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ABSTRACT

On the Information Flow Required for the Scalability of the

Stability of Motion of Approximately Rigid Formation. (May 2005)

Sai Krishna Yadlapalli, B. Tech., Indian Institute of Technology, Madras

Chair of Advisory Committee: Dr. D.V.A.H.G Swaroop

It is known in the literature on Automated Highway Systems that information flow

can significantly affect the propagation of errors in spacing in a collection of vehicles. This

thesis investigates this issue further for a homogeneous collection of vehicles. Specifically,

we consider the effect of information flow on the propagationof errors in spacing and

velocity in a collection of vehicles trying to maintain a rigid formation. The motion of each

vehicle is modeled using a Linear Time Invariant (LTI) system. We considerundirectedand

connectedinformation flow graphs, and assume that that each vehicle can communicate

with a maximum ofq(n) vehicles, whereq(n) may vary with the sizen of the collection.

The feedback controller of each vehicle takes into account the aggregate errors in position

and velocity of the vehicles, with which it is in direct communication. The controller is

chosen in such a way that the resulting closed loop system is aType-2 system. This implies

that the loop transfer function must have at least two poles at the origin. We then show

that if the loop transfer function has three or more poles at the origin, and if the size of the

formation is sufficiently large, then the motion of the collection is unstable. Supposel is the

number of poles of the transfer function relating the position of a vehicle with the control

input at the origin of the complex plane, and if the numberq(n)l+1

nl → 0 asn → ∞, then we

show that there is a low frequency sinusoidal disturbance with unity maximum amplitude

acting on each vehicle such that the maximum errors in spacing response increase at least

as much asO
(√

(nl)
q(n)l+1

)

. A consequence of the results presented in this paper is thatthe

maximum of the error in spacing and velocity of any vehicle can be made insensitive to the
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size of the collection only if there is at least one vehicle inthe collection that communicates

with at leastO(
√

n) other vehicles in the collection.
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CHAPTER I

INTRODUCTION

A. Vehicle Formations

Recent advances in a variety of technologies such as communication, computation, sensing

and actuation have enabled the development and increased the possibility of deployment of

collections of Unmanned Vehicles (UVs) (or simply vehicles) for a wide variety of tasks.

Various applications involving unmanned ground and aerialvehicles may be found in [1-

19]. For example, UVs are central to automating driving tasks in an Automated Highway

System (AHS) [1], the dynamic positioning of mobile offshore bases for creating a runway

for large aircrafts and for information gathering in dangerous environments [2]. There

seem to be potentially many advantages to deploying UVs in collections for certain tasks:

flexibility, ease of reconfiguration and lower cost of deploying collections of smaller UVs as

compared to deploying a larger UV being some of them. In orderto realize these potential

advantages, the problem of coordinating the motion of the collection of vehicles must be

addressed and this work is devoted to an analysis of this problem.

It is conceivable that a collection of vehicles will be required to maintain (or remain

close to) specified discernible geometric patterns during its motion. We call such a col-

lection of vehicles a formation if every vehicle aids in the maintenance of the specified

geometric pattern by coordinating its motion through communication with or sensing other

vehicles in the collection. The desired motion of every vehicle in a formation is determined

by the desired motion of a few vehicles in the collection so that the specified geometric

pattern is maintained. Since vehicles in a formation are coupled dynamically by feedback,

errors in spacing and velocity (defined as the deviation in the position and velocity from

The journal model isIEEE Transactions on Automatic Control.
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their respective desired values) of a vehicle propagate from one vehicle in the formation to

the other.

Of recent interest to the research community is the rigid formation of vehicles, where

it is desired that the distance between any two vehicles remain constant throughout the

motion. In an AHS, such rigid formations (referred to as a platoons) are desired from the

viewpoint of maintaining safety and enhancing the throughput of vehicles on a section of

a congested highway [3]. A rigid formation is helpful for localization in partially known

environments in the case of mobile robots [4], and in drag reduction via close formation

flight [5, 6].

An issue with the design of controllers for vehicles in a collection is that ofcollective

stabilityof the controlled motion of the vehicles [1, 7, 20]. This issue arises because errors

in spacing and velocity of a vehicle propagate to others in the collection. Stability of

motion of vehicles would require the following: Givenanyǫ > 0, there must exist a bound

δ > 0 on the norm of theinitial error in the state ofall vehicles in the collection that

will guarantee that the maximum value of the norm in the errorof the state ofanyvehicle

at any other time from its desired state is bounded by the given ǫ. Collective stability,

that is dealt with in this work, requires further thatδ be independent of the size of the

collection. It is well known in Linear Systems Theory [21], that the stability of solutions

of a homogeneous linear constant differential equation canbe examined by studying the

stability of solution of itszerosolution. It is also known from Linear Systems theory [21]

that the stability of the zero solution can be inferred by examining theboundednessof

the solution of the linear constant differential equation to bounded forcing functions and is

referred to as the Bounded Input, Bounded Output (BIBO) Stability [21]. It is this approach

that we take to infer the collective stability of the formation. With a specified controller on

each vehicle and with the vehicles starting at their desiredpositions and velocities, we ask

the following question: For any given bound,ǫ, is there a bound,δ, independent of the size
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of the collection, on the magnitude ofany force disturbance that can act onanyvehicle, so

that as the errors propagate with the choice of controllers,they always remain smaller than

ǫ? The requirement of the independence ofδ from the size of the collection captures the

scalability of the stability of motion with the specified controllers. We will say a controller

is scalable if the above requirement of collective stability of controlled motion is met. Since

no formation can ever be rigid, we will say that an “approximately rigid formation” can be

synthesized if one can synthesize a scalable controller.

In this work, we are interested in the synthesis of scalable controllers which take into

account an additional consideration - that of spatial shift-invariance (i.e., the controller is

independent of the index of the vehicle or the size of the collection). From a practical

viewpoint, such a controller will be simple to develop and implement on every vehicle.

This is important for applications such as the Adaptive Cruise Control (ACC) System for

ground vehicles, because one will not knowa priori how many vehicles with an ACC

System will be placed in succession in traffic. In [8], controllers that used the information

about the index of the vehicle in the collection were synthesized; however, for them to

achieve an approximately rigid linear formation, the control gains had to increase with

the index of the vehicle at least in a linear manner and from a practical viewpoint, this is

unrealistic since it will lead to saturation of control effort even with small errors in spacing

and velocity. For this reason and for the simplicity of treatment, we only consider the

restricted class of controllers for further investigation.

The synthesis of an “approximate rigid formation” is strongly influenced by the com-

munication pattern between the vehicles. If every vehicle in the formation has the infor-

mation from a reference vehicle in the collection, then errors in the spacing and velocity

resulting from a disturbance acting on a vehicle can made to attenuate as it propagates

from one vehicle to another [7]. To date, it is believed that the information concerning

one vehicle must be available toO(n) vehicles in the formation if one were to construct
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approximate rigid formations, withn being the size of the collection. The results in [7]

and those established in this work point in this direction.

There are other ways of coordinating the motion of vehicles in a collection - some

of them stem from practical considerations of the application at hand and some from the

availability of information to each vehicle in the formation. For example, methods based

on artificial potential are used in mobile robotics for the purpose of collision avoidance

with other robots and obstacles [22]. In this case, mobile robots move about in “loose”

formations and each robot takes an evasive actionautonomouslyif the sensed distance to

other robots or obstacles is less than a certain threshold. Another method of coordinating

the motion of a vehicle by a driver in the highway is through the use of a two-second rule;

in this case, the distance between a vehicle and the vehicle ahead changes linearly with the

speed and the formation is not rigid. This method of coordinating the motion of vehicles is

used in the design of Adaptive Cruise Control (ACC) Systems for ground vehicles [9]. It

has the advantage of guaranteeing that errors in spacing (deviation of the following distance

from the actual following distance) and velocity do not amplify as they propagate with just

the on-board following distance and relative speed sensors. Clearly, the diverse ways of

coordinating the motion of vehicles are representative of the diversity of applications with

different requirements.

