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ABSTRACT

On the Structure of a Class of Operators. (May 2005)

Sami M. Hamid, B.S. American University of Beirut, Lebanon;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Carl M. Pearcy, Jr.

In this dissertation we study certain classes of operators on a separable, complex,

infinite dimensional Hilbert space H, specifically from the point of view of properties

of the hyperlattice (i.e., lattice of hyperinvariant subspaces) for such operators. We

show that every (BCP)-operator in C00 is hyperquasisimilar to a quasidiagonal (BCP)-

operator in C00. Moreover we show that there exists a fixed block diagonal (BCP)-

operator Bu with the property that if every compact perturbation Bu +K of Bu in

(BCP) and C00 with ‖K‖ < ε has a nontrivial hyperinvariant subspace, then every

nonscalar operator on H has a nontrivial hyperinvariant subspace. This shows that

the study of the structure of the hyperlattice of an arbitrary operator on Hilbert

space is essentially equivalent to the study of the hyperlattice structure of some much

smaller, special classes of operators, and it is these on which we concentrate.

Moreover, we study some special subclasses (Bθ) and (Sθ) of the class of in-

vertible (BCP)-operators with a view of obtaining some insight into the problem of

determining the structure of operators in these classes.



iv

To Kalthoum and Mahmoud



v

ACKNOWLEDGMENTS

I would like to express my deep gratitude and appreciation to my advisor, Professor

Carl Pearcy, for all his support during my years at Texas A&M University. I am

extremely thankful for his endless effort to provide valuable guidance and inspired

ideas.

I would like also to acknowledge the members of my graduate committee, Pro-

fessors Albert Boggess, Roger Smith and Lee Panetta.

Special thanks for Professors Ciprian Foias and Ronald Douglas for their help

and support.

Finally, I would like to thank my family for their love, patience and understand-

ing.



vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION AND PRELIMINARIES . . . . . . . . . . . 1

II SOME RESULTS ABOUT THE DUAL ALGEBRAS AG
T . . . . 7

III A NEW STRUCTURE THEOREM ABOUT (BCP)-OPERATORS 10

IV A CERTAIN CLASS OF (BCP)-OPERATORS . . . . . . . . . 29

V TOWARD A CANONICAL FORM FOR (BCP)-OPERATORS 47

VI CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



1

CHAPTER I

INTRODUCTION AND PRELIMINARIES

In this dissertation we will study certain classes of operators on a separable, complex,

infinite dimensional Hilbert space, specifically from the point of view of properties

of the hyperlattice (i.e., lattice of hyperinvariant subspaces) for such operators. This

study has been largely motivated by the very recent sequence of papers [18], [24],

[17], and [8], from which it results that the study of the structure of the hyperlattice

of an arbitrary operator on Hilbert space is essentially equivalent to the study of the

hyperlattice structure of some much smaller, special classes of operators, and it is

these on which we concentrate.

The dissertation is organized as follows. This chapter is devoted largely to the

definitions and notation of various concepts that we shall use. Chapter II consists of

the statement of a body of results from the theory of dual algebras of various authors

that bear directly on our study, while Chapter III is essentially a version of [24] (in

the creation of which the author played a significant role). Finally, in Chapters IV

and V, we consider some special subclasses of (BCP)-operators (defined below) to

which the above-mentioned sequence of four papers naturally leads.

In what follows, H will be a fixed separable, infinite dimensional, complex,

Hilbert space and L(H) the algebra of all bounded linear operators on H. As usual,

we reserve the symbols Z, N, N0, C, D and T for the sets of integers, positive integers,

nonnegative integers, complex numbers, open unit disc in C, and unit circle in C,

respectively. For each 0 ≤ θ < 1, we shall consistently write, Aθ for the annulus

Aθ := {ζ ∈ C : θ ≤ |ζ| ≤ 1}. If S ⊂ L(H) we denote by S− the norm-closure of S

The journal model is Integral Equations and Operator Theory.
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and the set of all scalar multiples of 1H will be written as C1H. We also denote the

null space and the range of an operator T by ker(T ) and ran(T ), respectively.

An operator T in L(H) is compact if the norm-closure of {Tx : ‖x‖ ≤ 1}, the

image of the unit ball under T , is a compact subset of H, and we shall denote by

K(H) (or simply by K), the two sided norm closed ideal of L(H) consisting of all

compact operators on H and by π the quotient map of L(H) onto the Calkin algebra

L(H)/K.

For an operator T in L(H), the spectrum of T [resp., left spectrum, right spec-

trum] is denoted by σ(T ) [resp., σl(T ), σr(T )]. Moreover, we write σp(T ) for the point

spectrum of T (i.e., the set of eigenvalues of T ). The essential (i.e., Calkin) spectrum

[resp., left essential spectrum, right essential spectrum] of T is the set of all λ in C

such that π(T − λ1H) is not invertible [resp., not left invertible, not right invertible]

in L(H)/K. The essential [resp., left essential, right essential] spectrum of T will be

denoted by σe(T ) [resp., σle(T ), σre(T )].

A subspace (closed linear manifold) M ⊂ H is said to be invariant under an

operator T in L(H) if TM⊂M, and T is said to have a nontrivial invariant subspace

(n.i.s.) if there is a subspaceM different from (0) andH invariant for T . The invariant

subspace problem is the question whether every operator in L(H) has a n.i.s. The

lattice of all invariant subspaces of T will be written, as usual, as Lat(T ).

If C is any subset of L(H), we denote by C ′ the commutant of C, i.e., C ′ = {T ∈

L(H) : ST = TS for every S in C}. Recall that a subspace (closed linear manifold)

M⊂ H is said to be a nontrivial hyperinvariant subspace (n.h.s.) for a fixed operator

T in L(H) if (0) 6= M 6= H and SM ⊂ M for each S in {T}′, and that the

complete lattice of all hyperinvariant subspaces of T (including (0) and H) is denoted

by Hlat(T ). This lattice will frequently be called the hyperlattice of T , and if L1 and

L2 are any two complete lattices, we write L1 ≡ L2 to signify that there is an order
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preserving isomorphism of one onto the other. The (open) hyperinvariant subspace

problem (for operators on Hilbert space) is the question whether every operator T in

L(H)\C1H has a n.h.s.

Recall that an operator T in L(H) is called a semi-Fredholm operator onH (nota-

tion: T ∈ SF(H)) if T has closed range and either dim(kerT ) < ℵ0 or dim(kerT ∗) <

ℵ0. The map i : SF(H)→ Z ∪ {+∞,−∞}, called the Fredholm index, is defined by

setting i(T ) := dim(ker(T )) − dim(ker(T ∗)). The set of all operators T in SF(H)

such that i(T ) is finite is called the set of Fredholm operators on H and denoted

by F(H). It is well known that i is a norm-continuous function on SF(H) (where

Z∪{+∞,−∞} is given its discrete topology) and thus is constant on open connected

subsets of SF(H).

In what follows we will be concerned with some particular domains (i.e., open,

connected sets) G ⊂ D. Such a domain will be called a circular subdomain of D or,

more simply, a circular domain, if there exist a finite number of disjoint closed discs

D(γj, rj) = {ζ ∈ C : |ζ − γj| ≤ rj} ⊂ D, j = 1, · · · , k, such that G = D\
k⋃

j=1

D(γj, rj).

(Note that D is a circular subdomain of itself corresponding to the case k = 0 and

that all of the annuli Aθ defined above are also circular domains.) Recall that the

(dual) algebra H∞(G) consists of all bounded holomorphic functions on G in the

supremum norm. If G is a circular subdomain of D and Λ ⊂ G, then Λ is called a

dominating subset of G if

sup{|u(λ)| : λ ∈ Λ} = ‖u‖∞ := sup{|u(λ)| : λ ∈ G}, u ∈ H∞(G).

For any circular domain G, the algebra of all complex valued rational functions

with poles off G− will be denoted by RG, and if T ∈ L(H) and satisfies σ(T ) ⊂ G−,

then RG
T will denote the subalgebra
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RG
T = {r(T ) : r ∈ RG}

of L(H). Recall next that a dual algebra (or dual subalgebra of L(H)) is a weak∗

closed, unital, subalgebra of L(H), and if G is any circular domain and T in L(H)

satisfies σ(T ) ⊂ G−, then the dual algebra AG
T is, by definition, the weak∗ closure of

the algebra RG
T . An operator T in L(H) (necessarily satisfying σ(T ) ⊂ G−) will be

said to belong to the class AG if there exists a weak∗-continuous, surjective, isometric,

algebra isomorphism ΦT : H∞(G) → AG
T , and if T ∈ AG and the dual algebra AG

T

has property (Am,n) for some cardinal numbers 1 ≤ m,n ≤ ℵ0, as defined in [6], then

we say that T ∈ AG
m,n. If m = n, we write simply AG

n for AG
n,n.

If K ≥ 1, a closed set C ⊂ C will be called a K−spectral set for an operator T in

L(H) such that σ(T ) ⊂ C if ‖r(T )‖ ≤ K sup
ξ∈C

|r(ξ)| for every r ∈ RC (the algebra of

rational functions with poles off C), and a 1−spectral set for T is called, more simply,

a spectral set for T . For n ∈ N, we denote byMn(R
C) the algebra of all n×n matrices

with entries from RC with the norm ‖(rij)‖∞ = sup
ξ∈C

‖(rij(ξ)‖ where this last norm is

the canonical (operator) norm on Mn = Cn,n. If C is a K−spectral set (K ≥ 1) for

some T ∈ L(H) (with σ(T ) ⊂ C) and the inequality ‖(rij(T ))‖ ≤ K ‖(rij)‖∞ persists

for every r ∈Mn(R
C) and every n ∈ N, then C is called a complete K−spectral set for

T (here the norm ‖(rij(T ))‖ is simply the operator norm on L(H(n)).) If T ∈ L(H),

σ(T ) ⊂ C, a closed subset of C, and there exist a Hilbert space K ⊃ H and a normal

operator N ∈ L(K) such that σ(N) ⊂ ∂C and such that

r(T ) = PHr(N)|H , r ∈ RC ,

then N is called a ∂C−dilation of T .

A contraction T in L(H) is called completely nonunitary (c.n.u.) if it has no

nontrivial reducing subspace on which it acts as a unitary operator. Recall that a
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c.n.u. contraction T in L(H) is called a (BCP)-operator if D∩ σe(T ) is a dominating

set for D.

A sequence of operators {Tn}n∈N in L(H) is said to converge to T0 in the strong

operator topology (SOT) if ‖Tnx− T0x‖ → 0 for every x ∈ H, and we will write

Tn
SOT
−→ T0 to indicate this convergence and Tn

∗−SOT
−→ T0 to mean that Tn

SOT
−→ T0 and

T ∗n
SOT
−→ T ∗0 . The class C00(H) consists of the set of all c.n.u. contractions T in L(H)

such that both sequences {T n}n∈N and {(T ∗)n}n∈N converge to zero in the SOT.

The normed ideal of trace-class operators in L(H) will be written as C1(H) and

the corresponding trace-norm denoted by ‖·‖1. The duality between L(H) and C1(H)

is implemented by the bilinear functional

〈T, L〉 = trace(TL) =
∞∑

i=1

(TLei, ei), T ∈ L(H), L ∈ C1(H),

where {ei}i∈N is an orthonormal basis for H.

If x and y are vectors in H, then the rank-one operator x ⊗ y, defined as usual

by

(x⊗ y)(u) = (u, y) x, u ∈ H

belongs to C1(H) and satisfies

trace(x⊗ y) = (x, y)

and

‖x⊗ y‖1 = ‖x⊗ y‖ = ‖x‖ ‖y‖ .

Moreover, if L ∈ C1(H), then L =
∞∑
i=1

xi⊗yi for some summable sequences {xi}i∈N

and {yi}i∈N (with convergence in the norm ‖·‖1).

For any ordinal number n satisfying 1 ≤ n ≤ ω (the smallest infinite ordinal), we

denote by H(n) the direct sum of n copies of H (i.e., H(n) = ⊕0≤k<nHk with Hk = H
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for every k), and T (n) denotes the direct sum (ampliation) of n copies of T acting on

H(n) in the usual fashion.

As is well known, operators T1 and T2 in L(H) are said to be similar (notation:

T1 ≈ T2) if there exists an invertible operator X ∈ L(H) such that XT1 = T2X.

Similar operators have isomorphic lattices of invariant and hyperinvariant subspaces.

