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ABSTRACT 
 
 
 

Characterization of Sediment Movement in Tidal Creeks Adjacent to the Gulf  
 

Intracoastal Waterway at Aransas National Wildlife Refuge, Austwell, TX: Study of  
 

Natural Factors and Effects of Barge-Induced Drawdown Currents.  (May 2005) 
 

John Bryan Allison, B.S., Western Carolina University 
 

Chair of Advisory Committee:  Dr. Chris Mathewson 
 
 
 

 The coastal wetlands at Aransas National Wildlife Refuge near Austwell, Texas, 

support the last migrating population of whooping cranes during the winter months 

(October through April).  With a population currently at 216 individuals, these are the 

rarest cranes in the world.  The wetlands in which they winter are a part of the San 

Antonio Bay system, a bay that receives constant fresh water flow from the Guadalupe 

River.  Currently there is a plan for using water diverted from the Guadalupe River just 

before it enters San Antonio Bay as a water supply for the greater San Antonio 

metropolitan area located 200 km to the northwest.  The Guadalupe River delivers 

nutrients and sediment into the estuary along with fresh water.  Because of the 

importance of sediment within a tidal wetland ecosystem, it is imperative to understand 

the sediment budget and underlying forces that drive it if one is to ultimately grasp how 

this ecosystem functions.  To document natural and anthropogenic factors exerting 

control over sediment movement in this system, three sites on tidal creeks near the 

boundary between marsh and bay were chosen.  The Gulf Intracoastal Waterway 
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parallels the marsh edge.  Over six, non-consecutive weeks water level and velocity were 

automatically monitored in the tidal creeks.  Automated water samplers extracted water 

samples that were analyzed for suspended sediment.  In addition, bedload traps were 

deployed in one creek to monitor sediment movement along the channel bottom.  Inflow 

exceeded outflow during the study.  As a result there was a net influx of suspended 

sediments into the marsh.  Bedload material also moves with current direction, and it 

appears to move in response to barge induced outflow currents.  Barges passing on the 

Gulf Intracoastal Waterway exert influence on water level, flow direction, and velocity 

within tidal creeks.  Natural factors such as winds, tides, and freshwater input from 

upland runoff or river discharge also impact suspended and bedload sediments. 
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1. INTRODUCTION 

Coastal wetlands worldwide are in need of protection because they are diverse 

ecosystems that have been recognized for their value as estuaries, fisheries, endangered 

species habitat, etc.  The coastal wetlands at Aransas National Wildlife Refuge (ANWR) 

near Austwell, Texas, are no exception as they support the last migrating population of 

whooping cranes during the winter months (October through April).  With a population 

currently at 216 individuals, these are the rarest cranes in the world.  The wetlands in 

which they winter are a part of the San Antonio Bay system, a bay that receives a 

constant discharge of fresh water from the Guadalupe River.   

As is common in many estuaries, pulses of freshwater inflow are an important 

part of the subsidy and maintenance of the bay and marsh ecosystems.  Currently there is 

a plan for diverting water from the lower Guadalupe River (just below its confluence 

with the San Antonio River) as a water supply for the greater San Antonio metropolitan 

area located 200 km to the northwest of the river’s mouth (The Lower Guadalupe Supply 

Project, 2003). This interest has helped launch an ecological study at ANWR that will 

gather data pertaining to many aspects of the marsh ecosystem and ultimately model the 

ecology of the wetlands in response to environmental drivers such as riverine inflows, 

tides, wind, etc.  Special emphasis will be given to the factors affecting food sources of 

the whooping crane, such as blue crabs and wolfberry.   

_______________ 

This thesis follows the style and format of Estuarine, Coastal, and Shelf Science. 
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The Guadalupe River is a source of materials for the San Antonio Bay system.  

Sediment is a major component of coastal wetland substrate structure and its continued 

input maintains the elevation of coastal wetlands relative to regional subsidence and sea 

level rise (Callaway et al., 1997; Christiansen et al., 2000; DeLaune et al., 1983).  To 

fully understand how this ecosystem works as a whole, it is imperative to understand the 

characteristics of sediment movement and the drivers of it.  Natural factors (such as 

tides, winds, storms, etc.) controlling movement of sediment within the marsh ecosystem 

need to be documented (Leonard, 1997; Davis, et al., 2004).  The effect of passing 

barges in the nearby Gulf Intracoastal Waterway (GIWW) is an unnatural driver that 

needs to be understood (Maynord, S.T. and Siemsen, T.S., 1991). The drawdown 

currents associated with barges have some influence over materials exchange between 

the tidal creeks and adjacent bays (Stockstill, R.L. and Berger, R.C., 2001). 

Much sediment research done within coastal wetlands is focused on accretion 

rates and processes, such as mineral deposition in relation to flow and turbulence 

(Christiansen, et al., 2000; Leonard and Luther, 1995; Leonard, 1997; Wang, et al., 

1993).  Such studies have found that most suspended sediment enters a marsh from the 

adjoining bay via tidal creeks with high tide inflow (Davidson-Arnott, et al., 2002) or 

during spring tides (Leonard, 1997) when water volumes and velocities are often at their 

highest.  Those who have monitored sediment movement within a tidal channel have 

found that most suspended sediment is in highest concentration during initial tidal inflow 

(Davidson-Arnott et al., 2002) or during spring tides (Leonard, 1997).  Bryce et al. 

(2003) found tidal currents to be the primary control on suspended sediments.  Storm 
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events have also been found to be major contributors to sediment movement (Leonard et 

al., 1995).   

All of these studies dealt with the natural drivers of suspended sediment 

movement within a tidal creek and marsh system.  It is known that suspended sediment 

movement is facilitated (or affected) by the tides and other means of water motion such 

as wind (Leonard et al., 1995; Sutula et al., 2003).  This should also be the case in 

ANWR tidal creeks because they are subjected to tides, winds, etc.     

Unnatural means of water movement, such as barge-induced currents, can also 

affect sediment movement (Stockstill, R.L. and Berger, R.C., 2001).  Barge-induced 

currents observed in this research can create tidal- like oscillations over short time 

intervals (i.e. minutes), with velocities and water level changes that are comparable if 

not exceeding natural velocities and water level changes.  This activity results in an 

unnatural movement of sediment within the system, both as suspended and bedload 

sediments. 

The effects of barges and boats on sediment movement and erosion have been 

studied within main canals such as the Intracoastal Waterway or navigable rivers like the 

Mississippi (Maynord and Siemsen, 1991; Stockstill and Berger, 2001), but not within 

the tributaries or associated tidal creeks of those canals or rivers.  Trimbak, et al. (2001) 

published a method for estimating vessel- induced sediment suspension that discusses 

barge drawdown, but mainly focuses on the effects of waves.  Many vessel studies such 

as Trimbak et al.’s (2001) find wake to be a major factor in sediment mobilization and 

erosion.  At ANWR, wake cannot be a major factor in sediment movement because the 
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tidal creeks are too far removed from the GIWW either by obstructions, alignment, or 

stretches of shallow water.  

