

Facultad de Ingeniería Carrera de Ingeniería Electrónica

Programa Especial de Titulación: "Diseño e implementación de una red de monitoreo remoto CCTV con el uso de energía fotovoltaica en el refugio de vida silvestre Laquipampa – Lambayeque – 2018"

Autor: Cruz Inilupú Valladolid

Para optar el Título Profesional de

Ingeniero Electrónico

Lima – Perú 2020

DEDICATORIA

A mi señora madre, por todo el apoyo y valores que me inculcó, a mis hermanos por el apoyo brindado, a mi familia por la comprensión y fuerza que me dieron para lograr mis objetivos.

AGRADECIMIENTO

Agradecer a Dios por la confianza que me da para poder enfrentar la vida y lograr mis objetivos.

Agradecer a los docentes que tuve en toda la carrera por brindarme las enseñanzas y valores para poder ser un profesional competitivo.

Agradecer a mi familia por el apoyo moral en toda mi etapa de estudiante.

CARTA DE AUTORIZACIÓN

FACULTAD DE INGENIERÍA DE SISTEMAS Y ELECTRÓNICA PROGRAMA ESPECIAL DE TITULACIÓN CARTA DE AUTORIZACIÓN PARA USO DE DATOS EN PROYECTO

Lima, 30 de mayo de 2019

Yo, Ana Patricia Ramírez Botia, identificado con CE N° 000481923, Gerente General, representante de la empresa ITELCA SAS SUCURSAL PERÚ, con RUC N° 20544045068, autoriza a Cruz Inilupú Valladolid utilizar los catos de la organización necesarios para desarrollar su Informe de Suficiencia Profesional referidos al proyecto "DISEÑO E IMPLEMENTACIÓN DE UNA RED DE MONITOREO CCTV CON EL USO DE ENERGÍA FOTOVOLTAICA EN EL REFUGIO DE VIDA SILVESTRE LAQUIPAMPA – LAMBAYEQUE – 2018".

Firma y Sel and a second secon

DECLARACIÓN JURADA

Declaración de autenticidad y no plagio

Por el presente documento, yo Cruz Inilupú Valladolid, identificado con DNI N° 43319698, bachiller de la carrera de Ingeniería electrónica, informo que he elaborado el Trabajo de Suficiencia Profesional denominado "Diseño e implementación de una red de monitoreo remoto CCTV con el uso de energía fotovoltalca en el refugio de vida silvestre Laquipampa – Lambayeque – 2018", para optar el Título Profesional de Ingeniero electrónico.

Declaro que este trabajo ha sido desarrollado integramente por el autor que lo suscribe y afirmo que no existe plagio de ninguna naturaleza. Así mismo, dejo constancia de que las citas de otros autores han sido debidamente identificadas en el trabajo, por lo que no se ha asumido como proplas las ideas vertidas por terceros, ya sea de fuentes encontradas en medios escritos como en Internet.

Así mismo, afirmo que soy responsable solidario de todo su contenido y asumo, como autor, las consecuencias ante cualquier falta, error u omisión de referencias en el documento. Sé que este compromiso de autenticidad y no plagio puede tener connotaciones éticas y legales. Por ello, en caso de incumplimiento de esta declaración, me someto a lo dispuesto en las normas académicas que dictamine la Universidad Tecnológica del Perú y a lo estipulado en el Reglamento de SUNEDU.

Lima, 28 de febrero de 2020.

(Firma)

RESUMEN

El informe de suficiencia profesional presentado tiene como finalidad detallar todas las etapas realizadas en el diseño e implementación de un sistema de monitoreo remoto CCTV, iniciando desde los cálculos, implementación de cada etapa del sistema, pruebas y puesta en marcha de todo el sistema. En esta ocasión el sistema implementado está siendo aplicado al refugio de vida silvestre Laquipampa ubicado en Lambayeque.

En el diseño e implementación se han utilizado tecnologías de radio enlaces para poder cubrir la conectividad de los equipos a distancias considerables; la tecnología de energías renovables, tales como los sistemas de energía fotovoltaico que nos permiten utilizar la radiación solar y convertirla a energía eléctrica para poder cubrir la alimentación de los diversos equipos electrónicos que forman parte de un sistema de monitoreo CCTV, sistema que nos permite visualizar imágenes en tiempo real y grabado.

El resultado obtenido es un sistema de monitoreo remoto capaz de captar imágenes y videos en tiempo real en ambientes exteriores, en horarios diurnos y nocturnos, logrando una gestión efectiva de las áreas naturales del refugio de vida silvestre Laquipampa.

ÍNDICE DE CONTENIDO

DEDICATORIA	ii
AGRADECIMIENTO	. iii
CARTA DE AUTORIZACIÓN	. iv
DECLARACIÓN JURADA	v
RESUMEN	. vi
ÍNDICE DE ECUACIONES	Х
ÍNDICE DE FIGURAS	. xi
ÍNDICE DE TABLAS	xiii
INTRODUCCIÓN	. xv
CAPÍTULO 1	1
ASPECTOS GENERALES	1
1.1. Definición del problema	1
1.1.1.Descripción del problema	1
1.2. Definición de objetivos	3
1.2.1.Objetivo general	3
1.2.2.Objetivos específicos	3
1.3. Alcances y limitaciones	3
1.3.1.Alcances	3
1.3.2. Limitaciones	4
1.4. Justificación	4
1.5. Estudio de viabilidad	6
1.5.1. Viabilidad técnica	6
1.5.2. Viabilidad económica	7
CAPÍTULO 2	8
MARCO TEÓRICO	8
2.1. Antecedentes	8
2.1.1.Antecedentes internacionales	8
2.1.2. Antecedentes nacionales	11
2.2. Tecnologías de sustento	13
2.2.1.Sistema CCTV	13
2.2.2. Enlace inalámbrico	17
2.2.3. Tipo de enlaces inalámbricos	17
2.2.4. Cálculo del radio enlace	19
2.2.5.Energía solar fotovoltaica	30

2.2.6. Características y componentes de los sistemas de energía fotovoltaica	31
2.2.7. Sistema de generación: Módulos fotovoltaicos	32
2.2.8. Sistema de regulación: Unidad de control	35
2.2.9.Inversor	36
2.2.10. Sistema de acumulación: Baterías	38
2.2.11. Dimensionamiento de un sistema fotovoltaico	40
CAPÍTULO 3	44
DESARROLLO DE LA SOLUCIÓN	44
3.1. Condiciones iniciales	44
3.2. Diagrama de bloques	46
3.3. Diagrama pictórico	46
3.4. Conversión de coordenadas UTM a grados decimales	47
3.5. Estudio de radio enlace en la banda de 5.8 GHz	48
3.5.1. Distancia del enlace	49
3.5.2. Pérdidas en el espacio libre	52
3.5.3. Pérdidas en las líneas de transmisión	53
3.5.4. Pérdidas en conectores	56
3.5.5. Primera zona de fresnel	57
3.5.6. Potencia de recepción	59
3.5.7. Margen de desvanecimiento	60
3.5.8. Voltaje recibido	62
3.5.9. Ángulo de elevación	64
3.5.10. Ángulo azimutal	66
3.5.11. Potencia isotrópicamente radiada equivalente (PIRE)	69
3.5.12. Análisis de ruido	71
3.5.13. Potencia de ruido	71
3.5.14. Voltaje de ruido	71
3.5.15. Relación señal ruido	72
3.5.15. Sensibilidad del receptor	73
3.5.11. Simulación de enlace con software radio Mobile	74
3.5.12. Equipamiento de radio enlaces	78
3.6. Sistema fotovoltaico	83
3.6.1. Sistema fotovoltaico 1	86
3.6.2. Sistema fotovoltaico 2	92

3.6.3.	Sistema fotovoltaico 3	
3.7. Sistem	a CCTV (Circuito cerrado de televisión)	
3.7.1.	Gestión NVR	
CAPÍTULO 4	l	
RESULTADO	DS	
4.1. Resu	ıltados	
4.1.1.	Sistema de radioenlace	
4.1.2.	Sistema de energía fotovoltaica	
4.1.3.	Sistema CCTV	
4.2. Pres	upuesto	
CONCLUSIC	DNES	
RECOMEND	ACIONES	
BIBLIOGRA	FÍA	
ANEXOS		

ÍNDICE DE ECUACIONES

Ecuación 1. Ancho de banda.	16
Ecuación 2. Almacenamiento	16
Ecuación 3. Distancia de enlace.	20
Ecuación 4. Pérdidas en el espacio libre	20
Ecuación 5. Pérdidas en el espacio libre (distancia en metros)	21
Ecuación 6. Primera zona de fresnel	23
Ecuación 7. Primera zona de fresnel (d1=d2)	23
Ecuación 8. Primera zona de fresnel (60%)	23
Ecuación 9. Potencia de recepción.	24
Ecuación 10. Margen de desvanecimiento	25
Ecuación 11. Voltaje recibido	26
Ecuación 12. Elevación	26
Ecuación 13. Azimut.	27
Ecuación 14. Potencia irradiada isotrópica efectiva	27
Ecuación 15. Potencia de ruido	28
Ecuación 16. Voltaje de ruido	28
Ecuación 17. Relación señal ruido.	29
Ecuación 18. Sensibilidad del recepetor	29
Ecuación 19. Conversión de watt a dBm	29
Ecuación 20. Conversión de watt a dBm referido a un mw	30
Ecuación 21. Conversión de watt a dBm respecto a la isotrópica	30
Ecuación 22. Consumo energético	40
Ecuación 23. Factor de pérdida	40
Ecuación 24. Consume energético real	41
Ecuación 25. Capacidad banco de baterías	41
Ecuación 26. Hora solar pico	42
Ecuación 27. Cantidad de paneles	42
Ecuación 28. Paneles en paralelo	42
Ecuación 29. Corriente total sistema fotovoltaico	42
Ecuación 30. Paneles en serie	43
Ecuación 31. Corriente selección regulador	43
Ecuación 32. Potencia requerida para inversor	.43