Recall that operators T1 and T2 in L(H) are said to be quasisimilar (notation: T1 ∼

T2) if there exist quasiaffinities X and Y in L(H) (i.e., kerX = kerX ∗ = kerY =

kerY ∗ = (0)) such that T1X = XT2 and Y T1 = T2Y . (Observe also that in this case

we have XY ∈ {T1}
′ and Y X ∈ {T2}

′.) In [28], Hoover proved that quasisimilarity

preserves the existence of nontrivial hyperinvariant subspaces and in [25], Herrero has

shown that quasisimilarity does not preserve the full hyperlattice.

Recall next from [21] that an operator T in L(H) is quasidiagonal (T ∈ (QD)(H))

if there exists an increasing sequence {Pn}n∈N of finite rank projections such that

Pn
SOT
−→ 1H and ‖TPn − PnT‖ → 0 and T is block diagonal (notation: T ∈ (BD)(H))

if T is unitarily equivalent to a countably infinite (orthogonal) direct sum of operators

each of which acts on a (nonzero) finite dimensional space. If, in addition, each of

the direct summands Tn satisfies ‖Tn‖ < 1, then T will be called a strictly norm

decreasing block diagonal operator (since ‖Tx‖ < ‖x‖ for every nonzero x in H).

An operator T ∈ L(H) is called quasitriangular [21] (notation: T ∈ (QT )(H)) if T

can be written as T = Tt +K where the matrix (τij)i,j∈N for Tt with respect to some

ordered orthonormal basis forH is in the upper triangular form (i.e., τij = 0 whenever

i > j). Moreover, if both T ∈ (QT ) and T ∗ ∈ (QT ), then T is called biquasitriangular

(notation: T ∈ (BQT )(H)).
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CHAPTER II

SOME RESULTS ABOUT THE DUAL ALGEBRAS AG
T

In this chapter, we set forth some results (mostly from [16], [10], [15], and [9]) that

will be useful toward the end of Chapter III.

Theorem 2.1 [10]. Suppose G is a circular domain in C, T ∈ L(H), ∂G ⊂ σ(T ),

and G− is a spectral set for T . (or, equivalently, T ∈ AG). Then the algebra AG
T has

a nontrivial invariant subspace.

We now turn to some results from [15]. Let G = D\
k⋃

j=1

D(γj, rj), and suppose

G− (⊃ σ(T )) is a spectral set for T . Then the operators Tj defined by

Tj = rj(T − γj)
−1, j = 1, · · · , k,

are all contractions, and we follow [15] in saying that T ∈ CG
0· if T n SOT

−→ 0 and

(Tj)
n SOT
−→ 0 for j = 1, · · · , k. We also set CG

·0 = {T ∗ : T ∈ CG
0·} and CG

00 = CG
0· ∩ C

G
·0 .

One of the main results from [15] is as follows.

Theorem 2.2. The following inclusions are valid, where G ⊂ D is an arbitrary

circular domain

(a) AG ∩ CG
0· ⊂ AG

ℵ0,1
,

(b) AG ∩ CG
·0 ⊂ AG

1,ℵ0
, and

(c) AG ∩ CG
00 ⊂ AG

ℵ0
.

Here is another nice result from [15].

Theorem 2.3. Suppose G is some circular domain and T ∈ AG
1,ℵ0

. Then the dual

algebra AG
T is reflexive.
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A final result from [15] that will be useful later is this.

Theorem 2.4. Suppose G is some circular domain and T ∈ AG
1,ℵ0

. Then the set of

vectors x in H generating a G−analytic invariant subspace for AG
T is dense in H. (To

say that M is a G−analytically invariant subspace for AG
T means that M∈ Lat(AG

T )

and that there exists a nontrivial conjugate analytic map e : λ→ eλ from G into M

such that (T |M − λ1H)
∗eλ ≡ 0 on G.)

We turn now to a listing of some results from [4] and [9].

Theorem 2.5. Let G be a circular domain, and denote by A2(G) the Bergman space

associated with G. (In other words, A2(G) consists of all functions u holomorphic in

G such that u ∈ L2(G,µ), where µ is a planar Lebesgue measure on G.) Moreover,

let Mξ be multiplication by the position function on A2(G), i.e.,

(Mξ(u))(ξ) = ξu(ξ), A2(G), ξ ∈ G.

Then Mξ ∈ AG
ℵ0
.

Theorem 2.6 [9]. Let G be a circular domain, let Λ = {λn}n∈N be a dominating

subset of G, and let {en}n∈N be an orthonormal basis for H. Then the (diagonal)

normal operator NΛ in L(H) defined by NΛen = λnen, n ∈ N, belongs to AG
ℵ0
.

Perhaps the best theorem in [9] is this next one.

Theorem 2.7. Let G be a circular subdomain of D, and let {γn}n∈N be any sequence

of (not necessarily distinct) points in G. Moreover, let T ∈ AG
ℵ0
(H) (so, in particular,

AG
T is isometrically isomorphic to H∞(G) via a weak ∗ homeomorphism). Then there

exists a decomposition H = M⊕N ⊕ P and an orthonormal basis {fn}n∈N for N
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such that, relative to this decomposition of H, we have, matricially, that

u(T ) =




A
(u)
11 A

(u)
12 A

(u)
13

0 u(D) A
(u)
23

0 0 A
(u)
33



, u ∈ H∞(G),

where D is the (diagonal) normal operator defined by Dfn = γnfn, n ∈ N.
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CHAPTER III

A NEW STRUCTURE THEOREM ABOUT (BCP)-OPERATORS

The class of (BCP)-operators, introduced in [14], played an important role in the

highly successful theory of dual algebras of operators, and is a subset of the larger

class Aℵ0 (see, e.g., [7] for more information about the theory of dual algebras).

It is well known that operators in Aℵ0 have several good properties. For instance,

every direct sum of strict contractions can be realized, up to unitary equivalence, as

a compression to some semi-invariant subspace of an arbitrary operator in Aℵ0 [6].

Moreover, the lattice Lat(T ) of invariant subspaces of any operator T in Aℵ0 is known

to be so large that it contains a sublattice isomorphic to the lattice of all subspaces

of H [6, Theorem 4.8]. Thus, in what follows we will proceed to study the structure

theory of (BCP)-operators from various viewpoints. We begin by collecting, from the

vast theory of dual algebras, some known results.

Thus, in what follows we will proceed to study the structure theory of (BCP)-

operators from various viewpoints. We begin by collecting, from the vast theory of

dual algebras, some known results.

Theorem 3.1 [7]. Let T be any (BCP)-operator in L(H) and let X be any operator

in L(H) such that X is a (finite or infinite) direct sum of operators each having norm

less than one. Then there exists a decomposition of H as H = M⊕M⊕M such

that the matrix for T relative to this decomposition has the form

T =




T11 T12 T13

0 X T23

0 0 T33



.
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Theorem 3.2 [3]. Let T be an arbitrary (BCP)-operator in L(H). Then there exists

a family {Kn}n∈N of proper nonzero cyclic invariant subspaces for T such that for all

m ∈ N, Km ∩
∨

n∈N\{m}
Kn = (0).

Theorem 3.3 [5]. Every (BCP)-operator in L(H) is reflexive.

Next, we include some definitions and results that are pertinent to our study. A

quasiaffinity Q will be said to have the hereditary property with respect to an operator

T ∈ L(H) if Q ∈ {T}′ and (QM)− = M for every M ∈ Hlat(T ), and if T1 ∼ T2

and there exists an implementing pair (X,Y ) of quasiaffinities such that XY has

the hereditary property with respect to T1 and Y X has the hereditary property with

respect to T2, then we say that T1 is hyperquasisimilar to T2 (notation: T1
h
∼ T2). The

important result that makes the relation
h
∼ worth studying was proved in [17], and says

that if T1
h
∼ T2, then Hlat(T1) ≡ Hlat(T2). The following lemma is important in the

proof of a needed corollary. Recall that the numerical range of an operator T ∈ L(H)

is defined to be the subset of C given by W (T ) := {〈Tx, x〉 , x ∈ H, ‖x‖ = 1}.

Lemma 3.4 [17]. Suppose Q ∈ L(H) is a quasiaffinity and 0 /∈W (Q). Then Q has

the hereditary property with respect to every T in L(H) such that Q ∈ {T}′.

Proof. For Q ∈ {T}′ and M ∈ Hlat(T ) such that (QM)− 6= M, there exists a

unit vector x in Mª (QM)− and 〈Qx, x〉 = 0. ¤

Corollary 3.5 [17]. Suppose Q ∈ L(H) is a quasiaffinity and there exists 0 ≤ θ < 2π

such that R = Re(eiθQ) is positive definite (i.e., 〈Rx, x〉 > 0 for every x 6= 0 in

H). Then Q has the hereditary property with respect to every T in L(H) for which

Q ∈ {T}′.

Proof. If 〈Qx, x〉 = 0, then 〈Rx, x〉 =
〈
1
2
(eiθQ+ e−iθQ∗)x, x

〉
= 0 so x = 0. ¤
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The main result from [17] that we shall need, in addition to those already men-

tioned, is the following.

Theorem 3.6 [17]. Suppose {Sn}n∈N and {Tn}n∈N are bounded sequences of opera-

tors in L(H) with Ŝ := ⊕n∈NSn and T̂ := ⊕n∈NTn. Suppose, moreover, that {Xn}n∈N

is a sequence of invertible operators such that

X−1
n SnXn = Tn, n ∈ N.

Then Ŝ
h
∼ T̂ and consequently Hlat(Ŝ) ≡ Hlat(T̂ ).

Proof. As is well known, X̂ := ⊕n∈NXn/ ‖Xn‖ and Ŷ := ⊕n∈N(Xn)
−1/ ‖(Xn)

−1‖

belong to L(H(ω)) and satisfy ŜX̂ = X̂T̂ , Ŷ Ŝ = T̂ Ŷ . Moreover

X̂Ŷ = ⊕n∈N1/(‖Xn‖
∥∥(Xn)

−1
∥∥) = Ŷ X̂

is a positive definite operator, and the fact that X̂Ŷ and Ŷ X̂ have the appropriate

hereditary properties is immediate from Corollary 3.5. ¤

Recall also that it is known from [21] that (QD)(H) = (BD)(H)+K(H) and that

if T ∈ (QD)(H) and ε > 0 are given, then there exist Bε ∈ (BD)(H) and Kε ∈ K(H)

such that T = Bε +Kε and ||Kε|| < ε, which utilizes the concept of block diagonal

operators.

This next class of operators is somewhat less interesting from the stand point

of n.h.s., since all operators in this class have a good supply of n.h.s. (but, in this

connection see [8]).

Definition 3.7. An operator T in L(H) such that there exists a nonzero polynomial

p satisfying p(T ) = 0 is called an algebraic operator, and hereafter the set of all

algebraic operators in L(H) will be denoted by (A) (or (A)(H) if necessary to avoid
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confusion).

The following result is a combination of a well known theorem of Halmos [22]

and some easy matricial calculations.

Theorem 3.8. Suppose T ∈ (A) and p is a monic polynomial of minimal degree

such that p(T ) = 0. If p(z) has the factorization

p(z) = (z − λ1)
q1 . . . (z − λk)

qk

where λ1, . . . , λk are the distinct zeros of p, then σ(T ) = {λ1, . . . , λk} and T is similar

to an operator T1 of the form

T1 = (λ1 +N1)⊕ . . .⊕ (λk +Nk)

where N1, . . . , Nk are nilpotent operators.

As an easy consequence of this result one gets the following well known fact.

Corollary 3.9. With the notation as above, Hlat(T ) ≡ Hlat(N1)⊕ . . .⊕ Hlat(Nk).

Thus the study of the hyperlattice of an arbitrary algebraic operator reduces

quickly to the study of the hyperlattices of a finite number of nilpotent operators.

This is not a trivial subject, and it was recently shown in [8], for example, that there

exists a nilpotent operator N in L(H) with N 3 = 0 whose hyperlattice is infinite

(unlike the known situation for a nilpotent operator acting on a finite dimensional

Hilbert space, where the hyperlattice is necessarily finite). But, on the other hand,

a nonzero nilpotent operator N in L(H) with index of nilpotency k does have some

obvious hyperinvariant subspaces, namely

kerN, kerN 2, . . . , kerNk−1, (1)
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and also

(ranN)−, (ranN 2)−, . . . , (ranN k−1)− (2)

together with the lattice generated by the subspaces in (1) and (2) (for example,

kerN 2 ∩ (ranN)−, etc.)