The following question naturally arises and is the focus of investigation in this thesis:

How does a pattern of communication amongst vehicles affectthe propagation of errors?

Specifically, with a specified pattern of communication amongst them, can an approxi-

mately rigid formation be synthesized? If the answer to the latter question is in the affirma-

tive, one can employ the same controller in each of the vehicles irrespective of the size of

the collection, i.e., one can design a “scalable” control system with the given information

flow.

The main results of this work concerns the necessary conditions on the information
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structure for the synthesis of approximately rigid formations and are as follows: If the

motion of each vehicle can be represented as the motion of a unit mass under the action of

a control force and a disturbance force and that the information flow graph is undirected,

we show that there is no “scalable” control system if every vehicle can only communicate

with at mostq(n) vehicles, wheren is the size of the collection andq(n) satisfies

lim
n→∞

q(n)3

n2
= 0.

We show this result by constructing a sinusoidal disturbance of atmost unit magnitude act-

ing on each vehicle at an appropriately chosen low frequencythat results in a maximum

error in spacing of at leastO(
√

n2

q3(n)
). A consequence of this result is that at least one

vehicle in the collection must communicate with at leastO(n2/3) other vehicles in the col-

lection for a “scalable” controller to exist. We also show that if the controller incorporates

an integral action, the motion of the collection is necessarily unstable for all sizes of the

collection greater than a critical value.

B. Thesis Outline

The following is a brief outline of the chapters that follow.

Chapter II gives an introduction to coordinated vehicle control problem. We precisely

define the problem of controlling a string of vehicles in the context of Automated Highway

Systems(AHS) and prove the above results.

Chapter III generalizes the one-dimensional formation problem to any general forma-

tion inℜ3. In mathematical terms, a string of vehicles is a collectionof single-input single-

output (SISO) systems, where as for formation flight of UAV’s(Unmanned Air Vehicles),

one must consider multiple-input multipe-output systems as well as formations where error

propagate in multiple dimensions. We generalize the results of Chapter II for such general
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formations.

Chapter IV provides a graphical view of the results obtained in the previous chap-

ters. We provide corroborating simulations for a string of vehicles and then for a array of

vehicles moving in a straight line (in a non-inertial frame).

Chapter V presents conclusions and gives recommendation forfuture work.
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CHAPTER II

STRING OF VEHICLES

In this chapter, we shall first give a detailed description ofthe model of the vehicle and

other assumptions required for formulation and analysis ofthe problem considered in this

work. We formulate the problem precisely and then present a detailed analysis of the same.

We shall then derive the error propagation equations. We conclude the chapter showing the

results for a string of vehicles.

We will consider a string of vehicles moving in a straight line in this chapter. The

vehicles are indexed in the natural ordering of the string. The first vehicle, which we

call reference vehicle, executes maneuvers with bounded velocity and acceleration. This

reference vehicle is also referred to as lead vehicle in the AHS literature. For eachi ≥ 2,

the ith vehicle desires to maintain a fixed following distanceLi,i−1 from its predecessor.

Initially, all vehicles are assumed to be at their desired position and the the velocities of all

the vehicles are identical.

A. Model of the Vehicle

We shall assume that every vehicle can be modeled by transferfunctionH(s) and is sub-

jected to a controlled force,u(t) and a disturbanced(t). If x(t) is the position of a vehicle

measured from the origin of an inertial reference frame, then one may express the Laplace

transformation,X(s), of x(t) in terms of the Laplace transformations,U(s) andD(s) of

u(t) andd(t) respectively:

X(s) = H(s)[U(s) − D(s)] +
(s + a)x(0) + ẋ(0)

s(s + a)
, (2.1)

whereH(s) = 1
s(s+a)

. There are only two cases to consider:a = 0 anda 6= 0. The first

case corresponds to a point mass model with no damping and thesecond one corresponds
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to a point mass model with damping. We represent quantities of interest relevant to theith

vehicle with a subscripti. In particular, the Laplace transformation of the position, xi(t) of

theith vehicle is related to the inputs,ui(t) anddi(t) through the following relation:

Xi(s) = H(s)[Ui(s) − Di(s)] +
(s + a)xi(0) + ẋi(0)

s(s + a)
.

The termsxi(0) andẋi(0) represent the initial position and velocity of theith vehicle.

Even if one assumes that the controlled force,ui, is the output of some linear time-

invariant actuation process, this is a reasonable model forreasons that will be explained

later when the structure of the controller considered is discussed.

B. Further Assumptions and Formulation of the Problem

We make the assumption that the information flow graph is undirected; by that we mean

that if a vehicleA transmits the information concerning its state directly toa vehicleB, then

vehicleB transmits the information concerning its state directly tovehicleA. Therefore,

if Si is the set of vehicles theith vehicle in the collection can communicate directly with,

this assumption implies thatj ∈ Si ⇒ i ∈ Sj. If the ith vehicle,Vi and thejth vehicle,

Vj are in direct communication with each other, we refer to the ordered pair(i, j) as a

communication link. We also assume that the information available to theith vehicle in

the collection isxi(t) − xj(t) − Lij, wherej ∈ Si andLij is the desired distance to be

maintained between theith and thejth vehicles. We restrict the size ofSi (given by|Si|) to

be atmostq(n).

We also assume that the information flow graph representing the communication pat-

tern isconnected. By connectedness, we mean that every vehicle in the collection should

be ableto communicate with every other vehicle in the collection, even if they are not com-

municating directly, through a sequence of communication links. We further assume that



9

the structure of the control law used by each vehicle, other than the reference vehicle, is the

same. Specifically, we consider the following structure:

Ui(s) = −C(s)
∑

j∈Si
(Xi(s) − Xj(s) − Lij

s
), (2.2)

whereC(s) is a rational scalar transfer function. Letxref (t) ∈ ℜ be the position of the

reference vehicle at timet. The desired positionxi,des(t) is related to the position of the

reference vehiclexref through a constant offsetLi, i.e.,xi,des(t) − xref (t) − Li ≡ 0. We

define the error in spacingei(t), of theith vehicle to be the deviation of its position from

the desired position, i.e.,ei(t) := xi(t) − xi,des(t) = xi(t) − xref (t) − Li.

However, it must be pointed out that such a measurement may not be directly avail-

able to the controlled vehicle, since each vehicle may not have directly communicate with

or sense the reference vehicle. However, it can be inferred by having the information con-

cerning the reference vehicle passed to each vehicle through appropriate links. While this

seems possible, in reality, the information concerning thereference vehicle is delayed as it

is passed along the links. In this paper, we do not allow for this possibility of passing the

information concerning the reference vehicle along the links.

Since the desired formation corresponds to the vehicles moving as a rigid body in a

pure translational maneuver, the desired deviationLij := xi,des(t) − xj,des(t) is constant

throughout the motion and equalsLi − Lj. Let Ei(s) be the Laplace transformation of the

error in spacing,ei(t) of theith vehicle. Let̄x(t) := xref (t)−xref (0) be the displacement of

the reference vehicle from its initial position at the timet. ThenXref (s) =
xref (0)

s
+ X̄(s).

If all the initial positions of the vehicles were chosen to correspond to the rigid formation,

thenxi(0) − xref (0) − Li ≡ 0. With such a choice of initial conditions and the choice of

control law given in equation (2.2) for the vehicle described by equation (2.1) results in the

following set of evolution equations for the errors in spacing:
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Ei(s) = Xi(s) − Xref (s) −
Li

s

= H(s)[−C(s)
( ∑

j∈Si

(Xi(s) − Xj(s) −
Lij

s
)
)

︸ ︷︷ ︸

Ui(s)

−Di(s)] +
xi(0)

s
− Xref (s) −

Li

s
︸ ︷︷ ︸

−X̄(s)

,

= H(s)[−C(s)
∑

j∈Si

(Ei(s) − Ej(s)) − Di(s)] − X̄(s).