ÍNDICE DE FIGURAS

Figura 1. Componentes de los sistemas CCTV (Martí, 2015)	13
Figura 2. Enlaces inalámbricos (Monteros, 2015).	17
Figura 3. Enlace punto a punto (Yacelga, 2017)	18
Figura 4. Enlaces punto multipunto (Yacelga, 2017)	18
Figura 5. Radio enlace (Poma, 2015)	20
Figura 6. Zona de fresnel (Poma, 2015)	23
Figura 7. El sol fuente de energía (Portabella, 2010)	31
Figura 8. El sistema solar fotovoltaico autónomo (Moreno, 2016)	32
Figura 9. Tipos de módulos fotovoltaicos (López, 2015)	32
Figura 10. Curva corriente vs voltaje de un módulo fotovoltaico (Zuñiga y Cru	Z,
2013)	33
Figura 11. Variación curva corriente vs voltaje en función de la irradiancia	
(Zúñiga y Cruz, 2013)	34
Figura 12. Composición de módulo fotovoltaico (López, 2015)	35
Figura 13. Unidad de control (Moreno, 2016)	36
Figura 14. Inversor DC/AC (Moreno, 2016).	37
Figura 15. Representación del rendimiento de un inversor (Moreno, 2016)	38
Figura 16. Banco de baterías (López, 2015)	39
Figura 17. Refugio de vida silvestre Laquipampa. Fuente propia	44
Figura 18. Diagrama de bloques. Fuente propia	46
Figura 19. Diagrama pictórico. Fuente propia	47
Figura 20. Herramientas para el estudio de radio enlaces. Fuente propia	48
Figura 21. Nodos del sistema de radio enlace (Google earth)	49
Figura 22. Enlace P0-P1. Fuente propia	74
Figura 23. Enlace P0-P2. Fuente propia	75
Figura 24. Enlace P2-P6. Fuente propia	75
Figura 25. Enlace P2-P4. Fuente propia	76
Figura 26. Enlace P1-P5. Fuente propia	76
Figura 27. Enlace P3-P1. Fuente propia	77
Figura 28. Enlace P7-P4. Fuente propia	77
Figura 29. Enlace P3-P8. Fuente propia	78
Figura 30. Diagrama de conexión de las redes primarias. Fuente propia	82
Figura 31. Diagrama de conexión de las redes secundarias. Fuente propia	82

Características del panel solar YL50P-17B (Yingli Solar, 2016)	87
Unidad de control (Blue Solar, 2018)	90
Inversor de voltaje (Blue Solar, 2018)	91
Diagrama de sistema fotovoltaico 1. Fuente propia	91
Diagrama de sistema fotovoltaico 2. Fuente propia	94
Características del panel solar YL100P-17B (Yingli Solar, 2016)	96
Unidad de control sistema fotovoltaico 3 (Blue Solar, 2018)	98
Inversor de voltaje sistema fotovoltaico 3 (Blue Solar, 2018)	99
Diagrama de sistema fotovoltaico 3. Fuente propia	99
Cámara Axis5635-E (Axis, 2016)1	01
Cámara Axis Q1765-LE (Axis, 2016)1	02
Ingreso de parámetros de cámara. Fuente propia1	03
Reporte de banda ancha axis. Fuente propia1	03
Inicio de sesión plataforma CCTV. Fuente propia1	04
Proceso para añadir cámaras. Fuente propia1	04
Cámaras agregadas al software. Fuente propia1	05
Escaneo de cámaras IP. Fuente propia1	08
Escaneo de radio enlaces. Fuente propia1	08
Inrterfaz de radwin. Fuente propia1	09
Interfaz web cambium. Fuente propia1	09
Sistema de radioenlace. Fuente propia1	10
Sistema de energía fotovoltaico. Fuente propia1	12
Grabador NVR. Fuente propia1	12
Cámara IP PTZ instalada. Fuente propia1	13
Centro de control. Fuente propia1	14
Cámaras en operación de día. Fuente propia1	14
Cámaras en operación nocturna. Fuente propia1	15
	Características del panel solar YL50P-17B (Yingli Solar, 2016) Unidad de control (Blue Solar, 2018)

ÍNDICE DE TABLAS

Tabla 1. Atenuación nominal cada 30.5 metros	. 21
Tabla 2. Atenuación de cables coaxiales en 100 metros	. 22
Tabla 3. Radio para la primera zona de fresnel	. 24
Tabla 4. Ubicación de puntos en coordenadas UTM	. 45
Tabla 5. Conversión de coordenadas	. 47
Tabla 6. Distancias de enlaces	. 51
Tabla 7. Pérdidas en el espacio libre	. 53
Tabla 8. Pérdidas en las líneas de transmisión por enlace	. 55
Tabla 9. Pérdida en conectores por enlace	. 57
Tabla 10. Primera zona de fresnel por enlace	. 58
Tabla 11. Potencia de recepción por enlace	. 60
Tabla 12. Margen de desvanecimiento por enlace	. 62
Tabla 13. Voltaje recibido por enlace	. 63
Tabla 14. Ángulo de elevación por enlace	. 65
Tabla 15. Ángulo azimutal por enlace	. 68
Tabla 16. Potencia isotrópicamente irradiada por enlace	. 71
Tabla 17. Relación señal ruido por enlace	. 72
Tabla 18. Sensibilidad del receptor por enlace	. 73
Tabla 19. Comparación de equipos red primaria	. 79
Tabla 20. Comparación de equipos red secundaria	. 80
Tabla 21. Cuadro de cargas	. 83
Tabla 22. Comparación características de paneles solares 1	. 84
Tabla 23. Comparación características de paneles solares 2	. 85
Tabla 24. Irradiación global promedio en un plano horizontal	. 87
Tabla 25. Comparación características de controlador de carga 1	. 89
Tabla 26. Selección de equipos sistema 1	. 92
Tabla 27. Selección de equipos sistema 2	. 95
Tabla 28. Comparación características de controlador de carga 2	. 97
Tabla 29. Selección de equipos sistema 3	100
Tabla 30. Comparación características de cámara PTZ	101
Tabla 31. Comparación características de cámara fija	102
Tabla 32. Dispositivos de radio enlace RVSL Laquipampa red primaria	106
Tabla 33. Dispositivos de radio enlace RVSL Laquipampa red secundaria	107

Tabla 34. Relación de cámaras instaladas	107
Tabla 35. Pruebas de conectividad.	110
Tabla 36. Cuadro de voltajes	111
Tabla 37. Presupuesto equipamiento e instalación	115

INTRODUCCIÓN

La reserva de vida silvestre Laquipampa, ubicada en el distrito de Incahuasi, provincia de Ferreñafe, departamento de Lambayeque fue creada el 06 de julio de 2006, cuenta con un área de 8328.64 hectáreas, esta zona busca mantener la muestra de bosque seco de montaña y sus zonas de vida silvestre, en especial las especies en peligro de extinción, como es el caso de la pava aliblanca y especies vulnerables como el oso de anteojos. El 30% de esta reserva es dedicada al turismo, teniendo cerca la población de San Antonio Laquipampa, dedicada a diversas actividades como la ganadería, que al realizar malas prácticas como deforestación y otros con desconocimiento ponen en peligro la reserva, por lo que el presente trabajo propone una solución ante esta necesidad, implementando un sistema de monitoreo remoto CCTV

Los sistemas de monitoreo remoto CCTV brindan el poder visualizar en tiempo real situaciones o eventos a través de dispositivos que controlan la presencia y las actividades que se realizan, están compuestos principalmente por cámaras de video vigilancia, las cuales forman parte de los sistemas de seguridad en diversos escenarios; con la implementación de los sistemas CCTV no solo es posible mantener un control sobre las malas prácticas, sino también previene cualquier evento que pueda suceder dentro de las instalaciones, manteniendo una zona sometida a constante vigilancia, capturando imágenes que no son difundidas públicamente.

CAPÍTULO 1

ASPECTOS GENERALES

1.1. Definición del problema

1.1.1. Descripción del problema

En la actualidad existen diferentes y variados sistemas de monitoreo CCTV (Circuito cerrado de televisión) los cuales son utilizados en diferentes escenarios como son: la seguridad ciudadana, lucha contra la delincuencia, proceso de operaciones en las que se requiere llevar un control del personal, control de ingresos y salidas de personas y vehículos, control de velocidad y otros. Este tipo de sistemas de acuerdo a las necesidades requieren de una infraestructura y sistemas que se complementen para su buen funcionamiento.

El refugio de vida silvestre Laquipampa (RVSL) es una zona reservada de Perú, creada el 06 de julio de 2006 para proteger al bosque seco y la vida silvestre, una de estas la pava aliblanca, así como un escenario de turismo. Al ser un área de difícil acceso e intangible se evidencia la falta de control en zonas de puntos críticos en los que se requiere un constante monitoreo. De acuerdo al plan de conservación de la pava aliblanca en los períodos 2016-2021 realizado por el SERFOR (Servicio nacional forestal y de fauna silvestre), el cual tiene objetivo principal la recuperación y conservación de esta especie emblemática del norte del país, describe las principales amenazas como son la captura ilegal realizadas por cazadores foráneos y la población que intervienen con sus actividades agrícolas o ganaderas, la deforestación debido al impacto humano sobre el medio ambiente, consecuencia de las malas prácticas realizadas por la ganadería sin contar con los criterios adecuados, otras actividades como la tala de los árboles para un uso doméstico para obtener carbón o leña, amenazas cercanas que afectan el hábitat, ocasionando la disminución de las especies existentes y de las muestras del bosque seco de montaña.

Se desean obtener mejores tiempos de respuestas frente a desastres naturales, tales como los incendios forestales, como es el caso del incendio ocurrido en noviembre de 2016, teniendo como pérdida de 2475 hectáreas del bosque, siendo la más perjudicada la reserva Laquipampa, información brindada por instituto nacional de defensa civil.

Esto conlleva a diseñar e implementar un sistema de monitoreo remoto CCTV, siendo el medio de comunicación entre cámaras y puntos de acceso principal una variable, por lo que se debe analizar las viabilidades para poder interconectar las cámaras con el nodo principal. El refugio de vida silvestre Laquipampa es una zona en la que resultaría difícil y costoso implementar una red cableada de cobre o fibra óptica por las distancias entre los puntos críticos y el nodo principal, se propone la alternativa de los enlaces inalámbricos, de gran importancia en zonas alejadas y de difícil acceso, los cuales permiten la interconexión entre dos o más puntos, por medio de ondas electromagnéticas que viajan a través del espacio llevando información de un lugar a otro.

