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Das and Mandal: Classification of Cayley Rose Window Graphs

Abstract

Rose window graphs are a family of tetravalent graphs, introduced by Steve Wilson.
Following it, Kovacs, Kutnar and Marusic classified the edge-transitive rose window
graphs and Dobson, Kovacs and Miklavic characterized the vertex transitive rose win-
dow graphs. In this paper, we classify the Cayley rose window graphs.

1 Introduction

Rose window graphs were introduced in [6] in the following way:

Definition 1.1. Given natural numbersn > 3 and 1 < a,r < n—1, the Rose Window graph
R.(a,r) is defined to be the graph with vertex set V.= {A;, B; : i € Z,} and four kind of
edges: A;A;y1 (rim edges), A;B; (inspoke edges), A;.,B; (outspoke edges) and B;B;y,
(hub edges), where the addition of indices are done modulo n.

In the introductory paper [6], author’s initial interest in rose window graphs arose in the
context of graph embeddings into surfaces. The author conjectured that rose window graphs
are edge-transitive if and only if it belongs to the one of the four families given in Theorem
1.1. The conjecture was proved by Kovacs et. al. in [4]. In particular, they proved that

Theorem 1.1. [/] A rose window graph is edge-transitive if and only if it belongs to one of
the four families:

1. Ro(2,1).

2. Ryp(m£2,m=+1)

3. Rygm(£(B3m +2),£(3m — 1)) and Rygm(E£(3m — 2),£(3m + 1)).

4. Rop(2b,7), where b* = +1(mod m), 2 <20 <m, and r € {1,m — 1} is odd.
A similar characterization for vertex-transitive graphs was proved in [1]:

Theorem 1.2. [1] A rose window graph R, (a,r) is vertez-transitive if and only if it belongs
to one of the following families:

1. R,(a,r), where r* = £1(mod n) and ra = +a(mod n).
Rym(2m, 1), where r is odd and (r? 4+ 2m) = +1(mod 4m).
Rop(m £ 2,m £ 1)

Riom(£(B3m +2),£(3m — 1)) and Ryom(£(3m — 2),£(3m + 1)).

Rom(20,7), where b* = £1(mod m), 2 < 2b < m, and r € {1,m — 1} is odd.

As a Cayley graph is always vertex-transitive, a natural question to ask is to characterize
the rose-window graphs which are also Cayley graphs. For that, it is sufficient to look for
Cayley graphs only in the 5 families mentioned in Theorem 1.2. The main goal of this paper
is finding an answer to this question. In particular, we prove the following theorem:
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Theorem 1.3. A rose-window graph R, (a,r) is Cayley if and only if one of the following
holds:

1. R,(a,r), where r* = £1(mod n) and ra = +a(mod n).

2. Rym(2m,r), where r is odd and (r* + 2m) = 1(mod 4m).

3. Roy(m £ 2,m £ 1) where m is a multiple of 2 or 3.

4. Riom(£(Bm+2),£(3m —1)) and Ryzn(£(3m —2),+(3m+1)) where m # 0(mod 4).
5. Rom(2b,7), where b* = +1(mod m), 2 < 2b < m, and r € {1,m — 1} is odd. O

Before stating the proof, we note a few generic automorphisms and other properties of
R, (a,r). Other automorphisms, specific to any particular family of rose window graphs, will
be introduced whenever they are needed.

1. Define 7 : V. — V by 7(4;) = A_; and 7(B;) = B_;. Clearly 7 is an automorphism
with 72 = id and hence R,(a,r) = R,(—a,r).

2. R,(a,r) = R,(a,—r).

3. Define p: V' — V by p(A;) = Aiy1 and p(B;) = Biyq; and p: V. — V by p(A4;) = A,
and p(B;) = B_q;. Clearly p and p are automorphisms. As p" = p? = id and
ppp = p~', we have (p, p1) = D,

4. If (n,r) = 1, then ¢ : V. — V given by ((A;) = B_;-1 and ((B;) = A_;—1 is an

automorphism and hence R, (a,r) = R,(ar™!,r71).

Remark 1.1. In view of the first two observations, it is enough to study R,(a,r) for 1 <
a,r < [5].

The main theorem, which is repeatedly used in the proofs throughout the paper, is the
following;:

Proposition 1.1. A vertez-transitive graph G is Cayley if and only if Aut(G) has a subgroup
H which acts reqularly on the vertices of G. In particular, non-identity elements of H do
not stabilize any vertex. [

Remark 1.2. In this context, it is to be noted that if a group of order n acts transitively on
a set of order n, then the action is reqular.

2  Family-1 [R,(a,7): > = £1(mod n) and ra = *a(mod n)]

If r> = +1(mod n) and ra = +a(mod n), then § : V' — V given by §(4;) = B,; and 6(B;) =
A,; is an automorphism. For proof, see Lemma 2 [6] or Lemma 3.7 [1]. If r* = 1(mod n),
then 6% = id and if r? = —1(mod n), then 6% = 7, i.e., § is of order 4.
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Theorem 2.1. If r*> = 1(mod n) and ra = +a(mod n), then R,(a,r) is a Cayley graph.
Proof: Since R,(a,r) = R,(a,—r), without loss of generality, we can assume that ra =
—a(mod n). Consider p and § as defined above. We have p" = §2 = id and dpd = p". Define

H = (p,0) = (p,6: p" =0 =id; 0p5 = p")

= {Idapa p2> s 7pn_1767 P& p257 te 7pn_16}'

Clearly, H is a subgroup of Aut(R,(a,r)). It suffices to show that H acts regularly on
R, (a,r). For that we observe that

[ ) p](AZ) = Ai—i—j and p](Bl) = Bi—i—j? and
[ J pjd(Al) = BTZ'+J' and pjé(BZ) = Ari+j'

As ged(r,n) = 1, the map i — 7i + j is a bijection on {0,1,...,n — 1}. Thus H acts
transitively on R,(a,r). It is also clear from the construction of H, that for any pair of
vertices in R, (a, ), there exists a unique element in H which maps one to the other. Hence,
R.(a,r) is a Cayley graph. O

Lemma 2.2. Ifr? = —1(mod n) and ra = +a(mod n), then n is even, a is odd and n = 2a.
Proof: Let p be an odd prime factor of n such that p‘|n and p™! t n. Then r? = —1(mod p')
and r? = —1(mod p). Again, p'la(r £ 1), i.e., pla(r £1). If p|(r £ 1), then r? = 1(mod p), a
contradiction, as —1 % 1(mod p). Thus for all odd prime factors p of n, we have p’|a. Hence,
if n is odd, then n = a, a contradiction (See Remark 1.1). Thus n is even.

We claim that 2|n but 4 { n. Because if 4|n, then > = —1(mod 4). However, there
does not exist any such r. Thus n is 2 times the product of some odd primes. Also, all
the odd prime factors of n are also factors of a, as seen above. Thus, if 2|a, then n = a, a
contradiction (See Remark 1.1). Thus 2 1 a and hence a is odd and n = 2a. O

Theorem 2.3. If r? = —1(mod n) and ra = +a(mod n), then R,(a,r) is a Cayley graph.
Proof: Let a = p% 3 = pé%~y = ud. Clearly, a, 3,7 € Aut(R,(a,r)). It can be easily
checked that Ba = a~'8;va = a~"y and 4% = a“Z 3. Define

. _ _r a1
H=(apy:a"?=p5=+"=idipa=a""Biya=a"y7" =a"2 f)

={a'FyF0<i<n/2,0<5k<1}

Note that, from the above lemma, n/2 and (a — 1)/2 are positive integers. We claim that
the elements in H are distinct. If not, suppose

ailﬁjl’ykl = aiQﬁjQ’yk27 Where 0 S 2.17Z.2 < n/270 S jlaj? S 170 S k17k2 S 1a

ie.,
prigi 2 g0 = k2R where ky — ky = 0 or 1.