Drawdown and its ecological effects are mentioned by Stockstill and Berger 

(2001), but their work is mainly focused within the main channels of dug canals like the 

GIWW and major rivers like the Mississippi.  It was established that barges create 

currents and drawdown of the water level that affect the surrounding waters outside the 

channel.  Stockstill and Berger (2001) have modeled these effects at locations along the 

Mississippi River, the Illinois Waterway, and coincidentally, in Sundown Bay at 

ANWR, Texas.   The latter is a narrow shallow embayment between the GIWW and 

coastal wetlands along the lower Blackjack Pennisula of Texas (Fig. 1).   

The objectives of this study were to 1) quantify the spatial and temporal 

variability in total suspended sediment (TSS) exchange and bedload sediment movement 

in tidal creeks at ANWR and 2) to understand the roles of various environmental drivers 

(tides/water levels, wind, inflows, barges, etc.) in shaping this variability.   

It was hypothesized that water and TSS movement would be controlled by 

drivers such as wind, tide, storms, and barge-induced currents.  Bedload transport was 

hypothesized to be influenced by the barge-induced changes in creek current direction 

and velocity. 

1.1.  Site Description 

The marsh surface at ANWR is infrequently inundated as diurnal tides typically 

reach insufficient heights to flood the marsh.  Instead, spring tides, wind tides, and intra-

annual high water periods in the Gulf of Mexico are largely responsible for flooding  
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Fig. 1.  Location.   
Location of study area within the state of Texas as well as in relation to features such the 
Guadalupe River mouth, San Antonio Bay, Sundown Bay, Blackjack Peninsula, and the 
Gulf Intracoastal Waterway (GIWW).  Each of the three sites stud ied are shown in the 
aerial photographs.  A) Boat Ramp is very close in proximity to the GIWW.  The dead 
end canal to the northeast accesses the Aransas National Wildlife Refuge boat ramp.  B) 
Pump Canal is a man made canal whose mouth is separated from the GIWW by a 
shallow expanse of water that makes up Sundown Bay.  The visible boat traffic in the 
image defines where the GIWW is.  C) Sundown Bay Creek site is named for the bay in 
which it is located, and its mouth is separated from the GIWW by the bay and a long 
narrow island paralleling the GIWW.  The creek itself is the shortest of the three, and its 
tributaries/distributaries branch out quickly into the marsh and the various ponds. 
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these wetlands (personal observation).  Tidal creeks are therefore the primary source of 

water and materials exchange between the marsh and bays (water does not typically 

enter the marsh directly from the bay side along the marsh edge).  Most of the saltwater 

wetlands on the southeast side of Blackjack Peninsula are in close proximity to the 

GIWW.  Three sites in the marsh along tidal creeks are the focus of this research.  Each 

site is along the main stem of the creek near the mouth with no tributaries/distributaries 

occurring between the site and the confluence with the bay.  The sites are spread over a 

space of approximately 10 km (Fig. 1).  Matagorda and San Jose Islands separate San 

Antonio Bay and the adjacent bays from the Gulf of Mexico. 

Boat Ramp is a natural creek that runs parallel to the GIWW with a general 

northeast-southwest orientation (Fig. 1).  Boat Ramp’s creek connects two large water 

bodies – the bay system and GIWW to one side, and a large inland lake to the other. 

Boat Ramp is the site furthest north and closest to the mouth of the Guadalupe River 

(approximately 26 km to the north).  This creek is a part of a long linear feature of water 

probably marking the inland side of a historic beach front or overwash deposit.   

The other sites are perpendicular to the GIWW (northwest-southeast orientation) 

and are located within the water body of Sundown Bay.  Pump Canal is a man-made, 

straightened canal that is separated from the GIWW only by shallow open water (Fig. 1).  

It represents an area of marsh that historically (i.e., prior to the 1930’s) had no 

connecting creek.  This is the longest of the three creeks and it does not branch out into 

the marsh or serve as a direct connection for a large inland water body with the bay. 
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Sundown Bay Creek (SB Creek) is a natural creek that is separated from the 

GIWW by the same shallow open water (as was Pump Canal) and a narrow island.  The 

creek is less than a hundred meters in length before it splits into many tributary arms that 

branch into the marsh (Fig. 1).  The marsh surrounding SB Creek has a higher density of 

ponds relative to the other sites.  SB Creek is furthest south and the furthest from the 

mouth of Guadalupe River (approximately 35 km distant). 

In ANWR creeks, there is often a 5-20 cm layer of unconsolidated floc- like 

material (the bedload) along the bottom of the channels that mobilizes with the flow of 

water without entering suspension.  This material is both organic and inorganic in 

character and seems to be composed of detritus from algae and submerged aquatic 

vegetation in addition to mineral sediment.  Little is known about the specific sources 

and fate of this material in ANWR tidal systems.  However, others have considered the 

importance of flocculated material as a source of biotic energy and nutrients in other 

wetland ecosystems (Hildrew and Townsend, 2002).  
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2. METHODOLOGY 

 These three sites were the focus of study for multiple, seven-day samplings 

conducted between May and September, 2004 (Table 1). Sampling platforms were built 

along the creek bank at each site to hold the equipment used.  Pump Canal was the only 

site sampled during the first week.  SB Creek was added beginning at week two.  All 

three sites were incorporated into the study for the final three weeks (Table 1).   

2.1. Flow 

 An American Sigma 910 area-velocity (A/V) flow meter was used to measure 

water level and velocity instantaneously at one-minute intervals at each site.  Based on 

channel dimensions, water depth and water velocity were used by the flow meter to 

automatically calculate discharge at 1-minute intervals as well.  Water leve l on the A/V 

meter was depth calibrated before each use. 

At the conclusion of each sampling period, the data were downloaded to a 

computer and imported into a spreadsheet.   Flow data were summed over four-hour 

periods in order to correspond with the suspended sediment samples that were collected 

every four hours.  Each four-hour block of flow data was composed of the values 

collected two hours before and after a suspended sediment sampling. Cumulative flows 

were calculated for each of these four-hour blocks.  Flux values were calculated as the 

product of a cumulative flow value and the TSS concentration corresponding to that 

period and location.    

To compare outflow and inflow over the course of the study, all raw flow data 

taken by the flow meters every minute were arranged by site and by week.  The data 
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Table 1. 
Dates and sites represented by each of the six sampling events.  Salinity, wind speed, and Guadalupe River discharge are given 
as mean values.  Weather is as reported in field notes.                                                                                                                                                  
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Wind 
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1. TCOON is the Texas Coastal Ocean Observation Network.  (http://lighthouse.tamucc.edu/wiki/TCOON/HomePage) 
2. USGS is the United States Geological Survey.  (http://water.usgs.gov/) 
** Large quantities of fresh water were entering from the marsh.  This is the only sampling week in which water was out  
     of the confined creek channel. 
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were then separated into positive and negative groups representing outflow and inflow 

respectively at each site for each week.  Instantaneous flow values were multiplied by 60 

to estimate flow over one minute. A sum was determined for each group. The sums of 

positive and negative flow values were compared for each site during each week in order 

to see whether outflow or inflow dominated during a sampling period.   