El refugio de vida silvestre Laquipampa es un área donde no se cuenta con una red de fluido eléctrico en sus puntos críticos, al ser esta una zona intangible no se permite implementar una infraestructura de postes para un tendido de cableado eléctrico, el cual es de importancia para el funcionamiento de los equipos que conforman el sistema para el envío de imágenes a través de una cámara de video vigilancia, ante esta situación la alternativa es el uso de energías renovables, estos recursos energéticos en todos sus tipos, son considerados como un factor importante para el desarrollo tecnológico del

país, los cuales empiezan a ser utilizados para satisfacer diversas necesidades, una de estas la energía solar, fuente inagotable que brinda energía limpia y abundante, que en los últimos años se ha reconocido la radiación solar como fuente de energía eléctrica para zonas alejadas a través de sistemas de paneles solares.

En base a los fundamentos mencionados, se estableció la siguiente interrogante ¿Cómo lograr la gestión efectiva de las áreas naturales en el refugio de vida silvestre Laquipampa?

1.2. Definición de objetivos

1.2.1. Objetivo general

Diseñar e implementar una red de monitoreo remoto CCTV con el uso de energía fotovoltaica en el refugio de vida silvestre Laquipampa.

1.2.2. Objetivos específicos

Diseñar e implementar el sistema de radio enlace, el cual realizará la interconexión y traslado de información.

Implementar un sistema de energía fotovoltaica para el funcionamiento de los equipos en los puntos remotos.

Implementar un sistema CCTV con cámaras IP capaces de operar en ambientes exteriores.

1.3. Alcances y limitaciones

Los alcances y limitaciones presentados en el proyecto se detallan en cada sistema a implementar.

1.3.1. Alcances

El sistema de monitoreo remoto CCTV permitirá tener registros visuales en tiempo real de las ubicaciones dadas por el cliente y almacenados en un servidor NVR el cual realizará la grabación por eventos y por demanda, la información de video proveniente de las cámaras será transmitida mediante un sistema de radio enlaces en banda no licenciada.

El sistema de energía a implementar estará compuesto por paneles solares, el cual tendrá una operación de 24 horas diarias para mantener una secuencia de video y los equipos de video vigilancia en constante funcionamiento, siendo respaldado por baterías recargables en cada punto remoto.

Para un constante monitoreo se realizará la instalación de 2 estaciones de trabajo, las cuales permitirán ver las imágenes en tiempo real y poder administrar la información de video.

1.3.2. Limitaciones

El sistema de monitoreo remoto CCTV contará con un grabador NVR el cual realizará un período de grabación de 60 días, transcurrido este período este iniciará con un proceso de grabación cíclica, sobrescribiendo desde la información más antigua, asimismo este sistema no incluye aplicaciones móviles para el monitoreo a través de un equipo celular, no abarca toda el área del refugio.

Los sistemas de radioenlace funcionarán en banda no licenciada de 5Ghz, este sistema ante cualquier eventual falla tendrá un tiempo de respuesta largo para servicio técnico debido a que el refugio es una zona de difícil acceso.

1.4. Justificación

El proyecto desarrollado en el siguiente trabajo de suficiencia profesional permite usar la tecnología para mantener registros visuales de los puntos alejados, los cuales requieren de un monitoreo constante, seguimiento de escenarios, seguimiento de actividades, cuidar la integridad de las especies de la reserva, así como la seguridad de los trabajadores al brindarles tranquilidad de tenerlo todo vigilado en ciertos eventos que requieran desplazamiento en las ubicaciones del refugio de vida silvestre.

El proyecto desarrollado en el presente trabajo de suficiencia profesional emplea el uso de enlaces inalámbricos permitiendo llevar tramas de video desde los puntos más alejados al nodo principal, ofreciendo beneficios económicos al sistema, tales como: Una inversión más reducida en el proyecto con resultados satisfactorios e instalación rápida, sin realizar obras de mayor envergadura en el refugio de vida silvestre, a diferencia de implementar una red cableada de cobre o fibra óptica.

Las energías renovables hoy en día son consideradas inagotables, este tipo de energía se relacionan con el ciclo natural de la tierra, energías como el sol o el viento hacen posible que dispongamos de estos recursos continuamente. De acuerdo con el atlas eólico del Perú, nuestro país posee un alto recurso eólico en las costas en las que resalta los departamentos de Piura, La Libertad y algunas zonas de Lambayeque, el mapa eólico del departamento de Lambayeque indica que la zona del Refugio de vida silvestre Laquipampa alcanza velocidades de 2 metros por segundo a una altura de 80 metros.

El atlas de energía solar del Perú elaborado por el ministerio de energía y minas indica que nuestro país cuenta con una alta radiación solar, siendo el departamento de Lambayeque uno de los que posee mayor potencial solar alcanzando niveles de irradiación solar de 5.38kw/m², de acuerdo con el SENAMHI, concluyendo que este departamento posee altas rentabilidades en soluciones de radiación solar.

Un sistema de energía eólico implicaría mantenimientos con costos elevados, piezas del sistema que se desgastan y es necesario el cambio de estas, son fuente de generación de ruidos, peligro para las aves de la zona y requieren ser instalados a mayor altura para sacar provecho del recurso eólico. Los sistemas de energía fotovoltaico son libres de mantenimiento, obtienen un menor costo a largo plazo, son escalables agregando paneles, pueden ser instalados en cualquier posición, no requieren ser monitoreados y no son fuente generadora de ruido.

De acuerdo con lo mencionado anteriormente se optará por la elección de implementar un sistema de energía fotovoltaica, aprovechando la energía solar a través de paneles solares con el fin de ser transformada en energía eléctrica a través de un dimensionamiento de los componentes en función de la carga.

El proyecto permitirá obtener imágenes de las especies en su hábitat natural, así como la protección de las especies en peligro de extinción, las tomas de video en el hábitat natural permitirán difundir la existencia del refugio de vida silvestre Laquipampa, siendo reconocida en la sociedad peruana, lo cual incentivaría el turismo en la zona.

1.5. Estudio de viabilidad

1.5.1. Viabilidad técnica

El presente trabajo de suficiencia profesional concluye que los equipos y software a ser utilizados se encuentran disponibles en los distribuidores del mercado nacional, asimismo cuentan con la tecnología necesaria y especificaciones técnicas requeridas para los ambientes en los que se requiere la implementación de cada etapa del sistema de monitoreo. Se dispone de herramientas de simulación gratuita de radioenlaces para validar líneas de vistas topográficas lo que garantizará que los puntos a interconectar logren la transmisión y recepción de información.

El personal técnico y de ingeniería encargados de realizar el diseño e implementación de cada etapa del sistema de monitoreo cuenta con las herramientas y capacidades necesarias en tecnologías de radioenlace, sistemas de energía fotovoltaica y sistemas de circuito cerrado de televisión, por lo que se garantiza obtener los resultados esperados, asimismo brindar capacitaciones para la operación y mantenimiento de cada etapa del sistema de monitoreo y como se relacionan.

1.5.2. Viabilidad económica

El presente trabajo de suficiencia profesional ha evaluado los costos que generarán los tiempos para realizar el estudio completo de diseño de cada etapa del sistema, siendo estos asequibles, por ser realizados por personal propio de la empresa ITELCA.

La etapa de implementación utilizará procesos de dirección necesarios para garantizar la viabilidad de plazos que aseguren el desarrollo y entrega óptima, estableciendo cronogramas de actividades, analizando los riesgos y alcances, con esto se garantiza que el costo de tiempo del personal técnico presupuestado no se vea afectado.

Los costos de implementación en el presente trabajo de suficiencia profesional serán controlados analizando actividades por cada fase o actividades concretas a realizar en el tiempo establecido, logrando la rentabilidad necesaria del proyecto a implementar.

Los equipos para implementar el sistema de monitoreo son suministrados por distribuidores del mercado nacional, los cuales brindan una línea de crédito a la empresa integradora ITELCA, responsable de la implementación, con lo que se garantiza que cada etapa del sistema cuente con el equipamiento requerido en los tiempos establecidos.

Se ha realizado el costeo necesario para cubrir el mantenimiento por garantía de 1 año, posterior a la entrega del sistema al cliente final, lo cual incluye logística y personal técnico especialista en cada etapa del sistema de monitoreo.

<u>CAPÍTULO 2</u>

MARCO TEÓRICO

2.1. Antecedentes

Se detallarán antecedentes relacionados a la implementación de sistemas de monitoreo CCTV, que se diseñaron y aplicaron para cubrir diferentes necesidades.

2.1.1. Antecedentes internacionales

En la investigación realizada por Vela Remache Pablo Andrés (2015), en su trabajo de investigación "Estudio y diseño de un radio enlace para transmisión de datos e internet en frecuencia libre para la cooperativa indígena Alfa y Omega utilizando equipos airmax de ubiquti", realizó el estudio para poder interconectar la sede principal de Villaflora y la sucursal de Tambillo en la ciudad de Quito para la transmisión de datos e internet, utilizando herramientas como radio mobile y google earth, donde logra determinar que entre ambas sedes no hay línea de vista, por lo que para asegurar la trasmisión de información se tiene que implementar un repetidor, el cual de acuerdo a los estudios realizados se ubicará en la ubicación denominada Cerro Atacazo, zona con la altura suficiente para triangular el radio enlace. (Vela, 2015)

En su trabajo concluye que a pesar de las distancias y ubicaciones geográficas se puede implementar un sistema de radio enlace para la transmisión de internet e intercambio de información entre ambas sedes. De acuerdo a la investigación realizada por Monteros Mejía José Luis (2015), "Diseño de un sistema de video vigilancia inalámbrico para la ciudad de Cayambe," realizó el diseño de un sistema con tecnología inalámbrica para el sector urbano de la ciudad de Cayambe ubicada en Ecuador, teniendo como referencia el tipo de red a utilizar, los tráficos de datos que generará el sistema, dimensionamiento de espacio en los servidores de video, sistemas de gestión y administración, así como la definición de los puntos con mayor afluencia para definir la ubicación de las cámaras de video vigilancia. (Monteros, 2015)

De acuerdo a los requerimientos logró la implementación de un sistema CCTV a través de la tecnología inalámbrica, basada en los estándares 802.11x, la cual aprovecha los beneficios de las redes inalámbricas no licenciadas teniendo mayor alcance y cobertura en la propagación de señales. Se concluyó con la instalación de las cámaras en los lugares donde el índice delictivo es mayor teniendo una secuencia de video constante monitoreada por operadores los cuales fueron capacitados para el uso del sistema y respuesta inmediata ante cualquier evento. (Monteros, 2015)