Now, as v = pd flips A;’s and B;’s, and «, 8 maps A;’s to A;’s and B;’s to B;’s, ko — ki must
be 0, i.e., k; = ky. Thus, we have

a7 = [T where jo — j; =0 or 1.
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If jo — j1 =1, then o'~ = 3 = pd®. But o'~ (Ay) = As,—i,) (even index) and pd?(Ay) =
A; (odd index). Hence, j» — j; = 0, i.e., j1 = jo. This implies o~ = id and as a result
i1 = 2. Thus the elements of H are distinct and |H| =n/2 x 2 x 2 = 2n.

We claim that H acts transitively on R,(a,r). It suffices to show that the stabilizer of A,
in H, StabH(Ag) {id}.

Let a'fiy* € Staby(Ap), i.e., a'BIv*(Ag) = Ay. Since, v flips A;’s and B;’s, and «, 3
do not, we have k = 0. Thus, o'$7(Ag) = Ag. If j = 1, then ’B(Ay) = a'pd*(4y) =
P22 (Ag) = Ay, i.e., A1 o = Ap, a contradiction, as the parity of indices on both sides
does not match. Thus, j = 0 and we have a’(Ag) = Ag. But this implies Ay; = Ay, i.e.,
i = 0. Hence StabH(Ao) {id}.

Finally, in view of Remark 1.2, H acts regularly on R,(a,r) and hence R,(a,r) is a
Cayley graph. O]

3 Family-2 [Ry,,(2m,7): ris odd and (r°*4+2m) = £1(mod 4m)]

Proposition 3.1. If n is divisible by 4, 7 is odd, a = n/2 and (r* + n/2) = +1(mod n),
then

e gcd(r,n) =1.
o Ify:V =V be defined by v(A;) = By and v(B;) = A(rtayi, then v € Aut(Ry(a,r)).

Proof: Let n = 4m and a = 2m, and let if possible, gced(r,n) = 1 > 1. As r is odd,
[l/m. Thus r = It and m = Is for some s,t € N. Thus n = 4ls,a = 2ls and r = It.
Now (r? + n/2) = +1(mod n) implies I*t? + 2ls = +1(mod 4ls), which in turn implies
I|(It* 4+ 2Is £ 1), i.e., I|]1, a contradiction. Thus ged(r,n) = 1.

7, as defined above, has been shown to be in Aut(R,(a,r)) in Lemma 3.8 [1]. O

Proposition 3.2. If n is divisible by 4, v is odd, a = n/2 and (r* + n/2) = 1(mod n), then
e r'=r+a (modn)

o ( € Aut(Ry,(a,r)) (defined before) takes the following form: ((A;) = B_(r4a) and
C(Bz) = Af(rJra)i; and C4 =1

Proof: r(r+a)=r*+ar=1—a+ar=1+a(r —1) =1 (mod n). The last equivalence
holds as r is odd and @ = n/2. Thus ™! = r+a (mod n). The form of ¢ follows immediately
from the fact that 7=! = r + a (mod n). O

Theorem 3.1. If n is divisible by 4, r is odd, a = n/2 and (r* + n/2) = 1(mod n), then
R.(a,r) is a Cayley graph.
Proof: Let o = p%, 3 = pu and o = ~(2, where v and ( are as defined in Propositions 3.1
and 3.2. It can be easily checked that 0(4;) = B(1q); and 0(B;) = A,y; o/? = % = 0 = id;
Baf =a"! cac =a", (B0)? =a"7 . Define

a—r+1

H={(a,B,0:a"?=p=0c*=id;BaB=a ' oac =a",(Bo)> =a = )
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= {a'Flo":0<i<n/2,0<5k<1}
We claim that the elements in H are distinct. If not, suppose
a1 pireR = o227 where 0 < 4y, iy < n/2,0 < ji1, jo, k1, by < 1,
ie.,
arTphighiTke — gi2 where ky — ko = 0 or 1.

Now, as o flips A;’s and B;’s, and «, § maps A;’s to A;’s and B;’s to B;’s, k1 — ks must be
0, i.e., k1 = ko. Thus, we have

o't = B2 where jo — j; = 0 or 1.

Since, a maintains the parity of indices and (8 flips the parity of indices of A;’s and B;’s,
jo — j1 is even, i.e., j; = jo. This implies o~ = id and as a result i; = i,. Thus the
elements of H are distinct and |H| =n/2 x 2 X 2 = 2n.

We claim that H acts transitively on R, (a,r). In order to prove it, we show that the orbit
of Ag, Og,, under the action of H is the vertex set of R, (a,r). By orbit-stabilizer theorem,

we get
| H]|
Opy|l = ——F—.
O] = Staby (4]
As the number of vertices in R,(a,r) is 2n and |H| = 2n, it is enough to show that

Staby(Ag) = {id}. Let aBic* be an arbitrary element of H which stabilizes Ay, i.e.,
a'Biok(Ag) = Ap, with 0 < i < n/2,0 < j,k < 1. Now, as o flips A;’s and B,’s, and
«, S maps A;’s to A;’s and By’s to B;’s, k = 0. Thus o/7(Ag) = Ay, i.e., a”(Ag) = £/(Ay).
Since, a maintains the parity of indices and ( flips the parity of indices of A;’s and B;’s,
j = 0 and hence ¢ = 0. Thus Staby(Aj) = {id}.

Finally, in view of Remark 1.2, H acts regularly on R,(a,r) and hence R,(a,r) is a
Cayley graph. O]

In Family 2, if (r? +n/2) = —1(mod n), we will show that R,(a,r) is not a Cayley
graph. In order to prove it, we recall a few observations and results.

Remark 3.1. [t was noted in [6] and [1], that R,(a,r) has either one or two or three edge
orbits. If it has one edge orbit, then by definition, it is edge transitive, as in Theorem 1.1.
If R, (a,r) has two edge orbits, then one orbit consists of rim and hub edges, and the other
consists of spoke edges. If R,(a,r) has three orbits on edges, then the first one consists of
rim edges, the second one consists of hub edges, and the third one consists of spoke edges.

As Family 3,4, 5 in Theorem 1.2 are also edge transitive, they have only one edge orbit.
On the other hand, family 1 and 2 in Theorem 1.2, have two edge orbits, as evident from
Remark 3.1 and Theorem 3.2.

Theorem 3.2 (Theorem 2.3,[1]). There is an automorphism of R, (a,r) sending every rim
edge to a hub edge and vice-versa if and only if one of the following holds:

1. a#n/2, r* = 1(mod n) and ra = +a(mod n);

2. a=n/2, r* = +1(mod n) and ra = +a(mod n);
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3. n is diwisible by 4, ged(n,r) =1, a =n/2 and (r* + n/2) = £1(mod n).

Corollary 3.3 (Corollary 3.9,[1]). If n is divisible by 4, r is odd, a = n/2 and (r* +
n/2) = £1(mod n), then the automorphism group of R,(a,r) has two edge orbits and the
full automorphism group of R,(a,r), Aut(R,(a,r)) = {(p,u,7), where v is as defined in
Proposition 3.1.

Theorem 3.4. If n is divisible by 4, r is odd, a = n/2 and (r* +n/2) = —1(mod n), then
R, (a,r) is not a Cayley graph.
Proof: As evident from Corollary 3.3, the full automorphism group of R, (a,r) is given by

Aut(Ry(a,r)) = (p,p,y : p" = p? =" = ids ppp = p~ ',y = puy,vp = p"uy’).

One can easily check the relations between the generators starting from the definition and
conclude that |Aut(R,(a,7))| =n x 2 x 4 = 8n. If possible, let R,(a,r) be a Cayley graph
with a regular subgroup H of Aut(R,(a,r)) and |H| = 2n.

Let K = (7). Then |K| =4 and HN K is a subgroup of K. As 7?(Ag) = Ay, i.e., v has
a fixed point, v € H. Thus H N K = {id} and

HIIK]

HE| = -
K =T AR

8n.