(2.3)

There is no loss of generality in choosing the model of the vehicle as considered in

Equation (2.1) if the actuation system may be modeled as a Linear Time Invariant (LTI)

System. In this case, for some appropriate rational, propertransfer function,P (s), that

represents the transfer function from the input, in terms ofcommanded voltage to the actual

force that is applied to the vehicle, we have:

Xi(s) = H(s)[P (s)Fi(s)
︸ ︷︷ ︸

Ui(s)

−Di(s)] +
sxi(0) + ẋi(0)

s2
, (2.4)

whereFi is the input to the actuation mechanism of theith vehicle. In this case, the control

law

Fi(s) = −C̄(s)
∑

j∈Si

(Xi(s) − Xj(s) −
Lij

s
)

results in an error whose Laplace transformation may be expressed as:

Ei(s) = Xi(s) − Xref (s) −
Li

s

= H(s)[P (s)
(

− C̄(s)
∑

j∈Si

(Xi(s) − Xj(s) −
Lij

s
)
)

︸ ︷︷ ︸

Fi(s)

−Di(s)]−Xref (s) −
xi(0)

s
+

Li

s
︸ ︷︷ ︸

−X̄(s)

,

= H(s)[−P (s)C̄(s)
∑

j∈Si

(Ei(s) − Ej(s)) − Di(s)] − X̄(s).

(2.5)

Equation (2.3) describes the propagation of errors with anypossible controllerC(s)

for the point mass model of a vehicle given by equation (2.1),while equation (2.5) de-
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scribes the propagation of errors with any possible controller C̄(s) for the more compli-

cated model of a vehicle considered in equation (2.4). It is clear that ifC(s) is of the form

P (s)C̄(s), equations (2.3) and (2.5) are identical. Since, we allowC(s) to assume such a

form, there is no loss of generality in assuming a point mass model of a vehicle given by

equation (2.1) and the corresponding controller given by equation (2.2).

Compactly, the error equation in (2.3) may be conveniently expressed as:

[In−1 + H(s)C(s)K1]E(s) = −H(s)D(s) − X̃(s), (2.6)

whereE(s) andD(s) are the respective Laplace transformations of the vector oferrors

of the following vehicles and the disturbances acting on them; the termX̃(s) is a vector

of dimensionn − 1 and every element of this vector is̄X(s), the termIn−1 is an identity

matrix of dimensionn − 1 andK1 is the principal minor obtained by removing the first

row and first column of the LaplacianK of the information flow graph defined as follows:

For j 6= i, Kij = −1 if vehiclesi andj communicate directly; otherwiseKij = 0. The

ith diagonal element is then defined asKii = −∑n
j=1,j 6=i Kij. If one uses a mechanical

analogy for the collection, the LaplacianK is essentially the stiffness matrix obtained by

connecting springs of unit spring constant between vehicles that communicate directly and

each vehicle is being viewed as an individual mass.

Fax and Murray [10] have considered a control law for theith vehicle of the following

form (which is different from the control law considered in this paper in equation (2.2)):

Ui(s) = − 1

|Si|
C(s)

∑

j∈Si

(Ei(s) − Ej(s)) (2.7)

This kind of control law for a vehicle essentially averages the feedback information from

all the vehicles directly communicating with it. With this choice of control law and the

model for a vehicle described by Equation (2.1), the equations for errors in spacing can be
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written as:

Ei(s) = H(s)[− 1

|Si|
C(s)

∑

j∈Si

(Ei(s) − Ej(s)) − Di(s)] − X̄(s). (2.8)

The corresponding error propagation equation may be compactly written as:

[In−1 + H(s)C(s)M−1K1]E(s) = −H(s)D(s) − X̃(s), (2.9)

whereM is the diagonal ofK1.

1. Problem formulation

The following are the objectives of the control law given by equation (2.2):

1. In the absence of any disturbance on every vehicle in the formation, it is desired that

for everyi ≥ 2, limt→∞ ei(t) = 0, when the reference vehicle executes a maneuver

and its speed asymptotically reaches a constant value.

2. In the presence of disturbances of at most unit in magnitude, it is desired that there

exist a constantMR > 0 such thatmax{|ei(t)|, |ėi(t)|} ≤ MR for every size of the

collection and for everyt ≥ 0.

The second objective ensures that the control law given by equation (2.2) is scalable.

Since the motion of the collection of vehicles is treated as aLTI system, the motion of

each vehiclemodulothe motion of the reference vehicle is the same as the motion of each

vehicle when the reference vehicle is grounded. For this reason, the second objective may

be analyzed for the case when the reference vehicle is stationary.

The problem is to determine conditions on the information flow graph (through con-

straints onK1) and on the controller (through constraints onC(s)) so that these two objec-

tives are met.
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C. Analysis

Let us analyze the first requirement: Since the speed of the reference vehicle reaches a

constant value, sayvf asymptotically, we have:limt→∞ ˙̄x(t) = vf = lims→0 s2X̄(s).

Therefore, we will have:lims→0 s3X̄(s) = 0.Further, for the analysis of the requirement,

we haveD(s) ≡ 0. Suppose ifdet[In−1 + H(s)C(s)K1] is Hurwitz andH(s)C(s) has at

least two poles at origin, we have:

lim
s→0

sE(s) = − lim
s→0

[In−1 + H(s)C(s)K1]
−1sX̃(s),

= − lim
s→0

[s2In−1 + s2H(s)C(s)K1]
−1 lim

s→0
s3X̃(s) = 0.

Therefore, the steady state error requirement is readily met if det[In−1+H(s)C(s)K1]

is Hurwitz, i.e., if the controlled motion of formations is stable andH(s)C(s) has at least

two poles at origin. The second condition, in fact, concernsthe stability of the controlled

motion of formations.

We will prove the main result concerning the stability of thecontrolled motion by

using a mechanical analogy between the Laplacian of the information flow graph and the

stiffness matrix, which essentially provides a way to address the propagation of errors. A

route to instability in structural mechanics, for systems that do not have a rigid body mode,

is that the smallest eigenvalue of the stiffness matrix goesto zero. In the context of a for-

mation of vehicles, the smallest eigenvalue of the Laplacian K is zero, which corresponds

to the rigid body mode, i.e., all vehicles have the same non-trivial displacement. A way to

get a system without a rigid body mode is to ground one of the vehicles. As we have noted

before, for the purposes of examining the propagation of errors in spacing relative to the

reference vehicle in the collection, there is no loss of generality in grounding the reference

vehicle. Hence, we set̄X(s) = 0 in equation (2.6). It can be seen without much difficulty

that the the property of the connectedness of the graph is related to the eigenvalue(s) of the
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Laplacian at zero1.

The mechanical analogy indicates the following line of proof:

1. The smallest eigenvalue,λ, of K1 goes to zero asn → 0. Let v be the eigen vector

of K1 corresponding to the eigen valueλ.

2. Let the inner product of the vector of spacing errors,e(t), with v be the signalev(t).

Its Laplace transformation,Ev(s), is given by:

Ev(s) = < v,E(s) >

= − < v, [In−1 + H(s)C(s)K1]
−1H(s)D(s) >

= − H(s)

1 + λH(s)C(s)
Dv(s),

whereDv(s) =< v,D(s) > anddv(t) =< v,d(t) >, the component of the vector

of disturbances acting along the eigen vectorv. The mechanical analogy indicates

the examination ofev(t) whendv(t) is a sinusoid at the first natural frequency or

close to the first natural frequency.

1. Convergence of the smallest eigenvalue ofK1 to zero

We will start with the following result:

Lemma 1. Consider information flow graphs where every vehicle in the collection can at

most communicate directly withq(n) other vehicles in the collection,q(n) might vary with

the size of the collection. Then, for any information flow graph, we haveλ ≤ q(n)
n−1

.

1There is a simple eigenvalue of LaplacianK at zero and hence by grounding one of
the vehicles, we get a system without a rigid mode. This follows from the assumption
that the underlying information flow graph is connected. Physically, we are eliminating
the possibility of two or more seperate collections of vehicles. It is very apparent that
grounding one of the vehicles in any one such seperate collection, has no effect on the rigid
mode of the others and vice-versa. There are several interesting properties of Laplacian
which result from the application of the Perron-Frobenius theorem (refer [23]). One can
refer to [24, 25] for a detailed treatment.



