What Causes The Most Anxiety In An Introductory Statistics Course Interpretating, Asking For Help, Statistics Exams? A Rasch Analysis Of The Statistical Anxiety Scale

INTRODUCTION

- The purpose of this study is to examine the psychometric properties of the Statistical Anxiety Scale (SAS).
- \succ One of the most popular measures for assessing statistical anxiety (Chew et al., 2018) in addition to examining the situational, dispositional and cognitive antecedents of statistics anxiety (Cui et al., 2019). Vigil-Colet (2008) created the SAS, which is a short form of the STARS.
- \succ There is a gap in the literature in researching statistical anxiety in community college students.
- \succ There is a focus on validating the scale with community college students as well as developing an item hierarchy to understand what items are endorsed by the participants as causing them more anxiety.

METHODS AND MATERIALS

- Community college students (N = 108) who where in an introductory statistics course were given a survey. Average age was 27 years old. The sample included 25.2 % males, 73.8% females, and 1% did not respond.
- Participants responded on a 5-point Likert Scale that had a range from 1 (no anxiety) to 5 (considerable anxiety). High scores in each of the three factors, indicated high levels of statistical anxiety in the respective factor.

Screening Measures:

- The SAS is a 24-item measure was used to evaluate factors of statistics anxiety. It has three subscales.
 - examination anxiety
 - asking for help anxiety
 - interpretation anxiety
- The Visual Analog Scale (VAS) is used to describe discomfort on the spectrum of anxiety and confidence.

Analysis Strategy

A Rasch analysis was used to analyze categorical data and a correlation matrix was used to explore validity.

Emily Santistevan, Erica Martinez, Samantha Estrada PhD

University of Texas at Tyler

Department of Psychology and Counseling

RESULTS

EXAMINATION ANXIETY		ASKING FOR HELP ANXIETY	INTERPRETATION ANXIETY		
14. Waking up in the morning on the day of a statistics test.		17. Asking one of your teachers for help in understanding a printout.	0.473	19. Seeing a classmate carefully studying the results table of a problem he has solved.	0.274
11. Walking into the classroom to take a statistics test.	0.05	24. Asking a private teacher to tell me how to do an exercise.	0.245	18. Trying to understand the odds in a lottery.	0.166
13. Getting to the day before an exam without having had time to revise the syllabus.	0.03	23. Going to the teacher's office to ask questions.	0.126	figures on gas mileage, compliance	0.150
01. Studying for an examination in a statistics course.	-0.02	21. Asking a teacher for help when trying to interpret a results table.	-0.074	with population regulations, etc. 16. Copying a mathematical	
15. Realizing, just before you go into the exam, that I have not	-0.02	03. Going to ask my statistics teacher for individual help with	-0.081	demonstration from the blackboard while the teacher is explaining it.	0.089
prepared a particular exercise.		material I am having difficulty understanding.		06. Reading a journal article that includes some statistical analyses.	0.035
09. Doing the final examination in a statistics course.	-0.03	07. Asking the teacher how to use a probability table.	-0.128	02. Interpreting the meaning of a table in a journal article.	-0.220
20. Going to a statistics exam without having had enough time to revise.	-0.14	12. Asking the teacher about how to do an exercise.	-0.133	08. Trying to understand a mathematical demonstration.	-0.220
04. Realizing the day before an exam that I cannot do some problems that I thought were going to be easy.	-0.16	05. Asking a private teacher to explain a topic that I have not understood at all.	-0.427	22. Trying to understand the statistical analyses described in the abstract of a journal article.	

- \succ A principal component analysis was applied to the items and showed the three dimensions of the scale. The scores of the subscales all had good reliability: examination anxiety (α =.88), asking for help anxiety (α =.96), and interpretation anxiety (α=.89).
- > Through Rasch analysis is a psychometric procedure through which we obtained an item hierarchy for the three scales.
- \succ This item hierarchy can be interpreted as z-scores. Items further away from zero are interpreted as more difficult/easy to endorse depending on direction.
- \succ This hierarchy reveal the items the community college students were more hesitant to endorse (cause the most anxiety) and the items that were easy to endorse (did not cause anxiety).

VAS

VAS Co

SAS Examinat

SAS Interpretat

SAS Anxi

S Anxiety	Pe: Corr	1			
onfidence	-1.0 -0.5	0.0 0.5	1.0	1	-0.42
tion Total			1	-0.45	0.66
tion Total		1	0.57	-0.48	0.43
ciety Total	1	0.65	0.39	-0.28	0.22
GAS ANX	ety Total etail	on Total	on Total	indence vas	Antiety

Chew, P., Dillon, D. B., & Swinbourne, A. L. (2018). An examination of the internal consistency and structure of the Statistical Anxiety Rating Scale (STARS). PloS one, 13(3), e0194195. https://doi.org/10.1371/journal.pone.0194195

Cui, S., Zhang, J., Guan, D., Zhao, X., & Si, J. (2019). Antecedents of statistics anxiety: An integrated account. Personality and Individual Differences, 144, 79-87.

Luttenberger, S., Wimmer, S., & Paechter, M. (2018). Spotlight on math anxiety. Psychology research and behavior management, 11, 311– 322. https://doi.org/10.2147/PRBM.S141421

Vigil-Colet, A., Lorenzo-Seva, U., & Condon, L. (2008). Development and validation of the Statistical Anxiety Scale. Psicothema, 20(1), 174– 180.

CONCLUSION

> Items that caused the most anxiety for each of the three subscales were: fear of asking a private tutor for help, understanding the statistical analyses described in the abstract of a journal article, and realizing too late they cannot do the problems

 \succ The SAS scores were found to be valid and reliable with a community college student population.

> Examining the psychometric properties and validity the CSSE, and SAS with a population of community college students can be useful to community college educators who can use the measure to gauge the confidence in the students learning the topics as well as their anxiety in their classroom.

> In addition to allocating teaching resources and course preparation time.

REFERENCES

CONTACT INFORMATION

Emily Santistevan: msantistevan@uttyler.edu Erica Martinez: emartinez29@patriots.uttyler.edu Samantha Estrada Phd: Estrada@uttyler.edu