To check the A/V meter’s accuracy, the cross-sectional discharge of one creek 

was determined using a calibrated hand-held electromagnetic Marsh-McBirney velocity 

meter.  Pump Canal was chosen for the test because of ease of access.  Velocity 

measurements were taken at regular intervals across the channel.  The measurements 

were made in the center of 122 cm subsections at approximately 0.6 of the subsection 

depth.  A mean velocity was determined for the channel and its subsequent discharge 

calculated.  This was compared with the discharge calculated by the stationary flow 

meter.  The handheld measurements to determine cross-sectional discharge were taken 

six times over the two-day period of November 3 and 4, 2004, after the six weeks of 

sampling were complete. 

2.2 Suspended Sediment 

2.2.1. Field 

An automated water sampler (American Sigma 900) was used to retrieve water 

samples from the tidal creeks for TSS analysis.  A length of tubing that reached 8 m into 

the channel was attached to the sampler.  The intake end of the tubing was kept in a 

fixed position in the water column. Samples were integrated across a 180 cm section of 

channel through an attachment made from 1.3 cm diameter perforated PVC pipe.   
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The automated water sampler was programmed to draw two 1 L samples every 

four hours (8 pm, 12 am, 4 am, 8 am, 12 pm, and 4 pm) for each week- long sampling 

period.  Prior to each sampling, the automated water sampler was programmed to purge 

and rinse itself.  Duplicate samples were taken for analytical replication and for quality 

assurance.  The samples were retrieved twice each day, once after the 8 am sampling, 

and once after the 4 pm sampling.  Arrival at the site for collection did not occur prior to 

the 8 am or 4 pm automated sampling in order to keep from artificially mobilizing 

sediments by boat and foot traffic.   

2.2.2. Laboratory 

In the laboratory, bottles were organized by site and time, and salinities were 

measured with a portable refractometer.  For the first two weeks of sampling, duplicates 

were processed every three to four samples.  Later, duplicate determinations were 

reduced to one out of every eight samples because originals and duplicates were in 

agreement.  A measured volume of each sample was filtered through pre-rinsed, ashed, 

and weighed 47 mm GF/F filters.  Filtration was done at a constant vacuum pressure via 

vacuum pump.  The filter was stored in an air and water tight Petri dish until it could be 

dried.  After drying at 70°C until the weight became constant, each filter was weighed, 

and the weight of the suspended sediment was obtained after subtracting the initial filter 

weight.  The TSS concentration was calculated by dividing the weight of the suspended 

sediment by the volume of water that had been filtered.  Bottles were acid washed before 

returning them to the automated water sampler. 
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 To account for residual salt on each filter, ten filters were tested for water 

retention.  The same pre-rinsed, ashed, and weighed 47 mm GF/F filters were soaked 

with deionized water and then subjected to the constant vacuum until no standing water 

remained on top of the filter (same treatment as TSS samples).  These wet filters were 

then weighed to obtain the mean weight of water retained.  A correction factor based on 

this water weight and the salinity of each sample was subtracted from each TSS value, 

reducing the initial TSS concentration recorded by the proportional amount of salt.   

2.3. Bedload Sediment 

2.3.1. Field 

 Bedload movement was measured during the last four sampling periods.  This 

sampling protocol was only carried out at one site because of available time and 

equipment.  Pump Canal was chosen because of its uniform dimensions and straightness.  

The channel area studied for bedload movement was a few meters upstream from the 

research platform and TSS sampling in order to minimize disturbance. 

The method and equipment were adapted from ongoing research currently being 

conducted in the Florida Everglades by Dr. Daniel Childers of Florida International 

University (Childers, 2004).  It involved deploying four traps on the bottom along the 

width of the channel.  One was placed near each bank, and two were nearer the middle.  

Each trap was a box 13 cm square and 30 cm long (Fig 2).  The box opened at each end 

via a vertical sliding door.  Each time a trap was set, it was submerged, filled with water, 

and placed firmly on the substrate with its length parallel to the flow direction.  The  
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bedload sediment

 
 
Fig. 2.  Bedload. 
A bedload trap after several hours of deployment.  The sediment layer is visible along 
the bottom.  Water can be seen draining around the doors of the trap with no effect on 
the trapped sediment. 
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doors were then removed.  Over time, moving bedload and flocculated material entered 

the box with flow.   

To retrieve the trap, the doors were closed and the box, containing trapped water 

and bedload, was removed from the water.  Water would slowly drain from the box 

around the doors, allowing the sediment to remain stationary on the trap floor (Fig. 2).  

When the water had mostly drained, the contents of the box were poured into a plastic 

bag.  This was done by sloshing the remaining water until the sediment was in 

suspension and then pouring it from the trap.  Any remaining sediment on the box floor 

was rinsed into the bag with Pump Canal creek water.  If suspension of sediment in the 

box accidentally occurred while handling the trap, the entire contents were immediately 

put into a plastic bag in order to minimize sediment loss. 

Traps were deployed over any one of four basic time intervals throughout a week 

of study.  In general, the intervals coincided with the TSS samplings.  Traps would be 

deployed during the day between the 8 am collection and the 4 pm collection.  They 

would also be deployed overnight from the 4 pm collection to the 8 am collection the 

following morning.  Occasionally, they were left for a full 24 hours.  Effort was made to 

minimize disturbance of sediment during trap set-up and retrieval.   

There were also seven occasions where the boxes were deployed over five 

minute intervals in order to capture sediment movement from the influence of a specific 

barge that was passing.  Most of these 5-minute samplings took place outside of the May 

to September sampling time and only one box was used at a time.  It was deployed in the 

center of the channel for five minutes prior to barge arrival and then for another five 



15 

 

minutes during barge outflow. Only outflow currents were measured because of the time 

frame in which the influence of a barge occurs and the number of hands available to 

deploy and retrieve traps.  None of the bedload measurements can account for sediment 

that moved all the way through the trap before collection. 

To accompany bedload data taken from the traps, measurements of bedload 

thickness were taken across a single transect at the Pump Canal site during each 

sampling trip (except for the first sampling) in order to monitor any changes that may 

have occured over time.  A measuring tape was stretched across the channel, and 

measurements were taken every 60 cm.  A section of 1.3 cm diameter PVC pipe was 

used as a probe and pushed through the bedload sediments until it made contact with the 

original, cohesive clays that comprise the surrounding marsh.  Because Pump Canal is an 

artificial channel, this boundary was distinct and easy to determine.  An average was 

taken if differing thicknesses were measured at one point.  Thickness measurements 

were taken by measuring the portion of the PVC pipe that had penetrated the bedload 

material.  Water depth (surface of water to surface of sediment) was also recorded.  

These transects were plotted as cross-sections of the channel showing channel shape and 

sediment thickness. 

2.3.2. Laboratory 

 Bedload sample masses needed to be corrected for the mass of salt because 

salinity varied among sampling periods as well as within them.  The amount of water 

accompanying each sample was also not consistent.  The method used to remove salts 
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from the bedload samples was adopted from Rivers et al. (1982) where gypsum was 

removed from soil samples placed in dialysis tubing and immersed in fresh water.   