15

Proof. SinceK1 is symmetric, we will use Rayleigh’s inequality to get an upper bound for

the smallest eigenvalue,λ. For that we construct an assumed mode,va in the following

way: we keep the reference vehicle grounded and each vehicleto be displaced by one unit.

Since, the assumed mode shape indicates the amount by which every mass is displaced, all

the elements ofva are equal. Without any loss of generality, we may set each element to

be unity and we represent the correspondingva by 1. One may also identify each edge to

be a spring without any loss of generality. This spring-massanalogy makes the rest of the

proof easy to follow. By Rayleigh’s inequality:

λ ≤ < va, K1va >

< va,va >
, (2.10)

where half of the numerator in the above expression is referred to as the “reference” po-

tential energy and half of the denominator is referred to as the “reference” kinetic energy.

The reference potential energy is the sum of the potential energy in each spring. It is clear

that< va,va > = n − 1, wheren is the number of vehicles in the formation. Since1 is

the assumed mode shape,K11 is the vector of deflections of the springs - only the springs

connected to the reference vehicle will be deflected; the rest will not. Hence,< va,va >

= qr. Therefore, using equation (2.10) for every information flow graph satisfying the as-

sumptions, we have

λ ≤ qr

n − 1
≤ q(n)

n − 1
(2.11)

In Chapter IV, various random information flow graphs are considered, which are

subject to the constraint that every vehicle can at most communicate directly with a pre-

specified number of vehicles. The numerical results obtained for them corroborate Lemma

1.
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Remark 1. The same bound holds even for the (combinatorial) Laplacian(M−1K1) con-

sidered by Fax and Murray [10]. We will start by noting that theeigenvalues ofM−1K1

are the same as that ofM−0.5K1M
−0.5. SinceM is a diagonal, positive definite matrix, let

M0.5v = w. The proof is as follows:

λ ≤ < w,M−0.5K1M
−0.5w >

< w,w >

≤ < v, K1v >

< v,Mv >

≤ qr

n − 1
≤ q(n)

n − 1
.

The second inequality follows from the first because< v,Mv >≥< v,v > by virtue of

the information flow graph being connected and therefore, every diagonal entry ofM is

greater than or equal to 1.

Remark 2. It is possible thatq(n) → ∞ asn → ∞ and yetλ → 0. For example, ifq(n)

increases asO((n)α), α < 1, the quantityq(n)
n

→ 0.

Lemma 1 deals with information flow graphs which are only subject to the constraint

that each vehicle may only communicate with a specified number of vehicles. In certain

types of regular formations such as a square formation or a cubic formation, where each ve-

hicle can only communicate with vehicles within a certain distance from it, more structure

can be imposed on the graphs such as the one dealt in the following proposition:

Proposition 1. Consider information flow graphs that are connected. Supposeeach vehicle

in the collection may only communicate directly withm other vehicles in the collection,m

being a constant. Further, suppose that the distribution ofvehicles is such that the number

of vehiclesp(k), with k as the length of the communication path to the reference vehicle

beαkr, k = 1, . . . , l0 for some positive constantsα andr. The terml0 is the diameter of

the graph considered. Then, the smallest eigenvalueλ of K1 goes to zero in the following
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manner: There exists aN∗ > 0 such that for alln > N∗ for any such information flow

graph considered,

λ ≤ m(r + 3)α
2

r+1

(r + 1)
r+3

r+1

1

n
2

r+1

. (2.12)

Proof. We shall again use Rayleigh’s inequality to get an upper boundfor the smallest

eigenvalueλ, with the assumed modeva, constructed in the following way: We find the

length of the communication path2 li, of theith vehicle to the reference vehicle and assign

this number to theith element of the assumed mode. If two vehicles are connected by

an edge, the difference between their weights can only be 0, 1or -1; this is because the

weight corresponds to the shortest path between the reference vehicle and the vehicle under

consideration. Hence, each spring in the spring-mass system can at most have a deflection

of one unit in magnitude. Since there are at mostmn
2

edges, (because each vehicle is

connected to at mostm other vehicles and each spring is connected to a pair of vehicles),

it follows that the total potential energy is at most1
4
mn. Let l0 be the diameter3 of the

information flow graph and letp(k) be the number of vehicles in the collection withk as

the length of their communication path to the reference vehicle. Then,

< va,va >= 12p(1) + 22p(2) + · · · + l20p(l0). (2.13)

2For vehicles A and B that do not communicate directly, the length, l, of the communi-
cation path between A and B is the minimum number of intermediate vehiclesV1, V2, . . . , Vl

such that (1)A andV1 communicate directly, (2)Vl andB communicate directly and (3)
for all 1 ≤ i ≤ l − 1, Vi andVi+1 communicate directly.

3The diameter of a graph,l0, is the maximum value of the length between all possible
pairs of vehicles that do not communicate directly.
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Therefore using Equation 2.10, we have:

λ ≤ mn

4

2

12p(1) + . . . + (l0 − 1)2p(l0 − 1) + l20p(l0)

≤ mn

2α

1

12+r + 22+r + . . . + (l0 − 1)2+r

≤ mn

2α

1
∫ l0−1

0
x2+rdx

=
mn

2α

r + 3

(l0 − 1)r+3
.

We now proceed to get a bound forl0. Since the total number of vehicles, excluding the

reference vehicle, in the collection isn − 1, it follows thatp(1) + . . . + p(l0) = n − 1 and

hence,

α

l0−1∑

k=0

kr ≤ n − 1 ≤ α

l0∑

k=0

kr.

Since

l0−1∑

k=0

kr ≤
∫ l0

0

xrdx =
lr+1
0

r + 1
≤

l0∑

k=0

kr.

it follows that

n ≤ 1 + α
(l0 + 1)r+1

r + 1

⇒ l0 + 1 ≥ (
(n − 1)(r + 1)

α
)

1

r+1 .

From the above inequality, we are guaranteed thatl0 → ∞ asn → ∞ for all information

graphs considered. Since

lim
n→∞

l0 − 1

(n(r+1)
α

)
1

r+1

≥ 1,

it follows that there exists aN∗ > 0 such that for alln > N∗ and for any information flow
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graph considered in this corollary, we have:

l0 ≥
1

2r+3
(
n(r + 1)

α
)

1

r+1 ,

⇒ λ ≤ mn

2α

r + 3

(l0 − 1)r+3
≤ m(r + 3)α

2

r+1

(r + 1)
r+3

r+1

1

n
2

r+1

.

Remark 3. If r < 1, the bound in the corollary is a tighter one than the one givenby

Lemma 1.

Now that we formulated an upper bound on the convergence ofλ of K1 to 0, we

shall make use of it, to analyze the propagation of errors dueto disturbances acting on the

vehicles.

2. Analysis of the propagation of errors

We will focus on showing the following: sinceλ → 0 asn → ∞,

1. If H(s)C(s) has exactly two poles at origin, there exists a sinusoidal disturbance

acting on each vehicle of at most unit amplitude and of frequency proportional to
√

λ

that results in amplitudes of errors in spacing of the order of O
(√

n
q(n)2

)

.

2. If H(s)C(s) has more than two poles at origin, then there is a critical sizeN∗ of the

collection such that for alln > N∗, at least one root of the equation

1 + H(s)C(s)λ = 0

has a positive real part; in other words, the controlled motion of the collection is

unstable.

We will first show the following:
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Lemma 2. If H(s)C(s) has more than two poles at the origin and ifλ → 0 as the size of

the collection,n, goes to∞, then there exists a critical sizeN∗ of the formation, such that

for any sizen > N∗ of the formation, the motion of the formation will be unstable.

Proof. For the problem considered in this section, ifH(s)C(s) has more than two poles at

zero, it can be factored asH(s)C(s) = L(s)
sl+2 , (l > 0) for someL(s) that does not have any

poles at the origin. We can write the closed loop characteristic equation∆(s) as,

∆(s) := sl+2 + λL(s) = 0.

