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ABSTRACT

Bayesian Model-based Approaches with MCMC Computation to Some

Bioinformatics Problems . (May 2005)

Kyounghwa Bae, B.S., Korea University;

M.S., Korea University

Co-Chairs of Advisory Committee: Dr. Bani K. Mallick
Dr. Christine G. Elsik

Bioinformatics applications can address the transfer of information at several stages

of the central dogma of molecular biology, including transcription and translation.

This dissertation focuses on using Bayesian models to interpret biological data in

bioinformatics, using Markov chain Monte Carlo (MCMC) for the inference method.

First, we use our approach to interpret data at the transcription level. We propose

a two-level hierarchical Bayesian model for variable selection on cDNA Microarray

data. cDNA Microarray quantifies mRNA levels of a gene simultaneously so has

thousands of genes in one sample. By observing the expression patterns of genes under

various treatment conditions, important clues about gene function can be obtained.

We consider a multivariate Bayesian regression model and assign priors that favor

sparseness in terms of number of variables (genes) used. We introduce the use of

different priors to promote different degrees of sparseness using a unified two-level

hierarchical Bayesian model. Second, we apply our method to a problem related to

the translation level. We develop hidden Markov models to model linker/non-linker

sequence regions in a protein sequence. We use a linker index to exploit differences
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in amino acid composition between regions from sequence information alone. A goal

of protein structure prediction is to take an amino acid sequence (represented as

a sequence of letters) and predict its tertiary structure. The identification of linker

regions in a protein sequence is valuable in predicting the three-dimensional structure.

Because of the complexities of both models encountered in practice, we employ the

Markov chain Monte Carlo method (MCMC), particularly Gibbs sampling (Gelfand

and Smith, 1990) for the inference of the parameter estimation.
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CHAPTER I

INTRODUCTION

1.1 Motivations and Problems

The explosion of interest in bioinformatics has been driven by the emergence of ex-

perimental techniques that generate data in a high throughput fashion - such as DNA

sequencing, mass spectrometry, and microarray expression analysis (Miranker, 2000;

Altman and Raychaudhuri, 2001). Bioinformatics arose from the availability of large

data sets that are too complex to allow manual analysis. High-throughput genomic

approaches are generating vast amounts of DNA and protein sequence and structure

data, genetic map information, and gene expression profiles. The pace of data accu-

mulation is rapidly outrunning the rate of data processing and comprehension. We

have an ever-growing amount of biological data with advances in microarray technolo-

gies and the genome projects of various species. Implementing appropriate statistical

models to interpret this data is a difficult and important problem in bioinoformatics.

Bayesian data analysis is a method which enable us to make inferences from data

using probability models for quantities we observe and for quantities about which

we wish to learn. The essential characteristic of Bayesian methods is their explicit

use of probabilities for quantifying uncertainty in inferences based on statistical data

analysis. We have developed Bayesian models which provide probabilities for quanti-

fying uncertainty in solving some problems in bioinformatics. A common method for

determining the level of gene expression is to measure the amount of mRNA being

This dissertation follows the style of Biometrics.
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produced by that gene. A microarray experiment consists of mRNA extracted from

cells under different treatment conditions and glass slides (the microarrays) to which

spots of genetic material are attached. This microarray data has few samples but

a large number of genes at each sample. The most commonly used computational

method for analyzing microarray data is to filter or reduce the data and to apply

classification or clustering methods to the reduced data. These methods provide a

compact summarization of the data and point to functional relationships between

clustered genes. However, classification and clustering methods fail to highlight or

rank the most important few genes among thousands of genes. Variable selection

in cDNA microarray data highlights those genes which exhibit a different gene ex-

pression between two tissue types (e.g. normal and cancer) by removing redundant

variables. We develop a two-level hierarchical Bayesian model for variable selection

on cDNA data. We consider a multivariate Bayesian regression model and assign pri-

ors that favor sparseness in terms of number of variables (genes) used. We introduce

the use of different priors to promote different degrees of sparseness using a unified

two-level hierarchical Bayesian model.

Besides gene expression data analysis, the study of protein structure, folding and

function has a long history. Protein folding and its role in determining function from

sequence information has been an intensive subject of research. How to predict the

three dimensional structure of a protein from its amino acid sequence is the major

unsolved problem in structural molecular biology (Branden and Tooze, 1999). It re-

quires enormous amounts of computing time in addition to the complication that the

energy difference between a stable folded molecule and its unfolded state is a small

number containing large errors. The use of statistical methods for protein structure

prediction is a natural approach. The common thread shared by these approaches is

to attempt to use the existing database of experimentally determined structures in
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order to infer structure for new sequences. Statistical methods broadly encompass

techniques such as sequence homology search followed by structural homology mod-

eling, threading and fold recognition, secondary structure prediction, and a variety

of other methods which at some level involve fitting statistical models to a database

structure (Schmidler, Liu, and Brutlag, 2001).

The methodology developed in this dissertation is related to the particular pro-

tein structure prediction, which is intermediate step to the three-dimensional struc-

ture prediction. The functional properties of proteins depends on their three-dimensional

structures. The three-dimensional structure arises because particular sequences of

amino acids in polypeptide chains fold to generate, from linear chains, compact do-

mains with specific three-dimensional structures (Branden and Tooze, 1999). To

understand the biological function of proteins we would like to predict the three-

dimensional structure from the amino acid sequence. We wish to extract principles

of protein sequence and structure from the database that may be used to accurately

predict the structure of novel sequences.

Hidden Markov models (HMMs) have been employed in diverse areas of compu-

tational biology: genetic linkage maps (Lander and Green, 1987), multiple alignment

of protein families (Haussler, Krogh, Mian, and Sjolander, 1993), gene prediction

(Kulp, Haussler, Reese, and Eeckman, 1996; Burge and Karlin, 1997; Henderson,

Salzberg, and Fasman, 1997), the secondary structure prediction (Schmidler, Liu,

and Brutlag, 2000; Schmidler et al., 2001), etc. The observations in these HMMs

for protein structure prediction are recognized as strings of amino acids (categorical

variables), forming the primary sequence of a protein.

We focus on using Bayesian models to predict the linker regions in a protein se-

quence from sequence information alone and use Markov chain Monte Carlo (MCMC)

for the inference method. The domain is the fundamental functional and three-
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dimensional structural unit of protein structure. Many structural domains evolve as

independent units that are found in different combinations. Thus, the domain has al-

ternatively been defined as an evolutionary unit. The identification of domains within

a protein sequence is valuable in numerous applications. An alternative to delineat-

ing domain boundaries is identifying inter-domain linker boundaries. The linker is

defined as a region between adjacent domains. We assume that protein sequence data

is produced by a hidden Markov model and compositional variation is likely to re-

flect functional or structural differences between regions. We develop hidden Markov

models (HMMs) to model linker/non-linker sequence regions using a linker index to

exploit differences in amino acid composition between regions.

Because of the complexities of both models encountered in practice, we employ a

Markov chain Monte Carlo method (MCMC), particularly Gibbs sampling (Gelfand

and Smith, 1990) for the inference of the parameter estimation. Gibbs sampling

effectively reduces the problem of sampling from a high-dimensional distribution to

sampling from a series of low-dimensional distributions.

1.2 Bayesian Data Analysis and Markov Chain Simulation

1.2.1 Fundamentals of Bayesian Analysis

Bayesian inference is the process of fitting a probability model to a set of data and

summarizing the result by a probability distribution on the parameters of the model

and on unobserved quantities such as predictions for new observations. This is a

different approach from the classical ones, in which the parameters of the model are

estimated using the distribution of data values y conditional on the true unknown val-

ues of θ. The most important characteristic of Bayesian methods is their explicit use

of probability for quantifying uncertainty in inferences based on statistical data anal-

ysis. The process of Bayesian data analysis can be divided into the three steps. First,
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we set up a full probability model, a joint probability distribution for all observable

and unobservable quantities in a problem. Second, conditioning on observed data,

we calculate and interpret the appropriate conditional posterior distribution, which is

the conditional probability distribution of the unobserved quantities of interest given

the observed data. Third, we evaluate the fit of the model and the implications of the

resulting posterior distribution (Gelman, Carlin, Stern, and Rubin, 2000). Through-

out this dissertation, we use the term ’the conditional posterior distribution’ and ’the

posterior distribution’ interchangeably. Bayesian statistical conclusions about param-

eters θ are made in terms of probability statements conditioning on observed data

y, P (θ|y). The core of Bayesian inference is to develop a model which has a joint

probability distribution P (θ, y) and perform the necessary computations to summarize

P (θ|y). In order to make probability statements about θ given y, we begin with model

providing a joint probability distribution y and θ. The joint probability distribution y

and θ can be expressed as a product of prior distribution (the probability distribution

of the parameters) p(θ) and the likelihood distribution, p(y|θ) as follows.

P (θ, y) ∝ p(θ) × p(y|θ)

It is an important feature of Bayesian inference to incorporate the the expert opinions,

historical data etc. through the prior distribution. If not fixed at particular numerical

values, the parameters of the prior distributions are called hyper-parameters. Condi-

tioning on data y, the posterior distribution of parameters θ, p(θ|y) is proportional

to the product of the likelihood distribution and the prior distribution.

P (θ|y) =
p(θ, y)

p(y)
=

p(θ) × p(y|θ)
∫

p(θ) × p(y|θ)dθ

∝ p(θ) × p(y|θ)

Conjugacy is the property that the posterior distribution follows the same parametric

form as the prior distribution. Another important feature of Bayesian inference is that
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the posterior distribution is centered at a point that represents a compromise between

the prior information and the data, and the compromise increasingly is controlled by

the data as the sample size increases. In the case that conclusions will be drawn about

one or only a few parameters at a time, we just need to obtain the marginal posterior

distribution of the particular parameters of interest. We obtain the marginal posterior

distribution by first obtaining the joint posterior distribution of all unknowns and then

integrate this over the unknowns that are not of interest.

It is almost impossible to usefully characterize posterior distributions analytically

because they can be very complex in a high dimensional space. However a sample of

points drawn from such a distributions can provide a satisfactory picture of it. In par-

ticular, from such a sample we can obtain Monte Carlo estimates for the expectations

of various random functions of the variables. The Monte Carlo method approximates

a solution by introducing a random vector U that is uniformly distributed on the

region of integration. Applying function f to U , the Monte Carlo estimator of the

expectation of f(U), denoted E[f(U)], is as follows.

∫

f(u)du ≈ 1

m

m
∑

t=1

f(U t)

where m is the number of drawn points from f(U).

1.2.2 Markov Chain Monte Carlo

The posterior distributions are usually in a complicated form so it is hard to gen-

erate samples from the posterior distribution directly. Markov Chain Monte Carlo

(MCMC) techniques (Gelfand and Smith, 1990; Gilks, Richardson, and Spiegelhalter,

1996) will be used throughout this dissertation to generate samples from the posterior

distributions. The key is to create a Markov process whose stationary distribution

is a specified target posterior distribution P (θ|y) and run the simulation long enough
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that the distribution of the current draws is close enough to p(θ|y). We summarize

the posterior distribution and compute statistics by using these draws.

We use MCMC simulation method, specifically the Gibbs sampler, for sampling

from the P (θ|y). The general procedure is as follows.

• Using a starting point, run independent parallel sequences of an iterative sim-

ulation, such as Gibbs sampler or the Metropolis algorithm.

• Run the iterative simulation until approximate convergence appears to have

been reached.

• To diminish the effect of starting distribution, we discard the beginning of the

sequence (burn-in), because our inferences will be based on the assumption that

the distributions of the simulated values θt, for large t,are close to the target

distribution.

• Summarize inference about the posterior distribution by treating the set of all

iterates from the simulated sequences after burn-in as an identically distributed

sample from the target distribution.

The Gibbs sampler is a particular Markov chain algorithm that has been found useful

in many multidimensional problems. Gibbs sampling effectively reduces the problem

of sampling from a high-dimensional distribution to sampling from a series of low-

dimensional distributions Suppose θ = (θ1, · · · , θd) and the corresponding univariate

conditional distributions are f1, · · · , fd. The distributions f1, · · · , fd are called the

full conditional distributions. Also, suppose that we can simulate from these full

conditional distributions.

θi|θ1, · · · , θi−1, θi+1, · · · , θd ∼ fi(θi|θ1, · · · , θi−1, θi+1, · · · , θd)
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where i = 1, · · · , d. An iteration of Gibbs sampler consist of d updates of vectors in

iteration t, where each update adjust one component of θ conditioning on the other

(d−1) components. At each iteration t, an ordering of the d subvectors of θ is chosen

and, in turn, each θt
i is sampled from the conditional distribution given all the other

components of θ. Thus each subvector θi is updated conditional on the latest values

of θ for the other components, which are the iteration t values for the components

already updated and the iteration t − 1 values for the others.

The Gibbs Sampler Algorithm

Given θ(t) = (θ
(t)
1 , · · · , θ

(t)
d ), generate

1. θ
(t+1)
1 ∼ f1(θ1|θ(t)

2 , · · · , θ
(t)
d )

2. θ
(t+1)
2 ∼ f2(θ2|θ(t+1)

1 , θ
(t)
3 , · · · , θ

(t)
d )

3. θ
(t+1)
3 ∼ f3(θ3|θ(t+1)

1 , θ
(t+1)
2 , θ

(t)
4 , · · · , θ

(t)
d )

...

d. θ
(t+1)
d ∼ fd(θd|θ(t+1)

1 , θ
(t+1)
2 , · · · , θ

(t+1)
d−1 )

1.3 The Central Dogma of Molecular Biology

To provide background for the problems considered in this dissertation, we briefly

review the central dogma of molecular biology. It is useful to view primary biological

processes as information transfer processes. The information necessary for the func-

tioning of cells is encoded in molecular units called genes. There are three primary

information transfer processes in functioning organisms: replication, transcription

and translation. These three processes, illustrated in Figure 1, make up the central

dogma of molecular biology. Messages are formed from genes and these messages con-

tain instructions for the creation (synthesis) of functional structures called proteins,

which are necessary for cell life processes. The phenotypes of the cells are determined

by their internal chemistry resulting from metabolic reactions. These metabolic re-
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Figure 1: The central dogma of molecular biology

actions are catalyzed by a special class of proteins called enzymes. The function of

a protein depends on its three-dimensional structure, which in turn depends on the

linear sequence of 20 primary amino acids of the protein. The kind and amount of

protein present in the cell depends on the genotype of the cell. Since genes encode

the linear sequence of amino acids that form polypeptides, they specify the protein

structure. Therefore, together with environmental factors, genes determine the phe-

notypes of cells and hence the organism. This simplified model with intermediate

products, starting with genes and concluding with phenotype, is illustrated in Figure

1.

1.3.1 DNA and Microarray Experiment

We now know that with few exceptions genes are composed of deoxyribonucleic acid

(DNA). DNA consists of four primary types of nucleotide molecules. The common
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structure of a nucleotide contains a phosphate, a (deoxyribose) sugar and a nitrogen

base. The four types of nucleotides are distinguished from one another by their

distinct nitrogen base: adenine (A), guanine (G), cytosine (C) and thymine (T).