Hence p € Aut(R,(a,7)) = HK. Thus u = hk, where h € H and k € K = {id,v,7?,7%}. If
k =id, then y=h € H. But as u(Ag) = Ao, i.e., u has a fixed point, u ¢ H. Thus k # id.
If k = ~2% then p = hv? ie., h = uy* € H. But as puy*(Ay) = Ao, puy*> € H and hence
k # 42

If k =n, then uy™! = h, ie, ™2 = (yu)? = p*y? € H. But, as p*y*(Ayp2) = Auja, by
similar argument, k # .

If k=3, then h? = (uy)? = p*y? € H. By similar argument as above, k # 3.

As all the four possible choices of k € K leads to contradiction, we conclude that there
does not exist any regular subgroup H of Aut(R,(a,r)) and hence R, (a,r) is not a Cayley
graph. [

4  Family-3 [Ry,(m +2,m £ 1)]

Asm+2=—(m—2) (mod 2m) and m+ 1 = —(m — 1) (mod 2m), it suffices to check the
family Ry, (m —2,m — 1). It was proved in Section 3.2 of [5], that

G = Aut(Rom(m —2,m — 1)) = (p, 14,0, €1, - - -, Em—1) = K X {peo, pp™) = Z5 X Dy,

where K = (gg,€1,...,6m_1) = Z5", D,, is the dihedral group and ¢; is the involution given
by (Al, Bi—l)(Ai—‘rma Bi—l+m)(Ai+17Bi+m)(Ai+1+m>Bi)- Thus |G| = Qmﬂm. One can easﬂy
check that the following relations between the generators hold:

€i€j = Ej&i; &P = P &5 MEF = Em—1—ill;

pE; = €i+1p,Vi,j S {O, 1,...,m— 1} and ege1 - Ep1 = pm

https://digitalcommons.georgiasouthern.edu/tag/vol8/iss1/7
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where the addition of indices of ¢;’s are done modulo m. Using this relations, it is easy to
see that o(pe;) = m and o(up’) = 2.

It follows from definition that p*u,eq,€1,...,8i2,8i41,---,ém_1 € Stabg(A;). Again,
using the relations between generators, we get |(p? 11, €0, €1, - - -, Ei—2, i1y -+, Em_1)| = 2™ L.
Now, as Ry,,(m—2,m—1) is a vertex transitive graph, by orbit-stabilizer theorem, it follows
that |G|/|Stabg(A4;)| = 2 X 2m, i.e., |Stabg(A;)| = £ — 2m~1 Thus, we have

4m
Stabg(A4;) = (p¥ 1, €0,€1, -+, Eim2:Eitls - s Em—1)-

Similarly, it follows that

Stabg(B;) = (p" ¥ p,€0,€1, ., Eim1, €2y - Emot)-
Theorem 4.1. Ry, (m —2,m — 1) is a Cayley graph, if m is even.
Proof: In this case, n =2m, a = m — 2 and »r = m — 1. Now, if m is even, we have

r? = (m—1)2=m?—2m+ 1 = 1(mod 2m) = 1(mod n) and

ra = (m—1)(m—2)=m?—3m+2=—m+ 2(mod 2m) = —a(mod n).

Thus, if m is even, Ry, (m —2,m — 1) is a subfamily of Family-1 and as a result, Ra,,(m —
2,m — 1) is a Cayley graph. O

Theorem 4.2. Ry, (m —2,m — 1) is a Cayley graph, if m is an odd multiple of 3.
Proof: Let m = 3l. For i = 0,1,2, denote by ¥;, the product of all €;’s such that j #
i (mod 3). Note that ¥,X; = X for distinct 4, j,k’s in {0, 1,2} and o(%;) = 2.

Let a = p?, 8 = Yy and v = X;. It can be easily checked that Ba = a7y, ya = af~y and
B~y = 8. Define

H = (a, 3,7 :0(a) = m,o(8) = o(y) = 2; Ba = ay,ya = afy, By = 75).

Thus, any element of H can be expressed as o3’+* where 0 <i<m — 1,0 < j,k < 1, ie.,
|H| < 4m.

Claim 1: |H| = 4m.

Proof of Claim 1: If not, there exist 0 < 41,70 < m — 1,0 < ji, Jo, k1, ko < 1 such that
ailﬁj17k1 — 0[1'25]'271627 ie.,

pQ(i1—i2) — i1z — BjQ_jl’YkQ_kl (aS By = ’75)

If jo — j1 = ko — k1 = 0, then i; = iy (since, o(p) = 2m) and as a result the claim is true.
However, if any one or both of j, — j; or ks — &y is 1, then the right hand side is an element
of order 2. As a result, the left hand side must be an element of order 2, which implies
2(iy — io) = m. However, as m is odd, this can not hold. As a result, the claim is true, i.e.,
|H| = 4m.

As in proof of Theorem 3.1, it is enough to show that Staby(Ag) = {id}. Let a'Biy* €
Staby(Ap), i.e., a'Biv*(Ag) = A for some i, j, k with 0 < i < m—1,0 < j, k < 1. Therefore,

B (Ag) = Agm-ai (1)

Claim 2: k= 0.
Proof of Claim 2: If not, let k =1, i.e., 379(Ag) = Agp_2i. Note that
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e both gy and ¢,,_1 occurs in the expression of v, and

e all ¢;’s except ¢y and ¢,,_1 stabilizes Ap.

Thus Asy0; = 7v(Ag) = Blem_180(Ag) = Bem_1(Bam_1) = B7(A,,). If j = 0, then we have
A, = Aop_9;, which is a contradiction, due to mismatch of parity of indices. If j = 1, then
we have B(A,,) = Agm_2;. Note that

e Stabg(Ag) = Stabg(A,,) = (i, 1,62, -+, Em—2)-
e ¢y does not occur in the expression of 3, but ¢,,_1 occur in the expression of 5.

Thus, we have As,,_9; = B(An) = eém_1(An) = Bopm_1, a contradiction. Hence for k = 1,
both 7 =0 or 5 = 1 leads to a contradiction, and as a result k£ = 0.

Thus, from Equation 1, we have 7(Ag) = Agpo;. If 5 = 1, then Ay, o = B(Ag) =
em—1(Ag) = Bp-1, a contradiction. Thus, j = 0 and hence we have Ay = Ag,_o; i€,
2m = 2i (mod 2m), i.e.,i = m = 0 (mod m). Thus ¢ = 0. This implies that Staby(Ag) = {id}
and hence the theorem holds. O

Theorem 4.3. Ry, (m —2,m — 1) is not a Cayley graph, if m is odd and m #Z 0 (mod 3).
Proof: Consider K = (gg,e1,...,6m-1). Then K = Z" and |K| = 2™ as o(g;) = 2 and
i€ = €j€i,\V/i,j S {O, 1, e, — 1}

If possible, let H be a regular subgroup of G. Then |H| = 4m. Thus

H||K 22m - 2m
H|IK] _ 2'm <2™m e, |HN K| > 2.

HK| = =
| | \[HNK| |HNK| —

Now, as |H| = 4m, where m is odd and |K| = 2™, we have |H N K| = 2 or 4. We will prove
that |H N K| = 4. In fact, using the next two claims, we prove that |H N K| # 2.

Claim 1: If |[HN K| = 2, then the non-identity element of H N K must be gpey -+ - €1 = p"™.
Proof of Claim 1: Let o = g;,&,---¢&;, be the non-identity element of H N K. Let L =
{(tt,€0,€1, -, 6m-1). Then |L| =2™" and K C L as p € L\ K. Thus

H|[L|  4m - 27+

HL| = -
AL =TT~ AT

< |G| =2""m, ie., |HNL| > 4.

s

As |[HN K| =2 and K C L, there exists atleast one element of the form § = ue; g, - - €
in HN L.

Again, let L' = (pp,€0,€1,- -, Em—1). By similar arguments, we can deduce that | HNL'| >
4. So there exists an element of the form v = puej e, ---¢j, in H N L.