En la investigación realizada por Erika Rueda Quiroga (2017), en su trabajo de investigación "Sistema de alimentación dual conmutada con energía solar para sistemas de CCTV", en la ciudad de Bogotá, realizó la implementación para el suministro de electricidad a través de una conmutación dual a un sistema de circuito cerrado de televisión mediante el uso de un control programable como modelo de práctica empresarial, realizando un estudio estadístico de consumo de energía eléctrica del sistema de CCTV instalado, por lo que aplicó el desarrollo de un sistema de alimentación dual mediante la energía solar como energía adicional a la eléctrica, logrando el control por un modelo embebido programable. En su trabajo de investigación Rueda Quiroga logra realizar el prototipo que activa el sistema de CCTV conmutando 2 fuentes de alimentación, eléctrica y solar, por medio de un control programable, el cual realiza cambios y correcciones en las mediciones de entrada y salida realizadas

conmutando de energía solar a eléctrica cuando hay descarga en las baterías. El autor concluye que los diferentes sistemas de CCTV varían el consumo de acuerdo a las marcas y tipos de cámaras a implementar, por lo que se tiene que tener en cuenta estas características para el buen funcionamiento del prototipo. (Rueda, 2017)

En el artículo de blog de tecnología wireles publicado por Oscar Ubierna (2017), indica que los sistemas video vigilancia inalámbrica en municipalidades, es necesario que al desplegar una red de radio a través de las calles de una ciudad debemos tener en consideración muchos factores para obtener una instalación exitosa y con una funcionalidad constante, sabiendo que la transmisión de señales de video es bastante compleja. Determina que las cámaras mayormente instaladas en los exteriores de las calles son generalmente móviles, cámaras PTZ, estas deben ser gestionadas en tiempo real desde un centro de control para realizar el seguimiento de personas o vehículos, para tener un tiempo de respuesta óptimo, siendo este un punto crítico en la implementación de estos sistemas. Concluye que para implementar estos sistemas de video vigilancia con tecnología inalámbrica en un ambiente de exteriores urbano es necesario contar con equipamiento de calidad que cuenten con protocolos específicos y probados. (Ubierna, 2017)

En la investigación realizada por Durand Vargas Miller Andrés, López Vargas Ángela María y Prada Morante Carlos Andrés (2018), en su proyecto de grado "Diseño de un sistema de video vigilancia por medio de enlaces microondas para la empresa DISAM sucursal Santa Marta", en Colombia, realizaron un diseño de un sistema de video vigilancia con el uso de la tecnología de enlaces microondas para dar mayor seguridad a las instalaciones de la sucursal Mercafácil de la empresa DISAM, reestructurando el sistema de video vigilancia existente de tecnología analógica a tecnología IP. El sistema de video vigilancia existente no cubre en su totalidad las zonas más vulnerables de las instalaciones de la subsede, asimismo para el funcionamiento en la sede principal como en la sucursal se realizaba mediante el servicio de dos proveedores de servicio de

internet, lo cual era un gasto innecesario para la empresa DISAM, es por eso que se propone la implementación de una solución mediante un enlace microondas, creando una conexión de internet entre ambas sedes, logrando así un ahorro económico al tener un solo proveedor de servicio de internet y un sistema de video vigilancia centralizado en su sede principal. (Durand, López y Prada, 2018)

2.1.2. Antecedentes nacionales

En la investigación realizada por Arapa Arapa Guido Edwin y Condori Sucapuca Gil Agustín (2013), "Diseño e implementación de un prototipo para un sistema de video vigilancia utilizando wifi en el estándar 802.11n para la ciudad de Juliaca", el objetivo planteado por los autores es hacer un análisis de seguridad mediante un sistema de video vigilancia en la ciudad de Juliaca mediante el diseño de un prototipo con cámaras de video vigilancia y la tecnología wifi en el estándar 802.11n, utilizando protocolos TCP/IP. En su investigación detallan las ventajas que posee un sistema de video vigilancia en red a diferencia de un sistema analógico, como son el acceso remoto para configuraciones y vistas de imágenes en tiempo real y grabado desde cualquier ubicación, mejoras en la calidad de imágenes y ahorro de ancho de banda mediante procesos de compresión, flexibilidad para ampliar equipos en el sistema y mejor rentabilidad a largo plazo. Los autores detallan el estándar 802.11 y sus modulaciones, indicando que a comparación de otras versiones este estándar funciona en las bandas de frecuencia de 2.4 y 5 GHz, para la interconexión de las cámaras con el centro principal realizó el uso enlaces punto – multipunto, concentrando toda la información en un solo punto. En su investigación los autores concluyen el uso de equipamiento ubiquiti networks, ya que son los que cumplen con los parámetros técnicos de acuerdo a los cálculos matemáticos realizados y simulaciones en la aplicación radio mobile para corroborar los datos obtenidos. (Arapa y Condori, 2013)

En la investigación realizada por Márquez Tocas Jabath Jair (2015), "Implementación de sistemas para la atención de emergencias en la municipalidad distrital de Belén en

la ciudad de Iquitos", el objetivo de su investigación fue diseñar e implementar diferentes sistemas de seguridad electrónica destinados a la infraestructura de seguridad ciudadana en el distrito de Belén ubicado en la ciudad de Iquitos. Márquez realizó la configuración de varios sistemas, entre ellos el de radiocomunicación para la transmisión y recepción de voz, datos y GPS utilizando la banda VHF, configuración de un sistema de video vigilancia con tecnología IP con capacidad de visualizar video en tiempo real y a su vez generar archivos de grabación a través de una red inalámbrica para exteriores con las capacidades de poder soportar grandes paquetes de datos. La implementación de este proyecto mejoró el servicio de seguridad ciudadana en la ciudad, teniendo un mayor control de los lugares vigilados y una herramienta ante los casos de delincuencia que se presentan en el distrito de Belén. (Márquez, 2015)

En investigación realizada por Cieza Coronado Julio César la (2017),"Dimensionamiento de un sistema fotovoltaico para las instalaciones eléctricas de alumbrado en el hostal Lancelot ubicado en Chiclayo – Lambayeque", el objetivo de su investigación es dimensionar el sistema fotovoltaico de acuerdo a la potencia eléctrica que las cargas de alumbrado requieran, el número de horas de funcionamiento evaluando la radiación solar promedio de la ubicación geográfica, diseñar el circuito del sistema solar y obtener un presupuesto para la ejecución de instalación del sistema. El autor realiza un estudio de la radiación solar y sus efectos sobre la atmósfera, la hora solar pico en la ubicación geográfica donde se requiere instalar el sistema fotovoltaico, las características de cada componente del sistema, el análisis de los sistemas fotovoltaicos con conexión a la red eléctrica. El autor concluye de acuerdo a los cálculos matemáticos realizados con una carga de 2.48 Kw con un promedio de 7 horas de uso, el dimensionamiento de un sistema fotovoltaico compuesto por 32 paneles solares de 210 Wp con conexiones en serie y paralelo, logrando el funcionamiento del sistema fotovoltaico con conexión a la red eléctrica y un presupuesto asequible para su instalación. (Cieza, 2017)

2.2. Tecnologías de sustento

Se procederá a presentar los conceptos que explican el desarrollo del trabajo para el diseño e implementación de un sistema de monitoreo remoto CCTV.

2.2.1. Sistema CCTV

Un sistema de circuito cerrado de televisión (CCTV) se define como la transmisión de señales de video donde se pueden observar imágenes en movimiento en tiempo real que es visualizado de manera particular por cierta cantidad de personas, la difusión de estas imágenes no es abierta ni pública; hoy en día las industrias de tecnología utilizan estos sistemas para el control de operaciones, personas y para dar seguridad al recurso humano y material ante eventos delictivos. (Martí, 2013, pág. 5)

Los sistemas de video vigilancia analógicos e IP fundamentalmente están compuestos por 4 componentes: Captura de imagen a través una cámara, transmisión de la imagen a través de señales de video, almacenamiento de datos y gestión de la señal de video, como se muestra en la figura 1. (Martí, 2013, pág. 6)

2.2.1.1. Cámara IP

Una cámara de video IP es el dispositivo que realiza la captación y transmisión de las señales de video a través de una red de datos hacia ciertos dispositivos de la red, los cuales pueden ser un grabador NVR, computador o un teléfono inteligente, mediante una dirección IP, un servidor web y protocolos de transmisión. La información recibida puede ser administrada por usuarios con permisos especiales, los cuales pueden gestionar el almacenamiento de video de forma local y remota en tiempo real. (Martí, 2013, pág. 12)

Las cámaras IP son capaces de comprimir el video y realizar el envío hacia el grabador, teniendo como funciones adicionales el envío de correos electrónicos con imágenes, generación de eventos ante la detección de movimiento en las imágenes, reducir el área de visualización para la detección de movimiento en una parte de la imagen, ocultar parte de la imagen visualizada para colocar un logo o restringir el área de visualización, activación de alarmas mediante sensores conectados a esta, control remoto para movimiento y apuntar a una zona, programación de secuencias de movimientos, actualización de las funciones por software. (Peláez, 2013, pág. 21)

2.2.1.2. Codificación del sistema CCTV con cámaras IP y NVR

En CCTV los códec de compresión más comunes son:

- MJPEG: Secuencia de imágenes completas.
- MPEG-4: Secuencia de imágenes completas y variaciones de estas.
- H.264: Es la evolución del estándar MPEG-4 con varias mejoras

El códec MJPEG, envía una sucesión de imágenes completas a gran velocidad, lo que genera la impresión continua de movimiento. El principio del algoritmo MJPEG, el cual consiste en transmitir una serie de secuencias de imágenes del dispositivo, en este caso la cámara, hacia el equipo que reproduce las imágenes, utilizando un proceso inteligente para la captura y envío de imágenes, aparece el algoritmo MPEG-4 que realiza la captura de la imagen completa para luego enviarla, luego sólo transmite los cambios de imágenes cuando no se realiza movimiento, para después enviar nuevamente una imagen completa, siendo el grabador NVR o computadora quien ordena la imagen recibida en una secuencia correcta. La evolución del códec MPEG-4 es el códec H.264, el cual hace uso del mismo principio, pero con mejoras en su algoritmo, lo cual permite

utilizar un ancho de banda menor para la transmisión de imágenes y ocupa un menor espacio de almacenamiento. (Arapa, 2013, pág. 47-50)