 Each bedload sample was transferred from the plastic bag to a length of dialysis 

tubing cut to fit.  One end was sealed with a watertight clip while the upper end was 

clamped to the inside rim of a 19 L bucket filled with deionized water.  Several dialysis 

tubes were clamped to one bucket and the water was changed daily until the salinity in 

the bucket consistently read zero on a handheld refractometer.  Zero salinity was 

typically reached after only about three days. 

 Bedload sediments were then transferred from the dialysis tubes into individual 

preweighed aluminum pie pans.  Samples were dried at 105ºC for 24 hours once all 

standing water had evaporated.  Once dry, the pans were weighed and the initial weight 

of the pan was subtracted to obtain the dry mass of bedload that had accumulated in the 

trap.  Total mass of bedload trapped was used for analysis.  The mass values were 

grouped first by location in the stream channel and then by amount of time the trap was 

deployed.  The data were also normalized to one hour by dividing each value by the 

number of hours it represented to estimate the amount of sediment accumulated in one 

hour. 
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3.  RESULTS 

3.1. Flow 

Water level data collected by the A/V meter clearly showed changes in water 

depth at one minute intervals. On the other hand, the velocity data collected by the A/V 

meter were noisy, and variations were not typically visible at small scale (Fig. 3).  A 

regular rise and fall in the water level data that occurred over approximate 24 hour 

intervals was interpreted as a diurnal, lunar tide.  These tidal fluctuations were easily 

visible in the water level data (Fig. 3).  A tidal range of about 10 cm was common at 

each site with a maximum water level range of 20 to 40 cm per site, per sampling period.  

Numerous fluctuations in water level at Boat Ramp and Pump Canal were also observed.  

These occurred over the scale of minutes, sometimes exceeding the diurnal tidal range.  

These were later found to be barge- induced drawdown currents through comparison of 

corresponding field observations and water level data.  Over the course of this study, 

inflows (negative flow values) predominated at each of the three sites. 

 The impact that a single barge had was different at each site.  The magnitude of 

impact was also variable with bay-wide water levels.  Boat Ramp, the site closest and 

most exposed to the GIWW, experienced water level fluctuations on the order of 10 cm 

anytime a barge passed and at any water level.   Pump Canal typically experienced 

fluctuations on the order of 5-6 cm.  During the week of July 13 to 20, bay water levels 

were 20 to 30 cm less than they had been during other sampling trips.  Barge-induced 

water level fluctuations at Pump Canal were reduced to 2 or 3 cm.  No barge impact was 

perceptible in the A/V data at SB Creek (Fig. 3).  Except for SB Creek, water  
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Fig. 3. Barge impact. 
Water level (in red) and current velocity (in blue) collected at the Boat Ramp site from August 12 to 18, 2004 show natural 
tidal variation and barge influences on the creek hydrograph.  A pair of passing barges was selected from the data and 
identified at each of the three sites, beginning with Sundown Bay Creek.  The barge signature was most discernable in the 
water level data. 
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displacement from an individual barge passing was of comparable magnitude with tidal 

fluctuations.  Tidal range was consistently around 10 cm during this study.   

During five of the six samplings the number of barges passing the study areas 

ranged from a high of 69 to a low of 25 per sampling period.  No data from which the 

number of barges could be counted were recorded during the third week of study.  

Negative flow typically exceeded positive flow in the creek discharges measured 

during the six weeks of study (Fig. 4).  Water level and magnitude of flow rose and fell 

with tidal cycles, but inflows dominated these samplings.  There were only two instances 

where measured positive flow totaled more than negative flow at a given site for a week 

of sampling.  These were from the first sampling at Pump Canal (Pump Canal was the 

only site monitored during the first week) and the fourth sampling at Boat Ramp.  The 

other two sites exhibited greater negative flow than positive flow during the fourth week 

(Fig. 4). 

For the purpose of scale, mean inflows over the entire course of study were 

221,000 m3/week at Boat Ramp (representing three weeks of data), 163,000 m3/week at 

Pump Canal (representing five weeks of data), and 117,000 m3/week at SB Creek 

(representing four weeks of study).  Mean outflows at were 86,000 m3/week at Boat 

Ramp, 41,000 m3/week at Pump Canal, and 13,000 m3/week at SB Creek.  These were 

calculated from the all instantaneous A/V flow data estimated to the minute, and 

grouped into negative and positive flow by site.   

A test conducted at Pump Canal of the accuracy of the A/V meter used in this 

study found that it underestimated flow by nearly 50% (Table 2).  The greater the flow  
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Fig. 4.  Inflow versus outflow.  The bars represent the total of all estimated inflow 
(negative flow) and outflow (positive flow) data recorded every minute at each site over 
the duration of the study.  “No Data” indicates no flow/discharge data collected at that 
site during that particular sampling period.  Inflow typically exceeded outflow during the 
six weeks of study. 
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Table 2. 
A/V meter versus hand-held velocity meter. 
Comparison of cross-sectional discharge measurements taken from Pump Canal with a hand-held  
Marsh-McBirney velocity meter and calculated discharge from an American Sigma 910 A/V meter.   
Hand-held measurements were better able to take channel geometry variability into account where  
the automated flow meter must assume the channel to be of uniform dimensions and flow rates. 

 
Date   11/3/2004 11/3/2004 11/3/2004 11/4/2004 11/4/2004 11/4/2004 

Time span 
2:05 to 
2:20pm 

3:43 to 
3:57pm 

4:00 to 
4:14pm 

11:47 to 
11:59am 

12:00 to 
12:10pm 

12:11 to 
12:21pm 

Hand-measured discharge (m3/s) 1982 1506 1536 860 681 712 
Flow meter measured discharge 
(m3/s) 850 597 724 430 410 413 

 
 
 



22 

 

recorded by the A/V meter, the greater the error.  There is likely similar error at the other 

sites.  Flow rates and channel depth were variable across the width of the creek and not 

uniform as the flow meter must assume to make its calculations.  Flow values are still 

relatively representative of each site.  No correction factor was applied because there is 

not data from the other two sites to verify that the A/V meter also underestimates by 

50% at them as well. 

3.2. Suspended Sediment 

 It was discovered after completion of the six weeks of study that the filters used 

to obtain TSS concentrations retained a mean water weight of 0.46 g.  This meant that 

the weight of salt left in a filter could range from around 0.5 mg to about 7 mg 

depending on the salinity at the time an individual sample was collected.  Therefore, a 

correction factor was applied to each sample’s TSS value reducing it proportionately 

according to the mean water weight and their respective salinity. 