As o, 3,7 € H, it follows that Ba8~!, yay~! € H. Observe that

50‘571 = (:U’gilgiz te '51‘3)(5[1512 te 'glp>(ﬂgi1€i2 o €i5>71 = M(éllgb te '5lp>ﬂ‘

As pg; = epm_1-ipt, Baf™! is product of some ¢;’s and hence id # BaS~' € HN K. Since
|HN K|=2, then a = BaB~ .
Similarly,

1

vay ! = (ppejicj, g5, ) (€ e, (prej e g5) Tt = plpener - e p)p
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= p(Baf™Y)p™t = pap™t.
As pe; = gi11p, pap~t is product of some g;’s and hence yay™' € H N K and by similar
arguments, we have oo = yay ™1
Thus, using pe; = €;41p, we get

—1 —1
EnEl €, = a = pap = p(EEl, - €1,)P = €1y 11E141 7 €yt (2)

As K = (eg,€1,.--,6m—1) = Z5 and g;’s corresponds to the standard generators of
7y, ie., g < (0,0,...,0,1,0,...,0) with the only 1 occuring in the (i + 1)th position,
€1,€1, + * - €, corresponds to the vector in Z3* with 1'sin iy + 1, +1,...,1, + 1 positions and
€1, 411,41 " * " €1,41 corresponds to the vector with 1’s in [y + 2,15 + 2,...,1, + 2 positions.
Thus, from Equation 2, we get that all the positions in the vector must be 1, i.e., a =
€01 Em_1 = p". Hence the claim is true.

Claim 2: If |[HN K| =2, then p™ ¢ H

Proof of Claim 2: As HN L is a subgroup of H and m is odd, therefore 4 < |H N L| | 4m
implies |H N L| = 4. Thus H N L is either isomorphic to Zy X Zy or Z,. Note that any
non-identity element o € H N L must contain in its expression either ¢ or €,,_1, as otherwise
o € (1,e1,€2,...,Em—2) = Stabg(Ap), a contradiction to the fact that o belongs to a regular
subgroup H.

Suppose that H N L is isomorphic to Zy X Zo. As HN K C H N L, therefore there exists
a non-identity element in H N L of the form o = ue; €, - - - €;,. As explained earlier, o must
contain in its expression either £y or &,,_1. In fact, in this case, both ¢y and ¢,,_; must occur
in the expression of ¢, as otherwise o(¢) = 4. Note that by Claim 1, p™ € H N L. Thus, for
all the three non-identity elements, p™, 0,0 (say) in H N L, both ¢y and &, 1 must occur.
Also as H N L = Zy X Zs, we have oo’ = p™. But if 0,0’ contains both ¢y and ¢,,_1, then
p™ contains neither £y nor €, 1, a contradiction. Hence H N L 2 Zo X Zs.

Suppose that HNL is isomorphic to Z,. As o(p™) = 2, there exists a non-identity element
¢ = pejej, €5, € HN L such that () = HN L and ¢* = p™. Note that the number of
g;’s in the expression of ¢? is always even but that of p™ is m (odd) as p™ = epe1 -+ Em_1-
Hence, HN L % Zy4.

Thus, by Claim 1 and 2, we get |H N K| =4. As K = Z5, we have H N K = Zy X Zs.
Recall that

Stabg (B(m+3)/2) = (PH:€05E1s - - 5 E(m+1)/25 EmaT) /25 - - - s Em—1)-

Again, as the graph is vertex-transitive, by orbit-stabilizer theorem, we have G = H -
StabG(B(m+3)/2>. Thus, p = hb, where h € H and b € Stabg(B(m+3)/2).
Claim 3: pp does not occur in the expression of b.
Proof of Claim 3: If possible, let b = pue ey, - -+ &, and hence h = pb™t = e e, - &, €
HNL. Againas HNK CHNLand |[HNL|=|HNK|=4, wehave HNK = HN L.
Thus, h € HN K C K and hence h does not contain p in its expression, a contradiction.
Thus Claim 3 is true.

Therefore, by Claim 3, b = e;,e5, - -+ ¢y, and h = pb™' = pejep, -, € H.

Let HN K = {id, a1, a9, a3} = Zy x Zy. Thus hayh™' € H. As «;’s, being elements of
K, are product of some ¢;’s and €;e; = €j¢;, pg; = €;41p, we have

haih_l = paip_l = p(€i1€i2 s Sis)p_l = Ei1+1E09+1 " " " Eig+1 € K for i = 1, 2, 3. (3)
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Thus hash™' € HN K = {id, a1, as, az}.
Claim 4: honh™ = ay or as.
Proof of Claim 4: If hayh™ = id, then o; = id, a contradiction.
If hath™' = a4, then as above, get €;, 116,11 .11 = €i,Eiy * * - €i.- Now, as in proof
of Claim 1, we can argue that this implies a; = p™. But, in that case, we must have

hash™ = a3 and hash™ = a9, because otherwise
e hash™! =id implies o; = id, a contradiction.
e hash™ = a, implies oy = p™, a contradiction, as oy # ao.
9 7
o hash™! = oy implies hash™' = ha h™!, ie., oy = a, a contradiction.

Thus we have hash™ = pasp™! = a3 and hash™' = pasp™ = ay. Hence, from Equation
3, we see that both as and a3 are product of €;’s and the number of €;’s occuring in their
expressions are same. Thus the number of ¢;’s occuring in the expression of asag is even.
However, asaz = a = p™ = g1 - - - €n—1 has odd number of ¢;’s occuring in its expression.
This is a contradiction and hence ha;h™! # ;. Thus Claim 4 is true.

Without loss of generality, we can assume that ha;h™! = ay. Thus hash™! is either a; or
as. If hash™! = a1, we must have hash™! = as, a contradiction, as shown in Claim 4. Hence
we have hash™' = a3 and similarly hash™ = «;. So, by Equation 3, we get payp~! = as,
paop~t = asz and pasp~! = a;y. Hence, we have

a1 = pagp™ ' = plpasp™)p~t = p(parp " )p? = pPaip”?, i, pPar = aip’.

Similarly, we have p3ay = anp® and p3as = aszp?®.

Recall that H N K = {id, oy, a2, a3} = Zy X Zy and «;’s are product of some ¢;’s. Let

QA = & €y » "t &5 Qg = €51 Ejy =+ €455 A3 = Efy €y "+

Note that each «; must contain either £y or ¢,,_1 in its expression, as otherwise it will be
an element of Stabg(Ag) and hence can not belong to H. As ajay = az and ajasas = id,
without loss of generality, we can assume that, among ¢, or €,,_1, a; contains only ¢g, s
contains only €,,_1 and a3 contains both ¢y and ¢,,_; in their expressions. This happens
because if two of the «;’s contain both £y and ¢,,_; in their expressions, then the their
product, i.e., the third «;, will not have ¢y or €, in its expression, thereby making it an
element of Stabg(Ap).

Now, from the relation p3a; = aqp? and using the fact that pe; = £;11p, we get,

(51'152'2 o 'gil)ps = ,03(51'161‘2 to 5iz) = (5i1+35i2+3 e '5il+3)pg,

ie., €i1Eig " &4 = €4143%i43 " " " €443

Now, as m is not a multiple of 3, m is of the form 3¢t + 1 or 3t + 2.

If m = 3t + 1, then by using the standard generators of ZJ', as in the proof of Claim 1,
we get that all of g¢,e3,¢6,...,63 = €,,_1 occurs in the expression of «y, a contradiction to
that fact that among ¢y or ,,_1, o contains only &g.
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Similarly, if m = 3t + 2, we get all of

€0,€3,86,---,E3t = Em—2,€1,E€4, """ ,E3t+1 = Em—1

occurs in the expression of o, a contradiction.