Thus one may say that the hyperlattice structure of an algebraic operator in

L(H) is moderately, if not completely, well understood, and consequently, in the

remainder of this dissertation, no further attention will be given to the class (A)(H).

In the remainder of this chapter (written as part of the article [24]), we will

establish a new structure theorem for (BCP)-operators which will play a role in later

chapters, namely, the following.

Theorem 3.10. Suppose T ∈ (BCP)(H) and B is an arbitrary strictly norm de-

creasing block diagonal operator. Then for every ε > 0 there exist c.n.u. contractions

T0 = T0(ε) and Ki = Ki(ε), i = 1, 2, satisfying :

(a) Ki ∈ C1(H) and ‖Ki‖1 < ε for i = 1, 2,

(b) T (ω)
h
∼ T̂ , where T̂ ∈ (BCP)(H(2)) is the 2× 2 operator matrix



T0 K1

K2 B


 (3)

acting on H(2) in the usual fashion,

(c) σle(T̂ ) ⊃ σle(T ), σre(T̂ ) ⊃ σre(T ), and σ(T̂ ) ⊃ σ(T ), and

(d) if T ∈ C00(H), then also T̂ ∈ C00(H
(2)).

The proof of Theorem 3.10 will be made easier by first establishing some needed

lemmas.

Lemma 3.11. Suppose K1 and K2 are complex Hilbert spaces and T̂ ∈ L(K1 ⊕K2)
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is a c.n.u. contraction defined matricially by

T̂ =



A B

0 C


 .

Then for every 0 < s < 1, the operator T̂s defined matricially by

T̂s =



A sB

0 C




is also a c.n.u. contraction.

Proof. Let x ⊕ y be an arbitrary vector in K1 ⊕ K2. It is easy to see that the

inequality ||T̂ (x⊕ y)|| ≤ ||x⊕ y|| is equivalent to the inequality

〈(1− A∗A)x, x〉+ 〈(1− C∗C)y, y〉 ≥ ‖By‖2 + 2Re 〈B∗Ax, y〉 . (4)

Now fix an arbitrary s such that 0 < s < 1 and choose θ = θ(x, y) ∈ [0, 2π)

satisfying Re e−iθ 〈B∗Ax, y〉 = |〈B∗Ax, y〉|. Then inequality (4) implies that

〈(1− A∗A)x, x〉+ 〈(1− C∗C)y, y〉 ≥ ‖By‖2 + 2 |〈B∗Ax, y〉|

≥ s2 ‖By‖2 + 2s |〈B∗Ax, y〉| (5)

≥ s2 ‖By‖2 + 2sRe 〈B∗Ax, y〉 ,

where x⊕ y ∈ K1 ⊕K2, which proves that T̂s is a contraction.

Next, suppose thatM⊂ K1⊕K2 is an invariant (equivalently, reducing) subspace

for T̂s such that T̂s|M is a unitary operator. Let PK2 ∈ L(K1 ⊕K2) be the projection

with range the subspace (0) ⊕ K2. If there exists x0 ⊕ y0 ∈ M with By0 6= 0, then

the inequality (5) becomes strict, and thus

||T̂s(x0 ⊕ y0)|| < ||T̂ (x0 ⊕ y0)|| ≤ ||x0 ⊕ y0||,
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which contradicts the fact that T̂s|M is unitary. Thus PK2M ⊂ (0) ⊕ kerB which

implies that M ∈ Lat(A ⊕ C) and that (A ⊕ C)|M = T̂s|M is a unitary operator.

Since T̂ is c.n.u., so are A, C, and A⊕ C, and therefore M = (0) which proves that

T̂s is completely nonunitary as desired. ¤

Lemma 3.12. Suppose that T̂ ∈ L(K1 ⊕K2 ⊕K3) is given matricially as

T̂ =




A11 A12 A13

0 A22 A23

0 0 A33




and T̂ is a c.n.u. contraction. Then for every 0 < s < 1, the operator

T̂s =




A11 sA12 s2A13

0 A22 sA23

0 0 A33




is also a c.n.u. contraction.

Proof. Fix an arbitrary s such that 0 < s < 1 and apply Lemma 3.11 twice; first

to give that 


A11 sA12 sA13

0

0

A22 A23

0 A33




is a c.n.u. contraction, and then to give that




A11 sA12

0 A22

s2A13

sA23

0 0 A33




is a c.n.u. contraction. ¤
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Proof of Theorem 3.10. Let B be any fixed strictly norm decreasing operator in

(BD)(H). Then, by definition, there exist a sequence of finite dimensional Hilbert

spaces {Hn}n∈N (with dimHn := kn ∈ N), a sequence {Bn ∈ L(Hn)}n∈N, and a

Hilbert space isomorphism ϕ of H onto ⊕n∈NHn, such that ϕBϕ−1 = ⊕n∈NBn and

‖Bn‖ < 1 for every n. Fix an arbitrary T ∈ (BCP)(H). One knows from [6, Theorem

4.8] that for each n ∈ N we may choose a Hilbert space isomorphism ϕn mapping H

onto H⊕Hn ⊕H such that

T
′

n = ϕnTϕ
−1
n =




T
(n)
11 T

(n)
12 T

(n)
13

0 Bn T
(n)
23

0 0 T
(n)
33



, n ∈ N. (6)

Notice that the ranks of T
(n)
12 and T

(n)
23 are bounded above by kn. Now let ε > 0

be arbitrarily given, and let {rn}n∈N be a monotone decreasing sequence of positive

real numbers such that
∑
rn < ε. Now for each n ∈ N, define sn = rn/kn and let

Sn ∈ L(H⊕Hn ⊕H) be defined by Sn = sn1H ⊕ 1Hn
⊕ s−1n 1H. It follows that Sn is

an invertible operator and a short calculation gives

T
′′

n = SnT
′

nS
−1
n =




T
(n)
11 snT

(n)
12 s2nT

(n)
13

0 Bn snT
(n)
23

0 0 T
(n)
33



, n ∈ N, (7)

and by Lemma 3.12, T
′′

n is a c.n.u. contraction. Moreover, for each n ∈ N, T
′′

n is

obviously unitarily equivalent to the c.n.u. contraction

T
′′′

n =




T
(n)
11 s2nT

(n)
13 snT

(n)
12

0 T
(n)
33 0

0 snT
(n)
23 Bn



. (8)

Since, by construction, T is similar to each T
′′′

n , one knows that for each n ∈ N,
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σ(T
′′′

n ), σle(T
′′′

n ) and σre(T
′′′

n ) coincide with the corresponding parts of the spectrum

of T , and if T ∈ C00, then it follows that T
′′′

n ∈ C00 also. Moreover, one knows (cf.,

e.g., [34, Prop. 9.7]) that T (ℵ0) ∼ ⊕n∈NT
′′′

n ∈ L(⊕n∈N(H ⊕H ⊕Hn)). Furthermore,

by reordering this direct sum of Hilbert spaces as

M = (⊕n∈N(H⊕H))⊕ (⊕n∈NHn),

we see that ⊕
n∈N

T
′′′

n is unitarily equivalent to the operator M ∈ L(M) that is given

matricially as

M =



⊕n∈NRn K̂1

K̂2 ⊕n∈NBn


 , (9)

where

(A) Rn ∈ L(H⊕H) is also defined matricially as

Rn =



T
(n)
11 s2nT

(n)
13

0 T
(n)
33


 , (10)

(B) K̂1 : ⊕n∈NHn → (H⊕H)(ℵ0) is defined at an arbitrary vector ⊕n∈Nxn in ⊕n∈NHn

by K̂1(⊕xn) = ⊕(snT
(n)
12 xn ⊕ 0H), and

(C) K̂2 : (H⊕H)(ℵ0) → ⊕n∈NHn is defined at any ⊕n∈N(vn ⊕ yn) in (H ⊕H)(ℵ0) by

K̂2(⊕n∈N(vn ⊕ yn)) = ⊕n∈NsnT
(n)
23 yn.

Thus M , being unitarily equivalent to ⊕n∈NT
′′′

n , is a c.n.u. contraction satisfying

M
h
∼ T , σle(M) ⊃ σle(T

′′′

n ) = σle(T ), σre(M) ⊃ σre(T ), and σ(M) ⊃ σ(T ). Moreover,

if T ∈ C00 then M ∈ C00 also.

Next, define K1 = ψ−1K̂1ϕ, K2 = ϕ−1K̂2ψ, T0 = ψ−1(⊕n∈NRn)ψ, and T̂ =

(ψ ⊕ ϕ)−1M(ψ ⊕ ϕ). where ψ is some Hilbert space isomorphism of H onto H(ℵ0).

It is obvious that T̂ is given matricially by (3), and from above we know that

T
h
∼ T̂ and that T̂ has properties (b), (c), and (d) in the statement of the theorem.
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Thus the proof can be completed by showing that K1, K2 ∈ C1(H) and satisfy

‖K1‖1 , ‖K2‖1 < ε. (11)

Obviously, (11) is equivalent to
∥∥(K∗

iKi)
1/2
∥∥
1
< ε, i = 1, 2, and since ϕ and ψ are

Hilbert space isomorphisms, it suffices to show that for i = 1, 2, ||(K̂∗
i K̂i)

1/2||1 < ε.

Moreover, the above definitions together with a simple calculation show that

(K̂∗
1K̂1)

1/2 = ⊕n∈Nsn[(T
(n)
12 )∗T

(n)
12 ]1/2,

(K̂∗
2K̂2)

1/2 = 0H ⊕
(
⊕n∈Nsn[(T

(n)
23 )∗T

(n)
23 ]1/2

)
.

Thus

||(K̂∗
1K̂1)

1/2||1 =
∑

n∈N
sn||((T

(n)
12 )∗T

(n)
12 )1/2||1

=
∑

n∈N
sn tr((T

(n)
12 )∗T

(n)
12 )1/2

≤
∑

n∈N
snkn < ε,

since for each n ∈ N, ((T
(n)
12 )∗T

(n)
12 )1/2 ∈ L(Hn) and is a contraction, and therefore

must have trace at most dimHn = kn. A similar calculation to the one above shows

that

||(K̂∗
2K̂2)

1/2||1 < ε,

which completes the proof. ¤

The next important result that we shall need is Voiculescu’s representation the-

orem from [35]. For T ∈ L(H) we will write C∗(T ) and C∗(π(T )) for the unital

C∗-algebras generated by T (and 1H) and π(T ) (and 1L(H)/K), respectively.

Theorem 3.13 (Voiculescu). Let T ∈ L(H) and let ρ̃ be a unital C∗-algebra

homomorphism from C∗(π(T )) into L(H). Then there exists a sequence {Un}n∈N of
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unitary operators from H to H⊕H such that

(I) UnAU
∗
n − A⊕ ρ̃(π(A)) ∈ K(H⊕H), A ∈ C∗(T ), n ∈ N and

(II) ‖UnAU
∗
n − A⊕ ρ̃(π(A))‖ → 0, A ∈ C∗(T ).

The next preparatory lemmas will be needed to enable us to apply Theorem 3.13

to obtain the desired conclusions. The following lemma is elementary and thus needs

no proof.

Lemma 3.14. Let A ⊂ L(H) be a unital C∗-algebra, and let P ∈ L(H) be a

projection in A′. Then the map ϕ defined by ϕ(A) = PAP |ranP is a unital C∗-

algebra homomorphism of A into PAP |ranP (with ϕ(1H) = 1ranP ).

Now we give a complete proof of the following lemma which is similar to lemmas

used without proof in [20] and [26].

Lemma 3.15. Let T = ⊕n∈NTn ∈ L(H
(ℵ0)), and suppose that {Tn} ⊂ L(H) is a

sequence of contractions that converges ∗−SOT to a nonzero contraction S. Then,

(a) there exists a unital C∗-algebra homomorphism ρ of C∗(T ) into C∗(S) (i.e.,

ρ(1H(ℵ0)) = 1H) such that ρ(T ) = S, and

(b) C∗(T ) ∩K(H(ℵ0)) ⊂ ker ρ. Hence

(c) there exists a unital C∗-algebra homomorphism ρ̃ of C∗(π(T )) such that ρ = ρ̃◦π,

and therefore S = ρ̃(π(T )).