We first note that∆(s) is Hurwitz only ifL(0) 6= 0. We further note that∆(s) is Hurwitz iff

sm∆(1/s) is Hurwitz, wherem is the degree of the polynomial∆(s). We will now analyze

the root locus ofδ(s) := 1+ K
L(1/s)sl+2 , = 1+ L̃(s)K

sl+2 , whereK := 1
λ

andL̃(s) = 1
L(1/s)

. Since,

L̃(s) is always proper, it is clear that the root locus ofδ(s) has at leastl + 2 asymptotes.

Thus, asK → ∞, (l + 2) root loci move along lines that make the following angles with

the positive real axis.

φj =
180o + 360o(j − 1)

l + 2
, j = 1, 2, ...., l + 2

Sincel ≥ 1, it is clear that at least one asymptote, along which one encounters a RHP

pole, resulting in the instability of the closed loop asK increases. Hence, ifH(s)C(s)

has more than two poles at origin, it is evident that there exists a critical sizeN∗ of the

formation, such that for any sizen > N∗ of the formation, the motion of the formation will

be unstable.

Hence, we require thatH(s)C(s) has not more than two poles at origin to avoid the

instability of the formation. But we also derived thatH(s)C(s) should have at least two

poles at origin to meet the steady state requirement. Hence,to meet both the conditions,

H(s)C(s) must have exactly two poles at origin.
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Remark 4. In the above lemma, if theH(s)C(s) has exactly two poles at origin i.e.,l = 0,

and ifL(0) is negative, as|s| → 0, there is at least one root of∆(s) with positive real part.

Hence, the motion of the formation will become unstable. Hence, even forl = 0 we require

L(0) must be positive so as to avoid instability of motion of the formation.

The following theorem addresses the main result for platoons and it relates the propa-

gation of errors in a platoon due to a disturbance of at most unit magnitude acting on each

vehicle:

Theorem 1.

If H(s)C(s) has exactly two poles at the origin and ifL(0) is positive, then the errors in

spacing grow at least asO
(√

np

qp+1

)

, wherep is the number of poles of the plant transfer

functionH(s) at the origin. In other words, no control law of the type considered in this

paper is scalable to arbitrarily large collections ifq
p+1

np → 0 asn → ∞.

Proof. 1. Consider the transfer function that relatesEv to Dv.

Ev

Dv

(s) = − H(s)

1 + λH(s)C(s)
.

SinceL(s) does not have a pole at zero,L(0) 6= 0. Consider a modal disturbance

d̃v(t) to be a sinusoid of unit amplitude and of frequencyw =
√

λL(0)rad/s, then

the amplitude of the modal responseẽv(t) is given by the magnitude of the following

complex number:
H(jw)

(1 − L(jw)

L(0)
)

︸ ︷︷ ︸

θ(w)

.

Let p be the number of poles ofH(s) at the origin. It is clear from the assumed

structure ofH(s) thatp = 2 whena = 0 andp = 1 whena 6= 0. HenceH(s) can be
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written as 1
sp H̃(s), such thatH̃(0) 6= 0. Sinceθ(w) defined above has a root at zero,

let |θ(w)| = wβ|θ̃(w)|, whereθ̃(0) 6= 0 andβ ≥ 1. Therefore, the amplitude ratio is

1

(
√

λL(0))p+β
|H̃(jw)

θ̃(w)
|.

As λ → 0, the amplitude ratio grows to infinity as

H̃(0)

|θ̃(0)|
1

(
√

λL(0))p+β
,

wherep ≥ 1. Sinceβ ≥ 1 asλ → 0, ev(t) grows at least as

H̃(0)

|θ̃(0)|
1

(
√

λL(0))p+1
.

Sinceev(t) =< v,e(t) >, we may expressev(t) as:ev = q11e1(t) + . . . + q1nen(t),

for someq11, . . . , q1n. Sincev is an eigenvector, we may assume without any loss

of generality that< v,v >= 1, i.e., q2
11 + q2

12 + . . . + q2
1n = 1. Each of the er-

rors in spacing is a sinusoid of the frequency,w =
√

λL(0). Hence,ej(t) may be

expressed asAjcos(wt) + Bjsin(wt); one may writeev = (
∑n

j=1 q1jAj)cos(wt) +

(
∑n

j=1 q1jBj)sin(wt). It means that either the coefficient ofcos(wt) or sin(wt) must

increase asO( 1
(
√

λ)p+1
). Without any loss of generality, let us say that(

∑n
j=1 q1jAj)increases

in that fashion. Since

(
n∑

i=1

q1iAi) ≤ (
n∑

i=1

|q1i|)max0<i<n+1|Ai|

⇒ max0<i<n+1|Ai| ≥ O(
1

(
√

λ)p+1
)

1

||v||1
.

Since ||v||2 = 1, it follows from the equivalence of norms in finite dimensional
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normed vector spaces4 that ||v||1 ≤ √
n. Therefore, the maximum amplitude of the

errors in spacing over all the vehicles for sufficiently large size of the formation is

of O( 1
(
√

λ)p+1
) 1√

n
= O( 1

(
√

(n)λp+1)
). By Lemma 1 we have,λ ≤ q(n)

n−1
. Therefore,

the errors in the spacing increase asO
(√

np

qp+1

)

. Hence, a scalable control algo-

rithm requires an information flow graph, where at least one vehicle in the collection

communicates directly with at leastO(n
p

p+1 ).

Remark 5. This theorem may be viewed as a generalization of Theorem2.3 in [7]. The-

orem2.3 considers a string of vehicles moving in a straight line, where each vehicle may

only communicate with its neighbors.

Remark 6. If the errors were governed by equation (8), then the propagation of errors can

be analyzed as follows: Since,M = MT andK1 = KT
1 , we find a matrix of generalized

eigenvectorsQ such thatQT MQ = I; QT K1Q = Λ. The simultaneous diagonalization

of two symmetric positive definite matrices is dealt in vibrations, whereM is commonly

referred to as the mass matrix andK1 is referred to as the stiffness matrix. LetEQ(s) =

QE(s) and similarly,DQ(s) = QD(s). Then:

Q(L + K1H(s)C(s))QTE(s) = −H(s)QMQT D(s)

4Supposex ∈ ℜn, the following inequalities hold true for finite dimensional vectors.

||x||∞ ≤ ||x||1 ≤ n||x||∞
||x||∞ ≤ ||x||2 ≤

√
n||x||∞

1√
n
||x||1 ≤ ||x||2 ≤ ||x||1
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By the orthogonality relationship, we have:

(I + ΛH(s)C(s))EQ(s) = −H(s)DQ(s).

Let λ be the smallest generalized eigenvalue, i. e., the smallestof the diagonal ele-

ments ofΛ. Let v be the corresponding generalized eigenvalue, i.e.,K1v = λv. Define

Ẽv =< v,E(s) > andD̃v =< v,D(s) >. We can relatẽEv(s) to D̃v(s) as:

Ẽv(s) = − H(s)

1 + λH(s)C(s)
D̃v(s),

whereD̃v is an element ofDQ and Ẽv is a corresponding element ofEQ. Let ẽv(t) =<

v,e(t) > andd̃v(t) =< v,d(t) >. But, we have shown in Theorem 2 that for the equation

in above form,|ẽv(t)| is of O( 1√
λ

p+1 ), whend(t) is a sinusoid of unit magnitude and of

frequency
√

λL(0). Sinceẽv =< v,e(t) >, we may write it as

ẽv = < M0.5v,M−0.5e(t) >

≤ ||M0.5v||2||M−0.5e(t)||2

≤ ||M−0.5e(t)||2 (< v,Mv >= 1)

≤ σ̄(M−0.5)||e(t)||2

≤
√

n − 1||M−0.5e(t)||∞ < ρ
√

n||e(t)||∞.

whereρ = σ̄(M−0.5) = 1√
mini|Si|

, i = {1, 2...n − 1}. Since we are considering informa-

tion flow graphs which are connected,ρ is well-defined andρ ≤ 1. Therefore,||e(t)||∞
increases at least asO( 1√

n
1√

λ
p+1 ) = O(

√
np

qp+1(n)
), for sufficiently large collections. Hence,

it is evident that at least one vehicle in the formation should communicate with at least

O(n
p

p+1 ), for a scalable controller to exist.
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CHAPTER III

VEHICLE FORMATIONS IN HIGHER DIMENSIONS

In this section, we will consider vehicle formations inℜ3. We will consider such maneuvers

of the formation, where the desired motion of the reference vehicle automatically specifies

the motion of all other vehicles in the formation. A maneuverinvolving pure translation is

an example of one such maneuver.