Watson and Crick (1953) discovered that DNA exists as a double helix, where each

helix is a chain of nucleotides. In DNA, base A pairs with T and base G pairs with

C exclusively. The specific pairing of DNA bases (A-T, G-C) is called base-sequence

complementarity. This complementary base pairing is the basis of a process called

hybridization. DNA exists in its native state as a double helical structure. However,

with sufficient heating the hydrogen bonds between complementary base pairs break

and the DNA double strands separate (denature) into two single strands. Upon

cooling the solution containing the DNA, the two single strands reanneal (renature) to

recreate the double-stranded DNA form. Figure 1 shows how genes (DNAs) are linked

to organism phenotype and illustrates the reason for measuring mRNA, the direct

product of DNA transcription. DNA transcription is the information transfer process

directly relevant to DNA microarray experiments, because quantification of the type

and amount of this copied information is the goal of the microarray experiment. The

process of transcription begins with DNA in the nucleus where the DNA template

strand is copied. The copied strand is called messenger ribonucleic acid (mRNA)

since it carries the set of instructions contained in DNA. RNA is single stranded, the

sugar in its nucleotide is ribose rather than deoxyribose as found in DNA, and the

pyrimidine base U (uracil) is found in place of T (thymine). Also, U forms hydrogen

bonds with A (adenine) in RNA. In transcription, a section of one strand of DNA

corresponding to the gene is copied using the base complementarity, namely A-U

and G-C. DNA microarray specifically aims to quantify the expression of genes by

measuring their transcript levels. Typically a microarray is a glass or polymer slide,

onto which DNA molecules are attached at fixed locations called spots. There are tens
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Figure 2: Microarray experiment procedure

of thousands of spots on one array, each containing tens of millions of identical DNA

molecules. The experiment consists of measuring the expression of a gene in a cell by

determining the amount of mRNA present. The novelty of the microarray is that it

quantifies transcript levels on a global scale by quantifying transcript abundance of

thousands of genes simultaneously.

The cDNA microarray experiment procedure is shown in Figure 2. We construct

the microarray and obtain the DNA sequences representing genes of interest from two

samples (the experimental and reference samples), transcribe the mRNA into more

stable cDNA and add fluorescent labels. In practice, cDNA from the experimental

and reference samples are labeled with different fluorescent dyes (usually green for

reference sample and red for target sample), mixed and hybridized to probes on the

array. The hybridized microarray is excited by a laser and scanned at wavelengths

suitable for the detection of the red and green dyes. The amount of fluorescence

emitted corresponds to the amount of nucleic acid bound to each spot. If the nu-
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cleic acid from the experimental sample is in abundance, it will be red. The raw

data that are produced from microarray experiments are digital images. To obtain

information about gene expression levels, these images are analyzed, each spot on the

array identified and its intensity measured and compared with values representing the

background. These data which are extracted from the digitized image are combined

into a spot quantification matrix. Each row corresponds to one spot on the array

and each column represents different quantitative characteristics of that spot, such

as the mean or median pixel intensity of spot and local background. An experiment

typically consists of one or more spot quantification matrices representing all of the

arrays. In the gene expression matrix, columns represent individual array samples

and rows represent the genes and their measurements across all the arrays.

1.3.2 Protein

Proteins are built up by amino acids that are linked by peptide bonds to form a

polypeptide chain. All of the 20 amino acids have in common a central atom (Cα)

to which is attached a hydrogen atom (H), an amino group (NH2) and a carboxyl

group (COOH). The side chain attached to the Cα distinguishes one amino acid

from another. In a polypeptide chain, the carboxyl group of an amino acid has

formed a peptide bond, C − N , to the amino group of the next amino acid. One

water molecule is eliminated in this process. The repeating units, which are called

residues, are divided into main-chain atoms and side chains. The basic repeating unit

along the main chain (NH −CαH −C ′ = O) is the common part among amino acids

after peptide bonds have been formed. The main-chain (or backbone) part, which is

identical in all residues, contains the central Cα atom attached to an NH group, a

carboxyl group, and an H group. The side chain R, which is different for different

residues, is bound to the Cα atom.
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Figure 3: Protein structure

The amino acid sequence of a protein’s polypeptide chain is called its primary

structure. Different regions of the sequence form local regular secondary structures,

such as alpha (α) helices or beta (β) strands. The tertiary structure is formed by

packing such structural elements into one or several compact globular units called

domains. The final protein may contain several polypeptide chains arranged in a

quaternary structure. By formation of such tertiary and quaternary structures amino

acids far apart in the sequence are brought close together in three dimensions to form

a functional region, which is an active site. The different level of protein structure is

illustrated in Figure 3. There are two main types of secondary structure, α helices

and β sheets. Protein structures are built up by combinations of secondary structural

elements. These form the core regions (the interior of the molecule) and they are

connected by loop regions at the surface. α helices and β strands that are adjacent in

the amino acid sequence are also usually adjacent in the three-dimensional structure.

Simple combinations of a few secondary structure elements with a specific geometric
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arrangement have been found to occur frequently in protein structures. These units

have been called either supersecondary structures or motifs. Polypeptide chains are

folded into one or several discrete units, domains, which are the fundamental func-

tional and three-dimensional structural units. The cores of domains are built up from

combination of small motifs of secondary structure, such as α− loop−α, β− loop−β,

or β − α − β motifs.

1.4 Outline of Dissertation

The remainder of this dissertation is organized as follows. Chapter II describes the

variable selection methods in cDNA microarray data using a multivariate Bayesian

regression model. Chapter III reviews previous work in the field of the prediction

of protein domain/linker regions and describes the data we construct from a pro-

tein database. Chapter III also introduces the use of a Hidden Markov model to

model functionally or structurally different linker/non-linker regions in a protein se-

quence. In Chapter IV, we develop a model of these structurally different inter-domain

linker/non-linker regions in a protein sequence using a non-stationary hidden Markov

model. Chapter V provides some concluding remarks as well as a perspective on

future work.
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CHAPTER II

GENE SELECTION USING A TWO-LEVEL HIERARCHICAL BAYESIAN

MODEL

2.1 Introduction

Microarray experiments typically measure the expression levels of several thousands

of genes simultaneously. In cDNA data, it is common to have a large number of genes

and a relatively small sample size. By removing redundant variables (genes), it would

be possible to highlight those genes which are most relevant for certain events (say,

certain diseases or a certain type of tumor).

Several approaches for finding the differentially expressed genes have been pro-

posed: the T-test (e.g. Devore and Peck, 1997), a regression modeling approach

(Thomas, Olson, Tapscott, and Zhao, 2001),a mixture model approach (Pan, 2002)

and nonparametric methods (Troyanskaya, Garber, Brown, Botstein, and Altman,

2002). All of these are univariate gene selection methods, so suffer from the fact that

no correlations between the genes are considered in the selection procedure. Recently

Lee, Sha, Dougherty, Vanucci, and Mallick (2003) developed a multivariate Bayesian

model to perform variable selection. Their method made use of a mixture prior dis-

tribution which is very sensitive toward the choice of some hyper-parameters, such as

the mixing probability π. In general, the algorithm is slow due to complicated mixing

structure of the posterior distribution.

From a machine learning viewpoint, high dimensionality and sparsity of data

points suggest the use of Support Vector Machines (SVM) (Campbell, 2002). Usually

SVMs achieve low test error despite small sample sizes. Several papers have reported

results on the application of SVMs for performing variable selection (Guyon, Weston,
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Barnhill, and Vapnik, 2002; Weston, Mukherjee, Chapelle, Pontil, Poggio, and Vap-

nik, 2001). However, this method has a number of disadvantages, such as the absence

of probabilistic output and the necessity of estimating a trade-off parameter in order

to utilize Mercer kernel functions. An alternative approach is to exploit the Bayesian

technique of Automatic Relevance Determination (ARD). An ARD approach has

been used previously for constructing a sparse classifier using the Relevance Vector

Machine (RVM) of Tipping (2000). Li, Campbell, and Tipping (2002) utilized ARD

to perform variable selection rather than using generalization bounds from statistical

learning theory. Their variable selection method has similar performance to SVMs

when applied to gene expression datasets from cDNA microarray data. The advantage

of their approach is that variable sparsity is naturally incorporated into the algorithm

- the optimal number of relevant variables is decided automatically. By contrast, for

an SVM an additional variable selection procedure has to be added, and a further

criterion must be used to indicate when the best variable set has been found. In terms

of practical application, Li et al. (2002) highlight the importance of small number of

influential genes. They use a zero-mean Gaussian prior with unknown variance for

the unknown regression parameter β, which favors sparseness in estimating β. This

choice of prior for β shows very good performances (Williams, 1998; Williams and

Barber, 1998), but the main disadvantage is that it does not control the structural

complexity of the resulting functions. That is, if one of the components of β happens

to be irrelevant, a Gaussian prior will not set it exactly to zero, but instead to some

small value (shrinkage rather than selection).

In this dissertation we consider a multivariate Bayesian regression model, and

assign priors that favor sparseness in terms of number of variables (genes) used. We

introduce the use of different priors to promote different degrees of sparseness using

a unified two-level hierarchical Bayesian model. In our first model, we assign a zero
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mean Gaussian prior to β with an independent prior distribution for the unknown

variance of β. This model is related to ARD, though we perform full Bayesian analysis

rather than marginal likelihood maximization. We use a Laplace prior in our second

model, as it is known to promote sparseness (Williams, 1995), and is equivalent to

the Lasso model. Our third model is based on the non-informative Jeffreys prior

suggested by Figueiredo (2001). This particular prior does not contain any hyper-

parameter, so that we can implement variable selection automatically, as well as

strongly induce sparseness in the model. Importantly, the number of selected genes is

decided automatically. Unlike other approaches, which are based on approximations,

we will perform full Bayesian analysis exploiting simulation based on Markov Chain

Monte Carlo (MCMC) methodology (Gelfand and Smith, 1990; Gilks et al., 1996)

to derive the estimates (as well as the uncertainty distributions) of the unknown

parameters.

We apply our methods to a leukemia data set from Golub, Slonim, Tamayo,

Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield, and Lender

(1999) and also to a dataset from Hendenfalk, Duggan, Chen, Radmacher, Bittner,

Simon, Meltzer, Gusterson, Esteller, and Raffeld (2001). The idea is to identify a

small number of genes having the greatest discriminating power, thereby allowing

researchers to quickly focus on the most promising candidates for diagnostics and

therapeutics.

2.2 Model

Suppose that n independent binary random variables (e.g. normal and cancer),

Y1, · · · , Yn are observed. Yi = 1 indicates that sample i is cancer or one type of

cancer (e.g. ALL, BRCA1) and Yi = 0 indicates that sample i is normal or the other

type of cancer (e.g. AML, BRCA2 and sporadic). For each sample we measure gene
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expression levels for a set. Let Xij denote the gene expression level of the jth gene

for the ith sample and we form the data matrix X as

X =



















X11 X12 · · · X1p

X21 X22 · · · X2p

...
...

...
...

Xn1 Xn2 · · · Xnp



















.

We define the binary regression model as pi = P (Yi = 1) = Φ(Xiβ), i = 1, · · · , n,

where β is the vector of unknown regression parameters, Xi is the ith row vector of

the matrix X and Φ is the standard normal cumulative density function linking the

probability pi with the linear structure Xiβ. This is known as the probit model.

Albert and Chib (1993a) introduce n independent latent variables Z = (Zi, · · · , Zn)

into the problem, where Zi ∼ N(Xiβ, 1) and define Yi = 1 if Zi > 0 and Yi = 0 if

Zi ≤ 0. This approach connects the probit binary regression model for Yi to a normal

linear regression model for the latent variable Zi.

We consider different priors for β in a two-level hierarchical Bayesian model.

This model involves a zero mean Gaussian prior for β with unknown variances. We

then assign choices of priors for the variances assuming they are independent. The

prior distribution of β is

β|Λ ∼ N(0,Λ)

where, 0 = (0, · · · , 0)′, Λ = diag(λ1, · · · , λp) and λi is the variance of βi. We assign

three different choices of prior distributions for Λ, which generates three different

models inducing different degrees of sparsity to select the number of genes used.

2.2.1 Prior Distribution for the Λ

For Model I, we assign a conjugate Inverse Gamma prior for each λi in Λ as IG(a
2
, 2

b
).

Here a random variable X is said to follow Inverse Gamma distribution if
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IG(a
2
, 2

b
) ∼ ( 1

X
)

a
2
+1exp(− b

2X
). Note that we have two hyper-parameters, a and b,

to be adjusted. We usually adjust a and b in such a way that the variance of λ is

very large. This model is equivalent to ARD model of Li et al. (2002). Assuming

independence among λis, the prior distribution of Λ is given by

Λ ∼ Πp
i=1IG(

a

2
,
2

b
).

In Model II, we assign a Laplace prior for β to promote sparseness (so that

irrelevant parameters are set exactly to zero). We can express the Laplace prior

distribution as a scale mixture of Normal priors, which is equivalent to a two-level

hierarchical Bayesian model. The Laplace prior can be expressed as a zero-mean

Gaussian prior with an independent exponentially distributed variance: The proof of

(2.1) is in appendix A.

π(βi|γ) =

∫ ∞

0

π(βi|λi)π(λi|γ)dλi ∼ Laplace(0,
1√
γ

) (2.1)

We assign an exponential distribution for the prior distribution of λi, which is equiv-

alent to assigning a Laplace prior for β. Here a random variable X is said to follow

exponential distribution with parameter γ, and is denoted as expon(γ) and expressed

as expon(γ) = γ
2
exp(−γx

2
).

The prior distribution of Λ (again with the assumption of independence among

λi) is given by

Λ ∼ Πp
i=1expon(γ)

Here again we need to fix the hyper-parameter γ in such a way that the variance of

λ is high. This is similar to the Lasso model but has added flexibility due to choices

of multiple λs, rather than a single one as in the Lasso method.

In Model III, we attempt to avoid the problem of fixing the hyper-parameters by
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letting the prior distribution of Λ be a non informative Jeffreys prior as

Λ ∼ |I(Λ)| 12 = Πp
i=1

1

λi

As already shown in Figueiredo (2001) and in our experimental results, this prior

strongly induces sparseness and yields good performance.

2.3 Computation

The posterior distribution is not available in explicit form so we use the MCMC

method (Gilks et al., 1996), specifically Gibbs sampling (Gelfand and Smith, 1990)

to simulate the parameters from the posterior distributions. The details of derivations

are provided in the appendix.

The full conditional distribution of Z has a truncated normal distribution. The

random variables Z1, · · · , Zn are independent with

Zi|β, Yi = 1 ∝ N(Xiβ, 1) truncated at the left by 0

Zi|β, Yi = 0 ∝ N(Xiβ, 1) truncated at the right by 0.

We generate random numbers Zi using the optimal exponential accept-reject algo-

rithm (Robert, 1999).

In the two-level hierarchical Bayesian model with zero mean Gaussian priors and

independently distributed variances for β, the full conditional distribution of β is as

follows.

π(β|Z, Y,Λ) ∝ N(ΣX′Z, Σ) (2.2)

where, Σ = (X′X + Λ−1)−1. We have used the Woodbury-Sherman-Morrison matrix

identity to reduce the dimension of the matrix, from p to n. This makes the com-

putation much faster because we have cDNA data which has a high dimensionality
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corresponding to the small sample size (n << p).