Thus, we conclude that there does not exist any regular subgroup H of Aut(Ry,,(m —
2,m — 1)) and hence Ry,,(m — 2, m — 1) is not a Cayley graph, when m is odd and not a
multiple of 3. [

5 Family-4 [Ri5,(£(3m +2),+(3m — 1)) and Ri9,,(+(3m —
2), £(3m +1))]
As R,(a,r) = R,(a,—r) and R,(a,r) & R, (—a,r), it is enough to check Rys,,(3m+2,3m—1)

and Rio,(3m — 2,3m + 1). More precisely, it suffices to work with the family Rys,,(3d +
2,9d + 1) where d = +m (mod 12m), as mentioned in Section 3.3 of [5]. Define o as follows:

A; if i =0 (mod 3) A if i =0 (mod 3)
o(A) =< Bi ifi=1(mod3) and o(B;) =< Aitsarr if i =1 (mod 3)
Bi—1—3d ifi =2 (mod 3) Bi+6d if i =2 (mod 3)

Also, it m =2 (mod 4), let b =d + 1 and define w as follows:

Ay if i =0 (mod 3) Apis1 if i =0 (mod 3)
w(A4;) =< Bpip ifi=1(mod3) and w(B;) =< Asipi-w ifi=1 (mod 3)
Bb+bi—1 ifi=2 (mod 3) Bb+bi—1 ifi=2 (mod 3)

It was shown in [5], that

S, o,w),  ifm =2 (mod 4
G = Aut(Ryon(3d 4+ 2,9d + 1)) = { EZ Z o) > ot(herwisi

It is to be noted that m = 2 (mod 4) if and only if —m = 2 (mod 4). Thus, it is enough to
work only with the family Ry, (3m + 2,9m + 1).

Theorem 5.1. If m is odd and m # 3, then Rz, (3m +2,9m + 1) is a Cayley graph.
Proof: Asm isodd, G = {p, u, o). It can also be checked that op*c = p*;ou = po; (po)® =
PPt 0(0) = 2. Let a = (po)? and B = p?uo. As m is odd and m # 3, it can be shown
that o(a) = 3m, o(8) = 8 and Ba = a7, Define
H={(a,5:0(a) = 3m,0(f) =8 fa=a"'f7)
={a'f:0<i<3m-1,0<;<7}

Claim 1: The elements in H are distinct.
If not, suppose

QB = o272 where 0 < iy, iy < 3m,0 < jy, jo < 8,
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ie., 4
il = 5]’2—]'1. (4)
As CY(AO) = By, 042(140) = A3m+47 CVB(AU) = A6m+67 044(A0) = A6m+7a . . ,agm(Ao) = Ao,

any power of a maps Ag t0 Ag(mod 3) OF Ai(mod 3) OF Bi(mod 3)- On the other hand, as
B(Ag) = As, 82(Ag) = Bsm-_1, 8*(Ao) = Bams1, 8 (Ao) = Aem,

B°(Ao) = Aem+2, 8°(A0) = Bsm—1, 87 (Ao) = Boms1, 5°(Ao) = Ao,

we see that (3, % 3° and 5% maps Ay t0 Asgmea 3)- Thus, jo — ji in Equation 4 can take
values from {0, 3,4,7}.

If jo — 71 = 0, then it is obvious that i; = iy and j; = Jjs.

If jo — j1 = 4, squaring Equation 4, we get, a*"~%2) = id. Therefore, 3m|2(i; — 45). Now, as
gcd(2,3) = 1 and m is odd, we have 3m|(i; — i3), i.e., i1 = i3 and hence j; = js.

If j, — j1 = 3, since gcd(3,8) = 1, then o(B7279) = 8. Therefore, a®172) = id, i.e.,
3m|8(i; — i2). As m is odd, 3m is coprime to 8 and hence, 3m|(i; — i), i.e., iy = iz and
J1 = Ja2

The case j, — j; = 7 follows similarly as above. Thus combining all the cases, we see that
elements of H are distinct and H = 3m x 8 = 24m.

Claim 2: H acts transitively on Ria,,(3m +2,9m + 1).

In order to prove it, we show that the orbit of Ay, O4,, under the action of H is the vertex
set of Ria,,(3m + 2,9m + 1). By orbit-stabilizer theorem, we get

L
[Staby(Ao)]

As the number of vertices in Rjo,,(3m +2,9m + 1) is 24m and |H| = 24m, it is enough to
show that Staby(Ag) = {id}. Let a’(’ be an arbitrary element of H which stabilizes Ay,
ie., a (Ag) = B(Ap) with 0 < i < 3m —1;0 < j < 7. Again, by mimicing the argument
used in the proof of Claim 1, one can conclude that j € {0,3,4,7}.
If j = 4, then a(Ay) = $*(Ag) = Agm- Thus, —i and hence i is a multiple of 3. [since,
a® sends Ag to Agimod 3), only if = is a multiple of 3] Let —i = 3k and therefore Ag,, =
¥ (Ag) = Apeme), 1-€., 12m|k(6m +6) — 6m, i.e., 2m|m(k — 1) + k, i.e., m|k which implies
k =Im. Again, as 2m|m(k — 1) + Im, we have 2|k — 1 4+, i.e., 2|l(m + 1) — 1. But this is a
contradiction, as m + 1 is even and hence [(m + 1) — 1 is odd. Thus j # 4.
If j = 3, then a"(Ag) = $3(A4o) = Bsmi1- As3m+1 = 1(mod 3), we have —i = 3k+1 [since,
o” sends Ay t0 Bi(mod 3), only if = 1(mod 3)] Therefore, *(A4g) = Bspmi1 = o1 (4g) =
o®(By), i.e., Baymi1 = Biyemkier- This implies 12m|6mk-+6k—3m, i.e., 4m|2mk+2k—m,i.e.,
m|2k and, as m is odd, we have m|k. Let k = Im. Again, as 4m|2mk + 2lm — m, we have
4|2k + 21 — 1. However, this is a contradiction, as 2k + 2/ — 1 is odd and hence j # 3.
Using similar arguments as above, it can be shown that 7 # 7.
Thus, we have j = 0 and this, in turn, implies ¢ = 0. Hence, Staby(A4y) = {id}.

Finally, in view of Remark 1.2, H acts regularly on Rjs,,(3m + 2,9m + 1) and hence
Riom(3m +2,9m + 1) is a Cayley graph, if m is odd and m # 3. m

|OA0’ =

Theorem 5.2. If m = 3, then Ry, (3m +2,9m + 1), i.e, Rss(11,28) is a Cayley graph.
Proof: This can be checked by a Sage program. O

https://digitalcommons.georgiasouthern.edu/tag/vol8/iss1/7
DOI: 10.20429/tag.2021.080107



Das and Mandal: Classification of Cayley Rose Window Graphs

Theorem 5.3. If m = 0(mod 4), then Ris,(3m + 2,9m + 1) is not a Cayley graph.
Proof: As m # 2(mod 4),

G=(p,p,0:p"=p*=0=id;ppp = p~',0p°0 = p°,on = po,

(po)? = p*"™ Y (pop)® = p

If possible, let Ri9,,(3m + 2,9m + 1) be a Cayley graph, H be a regular subgroup of G and
K = Stabg(Ap). Then |G| = 96m = 8n (See Lemma 7.1 in Appendix), |H| = 2n = 24m and
HNK = {id}.

Let K" = (p). Then |K'| =n and |[HK'| = ||Iljr|w|§'|| = n/t < |G| = 8n, where t is a factor
of n. Thus, t < 4,ie.,t=1,230r4. Ift=1then HNK' =K' ie., pe H. If t =2,
then HN K’ = (p?), ie., p> € H. If t = 3, then HN K' = (p?), i.e., p> € H. If t = 4, then
HnNK' = (pY), ie., p* € H. Combining all the cases, we get that

Im+6) - where n = 12m

either p* € H or p* € H. (5)

Claim: p* € H.
Proof of Claim: Suppose that that p*> € H but p* € H. Let L = (p,u). Then |L| = 2n.
Therefore

|H||L|  2n-2n
|HNL|  2n/t

|HL| = =2nt < |G| =8n, ie,t=1,2,3 or 4 and ¢ divides 2n.
Therefore, |H N L| = 2n,n,2n/3 or n/2, ie., |HNL| > n/2. As p* € HN L, we have
(p®) CHNL and [{p®)| =n/3. Thus, (HN L)\ {p*) #0.