Proof. One knows that if {An} and {Bn} are sequences in L(H) that converge in

the SOT to A0 and B0, respectively, then the sequence {AnBn} converges in the SOT

to A0B0. Using this fact together with the hypothesis, we see easily that if p(x, y) is

any polynomial in the noncommuting variables x and y, we may define

ρ(p(T, T ∗)) = ρ(⊕n∈Np(Tn, T
∗
n)) := SOT− lim

n
p(Tn, T

∗
n) = p(S, S∗), (12)



21

and it is obvious that ρ, so defined, is a contractive ∗-homomorphism. Moreover,

since 1H(ℵ0) = ⊕n∈N1H, we clearly have ρ(1H(ℵ0)) = 1H, so ρ is unital. Thus ρ extends

by continuity to a C∗-algebra homomorphism of C∗(T ) into C∗(S).

With respect to (b), let A ∈ C∗(T ) ∩ K(H(ℵ0)) and set ρ(A) = B. It is obvious

that A must have the form A = ⊕n∈NAn, and since A is compact it follows easily

that each An ∈ K(H) and that ‖An‖ → 0. Thus, if η > 0 and p(x, y) is a polynomial

such that ‖p(T, T ∗)− A‖ < η, then for n sufficiently large we have ‖p(Tn, T
∗
n)‖ ≤ η,

so from (12) we get that ‖p(S, S∗)‖ ≤ η. Since ‖p(S, S∗)−B‖ ≤ ‖p(T, T ∗)− A‖ ≤ η,

this shows that B = 0. That (c) is valid is now just an application of the standard

result about factoring through quotient spaces. ¤

In Definition 3.16, we construct a specific block diagonal operator, which, in the

terminology of [26], is called a universal block diagonal operator.

Definition 3.16. Let {en}n∈N be an orthonormal basis of H and set, for each j ∈ N,

Mj =
∨
{e1, e2, · · · , ej}. Let N be partitioned as N = ∪j∈NPj, where for each j ∈ N,

Pj is an infinite set, and define K = ⊕m∈NKm, where Km = Mj for each m ∈ Pj.

Moreover, for each j ∈ N, let Dj be a countable set of strict contractions norm-dense

in the unit ball of L(Mj), and enumerate the elements of Dj as {Bk}k∈Pj . Now,

define

Bu := ⊕k∈NBk ∈ L(K). (13)

It is clear that Bu is a C00, strictly norm decreasing, block diagonal (BCP)-

operator in L(K) whose point spectrum σp(Bu) is dense in D, such that σle(Bu) = D−.

In the next lemma we establish the universality of Bu in the sense that if S is any

contraction in L(H) and ε > 0 is given, then there exist operators U : K → H ⊕H
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and K ∈ K(K) with U unitary and ‖K‖ < ε such that U(Bu +K)U ∗ = Bu ⊕ S.

Proposition 3.17. Let Bu be the operator in (BD)(K) constructed in Definition

3.16, and let S be any nonzero contraction in L(H). Then there exist unital C∗-

algebra homomorphisms ρ : C∗(Bu) → C∗(S) and ρ̃ : C∗(π(Bu)) → C∗(S) such that

ρ = ρ̃ ◦ π and ρ(Bu) = ρ̃(π(Bu)) = S.

Proof. With the orthonormal basis {en}n∈N of H and the subspaces Mj ⊂ H as

in Definition 3.16, let Pj be the projection in L(H) with ranPj =Mj, (so Pj
SOT
−→ 1H),

and define Sj := PjSPj ∈ L(H). Clearly Sj
SOT
−→ S and since S∗j = PjS

∗Pj, we get

also S∗j
SOT
−→ S∗. Moreover, as a consequence of the way Bu was constructed, for each

j ∈ N there exists some mj ∈ Pj such that Bmj
∈ Dj and

||Bmj
− Sj|Mj

||
Mj

< 1/2j, j ∈ N. (14)

For each j ∈ N define now B̃mj
∈ L(H) by B̃mj

= Bmj
⊕ 0HªMj

, and define also

B̃ := ⊕j∈NB̃mj
∈ L(H(ℵ0)).

Clearly,

||B̃mj
− Sj||H < 1/2j, j ∈ N,

and since Sj
∗−SOT
−→ S, B̃mj

∗−SOT
−→ S also. Moreover, there exists a natural unital

(surjective) C∗-algebra isomorphism φ : C∗(B̃)→ C∗(QBuQ) where Q ∈ L(K) is the

projection of K onto the subspace ⊕j∈NKmj
. Thus, by Lemma 3.14, to construct a

unital C∗-algebra homomorphism ρ of C∗(Bu) into C∗(S) such that ρ(Bu) = S, it

suffices to construct a unital C∗-algebra homomorphism ψ of C∗(B̃) into C∗(S) such

that ψ(B̃) = S, and since B̃mj

∗−SOT
−→ S, the existence of ψ is immediate from Lemma

3.15. ¤
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The following corollary of Theorem 3.13 and Proposition 3.17, which should

probably be credited to Herrero [26], is quite interesting in itself.

Corollary 3.18. Let Bu be the operator in (BD)(H)∩C00 constructed in Definition

3.16, let S ∈ L(H) be any contraction, and let ε > 0 be given. Then there exist

operators U : H → H ⊕ H and K ∈ K(H) with U unitary and ‖K‖ < ε such that

U(Bu +K)U ∗ = Bu ⊕ S.

In this section we first show that every (BCP)-operator is hyperquasisimilar

to a quasidiagonal (BCP)-operator, and then we apply this result, together with

Corollary 3.20, to obtain a further reduction in the hyperinvariant subspace problem

for operators on Hilbert space.

Theorem 3.19. Suppose T ∈ (BCP)(H), Bu is as in Definition 3.16, and ε > 0 is

given. Then there exists T̂ ∈ (BCP) ∩ (QD) satisfying

(I) T
h
∼ T̂ , so T has a n.h.s. if and only if T̂ does,

(II) T̂ = (T0⊕Bu)+ J , where T0 is a c.n.u. contraction and J ∈ C1(H⊕H) satisfies

‖J‖1 < ε,

(III) σle(T̂ ) ⊃ σle(T ), σre(T̂ ) ⊃ σre(T ), and σ(T̂ ) ⊃ σ(T ), and

(IV) if T ∈ C00, then T̂ ∈ C00 also.

Proof. Let Bu be the strictly norm decreasing operator in (BD)(H) defined in

Definition 3.16. (with H replacing K). Then, by Theorem 3.10 (with B = Bu),

there exists an operator T̂ ∈ (BCP)(H ⊕ H) such that conclusions (a)-(d) of that

theorem are valid. In particular, from (a) we have that T̂ = (T0 ⊕ Bu) + J , where

J ∈ C1(H⊕H) with ‖J‖1 < ε, and since (III) and (IV) are immediate from (c) and

(d), it suffices to show that T0 ⊕ Bu is quasidiagonal. But this follows immediately

from Corollary 3.18 and the fact that (QD) = (BD) + K. ¤
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The following is our further reduction of the hyperinvariant subspace problem.

Theorem 3.20. Let Bu be the operator constructed in Definition 3.16, and let ε > 0

be given. Then

(A) Bu ∈ (BD) ∩ (BCP) ∩ C00(H) and satisfies σ(Bu) = σle(Bu) = D−,

(B) Bu has point spectrum dense in D, and thus has at least ℵ0 different (and ”dis-

joint”) n.h.s., and

(C) if every C00, quasidiagonal, (BCP)-operator of the form Bu + K has a n.h.s.,

where K ∈ K(H) and satisfies ‖K‖ < ε, then every operator in L(H)\C1H has a

n.h.s.

Proof. Since every operator in the unit ball of operators on a finite dimensional

Hilbert space is the limit of a sequence of direct summands of the operator Bu,

elementary spectral theory shows that σ(Bu) = σle(Bu) = D− which proves (A), and

(B) is obvious. To establish (C), it suffices to fix an arbitrary (BCP)-operator T1 in

C00 with σle(T1) = D− and to show that T1 has a n.h.s. under the hypotheses in (C).

With T1 as indicated, we conclude from Theorem 3.19 that T1
h
∼ T̂1 = (T0 ⊕Bu) + J

where T̂1 has properties (I)-(IV) of that theorem (with ‖J‖1 < ε/2). Thus T1 has a

n.h.s. if and only if T̂1 does, by [18, Proposition 2.4], and moreover, by Corollary 3.18

(with S = T0), we know that there exist operators U and K ∈ K(H) with U unitary

and ‖K‖ < ε/2 such that U(Bu +K)U ∗ = T0 ⊕Bu. Thus

U(Bu +K + U ∗JU)U ∗ = (T0 ⊕Bu) + J = T̂1,

and K + U ∗JU ∈ K(H) and satisfies ‖K + U ∗JU‖ < ε. Since U is unitary, T̂1 has a

n.h.s. if and only if Bu +K + U ∗JU does, and the proof is complete. ¤

The most definitive result in this direction was eventually obtained in [17] and
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[8], and goes as follows.

Theorem 3.21 [8, Theorem 4.2]. Let Bu be a fixed universal block diagonal op-

erator as defined above, let T be an arbitrary operator in L(H)\(A), and let ε be an

arbitrary positive number. Then there exists a compact operator K = K(T, ε) ∈ K

such that :

(1) ‖K‖ < ε,

(2) Bu +K is quasidiagonal,

(3) σ(Bu +K) = σle(Bu +K) = D−,

(4) Bu +K is a C00, (BCP)-operator, and

(5) Hlat(T ) ≡ Hlat(Bu +K).

On the other hand, using the techniques and results from this chapter, as well

as [17], this other definitive result was obtained in [8].

Theorem 3.22. Let 0 ≤ θ < 1 be given, and suppose T ∈ L(H)\(A). Then there

exists a C00, (BCP)-operator T̂ such that σ(T̂ ) = σle(T̂ ) = Aθ, θ(T̂
−1) ∈ C00∩ (BCP)

whenever θ > 0, and Hlat(T ) ≡ Hlat(T̂ ).

This result clearly demonstrates that it is of considerable interest to determine

as many structure theorems about the class of (BCP)-operators satisfying the conclu-

sions of Theorem 3.22 when θ > 0 as possible, and we do this next, using results from

Chapter II. (In Chapter IV we will investigate some special subclasses of this class of

operators with a view of obtaining some insight into the problem of determining the

structure of operators in these classes.)

First, to shorten the hypothesis in the results to follow, we make the following

definition.
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Definition 3.23. For every θ ∈ (0, 1), we denote by (Bθ(H)) or, more simply, by Bθ,

the set of all (invertible, c.n.u.) contractions B ∈ L(H) such that B ∈ C00 ∩ (BCP),

θB−1 ∈ C00 ∩ (BCP), σ(B) = σle(B), and σ(B) ∩A◦
θ is a dominating subset of A◦

θ

(so also σ(θB−1) = σle(θB
−1) and σ(θB−1) ∩A◦

θ is a dominating subset of A◦
θ).

We observe immediately that the (BCP)-operators T̂ appearing in Theorem 3.22

(the hyperlattices of which are universal for hyperlattices of operators in L(H)\(A))

belong to the class (Bθ) for an arbitrary θ ∈ (0, 1), chosen in advance.

Proposition 3.24. For every θ ∈ (0, 1) and for every B ∈ (Bθ), there exists K =

K(T, θ) > 0 such that Aθ is a complete K−spectral set for B.

Proof. Since ‖T‖ = 1 and ‖T−1‖ = θ, the result follows immediately from [33,

Theorem 9.8]. ¤

As a consequence of this, [33, Corollary 8.12], and [1], we get this next result.

Proposition 3.25. For every θ ∈ (0, 1) and for every B ∈ (Bθ), B is similar to an

operator B1 for which the annulus Aθ is a (complete) spectral set. Consequently, B1

has a normal ∂Aθ−dilation.

Note that if B and B1 are as above, then Hlat(B) ≡ Hlat(B1) so we may re-

place B by B1 without loss of generality when dealing with questions concerning

hyperinvariant subspaces.

Putting together Propositions 3.24 and 3.25, we obtain the desired structure

theorem for operators in the classes (Bθ).

Theorem 3.26. For every θ ∈ (0, 1) and for every B ∈ (Bθ), B is similar to an

operator B1 ∈ (Bθ) such that B1 ∈ AAθ

ℵ0
and AAθ

T1
is reflexive.

Proof. Let B1 be obtained from B as in Proposition 3.25. Since σ(B1) = σ(B),
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σle(B1) = σle(B), and B1 has a ∂Aθ−dilation, it is clear that B1 ∈ (Bθ) with B.