Σ = Λ − ΛX′(XΛX′ + I)−1XΛ.

The full conditional distribution of Λ for the Inverse Gamma prior (Model I) is

the following:

π(Λ|Z, Y, β) ∝ Πp
i=1IG(

a + 1

2
,

2

b + β2
i

) (2.3)

The full conditional distribution of Λ for the exponential prior (Model II) is the

following:

π(Λ−1|Z, Y, β) ∝ Πp
i=1InvGauss(

√
γ

βi

, γ) (2.4)

where InvGauss denotes the inverse Gaussian distribution. The inverse Gaussian

distribution for a random variable X is expressed as

InvGauss(µ, λ) =

√

λ

2πx3
exp(− λ

2µ2

(x − µ)2

X
), X ≥ 0

We use the algorithm of Michael, Schucany, and Haas (1976) to generate the

random number from the inverse Gaussian distribution.

The full conditional distribution of Λ with the Jeffreys prior (Model III) is the fol-

lowing :

π(Λ−1|Z, Y, β) ∝ Πp
i=1G(

1

2
,

2

β2
i

) (2.5)

where G is the Gamma distribution. The gamma distribution for a random variable

X is expressed as G(a, b) ∼ xa−1e−x/b.

In practice, many of the λi approach zero, implying those genes can be pruned

from the model. During MCMC iteration we delete genes using the criterion λi <

10−12 as in Li et al. (2002). Also we re-introduce a gene which has been eliminated
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if it has large enough variance (10 or more), but we find little change in performance

on varying this re-introduction bound.

Finally, we obtain the predictive classification of a new observation Ynew, condi-

tioning on the gene expression level X using the Monte-Carlo estimate :

P̂ (Ynew = 1|X) =
1

m

m
∑

t=1

p(Ynew = 1|X, βt, Zt, Λt) (2.6)

where βt, Zt, Λt are the MCMC samples from the posterior distribution.

2.4 Application of Gene Selection

2.4.1 Leukemia Dataset

We apply our method to the Leukemia data set which has been extensively studied by

Golub et al. (1999). The authors gathered bone marrow or peripheral blood samples

from 72 patients with either acute myeloid leukemia (AML) or acute lymphoblastic

leukemia (ALL). The data is split into a training set consisting of 38 samples of which

27 are ALL and 11 are AML, and a test set of 34 samples, 20 ALL and 14 AML.

The gene expression levels for 7129 human genes are produced. Golub et al. (1999)

investigated the use of a weighted voting scheme on the training samples and correctly

classified 36 of the 38 training samples and also correctly classified 29 of the 34 test

samples correctly, failing to predict correctly on 5. Using Golub’s training data, we

identify the 500 most significant genes by using two sample t-test statistics. We start

with the 500 genes out of 7129, which include all the significant genes identified by

Lee et al. (2003) and Li et al. (2002). We run the MCMC sampler (in our case, Gibbs

sampling with 50,000 iterations and 20,000 burn-in). The priors are as follows. We

assume E(λi) = 10 and var(λi) = 100 a priori for Model I and Model II and fix the

hyper-parameters that way.

We obtain samples from the marginal posterior distribution and obtain the es-
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Figure 4: Leukemia data: Absolute value of βi for three models

timates for βis and λis. We plot the absolute values of βi in Figure 4. Y-axis shows

the absolute value of βi and the x-axis shows the Frequency ID. The sparseness of βi

has been seen significantly in Model III. In addition, we can see that absolute values

of βi in Model I are usually bigger than those in Model II.

We select genes using the posterior variance of β. Variables with smaller variance

will have no effect, and should be excluded from the model. Figure 5 shows the vari-

ance of βi for each model. Y-axis shows the absolute value of βi and the x-axis shows

the Frequency ID. We can identify the genes having significantly larger variances

than the others. Both Model I and II contain 20 genes which have significantly larger

variance than the others. For Model I and Model II, we use these genes to perform

prediction on the test data. The results are in Table 1 (we not only predict the correct

classification but the probability related to it as well). There are 2 misclassifications

(4th and 5th) by both Model I and Model II. The top 4 selected genes are com-
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Figure 5: Leukemia data: The variance of βi for three models

mon to both models: Zyxin (which encodes a LIM domain protein localized at focal

contacts in adherent erythroleukemia cells, (Matsuda, Kawamura-Tsuzuku, Ohsugi,

Yoshida, Emi, Nakamura, Onda, Yoshida, Nishiyama, and Yamamoto, 1996)); cell

division control related protein (hCDCrel-1) mRNA (which is a partner gene of MLL

in some Leukemias, (Osake, Rowley, and Zeleznik-Le, 1999)); HoxA9 mRNA (which

collaborates with other genes to produce highly aggressive acute leukemia disease,

(Thorsteinsdottir, Krosl, Hoang, and Sauvageau, 1999)) and MacMarcks (whose tran-

scription is stimulated rapidly by tumor necrosis factor-alpha in human promyelocytic

leukemia cells (Harlan, Graff, Stumpo, and Blackshear, 1991)).

In Model III, only Zyxin is selected, due to significantly larger variance than

others. Zyxin has the third and second rank according to models I and II, respectively.

The selected Zyxin is also one of leading genes in Lee et al. (2003) and Golub et al.

(1999). Our prediction result based on Model III is in Table 1, which shows that
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there are 3 misclassifications using only one gene. Golub et al. (1999) used 50 genes

to predict, and had 5 misclassifications on test data. Our results appear to improve

predictions done by Golub et al. (1999), having fewer misclassifications, while also

using many fewer genes.

In these small data and high dimension problems, several models can fit the data

well, each using a distinct set of genes. To investigate the issue, Li et al. (2002)

randomly partition the data into two disjoint subsets of equal size and fit the model

on both sets. After training they match the common number of genes to both models.

This data is heterogeneous, as all 38 training samples were obtained from adult bone

marrow, while some test samples came from peripheral blood or pediatric patients.

This type of random partitioning and resampling of the data will make the data more

homogeneous (Smith, Satagopan, Gonen, and Begg, 2002). Following this idea, we

make new training and test data sets by randomly splitting the 72 samples in half

(36+36 samples). We perform 50 re-samplings and select the top 20 genes. The top

20 selected genes for all the three models were in common at least 24% of times in

the resampling results. The top four genes for model I and II were in common 50%

to 70% of times. For model III, we found Zyxin was in common 80% of times.

This data is not very homogeneous, as observations were taken from different

cells, so to control the variability we reanalyze on a subcategory of the data. For

example, ALL cells can be either T-cells or B-cells. We apply our method to determine

genes which are likely to be differentially expressed between ALL T-cells and ALL

B-cells (Yeoh, Ross, Shurtleff, Williams, Patel, Mahfouz, Behm, Raimondi, Relling,

Patel, Cheng, Campana, Wilkins, Zhou, Li, Liu, Pui, Evans, Naeve, Wong, and

Downing, 2002). This way we control the heterogeneity of the sample type as much

as possible by focusing on the B-cells and the T-cells experiments within the ALL

group. This gives two reasonably homogeneous sample types, for which we still have
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Table 1: Leukemia data: The prediction of the test data

Model I Model II Model III
Y P (Y |Xtest) P (Y |Xtest) P (Y |Xtest)
1 1 1 1
1 1 1 1
1 1 1 1
1 0 0 1
1 0 0 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 0
1 1 1 1
0 0 0 0
0 0 0 0
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0.939 0.999 0
1 1 1 0
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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many observations. We use 38 samples as training data set, and use the 9 samples

as the test data set, which is the same procedure as Grant, Manduchi, and Stoeckert

(2002). The results are in Table 2.

The top four selected genes in Model I are frequency ID 6855, 5542, 1882, 1962.

The top selected gene, frequency ID 6855 is TCF-3 transcription factors (E2A im-

munoglobulin enhancer binding factors E12/E4). Heterodimers between TCF3 and

tissue-specific basic helix-loop-helix (bHLH) proteins play major roles in determining

tissue-specific cell fate during embryogenesis, like muscle or early B-cell differentiation

(Kamps, Murre, Sun, and Baltimore, 1990). They are involved in a form of pre-B-cell

acute lymphoblastic leukemia (B-ALL) through a chromosomal translocation which

involves PBX1 and TCF3. T-cell Antigen CD7 precursor (frequency ID 5542) is one

of two common selected genes by Dudoit, Yang, Callow, and Speed (2000) and Grant

et al. (2002). The top four genes selected by Model II are frequency ID 6967, 1882,

6855, 4342. The top selected gene, frequency ID 6967 is SELL Leukocyte adhesion

protein beta subunit (ITGB2). The ITGB2 protein product is the integrin beta chain

beta 2. Integrins are integral cell-surface proteins composed of an alpha chain and a

beta chain. A given chain may combine with multiple partners resulting in different

integrins. For example, beta 2 combines with the alpha L chain to form the integrin

LFA-1, and combines with the alpha M chain to form the integrin Mac-1. Integrins

are known to participate in cell adhesion as well as cell-surface mediated signaling.

The gene TCF7 Transcription factor 7 (T-cell specific) (frequency ID 4342) is

selected by the Model III. This gene is one of the two common selected genes by

Dudoit et al. (2000) and Grant et al. (2002). The TCF7 gene encodes a transcription

factor that is a member of the high mobility group protein family. Expression of

TCF7 is specific to T cells, and the gene product was originally designated TCF-1,

as a T-cell specific transcription factor . A closely related factor, LEF-1 (lympho-
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cyte transcription factor), is expressed in both T and B cell lineages. Both TCF-1

and LEF-1 arise from the same gene, TCF7, by alternative splicing and use of dual

promoters (Kingsmore, 1995).

Table 2: The selected genes for identifying T-cell vs. B-cell type

Model I Model I Model I
Rank Variance I.D. Variance I.D. Variance I.D.

1 11.588 6855 10.868 6967 13884.338 4342
2 10.874 5542 10.851 1882
3 10.607 1882 10.798 6855
4 10.595 1962 10.720 4342
5 10.585 4017 10.698 760
6 10.563 3233 10.685 5956
7 10.562 760 10.631 5973
8 10.560 4082 10.594 1095
9 10.538 5973 10.592 2642
10 10.501 6376 10.584 5976
11 10.499 5171 10.582 2120
12 10.483 5661 10.571 6376
13 10.481 2642 10.571 2714
14 10.473 1078 10.564 1685
15 10.467 2714 10.552 4082
16 10.464 4318 10.508 4547
17 10.455 2121 10.499 1953
18 10.444 2335 10.488 758
19 10.426 412 10.480 407
20 10.420 6127 10.464 4973

2.4.2 Hereditary Breast Cancer Dataset

As a second study we also apply our method to a breast cancer dataset (Hendenfalk

et al., 2001) from patients carrying mutations in the predisposing genes, BRCA1 or

BRCA2, or from patients not expected to carry a hereditary predisposing mutation.

Pathological and genetic differences appear to imply different but overlapping func-

tions for BRCA1 and BRCA2. Hendenfalk et al. (2001) examined 22 breast tumor
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Figure 6: Breast cancer data: The variance of βi for three models

samples from 21 breast cancer patients. Fifteen women had hereditary cancer, 7 hav-

ing tumors with BRCA1 and 8 having tumors with BRCA2. 3226 genes were used for

each breast tumor sample. We use our method to classify BRCA1 versus the others

(BRCA2 and sporadic).

We use initial two-sample t-test statistics to identify the 500 most significant

genes and run the MCMC sampler as in the previous example. We choose the same

hyper-parameters as in the previous example. The variances of 500 genes are plotted it

in Figure 6. Y-axis shows the absolute value of βi and the x-axis shows the Frequency

ID.

Some of the leading genes selected by these approaches appear among the 10

strongest genes in the list in Kim, Dougherty, Barrera, Chen, Bitter, and Trent (2002)

and Lee et al. (2003). For both Model I and II, we select 25 genes which have signif-

icantly larger variances than others. The leading gene (by both of the approaches)
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is keratin8 (KRT8), a member of the cytokeratin family of genes. Cytokeratins are

frequently used to identify breast cancer metastases by immunohistochemistry, and

cytokeratin8 abundance has been shown to correlate well with node-positive disease

(Brotherick, Robson, Browell, Shenfine, White, Cunliffe, Shenton, Egan, Webb, Lunt,

Young, and Higgs, 1998). Another top selected gene is tumor-associated antigen L-6

(TM4SF1), a member of a family of integral membrane proteins, several of which

are also over expressed in tumors (Marken, Schieven, Hellstrm, Hellstrm, and Aruffo,

1992). Antigen L-6 is frequently over expressed in carcinomas, and antibody bind-

ing to L-6 on tumors in nude mouse models inhibits their outgrowth (Hellstrom,

Beaumier, and Hellstrm, 1986).

In Model III only four genes appear to be the selected ones with significantly

high variance. Keratin 8 and TM4SF1 are the top leading genes in Kim et al. (2002)

and Lee et al. (2003) as well as in our previous two models. The other two genes are

TOB1 and CTP syntheses and also appear in all the previously mentioned lists. The

gene TOB1 interacts with the oncogene receptor ERBB2, and is found to be more

highly expressed in BRCA2 and sporadic cancers, which are likewise more likely to

harbor ERBB3 gene amplifications. TOB1 has an anti-proliferative activity that is

apparently antagonized by ERBB2 (Matsuda et al., 1996).

We have checked the sensitivity (stability) of our analysis by adding a Gaussian

noise to the expression values as in Lee et al. (2003). We re-analyzed the data con-

taminated by Gaussian noise to obtain the newly selected genes and have reproduced

the results in Table 3. The results show that the analysis is quite stable, as it is

selecting almost the same genes with a different noise level over the expression val-

ues. We also check the model adequacy by Leave-one-out Cross Validation (CV). We

exclude a single data point, and predicted the P (Y = 1|X) for that data point using

equation (2.6). For Models I and II we use the 25 selected genes and for model III
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the 3 selected genes to perform the cross validation. We compare the result of this

cross validation with the observed response. There are 0 misclassification by model

I and II and 2 misclassifications (17th and 18th sample) by Model III. We compare

our cross validation results with other popular classification algorithms in Table 4.

All other methods have used 51 genes. It is clear from the results that our methods

improve the classification accuracy, having fewer misclassifications while also using

fewer genes.

2.5 Discussion

We propose two-level hierarchical Bayesian models for variable selection which assume

priors favoring sparseness in parameters. We employ latent variables to specialize the

model to a regression model. We use simulation based MCMC methodology to derive

the estimates of the unknown parameters. All three models provide good performance

in terms of gene selection, but model III based on the Jeffreys prior is preferable, as

there is no need to specify hyper-parameters or any type of threshold values. Simpler

methods based on scores such as Fisher score or correlation coefficients can be used

for gene selection but they usually select a much larger number of genes; the resulting

small sample size may produce instability in the classification process. Due to the

Bayesian setup, we have a coherent way to predict (assign) new samples to particular

categories. Rather than hard rules (in or out) of assignment, we can evaluate the

probability (chance) that the new sample will be in one of the categories, which

is more helpful for decision making. Furthermore, the use of smaller number of

important genes simplifies the experimental procedure.