A. Model of the Vehicle

The index of the reference vehicle is chosen to be1 without loss of generality as before. The

rest of the vehicles may be indexed in any random fashion. Let(xi(t), yi(t), zi(t)) denote

the position of theith vehicle in the formation with respect to some fixed inertial frame of

reference. We will consider vehicles moving in a three dimensional space and assume that

the motion of each vehicle is decoupled in each dimension andhence it can be modelled by

a diagonal transfer function matrixP (s). We shall further assume that all its three degrees

of freedom are controllable through control forces,ux,i(t), uy,i(t) anduz,i(t). The distur-

bances acting on theith vehicle aredx,i(t), dy,i(t) anddz,i(t) in the three directions. Let the

Laplace transformations ofxi(t), yi(t), zi(t) be respectivelyXi(s), Yi(s) andZi(s). Sim-

ilarly, let Ux,i(s), Uy,i(s), Uz,i(s) andDx,i(s), Dy,i(s), Dz,i(s) represent the Laplace trans-

formations ofux,i(t), uy,i(t), uz,i(t) anddx,i(t), dy,i(t), dz,i(t) respectively. We will assume

the following extension to the vehicle model considered earlier in Chapter II:








Xi(s)

Yi(s)

Zi(s)









= P (s)









Ux,i(s) − Dx,i(s)

Uy,i(s) − Dy,i(s)

Uz,i(s) − Dz,i(s)









+









(s+a)xi(0)+ẋi(0)
s(s+a)

(s+a)yi(0)+ẏi(0)
s(s+a)

(s+a)zi(0)+żi(0)
s(s+a)









.
(3.1)
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In the above equation,P (s) = 1
s(s+a)

I3, whereI3 is the identity matrix inR3. There are

only two cases to consider:a = 0, anda 6= 0. As before,a = 0 corresponds to a point mass

model for each degree of freedom of the vehicle and there is nodamping; the casea 6= 0

indicates the presence of linear viscous damping. Let desired trajectory of the reference

vehicle be(xref (t), yref (t), zref (t)). Let lx,i, ly,i, lz,i be the desired distance between the

ith vehicle and the reference vehicle along thex, y andz directions. Letδx(i, j), δy(i, j)

andδz(i, j) be the desired distance between vehiclesi andj in thex, y andz directions.

One may define the error in spacing of theith vehicle relative to the reference vehicle

(ex,i(t), ey,i(t), ez,i(t)) as follows:

ex,i(t) := xi − xref (t) − lx,i,

ey,i(t) := yi − yref (t) − ly,i,

ez,i(t) := zi − zref (t) − lz,i.

We further assume that the structure of the control law used by each vehicle, other than

the reference vehicle, is the same. Specifically, we consider the following structure for the

other vehicles:








Ux,i(s)

Uy,i(s)

Uz,i(s)









= −C(s)
∑

j∈Si









Xi(s) − Xj(s) − δx(i,j)
s

Yi(s) − Yj(s) − δy(i,j)

s

Zi(s) − Zj(s) − δz(i,j)
(s)









, (3.2)

whereC(s) is a3 × 3 array of rational transfer functions. SinceC(s) is assumed to have

cross coupling terms, i.e.,C(s) is not a diagonal matrix, one may, without any loss of

generality, assume a vehicle model in Equation (3.1). The reasoning follows along the same

lines as in the previous chapter. We further assume that initial conditions of the vehicles

correspond to the required rigid formation. As a consequence of the choice of the structure

of the controller given in Equation (3.2) and the model of vehicle given in Equation (3.1),
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the dynamics of error propagation can be written in one single equation as follows:








Ex,i(s)

Ey,i(s)

Ez,i(s)









= −P (s)C(s)
∑

j∈Si









Ex,i(s) − Ex,j(s)

Ey,i(s) − Ey,j(s)

Ez,i(s) − Ez,j(s)









− P (s)









Dx,i(s)

Dy,i(s)

Dz,i(s)









−









X̄(s)

Ȳ (s)

Z̄(s)









,

whereX̄(s) = Xref (s)−Xref (0), Ȳi(s) = Yref (s)−Yref (0) andZ̄i(s) = Zref (s)−Zref (0).

As in the case of single dimension, the above set of equationscan be written as:

(I3n−3 + P (s)C(s) ⊗ K1)E(s) = −(In−1 ⊗ P (s))D(s) − X̃(s),

whereI3n−3, In−1 are identity matrices of dimensions3n − 3 andn − 1 respectively,K1

is the principal minor obtained by removing the first row and column of LaplacianK of

the information flow graph defined as follows: Forj 6= i, Kij = −1 if vehiclesi andj

communicate directly; otherwiseKij = 0. The ith diagonal element is defined asKii =

−∑

j 6=i Kij. As considered earlier in Chapter II, we will assume that the information flow

graph isundirectedandconnected. Hence, by the virtue of assumptions on information

flow graphs,K1 is symmetric and it cannot have0 in its spectrum.

The binary operation involving matricesA andB given byA ⊗ B indicates the Kro-

necker product ofA andB. We shall refer torem(i, j) andmod(i, j) as the remainder and

quotient obtained respectively wheni is divided byj. The termE(s) is the Laplace trans-

formation of the vector of errors in spacing of the vehiclese(t); and ifp := 2 + rem(i, 3),

the ith entry of e(t) is ex,p if mod(i, 3) equals 1, isey,p if mod(i, 3) is 2 and isez,p if

mod(i, 3) is 0. Likewise, the termD(s) is the Laplace transformation of the vector of

disturbances and is constructed in a manner similar toE(s). Similarly, theith term of

the vectorX̃(s) is X̄(s) if mod(i, 3) equals 1, is̄Y (s) if mod(i, 3) equals 3, and is̄Z(s)

otherwise.

Let λ be the smallest eigenvalue ofK1 and letv be the corresponding eigenvector.
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Let p1,p2,p3 represent the three orthonormal vectors which form the basis of ℜ3. One

can show that the span of{pk ⊗ v1, k = 1, 2, 3} is invariant under the action of(I3n−3 +

P (s)C(s)⊗K1). In particular,(I3n−3+P (s)C(s)⊗K1)

[

p1 ⊗ v1 p2 ⊗ v1 p3 ⊗ v1

]

=
[

p1 ⊗ v1 p2 ⊗ v1 p3 ⊗ v1

]

(I3 + λP (s)C(s)).

Definee1,x(t) =< p1 ⊗ v1,e(t) >, e1,y(t) =< p2 ⊗ v1,e(t) > ande1,z(t) =<

p3⊗v1,e(t) >. Similarly, defined1,x(t) =< p1⊗v1,d(t) >, d1,y(t) =< p2⊗v1,d(t) >

andd1,z(t) =< p3 ⊗ v1,d(t) >. Then, the Laplace transformations of the signals defined

are related by:

γ(s)









E1,x(s)

E1,y(s)

E1,z(s)









︸ ︷︷ ︸

E1,p(s)

= −P (s)









D1,x(s)

D1,y(s)

D1,z(s)









︸ ︷︷ ︸

D1,p(s)

−









X̄1(s)

Ȳ1(s)

Z̄1(s)









︸ ︷︷ ︸

X̃1,p

,

whereγ(s) := I3 + λP (s)C(s).

B. Analysis

As in the case of platoons considered in Chapter II, the control objectives are as follows:

1. In the absence of any disturbance acting on any vehicle, every vehicle must track

its desired position when the speed of the reference vehicleasymptotically reaches a

constant value that is different from its initial speed.

