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ABSTRACT

On the Information Flow Required for the Scalability of the
Stability of Motion of Approximately Rigid Formation. (May0R5)
Sai Krishna Yadlapalli, B. Tech., Indian Institute of Teclogy, Madras

Chair of Advisory Committee: Dr. D.V.A.H.G Swaroop

It is known in the literature on Automated Highway Systemnat ihformation flow
can significantly affect the propagation of errors in spgdma collection of vehicles. This
thesis investigates this issue further for a homogenediection of vehicles. Specifically,
we consider the effect of information flow on the propagatidrerrors in spacing and
velocity in a collection of vehicles trying to maintain aiddgormation. The motion of each
vehicle is modeled using a Linear Time Invariant (LTI) syst&\Ve consideundirectedand
connectednformation flow graphs, and assume that that each vehiglecoemmunicate
with a maximum ofg(n) vehicles, where/(n) may vary with the sizex of the collection.
The feedback controller of each vehicle takes into accdwnaggregate errors in position
and velocity of the vehicles, with which it is in direct commcation. The controller is
chosen in such a way that the resulting closed loop systemyip&2 system. This implies
that the loop transfer function must have at least two palébeaorigin. We then show
that if the loop transfer function has three or more polesawirigin, and if the size of the
formation is sufficiently large, then the motion of the cotlen is unstable. Supposes the
number of poles of the transfer function relating the posif a vehicle with the control
input at the origin of the complex plane, and if the num@én%fi1 — 0 asn — oo, then we
show that there is a low frequency sinusoidal disturbandle wnity maximum amplitude
acting on each vehicle such that the maximum errors in spaeisponse increase at least
as much as?( qéf%) A consequence of the results presented in this paper ishibat

maximum of the error in spacing and velocity of any vehicle ba made insensitive to the



size of the collection only if there is at least one vehicléha collection that communicates

with at leastO(y/n) other vehicles in the collection.
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CHAPTER |

INTRODUCTION

A. Vehicle Formations

Recent advances in a variety of technologies such as comatigmccomputation, sensing
and actuation have enabled the development and increaspddhibility of deployment of
collections of Unmanned Vehicles (UVs) (or simply vehigles a wide variety of tasks.
Various applications involving unmanned ground and aeehicles may be found in [1-
19]. For example, UVs are central to automating driving $askan Automated Highway
System (AHS) [1], the dynamic positioning of mobile offsbdrases for creating a runway
for large aircrafts and for information gathering in darges environments [2]. There
seem to be potentially many advantages to deploying UVslieatmns for certain tasks:
flexibility, ease of reconfiguration and lower cost of defahgycollections of smaller UVs as
compared to deploying a larger UV being some of them. In cimlegalize these potential
advantages, the problem of coordinating the motion of tHiectton of vehicles must be
addressed and this work is devoted to an analysis of thidgrob

It is conceivable that a collection of vehicles will be re@ul to maintain (or remain
close to) specified discernible geometric patterns durisigniotion. We call such a col-
lection of vehicles a formation if every vehicle aids in tha@aimenance of the specified
geometric pattern by coordinating its motion through comization with or sensing other
vehicles in the collection. The desired motion of every gkhin a formation is determined
by the desired motion of a few vehicles in the collection sat the specified geometric
pattern is maintained. Since vehicles in a formation ar@lemlidynamically by feedback,

errors in spacing and velocity (defined as the deviation éengbsition and velocity from
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their respective desired values) of a vehicle propagata troe vehicle in the formation to
the other.

Of recent interest to the research community is the rigichfdion of vehicles, where
it is desired that the distance between any two vehicles ires@nstant throughout the
motion. In an AHS, such rigid formations (referred to as dquas) are desired from the
viewpoint of maintaining safety and enhancing the througlgd vehicles on a section of
a congested highway [3]. A rigid formation is helpful for &ization in partially known
environments in the case of mobile robots [4], and in dragicgdn via close formation
flight [5, 6].

An issue with the design of controllers for vehicles in aediion is that otollective
stability of the controlled motion of the vehicles [1, 7, 20]. This issuises because errors
in spacing and velocity of a vehicle propagate to others endbllection. Stability of
motion of vehicles would require the following: Givamye > 0, there must exist a bound
0 > 0 on the norm of thenitial error in the state o&ll vehicles in the collection that
will guarantee that the maximum value of the norm in the eofdhe state ofinyvehicle
at any other time from its desired state is bounded by thengiveCollective stability,
that is dealt with in this work, requires further thabe independent of the size of the
collection. It is well known in Linear Systems Theory [21}at the stability of solutions
of a homogeneous linear constant differential equationbsaexamined by studying the
stability of solution of itszerosolution. It is also known from Linear Systems theory [21]
that the stability of the zero solution can be inferred byneixang the boundednessf
the solution of the linear constant differential equatiomodunded forcing functions and is
referred to as the Bounded Input, Bounded Output (BIBO) Stglpdit]. It is this approach
that we take to infer the collective stability of the fornwatti With a specified controller on
each vehicle and with the vehicles starting at their degesitions and velocities, we ask

the following question: For any given bound s there a bound), independent of the size



of the collectionon the magnitude adnyforce disturbance that can act anyvehicle, so
that as the errors propagate with the choice of controltbey, always remain smaller than
€? The requirement of the independence) dfom the size of the collection captures the
scalability of the stability of motion with the specified ¢orilers. We will say a controller
is scalable if the above requirement of collective stapditcontrolled motion is met. Since
no formation can ever be rigid, we will say that an “approxietarigid formation” can be
synthesized if one can synthesize a scalable controller.

In this work, we are interested in the synthesis of scalabierollers which take into
account an additional consideration - that of spatial shifariance (i.e., the controller is
independent of the index of the vehicle or the size of theectitbn). From a practical
viewpoint, such a controller will be simple to develop ancpiement on every vehicle.
This is important for applications such as the Adaptive G@sntrol (ACC) System for
ground vehicles, because one will not knewpriori how many vehicles with an ACC
System will be placed in succession in traffic. In [8], colténs that used the information
about the index of the vehicle in the collection were synttez however, for them to
achieve an approximately rigid linear formation, the cohtgjains had to increase with
the index of the vehicle at least in a linear manner and fromaatjgal viewpoint, this is
unrealistic since it will lead to saturation of control effeven with small errors in spacing
and velocity. For this reason and for the simplicity of treaht, we only consider the
restricted class of controllers for further investigation

The synthesis of an “approximate rigid formation” is strigngfluenced by the com-
munication pattern between the vehicles. If every vehicléhe formation has the infor-
mation from a reference vehicle in the collection, then rsrin the spacing and velocity
resulting from a disturbance acting on a vehicle can maddtém@ate as it propagates
from one vehicle to another [7]. To date, it is believed theg information concerning

one vehicle must be available &(n) vehicles in the formation if one were to construct



approximate rigid formations, with being the size of the collection. The results in [7]
and those established in this work point in this direction.

There are other ways of coordinating the motion of vehiatea icollection - some
of them stem from practical considerations of the applocait hand and some from the
availability of information to each vehicle in the formatioFor example, methods based
on artificial potential are used in mobile robotics for thegmse of collision avoidance
with other robots and obstacles [22]. In this case, mobit® move about in “loose”
formations and each robot takes an evasive aaigonomouslyf the sensed distance to
other robots or obstacles is less than a certain threshaildth&r method of coordinating
the motion of a vehicle by a driver in the highway is througé tise of a two-second rule;
in this case, the distance between a vehicle and the veliiekdachanges linearly with the
speed and the formation is not rigid. This method of coortitigethe motion of vehicles is
used in the design of Adaptive Cruise Control (ACC) Systems fougd vehicles [9]. It
has the advantage of guaranteeing that errors in spacing{ida of the following distance
from the actual following distance) and velocity do not aifys they propagate with just
the on-board following distance and relative speed senglearly, the diverse ways of
coordinating the motion of vehicles are representativénefdiversity of applications with
different requirements.

