric tubes along with 

the similar macor flanges contract relative to each other by equal amount thereby 

minimizing the above mentioned problems. We are not aware of any other reported 

design of the scanner with thermal compensation achieved in this way. 

 On top of the scanner piezo sits the sample holder, with the help of the sample 

holder macor flange. A SS plate is glued to this macor flange on which the sample 

holder attaches. Thus sample holder is removable if needed. 

4. Fiber piezo for the fine adjustment 

 The fiber fine adjustment is done by two concentric single quadrant piezo tubes 

[Appendix 1]. These tubes hold the optical fiber [Appendix 1], at their common center 

with the help of  a macor flange and a hypodermic steel tube fitting. The fiber is glued to 

the hypodermic steel tube to provide the fiber with a strain relief which prevents 

frequent breaking. Although a long piezo is essential for sufficient extension, in this case 
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the length of the z-piezo could not be too large because of our geometrical constraint. 

The fiber piezo should be perpendicular to the tilted cantilever, so it was placed at an 

angle of 15U with respect to the Z-axis of the microscope. To confine it inside the 

diameter of the microscope, the length of the fiber piezos chosen is 2cm (the Z-extension 

of the fiber piezos is 20 µm at room temperature). These piezos sit in a macor base 

flange clamped to the ‘Upper Plate’. The thermal expansion coefficient of both these 

materials (i.e. macor and EBL-3) is the same which avoids problems during the cooling 

process.86

5. Sample holder 

The sample holder sits on the scanner between the ‘Middle Plate’ and the ‘Lower 

Plate’. These two plates are separated by coarse approach screws which are made of 

stainless steel and are 7.62 cm long. Because of the geometry of the Scanner module of 

our MFM head, the sample holder sticks out above the ‘Lower Plate’. During cooling of 

the head the ‘Lower’ and the ‘Upper’ plates move toward each other by a large amount 

(proportional to the relative thermal contraction of stainless steel) while sample holder 

does not contract as much (here, the contraction is proportional to the relative thermal 

contraction of piezo material EBL-3 and is very small) and still sticks out almost as 

much as it does at room temperature. This can be compensated if the sample holder itself 

contracts by a large amount. This is the reason the sample holder is made of aluminum 

and its height is chosen to be 2.54 cm. The relative thermal contraction (compared to 

room temperature legth) of aluminum at 60 K is 150% of the relative thermal contraction 

of stainless steel and 800% of that of piezoceramic material [Table 1]. Hence based on 

the values of relative thermal contraction between room temperature and 60 K, it 

compensates for 3.5 cm (=2.54×41.2/29.1) length of the stainless steel approach screws. 

[Here, we had to compensate only for the coarse approach screws and not also the 

scanner because the scanner has already been thermally compensated as explained in 

subsection 3. Otherwise the relative contraction (at 60 K) of the scanner itself would be 

considerable]. This thermal compensation is very essential to avoid any accidental 

contact between the cantilever and the sample during cooling.  
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The sample holder has a fixture to hold the sample up to approximately 2.5cm by 

2.5cm .The sample is held in its place by Cu-Be spring fingers. The sample holder was 

designed to allow attachment of a small heater to it if needed. 

6. Cantilever holder 

 The cantilever holder consists of two very thin ceramic plates (approx. of size 

1cm by 1 cm and 0.001 cm thick) which clamp the thin piezo plate. This piezo plate 

[Appendix 1] vibrates the cantilever near its resonant frequency for non-contact imaging.  

The lower thin ceramic plate is glued to an angled step machined in the ‘Middle Plate’. 

The angle maintained is 15o. This tilts the cantilever towards the sample to allow only a 

corner of the lever to interact with the sample and to provide sufficient clearance for the 

approach. The cantilever is glued onto a thin stainless steel plate which is then held onto 

the upper ceramic plate with the help of Cu-Be spring fingers. 

The next section describes the assembly of the MFM head and working of the 

magnetic force microscope. 

