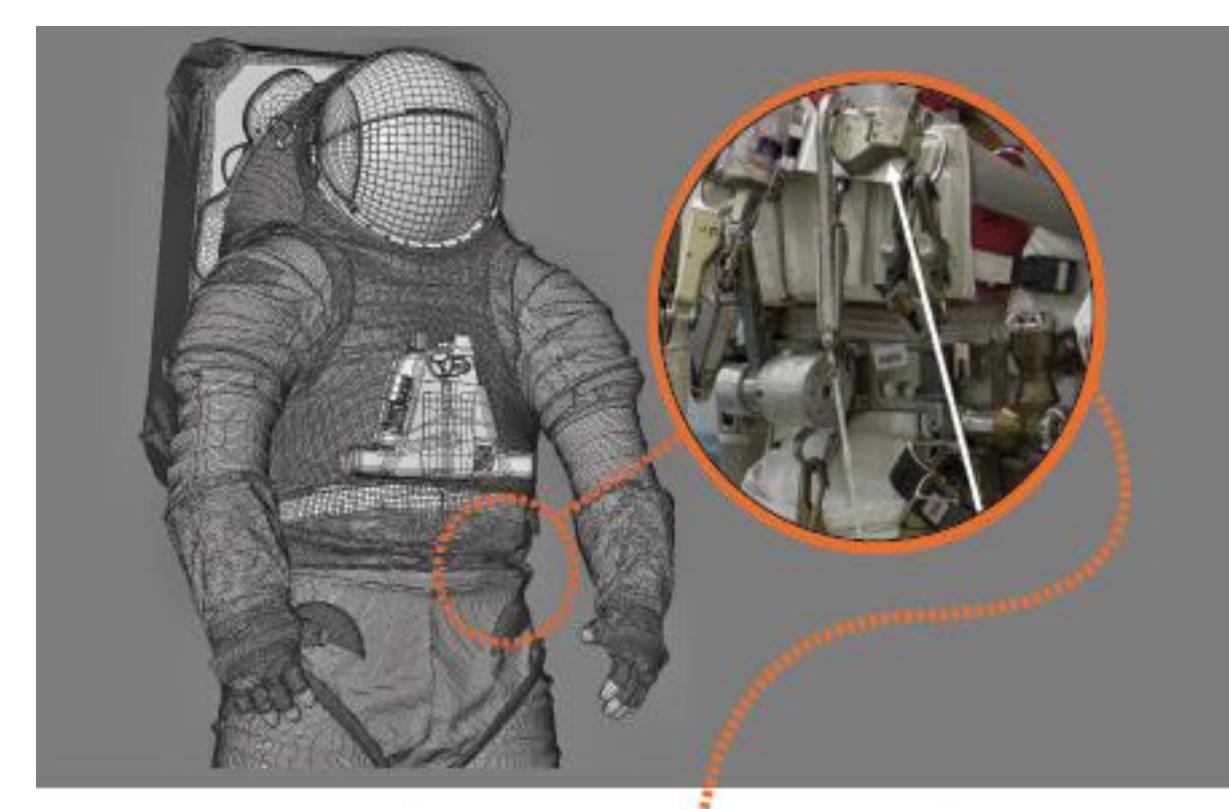
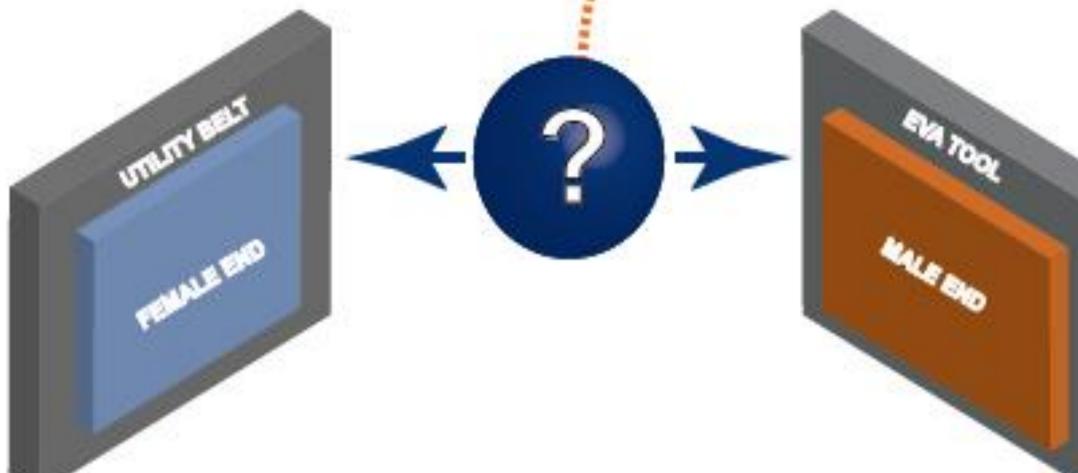


xEMU Space Suit Quick Release and Catch System

Background

The federal government has directed NASA to return humans to the moon by 2024. Artemis III is scheduled to launch October 2024 where the actual lunar landing mission will take place with NASA's first female astronaut and next man to land on the moon. NASA will touchdown on the south pole region of the moon where astronauts will be mining for ice.