There were rain events of greater than 3 cm prior to weeks one and three.  No 

significant rain occurred after the end of June, 2004 till the end of the study on 

September 2, 2004 (Fig. 5).  However, mid June through mid July was a period of high 

discharge from the Guadalupe with two peaks over 566 m3/s.  Typically the Guadalupe 

River remained under 283 m3/s between March and mid June, then under 140 m3/s after 

mid July (Fig. 6) (USGS, 2005).  Compared with the 24 previous years, the summer of 

2004 experienced higher than normal inputs to San Antonio Bay from the Guadalupe 

River (Fig. 7) (USGS, 2005). 
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Fig. 5.  Precipitation. 
Hourly precipitation measured at the Aransas National Wildlife Refuge headquarters 
(Austwell, TX) from May 2004 to September 2004. 
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Fig. 6.  Guadalupe River discharge during study period.  Each value was measured as a 
combination of Coleto Creek near Victoria (station #8177500), the San Antonio River 
near Goliad (station #8188500), and the Guadalupe River near Victoria (station 
#8176500). 
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Fig. 7.  25 years of mean Guadalupe River discharge. 
Mean instantaneous discharge of the Guadalupe River for the spring and summer months 
of April to September.  Each value was measured as a combination of Coleto Creek near 
Victoria (station #8177500), the San Antonio River near Goliad (station #8188500), and 
the Guadalupe River near Victoria (station #8176500).  Discharge into San Antonio Bay 
during the summer of 2004 was higher than normal.  Notice that mean discharge during 
the summer of 2004 was above 160 m3/s.  This was the case only 6 other summers from 
1979 to 2003.   
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Concentrations of TSS were variable throughout the study and among sites (Fig. 

8).  Considering the last three weeks of study (where there was data collected at all 

sites), Pump Canal tended to be the lowest in mean TSS concentration and Boat Ramp 

was highest for two of the three although these were not statistically significant (Fig. 8).  

Overall, TSS was higher at each site during the July 13 to 19 sampling than any other 

week.  The lowest TSS values at each site were measured during the August 12 to 18 

sampling.  During this week however, mean TSS at the Boat Ramp site was nearly twice 

that of each other site (Fig. 8).  For the other two samplings during which TSS was 

measured at Boat Ramp, TSS values were relatively much more similar in value among 

sites (Fig. 8).    

TSS flux values calculated during this study were usually negative, 

corresponding with the magnitude and direction of flow (Appendix A).  This meant that 

the flux was mostly directed towards the marsh because most flow measured was 

negative.  The flux values measured at the Boat Ramp site were the most variable during 

each week data were collected there.  Flux values ranged over the entire study from -

106,000 to +23,000 g TSS/4 hr at SB Creek, from -117,000 to +75,000 g TSS/4 hr at 

Pump Canal, and from -128,000 to +54,000 g TSS/4 hr at Boat Ramp (Appendix A). 

There was a positive relationship between salinity and TSS (Fig. 9).  Salinity 

values were generally low throughout the study as a result of high riverine inflows and 

direct precipitation (Table 1).  Salinity values ranged from 4 to 17 ppt at SB Creek, from 

1 (measured during the first week of study) to 16 ppt at Pump Canal, and from 2 to 15  
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Fig. 8.  Mean TSS concentrations for each study area by week.  Bars represent +/- one 
standard deviation.  PC tended to be lowest in TSS concentration.  SB was always higher 
than PC and was even higher than Boat Ramp once after Boat Ramp became a part of 
the study.  TSS was highest in concentration at all sites during the study period of July 
13 to 19. 
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Fig. 9.  TSS versus salinity.  TSS and salinity are positively related to one another as 
shown in this scatter plot and fitted line.  These data represent all TSS and corresponding 
salinity values measured throughout the study. 
 

 

y = 0.3425x2 - 0.4761x + 58.778 
R2 = 0.219 
P-value = 2.4E-177 
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ppt at Boat Ramp.  TSS values ranged from 20 to 312 mg/l at SB Creek, from 19 to 238 

mg/l at Pump Canal, and from 38 to 296 mg/l at Boat Ramp. 

3.3. Bedload Sediment 

 A loose pattern of bedload movement across the channel transect existed at Pump 

Canal.  Less sediment was typically trapped on the depositional bank of the stream that 

contained seagrass, while more bedload was trapped on the opposite side of the channel 

where flow was generally unobstructed.  Flow rates were confirmed to be greater along 

the unobstructed bank while conducting the hand-held flow measurements described 

earlier. Twenty of 27 total bedload samplings had the highest amount of sediment 

trapped in the unobstructed half of the channel.  The dry weight of bedload measured in 

a trap ranged from about 1 g up to 135 g.  Of the 27 samplings, a mean of 19.7 g was 

measured for the side of the channel containing seagrass and 31.4 g for the unobstructed 

side.  Not including the five-minute time spans, the ranges of bedload dry weights for the 

two main deployment time spans were very similar.   For bedload samples collected over 

a span of 15 to 25.5 hrs, the range was 3.55 g (with an outlier of 0.9 g) to 135 g.  For 

amounts collected over a span of 6 to 8 hrs, the range was 6 g to 62 g.  The data set 

representing the 15 to 25.5 hr trap deployment time contains 95 values and the data set 

representing the 6 to 8 hr trap deployment time contains 33 values.  Only 6 of the 95 

samples were above 60 g. 

The highest levels of bedload trapped occurred during the July 13 to 19 sampling 

period.  For all dry weights measured in a sampling period, the mean bedload weight for 
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July 13 to 19 was 37 g.  It was 29 g for June 24 to July 1, 13 g for August 12 to 18, and 

14 g for August 27 to September 3. 

The data normalized to one hour did not show these trends as readily (Table 3).  

Overall, the mean amount of sediment accumulated was still slightly higher on the 

unobstructed side of the channel, but the standard deviations were nearly equal to the 

means (Table 3).  The sum of all dry masses normalized to the hour for each creek 

position did show slightly higher amounts on the unobstructed side of the channel (Table 

3). 

Sediment thickness above the manmade channel floor also varied with regularity, 

both along the transect and over time.  Sediment thickness was always greatest on the 

side of the channel where flow was obstructed by grass beds and least on the 

unobstructed side.  Generally speaking, more bedload was trapped where sediment 

thickness was least and flow was unobstructed, and less bedload was trapped where 

sediment thickness was greatest and flow was impeded by grass beds.  The obstructed 

bank could be from 5 to 25 cm in sediment thickness above the original channel floor, 

and the unobstructed bank could be from 0 to 10 cm (Appendix B). 

 Barge outflow increased the movement of bedload sediments.  In each of the 

seven cases where barge outflow could be sampled and compared with natural outflow, 

bedload trapped was greater by at least 1.5 g.  The greatest difference measured was 

nearly 7 g (Fig. 10).  If the amount measured can be extrapolated across the channel, 

then anywhere from 90 to over 400 g (dry weight) of sediment moved outward along the 

bottom in a five-minute period during a single event of barge outflow.  
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Table 3.  Dry weight of bedload. 
Dry weight in grams of the bedload collected from traps normalized to one hour.  For 
creek position, “O” means the value was collected on the side of the creek obstructed by 
seagrass and “U” means the value was collected on the unobstructed side. 
 