2. In the presence of a bounded disturbance of at most unit magnitude, there must exist a

MR > 0 such that the errors in spacing and velocity of every vehiclein the collection

be bounded byMR irrespectiveof the size of the collection.
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1. Steady-state errors

Let us analyze the first requirement: Since we want the steadystate error in spacing to be

zero as per the first requirement, it is necessary thatlims→0 sE1,p = 0 for any possible

∆vq ∈ ℜ3 such thatlims→0 s2X̃1,p = ∆vq.Therefore,

lim
s→0

sẼ1,p = − lim
s→0

(sI3 + λsP (s)C(s))−1s2X̃1,p

= − lim
s→0

(sI3 + λsP (s)C(s))−1∆vq.

In the last equation, the Final Value Theorem has been employed with the assumption

that the controller is chosen so that the transfer function matrix under consideration is an-

alytic in Re(s) ≥ 0. The limit on the right hand side of the last equation is zero for all

possible∆vq iff lims→0(sP (s)C(s))−1 = 0. In other words,P (s)C(s) must be express-

ible as 1
s2 L(s) for some rationalL(s) such thatL(0) 6= 0. We will start with the following

lemma that shows the effect of the number of poles of open looptransfer function matrix

P (s)C(s) on the over all stability of the closed loop system and the investigation of the

propagation of errors in a formation.

Lemma 3. Consider the following characteristic equation for positivevalues ofλ: ∆(s) :=

det(slI+λL(s)) = 0, where1
sl L(s) is a square matrix of rational, proper transfer functions

with real coefficients.

1. If l ≥ 3, there is aλ1 > 0 such that for allλ ∈ (0, λ1), there is a zero of∆(s) with

non-negative real part.

2. If l = 2 and if any of the eigenvalues ofL(0) is negative or complex, then there is a

zero of∆(s) with non-negative real part.

Proof. If det(L(0)) = 0, then∆(s) has a zero at0 for all λ. Therefore, it is sufficient to
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consider the case whendet(L(0)) 6= 0. Let Γ be the Nyquist contour which is indented to

the right when poles or zeros ofdet(L(s)
sl ) are encountered. Letµi(s), i = 1, . . . ,m be the

characteristic loci (eigen values) ofL(s). The multi-variable Nyquist criterion indicates

that the sum of the number of encirclements of the Nyquist plots of (the maps ofΓ by)

λµi(s)
sl about the point−1 + j0 is equal to the excess of the number of zeros of∆(s) over

the poles ofL(s) in the Right Half Plane. Therefore, it is sufficient to show that the Nyquist

plot of λµi

sl , i = 1, . . . ,m has at least one encirclement about the point−1 + j0 if l ≥ 3.

Since the Nyquist plot ofµi(s)
sl intersects the real axis only a finite number of times,

we will consider only the maximum absolute value of the finiteintersections (not the in-

tersections at infinity). Through an appropriate choice ofλ1,i, all the finite intersections

of all Nyquist plots ofλµi(s)
sl , λ ∈ (0, λ1,i) can be made to occur to the right of the point

−1 + j0 on the real axis. Defineλ1 := min1≤i≤m λ1,i. Since the intersections at infin-

ity only correspond to the poles of the transfer functiondet(L(s)
sl ), we consider only the

poles on the imaginary axis. Also, the encountering of even number of successive zeros on

the Nyquist contour has the same effect of encountering no zeros on the Nyquist contour.

Therefore, only the parity of the zeros encountered betweensuccessive poles as one tra-

verses the Nyquist contour matters rather than the exact number of zeros. An occurrence

of a pole followed by zero followed by a pole either increasesby one or does not change

the number of encirclements of the Nyquist plot depending onwhether the Nyquist plot is

starting on the negative real axis prior to encountering thefirst pole of the pole-zero-pole

combination. Since the transfer functiondet(L(s)
sl ) is proper, as|s| → ∞, the eigen values

of L(s)
sl approach constant values. Therefore, as|s| → ∞, the Nyquist plot ofλµi(s)

sl reaches

a finite real value along the arc of infinite radius of the Nyquist contour. Therefore, ifl ≥ 3,

number of encirclements of the Nyquist plot ofλµi(s)
sl is at leastmod(l, 2) ≥ 1. Hence, for

all λ ∈ (0, λ1), the number of encirclements ofλm L(s)
sl , λ ∈ (0, λ1) about the point−1+ j0

is at leastm ≥ 1.
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If l = 2, it can be seen that if any of eigenvalues ofL(0) is negative or complex,

the number of encirclements about the point−1 + j0 is at least one. Therefore, the total

number of encirclements about the point−1 + j0 is at least one, implying that at least one

root of the characteristic equationdet(s2I + λL(s)) has at least one root with positive real

part.

2. Analysis of propagation of errors

Now that we have obtained the necessary conditions for satisfying the steady state require-

ment, we shall shift our focus to the analysis of the propagation of errors for bounded

disturbances acting on every vehicle.

Theorem 2. Consider a formation of vehicles with each vehicle following the model de-

scribed earlier. Further, suppose that the smallest eigenvalueλ of K1 goes to0 as the size

of the collection,n, increases arbitrarily.

1. Letr be the smallest positive integer such thatlims→0 srP (s)C(s) be bounded. Let

L(s) = srP (s)C(s). If r ≥ 3, or if r = 2 and any of the eigenvalues ofL(0) is

not positive, then there is a critical sizeN∗ > 0 of the collection such that for all

n > N∗, the motion of the vehicles in the collection is unstable.

2. If r = 2, then there is a sinusoidal disturbance acting on each vehicle of the same fre-

quency and at most unit in magnitude such that the error in spacing is ofO
(√

nl

q(n)l+1

)

,

wherel is the smallest positive integer, such thatlims→0 slP (s) is bounded and not

zero.

Proof. (1) The first part of this theorem is a direct consequence of Lemma 3.

(2) We have shown earlier thatP (s)C(s) should have at least two poles at the origin of the

complex plane to have zero steady state error even if lead vehicle makes a maneuver such

that there is a change in the steady state speed of the collection. Hence,P (s)C(s) = 1
s2 L(s)
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with L(0) having real and positive eigenvalues. Now, consider a sinusoidal disturbance

force acting on each vehicle at the following frequency:ω =
√

λµi(0) whereµi(0) is

an eigenvalue ofL(0). At that frequency, the amplitude and phase shift are given by:

(I − λL(jω)
µi(0)

)−1P (jω), which may be expressed as

(I − λ
L(jω)

µi(0)
)−1(jω)lP (jω)

1

(jw)l
,

wherel is the smallest positive integer such thatlims→0 slP (s) is bounded. It should be

noted thatl = 2 whena = 0 andl = 1 whena 6= 0. Sincelimw→0(I − L(jω)
µi(0)

) is singular,

ωp for somep ≥ 1 is a factor of thedet(I − λL(jω)
µi(0)

). Hence, we may rewrite, for all

sufficiently smallw, (I − λL(jω)
µi(0)

)−1 as 1
ωp L̃(jω), whereL̃(0) is bounded. Therefore, the

frequency response of the transfer function is given by:L̃(jω)(−j)l 1
ωp+l . Sinceλµi(0) =

w2, the amplitude of errors,E1,p(t) increase asO( 1√
λ

p+l ) for somep ≥ 1 for low frequency

disturbances.Therefore, the amplitude of at least one entry in E1,p(t) at least increases

asO( 1√
λ

l+1 ). Without loss of generality, one can say thate1,x(t) increases in that order.