2.2.1.3. Transmisión

Para transmitir las señales de video e interconectar todos los dispositivos involucrados en un sistema de CCTV, debe existir una conexión de red de área local (LAN), permitiendo visualizar y administrar las señales de video a nivel local. Los medios de transmisión para una red IP pueden ser cables de par trenzado UTP, el cual tiene como desventaja la distancia, ya que sólo puede llegar hasta los 100 metros, hoy en día se puede superar esta distancia con equipos adicionales que amplifican la señal. Otra opción es el cable de fibra óptica, que tiene capacidad de transmitir a mayores distancias el cual está comprendido entre 10 y 70 km, lo cual puede variar teniendo en cuenta el tipo de fibra a utilizar, adicionalmente esta solución requiere de dispositivos de conversión de fibra óptica a cobre para la conexión directa a la cámara. Otro medio de transmisión son los enlaces inalámbricos los cuales permiten la conexión de los dispositivos mediante ondas electromagnéticas, en situaciones en lo que implementar una red cableada resulta dificultoso y costoso. Implementar una red de enlaces inalámbricos involucra un estudio geográfico para determinar líneas de vistas óptimas, y si estas no son favorables puede implementarse una red con repetidoras para un buen funcionamiento. (Martí, 2013, pág. 19)

2.2.1.4. Ancho de banda

Para realizar la instalación de un sistema CCTV es importante tener en cuenta el ancho de banda que utilizará para transmitir las señales de video, para lograr la fluidez y la vista de las cámaras en tiempo real, para evitar una saturación de red, teniendo en cuenta ciertos parámetros que se deben configurar en las cámaras y obtener resultados favorables. Los parámetros por considerar son la resolución expresada en pixeles, los frames o cuadros por segundo y el método de compresión a utilizar. Se determina la siguiente relación para el cálculo. (Arapa, 2013, pág. 85)

Donde:

Bw: Ancho de banda

fps: Cuadros por segundo.

bytes: Resolución, calidad de la imagen y algoritmo de compresión que se

utilice, esto resultará el tamaño de un cuadro de video promedio.

bps: bits por segundo.

%Actividad: Variación de la actividad en un a escena.

#Cámaras: Cámaras a instalar en el sistema CCTV.

2.2.1.5. Almacenamiento

El almacenamiento en un sistema de CCTV es importante porque permite la gestión de videos grabados en tiempo real, tomando en cuenta los siguientes parámetros: Número de cámaras instaladas, resolución de imágenes, cuadros por segundo, método de grabación y el porcentaje de actividad el cual puede variar de acuerdo a la forma de captar las imágenes (por movimiento, eventos y otros), si este es continuo el valor por defecto es 100%. (Arapa, 2013, pág. 85)

De acuerdo a lo mencionado definimos la siguiente ecuación:

Almacenamiento = fps x bytes x %Acividad x 8bps x #cam x T Ecuación (2)

Donde:

fps: Cuadros por segundo.

bytes: Resolución, calidad de la imagen y algoritmo de compresión que se utilice, esto resultará el tamaño de un cuadro de video promedio.

bps: bits por segundo.

%Actividad: Variación de la actividad en un a escena.

#Cam: Cámaras a instalar en el sistema CCTV.

T: Tiempo de grabación

2.2.2. Enlace inalámbrico

Se define como un sistema de comunicación inalámbrico entre dos puntos alejados sobre la superficie, para la transmisión de información como datos y voz con una calidad y velocidad superior a los enlaces satelitales. Está conformado por un lado transmisor que envía información hacia otro punto receptor, a través de antenas, estableciendo una comunicación tipo dúplex, la cual consiste en el envío de dos portadoras moduladas, una para transmisión y otra para la recepción. Los enlaces se deben realizar entre dos puntos que tengan línea de vista topográfica, el cual debe tener un recorrido con alturas libres y adecuadas para asegurar la propagación de señales. (Poma, 2015, pág. 3)

Se muestra en la figura 2 un sistema de enlace inalámbrico.

Figura 2. Enlaces inalámbricos. (Monteros, 2015, pág. 30)

2.2.3. Tipo de enlaces inalámbricos

2.2.3.1. Enlace punto a punto

Los enlaces punto a punto permiten la conexión entre dos puntos de difícil acceso y con línea de vista para transportar datos, video y voz con una velocidad y calidad mejor a las conexiones vía satelitales, como se muestra en la figura 3. (Yacelga, 2017, pág. 41)

Figura 3. Enlaces punto a punto (Yacelga, 2017, pág. 43)

2.2.3.2. Enlace multipunto punto

Los enlaces multipunto punto, mostrado en la figura 4, permiten abarcar una mayor área de cobertura con la capacidad suficiente para interconectar diversos puntos remotos hacia un punto principal para la implementación de redes de vídeo, datos y voz, generalmente son utilizados para compartir bases de datos, internet, etc. entre sucursales. (Yacelga, 2017, pág. 44)

Figura 4: Enlaces punto multipunto (Yacelga, 2017, pág. 43)

2.2.4. Cálculo del radio enlace

Para realizar el diseño de un radioenlace se debe tener en cuenta los siguientes parámetros:

- Distancia del enlace.
- Pérdidas en el espacio libre.
- Pérdidas en las líneas de transmisión.
- Pérdida de los conectores.
- Primera zona de fresnel.
- Potencia de recepción.
- Margen de desvanecimiento.
- Voltaje recibido.
- Ángulo de elevación.
- Ángulo azimutal.
- Potencia isotrópicamente radiada equivalente.
- Análisis de ruido.
- Potencia de ruido.
- Voltaje de ruido.
- Relación señal ruido.
- Sensibilidad del receptor.

Se visualiza el esquema de un radio enlace punto a punto en la figura 5.

Figura 5: Radio enlace (Poma, 2015, pág. 5)

2.2.4.1. Distancia del enlace

La distancia que existe entre el transmisor y receptor se determina mediante la siguiente ecuación (3). (Poma, 2015, pág. 31)

$$d(km) = \sqrt{\left[111.32 * (LatPuntoA - LatPuntoB)\right]^2 + \left[111.32 * (LongPuntoA - LongPuntoB)\right]^2 + \left(\frac{AltPuntoA - AltPuntoB}{1000}\right)^2}$$

Donde:

LatPuntoA: Latitud en punto A.

LatPuntoB: Latitud en punto B.

LongPuntoA: Longitud en punto A.

LongPuntoB: Longitud en punto B.

AltPuntoA: Altitud en punto A.

AltPuntoB: Altitud en punto B.

2.2.4.2. Pérdidas en el espacio libre

Es la atenuación que se origina en la onda electromagnética al propagarse en un vacío directamente sin reflexión y absorción de obstáculos cercanos. Esta pérdida origina que la señal de radio transmitida pierda potencia debido a su expansión en forma esférica sobre la superficie. Expresada por la siguiente ecuación. (Tomasi, 2003, pág. 367).

$$L_{bf} = 92.44 + 20 \log f(Ghz) + 20 \log d(km)$$
 Ecuación (4)

Donde:

d: Distancia

f: Frecuencia

Si d se mide en metro, f en hertz y el enlace utiliza antenas isotrópicas, la relación es:

$$FSL(dB) = 20log_{10}(d) + 20log_{10}(f) - 187.5$$
 Ecuación (5)

2.2.4.3. Pérdida en líneas de transmisión.

Estas pérdidas se dan por la atenuación que generan los cables conectados al transmisor y receptor con la antena, de acuerdo al tipo de cable y la frecuencia que operaran. (Tomasi, 2003, pág. 325)

En la tabla 1 y 2 se muestra valores expresados en dB.

Cable Type	70-85 MHz	148-174 MHz	400-520 MHz	806-960 MHz	2.4-2.45 GHz	5.8-5.85 GHz
RG178B/U	12.4 dB	17.0 dB	30.4 dB	40.8 dB	-	-
RG179	9.2 dB	11.5 dB	17.0 dB	22.3 dB	-	-
RG174/U	7.8 dB	10.8 dB	19.2 dB	26.9 dB	-	-
RG58C/U	4.6 dB	7.1 dB	13.5 dB	18.2 dB	-	-
CELLFOAM	4.1 dB	5.6 dB	9.8 dB	13.2 dB	-	-
CELLFOIL	2.8 dB	4.2 dB	6.9 dB	9.0 dB	-	-
RG142B/U	3.3 dB	4.9 dB	8.9 dB	12.0 dB	-	-
RG223/U	4.2 dB	5.7 dB	10.0 dB	13.7 dB	-	-
RG59B/U	3.1 dB	4.9 dB	9.0 dB	13.2 dB	-	-
RG62A/U	2.3 dB	3.4 dB	5.9 dB	8.0 dB	-	-
RG11/U	1.8 dB	2.5 dB	4.8 dB	6.6 dB	-	-
RG213/U	2.0 dB	2.6 dB	5.0 dB	7.4 dB	-	-
RG214/U	1.9 dB	2.6 dB	5.0 dB	7.4 dB	-	-
10D-FB Type	0.9 dB	1.2 dB	2.4 dB	3.1 dB	-	-
RG8 Type	1.2 dB	1.7 dB	3.1 dB	4.5 dB	7.0 dB	10.6 dB
1/4" Superflex	1.3 dB	2.2 dB	4.2 dB	5.6 dB	9.9 dB	15.8 dB