 
 
 

 Sample Date/Time 
Creek Position and Sediment Dry 
Weight (g) normalized to one hour 

    
  O O U U 
12pm6/25-10:45am6-26 2.9 5.9 5.0 n/a 
12:15pm6/26-7:15pm6/26 4.0 1.5 1.5 1.2 
7:15pm6/26-10:15am6/27 3.0 n/a 2.7 0.7 
10:15am6/27-4:15pm6/27 2.0 2.2 9.3 1.1 
4:30pm6/27-10:45am6/28 1.5 0.5 n/a 1.6 
10:45am6/28-6:15pm6/28 2.4 1.2 3.9 1.3 
6:15pm6/28-1:00pm6-29 0.9 0.6 2.5 n/a 
1:00pm6/29-10:15am6/30 0.5 0.6 0.9 1.4 
10:15am6/30-9:30am7/1 0.9 0.7 1.5 n/a 
11am7/14-6pm7/14 n/a 8.9 2.5 4.1 
6pm7/14-11:45am7/15 2.3 1.3 5.1 3.3 
11:45am7/15-12:45pm7/16 1.0 1.2 2.6 2.3 
12:45pm7/17-10:45am7/17 0.8 0.6 1.6 2.0 
10:45pm7/17-12:30pm7/18 2.9 1.6 1.9 2.5 
4:45pm7/17-12:30pm7/18 1.4 1.7 n/a 2.5 
12:30pm7/18-12:30pm7/19 n/a 1.9 4.1 5.6 
11:30am8/13 to 10:30am8/14 0.3 0.8 0.7 0.4 
10:30am8/14 to 9:30am8/15 0.4 1.1 1.0 n/a 
9:30am8/15 to 4:30pm8/15 1.5 1.0 n/a 3.7 
4:30pm8/15 to 2:00pm8/16 0.3 n/a 0.4 0.5 
2:00pm8/16 to 10:00am8/17 0.3 0.4 1.0 0.4 
10:00am8/17 to 10:30am8/18 0.5 0.2 0.3 0.9 
11:00am8/28 to 7:15pm8/28 0.8 0.7 5.6 1.5 
7:15pm8/28 to 10:30am8/29 0.3 0.1 0.4 0.8 
10:30am8/29 to 9:15am8/30 0.2 0.5 1.7 0.9 
9:15am8/30 to 10:15am8/31 0.6 0.3 0.9 1.1 
10:15am8/31 to 11:30am9/1 0.4 1.0 0.7 n/a 
11:30am9/1 to 11:15am9/2 0.1 0.3 0.2 0.4 

Sum 32.2 36.7 58.0 40.2 
Mean 1.2 1.4 2.3 1.7 

Standard Deviation 1.1 1.9 2.2 1.4 



32 

 

 

 
 
 
 
 

0

2

4

6

8

10

12

6/2
6/0

4 1
1:0

0a
m

6/2
6/0

4 1
1:2

5a
m

11
/3/

04
 1:4

0p
m

11
/3/

04
 2:5

0p
m

11
/3/

04
 3:

20
pm

11
/4/

04
 10

:50
am

11
/4/

04
 11

:35
am

D
ry

 w
ei

gh
t 

of
 t

ra
pp

ed
 b

ed
lo

ad
 s

ed
im

en
t 

(g
)

natural outflow

barge outflow

 
 
Fig. 10.  Natural outflow versus barge-induced outflow.  Each blue and red bar 
represents a five-minute period of time.  In all seven barge passings sampled, barge 
outflow increased the movement of bedload sediments.  This does not account for 
sediment that may have passed all the way through the trap before the doors were shut. 
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4. DISCUSSION 

4.1. Flow 

One of the most prominent characteristics visible in water level and velocity data 

is the influence of a passing barge.  A typical response was a rapid outflow of water 

which lowered water level by several centimeters followed by an inflow that refilled the 

creek to its previous water level.  This occurred in a space of time fewer than ten 

minutes.  These data are consistent with the work of Stockstill and Berger (2001).  

Through modeling, they found that barge- induced currents within Sundown Bay itself 

are strongly directed toward the GIWW, which accounts for the observed drawdown of 

water level.  Throughout the portion of Sundown Bay modeled (which does not include 

creeks), drawdown varied between 5 and 10 cm (Stockstill and Berger, 2001).  Their 

model does not recognize or simulate the secondary currents in the opposite direction 

once the barge is passed, which are responsible for reflooding the tidal creeks, as was 

shown in the data of this six-week study. 

 Boat Ramp and Pump Canal each showed effects of passing barges.  At Pump 

Canal the impact was lessened during low water levels because the creek mouth is 

separated from the GIWW by a shallow embayment.  Barge impact was not muted at the 

Boat Ramp because the creek mouth empties almost directly into the GIWW (Fig. 1).    

SB Creek did not show any effect during the study. 

The imbalance between positive and negative flow that existed during the six 

weeks of study was not antic ipated.  There is no known reason for negative flow to 

exceed positive flow in almost every case.  The first possibility is the equipment took 
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faulty measurements.  The flow meter calculates flow according to the velocity and 

water level it measures and the channel dimensions entered into the software.  The 

highly variable velocity measurements were partly a result of wind activity.  It is 

possible that prevailing wind direction during the sampling period skewed the data 

toward inflow.  As waves rolled up the creek from onshore winds, velocity readings may 

have reflected wave direction rather than flow direction.    However, northerly winds 

persisted during the last two weeks of study, which should have forced water out of the 

creeks and into the bays (Table 1).  Negative flow continued to be dominant at each site 

during these last two weeks of sampling. 

 A second possibility is that there is some connection between the marshes and 

the bay in another location, allowing flow to enter from the bay in one area and exit from 

the marshes in another.  This circulation pattern has not been observed.  If this flow 

pattern exists, the Guadalupe River could be the force behind it because of the 

substantial discharge it contributed to the system during the months of study (Fig. 7).  

The mean discharge from the Guadalupe River between the months of April to 

September, 2004 has only been exceeded 6 times in the last 25 years (Fig. 7).  The San 

Antonio Bay and surrounding bay system has few inlets between it and the Gulf of 

Mexico.  The major inlets are Aransas Pass on the southern extent of San Jose Island and 

at Pass Cavallo on the northern extent of Matagorda Island.  They are 70 and 40 km 

from the river mouth respectively.  One minor inlet called Cedar Bayou exists in 

between and is intermittently open.  A hydraulic gradient of high to low must exist 

between the river mouth (a constant source of inflow) and the inlets to the Gulf of 
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Mexico, inducing a river- influenced flow pattern.  Although they were modeling smaller 

systems, Healey, et al. (1981) conclude that water slope may play a role in the 

generation of velocity pulses.  Further study during periods of lesser discharge from the 

Guadalupe River or continuous study over the course of a year may show correlation 

between river discharge rates and the balance of inflow and outflow in the tidal creeks 

along the Blackjack Peninsula.  Bryce, et al. (2003) suggest that hydrodynamic and 

sedimentary sampling durations of up to a month may not be representative of long term 

trends.  Each of the six sampling periods lasting no longer than a week may only 

coincidentally record greater inflow.  There may be periods where greater outflow is 

recorded.   

4.2. Suspended Sediment  

 Variability occurred in the TSS concentrations within a site, among sites, and 

among trips because of the influences of several factors such as tide, wind, water level, 

and water source.  Unfortunately no major storm events took place during the study.  