Our gene selection method is based on the posterior mean of λ. We used informal,

exploratory plots to find the genes with significantly large value of λ. A formal choice

of cut off value to select significant λ based on posterior or predictive criteria will be



32

a topic of future research. All through our analysis, we assume data are independent

and consider only binary classifiers. Future research will consider the gene with

interaction situations and extend the analysis to multi-category models.
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Table 3: Sensitivity analysis with breast cancer dataset

Rank Model I Model II Model III
1 825478 * 360885 * 47884 *
2 28012 * 43021 244227
3 815503 * 897781 * 133534
4 897781 * 232826 * 950369
5 108422 82976 344352
6 488801 * 154323 * 897781 *
7 703846 840702
8 813823 66774
9 232826 * 74119
10 244764 * 815530 *
11 180803 244227 *
12 66697 * 79353
13 810408 200136 *
14 815530 * 28469 *
15 813651 488801 *
16 244955 47884 *
17 843249 23019
18 295798 * 842894
19 84955 566887 *
20 809784 * 205490
21 32750 115111
22 360885 * 241348 *
23 139217 282980 *
24 22798 46019 *
25 42313 725680

The numbers are clone I.D.
∗ means a genes were already selected
in the original analysis.
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Table 4: Feature selection for the breast cancer data

Model Cross-Validation Error∗

1 Feed-forward Neural Networks 1.5 (Average error)
(3 hidden neurons, 1 hidden layer)

2 Gaussian Kernel 1
3 Epanechnikov Kernel 1
4 Moving Window Kernel 2
5 Probabilistic Neural Network (r=0.01) 3
6 kNN(k=1) 4
7 SVM Linear 4
8 Perceptron 5
9 SVM Nonlinear 6

∗: Number of Misclassified Samples
51 Features used in the paper ’Gene-Expression Profiles in hereditary
Breast Cancer’, Vol 344, NJE
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CHAPTER III

PREDICTION OF PROTEIN INTER-DOMAIN LINKER REGIONS BY A

HIDDEN MARKOV MODEL

3.1 Introduction

A goal of protein structure prediction is to take an amino acid sequence (represented as

a sequence of letters) and predict the 3-dimensional conformation (tertiary structure)

adopted by the protein in its native (folded) state. The domain is the fundamental

unit of the protein. A structural domain is defined as a unit that can independently

fold into a stable tertiary structure. Many structural domains evolve as independent

units that are found in different combinations. Thus, the domain has alternatively

been defined as an evolutionary unit. The identification of domains within a pro-

tein sequence is valuable in numerous applications. Knowledge of structural domain

boundaries can allow determination of separate domains using X-ray crystallography

or Nuclear Magnetic Resonance (NMR), which is often more successful than trying to

solve whole proteins. Working with separate domains may also be useful in functional

assays. Computational methods for clustering proteins based on sequence similarity

perform better when sequences are fragmented into single domain units.

Automated methods to predict domain boundaries can be divided into two broad

categories, based on the definition used for domain. In the first category, domains are

regarded as compact, semi-independent units with a hydrophobic core. Some of these

methods use atomic coordinates from protein 3-dimensional structures determined

by NMR or X-ray crystallography (e.g. Holm and Sander, 1994; Islam, Luo, and

Sternberg, 1995; Siddiqui and Barton, 1995; Swindells, 1995; Wernisch, Hunting, and

Wodak, 1999; Taylor, 1999; Xu, Xu, and Gabow, 2000; Alexandrov and Shindyalov,
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2003). Other methods in this category rely on predicted secondary or tertiary struc-

ture instead of experimentally determined structure (George and Heringa, 2002c;

Marsden, McGuffin, and Jones, 2002). A method that uses the structural domain

definition, but does not depend on known or predicted structure, relies on residue

side chain entropy (Galzitskaya and Melnik, 2003). In the second category, the evo-

lutionary definition of domain is applied. Methods in this category use regions of

conservation in multiple or pairwise sequence alignments to identify domain bound-

aries (e.g. Sonnhammer and Kahn, 1994; Gouzy, Eugene, Greene, Kahn, and Cor-

pet, 1997; Gracy and Argos, 1998; Enright and Ouzonis, 2000; George and Heringa,

2002b; Liu and Rost, 2004a). The domain families in Pfam-A are created using pro-

file hidden Markov models built on multiple sequence alignments (Bateman, Birney,

Cerruti, Durbin, Etwiller, Eddy, Griffiths-Jones, Howe, Marshall, and Sonnhammer,

2002). The neural network method of Murvai, Vlahovicek, Szepesvari, and Pongor

(2001) also depends on sequence homology. More recently, a third category of meth-

ods has emerged; these combine the structural and evolutionary definition of domain.

For example, the CHOP method cuts proteins into domain-like fragments using do-

main boundary information from proteins with known structure and from Pfam-A

(homology-based) domains (Liu and Rost, 2004a). CHOPNet is a neural network

method that does not rely on known homology or known structure, but uses as in-

put both evolutionary information and predicted structure (Liu and Rost, 2004b).

The DGS (Domain Guess by Size) method uses neither structural nor evolutionary

information, makes domain boundary estimates based on the statistical distribution

of protein and domain lengths in a representative set (Wheelan, Marchler-Bauer, and

Bryant, 2000).

An alternative to identifying domain boundaries is to identify inter-domain linker

boundaries. The linker is defined as a region between adjacent domains. Studies have
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shown that linkers can play an essential role in maintaining cooperative inter-domain

interactions (Gokhale and Khosla, 2000). An understanding of linker characteristics

will aid the design of linkers that allow gene fusion in protein engineering. The

composition and length of linkers have been shown to affect protein stability, folding

and domain-domain orientation (e.g. Robinson and Sauer, 1998). As an alternative to

predicting domains, the prediction of linker regions is useful in splitting multidomain

proteins into single domains. Splitting multidomain proteins without altering domain

folding properties enables structural analysis for large proteins and allows biochemical

analyses to identify functional domains on the sequences.

Many studies of linker regions in various protein families have reported that

linker regions lack regular secondary structure (e.g. Argos, 1990), but a recent study

has identified two main types of linker: helical and non-helical (George and Heringa,

2002a). Studies agree that certain amino acids, (e.g. Ala, Pro and charged residues)

are more prevalent in the linker regions than in the domain regions (Robinson and

Sauer, 1998; George and Heringa, 2002a; Tanaka, Kuroda, and Yokoyama, 2003).

Most methods for identifying linkers use predicted secondary structure, amino acid

propensity, or a combination of the two. The advantage of all the linker methods is

they do not require known secondary structure or known homology. One approach is

to identify regions that lack secondary structure using algorithms such as SEG (Woot-

ton, 1994) or GlobPlot (Linding, Russell, Neduva, and Gibson, 2003). Miyazaki,

Kuroda, and Yokoyama (2002) have applied a neural network to predict the linker

boundaries based on amino acid propensity, and found that linkers possess character-

istics different from loops. The method of Tanaka et al. (2003) combines secondary

structure prediction to identify loop regions with amino acid frequency to distin-

guish linker and non-linker loops. The Udwary-Merski algorithm (Udwary, Merski,

and Townsend, 2002) combines three properties of linkers: low sequence conservation
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identified by multiple sequence alignment, low secondary structure conservation and

low hydrophobicity. DomCut, which predicts linker regions based on sequence alone,

relies solely on amino acid propensity (Suyama and Ohara, 2003). This method sim-

ply defines a linker region to be one that has lower linker index values than a specified

threshold value. Similar to the DomCut method, we will apply a linker index. How-

ever, we will employ a hidden Markov model to predict not only the linker regions,

but also the boundaries of these regions.

Hidden Markov models (HMMs) have been employed in diverse areas of compu-

tational biology. Lander and Green (1987) used HMMs in the construction of genetic

linkage maps. Churchill (1989) employed HMMs to distinguish coding regions from

non-coding regions in DNA. Later, simple HMMs were used in conjuction with the

EM algorithm to model certain protein-binding sites in DNA (Cardon and Stormo,

1992). Haussler et al. (1993) applied HMMs to the problem of statistical modeling

and multiple alignment of protein families. HMMs have been used widely in gene

prediction (Kulp et al., 1996; Burge and Karlin, 1997; Henderson et al., 1997). Asai,

Hayamizu, and Onizuka (1993) have applied HMMs to the problem of predicting

the secondary structure of proteins, obtaining prediction rates that are competitive

with previous methods in some cases. Churchill and Lazareva (1999) suggested a

Bayesian approach to the problem of DNA sequence multiple alignment. Schmidler

et al. (2000, 2001) worked on the prediction of the secondary structure of a protein

by using a generalized HMM with a Bayesian estimation method. The observations

in the HMMs for protein structure prediction are recognized as strings of amino acids

(categorical variables), forming the primary sequence of a protein.

In this dissertation, sequences are assumed to have a structure composed of

regions, such that the structure is homogeneous within a region but may differ between

regions. We assume that protein sequence data is produced by a hidden Markov model
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and that compositional variation is likely to reflect functional or structural differences

between regions. We wish to develop hidden Markov models to model functionally or

structurally different linker/non-linker sequence regions. Each region is classified into

one of a finite number of states (e.g. linker region and non-linker region) and we want

to estimate the states given the observed protein sequence. Importantly, we recognize

the protein sequence data as continuous data instead of categorical data, which differs

from the existing HMMs in computational protein sequence analysis. Therefore, it is

also important to find values which identify differences between linker and non-linker

regions in a protein sequence. We calculate the probability for each residue being in

the linker region, so that researchers can have better understanding of the protein

sequence structure. This is an advantage over other methods that rely on amino acid

propensity. The existing methods (Suyama and Ohara, 2003; Miyazaki et al., 2002)

do not give probabilistic output. In the model, the initial state sequence must begin

with the non-linker region state in a protein sequence. This assumption is made to

avoid the problem, associated with label-switching, that the likelihood function is the

same for all permutations of the states and their parameters. If the prior is symmetric

for all permutations of the parameters, the posterior is also symmetric, which creates

difficulties in summarizing joint posterior distributions by marginal distributions and

estimating unknowns by their posterior means.

Parameter estimation in HMMs usually relies on maximum likelihood or the

Bayesian approach. In the Bayesian approach, we consider the HMM as a mixture

model with missing data. We can associate observation yi with missing data zi which

represents the state from which yi is generated (Robert and Mengersen, 1999). The

EM algorithm was originally tailored for missing data structures, but the dependency

between the states creates problems for the EM algorithm for mixture estimation.

While the simulation of the missing data is straightforward for an independent struc-
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ture, it is quite difficult to simulate from the distribution of missing data conditional

on the observed data in HMMs. The use of a recurrent forward-backward formula,

which is widespread in the literature for estimating HMM parameters, is time consum-

ing and numerically sensitive. Instead, We employ an efficient Bayesian estimation of

the model through MCMC methods (Gilks et al., 1996), particularly Gibbs sampling

(Gelfand and Smith, 1990), to implement inferences. Gibbs sampling effectively re-

duces the problem of sampling from a high-dimensional distribution to sampling from

a series of low-dimensional distributions.

3.2 Data

3.2.1 Data Preparation

We downloaded protein sequence data from the Pfam database release 14 (Bate-

man et al., 2002) to construct a representative dataset of multidomain protein se-

quences. Pfam-A is a collection of domain families created using profile HMMs built

on multiple alignments of homologous proteins. Release 14 of the Pfam database

contains protein sequences from Swiss-Prot release 43.2 and SP-TrEMBL release 26.2

(Boeckmann, Bairoch, Apweiler, Blatter, Estreicher, Gasteiger, Martin, Michoud,

O’Donovan, Phan, Pilbout, and Schneider, 2003). The Pfam database provides pro-

tein sequence coordinates for Pfam-A domains identified in these proteins. Protein

sequences that were annotated as containing transmembrane regions in the Pfam

database were removed from the dataset. We define a linker as a sequence segment

of 4 to 20 residues that connects two adjacent regions identified by Pfam as domains.

The reasoning behind this length range is that an inter-domain segment longer than

20 residues may contain a domain that has not yet been identified, instead of be-

ing one long linker region. We also define non-linker regions as sequence segments

excluding linker regions. We denote a whole sequence as Full. We use only protein
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sequences whose entire length can be classified as linker or domain by our criteria,

except we allow up to 20 non-domain residues at the termini of the sequences. By

this procedure, we obtained 11968 sequences with at least one linker region (14339

linker, 28726 corresponding domains and 824 unique domain regions).

We removed redundancy in this dataset as follows. First, we grouped the 11968

proteins into homeomorphic families (identical domain organization). We performed

an all by all sequence comparison of the 11968 sequences using FASTA (Pearson

and Lipman, 1988). We then applied single-linkage clustering using criteria of E-

value ≤ 10−6 and at least 80% alignment coverage. Some of the resulting single-

linkage clusters contained sequences with different domain organizations, due to the

transitive nature of single-linkage clustering. Therefore, instead of selecting only one

sequence from each cluster, we selected one sequence from each domain organization

within each cluster. We also removed 7 protein sequences which were significantly

longer than the rest (> 1000 residues). By this procedure, we obtained 802 sequences

with at least one linker region. These 802 sequences contained 993 linkers and 1988

corresponding domain regions from 376 unique Pfam-A domain families. The average

number of residues (the length) in the linker and the domain regions were 11.24 and

141.38, respectively.

The distributions of lengths of linker is displayed in Figure 7 and that of domain

regions is in Figure 8. The frequency of amino acids in the different regions of the

protein sequences are given in Table 5. There are some amino acids for which the

distribution is significantly different between the linker region and other regions (do-

main, non-linker). The distribution of amino acids in the linker database of George

and Heringa (2002a) shows similar patterns, even though their definition of linker

region is different. The relative frequency of individual amino acids were compared

between linker region and other regions by a z−test. Amino acids whose frequency is
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Figure 7: The distribution of the length of linker regions

significantly different between linker and other regions (P-value < 10−3) are indicated

by (∗) in Table 5. We incorporate this difference of amino acid composition between

different regions within a protein by using the linker index.