The following question naturally arises and is the focuswwéstigation in this thesis:
How does a pattern of communication amongst vehicles atifecpropagation of errors?
Specifically, with a specified pattern of communication agsirthem, can an approxi-
mately rigid formation be synthesized? If the answer to #itief question is in the affirma-
tive, one can employ the same controller in each of the vedictespective of the size of
the collection, i.e., one can design a “scalable” contrstesy with the given information
flow.

The main results of this work concerns the necessary conditbn the information



structure for the synthesis of approximately rigid forrnas and are as follows: If the
motion of each vehicle can be represented as the motion af enass under the action of
a control force and a disturbance force and that the infaomdtow graph is undirected,
we show that there is no “scalable” control system if everlyicle can only communicate
with at mostg(n) vehicles, where: is the size of the collection angdn) satisfies

3
lim a(n)

n—00 n2

= 0.

We show this result by constructing a sinusoidal disturbasf@tmost unit magnitude act-
ing on each vehicle at an appropriately chosen low frequématyresults in a maximum
error in spacing of at Ieasi)(\/%). A consequence of this result is that at least one
vehicle in the collection must communicate with at le@ét?/3) other vehicles in the col-
lection for a “scalable” controller to exist. We also showitif the controller incorporates
an integral action, the motion of the collection is necdfsanstable for all sizes of the

collection greater than a critical value.

B. Thesis Outline

The following is a brief outline of the chapters that follow.

Chapter Il gives an introduction to coordinated vehicle cagroblem. We precisely
define the problem of controlling a string of vehicles in tlhatext of Automated Highway
Systems(AHS) and prove the above results.

Chapter Il generalizes the one-dimensional formation l@mlto any general forma-
tion in ?3. In mathematical terms, a string of vehicles is a collectibsingle-input single-
output (SISO) systems, where as for formation flight of UAU©Imanned Air Vehicles),
one must consider multiple-input multipe-output systeswall as formations where error

propagate in multiple dimensions. We generalize the resdilChapter Il for such general



formations.

Chapter IV provides a graphical view of the results obtaimethe previous chap-
ters. We provide corroborating simulations for a string efiicles and then for a array of
vehicles moving in a straight line (in a non-inertial frame)

Chapter V presents conclusions and gives recommendatidatioe work.



CHAPTER I

STRING OF VEHICLES
In this chapter, we shall first give a detailed descriptiorthef model of the vehicle and
other assumptions required for formulation and analysth@fproblem considered in this
work. We formulate the problem precisely and then preseetailéd analysis of the same.
We shall then derive the error propagation equations. Welade the chapter showing the
results for a string of vehicles.

We will consider a string of vehicles moving in a straightelim this chapter. The
vehicles are indexed in the natural ordering of the strindne Tirst vehicle, which we
call reference vehicle, executes maneuvers with boundedityeand acceleration. This
reference vehicle is also referred to as lead vehicle in tH8 Aterature. For each> 2,
the i*" vehicle desires to maintain a fixed following distante_; from its predecessor.
Initially, all vehicles are assumed to be at their desiresitmm and the the velocities of all

the vehicles are identical.

A. Model of the Vehicle

We shall assume that every vehicle can be modeled by trafusfetion / (s) and is sub-
jected to a controlled forcey(t) and a disturbancé(t). If z(t) is the position of a vehicle
measured from the origin of an inertial reference frame, thee may express the Laplace
transformation X (s), of z(¢) in terms of the Laplace transformatioris(s) and D(s) of

u(t) andd(t) respectively:

(s 4+ a)z(0) + @(0)

X(s) = H(s)[U(s) = D(s) Per— (2.2)
whereH (s) = ——. There are only two cases to consider= 0 anda # 0. The first
h S(S}m) h I id da # he fi

case corresponds to a point mass model with no damping arsttoed one corresponds



to a point mass model with damping. We represent quantifiegerest relevant to thé¢”
vehicle with a subscript In particular, the Laplace transformation of the positieyt) of
thei' vehicle is related to the inputs;(¢) andd;,(t) through the following relation:

(s + a)x;(0) + 2;(0)
s(s+a) '

The termsr;(0) and:i;(0) represent the initial position and velocity of tH& vehicle.
Even if one assumes that the controlled foreg,is the output of some linear time-
invariant actuation process, this is a reasonable modekfsons that will be explained

later when the structure of the controller considered isudised.

B. Further Assumptions and Formulation of the Problem

We make the assumption that the information flow graph isrectid; by that we mean
that if a vehicleA transmits the information concerning its state directlg teehicleB, then
vehicle B transmits the information concerning its state directlyeébicle A. Therefore,
if .S; is the set of vehicles th&" vehicle in the collection can communicate directly with,
this assumption implies thate S; = i € S;. If the i'" vehicle,V; and the;™ vehicle,
V; are in direct communication with each other, we refer to ttaeced pair(i, j) as a
communication link. We also assume that the informatiorilalvie to thei’* vehicle in
the collection isz;(t) — z;(t) — L;;, wherej € S; and L;; is the desired distance to be
maintained between thé and thej* vehicles. We restrict the size 6f (given by|S;|) to
be atmost(n).

We also assume that the information flow graph represent@gadmmunication pat-
tern isconnected By connectedness, we mean that every vehicle in the callestiould
be ableto communicate with every other vehicle in the collectiorereif they are not com-

municating directly, through a sequence of communicatioksl We further assume that



the structure of the control law used by each vehicle, otiaan the reference vehicle, is the

same. Specifically, we consider the following structure:

Ui(s) = =C(8) X jes,(Xils) = X;(s) = =), (2.2)

whereC(s) is a rational scalar transfer function. Let.(¢) € R be the position of the
reference vehicle at time The desired position; 4.s(¢) is related to the position of the
reference vehicle,.; through a constant offsét;, i.e., z; 4es(t) — z,er(t) — L; = 0. We
define the error in spacing(t), of thei'" vehicle to be the deviation of its position from
the desired position, i.ee;(t) := x;(t) — @i ges(t) = zi(t) — Tpep(t) — Ls.

However, it must be pointed out that such a measurement miayendirectly avail-
able to the controlled vehicle, since each vehicle may ne¢ klirectly communicate with
or sense the reference vehicle. However, it can be infelydthbing the information con-
cerning the reference vehicle passed to each vehicle thrapgropriate links. While this
seems possible, in reality, the information concerning#ference vehicle is delayed as it
is passed along the links. In this paper, we do not allow fr plossibility of passing the
information concerning the reference vehicle along thieslin

Since the desired formation corresponds to the vehiclesmgas a rigid body in a
pure translational maneuver, the desired deviafign:= x; 4.5(t) — x;4.5(t) IS constant
throughout the motion and equdls — L;. Let £;(s) be the Laplace transformation of the
error in spacingg;(t) of thei’" vehicle. Letz(t) := z,.;(t)—x,.,(0) be the displacement of
the reference vehicle from its initial position at the tim@henX,.;(s) = ITf(O) + X (s).