D. ASSEMBLY AND WORKING 

 The assembly of the MFM head begins with gluing corresponding macor parts on 

to the respective piezo tubes. The macor parts are glued using Torr Seal [Appendix 1] 

and are fixed permanently. The two lower macor parts are used to couple the inner and 

outer tubes for fiber piezo assembly and also for scanner assembly. Macor base flanges 

are used to attach the scanner assembly to the ‘Lower Plate’ (Fig. 14) and the fiber piezo 

assembly to the ‘Upper Plate’ (Fig. 15). 
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 Additional macor flanges combined with small stainless steel plates with 

threading are attached to the inner scanner and fiber piezo tubes to carry the sample 

holder and capillary support for the fiber. The sample holder is screwed onto the scanner 

tube and the spring supports are placed in appropriate grooves in the ‘Lower Plate’. The 

optical fiber is cleaved and then glued into the capillary support which then sits on top of 

the fiber piezo assembly. 

 To assemble the cantilever holder module, the small piezo plate is sandwiched 

between ceramic insulators and glued to the ‘Middle Plate’. The cantilever is glued to a 

small stainless steel carrier and this is held to the ceramic insulator using Cu-Be spring 

fingers (Fig. 16). Then the Cantilever Holder module with the cantilever and the Fiber 

Piezo module with the coarse approach adjustment screws and fiber are tied together 

using springs. Room temperature alignment of the fiber is done using an optical 

microscope as described in section 3B. Then the Cantilever Holder module is attached to 

the Scanner module using springs. The ‘Middle Plate’ is screwed onto the Exterior Plate 

via Support Columns (Fig. 17) and thus remains fixed while the ‘Upper’ and ‘Lower’ 

plates are adjusted. 

During the routine operation of the MFM, the coarse approaches move the Fiber 

Piezo module and the Scanner module relative to the ‘Middle Plate’. Movement of the 

Scanner module moves the sample towards the cantilever housed in the ‘Middle Plate’. 

Similarly movement of the Fiber Piezo module moves the fiber towards the cantilever 

from its other side. This will bring the sample and the fiber piezo within the range of the 

fine approaches. The fine approach is then used to move within the range of the 

feedback signal which forms the image.  
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The three screws for the scanner approach and one screw for the fiber approach 

are accessible from outside. For this, four long screwdriver rods passing through 0.63 cm 

thin walled Cu-Ni tubes are used (Fig. 18). The Cu-Ni tubes are soldered at one end onto 

the Exterior Plate while at the other end are held onto the Ladish Flange 1 using Quick 

Connectors. Thus the Exterior Plate along with the whole assembly of the MFM head 

can be moved up and down using these tubes. The Ladish Flange 1 mates with the 

Ladish Flange 2 as shown in Fig. 19. The Ladish Flange 2 is soldered onto a S. Steel 

tube which in turn is soldered onto a flange on one side. On the other side a vacuum can 

(6.35 cm in diameter and approximately 100 cm long) is soldered below the stainless 

steel tube. This assembly is placed in the superinsulated dewar to immerse the MFM 

head enclosed in the vacuum can in the cold liquid. A KF-20 flange soldered onto the S. 

Steel tube provides access for the vacuum pumping system as shown in Fig. 20. Ladish 

Flange 1 has Quick Connectors for various vacuum feedthroughs. Similarly the flange 

sitting on top of the dewar also has additional vacuum feedthroughs for purposes such as 

LN2 or LHe transfer. 

 The optical fiber is glued into a plug and is held onto the Ladish Flange 1 using a 

Quick Connect. The optical fiber is connected to the Interface Box as shown earlier and 

carries the feedback signal to and from the Dulcinea electronics. 

 The electrical connections for the scanner and the fiber piezos are shown 

schematically if Fig. 21. 
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E. FURTHER WORK AND APPLICATIONS  

 The design of the MFM head and interface is complete. The various modules 

during 

12 

12 

have been manufactured. Now, they are in the assembly stage. Immediate further work 

involves calibration of this system at room temperature and at low temperature.  

 After the MFM head has been tested with the standard samples 

calibration, it would be ready to be used for various investigative purposes at room 

temperature as well as at low temperature. The potential samples are the Mn molecular 

nanomagnets, Ni-Co-Al smart materials, BSCCO superconductors and Alumina based 

magnetic nanorods-superconductor hybrid structures. Mn molecular nanomagnets have 

a superparamagnetic transition temperature far below room temperature and MFM 

imaging of these samples around this temperature would be interesting.  Ni-Co-Al smart 

materials show changing magnetic response with changing temperature so these are to 

be imaged while cycling through a certain temperature range. BSCCO superconductors 

are to be used to study the flux pinning with the help of the vortices and they have the 

transition temperature of around 77K. Alumina based hybrid structures have a layer of 