3.2.2 Linker Index

Many studies have reported that certain amino acids may be observed with higher

frequency in the linker regions than in the domain regions. Proline (P), Lysine (K),

Glutamic acid (E), Serine (S), Aspartic acid (D) and Glutamine (Q) are preferred

amino acids in linker regions. Previous studies (George and Heringa, 2002a; Suyama

and Ohara, 2003; Tanaka et al., 2003) have shown Proline to be the most preferred

linker amino acid. However, there is disagreement among these studies regarding

which of the other preferred linker amino acids are significant. It is no surprise that

Proline is favored because it has no amide hydrogen to donate in hydrogen bonding,
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Table 5: The frequency of amino acids and the linker index

A. A. Linker Domain Non Linker Full y1
l y2

l y3
l

A 7.97 (7.94) 8.10 8.41 8.39 0.0166 0.0540 0.0515
C 0.89 (1.24) 1.50* 1.56 * 1.53 * 0.5724 0.5568 0.5370
D 6.32 (5.28) 5.60* 5.50 * 5.54 * -0.1278 -0.1382 -0.1315
E 7.97 (6.89) 6.60 * 6.66 * 6.72 * -0.1794 -0.1791 -0.1701
F 2.74 (4.34) 4.03 * 3.87 * 3.82 * 0.3561 0.3444 0.3309
G 7.74 (6.14) 7.37 7.35 7.37 -0.0442 -0.0516 -0.0491
H 1.91 (2.32) 2.27 2.24 2.22 0.1643 0.1560 0.1493
I 4.73 (5.13) 6.37 * 6.18 * 6.11 * 0.2758 0.2660 0.2552
K 6.97 (5.72) 5.81 * 5.65 * 5.71 * -0.2134 -0.2104 -0.1997
L 7.51 (9.60) 9.54 * 9.60 * 9.51 * 0.2523 0.2460 0.2359
M 2.13 (2.15) 2.24 2.43 2.41 0.0197 0.1323 0.1266
N 4.22 (4.12) 4.08 3.91 3.93 -0.0786 -0.0755 -0.0719
P 6.63 (6.07) 4.30 * 4.46 * 4.56 * -0.4188 -0.3964 -0.3742
Q 3.90 (4.05) 3.33 * 3.55 3.57 -0.1051 -0.0933 -0.0888
R 5.77 (5.79) 5.24 5.41 5.42 -0.0762 -0.0650 -0.0619
S 7.20 (5.55) 6.13 * 6.18 * 6.23 * -0.1629 -0.1513 -0.1439
T 5.80 (5.66) 5.35 5.36 5.38 -0.0701 -0.0794 -0.0756
V 6.24 (6.64) 7.34 * 7.35 * 7.29 * 0.1782 0.1635 0.1565
W 0.81 (1.24) 1.32 * 1.18 * 1.16 * 0.3836 0.3703 0.3560
Y 2.46 (3.47) 3.38 * 3.06 * 3.03 * 0.2500 0.2188 0.2098

() : The frequency of a.a. in the Linker databases (George and Heringa, 2002a)
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Figure 8: The distribution of the length of domain regions

and therefore structurally isolates the linker from domains (George and Heringa,

2002a). The analysis of our dataset also shows that Proline is the most preferred

amino acid in the linker regions. We can find the propensity of amino acids between

linker region and the other two regions. To incorporate the difference in amino acid

composition between domain and linker regions, we employ the linker index, y1
l , which

reflects the preference of amino acids in the linker relative to the domain region, from

Suyama and Ohara (2003).

y1
l = −ln(

f linker
l

fdomain
l

)

where, f
linker(domain)
l is the relative frequency of the amino acid l in the linker (domain)

region in the data set. Because y1
l represents the preference for amino acid l in the

linker region, we note that the value of y1
l will be negative if the relative frequency of

amino acid l in the linker region is greater than its relative frequency in the domain

region. Similarly, we define linker index y2
l and y3

l which reflects the preference of
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amino acids in the linkers relative to the non-linker region and the full sequence

respectively.

y2
l = −ln(

f linker
l

fnon
l

) y3
l = −ln(

f linker
l

f full
l

)

where f
non(full)
l is the relative frequency of the amino acid l in the non-linker/ full

region sequences dataset. y2
l is similar with the statistics in Tanaka et al. (2003). The

linker propensity of an amino acid in the linker region relative to the full sequence,

y3
l , is defined by George and Heringa (2002a). To calculate the linker index for the

sequences, we take an average of the linker index within each window size ω and

assign this averaged linker index value, yi to the center amino acid i of the window

by sliding from the N-terminus to the C-terminus of a protein sequence. Since y2
l and

y3
l give similar results and this is confirmed by computational results, we report only

the results using y1
l and y2

l . We use a window size, ω = 9 which provides the greatest

discrimination between the linker regions and the non-linker regions, and gives the

best performance among the window sizes between 3 and 20. We constructed 2

datasets. One is the smoothed linker index data of protein sequences using y1 (LD

data) and the other is the smoothed linker index data of protein sequences using y2

(LN data).

3.3 Model

Let Y = (y1, y2, · · · , yn)′ be the smoothed linker index data of a protein sequence

generated by the corresponding hidden state S = (s1, s2, · · · , sn)′. Let the set of

likelihood distribution parameters be θ and transition probability parameters be η.

We assume two hidden states corresponding to the linker and the non-linker regions.

If si = 0 then yi is from a linker region and if si = 1 then yi is from a non-linker
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region.

si =











1 if yi ∈ Non-linker region

0 if yi ∈ Linker region

The transition probability matrix P = {plk} given by a two state HMM is






p00 p01

p10 p11






=







p00 1 − p00

1 − p11 p11







where plk = p(si = k|si−1 = l), l, k ∈ {0, 1}.

The problem is to infer the values of (S, θ, η) from the conditional joint posterior

distributions P (S, θ, η|Y ). The conditional joint posterior distributions is propor-

tional to the joint distribution as follows

P (S, θ, η|Y ) ∝ P (Y, S, θ, η)

∝ P (Y, S|θ, η)P (θ, η)

∝ P (Y |S, θ, η)P (S, θ, η)

∝ P (Y |S, θ, η)P (S|θ, η)P (θ, η)

We assume the observed data y′
is are independent and have normal distribution.

Both the mean and the variance of the observed data are parameterized in terms of

the unobserved state variable with Markov process. We consider the following model

for the ith smoothed linker index in a protein sequence.

yi = µ0 + µ1si + (1 + ωsi)
1/2εi i = 1, · · · , n

Restriction : µ1 > 0

where εi ∼ N(0, σ2) and ω denotes the proportional variance increase when si = 1.

If yi is from a linker region then it has the probability distribution as follows.

yi|si = 0, µ0, σ
2 ∼ N(µ0, σ2)
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If yi is from a non-linker region then it has the probability distribution as follows.

yi|si = 1, µ0, µ1, ω, σ2 ∼ N(µ0 + µ1, (1 + ω)σ2)

It is reasonable to give the restriction that the mean linker index of linker region (µ0)

is smaller than the mean linker index of non-linker region (µ0 + µ1) by the definition

of linker index, because linker indices are negative for amino acids that are more

prevalent in the linker region than other regions.

The likelihood distribution of Y given the corresponding state sequence S, θ =

(µ0, µ1, σ
2, ω) and η = (p00, p11) is

P (Y |S, θ, η) = N((1, S)µ, σ2Σ|S, θ, η)

where, µ = (µ0, µ1)
′, 1 = (1, · · · , 1) is a n×1 vector and Σ = diag((1+ωs1), · · · , (1+

ωsn)).

We can assume P (s1 = 1) = 1 because the initial state must begin with the non-

linker region state in a protein sequence. Given the hidden state S, the transitions nij

from state i to j are sufficient statistics for p00 and p11. The likelihood distribution

conditioned on the initial state being non-linker, p(Si = 1) = 1, is given by

P (S|θ, η) = P (s1|θ, η)
n
∏

i=2

P (si|si−1, θ, η)

∝ pn00
00 (1 − p00)

n01 × pn11
11 (1 − p11)

n10

where nij is the number of observations of transitions from state i to j.

We need to specify the prior distribution P (θ, η) to complete the joint distribution

P (Y, S, θ, η).

The primary interest P (S|Y ) can be obtained by integrating out the conditional
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joint posterior distributions of P (S, θ, η|Y ) with respect to θ.

P (S|Y ) =

∫

θ

∫

η

P (S, θ, η|Y ) dθ dη

∝
∫

θ

∫

η

P (Y |S, θ, η)P (S, θ, η) dθ dη

∝
∫

θ

∫

η

P (Y |S, θ, η)P (S|θ, η)P (θ, η) dθ dη (3.1)

Using equation (3.1), we can calculate the probability of being in a state k for

each amino acid i in a protein sequence given yi, si−1 = l, θ and η.

P (si = k|yi, si−1 = l, θ, η) =
P (yi|si = k, si−1 = l, θ, η)P (si = k|si−1 = l, θ, η)

P (yi|si−1 = l, θ, η)

=
P (yi|si = k, θ, η)plk

P (yi|θ, η)
∵ yi doesn’t depend on si−1

=
P (yi|si = k, θ, η)plk
∑1

j=0 P (yi, si = j|θ, η)

=
P (yi|si = k, θ, η)plk

∑1
j=0 P (yisi = j|θ, η)plj

(3.2)

Once, these simulated sample values have been obtained from equation (3.2), any

posterior moment or marginal distribution can be easily estimated. Specifically the

posterior expectation can be estimated by the sample average, using equation (3.3).

E[P (si = k|yi, si−1 = l, θ, η)] =
1

m

m
∑

t=1

P (yi|s(t)
i = k, θ(t), η(t))p

(t)
lk

∑1
j=0 P (yi|s(t)

i = j, θ(t), η(t))p
(t)
lj

(3.3)

where, t denotes the iteration in MCMC sampler, k ∈ {0, 1} and m is the number

of the MCMC samples from the posterior distribution after burn-in. We predict the

state of an amino acid using the classification variable CVi.

CVi =











1 if E[P (si = k|yi, si−1 = l, θ, η)] ≤ 0.5

0 if E[P (si = k|yi, si−1 = l, θ, η)] > 0.5
(3.4)
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3.3.1 The Prior Distributions

The Bayesian approach to inference requires specification of a prior distribution for

the parameters of the model. We assign mutually independent prior distributions for

µ and σ2. The prior of µ is assigned to be the conjugated normal distribution and

the prior of σ2 is the inverse gamma distribution. Here a random variable X is said

to follow Inverse Gamma distribution if IG( a
2
, 2

b
) ∼ ( 1

X
)

a
2
+1exp(− b

2X
).

µ ∝ N













µ0a

µ1a






,







ξ0a, 0

0 ξ1a













σ2 ∝ IG(
a

2
,
2

b
)

where, (µ0a, µ1a, a, b) are hyper-parameters to be adjusted. Given hidden state si, ω

only depends on the observations for si = 1. We use the expression ω̄ = (ω + 1)

as in Albert and Chib (1993b) to make ω represent the proportionate increase in

variance when si = 1. Let the prior distribution of ω̄ be the truncated inverse gamma

distribution

ω̄ ∝ IG(
aw

2
,

2

bw

) × I(ω̄ > 1)

For the priors for (p00, p11), we assign the conjugate beta distribution.

P (p00, p11) ∝ beta(u00, u01) × beta(u11, u10)

Here a random variable X is said to follow beta distribution if beta(a, b) ∼ Xa−1(1−

X)b−1.

3.4 Computation

The conditional joint posterior distribution is not available in explicit form, so we use

the MCMC method, specifically Gibbs sampling to simulate the unknown parameters

from the conditional joint posterior distribution.
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It is convenient to transform the data to qi by multiplying each observation yi

by (1 + ωsi)
−1/2 so that the transformed data have constant variances, instead of

variances that depend on the hidden state.

qiyi ∼ N((qi, qisi)µ, σ2) ≡ y∗
i ∼ N(w∗

i µ, σ2)

Define Y ∗ = (y∗
1, · · · , y∗

n)′ and W ∗ = (w∗
1, · · · , w∗

n)′. The derivations of the full

conditional distributions are provided in the appendix. Here θ|· denotes θ conditioning

on all other parameters.

The full conditional distributions of µ and σ2 are following :

µ|· ∼ N
(

A−1(σ−2W ∗′Y ∗ + V−1µ
0
), A−1

)

× I(µ1 > 0) (3.5)

σ2|· ∼ IG

(

a + n

2
,

2

b + (Y ∗ − W ∗µ)′(Y ∗ − W ∗µ)

)

(3.6)

where, A = (V−1 + σ−2W ∗′W ∗) , µ
0

= (µ0a, µ1a)
′ and V = diag(ξ0a, ξ1a).

The full conditional distribution of ω̄ is the truncated inverse gamma distribution.

ω̄|· ∼ IG





n1 + aw

2
,

2
∑

i∈J

[

(yi−µ0−µ1si)2

σ2

]

+ bw



× I(ω̄ > 1) (3.7)

where, J = {i|si = 1, i = 1, · · · , n} and n1 is the number of observations whose state

is 1.

It is obvious that we only need to consider the conditional distribution P (p00, p11|S)

since (p00, p11) is independent of (Y, θ) given S. The full conditional distributions of

η = (p00, p11) are the following :

p00|s ∼ beta(n00 + u00 − 1, n01 + u01 − 1) (3.8)

p11|s ∼ beta(n11 + u11 − 1, n10 + u10 − 1) (3.9)

The full conditional distribution of {si, i = 1, · · · , n} depends on the state at
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time (i − 1) and (i + 1) since si has a Markov property.

P (si|·) ∝ P (si|Yi, S−i)f(yi+1, · · · , yn|Yi, S−i, si)

f(yi+1, · · · , yn|Yi, S−i)

∝ P (si|Yi, S
−i) ∵ y’s are independent

∝ Pr(si|Yi−1, Si−1)f(yi, si+1, · · · , sn|Yi−1, Si)

∝ P (si|si−1)f(yi|Yi−1, Si)P (si+1|Yi, Si)P (si+2, · · · , sn|Yi, Si+1)

∝ P (si|si−1)f(yi|Yi−1, Si)P (si+1|si)

∝ P (si|si−1)P (si+1|si)f(yi|si, θ, η) for 2 ≤ i ≤ n − 1

where, S−i = (s1, · · · , si−1, si+1, · · · , sn)′, Yi = (y1, · · · , yi) and Si = (s1, · · · , si).

Note that p(s1 = 1) = 1 and p(sn = 1) = 1 because a protein sequence always begins

and ends with a linker region. The derivations of full conditional distributions are in

appendix.

3.5 Results

We applied our model to two protein sequence datasets which we constructed from

Pfam-A release 14 using linker index y1 (LD dataset) and linker index y2 (LN dataset)

as described in section 3.2. We divided each dataset into a training dataset and a test

dataset randomly with the ratio of 4:1. We trained the model with the training dataset

of 642 sequences and tested the trained model with the test dataset of 160 sequences.

We ran an MCMC sampler, particularly Gibbs sampling with 40,000 iterations and

10,000 burn-in. The choice of hyper-parameters, which are based on the data and

the problem at hand, are as follows. We let hyper-parameters for µ be the sample

means of the training dataset for each state and give each a sufficiently large variance

of 10. We assume E(ω̄) = 1.5, var(ω̄) = 10 and E(σ2) = 0.1, var(σ2) = 10 and fix the

hyper-parameters accordingly. We let the hyper-parameters for the p00 and p11 be
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uij = 1, i, j ∈ {0, 1} to give uniform priors. The posterior distributions of estimates

are provided in appendix B.
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Figure 9: Examples of good predictions using LD dataset

We calculated the probability of being in the linker region, p(si = 0|yi), for each

residue i along a protein sequence. Figure 9 shows a case with good prediction, in

which probabilities in the linker region are much higher than in other regions. In

Figure 9, ∗ = 1 denotes those residues are in the non-linker region and ∗ = 0 denotes

those residues are in the linker region. However, we need to select a cut-off value

(here, 0.5) to delineate the boundary.