If all the initial positions of the vehicles were chosen tarespond to the rigid formation,
thenz;(0) — z,.,(0) — L; = 0. With such a choice of initial conditions and the choice of
control law given in equation (2.2) for the vehicle desctilby equation (2.1) results in the

following set of evolution equations for the errors in spaci
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Fi(s) = Xi(5) — Xoegls) — =
= H(s)[-C(s) Z(—X@(S) — X;(s) — %)) Dy(s)] + %20) — Xpy(s) — %7
= > ~ (2.3)
M —X(s)
U;(s)
= H(s)[=C(s) > (Ei(s) — Ej(s)) — Dy(s)] — X (5).

JES;

There is no loss of generality in choosing the model of thdcletas considered in
Equation (2.1) if the actuation system may be modeled as @aktimime Invariant (LTI)
System. In this case, for some appropriate rational, praopesfer function,P(s), that
represents the transfer function from the input, in termsofimanded voltage to the actual

force that is applied to the vehicle, we have:

Xi(s) = H(s)[P(s)Fi(s) —Di(s)] +

U;(s)

: (2.4)

whereF; is the input to the actuation mechanism of tffevehicle. In this case, the control

law

JES;

results in an error whose Laplace transformation may beessed as:

Es) = Xils) = Xreg(s) — 2
= HE)IP(s) (~ C() S(8) ~ X,(5) = 20)) = Dy(o)] X () - P2 4 1
. JES; g B ~ _)%,(s 1(25)

— H(s)[~P(s)C(s) S (Eils) — E;(s)) — Di(s)] — X(s).

JES;
Equation (2.3) describes the propagation of errors withgossible controlle’(s)

for the point mass model of a vehicle given by equation (2ahjle equation (2.5) de-
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scribes the propagation of errors with any possible cdetrdl(s) for the more compli-
cated model of a vehicle considered in equation (2.4). lidarahat ifC(s) is of the form
P(s)C(s), equations (2.3) and (2.5) are identical. Since, we allt4w) to assume such a
form, there is no loss of generality in assuming a point masdehof a vehicle given by
equation (2.1) and the corresponding controller given maéqn (2.2).

Compactly, the error equation in (2.3) may be convenientiyressed as:
(11 + H(s)C(s) K1 E(s) = —H(s)D(s) — X (s), (2.6)

where E(s) and D(s) are the respective Laplace transformations of the vecterrofs
of the following vehicles and the disturbances acting omththe termX (s) is a vector
of dimensionn — 1 and every element of this vector X(s), the terml,,_; is an identity
matrix of dimensionn — 1 and K is the principal minor obtained by removing the first

row and first column of the Laplaciali of the information flow graph defined as follows:

Forj # i, K;; = —1 if vehiclesi andj communicate directly; otherwisk;; = 0. The
i diagonal element is then defined & = — >, ., K;;. If one uses a mechanical

analogy for the collection, the Laplacidn is essentially the stiffness matrix obtained by
connecting springs of unit spring constant between vehitiat communicate directly and
each vehicle is being viewed as an individual mass.

Fax and Murray [10] have considered a control law foritherehicle of the following

form (which is different from the control law considered Img paper in equation (2.2)):

Ui(s) = — ySin(s> > (Ei(s) = Ej(s)) (2.7)

JES;
This kind of control law for a vehicle essentially averages fteedback information from
all the vehicles directly communicating with it. With thisa@ce of control law and the

model for a vehicle described by Equation (2.1), the equatfor errors in spacing can be



written as:

JES;

The corresponding error propagation equation may be catlypactten as:
[I,_1 + H(s)C(s)M 'K, |E(s) = —H(s)D(s) — X (s),

whereM is the diagonal of<;.

1. Problem formulation

The following are the objectives of the control law given lopation (2.2):

Cls) D (Eils) = E;(s)) — Di(s)] = X (s).

12

(2.8)

(2.9)

1. In the absence of any disturbance on every vehicle in ttmegton, it is desired that

for every: > 2, lim, ., ¢;(t) = 0, when the reference vehicle executes a maneuver

and its speed asymptotically reaches a constant value.

2. In the presence of disturbances of at most unit in magaijtitds desired that there

exist a constand/r > 0 such thatmax{|e;(t)|, |é;(t)|} < Mg for every size of the

collection and for every > 0.

The second objective ensures that the control law given loxateen (2.2) is scalable.

Since the motion of the collection of vehicles is treated a9 lasystem, the motion of

each vehiclenodulothe motion of the reference vehicle is the same as the mofieaah

vehicle when the reference vehicle is grounded. For thisoeahe second objective may

be analyzed for the case when the reference vehicle isrsh@yio

The problem is to determine conditions on the informatiow ftpaph (through con-

straints on/;) and on the controller (through constraints@(s)) so that these two objec-

tives are met.
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C. Analysis

Let us analyze the first requirement: Since the speed of fleeerece vehicle reaches a
constant value, say; asymptotically, we havelim; .., Z(t) = v; = lim,_os?X(s).
Therefore, we will havelim, ., s3X (s) = 0.Further, for the analysis of the requirement,
we haveD(s) = 0. Suppose iflet|],_; + H(s)C(s) K| is Hurwitz andH (s)C(s) has at

least two poles at origin, we have:

limsE(s) = —E%[fn_l+H(S)C(S)K1]—1SX(S),

s—0

= — lir%[szfn,l + s H(s)O(s) K] lir% s°X (s) = 0.

Therefore, the steady state error requirement is readityfriet[7,, ; + H (s)C(s) K]
is Hurwitz, i.e., if the controlled motion of formations itable andH (s)C'(s) has at least
two poles at origin. The second condition, in fact, concehesstability of the controlled
motion of formations.

We will prove the main result concerning the stability of @@ntrolled motion by
using a mechanical analogy between the Laplacian of thenrd#ton flow graph and the
stiffness matrix, which essentially provides a way to addrthe propagation of errors. A
route to instability in structural mechanics, for systehet tlo not have a rigid body mode,
is that the smallest eigenvalue of the stiffness matrix goe=ro. In the context of a for-
mation of vehicles, the smallest eigenvalue of the Laptaéias zero, which corresponds
to the rigid body mode, i.e., all vehicles have the same ngratdisplacement. A way to
get a system without a rigid body mode is to ground one of tiécles. As we have noted
before, for the purposes of examining the propagation afrerin spacing relative to the
reference vehicle in the collection, there is no loss of gaitg in grounding the reference
vehicle. Hence, we set (s) = 0 in equation (2.6). It can be seen without much difficulty

that the the property of the connectedness of the graphaterkto the eigenvalue(s) of the
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Laplacian at zerd.

The mechanical analogy indicates the following line of groo

1. The smallest eigenvalug, of K; goes to zero a8 — 0. Letv be the eigen vector

of K corresponding to the eigen valie

2. Letthe inner product of the vector of spacing errels,), with v be the signat, (¢).

Its Laplace transformatiorty, (s), is given by:

E,(s) = <wv,E(s)>

= —<wv,[l,_1+H(s)C(s)K,| *H(s)D(s) >
H(s)

T 1+ AH(s)C(s) Du(s),

whereD,(s) =< v, D(s) > andd,(t) =< v,d(t) >, the component of the vector
of disturbances acting along the eigen veatorThe mechanical analogy indicates
the examination o, (¢) whend,(t) is a sinusoid at the first natural frequency or

close to the first natural frequency.