Since,e1,x(t) =< p1 ⊗ v1
︸ ︷︷ ︸

q′

,e(t) >, ||e(t)||∞ is of O( 1

||q′ ||1
√

λ
p+l ). Sinceq′ ∈ ℜ3n−3

is a unit vector, it is true for finite dimensional vectors of2-norm unity that||q′||1 ≤
√

3n − 3 <
√

3n. Therefore, the maximum amplitude of the errors in spacing over all

the vehicles for sufficiently large size of the formation is of O( 1√
λ

l+1√
3n

). By Lemma 1

we have,λ ≤ q(n)
n−1

. Therefore, the errors in the spacing increase asO
(√

nl

q(n)l+1

)

for

sufficiently large formations.
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CHAPTER IV

SIMULATIONS

For the purposes of numerical simulation, we consider the motion of collection of vehicles

moving in a straight line. Each vehicle is assumed to be a point mass. As mentioned earlier,

the control law used is as follows:Ui(s) =
∑

j∈Si
C(s)(xi−xj−Lij), wherej ∈ Si implies

that there exists a communication link betweenith vehicle andjth vehicle. We consider a

string of vehicles moving in a straight line, where the following vehicle tries to maintain a

constant following distance. We describe the corresponding results below:

A. String of Vehicles

We consider a string of vehicles, indexed from1 to n. The set of vehicles that the first

vehicle communicates with directly is the second vehicle, i.e.S1 = {2}. Fori = 2, . . . , n−

1, the setSi of vehicles theith vehicle communicates with directly is{i − 1, i + 1} and

Sn = {n− 1}. Figure 1 shows the above information topology in a string of6 vehicles. A

lag controller is used for feeding back the error in spacing and is given byC(s) = 3s+2
0.01s+1

.

Figure 2 shows the convergence ofλ to 0 as the length of the string increases. Figure 3

shows the propagation of errors in spacing in a string of six vehicles. It shows how errors

amplify in response to a sinusoidal disturbance acting on the last vehicle along the string,

as we move away from the reference vehicle (vehicle indexed 1). The maximum error in

spacing increases asn3 as the sizen of the string increases. This result is analogous to a

spatially discrete model of a beam, where the first eigenvalue decreases as1
L2 , L being the

length of a beam. The counterpart for the length of the beam isn, the size of the collection.

The decrease in natural frequency is due to a reduction in the“effective stiffness” as the

length of the beam is increased. For this reason, the deflection as expected would be larger.

The Figure 4 shows an example of the effect stated in Theorem 1. This plot shows the
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Fig. 1. Predecessor and follower based information flow pattern in the string

disturbance to error gain as a function of frequency. As predicted, the steady state as well

as the peak gain increases asN increases. Figure 5 shows the same effect.
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Fig. 2. The variation ofλ (lowest eigenvalue ofK1) with n, for a string ofn vehicles with

each vehicle connected to the vehicles directly behind and ahead of it

The above simulations are repeated with randomly generatedinformation flow graphs.

The convergence ofλ to 0 for various random graphs with a maximal degree constraint of

4 is shown in Figure 6. It can be observed that though the information flow graphs are

random, the upper bound derived in Lemma 1 holds good for all the cases even when the

size of the collection is small. The errors in position in response to a sinusoidal disturbance

on the last vehicle is shown in Figure 7. One instance of the randomly generated infor-

mation flow graph is shown in Figure 8. In this case the diameter of the graph is2 and
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Fig. 3. Propagation of the errors along the string

corresponds to the paths(1− 5− 6) or (1− 3− 4) or (1− 5− 2). It can be seen in Figure

7 that as we move away from the reference vehicle along any of those diameters, the errors

amplify. The maximum disturbance to error gain at all frequencies is shown in Figure 9.

The variation of the maximal errors of spacing, arising due to sinusoidal disturbance on the

last vehicle, with the size of the string is shown in Figure 10. It can be observed that the

error to disturbance gain increases with the size of the collection, however in a rather slow

manner as opposed to the previous case. This difference may be attributed to the fact that

the diameter of the randomly generated information flow graph is typically smaller.

To illustrate the limitations in the sizes of collection that can be considered when

an integral action is included in the controller, we consider a controller described by the

following transfer functione.gC(s) = 3s2+2s+1
s(0.01s+1)

. However, this strategy will not assure

the stability of the motion of the collection of vehicles as shown in Lemma 2. Figure 11

shows the migration of dominant pole to the right half plane as the size of the collection of

vehicles increases.
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B. Array of Vehicles

In this section, we consider a square formation of vehicles moving in a straight line. Each

vehicle is assumed to be a point mass.We use the same control law in section B of Chapter

II. Since information flow graphs considered here have constraints on degree of a graph

(the number of vehicles in the collection that a vehicle in the collection can communicate

directly with), it is natural to consider Delaunay triangulations as described in [11]. The

main advantage of Delaunay triangulation over its counterparts, is that it avoids very long

and very short communication links. In a Delaunay triangulation, each vehicle is linked

only to some of its geographically proximal neighbors. In each ofthe Delaunay traingu-

lations considered, every vehicle was connected to a maximum of eight other vehicles in

the collection. It seems reasonable that there will be such abound in a Delaunay triangu-

lation, especially when there is a requirement of minimum spacing between vehicles. The

convergence of lowest eigenvalue ofK1 to zero with the size of the array for Delaunay tri-

angulated graph is shown in Figure 12. As in the previous case, a lag controller is used for
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the feedback of errors,C(s) = 3s+2
0.01s+1

. A Delaunay triangulated square formation is shown

in Figure 13. As shown in the figure, the vehicle to the bottom leftmost of the formation

is chosen to be the reference vehicle. It is apparent from thefigure that the diameter of the

graph is along the leading diagonal. Figure 14 shows how the errors in spacing propagate

along the diameter of the graph in response to a sinusoidal disturbance of farthest vehicle

on the leading diagonal from the reference vehicle. It is notsurprising that the errors am-

plify along the diameter of the graph. Figure 15 shows the maximal disturbance to error

gain(σmax(Tde(s)), whereTde(s) is the closed loop transfer function between disturbance

and error as the function of frequency. As expected, since the information of the reference

vehicle is only available to a limited number of vehicles, the sensitivity of errors to dis-

turbance increases as the size of the array increases. A similar set of simulations are

repeated for randomly generated information flow graphs that obey a pre-specified maxi-

mum degree constraint chosen to be8 for the simulations. It can be seen in Figure 16, that

the upper bound derived in Lemma 1 holds good even for randomly generated information

flow graphs for square formations. Finally, the plot of disturbance to error gain at various
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frequencies is shown in Figure 17.
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Fig. 8. A random information flow graph
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

In this work, we have considered information flow graphs for acollection of vehicles, where

there is a constraint on the maximum number of vehicles in thecollection every vehicle can

communicate with directly. We showed that the motion of collection of vehicles inℜ3 is

unstable if the open loop transfer functionP (s)C(s) had more than two poles at the origin.

We have also shown thatP (s)C(s) must have at least two poles at the origin to track

ramp inputs resulting from the reference vehicle moving at aconstant velocity. We further

showed that ifλ1 → 0, there is a disturbance of sufficiently low frequency actingon each

vehicle of at most unit magnitude which results in errors in spacing ofO
(√

(n)l

q(n)l+1

)

, where

l is the number of poles ofP (s) at the origin. Hence, to avoid the propagation of errors as

the size of the collection increases, one requires at least one vehicle to communicate with

O(n1/2) other vehicles.

The results presented in the thesis leave several topics forfurther research.

1. In this thesis, we showed that some simple distributed control architectures result

in instability of motion of vehicles. Specifically, we investigated the information

flow patterns which can be represented by a undirected graph.An interesting case

to study would be the scenario of error propagation, when theinformation topology

corresponds to a directed graph. The case of the directed graph is more general and

includes “one-way” communication patterns as well, which are researched widely in

the literature on AHS.

2. It has been observed that the stability of the motion of thevehicles in a formation and

the scalability issues have interesting connections with synchronization of dynamical

systems. It is found to have tremendous applications, whichinclude synchronization
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of coupled oscillators, modeling populations of interacting biological systems and

image processing. It is worthwhile to study the connectionsbetween these fields and

come up with an unifying framework.

3. So far, in this thesis, we have formulated certain minimumrequirements onhow

muchinformation the reference vehicle should communication. One might need to

know “how often” the information should be sent for acceptable control.
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