Tabla 1 Atenuación nominal cada 30.5 metros

⁽Rfelektronic, 2016, pág. 1)
Cable Type	144 MHz	220 MHz	450 MHz	915 MHz	1.2 GHz	2.4 GHz	5.8 GHz
RG-58	6.2	7.4	10.6	16.5	21.1	32.2	51.6
	(20.3)	(24.3)	(34.8)	(54.1)	(69.2)	(105.6)	(169.2)
RG-8X	4.7	6.0	8.6	12.8	15.9	23.1	40.9
	(15.4)	(19.7)	(28.2)	(42.0)	(52.8)	(75.8)	(134.2)
LMR-240	3.0	3.7	5.3	7.6	9.2	12.9	20.4
	(9.8)	(12.1)	(17.4)	(24.9)	(30.2)	(42.3)	(66.9)
RG-213/214	2.8	3.5	5.2	8.0	10.1	15.2	28.6
	(9.2)	(11.5)	(17.1)	(26.2)	(33.1)	(49.9)	(93.8)
9913	1.6	1.9	2.8	4.2	5.2	7.7	13.8
	(5.2)	(6.2)	(9.2)	(13.8)	(17.1)	(25.3)	(45.3)
LMR-400	1.5	1.8	2.7	3.9	4.8	6.8	10.8
	(4.9)	(5.9)	(8.9)	(12.8)	(15.7)	(22.3)	(35.4)
3/8" LDF	1.3	1.6	2.3	3.4	4.2	5.9	8.1
	(4.3)	(5.2)	(7.5)	(11.2)	(13.8)	(19.4)	(26.6)
LMR-600	0.96	1.2	1.7	2.5	3.1	4.4	7.3
	(3.1)	(3.9)	(5.6)	(8.2)	(10.2)	(14.4)	(23.9)
1/2" LDF	0.85	1,1	1.5	2.2	2.7	3.9	6.6
	(2.8)	(3.6)	(4.9)	(7.2)	(8.9)	(12.8)	(21.6)
7/8" LDF	0.46 (1.5)	0.56 (2.1)	0.83 (2.7)	1.2 (3.9)	1.5 (4.9)	2.3 (7.5)	3.8 (12.5)
1 1/4" LDF	0.34 (1.1)	0.42 (1.4)	0.62 (2.0)	0.91 (3.0)	1.1 (3.6)	1.7 (5.6)	2.8 (9.2)
1 5/8" LDF	0.28 (0.92)	0.35 (1.1)	0.52 (1.7)	0.77 (2.5)	0.96 (3.1)	1.4 (4.6)	2.5 (8.2)

Tabla 2 Atenuación de cables coaxiales en 100 metros.

(Rfelektronic, 2016, pág. 2)

2.2.4.4. Pérdida en los conectores

Se toma un valor aproximado de 0.2 dB por cada conector bien realizado en el cableado, un conector con deficiencias de instalación puede generar pérdidas mayores, asimismo se considera valores de 0.3 a 0.5 dB si la distancia del cableado es mayor. (Buettrich, 2007, pág. 7)

2.2.4.5. Primera zona de fresnel

Partiendo de principio de Huygens, la primera zona de fresnel es un volumen en forma de elipse que une el transmisor y receptor denominada línea de vista, esta primera zona define que el trayecto debe estar despejado para asegurar que la potencia que llega a la antena de recepción sea la máxima, se muestra un gráfico en la figura 6. (Poma, 2015, pág. 7)

Figura 6: Zona de fresnel (Poma, 2015, pág. 8)

Lo recomendable cuando se diseña un radioenlace es que la primera zona de fresnel no tenga obstáculos, en la práctica se aplica el despeje del 60% del radio de la primera zona de fresnel para que el enlace sea óptimo. De acuerdo a lo descrito se define la siguiente ecuación. (Poma, 2015, pág.9)

$$F1 = 17.32x \sqrt{\left(\frac{d1xd2}{dxf}\right)} \qquad \text{Ecuación (6)}$$

Donde:

d1: Distancia al obstáculo desde el transmisor (Km)

d2: Distancia al obstáculo desde el receptor (Km)

d: Distancia entre transmisor y receptor (Km)

f: Frecuencia (Ghz)

Si el obstáculo está situado en el medio (d1=d2), la ecuación se simplifica a:

$$F1 = 17.32x\sqrt{(d/4f)}$$
 Ecuación (7)

Tomando el 60% tenemos:

 $0.6F1 = 5.2x\sqrt{(d/f)}$ Ecuación (8)

Distancia [km]	atancia [km] 915 MHz 2,4 0		5,8 GHz	Altura de la
				curvatura terrestre
1	9	6	4	0
10	29	18	11	4,2
100	90	56	36	200

Tabla 1: Radio (m) para la primera zona de fresnel

(Buettirch, 2007, pág. 11)

La altura de la curvatura terrestre es la elevación creada en la curvatura de la tierra entre 2 puntos, se muestra los valores en la tabla 3.

2.2.4.6. Potencia de transmisión

Es la potencia entregada por el equipo de radio enlace en el transmisor, dependiendo del modelo y marca que se elija, el valor de la potencia se encuentra en las especificaciones técnicas del equipo, siendo variable de acuerdo con las condiciones en que funcione. (Poma, 2015, pág. 7)

2.2.4.7. Ganancia de la antena

La ganancia de la antena en el lado transmisor y receptor depende del modelo y marca que se elija, el valor se encuentra en las especificaciones técnicas del equipo, siendo variable de acuerdo a las condiciones en que funcione. (Poma, 2015, pág. 7)

2.2.4.8. Potencia de recepción

La potencia de recepción es la sumatoria de las ganancia y atenuaciones que se presentan en todo el trayecto del radio enlace y está definido por la siguiente ecuación. (Poma, 2015, pág.32)

 $P_{Rx}(dBm) = P_{TX}(dBm) + G_{TX}(dBi) + G_{RX}(dBi) - L_{TX}(dB) - L_{RX}(dB) - L_D(dB) - L_{bf}(dB)$ Ecuación (9)

Donde:

P_{TX}: Potencia de transmisión.

G_{TX}: Ganancia de la antena de transmisión.

G_{RX}: Ganancia de la antena de recepción.

L_{TX} y L_{RX}: Pérdidas en las líneas de transmisión.

L_D: Pérdida en los conectores.

L_{bf}: Pérdida en el espacio libre.

2.2.4.9. Margen de desvanecimiento

El margen de desvanecimiento es un valor ficticio a tomar en cuenta en la ganancia del sistema para tener en cuenta las características en que se propaga la onda electromagnética en condiciones no ideales, tomando como ejemplo la multitrayectoria y la sensibilidad del terreno, características que son originadas por condiciones atmosféricas adversas que alteran las pérdidas en el espacio libre lo que es perjudicial para la eficiencia del sistema. (Tomasi, 2003, pág. 784)

Se define por la siguiente ecuación:

$$F_m = 30 \log d + 10 \log(6ABf) - 10 \log(1 - R) - 70$$
 Ecuación (10)

Donde:

FM: Margen de desvanecimiento [dB]

D: Distancia entre transmisor y receptor [km]

f: Frecuencia de la portadora [GHz]

R: Confiabilidad en tanto por uno (es decir, 99.99% =0.9999 de confiabilidad)

A: Factor de rugosidad

4: Sobre agua o sobre un terreno muy liso

1: Sobre un terreno promedio

0.25: Sobre un terreno muy áspero y montañoso

B: Factor para convertir la peor probabilidad mensual en una probabilidad anual

1: Para pasar una disponibilidad anual a la peor base mensual

0.5: Para áreas calientes y húmedas

0.25: Para áreas continentales promedio

0.125: Para áreas muy secas o montañosas

2.2.4.10. Voltaje recibido

Nivel de tensión que recibe la antena receptora, relacionado con la impedancia de la antena receptora, se determina por la siguiente ecuación. (Poma, 2015, pág. 33)

$$V_{RX} = \sqrt{P_{RX(W)} * R}$$
, donde $R = 50$ ohm Ecuación (11)

Donde:

P_{RX}: Potencia de recepción [dB]

R: Impedancia de la antena [ohm]

2.2.4.11. Elevación

La elevación es la orientación angular que se tiene que elevar la antena desde el horizonte para localizar el otro extremo del radio, se calcula a partir de los parámetros de altura en los puntos del transmisor y receptor, así como las alturas definidas que tendrán las torres de telecomunicaciones, para poder obtener un enlace con línea de vista óptima y correcto. (Poma, 2015, pág. 34)

Se determina por la siguiente ecuación.

$$lpha = sen^{-1}\left(rac{\Delta H}{d}
ight)$$
 Ecuación (12)
 $\Delta H = H_1 - H_2$

$$H_1 = h_1 + h_{a1}$$
$$H_2 = h_2 + h_{a2}$$

Donde:

h1: Altura sobre el nivel de mar del punto 1.

h₂: Altura sobre el nivel del mar en punto 2.

 H_{a1} : Altura de torre 1.

H_{a2}: Altura de torre 2.

2.2.4.12. Azimut

El azimut es la orientación angular horizontal en la que se debe realizar el giro del eje de la antena hasta encontrar el otro lado del radio enlace, se calcula a partir de los parámetros de longitud y latitud en los puntos del transmisor y receptor, para poder obtener un enlace con línea de vista óptima y correcto. (Poma, 2015, pág.34)

Se determina por la siguiente ecuación.

$$\begin{aligned} Azimut_{1} &= \alpha_{0} - \alpha_{s} \qquad Azimut_{2} = \alpha_{0} + \alpha_{s} + 180 \qquad \text{Ecuación (13)} \\ \alpha_{0} &= tag^{-1} \left[\frac{cos\left(\frac{Latitud2 + Latitud1}{2}\right) * tag\left(\frac{Longitud2 - Longitud1}{2}\right)}{sen\left(\frac{Latitud2 - Latitud1}{2}\right)} \right] \\ \alpha_{s} &= tag^{-1} \left[\frac{sen\left(\frac{Latitud2 + Latitud1}{2}\right) * tag\left(\frac{Longitud2 - Longitud1}{2}\right)}{cos\left(\frac{Latitud2 - Latitud1}{2}\right)} \right] \end{aligned}$$

2.2.4.13. Potencia irradiada isotrópica efectiva (PIRE)

Potencia que se transmite en el espacio abierto en un área determinada, el valor de este parámetro depende de la ubicación en el que se realiza el radioenlace, se determina por las especificaciones técnicas de la antena transmisora. (Tomasi, 2003, pág. 378)

$$PIRE(dBm) = P_{TX} + G_{TX} - L_C$$
 Ecuación (14)

Donde:

P_{TX}: Potencia de transmisión.

G_{TX}: Ganancia de antena transmisora.

L_c: Pérdida en conectores.

2.2.4.14. Potencia de ruido

El ruido es la señal aleatoria que se genera superpuesta a la señal del radioenlace, pueden ser externos e internos. Los externos son captados por la antena y los internos son producidos por el mismo sistema. (Poma, 2015, pág. 36)

Se determina por la siguiente ecuación.

$$N(dBm) = -174 + 10 logAB$$
 Ecuación (15)

Donde:

AB: Canal de radio enlace.