1. Convergence of the smallest eigenvaluéefto zero

We will start with the following result:

Lemma 1. Consider information flow graphs where every vehicle in théectbn can at
most communicate directly witlin) other vehicles in the collectiog(n) might vary with

the size of the collection. Then, for any information flowpjrawe have\ < 4.

n

'There is a simple eigenvalue of Laplacianhat zero and hence by grounding one of
the vehicles, we get a system without a rigid mode. This ¥adlédrom the assumption
that the underlying information flow graph is connected. Sitslly, we are eliminating
the possibility of two or more seperate collections of vedsc It is very apparent that
grounding one of the vehicles in any one such seperate tiolletas no effect on the rigid
mode of the others and vice-versa. There are several ititeyggoperties of Laplacian
which result from the application of the Perron-Frobenheorem (refer [23]). One can
refer to [24, 25] for a detailed treatment.
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Proof. SinceK; is symmetric, we will use Rayleigh’s inequality to get an upipeund for
the smallest eigenvalue, For that we construct an assumed modgjn the following
way: we keep the reference vehicle grounded and each vebibkdisplaced by one unit.
Since, the assumed mode shape indicates the amount by wiighreass is displaced, all
the elements of, are equal. Without any loss of generality, we may set eaaghaaié to
be unity and we represent the correspondigdy 1. One may also identify each edge to
be a spring without any loss of generality. This spring-nasasogy makes the rest of the

proof easy to follow. By Rayleigh’s inequality:

K
A < M, (2.10)
< Vg, Vg >

where half of the numerator in the above expression is &feiw as the “reference” po-
tential energy and half of the denominator is referred tdhas‘teference” kinetic energy.
The reference potential energy is the sum of the potenteiggnin each spring. It is clear
that< v,, v, > =n — 1, wheren is the number of vehicles in the formation. Sirktes

the assumed mode shapge,1 is the vector of deflections of the springs - only the springs
connected to the reference vehicle will be deflected; thewiisnot. Hence,< v,, v, >

= ¢.. Therefore, using equation (2.10) for every informationvfigraph satisfying the as-

sumptions, we have

(2.11)

]

In Chapter 1V, various random information flow graphs are aered, which are
subject to the constraint that every vehicle can at most conicate directly with a pre-
specified number of vehicles. The numerical results obthioethem corroborate Lemma

1.
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Remark 1. The same bound holds even for the (combinatorial) Lapla¢idn' K;) con-
sidered by Fax and Murray [10]. We will start by noting that thigenvalues ofi/ ' K;
are the same as that éff ~°-° K, M ~%5. SinceM is a diagonal, positive definite matrix, let

M%5y = w. The proof is as follows:

< w, M=K, M~%%w >

A<
<w,w >
< v, Kiv >
R
T <v,Mv>
n
< & 40

n—1"n-1
The second inequality follows from the first because, Mv >>< v,v > by virtue of

the information flow graph being connected and thereforeryediagonal entry of\/ is

greater than or equal to 1.

Remark 2. Itis possible that(n) — oo asn — oo and yet\ — 0. For example, ifz(n)

increases a®)((n)), a < 1, the quantityq% — 0.

Lemma 1 deals with information flow graphs which are only sabjo the constraint
that each vehicle may only communicate with a specified nurabeehicles. In certain
types of regular formations such as a square formation obi éormation, where each ve-
hicle can only communicate with vehicles within a certaistaince from it, more structure

can be imposed on the graphs such as the one dealt in theifajl@roposition:

Proposition 1. Consider information flow graphs that are connected. Suppask vehicle
in the collection may only communicate directly withother vehicles in the collectiom;
being a constant. Further, suppose that the distributionedficles is such that the number
of vehiclesp(k), with & as the length of the communication path to the referencecleehi
beak”, k=1,...,1,for some positive constantsandr. The term, is the diameter of

the graph considered. Then, the smallest eigenvaloek; goes to zero in the following
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manner: There exists &* > 0 such that for alln > N* for any such information flow

graph considered,

m(r+3)owil 1
(r+1)71 pro

nr+1

A< (2.12)

Proof. We shall again use Rayleigh’s inequality to get an upper bdandhe smallest
eigenvalue), with the assumed mode,, constructed in the following way: We find the
length of the communication path;, of the:*” vehicle to the reference vehicle and assign
this number to the!” element of the assumed mode. If two vehicles are connected by
an edge, the difference between their weights can only bed,-1; this is because the
weight corresponds to the shortest path between the referehicle and the vehicle under
consideration. Hence, each spring in the spring-massrayst@ at most have a deflection
of one unit in magnitude. Since there are at mg5tedges, (because each vehicle is
connected to at most other vehicles and each spring is connected to a pair of keshjc

it follows that the total potential energy is at mdghn. Let [, be the diametet of the
information flow graph and let(k) be the number of vehicles in the collection withas

the length of their communication path to the referenceatehilhen,
< Va, Va >= 1’p(1) + 2°p(2) + - - + l5p(lo)- (2.13)

2For vehicles A and B that do not communicate directly, thgterl, of the communi-
cation path between A and B is the minimum number of interatediehicled’;, V5, ..., V;
such that (1)A andV; communicate directly, (2); and B communicate directly and (3)
forall1 < <I[-1,V;andV;,; communicate directly.

3The diameter of a graplh,, is the maximum value of the length between all possible
pairs of vehicles that do not communicate directly.
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Therefore using Equation 2.10, we have:

A o< I 2
T4 Pp(l)+ .+ (lo—1)%p(lo — 1) + IEp(lo)
< mn 1
T 2a 12 4220 4 (lp— 1)
mn 1
<

200 folo_l 22+

mn  r—+3
2a (lp — 1)’"+3'

We now proceed to get a bound figr Since the total number of vehicles, excluding the

reference vehicle, in the collectionns— 1, it follows thatp(1) + ... + p(lp) =n — 1 and

hence,

Since

lo l6+1 lo
k< "dx = < k"

it follows that

l 17"+1
r+1
-1 1
L1 (DD o
«

From the above inequality, we are guaranteed khat oo asn — oo for all information

graphs considered. Since

lo—1
lim —2— >1,
n—00 (n(r+1))r+1

it follows that there exists &* > 0 such that for al > N* and for any information flow
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graph considered in this corollary, we have:

1 n(r—i—l)) il

lo 2 g ()

_2
:>)\§@ r+3 3§m(7“+3)roi;+1 12.
200 (lo — 1)+ (r+ 1)1 prt

[]

Remark 3. If » < 1, the bound in the corollary is a tighter one than the one gibagn

Lemma 1.

Now that we formulated an upper bound on the convergence aff K; to 0, we
shall make use of it, to analyze the propagation of errorstauaksturbances acting on the
vehicles.

2. Analysis of the propagation of errors

We will focus on showing the following: since — 0 asn — oo,

1. If H(s)C(s) has exactly two poles at origin, there exists a sinusoidstuddance
acting on each vehicle of at most unit amplitude and of freqyeroportional to,/

that results in amplitudes of errors in spacing of the ord&p é, /#)

2. If H(s)C(s) has more than two poles at origin, then there is a critica &iz of the

collection such that for alb > N*, at least one root of the equation
1+ H(s)C(s)A =0

has a positive real part; in other words, the controlled arotf the collection is

unstable.

We will first show the following:
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Lemma 2. If H(s)C(s) has more than two poles at the origin and\if— 0 as the size of
the collectionj, goes too, then there exists a critical siz€* of the formation, such that

for any sizen > N* of the formation, the motion of the formation will be unstable

Proof. For the problem considered in this sectionifs)C(s) has more than two poles at
zero, it can be factored d$(s)C(s) = %, (I > 0) for someL(s) that does not have any

poles at the origin. We can write the closed loop charadieesuationA(s) as,
A(s) := s+ AL(s) = 0.