Now, as p?u(A;) = Ay, p*p ¢ H. Similarly, if p? 1y € H, then p3 - p* "y € H, ie.,
%+, € H. Note that 2i + 4 is even and hence by previous argument, p2”4,u ¢ H, ie.,
w ¢ H. This shows that H does not contain any element of the form pi. Moreover
,u ¢ H. Now, as (HN L)\ (p*) # 0, H must contain an element of the form p’, where 4 is not
a multiple of 3. Again, as p® € H, either p or p?> € H, i.e., p* € H. This is a contradiction
to the assumption that p* € H. Thus the claim is true.

Let K" = (po). As o(po) = n, we have |K”| = n and by similar arguments as above, we
get that either (po)® € H or (po)* € H.
Case 1: If p* € H and (po)* € H, then

P
21+1

(p0)4 _ (pa)3(pa) _ p3(m+1)p0. — p3m+40_ _ p12z+4(7 _ <p4>3l+10 € H [letting m = 41].

As p* € H, therefore 0 € H. But as o(4y) = Ay, i.e., o stabilizes Ay, it can not be in H.
This is a contradiction.

Case 2: If p* € H and (po)® € H, then (po)® = p3(m+1) = pl2+3 — (p1)3153 ¢ H | where
m =4l ie., p> € H. Again, as p* € H, we have p € H. As o(p) = n and [H : {p)] = 2, (p)
is normal in H.

From definition, it follows that id, 1, o, uo € K. On the other hand, as Ry, (3m+2, 9m+
1) is vertex transitive, by orbit-stabilizer theorem, we have

2n -4
|G| Sn = 4. Hence, K = Stabg(A4y) = {id, u, 0, po} and |HK| = n

K| =
2n 2n
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Thus, HK = G. As op € G, it can be expressed in the form «af, where « € H and
peK ={id,pu,o,uc}.

If 6 =id, then a« =0p € H, i.e.,, 0 € H (as p € H), which is a contradiction, as H, being a
regular subgroup can not contain any non-identity element which stabilizes Ay.

If B = p, then op = au, ie., a = oup™ € H, ie, ou € H (as p € H), which is a
contradiction.

If 3 =0, then « = opo € H. Since (p) is normal in H, therefore (opc)p(opo)™ € H, i.e.,

(0po)p(opa)™ = (opo)pop™to = (op)’p 0 = p*" "o € H= 0 € H (as p € H),
a contradiction.
If 8 = po, then op = auo, ie., a = opuc € H. Since (p) is normal in H, therefore
(oppuo)p(opuc)™ € H, ie.,

(oppa)plopp™o) = (opuo)p(oppo) = app(op)’uo

— CTP,U(pgm+2U),UU [as (0p)3 — p3m+3, we have (0p)2 — p3m+20_]
= oppp ™ [as oy = po and o? = id]
=opp ™2 =0gp ¥ c H= o€ H(as p € H), a contradiction.

Thus, combining Case 1 and 2, we conclude that there does not exist any regular subgroup
H of G, ie., Rigpn(3m + 2,9m + 1) is not a Cayley graph, if m = 0(mod 4). O]

5.1 m = 2(mod 4)

As m = 2(mod 4), G = (p,p,0,w). It can be checked that op’c = p*;op = po;ow =
woswp = opw;wp = pwo; (po)? = P wptt = P (o p)? = (p%0) = p'™ 6 0(0) =
o(w) = o(ow) = 2;0(wp) = 4.

Let o = wop™wo and B = p
o(a) = 3;0(f) = 8;af = Pa. Define

3m/2  Using the above relations, it can be shown that

[ pPopiw, if m is of the form 12/ + 2 or 12 + 6
= (p¥"op’w)3, if m is of the form 12 + 10.

In all the cases, it can be checked that o(y) = 2m, ay = ya and v = ™ 1y. Tt is to be
noted that o = wop™wo = (wWopwo)i™ = [w(opw)o]'™ = (w(wp)o)i™ = (po)*™.

dm4d -
.. 9 p . if m is of the form 121 4+ 2 or 121 + 6
Proposition 5.1. 1. 77 = { P2, if m is of the form 121 + 10.

o am_ a?B*, if m is of the form 121 + 6
ST B4, if m is of the form 121 + 2 or 121 + 10.
Proof: See Appendix.
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Theorem 5.4. If m = 2(mod 12), then Ri9,,(3m + 2,9m + 1) is a Cayley graph.
Proof: Let m = 12 + 2. Therefore 8m = 96/ + 16, i.e., 8m — 4 = 12(8/ + 1). Then
72 = p*™ . (by Proposotion 5.1) Define

H={a,B,7:a°==+""=id;af = Ba,ay = ya,v8 = "y, 4" = B4).

Thus, it is clear that every element of H is of the form o?3’+* wherei = 0,1,2; j =0,1,...,7
and k=0,1,...,m— 1.
Claim 1: H = {a'f7~*:i=10,1,2;=0,1,...,7;k=0,1,...,m — 1}.
Proof of Claim 1: If possible, let there exist iy,io € {0,1,2},71,72 € {0,1,...,7} and
ki ko € {0,1,...,m — 1}, such that a1 g71y% = o2p2~4%2 As a8 = fa and ay = ya, we
have
aiz—il — le-]éfykl—’%'

Case 1: k1 — ks 1 even.
As 72 = p** and B = p*™/2, we have a2™ = p7, ie., (po)*™2=1) = 5 This implies
that 3 | 4m(iz —41), i.e., 3|m or 3|(ia — i1). As 3t m, we have 3|(iy — i1), i.e., i1 = i5. Thus
5]1—]’2 — ,ykz—kl — (72)(k2—k1)/2’ ie.,

<p)3m(j1—j2)/2 _ <p4m+4)(k2—k:1)/2 _ p2(m+l)(k2—k1) (6)

Therefore, 12m | [3m(j1 — j2)/2 — 2(m + 1) (ko — k1), i.e.,
24m | 3m(jr — jo) — 4(m + 1) (ko — k1) (7)

Thus, m | 4(m + 1)(ky — k1). As ged(m,4) = 2 and ged(m,m + 1) = 1, it follows that
B | (kg — k1), ie., ks — k1 = Fs. Since, 0 < ky — ky < m, we have s = 0 or 1. Again, as
m + 1 is a multiple of 3, from Equation 7, we get that 12 | 3m(j; — j2), i.e., 2| (j1 — j2). Let
J1—Jjo=2t. As 0 < j; —jo <8, we have t € {0, 1,2,3}. Thus, rewriting Equation 7, we get
24m | (6mt — 2m(m + 1)s), i.e., 12| 3t — (m + 1)s. Thus

1
4| (t_ e 5) (41 +1)s, where s € {0,1},£ € {0,1,2,3}. (8)

If s =1, then ks — ky = m/2 = 61 + 1 is odd, a contradiction. Thus s = 0 and hence from
Equation 8, we have 4 | ¢, i.e., t = 0. Therefore, we have j; — jo = k; — ks = 0, and as a
result 7; = 7. Thus Claim 1 is true, if Case 1 holds.

Case 2: k1 — ky 1s odd.

Let ki — ky = 2t — 1. Then we have a2 = p1772(42)ty~1 Ag 42 = p*™+4 and B = pm/2,
we have ya2™% = p® Now iy —i; = 0,1 or 2. Thus either of 7, ay, oy is p®. But

7(140) = PgmUPQW(AO) = PSWU(AQ) = pgm(BQm-l-l) = Bsm41

av(Bo) = (po) "™ (Asmrs) = (po)* > (Asmes) = (p0)*((p0)*) " (Asmrs) = Aomas
a®y(Ag) = (po)*™(Bsms1) = (p0)((po)*)***5(Bsms1) = (p0)(Bam) = Bioms

As each of 7, ay, a®y maps some A; to some Bj, none of them is equal to p* and hence a
contradiction. So ki — ko can not be odd.
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Combining Case 1 and 2, we conclude that Claim 1 is true and hence |H| = 24m = 2n.
So, as in proof of Claim 2 in Theorem 5.1, it suffices to show that Stabgy(Ay) = {id}. Let
' Biyk(Ag) = Ap.