Objective


1. Design two interlocking components with a quick release for a space suit utility belt which secures tools required for space walks.

2. The quick-release mechanism will need to be manually operated in micro-gravity, and functional in extremely cold environment.

3. The mechanism must function in the presence of lunar dust and are required to mate as shown below.

Overview of Belt Interaction

NASA TSGC Fall Showcase 2020 Awards

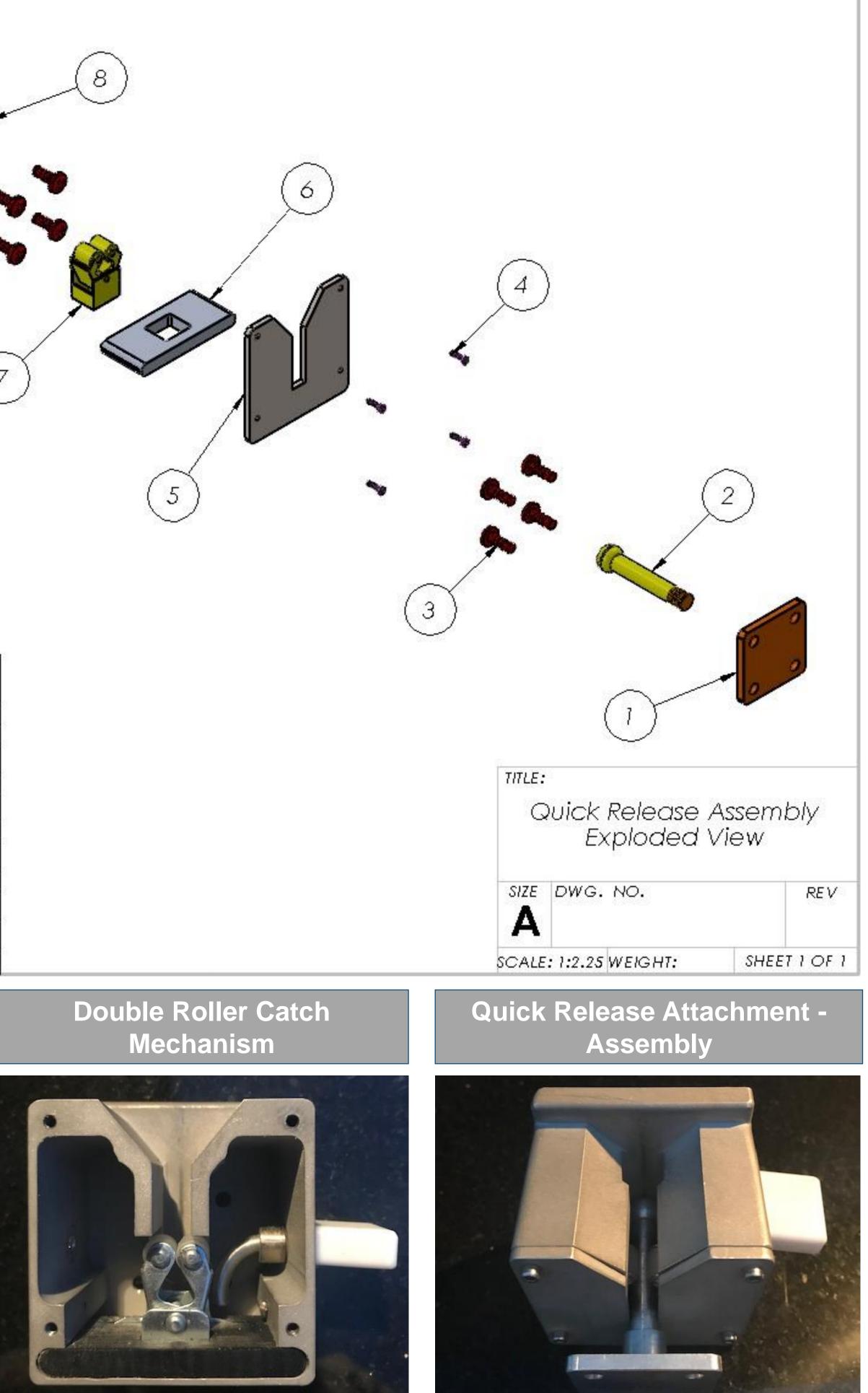
Top Design Team – 1st Place Best Poster – 1st Place Best Peer Review – 2nd Place