Exposure to the GIWW (i.e. effects barge-induced draw down currents, potential for 

wave- induced re-suspension of TSS, etc.) does not appear to be a strong factor because 

there were times when SB Creek, the least exposed site, was the highest in TSS 

concentration values.  During the last three weeks of study, SB Creek was always higher 

in TSS than Pump Canal which is more exposed to the GIWW in that it lacks an island 

barrier.  

 TSS influx can be correlated with tide because it rises and falls regularly 

throughout a sampling period with the water level fluctuations resulting from tidal 



36 

 

oscillations (Appendix A).  Flux is directly related to the flow of water as suspended 

materials like sediment are carried with the current.  For example, the flux values 

measured at Boat Ramp had such a high range because of the large amount of water 

moving through the creek in comparison with the other two sites.  Flow values measured 

at Boat Ramp exceeded those measured at Pump Canal and SB Creek by more than 

double.   

 Wind was likely one of the most influential variables, but its importance in 

controlling TSS exchange and creek hydrodynamics was difficult to discern. There are 

however some instances where wind can be separated from other variables, such as 

when wind was coming from the north and northeast during a sampling period rather 

than from the south and southeast as was the case for most sampling periods (Table 1).  

During periods of north-easterly winds (the final two sampling periods), the orientation 

of the creek at Boat Ramp was aligned with the wind direction (Fig. 1), and TSS values 

were higher than at other sites (Fig. 8).  During the fifth week of study, mean TSS values 

at Boat Ramp were double those at Pump Canal and SB Creek (Fig. 8) whose 

orientations are nearly perpendicular to a northeast wind direction (Fig. 1).   

 The lowest TSS values at all sites were recorded during the sampling period of 

August 12 to 18.  This week coincides with northerly winds and clear weather.  Less 

TSS was being resuspended and blown landward as would be the case with southerly, 

onshore winds.  No precipitation during the sampling period or in the weeks prior to it 

meant no major upland runoff was contributing to TSS.  Salinity values were also at the 

lowest since the first week of study (the positive salinity correlation discussed later). 
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 The reason for the high TSS values measured during the week of July 13 to 19 

(Fig. 8) is not fully understood although it is likely a result of some interplay between 

water level and wind.  Water level dropped throughout the duration of this sampling 

period to the lowest water level measured over the course of the study (Fig. 11).  More 

sediment could have been re-suspended within the bay during lower water levels 

because wave base would have been in closer contact with the bottom.  Because of 

negative flow, higher levels of suspended sediments in the bays would lead to higher 

TSS values in the creeks.  However, during this sampling period Boat Ramp was a net 

inflow exception, and positive flow (and therefore a net efflux of sediment) was 

dominant throughout the sampling period while the other two sites continued the trend of 

negative flow and net influx of sediment (Fig. 12).  Positive flow dominated because 

water was draining from the lake in response to decreasing water level. TSS values 

remained high because wave base within the lake became increasingly in contact with 

the bottom. 

It was noted over the course of the study that a thin layer of sediment had usually 

settled onto the top of the bedload sediment traps prior to collection.  This layer of 

sediment was visibly thicker during the week of July 13 to 19, corresponding with the 

higher TSS values measured.  Amounts of bedload sediment trapped were also higher 

during this sampling period, suggesting that TSS contributes directly to bedload or that 

TSS and bedload values are related. 

The correlation between salinity and TSS is probably a reflection of water source 

which carries two possible explanations. First, water originating from the bay is going to  
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Fig. 11.  Mean water level over the six study periods at each site.  The lowest water 
levels to occur during a study period were from July 13 to 19.  Ranges represent +/- one 
standard deviation.  The A/V sensors were always placed in the same position when 
deployed. 
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Fig. 12.  Flux: July 13 to 19, 2004. 
TSS flux values for all three sites from the sampling period during July 13 to 19.  Notice 
that Boat Ramp values are positive nearly the entire time (net efflux) and that Pump 
Canal and SB Creek remain negative over most of the sampling period (net influx). 
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carry more sediment than freshwater coming from the upland through the marsh because 

of the greater potential for resuspension within the bay.  When salinity was higher, it is 

more likely that the dominant source of water was from the bay, which corresponds with 

TSS influx being higher.  When salinity was lower, upland runoff probably made up 

more of the tidal creek water.  Water entering the creeks via the marshes as runoff or 

groundwater was not contributing as much sediment. However, there was very little 

precipitation measured after the month of June.  It is possible that localized rainstorms 

still impacted the marshes without being recorded in the rain gauge at ANWR 

headquarters.  Afternoon thunderstorms observed from the field moved in distinct cells 

and rained heavily across narrow bands of land.   

The second possible explanation regarding the correlation between TSS 

concentration and salinity, though beyond the scope of this research, is a function of 

differences in chemistry between fresh water and seawater. It is possible that higher 

ratios of seawater to freshwater will lead to higher amounts of TSS in concentration and 

that salinity is a relative indicator of the amount of seawater present (Langmuir, 1997).  

Certain chemical parameters such as pH and any combination of others may exert 

control over the amount of sediment in suspension (Sassen, 2003).  When salinity is low, 

more freshwater is present, be it from the Guadalupe River or from upland runoff.  

Freshwater tends to be of a lower pH than seawater for example, and this can promote a 

range of particle charges which can in turn promote flocculation (Sassen, 2003; Seaman 

et al., 1997; Langmuir, 1997).   
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 The influence storm events, such as hurricanes, have on suspended sediments in 

these tidal creeks is not known.  No major storm events affected the Texas Gulf coast 

during this study.  Storms are likely an important mechanism for mobilizing sediment 

and transporting it greater distances into the marshes (Davis et al., 2004, Wren and 

Leonard, 2005, Rejmanek et al., 1988), especially when they coincide with periods of 

relatively high water level and incoming tides (Leonard et al., 1995; Stevenson et al., 

1988).   

 4.3. Bedload Sediment 

 Bedload movement in Pump Canal was likely a function of the presence of the 

seagrass on one side of the channel.  This likely impeded water flow resulting in lower 

flow velocities for that side of the channel.  The slower velocities do not move as much 

bedload, and the grass can intercept sediment already in motion – serving both to trap 

bedload and suspended sediment which may settle and become bedload.  As a result, less 

bedload was collected in the sampling traps on the obstructed side of the channel and the 

sediment thickness on the bottom is greater.   

 Little difference between shorter and longer collection periods was observed 

because equilibrium is likely achieved as sediment moves all the way through the box 

and out the other side.  This has been observed by Dr. Daniel Childers in his work with 

the bedload traps in the Florida Everglades (Childers, D., Personal Communication 

2004).  After the migrating “front” of bedload sediment has passed through the box, the 

layer blanketing the trap floor remains relatively uniform independent of time. It is 

dependent on time at a consistent flow rate until the leading edge of bedload sediments 
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has reached the downstream end of the box, which can also be inferred from this work.  