Moreover, since B ∈ CAθ

00 and B1 is similar to B, we have B1 ∈ CAθ

00 too. Finally,

that B1 has an isometric H∞(Aθ) (and weak∗-homeomorphic) functional calculus

follows from [16, Theorem 7.3 (and proof)], so B1 ∈ AAθ by definition. Moreover,

it is known from Theorem 2.2 that AAθ ∩ CAθ

00 ⊂ AAθ

ℵ0
, so the proof is complete by

Theorem 2.3. ¤

The following applications to the classes (Bθ) come from Theorem 2.7 (and from

[9]).

Theorem 3.27. For every θ ∈ (0, 1) every B ∈ (Bθ) and every sequence {γn}n∈N0 (of

not necessarily distinct points)⊂ Aθ, then B is similar to an operator B1 ∈ (Bθ)∩AAθ

ℵ0

and there exist a decomposition H =M⊕N ⊕P and an orthonormal basis {fn}n∈N0

for N such that for every rational function r ∈ RAθ , the matrix for r(B1) has the

form

r(B1) =




r(B11) ∗ ∗

0 r(D) ∗

0 0 r(B33)




where D is the diagonal normal operator in L(N ) defined by Dfn = γnfn, n ∈ N.

Theorem 3.28. Suppose θ ∈ (0, 1), B ∈ (Bθ), and X satisfies σ(X) ⊂ (Aθ)
◦. Then

B is similar to an operator B1 ∈ (Bθ) ∩ AAθ

ℵ0
with the property that there exist a

decomposition H = M⊕ N ⊕ P and an operator X1 ∈ L(N ) such that for every

rational function r ∈ RAθ , the matrix

r(B1) =




r(B11) ∗ ∗

0 r(X1) ∗

0 0 r(B33)
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where X1 is similar to X.

Theorems 3.26, 3.27, and 3.28 are completely new, and it is hoped that they

will be useful tools in solving problems concerning hyperinvariant subspace lattices

of operators in L(H).
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CHAPTER IV

A CERTAIN CLASS OF (BCP)-OPERATORS

In this chapter, we construct, for every θ ∈ (0, 1), a certain easily described subclass

(Sθ) of (Bθ) which may prove to be very useful in resolving problems concerning

hyperlattices of operators in (Bθ). Much of the chapter is devoted to showing that,

indeed, (Sθ) ⊂ (Bθ) for every θ ∈ (0, 1).

Given an orthonormal basis {en}n∈N0 of H, the unique operator S ∈ L(H) such

that Sen = en+1 for n ∈ N0 is called a unilateral shift of multiplicity one. A trivial

computation shows that S∗e0 = 0 and S∗en+1 = en for n ∈ N. If α is any cardinal

number less than or equal to ℵ0 then a unilateral shift of multiplicity α, denoted by

S(α), is the direct sum of α copies of the unilateral shift S of multiplicity one.

In the remaining part of this chapter, for an arbitrary but fixed 0 < θ < 1, we

will be studying a class of operators in L(H) defined as follows.

Definition 4.1. Fix 0 < θ < 1. We say T ∈ (Sθ) if and only if T is unitarily

equivalent to an operator in L(H(3)) of the form




S1P S2 0

0 0 S∗2

0 0 PS∗1



, (15)

where S1 and S2 are (forward, unweighted) unilateral shifts of infinite multiplicity in

L(H) such that (ranS1)
⊥ = (ranS2) and P is a positive semidefinite operator such

that

(1) θ, 1 /∈ σp(P ),

(2) σ(P ) = [θ, 1](= σle(P )), and
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(3) PS1 = S1P .

The following lemma follows immediately from the definition of the classes (S θ)

and thus needs no proof.

Lemma 4.2. If T ∈ (Sθ) for some 0 < θ < 1 (and is thus unitarily equivalent to an

operator matrix as in (15)), then the following equations are valid, where Qi := SiS
∗
i ,

i = 1, 2:

(a) S∗1S1 = 1H,

(b) S∗2S2 = 1H,

(c) S∗2S1 = 0,

(d) S∗1S2 = 0,

(e) Qi = Q∗i = Q2
i , i = 1, 2, and Q1 +Q2 = 1H, so Q1Q2 = Q2Q1 = 0,

(f) S∗1Q2 = 0,

(g) S∗2Q1 = 0,

(h) S∗1Q1 = S∗1 ,

(i) S∗2Q2 = S∗2 ,

(j) PQ1 = Q1P ,

(k) PQ2 = Q2P .

We shall now establish various facts about the operators in the classes (S θ) which

will enable us to eventually show that every such operator T is a C00, (BCP)-operator

with σ(T ) = σle(T ) = Aθ and θ(T̂−1) ∈ C00 ∩ (BCP) (for a given 0 < θ < 1), and

thus that (Sθ) is a subset of the class of operators which arise in Theorem 3.22. We

will obtain information below which may eventually lead to the existence of n.h.s. for

operators in the class(es) (Sθ).
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Proposition 4.3. Let W ∈ L(H(3)) be given by

W =




0 0 1H

0 1H 0

1H 0 0



.

Then W = W ∗ and WTW = WTW ∗ = T ∗, so T is unitarily equivalent to T ∗.

Moreover, the operator T nW is self-adjoint for all n ∈ N0.

Proof. These facts follow trivially from the matricial calculation that gives

WTW = T ∗. ¤

Some additional easy matricial calculations based on Lemma 4.2 yield immedi-

ately this next result

Proposition 4.4. If T is the operator matrix in L(H(3)) given in (15) satisfying

(1), (2), and (3) in Definition 4.1, then the following equations hold :

T 2 =




(S1P )
2 (S1P )S2 Q2

0 0 S∗2(PS
∗
1)

0 0 (PS∗1)
2



, (16)

T 3 =




(S1P )
3 (S1P )

2S2 P (S1Q2 +Q2S
∗
1)

0 0 S∗2(PS
∗
1)
2

0 0 (PS∗1)
3



, (17)

and by induction, it is easy to see that for n ∈ N\{1, 2},

T n =




(S1P )
n (S1P )

n−1S2
n−2∑
i=0

(S1P )
n−2−i(Q2)(PS

∗
1)

i

0 0 S∗2(PS
∗
1)

n−1

0 0 (PS∗1)
n



, (18)
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and

T ∗n =




(PS∗1)
n 0 0

S∗2(PS
∗
1)

n−1 0 0
n−2∑
i=0

(S1P )
n−2−i(Q2)(PS

∗
1)

i (S1P )
n−1S2 (S1P )

n



, (19)

where any nonzero operator to the power 0 is defined to be 1H.

Proposition 4.5. The polar decomposition of the operator matrix T in (15) is

T = UR, where U ∈ L(H(3)) is the unitary operator

U =




S1 S2 0

0 0 S∗2

0 0 S∗1



, (20)

and

R = (T ∗T )1/2 =




P 0 0

0 1H 0

0 0 Q2 + PQ1



. (21)

Proof. Easy computations show that T ∗T = R2, T = UR, and U is unitary. ¤

Proposition 4.6. The operator S1P (= PS1) appearing in Definition 4.1 is unitarily

equivalent to an operator S⊗P1 ∈ L(H⊗H), where S is a unilateral shift of multiplic-

ity one and P1 is positive semidefinite and satisfies σ(P1) = σle(P1) = [θ, 1] = σ(P ).

Proof. Since S1 is a unilateral shift of infinite multiplicity, it is clear that S1

is unitarily equivalent to an operator S ⊗ 1H where S is as above. Moreover, since

PS1 = S1P , this unitary equivalence carries P onto an operator 1H ⊗ P1 where P1

has the properties described above, and the result follows. ¤

Proposition 4.7. With the notation as in Proposition 4.6, σle(S1P ) = σle(S⊗P1) =

Aθ.
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Proof. Let eiθ ∈ σle(S) and r ∈ σle(P1). Then there exist orthonormal sets

{en}n∈N and {fn}n∈N in H such that
∥∥(S − eiθ)en

∥∥→ 0 and ‖(P1 − r)fn‖ → 0 as n→∞.

Now

S ⊗ P1 − eiθr(1H ⊗ 1H) = S ⊗ P1 − eiθ1H ⊗ P1 + eiθ1H ⊗ P1 − eiθ1H ⊗ r1H

= (S − eiθ1H)⊗ P1 + eiθ(1H ⊗ P1 − 1H ⊗ r1H)

= (S − eiθ1H)⊗ P1 + eiθ(1H ⊗ P1 − r1H).

Next,

(S ⊗ P1 − eiθr(1H ⊗ 1H))(en ⊗ fn)

= ((S − eiθ1H)⊗ P1)(en ⊗ fn) + eiθ(1H ⊗ P1 − r1H)(en ⊗ fn)

= (S − eiθ1H)en ⊗ P1fn + eiθ(en ⊗ (P1 − r1H)fn).

But since, as n→∞,

∥∥(S − eiθ1H)en ⊗ P1fn
∥∥ ≤

∥∥(S − eiθ1H)en
∥∥→ 0,

and
∥∥eiθ(en ⊗ (P1 − r1H)fn)

∥∥ ≤ ‖(P1 − r1H)fn‖ → 0,

we conclude that
∥∥(S ⊗ P1 − eiθr(1H ⊗ 1H))(en ⊗ fn)

∥∥→ 0, which proves that Aθ ⊂

σle(S1P ). Moreover, an easy calculation shows that S1P is bounded below by θ, and

thus (since ‖S1P‖ = 1) σle(S1P ) ⊂ σl(S1P ) ⊂ Aθ. ¤

Proposition 4.8. The operator S1P ∈ C00.

Proof. By the spectral theorem for Hermitian operators, there exists a unique

spectral measure E whose support is σ(P ) such that P =
∫
σ(P )

λdE. Now we choose
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n0 ∈ N such that θ < 1/n0 and partition the interval [θ, 1) into subintervals [θ, 1/n0)∪

[1/n0, 1/(n0 + 1))∪ · · · . Next, define H0 := E([θ, 1/n0))H and Hj := E([1/(n0 + j −

1), 1/(n0 + j))H for every j ∈ N. Each Hj reduces P , so we define P |Hj
= Pj.

Moreover, since (by definition) 1 is not an eigenvalue of P , H = ⊕j∈N0Hj and P =

⊕j∈N0Pj. Since ‖Pj‖ < 1 for j ∈ N0 and S1P = PS1, the result follows. ¤

Recall from [32] that an operator T ∈ L(H) is said to be centered if the doubly

infinite sequence

{· · · , T nT ∗n, · · · , T 2T ∗2, TT ∗, T ∗T, T ∗2T 2, · · · , T ∗nT n, · · · }

consists of mutually commuting operators. One knows that, despite the fact that

centered operators have been in play since 1974, the invariant subspace problem for

such operators remains unsolved.

Notation 4.9. We adopt Halmos’ notation by writing, for any A,B ∈ L(H), A↔ B

to mean that AB = BA.

We will need the following obvious lemma which needs no proof.

Lemma 4.10. Suppose A,B, S ∈ L(H) with S invertible. Then A↔ B if and only

if SAS−1 ↔ SBS−1.

We also need the following result, which is an easy consequence of [32, Lemma

3.1].

Proposition 4.11. If T ∈ L(H) and is a quasiaffinity with polar decomposition T =

UR (so U is unitary), then T is centered if and only if the sequence {U ∗nR2Un}n∈Z

consists of mutually commuting operators, which happens if and only if the sequence
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{T ∗nT n}n∈N consists of mutually commuting operators.

Proof. The first statement is exactly [32, Lemma 3.1], where it also proved that

T nT ∗n = ((UnR2(U ∗)n)(Un−1R2(U ∗)n−1) · · · (UR2U∗)), n ∈ N,

and

T ∗nT n = ((U ∗)n−1R2(Un−1)((U ∗)n−2R2(Un−2)) · · · (U ∗RU)P 2, n ∈ N,

and the result follows easily by repeated application of Lemma 4.10. ¤

We now return to a discussion of the class (Sθ) of operators as in Definition 4.1

(with, as usual, 0 < θ < 1 fixed but arbitrary).

To motivate Theorem 4.12 to follow, we observe by using (15), (16), and (17),

and making some elementary matricial calculations that

T ∗T =




P 2 0 0

0 1H 0

0 0 Q2 + P 2Q1



, (22)

TT ∗ =




Q2 + P 2Q1 0 0

0 1H 0

0 0 P 2



, (23)

and

T ∗2T 2 =




P 4 0 0

0 S∗2P
2S2 0

0 0 P 4S1Q1S
∗
1 + P 2S1Q2S

∗
1 +Q2



. (24)

Since the above operator matrices in L(H(3)) are diagonal, then they commute

with one another if and only if their corresponding diagonal elements commute. It
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follows immediately then from (22), (23) and (24) and Lemma 4.2 that TT ∗ ↔ T ∗T

and T ∗2T 2 ↔ T ∗T . This is a special case, of course, of Theorem 4.12 below.