Although our method gives high probabilities to the linker region, it also gives

high probabilities to some regions that are not linker regions, but may have similar

structure. Most linker regions have negative linker index values, but some non-linker

regions also have this pattern. Figure 10(A) shows one of these cases. In Figure 10,

∗ = 1 denotes those residues are in the non-linker region and ∗ = 0 denotes those

residues are in the linker region. There are two regions with high probability, but there
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Figure 10: Examples of overpredictions using LD dataset

is only one linker region in the protein. However, the probability of the actual linker

region is higher than that of the other putative linker region. Figure 10(B) shows

that the termini of the sequence can have high probabilities. The characteristics of

the termini are not known. This case indicates that termini have patterns similar to

those in the linker region.

In this case, we need not take the high probabilities at the termini of the protein

sequences naively; since we know that a linker region is an inter-domain region, we

can avoid incorrectly predicting termini to be linkers when using our method. When

applying our method to the test data of the LD and LN datasets to predict the linker

region, we used a whole sequence in the prediction instead of part of it. Other studies

(Miyazaki et al., 2002; Suyama and Ohara, 2003) ignore the termini of a sequence or

unknown regions in a sequence in the prediction.

We classify every residue into one of two states (linker or non-linker) using the

classification variable (CV) which is based on the probability in (3.3).
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Table 6: The evaluation of the model

Evaluation LD data LN data
Sensitivity(Sn) 80.68 81.31
Specificity(Sp) 56.27 55.62
Correlation(C) 65.23 65.08

To evaluate our method for the prediction of linker regions, sensitivity (Sn),

specificity (Sp) and correlation coefficient (C) are reported with the test datasets.

TP refers to those amino acids that are correctly labeled as linker and FP refers to

amino acids that are labeled as linker while in fact they are non-linker. FN refers to

amino acids that are labeled as non-linker while in fact they are linker. TN refers to

amino acids that are correctly labeled as non-linker. The sensitivity is the percentage

of actual linker residues that were predicted to be linker (Sn = TP
TP+FN

) and the speci-

ficity is the percentage of predicted linker residues which are truly linker (Sp = TP
TP+FP

). The correlation coefficient (Matthews, 1975) is an indication of how much better

a given prediction is than a random one

(

C = (TP )(TN)−(FN)(FP )√
(TP+FN)(TP+FP )(TN+FN)(TN+FP )

)

.

C = 1 indicates perfect prediction, while C = 0 is expected for a prediction no bet-

ter than random. The evaluation results are reported in Table 6. The evaluation

results for LD and LN data appear to be similar. Therefore, there is little difference

between using linker index value y1 and y2 in the ability to distinguish linker and non-

linker regions in a protein sequence. Sensitivities of the model using both LD and

LN datasets are about 81%, which indicates that we can predict 81% of the residues

in the linker regions correctly out of all the residues in the linker regions using our

method. However, specificities are about only about 56%, which indicates out of all

of the residues predicted as being in the linker region only 56% are in cat really in the

linker region (there are many false positives). As we have seen from Figure 8, there

are regions such as termini that have similar structure compared with linker regions.
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Those regions cause overpredictions of linker regions, resulting in false positives. The

Matthew’s correlation coefficients are about 65%.

Table 7: The evaluation and the comparison with DomCut

LD dataset LN dataset DomCut
Sensitivity 63.29 63.77 56.52
Selectivity 92.91 88.59 87.97

Correct Linker 131(141) 132(149) 117(133)
*: There are 207 linker regions in the test data.
*: DomCut use LD dataset as linker index.
*: () is the number of predicted linker regions.

There are several other methods for predicting protein linker regions. It is difficult

to directly compare the accuracy of the predictions between methods, because each

of these methods uses a different definition of linker region and criteria for assessing

the method. We compare our method with DomCut (Suyama and Ohara, 2003)

because the authors use a similar definition of linker region and also use linker index,

which is the same as our y1, to reflect the difference in amino acid composition

between domain and linker regions. The authors of DomCut estimate sensitivity

as the proportion of the total number of correctly predicted linker regions against

the total number of linker regions and they estimate selectivity as the proportion of

correctly predicted regions in all predicted regions (Suyama and Ohara, 2003). This

is different than our measures of sensitivity and selectivity described above, which

consider predicted linker residues, rather than predicted regions. DomCut predicts

putative linker regions instead of giving specific boundaries of linker region, and is

a good intuitive method rather than a statistical method. We applied the DomCut

method to our LD test datasets with various criteria and report the best result in the

Table 7. In order to compare our method with the DomCut method, we also excluded

the unknown regions in the sequences in the evaluation, as was done in the evaluation
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of DomCut (Suyama and Ohara, 2003). In DomCut, a linker region is taken to be

correctly predicted if there is a trough in the linker region and the minimum linker

index value is lower than the cut-off. The smoothed linker index was calculated with

window size 9 and the cut-off is -0.08. In order to compare, we used their definition of

the sensitivity and the selectivity, based on prediction of linker regions, rather than

residues. In our method, a linker region is taken to be correctly predicted if there is

a region that has a consecutive high probability (> 0.5), its length is longer than 4

residues, and the maximum probability is higher than 0.8. The sensitivity and the

selectivity of our method using LD data are 63.3% and 92.9% respectively and these

are slightly better than those of our method using LN data. This result appears to

improve the DomCut method, even though it is difficult to directly compare.

3.6 Discussion

We have developed a hidden Markov model to model inter-domain linker/non-linker

regions in a protein sequence using the composition differences of amino acids be-

tween the two different regions. We take sequence data as continuous data, instead of

categorical data, using linker index value to distinguish linker and non-linker regions.

We also calculate the probability of being in the linker region at each residue along a

protein sequence. An advantage our HMM approach has over existing methods that

do not give probabilistic output is that we may use the results to gain further insight

into properties of the primary sequence. Furthermore, the probabilities can be con-

sidered when attempting to fragment unknown proteins into domains using molecular

techniques prior to structure determination by NMR or X-ray crystallography. An

advantage of both our method and DomCut is that they can be applied to both the

structural and evolutionary definitions of domain, depending on the dataset used,

because neither relies on structure prediction.
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Not only is the composition of the linker region important, but also its length.

In general, altering the length of linker regions connecting domains has been shown

to affect protein stability, folding rates and domain-domain orientation (VanLeeuwen,

Strating, Rensen, Laat, and der Vliet, 1997; Robinson and Sauer, 1998). We may

incorporate the duration probability density into HMMs to utilize the distribution of

the lengths of the linker/non-linker region. Therefore, we may consider a HMM with

a duration probability density (a variable duration HMM) to utilize the distribution

of the lengths of the linker/non linker region. Also the state duration can be modeled

by allowing all the transition probabilities to be functions of d, which is the duration

of the same state stays.
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CHAPTER IV

PREDICTION OF PROTEIN INTER-DOMAIN LINKER REGIONS BY A

NON-STATIONARY HIDDEN MARKOV MODEL

4.1 Introduction

We have developed a model to predict linker/non-linker regions in a protein sequence

by exploiting differences in the composition of amino acids between the two regions

and using a conventional hidden Markov model.

A well known weakness of conventional HMMs is weak state duration modeling

(see Figure 11). The inherent duration distribution in a conventional HMM is a

geometric distribution. In many applications, a geometric duration model might

not be appropriate, and it may be desirable to model the state duration with other

distributions. The importance of incorporating state duration is reflected in the

observation that, for some problems, the quality of the model is significantly improved

when an explicit state duration distribution is used (Rabiner, 1989).

We can expect that the specified state duration modeling would improve protein

linker prediction, because both the composition of the linker region and its length

are important. In general, altering the length of linker regions connecting domains

has been shown to affect protein stability, folding rates and domain-domain orienta-

tion (VanLeeuwen et al., 1997; Robinson and Sauer, 1998). We incorporate a state

duration probability distribution into an HMM to utilize information about the distri-

bution of the lengths of the linker/non-linker region. The distribution of the lengths

of linker and non-linker regions does not follow a geometric distribution (see Figure

7 and Figure 8).

To overcome this limitation of conventional HMM, variable duration hidden
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Markov models (VDHMM) were introduced by Ferguson (1980) (see Figure 12). The

VDHMMs consider a Markov chain which produces several observations at a given

state. Sometimes this is called a generalized HMM or a segmental HMM. Schmidler

et al. (2000, 2001) worked on the prediction of the secondary structure of a protein

by a generalized HMM with a Baysian estimation method. Most previous work on

estimating the unknown states of the VDHMM in computational biology assumes the

state transition probabilities are constant. A more complex variable duration model,

where the state transition probabilities are modeled by functions of time duration,

was introduced by Sin and Kim (1995). This model is referred to as a Non-stationary

hidden Markov model (NSHMM)(see Figure 13).

Figure 11: Representation of HMM

Figure 12: Representation of VDHMM
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Figure 13: Representation of NSHMM

Let pij be the state transition probability in a VDHMM. Denote the state tran-

sition weight by eij(d) and the state transition probability by pij(d) in a NSHMM,

where d is the state duration. If d = 1 or pij(d) is constant over time, the model

becomes a conventional HMM. If pij(d), where i 6= j, is constant for all d and pii(d)

is replaced by a variable duration probability distribution without self-transitions,

then this model becomes a VDHMM. Djric and Chun (2002) showed that NSHMM is

equivalent to VDHMM when eij, the state transition weight is constant and set to be

equal to pij. In general, NSHMM is more convenient for use, because the description

of its data generation seems more natural, and it is more tractable for analysis (Djric

and Chun, 2002). In addition, the implementation of MCMC sampling for estimation

of the parameters and the states of the model is then much easier.

In this chapter, we develop a model with a different specified state duration dis-

tribution for each of the two states in the NSHMM frame, linker and non-linker. In a

NSHMM frame, a NSHMM with a geometric duration distribution assuming constant

transition probability is equivalent to a conventional HMM. We assume that protein

sequence data is produced by a hidden Markov model and compositional variation is

likely to reflect functional or structural differences between regions. Each region is

classified into one of a finite number of states (e.g. linker region and non-linker region)
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and we want to estimate the states given the observed protein sequence. We recognize

the protein sequence data as continuous data instead of categorical data, which differs

from the existing HMMs in computational protein sequence analysis. The observa-

tions in the HMMs for protein structure prediction are recognized as strings of amino

acids (categorical variables), forming the primary sequence of a protein. Therefore,

it is also important to find values which identify differences between linker regions

and non-linker regions in a protein sequence. It is of value to obtain a probability

for each residue being in the linker region, so that researchers can have better under-

standing of the protein sequence structure. This is the most advantageous property

of our method over other methods that rely on amino acid propensity. The existing

methods (Suyama and Ohara, 2003; Miyazaki et al., 2002) do not give probabilistic

output.

Parameter estimation in HMMs usually relies on maximum likelihood estima-

tion with dynamic programming-based algoritms or the Bayesian approach. In the

Bayesian approach, we consider the HMM as a mixture model with missing data.

We can associate observation yi with a missing data zi which represents the state

from which yi is generated. The EM algorithm was originally tailored for miss-

ing data structures, but the dependency between the states adds problems to the

EM algorithm for mixture estimation. While the simulation of the missing data is

straightforward for an independent structure, it is quite difficult to simulate from the

distribution of missing data conditional on the observed data in HMMs. The use

of a recurrent forward-backward formula, which is widespread in the literature for

estimating HMM parameters, is time consuming and numerically sensitive. Instead,

we employ an efficient Bayesian estimation of the model through MCMC methods,

particularly Gibbs sampling, to implement inferences. Gibbs sampling effectively re-

duces the problem of sampling from a high-dimensional distribution to sampling from
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a series of low-dimensional distributions.

We construct a representative dataset of multidomain protein sequences from

the Pfam database release 14 (Bateman et al., 2002)(see section 3.2 for detail). We

apply this model to the LD dataset which is the smoothed linker index data of protein

sequences using linker index y1 because the other linker indices give similar results,

as we have seen in chapter II.

4.2 Model

Let Y = (y1, y2, · · · , yn)′ be a protein sequence generated by the corresponding hidden

state S = (s1, s2, · · · , sn)′, where, yi is the smoothed linker index of the ith amino acid

in a protein sequence with state si. Let the set of likelihood distribution parameters

be θ,the set of duration distribution parameters be η and the set of state transition

probability parameters τ . We say yi is from a linker region if si = 0 and yi is from a

non-linker region if si = 1 in a protein sequence.

si =











1 if yi ∈ Non-linker region

0 if yi ∈ Linker region

Let Q = (q1, · · · , qm)′ be the vector of the positions denoting the ends of each

structural segment (state) with q0 = 0 and m be the number of the segments in a

protein sequence. The state duration variable, di = qi − qi−1 , counts the number of

times in which si remains in the same state.

di =











di−1 + 1 if si = si−1

1 if si 6= si−1

D = (d1, · · · , dm)′ is the vector of the state durations. Note that di is also the

number of observations (the length) in segment i.

The segments of data are summarized in Table 8.
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Table 8: The segment of data

Q (position) 1, · · · , q1 q1 + 1, · · · , q2 · · · qm−1 + 1, · · · , qm

Y (observation) y1, · · · , yq1 yq1+1, · · · , yq2 · · · yqm−1+1 · · · yqm

S (state) s1, · · · , sq1 sq1+1, · · · , sq2 · · · sqm−1+1, · · · sqm

D(duration) 1, · · · , d1 1, · · · , d2 · · · 1, · · · dm

M (segment) 1 2 · · · m

P = {ps,jk} denotes the state transition probability matrix (between segments)

and is defined as ps,jk = p(sqi
= k|sqi−1

= j). The transition probability (between

observations) is defined as pik = p(sj = k|sj−1 = i). (See Figure 14 for notations)

Figure 14: State transition probability and transition probability

The problem is to infer the values of (S, θ, η, τ) from the conditional joint pos-

terior distributions P (S, θ, η, τ |Y ). The conditional joint posterior distribution is

proportional to the joint distribution as follows.

P (S, θ, η, τ |Y ) ∝ P (Y, S, θ, η, τ)

∝ P (Y, S|θ, η, τ) × P (θ, η, τ)

∝ P (Y |S, θ, η, τ) × P (S|θ, η, τ) × P (θ, η, τ)

We assume that the data Y are normally distributed and an observation yi is

conditionally independent from other observations within given segment i and also
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from observations in other segments. The observations in the ith segment are denoted

y(qi−1,qi] = (yqi−1+1, · · · , yqi
) and have the same state sqi−1+1 = · · · = sqi

by definition.

Both the mean and the variance of the data are parameterized in terms of a

hidden state variable with Markov process. We assume the following model for the

smoothed ith linker index in a protein sequence.

yi = µ0 + µ1si + (1 + ωsi)
1/2εi

Restriction : µ1 > 0

where, εi ∼ N(0, σ2) and ω denotes the proportional variance increase when si = 1.