superconductor overlaid on Ni based magnetic nanorods embedded in Alumina. The 

ferromagnetic properties of the nanorods and their interaction with the superconductor 

below the transition temperature are to be studied 
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V. SUMMARY 
 In this project, a MFM head was designed and constructed. This MFM head 

works at low temperature (up to 4 K) and in high vacuum. It sits at the bottom of a 100 

cm long vacuum can which is inserted into a superinsulated dewar for the cooling 

purposes. This cools the whole MFM head instead of just the sample as is the case with 

the cold finger arrangement. This helps to keep the sample clean as the sample no longer 

behaves as a cold trap.  The MFM head was designed to be compact (outside dia. 5 cm) 

and hence fits into a 5.3 cm bore of the 9T superconducting magnet in Dr. Ross’ lab. 

This feature is necessary for MFM imaging in high external applied fields (in the range 

of a few Teslas). The small size ensures small thermal mass for the ease of cooling. 

  The MFM head has various other features. It consists of various modules for 

ease of assembly. It is symmetrical in shape which minimizes uneven thermal 

contraction during cooling. This ensures reliable and stable operation over a range of 

temperatures. Most of its important modules are thermally compensated thereby making 

it suitable for low temperature operation. Its metal parts are made of non-magnetic 

stainless steel. It has a large scan range which is a very useful feature for a MFM system. 

Our MFM head uses commercially available magnetic cantilevers and is interfaced to a 

commercial electronics package, the Dulcinea unit made by Nanotec Electronica, Spain. 

 The interfacing was done by designing a fiber-optic interferometer as the 

deflection sensor and an interface box which goes with it. The fiber-optic interferometer 

is the most suitable sensor for a low temperature such as this because only the fiber runs 

into the low temperature part. The fiber-optic interferometer is compact, stable, less 

susceptible to mechanical vibrations and easy to use. 

 AutoCAD was used as the drafting software for designing various modules. 2-D 

drawings were used to ensure proper geometry and spatial compatibility as alignment 

and lack of space were the major design constraints. These various modules were 

manufactured in the Physics machine shop. The MFM head was assembled in Dr. Ross’ 

lab by combining these modules and they work as intended. The assembly of the fiber-

optic interferometer and the interface box is also complete. Now this home made MFM 
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head is ready to be interfaced to the commercial electronics package, the Dulcinea. This 

new head has many potential MFM imaging applications which were previously 

impossible to image in our lab. Some of the expected system specifications are once 

again listed as follows: 1) Outside diameter of the MFM head: 5 cm, 2) room 

temperature scanning range: 175 µm, 3) low temperature scanning range: 35-50 µm, 4) 

smallest detectable magnetic force in the range of pN, 5) smallest detectable magnetic 

force gradient in the range of 10-3 to 10 -5 N/m, 6) lateral resolution on the order of a few 

nm depending on the imaging conditions and 7) vertical resolution on the order of a few 

Å depending on the imaging conditions.   
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APPENDIX 1 
 The MFM head was assembled from custom made parts manufactured in the 

Physics machine shop and commercial parts. This appendix lists most of the commercial 

parts used in the construction of the MFM head.  

 

Part 

No. 

Name Product No. Manufacturer 

1 Multimode laser diode ML725B8F Thorlabs Inc. 

2 Single mode fiber SMF-28 Thorlabs Inc. 

3 Precision Current Source 

(Laser Driver) 

IP500 Thorlabs Inc. 

4 50-50 Directional Coupler 10202A-50 Thorlabs Inc. 

5 Faraday Isolator 4013SA Thorlabs Inc. 

6 FC-PC connector 30126D1 Thorlabs Inc. 

7 FC-APC connector 30126F1 Thorlabs Inc. 

8 Photodiode FD80W Fermionics Opt. Tech. 

9 OP-AMP LT1007CN8 Maxim Inc. 

10 Instrumentation amplifier AD621AN 

 

Analog Devices Inc. 

11 Superinsulated dewar --- Precision Cryogenics Inc. 

12 1/4-80 S. Steel screw FAS300 Thorlabs Inc. 

13 3/16-100 S. Steel screws UFS100 Thorlabs Inc. 

14 Lead-Zirconium-Titanate 

(Piezo tube material)  

EBL-3 Staveley Sensors Inc. 

15 Macor (machinable glass 

ceramic) 

_____ Accuratus Ceramic 

Corporation 

16 Torr Seal 9530001 Varian Vacuum Products 

Inc. 
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