We first note that\(s) is Hurwitz only if L(0) # 0. We further note thaf\(s) is Hurwitz iff
s™A(1/s) is Hurwitz, wheren is the degree of the polynomial(s). We will now analyze
the root locus 08 (s) := 1+ p7asr: = 1+Ls(f%,whereK = jandL(s) = 7. Since,
L(s) is always proper, it is clear that the root locusé¢f) has at least + 2 asymptotes.
Thus, ask’ — oo, (I + 2) root loci move along lines that make the following angleshwit
the positive real axis.

~180° +360°(j — 1)
I [+ 2 ’

Sincel > 1, it is clear that at least one asymptote, along which one wteoss a RHP
pole, resulting in the instability of the closed loop Asincreases. Hence, # (s)C(s)
has more than two poles at origin, it is evident that therstexa critical sizeV* of the
formation, such that for any size> N* of the formation, the motion of the formation will
be unstable.

Hence, we require that (s)C(s) has not more than two poles at origin to avoid the
instability of the formation. But we also derived thét s)C(s) should have at least two
poles at origin to meet the steady state requirement. Heéacaeet both the conditions,

H(s)C(s) must have exactly two poles at origin.
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Remark 4. In the above lemma, if thE (s)C(s) has exactly two poles at origin i.€.= 0,
and if L(0) is negative, ass| — 0, there is at least one root @ (s) with positive real part.
Hence, the motion of the formation will become unstable. Eeexven fol = 0 we require

L(0) must be positive so as to avoid instability of motion of thienfation.

]

The following theorem addresses the main result for plad@od it relates the propa-
gation of errors in a platoon due to a disturbance of at mastuggnitude acting on each

vehicle:

Theorem 1.

If H(s)C(s) has exactly two poles at the origin andZif0) is positive, then the errors in
spacing grow at least a@(, /q;%) wherep is the number of poles of the plant transfer
function H(s) at the origin. In other words, no control law of the type corsetl in this

. . . . +1
paper is scalable to arbitrarily large collectlonsiflT — 0asn — oc.

Proof. 1. Consider the transfer function that relatesto D,,.

2) =
D, 14+ AH(s)C(s)

Since L(s) does not have a pole at zerb(0) # 0. Consider a modal disturbance
d,(t) to be a sinusoid of unit amplitude and of frequency= /AL(0)rad/s, then
the amplitude of the modal responsgt) is given by the magnitude of the following

complex number:

Let p be the number of poles df/ (s) at the origin. It is clear from the assumed

structure ofH (s) thatp = 2 whena = 0 andp = 1 whena # 0. HenceH (s) can be
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written ast H (s), such thati7(0) # 0. Sincef(w) defined above has a root at zero,

let |0(w)| = w’|A(w)|, whered(0) # 0 ands > 1. Therefore, the amplitude ratio is

1 | H(jw)
(VAL(0))P+7 f(w)

As A — 0, the amplitude ratio grows to infinity as

st

(0) 1
(0)] (V/AL(0))r+o”

™

wherep > 1. Sinceff > 1 asA — 0, e,(t) grows at least as

=

(0) 1
(0)] (v/AL(0))P+1

™

|
Sincee, (t) =< v, e(t) >, we may express,(t) as:e, = qiie1(t) + ... + qunen(t),
for somegqy, ..., q1,. Sincev is an eigenvector, we may assume without any loss
of generality that< v,v >= 1, i.e., ¢}, + ¢}, + ... + ¢i, = 1. Each of the er-
rors in spacing is a sinusoid of the frequeney~= /\L(0). Hence,e;(t) may be
expressed adcos(wt) + Bjsin(wt); one may writee, = (3_7_, q1;4;)cos(wt) +
(2°7=1 @15 B;)sin(wt). It means that either the coefficienta@fs (wt) or sin(wt) must

1

increase a@(W). Without any loss of generality, let us say t@yzl q1jA;)increases

in that fashion. Since

(Z q1i4;) < (Z \qui|)maxo<icnt]Ail

i1 i1
1 ) 1

(VA vl

= max0<i<n+1|Ai’ > O(

Since||v|]; = 1, it follows from the equivalence of norms in finite dimensibn



23

normed vector spacéghat||v||; < y/n. Therefore, the maximum amplitude of the
errors in spacing over all the vehicles for sufficiently kEugjze of the formation is

1 1 _ 1 (n)
of O<W)x/_ﬁ = O(W)' By Lemma 1 we have) < 2. Therefore,

the errors in the spacing increase@é n ) Hence, a scalable control algo-

qp“rl

rithm requires an information flow graph, where at least cgt@ale in the collection
communicates directly with at lea@i(n#1).

O

Remark 5. This theorem may be viewed as a generalization of The@rgmm [7]. The-
orem2.3 considers a string of vehicles moving in a straight line, veheach vehicle may

only communicate with its neighbors.

Remark 6. If the errors were governed by equation (8), then the propagaif errors can
be analyzed as follows: Sinc&/ = M7 and K; = K], we find a matrix of generalized
eigenvectors) such thatQ” MQ = I; QT K,Q = A. The simultaneous diagonalization
of two symmetric positive definite matrices is dealt in vilmag, where)M is commonly
referred to as the mass matrix ard, is referred to as the stiffness matrix. LBg(s) =

QE(s) and similarly,Dg(s) = QD(s). Then:
QL+ K H(s)C(s)Q"E(s) = —H(s)QMQ" D(s)

4Supposer € R", the following inequalities hold true for finite dimensidvactors.

[|2][oo < lz[[s < nfl2[|e0

12l < [lzll2 < V|2l

2|l < [l|l2 < |||

2
Jn
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By the orthogonality relationship, we have:
(I +AH(s)C(s))Eq(s) = —H(s)Dq(s).

Let A be the smallest generalized eigenvalue, i. e., the smalfasie diagonal ele-

ments ofA. Letwv be the corresponding generalized eigenvalue, iy = \v. Define

E, =<, E(s) >andD, =< v, D(s) >. We can relaté?,(s) to D,(s) as:

~ B [—](3) ~
E’U(S) = _1+/\H(S)C(S)Dv<8)’

where D, is an element oD and E, is a corresponding element #. Leté,(t) =<

v, e(t) >andd,(t) =< v,d(t) >. But, we have shown in Theorem 2 that for the equation
in above form,|é, ()] is ofO(ﬁ), whend(t) is a sinusoid of unit magnitude and of
frequency,/AL(0). Since?, =< v, e(t) >, we may write it as

&, = < M"v, M "e(t) >

IN

1Ml [ M~ e(t)]]2

IN

||M’0'5e(t)]|2 (<v,Mv >=1)

IN

o(M=2?)]le(®)]]2

< Vn—1||M""e(t)|| < pv/nlle(t)||s-

wherep = 6(M %) = ——- i = {1,2..n — 1}. Since we are considering informa-

\/min;|S;|’

tion flow graphs which are connectegdjs well-defined angh < 1. Therefore,||e(t) ||

increases at least a@(ﬁﬁ) = O, /wf—ﬂm), for sufficiently large collections. Hence,
it is evident that at least one vehicle in the formation sbdoedmmunicate with at least

_p_ .
O(n#»+1), for a scalable controller to exist.
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CHAPTER IlI

VEHICLE FORMATIONS IN HIGHER DIMENSIONS
In this section, we will consider vehicle formationsith. We will consider such maneuvers
of the formation, where the desired motion of the refererad@cle automatically specifies
the motion of all other vehicles in the formation. A maneuweolving pure translation is

an example of one such maneuver.