In this study, the seven samplings targeting barge-induced flow and the natural flow 

prior to it are the only ones where the sediment in the trap is closely dependent on time 

because they occur at such short intervals and over periods of uniform flow. 

 The formation of deltaic features that exist at the mouths of the tidal creeks is 

likely a result of outward movement of bedload.  These features were noted but never 

measured in this study.  At SB Creek, the delta is not perceptible, but at Pump Canal, it 

is quite pronounced, as water depth decreases rapidly when exiting the creek mouth.  

The Boat Ramp site also has a delta, though it is continually reworked by the high 

energy of the nearby GIWW’s deep water and boat/barge traffic.  Given that SB Creek’s 

delta was not present and that the site showed no impact from passing barges in the A/V 

meter data while Pump Canal’s delta was pronounced and the site did show impact from 

a passing barge, there is a plausible case for barges exerting influence over delta 

formation (i.e. the outward movement of bedload). 

 Bedload moves with the current.  Whether more moves in or more moves out of 

the system is something that should be quantified in future studies.  This can only be 

done by monitoring bedload movement within tidal cycles.  Unidirectional flow was 

sampled during this study only when individual barge passings were being sampled.  It 

was established that, for the time represented by this study, more suspended sediment 

entered the tidal creek than left the tidal creek.  Once it is known whether this continues 

and whether more bedload moves in or out, then a sediment budget for these tidal creeks 

can be established.  It could be that bedload is cyclic, and as much moves out with the 
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tide or a barge passing as moves in.  But it could also be that most bedload sediments 

move in, like the net influx of TSS.  Another possibility is that sediment movement is 

relatively balanced, and that sediment enters the tidal creeks suspended and leaves as 

bedload.   

 Wind is potentially a factor positively related to bedload if higher TSS values 

within the tidal creeks contribute directly to higher amounts of bedload.  Because 

bedload moves with current, wind may also be a factor in the event of wind tides, where 

current is generated in response to wind direction.   

 Like TSS, storm events may account for some of the greatest amounts of bedload 

transport.  Storm events could serve to relocate bedload sediments that have accumulated 

in places such as the creek mouth bars or channel floors.  Or they could serve to enlarge 

features like the creek mouth bars and add to existing bedload.  Such as in the case of 

TSS transport, the effect storms have will likely be dependant on other factors such as 

tide direction during the storm. 
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5.  CONCLUSIONS AND FUTURE WORK 

5.1. Conclusions 

 There were three major conclusions to be made from this study.  First, most 

water and TSS passed through the tidal creeks as influx to the marsh.  Second, there was 

a positive relationship between TSS and salinity.  Last, bedload sediments moved with 

both natural and unnatural currents.  This study suggests that barges may move a 

significant amount of bedload. 

 TSS concentrations were likely based on a relationship among factors such as 

proportion of upland runoff versus water from the bays, energy levels and sources of 

turbulence present in the bays, water level fluctuations, and winds.  It could be 

concluded that most sediment in suspension in the system studied at ANWR originated 

on the seaward side of the marsh but that the factors controlling TSS concentrations 

were variable.  Any direct link to the Guadalupe River that may have existed regarding 

TSS concentrations could not be distinguished.  However, it is a possibility that 

discharge from the Guadalupe River could have influenced the inflow of water toward 

the marsh.  Future flow data measured in the tidal creeks at ANWR during years of both 

low and high Guadalupe River discharge would be able to better identify any influence 

the Guadalupe discharge may have over flow patterns in the marshes. 

Bedload sediments within the tidal creeks studied at ANWR were certainly both 

mobile through time and responsive to changes in conditions over short periods of time, 

specifically barge- induced drawdown currents.  This study did not monitor bedload 

sediments at a time scale which could draw further conclus ions or see trends in bedload 
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movement as a whole.  It did however monitor them at a spatial scale which suggests 

that there was predictable variability across a channel transect controlled by factors such 

as vegetation, channel morphology, and current patterns.  It could also be concluded that 

the linear island in front of SB Creek dampened the effect of barges.   

5.2. Future work 

The scope of impact on the marsh of a net influx of sediment should be addressed in 

the future through study of processes such as accretion, erosion, and channel deposition.  

The net influx may be appropriate in maintaining the balance with regional subsidence 

and sea level rise.  Or, it may be too great and is resulting in the infilling of creeks and 

ponds that are crucial to exchange between the marsh and bay systems.  Major storm 

events, though none occurred during this study, probably play an important role in 

sediment transport and maintenance in the system and should certainly be targeted in 

future study so that their influence on both suspended and bedload sediments can be 

monitored. 

There are multiple explanations regarding the positive correlation that exists between 

TSS and salinity, each of which discussed here suggest that salinity is an indicator of 

water source.  This study can only make an inference about the importance of this 

relationship.  More work should be done that focuses on water chemistry and pH in 

relation to TSS concentrations.  These correlations may prove important to understand 

with regard to freshwater diversion from the Guadalupe River because removal of a 

portion of the freshwater input will likely increase the proportion of seawater relative to 

freshwater along the marshes.  This change could alter the chemistry of the water and 



46 

 

potentially the behavior of sediment transport as a whole.  There are implications that 

will need to be made concerning ecological and geomorphologic impacts with regard to 

an increase in seawater potentially leading to higher concentrations of suspended 

sediments. 

Future work with TSS in this system should not only consider the impact of net 

influx on the marsh through study of such parameters suggested earlier, but should also 

narrow the study to more directly assess the effect of barges on TSS.  The four-hour 

sampling scheme used in this research was too infrequent for assessing barge influence 

on TSS.   

Another recommendation for future analysis of TSS and bedload samples would be 

to ash the suspended sediment collected on the filters and the bedload collected in the 

traps in order to determine the percent organic matter.  This would help in making 

inferences about sediment origin and may be useful in addressing issues such as the 

higher TSS concentrations that were present during the sampling period of July 13 to 19 

which may be attributable to higher amounts of organic matter.  It would also be useful 

to subject the mineral component of the sediment to x-ray diffraction to learn its 

composition. 

A useful element to include in the future would be a series of pieziometers that can 

reveal groundwater flow trends from the uplands to the bay along the Blackjack 

Peninsula.  This would help in understanding variation in salinity and the relationship 

that exists between salinity and TSS.  It was concluded that salinity is likely an indicator 

of water source and such hydrologic data, as would be obtained from pieziometers, 
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would be useful in determining whether groundwater is ever a significant source of 

water in the tidal creeks at ANWR. 

The overall impact of barges and the influence they exert on the movement of 

bedload sediments and flocculated material should be further studied, with attention 

given to the formation of creek mouth bars or deltas.  With the conclusion that the linear 

island in front of SB Creek dampened the effect of barges, it may be prudent to consider 

a study that seeks to determine whether barge influence is helpful or detrimental to creek 

and marsh sustainability.  
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APPENDIX A 
 

FLUX GRAPHS FOR EACH SAMPLING PERIOD 
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APPENDIX B 

 
CROSS-SECTIONS OF BEDLOAD THICKNESS AT PUMP CANAL  

 
(MEASUREMENTS TAKEN ONCE PER SAMPLING PERIOD) 
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