Claim 2: k is even.

Proof of Claim 2: If possible, let k be odd, say k = 2t 4+ 1. Then, as a commutes with 5 and
v, we have 7y%ya'(Ag) = Ay, i.e., ya'(Ag) = 77 () (Ao) = p*(Ag) = A,, as in Case 2
above. Now, i = 0,1 or 2 and as v(Ay) = Bsmy1 and a?y(Ag) = Bigms1, we have i = 1.
This implies aB7y?T1(Ay) = Ao, i.e., B7(v3)v(Ay) = a?(Ag) = Ajim, ie.,

At = B (V) (Ao) = B (v*) (Bsms1) = p" (Bsm+1) = Bsmaat1, a contradiction.

Hence the claim is true and let k = 2¢t. Therefore,
3 (%) (Ao) = a7 (Ao).

As left side of the above equation is p®(Ag) and a(Ag) = Biom-1, we conclude that i = 0 or
1. If i = 1, then we have a8/ (7?)!(Ag) = Ap. Again as a commutes with 8 and 7, we have

AO = 6j’)/2t04(140> = ﬁj’YQt(Bmm_ﬁ = pI(Blom_l) = BlOm—l—w—l, a contradiction.
Therefore, i = 0 and hence we have 37(7?)!(A4g) = Ay, i.e.,
PSR (Ag) = Ay, e, 12m | 4(m + 1)t + 3;% = 12(41 + 1)t + 35(61 + 1)

Thus 12 | 35(61+ 1), i.e., 4|7(60 4+ 1). However as 6/ 4+ 1 is odd and j € {0,1,...,7}, we have
j=0or4 If j =4, we have 12m | 12(4l + 1)t + 12(61 + 1), i.e., m = 120 + 2 = 2(61 + 1)
divides (41 + 1)t + 12(6] + 1) and hence 2(6/ 4+ 1) | (41 4+ 1)t. As 3(4l +1) —2(6l+ 1) =1,
we have ged(4l + 1,60+ 1) = 1 and hence 6/ + 1 | t. However as 0 < k < m — 1, we have
0<t< ’”T_l < 6]+ 1. Thus the only possible value of ¢ is 0 and hence k = 0. Therefore, we
have B7(Ag) = Ay, i.e., p6FVI(Ag) = Ay. This implies that 12m = 12(121 + 2) | 3(61 + 1)7,
i.e., 8|7 and hence j = 0.

Thus we have Staby(Ag) = {id} and the theorem holds. O

Theorem 5.5. If m = 6(mod 12), then Riom(3m + 2,9m + 1) is a Cayley graph.
Proof: Let m = 12] + 6. Therefore 8m = 961 + 48 = 12(8/ + 4). Also note that in this
case, a = (po)im = ((po)3)UHD) = pl2(mt)(42) — I2042) — pim Algy A2 — pAmtd  (by

Proposition 5.1) Define
H={a,B,7: 0’ =" =" =idaff = fa,ay = ya,7f = [y, 7" = o’ %),

Thus, it is clear that every element of H is of the form o?3’v* wherei =0,1,2; 7 =0,1,...,7
and k=0,1,...,m— 1.
Claim 1: H = {a'fiy*:i=10,1,2;7=0,1,...,7;k=0,1,...,m — 1}.
Proof of Claim 1: If possible, let there exist i1,io € {0,1,2}, 71,/ € {0,1,...,7} and
ki, ko € {0,1,...,m — 1}, such that a1 /1y% = o2p2~%2 As a8 = fa and ay = ya, we
have

o2 = le_jQ’Ykl_kQ- (9)
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If ky — ko is odd, say k; — ky = 2t — 1, then v = a1 723177242 As o = p*™, the right hand
side is of the form p®. On the other hand, v(Ag) = Bspy1. Thus v # o1~ 39175242¢ Hence
ki — ko is even, say 2t. Thus, we have p*m(z=i) = pAMFTYH3F(1=52) o

12m | 4(m + 1)t + 3(61 + 3)(j1 — jo) + 4m(iy — ia). (10)

This implies that 4 | 9(21 + 1)(j1 — j2), i.e., 4]|(j1 — j2). Now as 0 < j; — jo < 7, we have
jl - jz =0 or 4.
Sub-claim 1a: j1 — jo = 0.
If possible, let j; — jo = 4. Then, from Equation 10, we have 12m divides 4(m + 1)t + 6m +
4dm(iy — i) and hence m|4(m+1)t, i.e., m|dt, as ged(m.m+1) = 1. Now, as 0 < 4t = 2(k; —
ky) < 2m—2, we have 4t = 0 or m. However, if 4t = m, we have 2t = (6/+3), an odd number.
Thus 4¢ and hence t = 0. Therefore, from Equation 10, we get 12m | 6m + 4m(iy — is),
i.e., 6|4(iy — i3) which implies 3|(iy — i2) i.e., i; = i5. However, this implies that 12m|6m, a
contradiction. Thus Sub-claim 1a is true and j; = js. Thus Equation 10 reduces to

3m | (m+ 1)t + m(ip —is). (11)

Again since ged(m,m + 1) = 1, this implies that m|t. However, as 0 < ¢ < mT_l, we have
t = 0 and hence k; = ky. Thus from Equation 11, we get 3|(i; —is), i.e., i1 = i5. Thus Claim
1 is true and |H| = 24m = 2n. So, as in proof of Claim 2 in Theorem 5.1, it suffices to show
that Staby(Ag) = {id}. Let a’B7y*(Ag) = Ag. As a = p'™, B = p*™/? and 7% = p*™*+* are
powers of p and (Ag) = Bsmy1, if k is odd, o'8i4*(Ag) = B, for some index z. Thus k
is even, say k = 2t. Thus, we have aifiyk(Ag) = p*mit8m+DH50 — A ie 12m divides
Ami +8(m + 1)t + 224 e,

24m | 8mi + 16(m + 1)t + 3mj (12)

This implies that m|16(m + 1)t. As gcd(m,m + 1) = 1, we have m|16t. Again, as m =
120 + 6 = 2(60 + 3) and 61 + 3 is odd, we have m|2t = k, i.e., k =t = 0. Thus Equation 12
reduces to 24m | 8mi + 3mj, i.e., 24|(8i + 3j). However, this implies that 8|j and 3|, i.e.,
i =7 =0. Thus Staby(Ay) = {id} and the theorem holds. O

Theorem 5.6. If m = 10(mod 12), then Ryiom(3m + 2,9m + 1) is a Cayley graph.
Proof: Let m = 12/+410. Therefore 8m = 96/+80, i.e., 8m —8 = 12(8/+6). By Proposition
5.1, we have y? = p'2. Define

H={a,p,v:a’=p=+*"=id;aB = Ba,ay = ya,y8 = ™y, 4™ = ®B%).