A. Model of the Vehicle

The index of the reference vehicle is chosen ta dthout loss of generality as before. The
rest of the vehicles may be indexed in any random fashion(4€t), y;(¢), z;(t)) denote
the position of the’” vehicle in the formation with respect to some fixed inertiahfie of
reference. We will consider vehicles moving in a three disi@mal space and assume that
the motion of each vehicle is decoupled in each dimensiorhande it can be modelled by
a diagonal transfer function matrik(s). We shall further assume that all its three degrees
of freedom are controllable through control forces;,(t), v, ;(t) andu, ;(¢). The distur-
bances acting on thé&" vehicle arel, ;(t), d, ;(t) andd, ;(¢) in the three directions. Let the
Laplace transformations af;(¢), y;(t), z;(t) be respectivelyX;(s), Y;(s) and Z;(s). Sim-
ilarly, let U, ;(s),Uy(s), U..(s) and D, ;(s), D, .(s), D,i(s) represent the Laplace trans-
formations ofu, ;(t), w, ;(t), u.:(t) andd, ;(t), d,.(t), d.:(t) respectively. We will assume

the following extension to the vehicle model considerediean Chapter Il

Xi(s) Uyi(s) — Dyi(s) (o4a)es 045,00
Yi(s) | = P0) | Uypils) = Dyals) | + | temin® -
Zi(s) U.i(s) — D..i(s) (s40)2:(0)+£(0) '

v 2,4 2,0 ST
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In the above equatio®(s) = m_[g, wherel; is the identity matrix ink3. There are
only two cases to considet:= 0, anda # 0. As beforea = 0 corresponds to a point mass
model for each degree of freedom of the vehicle and there dangping; the case # 0
indicates the presence of linear viscous damping. Leteld@srajectory of the reference
vehicle be(z,ef(t), Yres(t), zres(t)). Letl,;, 1, 1., be the desired distance between the
i" vehicle and the reference vehicle along the and > directions. Let,(i, j), 4, (i, j)
andd, (i, j) be the desired distance between vehi¢lesd; in the z, y and z directions.
One may define the error in spacing of tii& vehicle relative to the reference vehicle

(65077? (t)v ey,i(t)a €2, (t)) as follows:

e:p,i(t> =T — Iref@) - lm,ia
ey,i(t) =Y — yref(t) - ly,iv
€.i(t) == 2 — Zrep(t) — Lo
We further assume that the structure of the control law useddeh vehicle, other than

the reference vehicle, is the same. Specifically, we congiidefollowing structure for the

other vehicles:

Usi(s) Xi(s) — X;(s) 5z(sw)
Upils) | =—C) D | Yils) = Vy(s) — 202 |, (3.2)
Ueils) N Zis) — 2s) - 02

whereC(s) is a3 x 3 array of rational transfer functions. Sin€#s) is assumed to have
cross coupling terms, i.e(J(s) is not a diagonal matrix, one may, without any loss of
generality, assume a vehicle model in Equation (3.1). Tasaeing follows along the same
lines as in the previous chapter. We further assume thaalisibnditions of the vehicles
correspond to the required rigid formation. As a consege@hthe choice of the structure

of the controller given in Equation (3.2) and the model ofiglshgiven in Equation (3.1),
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the dynamics of error propagation can be written in one sieguation as follows:

Eyi(s) Eyi(s) — Bz (s) Dy ;(s) X(s)

Eyi(s) = —P(s)C(s) Z Eyi(s) — Ey;(s) — P(s) Dyi(s) - }7(3)
JES; _

2,i(8) E.i(s) — E.;(s) D.i(s) Z(s)

whereX(s) = X,cr(s)—X,er(0), Yi(8) = Yie(5)=Yrer (0) ANAZ;(S) = Zyes () —Zyes (0).

As in the case of single dimension, the above set of equatimmbe written as:
(In-s + P(s)C(s) @ K1) E(8) = —(I,-1 ® P(s))D(s) — X (s),

wherels,_s, I,,_; are identity matrices of dimensioBs — 3 andn — 1 respectively,K;

is the principal minor obtained by removing the first row awtuon of Laplaciank™ of
the information flow graph defined as follows: Fpe# ¢, K;; = —1 if vehicles: andj
communicate directly; otherwisk,;; = 0. Thei'" diagonal element is defined &5, =

— ;2 I;. As considered earlier in Chapter II, we will assume that tiiermation flow
graph isundirectedand connected Hence, by the virtue of assumptions on information
flow graphs /K is symmetric and it cannot haven its spectrum.

The binary operation involving matricesand B given by A ® B indicates the Kro-
necker product oft and B. We shall refer to-em(i, j) andmod(i, j) as the remainder and
quotient obtained respectively whérs divided by;. The termE(s) is the Laplace trans-
formation of the vector of errors in spacing of the vehiaés); and ifp := 2 + rem(i, 3),
the i’ entry of e(t) is e, , if mod(i,3) equals 1, is,, if mod(i,3) is 2 and ise, ,, if
mod(i,3) is 0. Likewise, the termD(s) is the Laplace transformation of the vector of
disturbances and is constructed in a manner similaE¢s). Similarly, the:"" term of
the vectorX (s) is X (s) if mod(i,3) equals 1, is(s) if mod(i,3) equals 3, and i€ s)
otherwise.

Let A be the smallest eigenvalue &f; and letv be the corresponding eigenvector.
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Let py, p2, ps represent the three orthonormal vectors which form thesbafsk®. One

can show that the span ¢p,, ® vy, k = 1,2, 3} is invariant under the action @fs, 3 +

P(S)C(S)@Kl) In partiCU|ar,<[3n73+P(8)C(8)®K1) P1 RV PRV Pz @ vy

P1®v; p2®vr psvy | (Is+AP(s)C(s)).
Definee; ,(t) =< p1 ® v1,e(t) >,e1,(t) =< p2 @ v1,e(t) > ande; ,(t) =<
p3s®@vy, e(t) >. Similarly, defined, ,(t) =< p1®@wv1,d(t) >,d; ,(t) =< p2@v1,d(t) >
andd, ,(t) =< ps ® v1,d(t) >. Then, the Laplace transformations of the signals defined

are related by:

By 4 (s) Dy 4(s) Xi(s)
V() | Eiy(s) | =—P6) | Diys) || Yils) |

Ey(s) Dy .(s) Z\(s)

E1,p(s) e 2

wherey(s) := I3 + AP(s)C(s).

B. Analysis

As in the case of platoons considered in Chapter I, the cbobjectives are as follows:

1. In the absence of any disturbance acting on any vehickryexehicle must track
its desired position when the speed of the reference veasyimptotically reaches a

constant value that is different from its initial speed.

2. Inthe presence of a bounded disturbance of at most uniitoiag, there must exist a
Mg > 0 such that the errors in spacing and velocity of every vehirctee collection

be bounded by irrespectiveof the size of the collection.
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1. Steady-state errors

Let us analyze the first requirement: Since we want the stetdg error in spacing to be
zero as per the first requirement, it is necessarylinat ., sE; , = 0 for any possible

Av, € R such thatim, o s> X, , = Av,.Therefore,

limsEy, = —lil%(813+)\SP(S)C(S))_l.SQXl,p

S—

= — hH(l)(SIg + AsP(s)C(s)) ' Av,.

In the last equation, the Final Value Theorem has been eraglayth the assumption
that the controller is chosen so that the transfer functiatrimmunder consideration is an-
alytic in Re(s) > 0. The limit on the right hand side of the last equation is zenodil
possibleAw, iff lim,_.o(sP(s)C(s))~! = 0. In other words,P(s)C(s) must be express-
ible as% L(s) for some rational(s) such thatZ(0) # 0. We will start with the following
lemma that shows the effect of the number of poles of open t@sfer function matrix
P(s)C(s) on the over all stability of the closed loop system and thestigation of the

propagation of errors in a formation.