Theorem 4.12. Every operator in the class (Sθ) is a centered operator.

Proof. If T is given matricially by (15), then, by induction, one can show that

T ∗nT n =




P 2n 0 0

0 P 2n−2 0

0 0 Zn



, n ∈ N\{1}, (25)

where Zn = P 2(n−2)Q2 + P 2n(S1)
n(S∗1)

n +
n−1∑
k=1

P 2kSk1Q2(S
∗
1)

k.

Since S1 is a unilateral shift of infinite multiplicity (by definition), there exists

an infinite dimensional subspace K ⊂ H and a unitary operator V : H → K(ω) (where

ω is the first infinite ordinal number) such that V S1V
∗ ∈ L(K(ω)) is the shift S(ω) in

L(K(ω)) defined by S(ω)(h1, h2, · · · ) = (0, h1, h2, · · · ). Since P ↔ S1, V PV
∗ ↔ S(ω),

and an easy calculation shows that V PV ∗(h1, h2, · · · ) = (P1h1, P1h2, · · · ), where

P1 is some positive semidefinite operator in L(H) satisfying σ(P1) = σle(P1) =

[θ, 1] = σ(P ). Similarly, we obtain that V Q1V
∗(h1, h2, · · · ) = (0, h2, h3, · · · ) and

that V Q2V
∗(h1, h2, · · · ) = (h1, 0, 0, · · · ).

It follows that

V ZnV
∗(h1, h2, · · · , hn, · · · )

= (P
2(n−2)
1 h1, P

2
1 h2, P

4
1 h3, · · · , P

2(n−1)
1 hn, P

2n
1 hn+1, P

2n
1 hn+2, · · · )

which shows that {V ZnV
∗}n∈N\{1} and thus {Zn}n∈N\{1} is a commutative family of

operators and consequently {T ∗nT n}n∈N consists of mutually commuting operators.

Thus it follows from Proposition 4.11 and (25) that T is a centered operator. ¤

Recall from [23] that an operator T in L(H) whose polar decomposition is T =
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V Q is called quasinormal if V ↔ Q. (The structure of such operators was completely

determined by Arlen Brown in [11].)

Proposition 4.13. No operator in
⋃

θ>0 (Sθ) is either quasinormal, hyponormal, or

essentially normal.

Proof. Let T ∈ (Sθ) for some θ > 0, and without loss of generality, let T = UR

where U and R are as in (20) and (21). Then T ∗T and TT ∗ are given by (22) and

(23), respectively. A simple matricial calculation shows that U (given by (20)) does

not commute with R, so T is not quasinormal. Moreover, from (22) and (23), one

obtains

T ∗T − TT ∗ =




(P 2 − 1)Q2 0 0

0 0 0

0 0 (1− P 2)Q2



,

and since σe((P
2−1)Q2) = [θ−1, 0], T is neither hyponormal nor essentially normal.¤

Proposition 4.14. For every operator T in (Sθ), T ∈ C00 and θT−1 ∈ C00.

Proof. Let T be the operator matrix in L(H(3)) given by (15). We first show

that Tn
SOT
−→ 0 and thus by Proposition 4.3, it will follow that T ∈ C00. Note that by

(19) and Proposition 4.8,

lim
n→∞

‖T n(x, y, 0)‖ = lim
n→∞

∥∥(S1P )nx+ (S1P )
n−1S2y

∥∥ = 0, x, y ∈ H.

Moreover, a routine calculation gives that

T n(0, 0, w) = (
n−2∑

i=0

(S1P )
n−2−i(Q2)(PS

∗
1)

iw, S∗2(PS
∗
1)

n−1w, (PS∗1)
nw)

= (xn(w), yn(w), zn(w)), n ∈ N, w ∈ H.

Clearly {yn(w)} → 0 and {zn(w)} → 0 for all w ∈ H. Finally, for any fixed k,
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n0 ∈ N,
∥∥T k+n0w

∥∥ ≤
∥∥T k(xn0(w), 0, 0)

∥∥+ ‖yn0(w)‖+ ‖zn0(w)‖ ,

and that T ∈ C00 follows from what was shown above upon taking n0 sufficiently

large and letting k →∞. The argument that θT−1 ∈ C00 is almost exactly the same,

and thus is omitted. ¤

Proposition 4.15. The unitary operator U given by (20) is a bilateral shift of infinite

multiplicity.

Proof. As is well-known, it suffices to exhibit an infinite dimensional wandering

subspace M⊂ H(3) such that
∨
n∈Z

UnM = H(3). Define M = (0)⊕H⊕(0). Then

UnM = Sn−11 S2H⊕(0)⊕(0) for all n ∈ N.

Clearly, M is orthogonal to UnM for all n ∈ N which shows that M is an

(infinite dimensional) wandering subspace for U . Moreover, Sm−1
1 S2H is orthogonal

to Sn−11 S2H for m,n ∈ N and m 6= n. We show first that
∨
n∈N

Sn−11 S2H = H. Since

S1 is a unilateral shift, one knows that HªS1H = S2H is a wandering subspace for

S1 and that
∨

k∈N

Sk−11 (HªS1H) = H,

which shows that
∨
n∈N

Un−1M = H⊕H⊕(0). A similar argument shows that
∨
k∈N

UkM =

(0)⊕H⊕H, and thus that
∨
n∈Z

UnM = H(3). ¤

The above proof was kindly pointed out to us by Professor Ciprian Foias.

Theorem 4.16. For every operator T in (Sθ), T is a (BCP)-operator satisfying

σ(T ) = σle(T ) = Aθ.

Proof. We know from (21) that ‖T‖ = 1 and from Proposition 4.14 that T is a

C00-operator (and therefore completely nonunitary). Moreover, since the matrix in
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(15) is in upper triangular form with (1, 1) entry PS1 = S1P , we have σle(S1P ) ⊂

σle(T ), and from Proposition 4.7 we know that Aθ = σle(S1P ). Thus Aθ ⊂ σle(T ),

and to complete the proof it suffices to show (in case 0 < θ) that ‖T−1‖ = 1/θ, which

automatically gives that σ(T ) ⊂ σle(T ) ⊂ Aθ. But from Proposition 4.5 we have

T−1 = R−1U∗, so from (21) we get ‖T−1‖ = ‖P−1‖ = 1/θ. ¤

Proposition 4.17. The operator T in L(H(3)), given matricially by (15), satisfies

σp(T ) = σp(T
∗) = ∅.

Proof. By Theorem 4.16, we know that σ(T ) = Aθ. Thus suppose λ ∈ Aθ and

(x, y, z) ∈ H(3) satisfies

T (x, y, z) = λ(x, y, z). (26)

We will show that x = y = z = 0, and thus that σp(T ) = ∅. Since by Proposition

4.3, T is unitarily equivalent to T ∗, this will also show that σp(T
∗) = ∅. From (15)

and (23) we obtain immediately the following system of simultaneous equations:

S1Px+ S2y = λx, (27)

S∗2z = λy, (28)

S∗1Pz = λz (29)

From (28) we obtain that y = λ−1S∗2z, and by substitution in (27), we get that

(S1P − λ1H)x = −λ−1Q2z. (30)

We next employ the unitary operator V : H → K(ω) from the proof of Theorem

4.12 to write

V x = (x1, · · · , xn, · · · ) and V z = (z1, · · · , zn, · · · ),
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then, using the characterization of V PV ∗, V Q2V
∗, and V S1V

∗ given in that proof

together with (29), we obtain easily that

(z1, · · · , zn, · · · ) = V z = λ−1(V S∗1V
∗)(V PV ∗)z = λ−1(P1z2, P1z3, · · · ),

and hence,

{zn}n∈N = (λP−11 )n−1z1. (31)

Moreover, by using (30) we get that

−λ−1(z1, 0, 0, · · · ) = (−λx1, P1x1 − λx2, P1x2 − λx3, · · · ),

and hence,

{xn}n∈N = λ−2(λ−1P1)
n−1z1. (32)

Thus,

‖z‖2 = ‖V z‖2 =
∑

n∈N
‖zn‖

2 =
∑

n∈N

∥∥(λP−11 )n−1z1
∥∥2 <∞,

‖x‖2 = ‖V x‖2 =
∑

n∈N
‖xn‖

2 = λ−4
∑

n∈N

∥∥(λ−1P1)n−1z1
∥∥2 <∞.

Hence, we have that ‖z1‖
2 =

∥∥(λP−11 )nz1
∥∥ ‖(λ−1P1)nz1‖ → 0 as n → ∞ since

‖λ−1P1‖ ≤ 1, which gives, via (31) and (32) that x = y = z = 0, as desired. ¤

The next step in our program of obtaining as much information as possible about

operators in the class(es) (Sθ) is to investigate the commutant of such an operator.

Proposition 4.18. Let T be an arbitrary operator in the class (S θ) given matricially

by (15) and let T ′ ∈ L(H(3)) be arbitrary in {T}′, with

T ′ =




A B C

D E F

G H K



. (33)
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Then the following equations obtain:

S1PA+ S2D = AS1P , (34)

S1PB + S2E = AS2, (35)

S1PC + S2F = BS∗2 + CPS∗1 , (36)

S∗2G = DS1P , (37)

S∗2H = DS2, (38)

S∗2K = ES∗2 + FPS∗1 , (39)

PS∗1G = GS1P , (40)

PS∗1H = GS2, (41)

and

PS∗1K = HS∗2 +KPS∗1 . (42)

Proof. These equations result immediately from (15), (33), and the equation

TT ′ = T ′T . ¤

We now list, for future use, some additional equations that result from (a)-(k)

of Lemma 4.2 and (34)− (42):

Left multiplication of (34) by S∗1 gives PA = S∗1AS1P (43)

Left multiplication of (43) by S1 gives S1PA = Q1AS1P (44)

Left multiplication of (34) by S∗2 gives D = S∗2AS1P (45)

Left multiplication of (45) by S2 gives S2D = Q2AS1P (46)

Left multiplication of (35) by S∗1 gives PB = S∗1AS2 (47)

Left multiplication of (47) by S1 gives S1PB = Q1AS2 (48)

Right multiplication of (35) by S∗2 gives S1PBS
∗
2 + S2ES

∗
2 = AQ2 (49)
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Left multiplication of (49) by S∗2 gives ES∗2 = S∗2AQ2 (50)

Left multiplication of (35) by S∗2 gives E = S∗2AS2 (51)

Left multiplication of (51) by S2 gives S2E = Q2AS2 (52)

Right multiplication of (52) by S∗2 gives S2ES
∗
2 = Q2AQ2 (53)

Left multiplication of (36) by S∗2 gives F = S∗2BS
∗
2 + S∗2CPS

∗
1 (54)

Left multiplication of (36) by S∗1 gives PC = S∗1BS
∗
2 + S∗1CPS

∗
1 (55)

Right multiplication of (36) by S1 gives S1PCS1 + S2FS1 = CP (56)

Right multiplication of (36) by S2 gives S1PCS2 + S2FS2 = B (57)

Right multiplication of (54) by S1 gives FS1 = S∗2CP (58)

Right multiplication of (54) by S2 gives FS2 = S∗2B (59)

Left multiplication of (55) by S1 gives S1PC = Q1BS
∗
2 +Q1CPS

∗
1 (60)

Right multiplication of (60) by S2 gives S1PCS2 = Q1B (61)

Right multiplication of (60) by S1 gives S1PCS1 = Q1CP (62)

Right multiplication of (55) by S1 gives PCS1 = S∗1CP (63)

Right multiplication of (56) by S∗1 gives S1PCQ1 + S2FQ1 = CPS∗1 (64)

Left multiplication of (64) by S∗2 gives FQ1 = S∗2CPS
∗
1 (65)

Left multiplication of (57) by S∗1 gives PCS2 = S∗1B (66)

Right multiplication of (57) by S∗2 gives S1PCQ2 + S2FQ2 = BS∗2 (67)

Left multiplication of (37) by S2 gives Q2G = S2DS1P (68)

Left multiplication of (38) by S2 gives Q2H = S2DS2 (69)

Right multiplication of (38) by S∗2 gives S∗2HS
∗
2 = DQ2 (70)

Left multiplication of (39) by S2 gives Q2K = S2ES
∗
2 + S2FPS

∗
1 (71)

Right multiplication of (71) by S1 gives Q2KS1 = S2FP (72)

Right multiplication of (71) by S2 gives Q2KS2 = S2E (73)

Left multiplication of (71) by S∗2 gives S∗2K = ES∗2 + FPS∗1 (74)

Right multiplication of (39) by S1 gives S∗2KS1 = FP (75)
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Right multiplication of (39) by S2 gives S∗2KS2 = E (76)

Right multiplication of (41) by S∗2 gives PS∗1HS
∗
2 = GQ2 (77)

Right multiplication of (42) by S1 gives PS∗1KS1 = KP (78)

Right multiplication of (42) by S2 gives PS∗1KS2 = H (79)

By doing some additional matricial calculations and using the properties of S1,

S2, and P from Lemma 4.2, we obtain the following.