2.2.4.15. Voltaje de ruido

Se tiene una impedancia proveniente de una resistencia, la cual se acopla a la fuente que genera ruido, se puede hablar de un voltaje efectivo, sin embargo, cuando la resistencia es considerada única y no hay acople de impedancias, el voltaje de ruido disponible se deduce por la siguiente ecuación. (Tomasi, 2003, pág. 37)

$$V_N = \sqrt{2(R_L KTAB)}$$
 Ecuación (16)

Donde:

AB: Canal de radio enlace.

K: Constante de Boltzman (1.381x10⁻²³ J/^oK)

T: Temperatura ambiente en grados kelvin.

R_L: Impedancia de la antena.

2.2.4.16. Relación señal ruido

La relación señal ruido es el cociente entre voltaje recibido y el voltaje de ruido, se determina por la siguiente ecuación. (Poma, 2015, pág. 36)

$$\frac{N}{S}(dB) = 20\log \frac{V_{RX}}{V_N}$$
 Ecuación (17)

Donde:

V_{RX}: Voltaje recibido.

V_N: Voltaje de ruido.

2.2.4.17. Sensibilidad del receptor

Este parámetro determina el alcance del radio enlace, siendo el valor mínimo requerido para el correcto funcionamiento del radio enlace, haciendo uso de la relación señal ruido y la potencia de ruido para determinar la calidad del enlace. (Tomasi, 2003, pág. 785)

$$C_{min} = \frac{N}{S}(dB) + N(dBm)$$
 Ecuación (18)

Donde:

N/S: Relación señal ruido.

N: Potencia de ruido

2.2.4.18. Conversión de Watt a dBm

En los cálculos de enlace, existen 3 tipos de unidades logarítmicas:

- dB (decibel), se utilizan para la medida de pérdida en conectores y líneas de transmisión o la ganancia de antenas, su valor es positivo cuando es referido a la ganancia de antenas y cuando es referido a las atenuaciones su valor es negativo. Se define por la siguiente relación que corresponde al logaritmo decimal del cociente de 2 potencias. (Buettrich, 2007, pág. 14)

$$dB = 10xLog(\frac{P2}{P1})$$
 Ecuación (19)

 dBm (dB referido a un mW), se utilizan para la medición de la potencia absoluta, cuando su valor es superior a 1mw es positivo. Se determina por la siguiente relación. (Buettrich, 2007, pág. 14)

$$dBm = 10xLog(P/0.001w) = 10xLog(P/1mW)$$
 Ecuación (20)

 - dBi (decibel respecto a la isotrópica), se utiliza para expresar la ganancia de las antenas en relación con antenas isotrópicas, por consiguiente, la antena irradia la señal con una misma intensidad en todas sus direcciones. (Buettrich, 2007, pág. 15)

 $dBi = dB \ relativo \ a \ una \ antena \ isotrópica$ Ecuación (21)

2.2.5. Energía solar fotovoltaica

Hoy en día el sol se ha convertido en una de las fuentes de energía, las cual es ilimitada y gratuita, por lo que se encuentra dentro de las denominadas energías renovables, ofreciendo un enorme potencial energético para la humanidad, potencial ilimitado que puede utilizarse para diferentes actividades. La tierra recibe del sol en 15 minutos más energía de lo que es capaz de consumir el humano en un año, recibiendo un equivalente de 1.7x10¹⁴kw, lo que es similar a 170 millones de reactores nucleares de 1000MW, aclarando que no se aprovecha al 100%, el potencial es superior. (Portabella, 2010, pág. 14)

La energía solar fotovoltaica hoy en día es una de las energías renovables de mayor importancia para la generación de fluido eléctrico en zonas de difícil acceso sin energía eléctrica. Los sistemas de energía fotovoltaica han ido disminuyendo en sus costos por lo que se han vuelto una solución más accesible para muchas zonas que no cuentan con fluido eléctrico. (Zuñiga y Cruz, 2013, pág. 161)

Figura 7: El sol fuente de energía (Portabella, 2010, pág. 14)

2.2.6. Características y componentes de los sistemas de energía fotovoltaica

Los sistemas de energía fotovoltaica se conforman básicamente por paneles de módulos fotovoltaicos, unidad de control, inversor y baterías, el cual es de importancia para el tiempo de operación que se requiere disponer. En la figura 8 se observa un esquema de un sistema fotovoltaico básico, siendo los parámetros del subsistema los siguientes:

- Potencia de salida: Esta potencia se determina por la potencia que brindan los paneles.
- Autonomía: Cantidad de tiempo en el que un sistema puede operar cumpliendo con las necesidades de las cargas conectadas,

Entre los sistemas fotovoltaicos, destacaremos el autónomo, el cual realiza su funcionamiento fuera de la red eléctrica, esto le da mayor ventaja sobre otros sistemas fotovoltaicos teniendo diversas aplicaciones. (Zuñiga y Cruz, 2013, pág. 161)

Figura 8: El sistema solar fotovoltaico autónomo (Moreno, 2016, pág. 31)

2.2.7. Sistema de generación: Módulos fotovoltaicos

El sistema de generación está conformado por dos o más módulos fotovoltaicos, los cuales generan corriente continua DC de acuerdo al nivel de irradiación que recibe, estos módulos se componen de células fotovoltaicas conectadas entre sí eléctricamente. En la figura 9 se muestra dos tipos de módulos fotovoltaicos. (López, 2015, pág. 15)

Los parámetros a considerar en un módulo fotovoltaico son la potencia eléctrica, tensión de trabajo e intensidad de corriente. En la figura 10 se observa la curva que representa la variación de la intensidad de corriente frente al voltaje del módulo. (Zuñiga y Cruz, 2013, pág. 162)

Figura 10: Curva corriente vs voltaje de un módulo fotovoltaico (Zúñiga y Cruz, 2013, pág. 162)

La potencia del módulo depende de la irradiación solar (1000 Wm⁻²), permitiendo el cálculo de energía que proporciona un panel al día, utilizando el número de horas sol pico (hsp). La potencia va en disminución de forma directamente proporcional con la irradiación solar, como se muestra en la figura 11. (Zuñiga y Cruz, 2013, pág. 162)

Los paneles fotovoltaicos necesitan una orientación óptima, la cual se daría si estuvieran perpendiculares a la línea imaginaria que se da entre el sol y el sistema fotovoltaico, es lo que ocurre con sistemas que poseen seguidor de dos ejes, la cual sigue el movimiento del sol durante el día, caso contrario con los sistemas fijos que deben tener una orientación fija para aprovechar la energía solar. (Zuñiga y Cruz, 2013, pág. 163)

Figura 11: Variación curva corriente vs voltaje en función de la irradiancia (Zúñiga y Cruz, 2013, pág. 162)

Para la instalación de los módulos fotovoltaicos, se debe tener en cuenta la elevación " β " y el azimut " α ", siendo lo ideal que $\alpha = 0^{\circ}$, en caso de que se ubique en el hemisferio sur se apunta hacia el norte para que se capte la radiación solar al máximo durante el día. La elevación determina la inclinación del panel, teniendo en cuenta que la altura del sol varía de acuerdo a las estaciones, en algunos casos este ángulo se coloca a 15°, para poder captar la radiación en el invierno, cuando disminuye la insolación. El ángulo de inclinación no debe ser menor a 10°, para poder auto limpiar el módulo. (Zuñiga y Cruz, 2013, pág. 163)

El módulo fotovoltaico está compuesto por (ver figura 12):

- Cubierta exterior transparente, hecha de vidrio templado.
- Encapsulante, realizado de vinilo de acetato etileno (EVA), cumple la función de recubrir dentro del módulo las células fotovoltaicas.

- Cubierta posterior, hecha de fluoruro de polivinilo (PVF), le da resistencia de la radiación ultravioleta.
- Células fotovoltaicas.
- Caja de conexiones.
- Marco estructural hecho de aluminio.

2.2.8. Sistema de regulación: Unidad de control

Esta etapa es necesaria para alargar la vida útil del banco de baterías, se encarga de evitar que las baterías se sobrecarguen, sensando la tensión de las baterías, cuando esta tensión sea suficiente, suspenderá la carga de corriente, indispensable para baterías selladas. La unidad de control abre el circuito cuando las baterías llegan a su carga óptima sin ocasionar daños en los módulos, cuando las baterías asumen el exceso de carga y la tensión disminuye la unidad reconecta el sistema. (Zuñiga y Cruz, 2013, pág. 165)

La unidad de control generalmente funciona por control de voltaje, relacionado con la carga de las baterías, se pueden diferenciar dos métodos: (Moreno, 2016, pág. 38)

 Serie: La batería se carga al 100%, poniendo en circuito abierto el módulo fotovoltaico. Paralelo: La corriente es derivada a través de un disipador, el cual es instalado en paralelo al módulo fotovoltaico y las baterías, se utilizan en sistemas de baja potencia.

La unidad de control debe tener la capacidad de soportar una sobrecarga de corriente del 25% de la capacidad nominal, lo cual permite a la unidad de control soportar cambios bruscos de la radiación solar, también evita el flujo de corriente que se da en la noche inversamente, la cual es una corriente mínima que circula de retorno al módulo, ocasionando la descarga de las baterías. (Zuñiga y Cruz, 2013, pág. 166)

En la figura 13 se muestra un tipo de controlador de carga aplicado en sistemas fotovoltaicos aislados.

Figura 13: Unidad de control. (Moreno, 2016, pág. 38)

2.2.9.Inversor

El inversor se encarga de la transformación de la intensidad de corriente continua generada por los módulos fotovoltaicos, en intensidad de corriente alterna, para que esta sea utilizada en alimentación de las cargas de corriente alterna. Cumple la función de inversor DC/AC, regula el voltaje de salida y modula la onda alterna de salida, por lo que se tiene que tener en cuenta la tensión de entrada que depende de la tensión que entrega el módulo fotovoltaico, la potencia que suministra, voltaje de salida y frecuencia de la onda. En la figura 14 se muestra un tipo de inversor de onda senoidal. (Moreno, 2016, pág. 44)

La eficiencia de un inversor depende de la intensidad de corriente que entrega con respecto a la intensidad de corriente entregada por las baterías. De acuerdo al tipo de onda de voltaje de salida, los inversores pueden ser:

- Onda cuadrada: Es de baja potencia, empleado en cargas pequeñas resistivas o inductivas.
- Onda modificada o quasi-senoidal: Utilizado para electrodomésticos más comunes en electrificaciones rurales.
- Onda senoidal: Utilizado en cualquier carga de consumo, puede conectarse a la red debido a la similitud de la señal de salida con la de red eléctrica.