Lemma 3. Consider the following characteristic equation for positikagues of\: A(s) :=
det(s'I+AL(s)) = 0, whereZ L(s) is a square matrix of rational, proper transfer functions

with real coefficients.

1. If I > 3, there is a\; > 0 such that for all\ € (0, \;), there is a zero of\(s) with
non-negative real part.
2. If I = 2 and if any of the eigenvalues 6f0) is negative or complex, then there is a

zero of A(s) with non-negative real part.

Proof. If det(L(0)) = 0, thenA(s) has a zero &b for all A. Therefore, it is sufficient to
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consider the case whefat(L(0)) # 0. LetI" be the Nyquist contour which is indented to
the right when poles or zeros dét( )) are encountered. Let(s),i = 1,...,m be the
characteristic loci (eigen values) éf(s). The multi-variable Nyquist criterion indicates
that the sum of the number of encirclements of the Nyquistspbd (the maps of" by)
A‘“ ) about the point-1 + 50 is equal to the excess of the number of zeroa¢f) over

the poles ofZ(s) in the Right Half Plane. Therefore, it is sufficient to showttte Nyquist

plot of )‘S‘fi,i =1,...,m has at least one encirclement about the peiht}- ;0 if [ > 3.

Since the Nyquist plot of"'s(—f) intersects the real axis only a finite number of times,
we will consider only the maximum absolute value of the fimiteersections (not the in-
tersections at infinity). Through an appropriate choice\of, all the finite intersections
of all Nyquist plots of)\’“ ;A € (0,\,;) can be made to occur to the right of the point

—1 + 70 on the real axis. Defing; := min;<;,<,, A1;. Since the intersections at infin-

ity only correspond to the poles of the transfer functitm( Lif)), we consider only the
poles on the imaginary axis. Also, the encountering of ewenlyer of successive zeros on
the Nyquist contour has the same effect of encountering raszmn the Nyquist contour.
Therefore, only the parity of the zeros encountered betvgeenessive poles as one tra-
verses the Nyquist contour matters rather than the exacbeuof zeros. An occurrence
of a pole followed by zero followed by a pole either increasg®ne or does not change
the number of encirclements of the Nyquist plot dependingvbather the Nyquist plot is
starting on the negative real axis prior to encounteringfitise pole of the pole-zero-pole
combination. Since the transfer functldat( )} is proper, ass| — oo, the eigen values

L(s

of &) approach constant values. Therefore|sas— oo, the Nyquist plot of*L reaches

a finite real value along the arc of infinite radius of the Nyfjgontour. Therefore, if> 3,
number of encirclements of the Nyquist pIot%ﬁ;@ is at leastnod(l,2) > 1. Hence, for

all A € (0, A1), the number of encirclements M”Ls(f)

(0, A1) about the point-1+ 50

is at leastn > 1.
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If [ = 2, it can be seen that if any of eigenvaluesidb) is negative or complex,
the number of encirclements about the peirit+ ;0 is at least one. Therefore, the total
number of encirclements about the point + ;0 is at least one, implying that at least one
root of the characteristic equatiadat(s*I + A\L(s)) has at least one root with positive real

part. ]

2. Analysis of propagation of errors

Now that we have obtained the necessary conditions foifgatisthe steady state require-

ment, we shall shift our focus to the analysis of the propagadf errors for bounded

disturbances acting on every vehicle.

Theorem 2. Consider a formation of vehicles with each vehicle following tmodel de-
scribed earlier. Further, suppose that the smallest eigere\ of K; goes ta) as the size

of the collectiony, increases arbitrarily.

1. Letr be the smallest positive integer such that, ., s" P(s)C(s) be bounded. Let
L(s) = s"P(s)C(s). If r > 3, orif r = 2 and any of the eigenvalues 6f0) is
not positive, then there is a critical siZ€* > 0 of the collection such that for all

n > N*, the motion of the vehicles in the collection is unstable.

2. Ifr = 2, then there is a sinusoidal disturbance acting on each Velicthe same fre-
guency and at most unitin magnitude such that the error icsgs ofO (, / #) :
wherel is the smallest positive integer, such thiat, ., s' P(s) is bounded and not

Zero.

Proof. (1) The first part of this theorem is a direct consequence ofrba 3.
(2) We have shown earlier th&t(s)C'(s) should have at least two poles at the origin of the
complex plane to have zero steady state error even if leadlgghakes a maneuver such

that there is a change in the steady state speed of the cmfleetence P(s)C(s) = 5 L(s)
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with L(0) having real and positive eigenvalues. Now, consider a sida disturbance
force acting on each vehicle at the following frequency:= /Au;(0) wherep;(0) is

an eigenvalue of.(0). At that frequency, the amplitude and phase shift are giwen b

(I — Aﬁi{g’)))*lP(jw), which may be expressed as

Lw)\ 1, \ipys 1
/M‘(O)> (Jw) P(Jw)<jw>l,

wherel is the smallest positive integer such thiat, ., s' P(s) is bounded. It should be

(I— A

noted that = 2 whena = 0 andl = 1 whena # 0. Sincelim,, (I — 242) is singular,

w” for somep > 1 is a factor of thedet(I — Ai({oj)). Hence, we may rewrite, for all

)=t as L L(jw), whereL(0) is bounded. Therefore, the

(0) =

w?, the amplitude of errorsy; ,,(¢) increase aé)( pH) for somep > 1 for low frequency

sufficiently smallw, (I — )\Lﬂ(g)

frequency response of the transfer function is givenwa)(—j)lwle

disturbances.Therefore, the amplitude of at least oney émtE; ,,(¢) at least increases
asO( z+1) Without loss of generality, one can say that,(¢) increases in that order.

Since,e; ,(t) =< p1 @ vy, e(t) >, |le(t)|| is of O( Sinceq’ € 33
—_——

lla’Ih T
- - - . q, - - . - -
is a unit vector, it is true for finite dimensional vectors horm unity that||q’|[; <

V3n —3 < /3n. Therefore, the maximum amplitude of the errors in spacivey all

the vehicles for sufficiently large size of the formation fs(¥( By Lemma 1

W“r)
we have,\ < % Therefore, the errors in the spacing increase) §/#> for

sufficiently large formations. O
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CHAPTER IV

SIMULATIONS
For the purposes of numerical simulation, we consider thieamaf collection of vehicles
moving in a straight line. Each vehicle is assumed to be a pa@iss. As mentioned earlier,
the control law used is as follows’;(s) = > g C(s)(zi—z;—L;;), wherej € S; implies
that there exists a communication link betwe&nvehicle and;* vehicle. We consider a
string of vehicles moving in a straight line, where the faliog vehicle tries to maintain a

constant following distance. We describe the correspandésults below:

A. String of Vehicles

We consider a string of vehicles, indexed frdnto n. The set of vehicles that the first
vehicle communicates with directly is the second vehicge 9, = {2}. Fori =2,... ,n—

1, the setS; of vehicles thei'™ vehicle communicates with directly i — 1,7 + 1} and
S, = {n —1}. Figure 1 shows the above information topology in a string e¢hicles. A

lag controller is used for feeding back the error in spacimgjia given byC'(s) = Oﬁﬁl.