Thus, it is clear that every element of H is of the form o?3’+* wherei = 0,1,2; j =0,1,...,7
and k=0,1,...,m— 1.
Claim 1: H = {aifin* i =0,1,2j=0,1,...,T:k=0,1,...,m — 1}.
Proof of Claim 1: If possible, let there exist i,i5 € {0,1,2},71,752 € {0,1,...,7} and
ki, ko € {0,1,...,m — 1}, such that a1 /1y% = o2p2~4%2 As aff = fa and ay = ya, we
have

o2 = le_jQ’Ykl_kQ- (13)
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If ky — ky is odd, say ky — kg = 2t — 1, then ya®2™ = B1=72~4%  Ag 4% = p'2 the right hand
side is of the form p?, i.e., ya2~ = p®. Now iy —i; = 0,1 or 2. Thus either of 7, ary, a?y is
p®. But v(Ao) = Bomyis, @¥(Ao) = Biom+s, 0427(30) = Asmyr. As each of v, ay, a®y maps
some A; to some B;, none of them is equal to p* and hence a contradiction. So ki —ky is even,
say ky — ko = 2t. As 7% = p'? and B = p®™/2, we have 2™ = p?, ie., (po)imiz=1) = p7,
This implies that 3 | 4m(iy — 71), i.e., 3|m or 3|(i2 — i1). As 3 does not divide m, we have
3|(iy — i1), i.e., i1 = is. Thus p's 1792) = gi—io — ~nka—h1 — (42}t = pl2t §,

24m | 3m(jy — ja) — 24t (14)

Thus, we have m|24t. As m = 2(6l + 5), (6 4+ 5) is odd and 3 does not divide (61 + 5),
we get %|t However, as 0 < ky — k1 < m — 1, we have 0 < t < mT_l Hence ¢ = 0 and
ki1 = ko. Also Equation 14 reduces to 8|(j; — j2). Thus j; = jo. Hence Claim 1 is true and
|H| = 24m = 2n.

So, as in proof of Claim 2 in Theorem 5.1, it suffices to show that Staby(Ag) = {id}. Let
Oziﬁj’yk<A0) = Ao.
Claim 2: k is even.
Proof of Claim 2: 1f possible, let k be odd, say k = 2t + 1. Then, as a commutes with g and
v, we have Biy2yai(Ag) = Ay, i.e., va'(Ag) = B ()71 (Ap) = p*(Ay) = As, as in the proof
of Claim 1 of this theorem. Now, i = 0,1 or 2 and as y(Ag) = Bomis and ay(Ag) = Biomss,
we have i = 2. This implies o?37/7y2T1(Agy) = Ay, i.e., B7(1?)y(Ao) = a(Ag) = Arp, ie.,

A = B (V)Y (Ao) = B (v*) (Bomss) = p*(Bomss) = Bomiats, a contradiction.
Hence the claim is true and let k = 2¢t. Therefore,
B7(7*)"(Ao) = a7 (Ao).

As left side of the above equation is p“(Ag) and a*(Ay) = Bay,—1, we conclude that i = 0 or
2. If i = 2, then we have a?(7(?)!(Ag) = Ap. Again as @ commutes with 3 and v, we have

B] 2 2( 0) = ﬁj")/Zt(Bmel) = px(Bmel) = BZm+x717 a contradiction.
Therefore, i = 0 and hence we have 37(7?)!(A4y) = Ay, i.e.,
p2HIF (A) = Ay, ie., 12m | 12t + 33% — 12t + 35(61 + 5)

Thus 12 | 3j(6] +5), i.e., 4|7(6{ 4+ 5). However as 6/ 45 is odd and j € {0, 1,...,7}, we have
j=0or4. If j =4, we have 12m | 12t +12(61+5), i.e., m = 121+ 10 = 2(6l+5) | t4(6[+5)
and hence (60 4+ 5) | t. However as 0 < k < m — 1, we have 0 < ¢t < ™= < 6] + 5. Thus
the only possible value of t is 0 and hence k = 0. Therefore, we have BJ(AO) Ag, ie.,
p?6+9)i (Ag) = Ap. This implies that 12m = 24(61+5) | 3(6] +5)7, i.e., 8|7 and hence j = 0.
Thus we have Staby(Ag) = {id} and the theorem holds. O
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6 Family-5 [R,,(2b,7): b* = £1(mod m) and r € {1, m—1}
is odd]

Theorem 6.1. If b = +1(mod m) and r € {1,m — 1} is odd, then Ry,,(2b,7) is a Cayley
graph.

Proof: If r = 1, then it is clear that the conditions of being in Family-1 are satisfied,
(i.e., 7> = 1(mod n) and ra = a(mod n)) and hence, by Theorem 2.1, Ry,,(2b, 1) is a Cayley
graph. So we are left with the case when n = 2m, a = 2b, b* = +1(mod m), r = m — 1 and
m is even. Observe that, in this case,

r? = (m—12=m?—2m+ 1= 1(mod 2m) = 1(mod n) [since, m is even].

Also, as m | bm i.e., m|b(r + 1), we have br = —b(mod m), i.e., 2br = —2b(mod 2m), i.e.,
ra = —a(mod n). Thus, in this case, 7> = 1(mod n) and ra = —a(mod n) holds. Hence, by
Theorem 2.1, Ry, (2b,r) is a Cayley graph. O

Remark 6.1. The above theorem shows that Family-5 is a subfamily of Family-1. How-
ever, they were shown as different families in Theorem 3.10 in [1].

Combining the analysis of the rose window graphs in Families: 1-5, we have Theorem
1.3.

7 Appendix

Lemma 7.1. Let G = Aut(Ry2,(3m+2,9m + 1)) , where m = 0(mod 4). Then |G| = 96m.
Proof: Since, Ri2,(3m+2,9m + 1) is vertex-transitive and its order is 24m and Stabg(Ay)
contains id, i, o, uo, therefore, by orbit-stabilizer theorem, we have |G| > 4 x 24m = 96m.
Thus, it is enough to show that |G| < 96m. We also know that

G=(ppo:p"=p>=0"=id;pupp=p ' 0p’c = p*,on= po,

(m+1) 9m+6>

(PU)3 = (Uﬂ)g = p3 ,(pUp)3 =p , where n = 12m.

Consider the sets X = {plopip* : i € {0,1,2...,n — 1}, € {0,1,2},k € {0,1}} and
Y ={pu¥:ie{0,1,2...,n—1},k € {0,1}}. We claim that all elements are either in X or
in Y. It is clear that elements in G which does not involve ¢ are in Y, due to the relations
p" = p? = id and ppp = p~t. Again, as op = po and pp = p~'p, any element in G can
be expressed in the form where p occurs in the extreme right of the expression. Thus it is
enough to show that elements in G’ which involve only p and ¢ are of the form p‘ocp’ where
i€40,1,2...,n—1} and j € {0,1,2}. Again, as gp® = p?0, it is clear that the power of p
lying on the right of o can be made 0,1 or 2. Finally, we deal with elements opo and op?c.

As (pop)? = po™ 1 we have op?op?c = p'™ ™ ie.,

op20 = PG 2 = I pleme2 L gmibakiam3 o el o X
As (po)? = p*mt) we have (opopo) = p>m*2, ie.,

Gpo = pPr2gp = P2 plaml _ BmA2Hme3 0 gl 2 oy
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Similarly, any other element of G involving p and o can be expressed in the form of
elements in X. Thus G = X UY and hence

Gl =|XUY|<|X|+|Y]|<(nx3x2)+(nx2)=06n+2n=_8n=96m.

Proof of Proposition 5.1 : -
1. For m = 121 4 2, we have 8m = 961 + 16, i.e., 8m — 4 = 12(8] + 1).
V2 = (p*"op*w) (pP o piw) = PP P o prwptop’w  (as p'? commutes with o and w)
= p"" o’ (wp)popw = p" o p? (PP W) popPw (as wp™ = plmTh)
m

“lop(opw)op’w = p"" Loptopowpiw
= p"" lopPopo(wpw)® = p""topPopo(op)? = p"" opPopa(ap)(op)
= p""taptapiop = p" Epapiapiop = p"*(pop)(pop)(pap) = p"m
_ T2 IS 16md e

For m = 12l + 6, we have 8m = 961 + 48 = 12(8] + 4).

= p™ lop*(wp)opiw = p

e pop)?

v = (p*"op*w)(p* "o p*w) = p'op*wop’w  (as p'? commutes with o and w)
= p'MopPowp’w = p'"(0po)*(wpw)? = p'™(opo)?(op)® (as wp = opw)
= p'Moplop=p

Similarly, for m = 12[ + 10, it can be proved that 72 = p'2.

Am—+4

2. The values of ¥™ can be found by raising 7? to the power m/2, and hence can be
checked to have the respective forms.
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