By the definition of linker index, it is reasonable to give the restriction that the mean

linker index of linker region (µ0 ) is smaller than the mean linker index of non-linker

region (µ0 + µ1), because the linker index of a amino acid would be negative if it is

more prevalent in the linker region than the other regions. The likelihood distribution

for segment i given state j, θj, ηj and τ is

P (Y(qi−1,qi]|sqi−1+1 = j, θj , ηj, τ) =

di
∏

k=1

N
(

µ0 + µ1sk, (1 + ωsk)σ
2 | sk = j, θj, ηj, τ

)

where θj represents the parameters of the likelihood distribution whose state is j and

ηj are the parameters of the duration distribution whose state is j. Therefore, the

likelihood distribution of Y given S, θ, η and τ is

P (Y |S, θ, η, τ) =
m
∏

i=1

P (Y(qi−1,qi]|sqi−1+1 = j, θj, ηj) = N((1, S)µ, σ2Σ|S, θ, η, τ)

where, µ = (µ0, µ1)
′, 1 = (1, · · · , 1)′ is a n × 1 vector and Σ = diag((1 + ws1), (1 +

ws2), · · · , (1 + wsn)) .

We can factor P (S|θ, η, τ) as follows:

P (S|θ, η, τ) =
m
∏

i=1

P (d|sqi−1+1 = j, θ, η, τ) × P (sqi
|sqi−1

, θ, η, τ)
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The state transition probability distribution P (sqi
|sqi−1

, θ, η, τ) is given by the follow-

ing because there are two states.







ps,00 ps,01

ps,10 ps,11






=







0 1

1 0







For simplicity, we suppress τ because the state transition probability matrix is given

as shown above.

We assume that each state has a truncated Poisson duration distribution with a

different parameter.

P (d|sqi
= j, θj, ηj) =

λd
je

−λj

d!
d = 1, · · ·Dj

where Dj can be set to a reasonably large number for each hidden state and j ∈

{0, 1}. Numerous studies, including that of George and Heringa (2002a) show that

the distributions of length of linker and non-linker region are significantly different.

We incorporate the informative characteristic of length of the linker/non-linker regions

into our model by using the specified state duration distribution.

The parameterization of the state duration is achieved by allowing all the tran-

sition probabilities pik = p(sj = k|sj−1 = i) to be functions of the duration time

d.

pik(d) = P (st = k|st−1 = st−2 = · · · = st−d = i)

The transition probabilities depend on state duration and this is why we refer to

these HMMs as non-stationary HMMs. Djric and Chun (2002) show the relationship

between the duration distribution and the transition probabilities pij(d). The proof
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of this formula is provided in appendix C.

pii(d) =











1 − P (d|st−1 = i) d = 1

1−
Pd

k=1 P (k|st−1=i)

1−Pd−1
k=1 P (k|st−1=i)

d > 1
(4.1)

pij(d) =











eij(d)P (d|st−1 = i) d = 1

eij(d) P (d|st−1=i)

1−Pd−1
k=1 P (k|st−1=i)

d > 1, where i 6= j
(4.2)

The outward transition probability, pij(d), can be obtained from eij(d)(1−pii(d))

using (4.1), where eij(d) is the transition weight for the state j from i and the weights

have to satisfy
∑

j=1,j 6=i eij(d) = 1 for all i and all d. However under the two state

assumption, the transition weights become one for all d.

If we assume a geometric distribution with a different parameter for the state

duration distribution as in (4.3) and also assume that the transition probability does

not depend on the duration time d (pjj(d) = pjj) then the Non-stationary HMM

becomes a conventional HMM.

P (d|sqi
= j, θj, ηj) = pd−1

jj (1 − pjj) d = 1, · · ·Dj (4.3)

where, 0 < pjj < 1 and j ∈ {0, 1}. We need to specify the prior distribution P (θ, η)

to complete the joint distribution P (Y, S, θ, η).

The primary distribution of interest P (S|Y ) can be obtained by integrating out

the conditional joint posterior distributions of P (S, θ, η|Y ) with respect to θ.

P (S|Y ) =

∫

θ

∫

η

P (S, θ, η|Y ) dθ dη

∝
∫

θ

∫

η

P (Y |S, θ, η)P (S, θ, η) dθ dη

∝
∫

θ

∫

η

P (Y |S, θ, η)P (S|θ, η)P (θ, η) dθ dη (4.4)

Using equation (4.4), we can calculate the probability of being in a state k for
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each amino acid i in a protein sequence given yi, si−1 = l, , di−1 = d, θ and η.

P (si = k | yi, si−1 = l, di−1 = d, θ, η)

=
P (yi|si = k, si−1 = l, di−1 = d, θ, η)P (si = k|si−1 = l, di−1 = d, θ, η)

P (yi|si−1 = l, di−1 = d, θ, η)

=
P (yi|si = k, di−1 = d, θ, η)plk(d)

P (yi|θ, η)
∵ yi dosen’t depend on si−1 and di−1

=
P (yi|si = k, di−1 = d, θ, η)plk(d)
∑1

j=0 P (yi, si = j, di−1 = d|θ, η)

=
P (yi|si = k, di−1 = d, θ, η)plk(d)

∑1
j=0 P (yi|si = j, di−1 = d, θ, η)plj(d)

(4.5)

Once, these simulated sample values have been obtained from equation (4.5), any

posterior moment or marginal distribution can be easily estimated. Specifically the

posterior expectation can be estimated by the sample average, using equation (4.6).

E[P (si = k | yi, si−1 = l, di−1 = d, θ, η)]

=
1

m

m
∑

t=1

P (yi|s(t)
i = k, di−1 = d, θ(t), η(t))p

(t)
lk (d)

∑1
j=0 P (yi|s(t)

i = j, di−1 = d, θ(t), η(t)))p
(t)
lj (d)

(4.6)

where, t denotes the iteration in MCMC sampler, k ∈ {0, 1} and m is the number

of the MCMC samples from the posterior distribution after burn-in. We predict the

state of an amino acid using the classification variable CVi.

CVi =











1 if E[P (si = k|yi, si−1 = l, di−1 = d)] ≤ 0.5

0 if E[P (si = k|yi, si−1 = l, di−1 = d)] > 0.5
(4.7)

4.2.1 The Prior Distributions

The Bayesian approach to inference requires specification of a prior distribution for

the parameters of the model. We assign mutually independent prior distributions for

µ and σ2. The prior of µ is assigned to be the conjugated normal distribution and

the prior of σ2 is the inverse gamma distribution. Here a random variable X is said
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to follow Inverse Gamma distribution if IG( a
2
, 2

b
) ∼ ( 1

X
)

a
2
+1exp(− b

2X
).

µ ∼ N













µ0a

µ1a






,







ξ0a, 0

0 ξ1a













σ2 ∼ IG(
a

2
,
2

b
)

Given hidden state si, ω only depends on the observations for si = 1. We use

the expression ω̄ = (ω + 1) in Albert and Chib (1993) to make ω represent the

proportionate increase in variance when si = 1. Let the prior distribution of ω̄ be the

truncated inverse gamma distribution.

ω̄ ∼ IG(
aw

2
,

2

bw

) × I(ω̄ > 1)

It is obvious that we only need to consider (λ0, λ1)|S because λ0, λ1 are independent

of (Y, θ) given S. We assign the conjugated gamma distributions for the priors of λj

in the truncated Poisson distribution for each state.

P (λj) ∝ λ
aj−1
j e−λj/bj j ∈ {0, 1}

where aj and bj are positive.

4.3 Computation

The Bayesian inference is based on the posterior distribution. The quantities of

interest are calculated by integrating the model parameters over the joint posterior

distribution. Accurate approximation of these integrals can be made by the use of

Markov Chain Monte Carlo (MCMC) methods. The posterior distribution is not

available in explicit form so we use the MCMC method, specifically Gibbs sampling,

to simulate the unknown parameters from the posterior distribution. The derivations

of the full conditional distributions are provided in the appendix. Here θ|· denotes θ

conditioning on all other parameters.
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It is convenient to transform data using qi = (1+ωsi)
−1/2 so that the transformed

data have constant variances, instead of variances that depend on the state.

qiyi ∼ N((qi, qisi)µ, σ2) ≡ y∗
i ∼ N(w∗

i µ, σ2)

Define Y ∗ = (y∗
1, . . . , y

∗
n)′ and W ∗ = (w∗

1, . . . , w
∗
n)′.

The full conditional distributions of µ and σ2 are as follows.

µ|· ∼ N
(

A−1(σ−2W ∗′Y ∗ + V−1µ
0
), A−1

)

× I(µ1 > 0)

σ2|· ∼ IG

(

a + n

2
,

2

b + (Y ∗ − W ∗µ)′(Y ∗ − W ∗µ)

)

where A = (V−1 + σ−2W ∗′W ∗), µ
0

= (µ0a, µ1a)
′ and V = diag(ξ0a, ξ1a).

The full conditional distribution of ω̄ is as follows.

ω̄|· ∼ IG





n1 + aw

2
,

2
∑

t∈J

[

(yt−µ0−µ1st)2

σ

2
]

+ bw



× I(ω̄ > 1)

where J = {t|st = 1}, t = 1, · · · , n and n1 is the number of observations whose state

is 1.

The full conditional distributions of η = (λ0, λ1) in the truncated Poisson distri-

bution is

λj|· ∼ G(d̄j + aj, (mj +
1

bj

)−1) j ∈ {0, 1} (4.8)

where d̄j is the number of yi’s whose state is j and mj is the number of segments

whose state is j at the previous iteration. After we draw λj, we calculate pii(d) and

pij(d), where i 6= j using (4.1) and (4.2) respectively. Note that P (d|st = j) in (4.1)

and (4.2) is a truncated Poisson distribution with parameter λj at each iteration.

The full conditional distribution of si, (i = 2, · · · , n − 1) at iteration k with
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p(s1 = 1) = 1 and p(sn = 1) = 1 is

P (si|Y, S−i, θ, η) ∝ p
s
(k)
i−1si

(d(s
(k)
i−1)) × p

sis
(k−1)
i+1

(d(si)) × p
s
(k−1)
i+1 s

(k−1)
i+2

(d(s
(k−1)
i+1 ))

×p
s
(k−1)
i+2 s

(k−1)
i+3

(d(s
(k−1)
i+2 )) × · · · × p

s
(k−1)
i+τ−1s

(k−1)
i+τ

(d(s
(k−1)
i+τ−1))

×p(yi|si, θ, η) (4.9)

where, s
(k−1)
i+1 = s

(k−1)
i+τ−1, s

(k−1)
i+τ−1 6= s

(k−1)
i+τ and τ ≥ 2, and S−i = (s1, · · · , si−1, si+1, · · · , sn)′.

Derivation >

P (si|Y, S−i, θ, η) =
P (si|Yi, S−i, θ, η)f(yi+1, · · · , yn|Yi, S−i, si, θ, η)

f(yi+1, · · · , yn|Yi, S−i, θ, η)

= P (si|yi, S
−i, θ, η) ∵ yiare independent

∝ P (si|s(k)
i−1, d(s

(k)
i−1), s

(k−1)
i+1 , · · · , s

(k−1)
i+τ , θ, η, yi)

∝ P (si|s(k)
i−1, d(s

(k)
i−1)) × P (s

(k−1)
i+1 |si, d(si)) × P (s

(k−1)
i+2 |s(k−1)

i+1 , d(s
(k−1)
i+1 ))

×P (s
(k−1)
i+3 |s(k−1)

i+2 , d(s
(k−1)
i+2 )) × · · · × P (s

(k−1)
i+τ |s(k−1)

i+τ−1, d(s
(k−1)
i+τ−1))

×p(yi|si, θ, η)

∝ p
s
(k)
i−1si

(d(s
(k)
i−1)) × p

sis
(k−1)
i+1

(d(si)) × p
s
(k−1)
i+1 s

(k−1)
i+2

(d(s
(k−1)
i+1 ))

×p
s
(k−1)
i+2 s

(k−1)
i+3

(d(s
(k−1)
i+2 )) × · · · × p

s
(k−1)
i+τ−1s

(k−1)
i+τ

(d(s
(k−1)
i+τ−1))

×p(yi|si, θ, η)

Therefore, the result follows.

4.4 Results

We apply our method to protein sequence datasets which we construct from Pfam-

A database using y1 as described in section 3.2. We divide each dataset into the

training dataset and the test dataset randomly with the ratio of 4:1. We train the

model with the training dataset of 642 sequences and test the trained model with the

test dataset of 160 sequences. We run MCMC sampler, particularly Gibbs sampling
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with 40,000 iterations and 10,000 burn-in. The choice of hyper-parameters is based

on the data and the problem at hand and our choices are as follows. We let hyper-

parameters for µ be the sample means of the training dataset for each state and give

each a large enough variance, 10, respectively. We assume E(ω̄) = 1.5, var(ω̄) = 10

and E(σ2) = 0.1, var(σ2) = 10 and fix the hyper-parameters that way. Fix the

hyper-parameters for the λ0 and λ1 to have large variance for the priors, say 10,000.

We calculated the probability of being in the linker region, p(si = 0|yi), for each

residue i along a protein sequence using (4.3). We compare the model in this chapter

with the model in chapter III. We denote the model in chapter III as Model I and the

model in this chapter as Model II. Model I is equivalent to a conventional HMM and

Model II is a Non-stationary HMM with the truncated Poisson duration distribution.

We apply our method to the test dataset to predict the inter-domain linker region

and we use a whole sequence in the prediction instead of part of it. In Figures, ∗ = 1

denotes residues are in the non-linker region and ∗ = 0 denotes residues are linker

region.

Figure 15 shows a case with good prediction in both models, in which probabil-

ities in the linker region are much higher than in other regions. However, Model II

gives more precise predictions than Model I.

Although both models give high probabilities to the linker region, each can also

give high probabilities to some regions that are not linker regions, but may have

similar structure. Most linker regions have negative linker index values, but some

non-linker regions also have this pattern. Figure 16 shows one of these cases. There

are two regions with high probability, but there is only one linker region in the protein.

However, the probability of the actual linker region is higher than that of the other

putative linker region. Also Model II gives a more precise probability boundary and

fewer putative linker regions.
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Figure 15: Probability of being in a linker region of ST-TREMBL Q7UD15

Figure 17(A) shows that the termini of the sequence can have high probabilities.

The characteristics of the termini are not known. This case indicates that termini have

patterns similar to those in the linker region. We have these patterns at the termini

in Model I, because we do not utilize the length information in this model. This is

a major weakness of using a geometric duration distribution. However, Model II can

avoid this problem by incorporating the length of each region using the state duration

distribution, even though it is not perfect as we see in Figure 17(B). This model starts

with the non-linker state and uses length information, so that the putative region in

the beginning of a sequence does not appear. We can find this pattern in all of the

figures. Figure 17(B) shows a good result for those cases.

There are some protein sequences we can not predict well by using Model I. In
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Figure 16: Probability of being in a linker region of ST-TREMBL Q89F20

Figure 18, Model II can give good results while Model I fails. In addition, Model II

gives fewer incorrectly predicted putative linker regions than Model I. Model II tends

to give higher probabilities in the linker region than Model I. Notice that both termini

of a sequence tend to have high probability using Model I, but just the C terminus

of a sequence has high probability when we use Model II.

Figure 19 shows a interesting case. Model I fails to predict the linker regions of

this sequence as we see in Figure 19 (A). However, we can guess the linker region in

Figure19 (B) because it has higher probability than the others even though it is not

high enough to be recognized as a linker region.