Figure 2 shows the convergenceofo 0 as the length of the string increases. Figure 3
shows the propagation of errors in spacing in a string of eixiales. It shows how errors
amplify in response to a sinusoidal disturbance acting erlakt vehicle along the string,
as we move away from the reference vehicle (vehicle inde}edie maximum error in
spacing increases as as the sizex of the string increases. This result is analogous to a
spatially discrete model of a beam, where the first eigemvdécreases elé L being the
length of a beam. The counterpart for the length of the beamtlse size of the collection.
The decrease in natural frequency is due to a reduction ifietffiective stiffness” as the
length of the beam is increased. For this reason, the defteasi expected would be larger.

The Figure 4 shows an example of the effect stated in Theoreifhis plot shows the
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Fig. 1. Predecessor and follower based information flowepain the string

disturbance to error gain as a function of frequency. Asipted, the steady state as well

as the peak gain increases/asncreases. Figure 5 shows the same effect.

04 @
K M actual values
@ formulated upperbounds
0.35-
0.3
o 0251 L)
N4
©
[}
= 0.2
g
c ..
[0}
2
3 0.151 e,
7 .
S =T
S .-“”"‘m
- 0.1+ e,
‘. \..
0.05- ‘w..,
""" B
0 L L L L L H“\HH.H”\ """"" | _EEEERRERE (IAENI BN
4 6 8 10 12 14 16 18 20 22 24

Number of vehicles in array

Fig. 2. The variation of (lowest eigenvalue ok;) with n, for a string ofn. vehicles with
each vehicle connected to the vehicles directly behind aerda@of it

The above simulations are repeated with randomly genenaft@anation flow graphs.
The convergence of to 0 for various random graphs with a maximal degree comgtodi
4 is shown in Figure 6. It can be observed that though the indtion flow graphs are
random, the upper bound derived in Lemma 1 holds good fohalcases even when the
size of the collection is small. The errors in position ing@sse to a sinusoidal disturbance
on the last vehicle is shown in Figure 7. One instance of thedamly generated infor-

mation flow graph is shown in Figure 8. In this case the diameft¢he graph i and
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Errors in postion tracking

Fig. 3. Propagation of the errors along the string

corresponds to the patis— 5 — 6) or (1 —3 —4) or (1 — 5 — 2). It can be seen in Figure

7 that as we move away from the reference vehicle along arhyoskttdiameters, the errors
amplify. The maximum disturbance to error gain at all fraggies is shown in Figure 9.

The variation of the maximal errors of spacing, arising adusinusoidal disturbance on the
last vehicle, with the size of the string is shown in Figure. k@&an be observed that the
error to disturbance gain increases with the size of thectdn, however in a rather slow
manner as opposed to the previous case. This difference enaitributed to the fact that
the diameter of the randomly generated information flow kyriapypically smaller.

To illustrate the limitations in the sizes of collection tlen be considered when
an integral action is included in the controller, we consideontroller described by the
following transfer functiore.gC(s) = jﬁ% However, this strategy will not assure
the stability of the motion of the collection of vehicles &own in Lemma 2. Figure 11

shows the migration of dominant pole to the right half plas¢he size of the collection of

vehicles increases.
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Fig. 4. Variation of the maximum singular value)(of the error to disturbance transfer
function matrix vs. the size of the string

B. Array of Vehicles

In this section, we consider a square formation of vehiclesing in a straight line. Each
vehicle is assumed to be a point mass.We use the same camtriol §ection B of Chapter
II. Since information flow graphs considered here have caimds on degree of a graph
(the number of vehicles in the collection that a vehicle ia tollection can communicate
directly with), it is natural to consider Delaunay triangtibns as described in [11]. The
main advantage of Delaunay triangulation over its couatespis that it avoids very long
and very short communication links. In a Delaunay triangoia each vehicle is linked
only to some of its geographically proximal neighbors. In eackhefDelaunay traingu-
lations considered, every vehicle was connected to a mawiwfueight other vehicles in
the collection. It seems reasonable that there will be suabuad in a Delaunay triangu-
lation, especially when there is a requirement of minimucgpy between vehicles. The
convergence of lowest eigenvalueféf to zero with the size of the array for Delaunay tri-

angulated graph is shown in Figure 12. As in the previous,@alsg controller is used for



37

101

K}
Kd
9 ‘/‘
,/
\’.
8 e
[ 2
Kd
7 Actual maximal errors X s °
-
»
K4
5 6 ,® P
= 2
g ,x' S
= -
4 L °
( g
e L
3 . .
4
() \
i L
2r @ °
2 pe Formulated lower bound
1 o-*
°
®
(] \. Il

L L L L L I
4 6 8 10 12 14 16 18 20
size of the collection , n

Fig. 5. Variation of maximum spacing error with the size o #iring

the feedback of errorg/(s) = Offfl*s‘il. A Delaunay triangulated square formation is shown
in Figure 13. As shown in the figure, the vehicle to the botteftmost of the formation

is chosen to be the reference vehicle. It is apparent fronfighee that the diameter of the
graph is along the leading diagonal. Figure 14 shows howrioesein spacing propagate
along the diameter of the graph in response to a sinusoiglrdance of farthest vehicle
on the leading diagonal from the reference vehicle. It issupprising that the errors am-
plify along the diameter of the graph. Figure 15 shows theimakdisturbance to error
gain@ma: (Tue(s)), whereT,.(s) is the closed loop transfer function between disturbance
and error as the function of frequency. As expected, sineéntlormation of the reference
vehicle is only available to a limited number of vehicless gensitivity of errors to dis-
turbance increases as the size of the array increases.  Raissaei of simulations are
repeated for randomly generated information flow graphsdbay a pre-specified maxi-
mum degree constraint chosen todder the simulations. It can be seen in Figure 16, that

the upper bound derived in Lemma 1 holds good even for rarnglgerierated information

flow graphs for square formations. Finally, the plot of dibfance to error gain at various
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frequencies is shown in Figure 17.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS
In this work, we have considered information flow graphs foollection of vehicles, where
there is a constraint on the maximum number of vehicles ictiiection every vehicle can
communicate with directly. We showed that the motion ofection of vehicles iR is
unstable if the open loop transfer functiéfs)C(s) had more than two poles at the origin.
We have also shown that(s)C(s) must have at least two poles at the origin to track
ramp inputs resulting from the reference vehicle moving @rastant velocity. We further
showed that if\; — 0, there is a disturbance of sufficiently low frequency actingeach
vehicle of at most unit magnitude which results in errorgoacng ofO( %) , Where
[ is the number of poles aP(s) at the origin. Hence, to avoid the propagation of errors as
the size of the collection increases, one requires at legsvehicle to communicate with
O(n'/?) other vehicles.

The results presented in the thesis leave several topidsrtber research.

1. In this thesis, we showed that some simple distributedrobarchitectures result
in instability of motion of vehicles. Specifically, we integgted the information
flow patterns which can be represented by a undirected grAphnteresting case
to study would be the scenario of error propagation, whernrtfeemation topology
corresponds to a directed graph. The case of the directgth gganore general and
includes ‘bne-way communication patterns as well, which are researchedlwide

the literature on AHS.

2. It has been observed that the stability of the motion of/étecles in a formation and
the scalability issues have interesting connections witiclsronization of dynamical

systems. It is found to have tremendous applications, wihidiade synchronization
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of coupled oscillators, modeling populations of intenagtbiological systems and
image processing. It is worthwhile to study the connectloetsveen these fields and

come up with an unifying framework.

. So far, in this thesis, we have formulated certain mininmeguirements ormow
muchinformation the reference vehicle should communicatione @ight need to

know “how often” the information should be sent for accefgatontrol.
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