Proposition 4.19. Let 0 < θ < 1 be arbitrary but fixed, let T , given matricially by

(15), be arbitrary in (Sθ), and let T ′, given by (33), be arbitrary in {T}′. Then

T ′ =




A P−1S∗1AS2 C

S∗2AS1P S∗2AS2 S∗2KS1P
−1

G PS∗1KS2 K



. (80)

Proof. First, by equations (51) and (79) we obtain that E = S∗2AS2 and H =

PS∗1KS2, respectively. Now right multiplication of (74) by S1P
−1 gives

F = S∗2KS1P
−1. (81)

Finally, left multiplication of (47) by P−1 gives

B = P−1S∗1AS2, (82)

and by equation (45) we obtain that D = S∗2AS1P , which gives (80) as desired. ¤

Theorem 4.20. Suppose T , given matricially by (15), belongs to (S θ). Then the

linear map Φ : {T}′ → L(H) defined by Φ(T ′) = A for every T ′ ∈ {T}′, where T ′ is

given by (33), is injective.

Proof. If A = 0, then (82), (45) and (51) yield that B = D = E = 0, respectively.

Next, by (37), together with the fact that D = 0, we obtain S∗2G = 0 which implies
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after taking adjoints and right multiplication by S2 that

G∗Q2 = 0. (83)

It follows easily from equation (40) that

P n(S∗1)
nG = G(S1)

nP n, ∀n ∈ N, (84)

and left multiplication of (84) by Q2, we obtain Q2(S
∗
1)

nG = 0 ∀n ∈ N0, and by

taking adjoints, this yields

G∗(S1)
nQ2 = 0, ∀n ∈ N0. (85)

A simple computation shows that Q1 =
∞∑
j=1

Sj1(1−Q1)(S
∗
1)

j and therefore,

G∗Q1 =
∞∑

j=1

G∗Sj1(1−Q1)(S
∗
1)

j = 0, (86)

it follows then from (83) and (86) that G∗ = 0.

With D = 0, (38) implies that Q2H = 0 and since G = 0, then (41) yields that

Q1H = 0 and therefore, we conclude that H = 0.

Next, by (36), together with the fact that B = 0, we obtain

S1PC + S2F = CPS∗1 . (87)

Multiplication of (87) by S∗2 from the left and by S2 from the right, we obtain

that

FS2 = 0. (88)

Right multiplication of (87) by S2 together with (88) yields that

S1PCS2 = 0 (89)
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and right multiplication of (89) by S∗1 implies that

CS2 = 0 (90)

which yields after right multiplication of (90) by S∗2 , that

CQ2 = 0. (91)

Furthermore, multiplication of (87) by S∗1 from the left and by S1 from the right,

we obtain that PCS1 = S∗1CP , which implies that

CS1P
−1 = P−1S∗1C. (92)

It follows easily from equation (92) that C(S1)
nP−n = P−n(S∗1)

nC ∀n ∈ N, and

since P ↔ S∗1 we obtain

C(S1)
nP−n = (S∗1)

nP−nC, ∀n ∈ N. (93)

Now right multiplication of (93) by Q2, we obtain

C(S1)
nQ2 = 0 ∀n ∈ N. (94)

and therefore,

CQ1 =
∞∑

j=1

CSj1Q2(S
∗
1)

j = 0, (95)

it follows then from (91) and (95) that C = 0.

Using the fact that B = 0 and C = 0, it follows easily from (88) that S2F = 0,

which in return implies that F = 0.

Finally, using (39), together with that facts that E = 0 and F = 0, we obtain

that S∗2K = 0 which implies that

Q2K = 0. (96)
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Moreover, right multiplication of (42) by S2 together with H = 0, yields that

S∗1KS2 = 0, (97)

and then multiplication of (97) by S1 from the left and by S∗2 from the right, we

obtain that

Q1K = 0,

which together with (96) imply that K = 0. ¤

To see how the above formulas might eventually be used to provide a n.h.s. for

an operator in the class(es) (Sθ), we point out the following.

Proposition 4.21. Suppose T , given matricially by (15), is in (S θ), and suppose,

for example (to take one instance out of nine), that all of the operators in the linear

manifold

A = {A(T ′) : T ′ ∈ {T}′}

have a common nontrivial invariant subspace M⊂ H. Then T has a n.h.s.

Proof. It suffices, of course, to find nonzero vectors x0 and y0 in H(3) such

that {〈T ′x0, y0〉 = 0 : T ′ ∈ {T}′}. Choose x̃0 ∈ M and ỹ0 ∈ H ªM and define

x0 = x̃0 ⊕ 0⊕ 0, y0 = ỹ0 ⊕ 0⊕ 0, and compute, using (80). ¤



47

CHAPTER V

TOWARD A CANONICAL FORM FOR (BCP)-OPERATORS

As is well known, operators T1 and T2 in L(H) are said to be equivalent (notation:

T1
e
∼ T2) if there exist invertible operators X, Y ∈ L(H) such that T2 = XT1Y . Of

course,
e
∼ is an equivalence relation on L(H), and one knows from linear algebra that

in the finite dimensional case a complete set of invariants for
e
∼ is the rank of an

operator. On the other hand, when H is (as herein) a Hilbert space of (orthogonal)

dimension ℵ0, a complete set of invariants for
e
∼ was given very early in [31], a

particular case of which we describe below. But first we need a bit of additional

terminology and notation.

For each T in L(H), we write coker(T ) for the kernel of T ∗, and we define the

following cardinal numbers: c(T ) := dim coker(T ), k(T ) := dimker(T ), and r(T ) :=

dim(ranT )− = rank(T ). Obviously, 0 ≤ c(T ), k(T ), r(T ) ≤ ℵ0, and k(T ) + r(T ) =

c(T )+r(T ) = ℵ0 for all T in L(H). For operators in L(H) with closed range, Köthe’s

theorem from [31] reads as follows.

Theorem 5.1. Suppose T1 and T2 are operators in L(H) with closed range. Then

T1
e
∼ T2 if and only if c(T1) = c(T2), k(T1) = k(T2), and r(T1) = r(T2).

A proof of this theorem that filled a modest gap in [31] was given by L. Williams

in [36], and an entirely different, and very illuminating, approach to the study of
e
∼

was given by P. Fillmore and J. Williams in [19].

It seems, however that the following interesting and useful canonical form under

e
∼, which is available for operators in L(H) with closed range is new.

Corollary 5.2 (canonical form under
e
∼). Let the cardinal numbers c(·), k(·) and



48

r(·) be as defined above and let S be a unilateral shift of multiplicity one. Then for

every T ∈ L(H) with closed range,

(i) if c(T ) = k(T ), then T
e
∼ 0k(T ) ⊕ 1r(T ) (a projection),

(ii) if k(T ) < c(T ) (which implies that k(T ) is finite), then T
e
∼ 0k(T ) ⊕ S(c(T )−k(T )),

and

(iii) if c(T ) < k(T ) (which implies that c(T ) is finite), then T
e
∼ 0c(T )⊕(S(k(T )−c(T )))∗.

To prove Corollary 5.2, we must first establish the following proposition.

Proposition 5.3. Let α be any cardinal number satisfying 0 ≤ α ≤ ℵ0 and let M

be a Hilbert space of dimension α. Then S
e
∼ 1M ⊕ S.

Proof. Let S shift the orthonormal basis {en}n∈N0 as above, and define K1 :=
∞∨
n=0

{e2n}, K2 :=
∞∨
n=0

{e2n+1}. By identifying both orthonormal bases {e2n}n∈N0 of K1

and {e2n+1}n∈N0 of K2 with some orthonormal basis {fn}n∈N0 of H in the obvious

way (e2n+1 ↔ fn ↔ e2n), we get that S is unitarily equivalent to the 2 × 2 block

matrix




0 S

1H 0


 ∈ L(H⊕H), i.e., there exists a unitary operator U : H → H⊕H

such that USU ∗ =




0 S

1H 0


. Define W =




0 1H

1H 0


 ∈ L(H⊕H), and note

that (USU ∗)W = S⊕1H, and since U and U ∗W are invertible operators, we obtain

that S
e
∼ 1H ⊕ S. Consequently, since 1H is unitarily equivalent to 1M ⊕ 1H, we get

S
e
∼ 1M ⊕ 1H ⊕ S

e
∼ 1M ⊕ S, as desired. ¤

Proof of Corollary 5.2. Since by hypothesis, ranT is closed, one knows that T

maps (kerT )⊥ onto ranT in an invertible fashion.

Case (i): write T = UP , the polar decomposition of T . The operator P is positive

semidefinite and U is a partial isometry with initial space (kerT )⊥ = (kerP )⊥ and
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final space ranT . Of course, (kerT )⊥ is a reducing subspace for P and the above

invertibility implies that P |(kerT )⊥ is invertible. Thus, the operator P̃ := P ⊕ 1kerT

is invertible in L(H). By hypothesis, c(T ) = k(T )(= dim(ranT )⊥), so there exists

a partial isometry Ũ ∈ L(H) with initial space kerT and final space (ranT )⊥. It is

clear that (U+ Ũ) is a unitary operator in L(H) and (U+ Ũ)−1T P̃−1 = (U ∗+ Ũ∗)U =

0kerT ⊕ 1(kerT )⊥ . Thus T is equivalent to a projection, and case (i) is established.

Case (ii): since kerT is finite dimensional, there exists an orthonormal basis

{en}n∈N0 for H such that kerT =
∨
{e0, · · · , er} and (kerT )⊥ =

∞∨
n=1

= {en+r}. Now

write (kerT )⊥ =M1 ⊕M2, where dimM1 = c(T ) and dimM2 = r(T ) (this can be

done since dim(kerT )⊥ = ℵ0). Define Z ∈ L(H) such that Z maps kerT ∗ ontoM1⊕

kerT isometrically and Z maps ranT onto M2 isometrically. Clearly Z is a unitary

operator. Observe that kerZT = kerT and that ZT ((kerT )⊥) = M2 ⊂ (kerT )⊥.

In other words, (kerT )⊥ is a reducing subspace for ZT and ZT |(kerT )⊥ is bounded

below. Consequently, if we write the polar decomposition of ZT as ZT = V Q, then

Q = 0kerT ⊕ Q1, where Q1 ∈ L((kerT )
⊥) is invertible and V = 0kerT ⊕ V1, where

V1 ∈ L((kerT )
⊥) is an isometry. The operator Q̃ := Q1⊕ 1kerT is invertible, and thus

ZTQ̃−1 = 0kerT ⊕ V1. Thus we obtain that T
e
∼ 0kerT ⊕ V1. Now by von Neumans

theorem, one may write V1 = W ⊕ S where S is a unilateral shift with multiplicity

c(T )− k(T ) since dimkerV ∗1 = c(T )− k(T ) and W is a unitary operator. Obviously

0kerT ⊕ V1
e
∼ 0kerT ⊕ 1rangeW ⊕ S. By Proposition 5.3 and the transitivity of

e
∼ we

conclude that T
e
∼ 0kerT ⊕ S, which establishes case (ii).

Case (iii) follows from case (ii) by taking adjoints, so we say no more about it.¤

The use we will make of Corollary 5.2 is conveyed by this next elementary propo-

sition.

Proposition 5.4. Suppose A, B, B ′, C ∈ L(H) and B
e
∼ B′ via invertible operators
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X and Y satisfying B ′ = XBY −1. Then the operator

T =



A B

0 C


 ∈ L(H)

is similar to

T ′ =



XAX−1 B′

0 Y CY −1


 .

Proof. This is an immediate consequence of the matricial calculation T ′ = (X ⊕

Y )T (X−1 ⊕ Y −1). ¤

Using these results, we are able to move closer to a canonical form for the (BCP)-

operators appearing in Theorem 3.22.