We classify a residue into one of two states (linker or non-linker) using the clas-

sification variable (4.7), which is based on the probability in (4.6). To evaluate our
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Figure 17: Probability of being in a linker region of ST-TREMBL Q7P6J3

method for the prediction of linker regions, sensitivity (Sn), specificity (Sp) and cor-

relation coefficient (C) are reported with the test datasets. TP refers to those residues

that are correctly labeled as linker and FP refers to residues that are labeled as linker

while in fact they are non-linker. FN refers to residues that are labeled as non-linker

while in fact they are linker. TN refers to residues that are correctly labeled as non-

linker. The sensitivity is the percentage of actual linker residues that were predicted

to be linker (Sn = TP
TP+FN

) and the specificity is the percentage of predicted linker

residues which are truly linker (Sp = TP
TP+FP

) . The correlation coefficient (Matthews,

1975) is an indication of how much better a given prediction is than a random one
(

C = (TP )(TN)−(FN)(FP )√
(TP+FN)(TP+FP )(TN+FN)(TN+FP )

)

. C = 1 indicates perfect prediction while

C = 0 is expected for a prediction no better than random. The evaluation results are
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Figure 18: Probability of being in a linker region of ST-TREMBL Q81JL7

reported in Table 9.

Table 9: The comparison of models

Sensitivity(Sn) Specificity(Sp) Correlation(C)
Model I 80.68 56.27 65.23
Model II 63.91 71.76 66.02

The sensitivity and the specificity of the stationary model are 80.68% and 56.27%

respectively. Sensitivity and specificity of non-stationary model are 63.91% and

71.76% respectively. We can predict about 64% of the amino acids in the linker

regions correctly out of all the amino acids in the linker regions using our method.

Model I has better sensitivity, because Model I predicts a greater number of regions

as linkers than Model II does (so it also gives many false positive). This is also the
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Figure 19: Probability of being in a linker region of ST-TREMBL Q7XXT5

reason Model I has low specificity. Model II gives a more precise determination of

the boundary of linker regions, so that there are more linker residues which we fail

to correctly identify. However, specificity is about 72%, which indicates that of all

residues which the model predicts to be linkers, 72% are actually in the linker region.

This indicates we have many fewer false positives than Model I. As we have seen

in the figures, there are sequences for which the termini of the sequences have high

probabilities in Model I. However, most of the high probabilities at the beginning

terminus (N terminus) of a sequence are not exhibited in Model II. This is because

we use a specified duration distribution. The standard Matthew’s correlation coef-

ficients (Matthews, 1975) are similar in both models. There are trade-offs between

Model I and Model II, however Model II is preferable because it gives more accurate
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probabilities in the linker region and fewer false predictions.

4.5 Discussion

We develop a model to detect the structurally different inter-domain linker and non-

linker regions in a protein sequence by applying the compositional differences of

amino acids between the two regions using a non-stationary hidden Markov model

(NSHMM). We consider the duration probability density to utilize knowledge about

the distribution of the lengths of the linker/non-linker regions in our model, because

both the composition and the length of the linker region are important. In general,

altering the length of linker regions connecting domains has been shown to affect pro-

tein stability, folding rates and domain-domain orientation (VanLeeuwen et al., 1997;

Robinson and Sauer, 1998). A parameterization of the state duration is achieved by

allowing all the transition probabilities to be functions of d, which is the duration of

the same state stays.

We assume the independence of linker index data. This assumption makes sense,

because we still do not understand the structure of domain and linker region well.

However, we may consider the dependence of data in the model if we can identify the

dependency between the data. We might consider that the observations follow a pth

order autoregressive model.
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CHAPTER V

CONCLUSION

We develop Bayesian models to interpret biological data and use Markov chain Monte

Carlo (MCMC) for the inference method.

Variable selection in cDNA microarray data highlights those genes which exhibit

a different gene expression between two tissue types (e.g. normal and cancer) by

removing redundant variables. We propose a two-level hierarchical Bayesian model

for variable selection in cDNA data. We consider a multivariate Bayesian regres-

sion model and assign priors that favor sparseness in terms of number of variables

(genes) used. We introduce the use of different priors to promote different degrees of

sparseness, using a unified two-level hierarchical Bayesian model. We employ latent

variables to specialize the model to a regression model. All the three models provide

good performance in terms of gene selection, but the model based on the Jeffreys prior

is preferable as there is no need to specify hyper-parameters or any type of threshold

values. A formal choice of cut off value to select significant λ based on posterior or

predictive criteria will be a topic of future research. Also, future research will con-

sider the situation in which genes interact and extend the analysis to multi-category

models.

We develop hidden Markov models to predict the linker regions in a protein us-

ing sequence information alone and use Markov chain Monte Carlo (MCMC) for the

inference method. We apply our methods to a representative dataset of multidomain

protein sequences which are constructed from the Pfam database release 14 (Bate-

man et al., 2002). We incorporate the differences in amino acid composition between

different regions in a protein by using the linker index. Using the linker index, we rec-
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ognize the protein sequence data as continuous data instead of categorical data, which

is a different approach than the existing HMMs in computational protein sequence

analysis. We also incorporate the duration probability density into HMMs to utilize

prior information about the distribution of the lengths of the linker and non-linker

regions. In general, altering the length of linker regions connecting domains has been

shown to affect protein stability, folding rates and domain-domain orientation (Van-

Leeuwen et al., 1997; Robinson and Sauer, 1998). An advantage of our methodology

over the existing methods that do not give probabilistic output is that we may use the

results to gain further insight into properties of the primary sequence. Furthermore,

the probabilities can be considered when attempting to fragment unknown proteins

into domains using molecular techniques prior to structure determination by NMR

or X-ray crystallography. An advantage of both of our methods is that they can

be applied to both the structural and evolutionary definitions of domain, depending

on the dataset used, because neither relies on structure prediction. We assume the

independence of linker index data. This assumption makes sense because we still do

not understand the structure of domain and linker region well. However, we may

consider dependence in the model if we can identify the dependency structure in

the data. We might consider that the observations follow a pth order autoregressive

model. In protein sequence structure prediction, within each segment different states

have different structure. For example, a linker region has less structure than a domain

region, therefore a linker region would be less likely to have structured correlations

between amino acids. Therefore, we may consider that the data follow a pth
i order

autoregressive model conditional on the hidden Markov chain state i. The work in

this dissertation has demonstrated the value of applying a Bayesian approach with

MCMC inference method to problems in bioinformatics. The approaches we have

taken provide probabilities that biologists can use for further decision making.
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APPENDIX A

The purpose of this appendix is to prove equation (2.1) and to provide the derivation

of the full conditional distributions in Chapter II.

Proofs of equtaion 2.1

The Laplace prior can be expressed as a zero-mean Gaussian prior with an indepen-

dent exponentially distributed variance :

π(βi|γ) =

∫ ∞

0

π(βi|λi)π(λi|γ)dλi ∝ Laplace(0,
1√
γ

).

< Proof >

π(βi|γ) =

∫ ∞

0

p(βi|λi)p(λi|γ)dλi

=
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)

γ

2
exp

(
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Let
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λi = xi, dλi = 2xidxi
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Therefore, the result follows.
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The full conditional distribution of β (2.2)

π(β|Z,y,Λ) ∝ N((X′X + Λ−1)−1X′Z, (X′X + Λ−1)−1)

where (X′X + Λ−1)−1 = Λ − ΛX′(XΛX′ + I)−1XΛ

< Derivation >

π(Z, β,Λ|Y ) ∝ π(Z|β,Λ, Y ) × π(β|Λ, Y ) × π(Λ|Y )

∝ |2πI|−1/2exp[−1

2
(Z − Xβ)′(Z − Xβ)]

×|2πΛ|−1/2exp[[−1

2
β′Λβ]π(Λ|Y )

π(β|ZΛ, Y ) ∝ exp[−1

2
{β′(X′X + Λ−1)β − 2β ′X′Z}]

∝ exp[−1

2
{(X′X + Λ−1)ββ ′ − 2X′Zβ′}]

∝ exp[[−(X′X + Λ−1)

2
{β − (X′X + Λ−1)−1X′Z)}

{β − (X′X + Λ−1)−1X′Z)}′]

∝ exp[−1

2
(β − (X′X + Λ−1)−1X′Z)′(X′X + Λ−1)

(β − (X′X + Λ−1)−1X′Z)]

The full conditional distribution of Λ (2.3)

π(Λ|Z,y, β) ∝ Πp
i=1IG(

a + 1

2
,

2

b + β2
i

)

< Derivation >

π(Λ|Y ) =

p
∏

i=1

(λ−1
i )a/2+1exp[−bλ−1

i

2
]

π(Λ|Z,y, β) ∝ |Λ|−1/2exp

[
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2
β′Λ−1β
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2
+1exp
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i

2

]
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2

−1exp
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i )λ

−1
i

2

]
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The full conditional distribution of Λ (2.4)

π(Λ−1|Z,y, β) ∝ Πp
i=1InvGauss(

√
γ

βi

, γ)

where, InvGauss(µ, λ) =

√

λ

2πx3
exp(− λ

2µ2

(x − µ)2

x
), x ≥ 0

< Derivation >
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∏
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The full conditional distribution of Λ (2.5)

π(Λ−1|Z,y, β) ∝ Πp
i=1G(

1

2
,

2

β2
i

)

< Derivation >

π(Λ|Y ) =

p
∏
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dλi
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i
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APPENDIX B

The purpose of this appendix is to provide derivations of full conditional distributions

in Chapter III.

The full conditional distributions of µ (3.5)

µ|· ∼ N
(

A−1(σ−2Q∗′Y ∗ + V−1µ
0
), A−1

)

× I(µ1 > 0)

where, A = (V−1 + σ−2Q∗′Q∗) µ
0

= (µ0a, µ1a)
′ and V = diag(ξ0a, ξ1a).

Derivation >

µ|· ∝ exp

[

− 1

2σ2
(Y ∗ − Q∗µ)′(Y ∗ − Q∗µ)

]

× exp

[

−1

2
(µ − µ

0
)′V−1(µ − µ

0
)

]

∝ exp

[

2σ−2µ′Q∗′Y ∗ − σ−2µ′Q∗′Q∗µ − µ′V−1µ + 2µ′V−1µ
0

2

]

∝ exp

[

−1

2
{µ′(V−1 + σ−2Q∗′Q∗)µ − 2µ′(σ−2Q∗′Y ∗ + V−1µ

0
)}
]

∝ exp

[

−1

2
{µ′Aµ − 2µ′(σ−2Q∗′Y ∗ + V−1µ

0
)}
]

∝ N
(

A−1(σ−2Q∗′Y ∗ + V−1µ
0
), A−1

)
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The full conditional distributions of σ2 (3.6)

σ2|· ∼ IG

(

a + n

2
,

2

b + (Y ∗ − Q∗µ)′(Y ∗ − Q∗µ)

)

Derivation >

σ2|· ∝ (
1

σ2
)

a
2
+1exp(− b

2σ2
) × (

1

σ2
)

n
2 exp

[

− 1

2σ2
(Y ∗ − Q∗µ)′(Y ∗ − Q∗µ)

]

∝ (
1

σ2
)(a+n

2
+1)exp

[

−
b + (Y ∗ − Q∗µ)′(Y ∗ − Q∗µ)

2σ2

]

∝ IG

(

a + n

2
,

2

b + (Y ∗ − Q∗µ)′(Y ∗ − Q∗µ)

)

The full conditional distribution of ω̄ (3.7)

ω̄|· ∼ IG

(

n1 + aw

2
,

2
∑

i∈J
(yi−µ0−µ1si)2

σ2 + bw

)

× I(ω̄ > 1)

Derivation >

ω̄|· ∝ (
1

ω̄
)

aw
2

+1exp(− bw

2ω̄
) × (

1

ω̄σ2
)

n1
2 exp
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2
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2

σ2ω̄

]

∝ (
1

ω̄
)

aw+n1
2

+1exp

[

−bw +
∑

i∈J
(yi−µ0−µ1si)

2

σ2

2ω̄

]

∝ IG

(

n1 + aw

2
,

2
∑

i∈J
(yi−µ0−µ1si)2

σ2 + bw
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The full conditional distributions of η = (p00, p11) (3.8) and (3.9)

p00|s ∼ beta(n00 + u00 − 1, n01 + u01 − 1)

p11|s ∼ beta(n11 + u11 − 1, n10 + u10 − 1)

Derivation >

p00|S ∝ pn00−1
00 (1 − p00)

n01−1pu00−1
00 (1 − p00)

u01−1

∝ p
(n00−u00−1)−1
00 (1 − p00)

(n01−u01−1)−1

∝ beta(n00 + u00 − 1, n01 + u01 − 1)

p11|S ∝ pn11−1
11 (1 − p11)

n10−1pu11−1
11 (1 − p11)

u10−1

∝ p
(n11−u11−1)−1
11 (1 − p11)

(n10−u10−1)−1

∝ beta(n11 + u11 − 1, n10 + u10 − 1)
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APPENDIX C

The purpose of this appendix is to provide the proof of (4.1 ) and derivation of full

conditional distributions in Chapter IV.

The full conditional distributions of η = (λ0, λ1) (4.8)

λj|· ∼ G(d̄j + aj, (mj +
1

bj

)−1) j ∈ {0, 1}

where, d̄j is the number of yi’s whose state are j and mj is the number of segments

whose state are j at the previous iteration.

Derivation >

λj|· ∝
∏

mj

[

λd
je

−λj

d!

]

× λ
aj−1
j e−λj/bj

∝ λ
d̄j+aj−1
j e

−λj(mj+
1
bj

)

∝ G(d̄j + aj, (mj +
1

bj

)−1)
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Proof of proposition 4.1

pii(d) =











1 − P (d|st−1 = i) d = 1

1−Pd
k=1 P (k|st−1=i)

1−Pd−1
k=1 P (k|st−1=i)

d > 1

Proof >

It is straightforward to write

P (d|st−1 = i) =











1 − pii(d), d = 1
∏d−1

k=1(1 − pii(d))pii(k), d > 1

Since P (d|st−1 = i) is represented by the duration specific pii(d) for each d, the

probabilities pii(d) can be expressed

pii(1) = 1 − P (1|st−1 = i)

pii(2) = 1 − P (2|st−1 = i)

pii(1)
= 1 − P (2|st−1 = i)

1 − P (1|st−1 = i)

=
1 − P (1|st−1 = i) − P (2|st−1 = i)

1 − P (1|st−1 = i)

pii(3) = 1 − P (3|st−1 = i)

pii(1)pii(2)
= 1 − P (3|st−1 = i)

1 − P (1|st−1 = i) − P (2|st−1 = i)

=
1 − P (1|st−1 = i) − P (2|st−1 = i) − P (3|st−1 = i)

1 − P (1|st−1 = i) − P (2|st−1 = i)
...

pii(d) = 1 − P (d|st−1 = i)
∏d−1

k=1 pii(k)
= 1 − P (d|st−1 = i)

1 −
∑d−1

l=1 P (l|st−1 = i)

=
1 −∑d

k=1 P (k|st−1 = i)

1 −
∑d−1

l=1 P (l|st−1 = i)

or

pii(d) =
P (duration ofSt−1 = i > d)

P (duration ofSt−1 = i > d − 1)
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