HEC 23: Vanguard

Team Members: Zachary Butterfras, Amin Marashi, Antonio Benedicto Mejia Jr., Michael Mira, Monica Louise Monconduit Sponsor: NASA Texas Space Grant Consortium, Micro-G NExT Advisor: Aws Al-Shalash

Abstract

Astronauts exploring the lunar surface will perform a series of Extravehicular Activities (EVA), which require repeated access to various tools and equipment installed on the Exploration Extravehicular Mobility Unit (xEMU). Carrying tools on the xEMU will improve spacewalk efficiency during end-to-end sampling missions. Tools must interface with the spacesuit through a manually operated and lunar dusttolerant mechanical subsystem. Therefore, two interlocking components with an integrated double roller catch are designed out of Teflon, Aluminum 6061, and AISI-316L steel to facilitate removal and reattachment of fit-for-purpose tools. Compared to NASA's previous bayonet probe design, the Vanguard xEMU subsystem safely stows and secures various tools required for lunar surface exploration and provides adequate lunar dust mitigation for proper functionality. The design will be part of several student-inspired solutions to NASA's present-day challenges for the upcoming 2024 Artemis Mission to the Moon and beyond to Mars.


Vanguard xEMU Quick Release and Catch System

ITEM NO.	PART NUMBER	QTY.
1	Male End Plate	1
2	Male End Rod	1
3	#10 Screw	8
4	#2 Machine Screw	7
5	Quick Release Cover Plate	1
6	Roller Catch Bottom Plate	1
7	Double Roller Catch]
8	Quick Release Female End	1
9	9 Safety Lock Inner 10 Safety Lock	
10		
11	Ball-Nose Spring Plunger	1

Quick Release – Male End

Mechanism

Design Specifications							
Specification	Value / Limit	Unit of Measure	А	nalysis Method			
Load capacity	Minimum of 15	English Pounds		Veight Dynamometer			
Assembly Volume	Maximum of 48	Cubic Inches		its within 4" x 4" x 3" box			
Assembly Weight	Maximum of 2	English Pounds		nalytical Balance			
Materials of Composition	Aluminum 6061 Aluminum 7075 Stainless Steel Teflon	Alloy Composition Verified		STM B209 MSQQ-A-250, ASTM B209 STM A240 STM D3294			
Fastener Diameter	Equal to 0.201	Inches		vigital Calipers			
Fastener Type	#10 ANSI	Screw	A	SME B18.6.3			
Bolt Interface Pattern	4-hole square arrangement	Inch Squared	D	igital Calipers			
Actuation, Stability (force to install and separate)	Minimum of 6	English Pounds	Fo	orce Dynamometer			
Specification	Value		Analysis	5 Method			
Field of View	Must operate within of astronaut line-of			ns as intended without ne-of-sight			
Single-Hand Operatio		Quick-release engages and disengages single handedly		Use of second hand only for tool placement			
Resistance to Debris	Lunar dust/regolith impede operability	Lunar dust/regolith will not impede operability		Must operate as designed after being fully submerged in lunar dust simulant, cycled 10 times			
Dexterity	Device operable with hands	Device operable with EVA gloved hands		Actuated with gloved hands (e.g. heavy ski gloves)			
Power Method	Manual	Manual		Hand-Actuated			
Safety (Cutting)	Sharp Edges, Minim	Sharp Edges, Minimized		Beveled/smooth edges			
Safety (Hand 1)	Pinch Points, Minim	Pinch Points, Minimized		Labeled with <i>i</i> if present			
Safety (Hand 2)	Eliminate potential of fingers	Eliminate potential for entrapment of fingers		No accessible holes or openings that act as finger trap			

The Vanguard xEMU Quick Release and Catch System increases the efficiency of a spacewalk by enabling a quick, smooth, and repetitive process for astronauts to connect and disconnect tools needed on EVAs. The subsystem passed most of the major qualification tests. This included weight-up testing, stability testing with various tools, ease of operation by a gloved hand when installed on a utility belt, and confirming functionality with lunar dust simulant. The device remained functional with most of the simulant particle sizes, however, optimization of the main pass-through channel would help improve lunar dust resistance in application.

Team Vanguard (HEC23) would like to extend a special thank you to the following individuals for their guidance and support.

- Aws Al-Shalash (Faculty Advisor)

Dept. of & Mechanical Engineering

Conclusion

Acknowledgements

Dr. Nael Barakat (UTT ME Department Chair) Dr. Andres Garcia (UTT - HEC Director) Mr. Edward Farinas (UTT – Machine Services)

- Dr. Tim Urban (TSGC)
- Thalia Jurgens (TSGC)
- Mary Walker (NASA JSC)