Theorem 5.5. Suppose 0 < θ < 1 and T is a C00, (BCP)-operator in L(H) such

that σ(T ) = σle(T ) = Aθ and such that ‖T−1‖ = 1/θ. Then T is unitarily equivalent

to an operator matrix T̃ ∈ L(H(3)) of the form

T̃ =




V1Q1 V2Q2 T̃13

0 0 Q3V
∗
3

0 0 Q4V
∗
4




(98)

where

(a) Qi is a positive definite invertible operator such that σ(Qi) ⊂ [θ, 1], i = 1, · · · , 4,

(b) Vi is an isometry, i = 1, · · · , 4, and

(c) ranV1 ∩ ranV2 = (0), ranV3 ∩ ranV4 = (0).

Proof. By Theorem 3.1, we know that T is unitarily equivalent to an operator

matrix T̃ in L(H(3)) of the form
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T̃ =




T̃11 T̃12 T̃13

0 0 T̃23

0 0 T̃33



.

Moreover, since ‖T−1‖ = ‖(T ∗)−1‖ = 1/θ, we get immediately by consideration

of vectors of the form x⊕ 0⊕ 0 and 0⊕ y⊕ 0 that T̃11, T̃12, T̃
∗
23, and T̃

∗
33 are bounded

below exactly by θ. Now write the polar decompositions

T̃11 = V1Q1,

T̃12 = V2Q2,

T̃ ∗23 = V3Q3,

T̃ ∗33 = V4Q4,

where of course, Q1, · · · , Q4 must be invertible positive definite operators, and since

the lower bound of each Qi, i = 1, · · · , 4, is exactly θ, we have (a). Furthermore, it

is clear that V1, V2, V
∗
3 , and V

∗
4 must be isometries, which gives (b). Finally, suppose

that 0 6= x ∈ ranV1 ∩ ranV2. Then since ranV1 = ran T̃11 and ranV2 = ran T̃12 there

exist vectors y and z in H such that T̃11y = T̃12z = x, and an easy calculation shows

that T̃ (y⊕−z⊕0) = 0, which is impossible since T̃ is invertible. Similarly, one shows

that ranV3 ∩ ranV4 = (0), which gives (c). ¤

Recall that the angle Θ(M,N ) between two subspacesM and N of H is defined

by

cosΘ(M,N ) = sup
x∈M, y∈N

|〈x, y〉|

‖x‖ ‖y‖

and thus that Θ(M,N ) > 0 if and only if there do not exist sequences of unit vectors

{xn}n∈N ⊂M and {yn}n∈N ⊂ N such that 〈xn, yn〉 → −1.

Proposition 5.6. Suppose T is as in the statement of Theorem 5.5, and T̃ (which is
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unitarily equivalent to T ) is given by (98). Then Θ(ranV1, ranV2) > 0 and, similarly,

Θ(ranV3, ranV4) > 0.

Proof. Suppose, to the contrary, that Θ(ranV1, ranV2) = 0. Then, as men-

tioned above, there exist sequences of unit vectors {T̃11yn}n∈N ⊂ ran T̃11 = ranV1 and

{T̃12zn}n∈N ⊂ ran T̃12 = ranV2 such that
〈
T̃11yn, T̃12zn

〉
→ −1. Thus,

T̃ (yn ⊕ zn ⊕ 0) = (T̃11yn + T̃12zn)⊕ 0⊕ 0,

and

||T̃ (yn ⊕ zn ⊕ 0)T ||2 = ||T̃11yn||
2 + ||T̃12zn||

2 + 2Re
〈
T̃11yn, T̃12zn

〉

= 2
(
1 + Re

〈
T̃11yn, T̃12zn

〉)
→ 0.

But since T is invertible and bounded below by θ, we know that

||T̃ (yn ⊕ zn ⊕ 0)T ||2 ≥ θ2(||yn||
2 + ||zn||

2)

≥ θ2(||T̃11yn||
2 + ||T̃12zn||

2) = 2θ2 > 0,

since T̃11 and T̃12 are obviously contractions, which proves the first assumption, and

the proof of the second is obtained by applying the above argument to T̃ ∗. ¤

Corollary 5.7. If T and T̃ are as in the statement of Theorem 5.5, then T is similar

to the operator matrix 


V1Q1 V2 T̃13

0 0 (Q−12 Q3)V
∗
3

0 0 Q4V
∗
4



. (99)

Proof. This follows immediately from Proposition 5.4. ¤

Remark 5.8. The interested reader will note the resemblance of the matrix in (99) to

the matrices of the operators in the classes (Sθ), θ > 0. Since the matrix in (99) comes
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from that of an arbitrary (BCP)-operator T ∈ C00 such that σ(T ) = σle(T ) = Aθ

and ||T−1|| = 1/θ, the existence of Theorem 3.22 justifies the interest shown in the

structure of the classes (Sθ), θ > 0, exhibited in Chapter IV.

Recall that an operator T ∈ L(H) is called quasitriangular [21] (notation: T ∈

(QT )) if T can be written as T = Tt + K where the matrix (τij)i,j∈N for Tt with

respect to some ordered orthonormal basis for H is in the upper triangular form (i.e.,

τij = 0 whenever i > j). Moreover, if both T ∈ (QT ) and T ∗ ∈ (QT ), then T is called

biquasitriangular (notation: T ∈ (BQT )).

The famous theorem of Apostol-Foias-Voiculescu from [2] characterizing biqua-

sitriangular operators is the following

Theorem 5.9 (Apostol-Foias-Voiculescu). An operator T in L(H) is biquasitri-

angular if and only if for every λ ∈ C such that T −λ1H is a semi -Fredholm operator,

the Fredholm index i(T − λ1H) = 0.

Moreover, a consequence of the beautiful and deep Brown-Douglas-Fillmore The-

ory [13] is that (BQT ) ∩ (EN) = (N + K), where (EN) denotes the family of all

essentially normal operators in L(H) and (N +K) = {T ∈ L(H) : T can be written

as T = N +K for some normal operator N and K ∈ K}.

Since it is elementary linear algebra that every block-diagonal operator is biqu-

asitriangular, it follows immediately that every quasidiagonal operator is also biqua-

sitriangular, and thus one obtains the following well-known result.

Theorem 5.10. (Brown-Douglas-Fillmore). (QD) ∩ (EN) = (N +K).

This fact, together with Theorem 3.20, makes it of interest to explore the ques-

tion: what can be said about the structure of (BCP)-operators in (N +K)?
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This leads to the following easy result

Theorem 5.11. Suppose T ∈ (BCP)(H) ∩ (N + K) ∩ C00, θ ∈ [0, 1) and σ(T ) =

σe(T ) = Aθ. Then there exist a normal, (BCP)-operator N ∈ C00(H) satisfying

σ(N) = σle(N) = Aθ and a K ∈ K(H) such that T = N +K.

Proof. Recall first from [34] that operators T1 and T2 in L(H) are called compalent

if there exist a unitary operator U ∈ L(H) and a K ∈ K(H) such that UT1U
∗+K =

T2, and recall also from the (BDF)-theory [13] that, since operators in (N + K)

cannot have spectral pictures containing a nonzero Fredholm index, a complete set

of compalence invariants for operators in (N +K) is the essential spectrum. Now let

N1 be any normal C00-contraction such that σ(N1) = σe(N1) = Aθ (so N ∈ (BCP)).

(For example, one may take N1 to be Mz (multiplication by z) on L2(Aθ, µ) where µ

is planar Lebesgue measure on Aθ.) Then σe(T ) = Aθ = σe(N1), so T is compalent

to N1, and thus there exist a unitary U and a K ∈ K such that T = UN1U
∗ + K.

Upon defining N = UN1U
∗, we see that the proof is complete. ¤
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CHAPTER VI

CONCLUSION

This dissertation is an outgrowth of a research project, initiated by Professors Ciprian

Foias and Carl Pearcy, which is concerned with the reduction of questions regarding

the hyperinvariant subspace lattice of an arbitrary nonalgebraic operator in L(H), to

the corresponding questions about the class of (BCP)-operators.

Using techniques and results from Chapter III of this dissertation, as well as [17]

and [8], clearly demonstrate that it is of considerable interest to determine as many

structure theorems about the class of (BCP)-operators satisfying the conclusions of

Theorem 3.22 when θ > 0 as possible. Accordingly, in Chapter IV, we constructed

a certain easily described subclasses of invertible (BCP)-operators, with a view of

obtaining some insight into the problem of determining the structure of operators in

these classes, which may prove to be very useful in resolving problems concerning

hyperlattices of operators.



56

REFERENCES

[1] J. Agler, Rational dilation on an annulus, Ann. of Math., 121 (1985), 537-564.

[2] C. Apostol, C. Foias and D. Voiculescu, Some results on non-quasitriangular

operators. IV. Rev. Roumaine Math. Pures Appl., 18 (1973), 487-514.

[3] H. Bercovici, A note on disjoint invariant subspaces, Michigan Math. J., 34

(1987), 435-439.

[4] , The algebra of multiplication operators on Bergman spaces, Arch.

Math. (Basel), 48 (1987), 165–174.

[5] H. Bercovici, C. Foias, J. Langsam and C. Pearcy, (BCP)-operators are reflexive,

Michigan Math. J., 29 (1982), 371-379.

[6] H. Bercovici, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous

equations in the predual of an operator algebra. I, Michigan Math. J., 30 (1983),

335-354.

[7] , Dual algebras with applications to invariant subspaces and dilation

theory, CBMS Regional Conf. Ser. in Math., No. 56, Amer. Math. Soc., Provi-

dence, 1985.

[8] , On the hyperinvariant subspace problem. IV, in preparation.

[9] H. Bercovici, C. Hernández and V. Paulsen, Universal compressions of represen-

tations of H∞(G), Math. Ann., 281 (1988), 177–191.

[10] H. Bercovici and W. S. Li, Normal boundary dilations and rationally invariant

subspaces. Integral Equations Operator Theory, 15 (1992), 709–721.



57

[11] A. Brown, On a class of operators, Proc. Amer. Math. Soc., 4 (1953), 723–728.

[12] A. Brown and C. Pearcy, An introduction to analysis, Graduate Texts in Math-

ematics, 154, Springer-Verlag, New York, 1995.

[13] L. Brown, R. Douglas and P. Fillmore, Extensions of C∗-algebras and K-

homology, Ann. of Math., 105 (1977), 265-324.

[14] S. Brown, B. Chevreau and C. Pearcy, Contractions with rich spectrum have

invariant subspaces, J. Operator Theory, 1 (1979), 123-136.

[15] B. Chevreau and W. S. Li, On certain representations of H∞(G) and the reflex-

ivity of associated operator algebras. J. Funct. Anal., 128 (1995), 341–373.

[16] B. Chevreau, C. Pearcy and A. Shileds, Finitely connected domains G, repre-

sentations of H∞(G), and invariant subspaces. J. Operator Theory, 6 (1981),

375-405.

[17] C. Foias, S. Hamid, C. Onica and C. Pearcy, On the hyperinvariant subspace

problem. III, J. Funct. Anal., accepted for publication.

[18] C. Foias and C. Pearcy, On the hyperinvariant subspace problem, J. Funct. Anal.,

219 (2005), 134-142.

[19] P. Fillmore and J. Williams, On operator ranges, Advances in Math., 7 (1971),

254-281.

[20] D. Hadwin, An asymptotic double commutant theorem for C∗-algebras, Trans.

Amer. Math. Soc., 244 (1978), 273-297.

[21] P. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc., 76 (1970),

887-933.



58

[22] , Capacity in Banach algebras, Indiana Univ. Math. J., 20 (1971),

855-863.

[23] , A Hilbert space problem book. Second edition. Graduate Texts in

Mathematics, 19. Springer-Verlag, New York, 1982.

[24] S. Hamid, C. Onica and C. Pearcy, On the hyperinvariant subspace problem. II,

Indiana Univ. Math. J., accepted for publication.

[25] D. Herrero, Quasisimilarity does not preserve the hyperlattice, Proc. Amer. Math.

Soc., 65 (1978), 80-84.

[26] , Quasidiagonality, similarity and approximation by nilpotent opera-

tors, Indiana Univ. Math. J., 30 (1981), 199-233.

[27] , Approximation of Hilbert space operators, I. Research Notes in Math-

ematics, Vol. 72, Pitman, London, 1982.

[28] T. Hoover, Quasisimilarity of operators, Illinois J. Math., 16 (1972), 678-686.

[29] I. Jung, E. Ko and C. Pearcy, Square roots of (BCP)-operators, Arch. Math.

(Basel), 82 (2004), 317-323.
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