Los tipos de carga conectados al inversor influyen directamente en su rendimiento, existiendo una relación entre el factor de potencia y el rendimiento, como se muestra en la figura 15, variando también el rango de operación de acuerdo a la potencia generada, siendo menor para las potencias menores y mayor si existe aumento de potencia. (Moreno, 2016, pág. 45)

Figura 14: Inversor DC/AC (Moreno, 2016, pág. 45)

Figura 15: Representación típica del rendimiento de un inversor en función del factor de potencia, (Moreno, 2016, pág. 46)

2.2.10. Sistema de acumulación: Baterías

El sistema de acumulación está conformado por las baterías, las cuales son utilizadas para el almacenamiento de energía eléctrica producida por los módulos fotovoltaicos, con el objetivo de utilizar esta energía en horarios nocturnos o en los momentos en que la luz del sol es baja o nula, asimismo también pueden estabilizar la tensión y la intensidad de corriente de suministro. (López, 2015, pág. 23)

La cantidad de carga en Ampere horas, es la condición de la batería, la cual es capaz de suministrar energía en régimen de descarga, conservando los cambios de su fuerza electromotriz dentro de sus límites. La capacidad de la batería es expresada en Ah, siendo su capacidad nominal la cantidad máxima de carga que debe ser consumida de las baterías. De acuerdo al tipo de baterías el fabricante especifica la capacidad nominal y diferentes intensidades de corriente en régimen de descarga para cada valor de tensión en determinados tiempos de descarga, contemplando un tiempo mínimo en la descarga y así evitar que las baterías sean afectadas por intensidades de corriente elevadas. (Zuñiga y Cruz, 2013, pág. 163)

En sistemas fotovoltaicos, las baterías proporcionan energía en un tiempo largo, descargándose a bajos niveles, siendo en la práctica la instalación de capacidad

suficiente para su descarga máxima al 50% de la capacidad nominal, para lo cual debe realizarse un dimensionamiento del panel con la capacidad de cargarlas al 100%, así como aumentar las reservas para los momentos en que la luz del sol no es óptima, por lo que se debe obtener un cálculo adecuado para balancear óptimamente la capacidad instalada. La eficiencia de las baterías es de acuerdo al tipo, temperatura de trabajo, tiempo, construcción y condición de descarga. La descarga de una batería con mayor corriente en poco tiempo tiene una capacidad menor que una batería descargada con menor corriente en un lapso prolongado. La eficiencia es la diferencia entre la energía entregada por la batería en modo de carga y la que se utiliza (descarga), estas eficiencias en baterías de plomo normales alcanzan el 70 y 80%, las de alta calidad, como por ejemplo el tipo AGM, pueden alcanzar una eficiencia de 95%. (Zuñiga y Cruz, 2013, páq. 164)

En la figura 16 se muestra la implementación de un banco de baterías tipo AGM, conectado a un sistema fotovoltaico.

Figura 16: Banco de baterías. (López, 2015, pág. 26)

2.2.11. Dimensionamiento de un sistema fotovoltaico

2.2.11.1. Consumo energético

Consiste en verificar todas las cargas que serán conectadas al sistema fotovoltaico, este es el consumo energético $E_T(w-h)$, la cual es la suma de las cargas conectadas al sistema multiplicadas por las horas en que realizará trabajo. (Galarza, Gordillo y Rivera, 2012, pág. 42)

Se determina por la siguiente ecuación:

$$E_T = P_T * H_d$$
 Ecuación (22)

Donde:

P_T: Potencia de consumo total.

H_d: Horas de trabajo al día.

2.2.11.2. Consumo energético real

Para obtener el consumo energético real, es indispensable tener el factor de pérdida, el cual se calcula mediante la siguiente ecuación. (López, 2015, pág. 60)

$$R = (1 - K_b - K_c - K_v) x \left(1 - \frac{K_a N}{P_d}\right)$$
 Ecuación (23)

Donde:

R: Parámetro de rendimiento global.

K_b: Coeficiente de pérdidas por rendimiento en el acumulador.

0.05: Sistemas con menor descarga intensa.

0.1: Sistemas con mayores descargas.

K_c: Coeficiente de pérdidas en el convertidor.

0.05: Convertidores sinusoidales puros, en condiciones óptimas

0.1: Otras condiciones no óptimas.

 K_v : Coeficiente de pérdidas varias, como el rendimiento de red, efecto joule, etc.; se considera un valor de referencia entre 0.05 y 0.15.

K_a: Coeficiente de auto descarga al día.

0.002: Batería de baja auto descarga (NI-CD).

0.005: Baterías estacionarias de Pb-Ácido.

0.012: Batería de alta descarga.

N: Días en que el sistema deberá funcionar ante una baja irradiación solar

P_d: Porcentaje de descarga de las baterías, no debe exceder el 80%, para obtener una mejor eficiencia.

El consumo energético real se determina por la siguiente ecuación:

 $E_{(w-h)} = \frac{E_T}{R}$ Ecuación (24)

2.2.11.3. Banco de baterías

En la selección del banco de baterías, es indispensable conocer los días en que el sistema funcionará ante la poca irradiación solar (días nublados, noches), se determina por la siguiente ecuación. (López, 2015, pág. 61)

$$C = \frac{ExN}{VxP_d}(A - H)$$
 Ecuación (25)

Donde:

- E: Consumo real energético.
- N: Días de funcionamiento con baja irradiación solar.
- V: Voltaje del sistema.
- P_d: Porcentaje de descarga de las baterías.

2.2.11.4. Número de paneles solares

Para dimensionar la cantidad de paneles solares se debe tener en cuenta información de irradiación solar de las ubicaciones en que se requiere la instalación. De todos los valores obtenidos es recomendable trabajar con el valor más bajo de todo el año, considerando que es la situación más crítica, con que se determina la hora solar pico (HSP), equivalente a 1000 w/m², constante a dividir por la irradiación promedio, como se muestra en la siguiente ecuación. (Gonzáles, Zambrano y Estrada, 2014, pág. 81)

$$HSP = \frac{Irradiación promedio}{1000w/m^2}$$
 Ecuación (26)

El número de paneles se determina por la siguiente ecuación:

Cantidad de paneles =
$$\frac{Ex1.3}{HSPxW_p}$$
 Ecuación (27)

Donde:

E: Consumo real energético.

1.3: Margen de seguridad.

HSP: Hora solar pico.

W_P: Potencia del panel.

Los paneles en paralelo se determinan por la siguiente ecuación:

$$N_p = \frac{I_{GV}}{I_{MOD}}$$
 Ecuación (28)

Donde:

IGV: Corriente total del sistema fotovoltaico.

$$I_{GV} = \frac{E}{V_{BAT} * HSP}$$
 Ecuación (29)

I_{MOD}: Corriente nominal del módulo.

Para determinar los paneles que se colocarán en serie se utiliza la siguiente ecuación:

$$N_s = \frac{V_{BAT}}{V_{MOD}}$$
 Ecuación (30)

Donde:

V_{BAT}: Voltaje de batería.

V_{MOD}: Voltaje del módulo fotovoltaico.

2.2.11.5. Unidad de control

Para realizar el cálculo de la unidad de control debemos tener en cuenta la corriente máxima del arreglo de módulos fotovoltaicos, con la cual obtendremos la corriente nominal del regulador que se requiere para poder controlar el sistema fotovoltaico. (Moreno, 2016, pág. 66). Determinado por la siguiente ecuación:

$$I_{SR}(A) = 1.25 * I_{max}$$
 Ecuación (31)

Donde:

I_{SR}: Corriente para selección de regulador.

I_{Max}: Corriente máxima del arreglo de paneles.

2.2.11.6. Inversor

Para poder seleccionar el inversor, se debe tener en cuenta la potencia de las cargas instaladas en el sistema fotovoltaico, considerando un margen de seguridad del 25%. (Moreno, 2016, pág. 67). Determinado por la siguiente ecuación.

$$P_{INV}(w) = 1.25 * P_{TC}$$
 Ecuación (32)

Donde:

PINV: Potencia requerida para el inversor.

P_{TC}: Potencia total de las cargas.

CAPÍTULO 3

DESARROLLO DE LA SOLUCIÓN

3.1. Condiciones iniciales

Para poder realizar la solución se debe tener en cuenta la teoría antes planteada, así como las coordenadas de las ubicaciones en las que se realizará la instalación del nodo central, primarios y secundarios. En la figura 17 se muestra el refugio de vida silvestre Laquipampa ubicado en la provincia de Ferreñafe.

Figura 17: Refugio de vida silvestre Laquipampa Fuente propia

A continuación, se muestra la siguiente tabla con las coordenadas de los puntos indicados por el cliente con mayor afluencia de riesgos y actividades (central de monitoreo, red primaria y red secundaria), los cuales han sido georreferenciados con GPS tipo GPSmap 62s Garmin y en sistema de coordenadas WGS84 UTM (sistema de coordenadas universal transversal de mercator), de acuerdo a este sistema el refugio de vida silvestre Laquipampa ubicado en Lambayeque se encuentra en la zona 17 hemisferio sur, con los datos de esta tabla se realizarán los cálculos necesarios para el funcionamiento del sistema de monitoreo remoto.

RED	Punto	Este	Norte	Altitud (metros)	Lugar
Central de monitoreo	Ρ0	671754	9300586	898	Sede Laquipampa
Red primaria	P 1	671220	9304372	1681	Huasipampa, La madera
Red primaria	P 2	670887	9299627	1213	Cerro el reloj mirador
Red primaria	P 3	668321	9301492	1845	Chacuapampa
Red primaria	P 4	670303	9298624	1305	Atunrrumi, vista a Puchaca
Red secundaria	P 5	670864	9304772	1823	Huasipampa, Yaguarundi
Red secundaria	P 6	671590	9298653	669	Lajas - cerca del río
Red secundaria	Ρ7	669074	9299313	1556	El faique
Red secundaria	P 8	668080	9302347	2014	San Antonio

Tabla 2: Ubicación de puntos en coordenadas UTM

Fuente propia

3.2. Diagrama de bloques

En la Figura 18, se visualiza el diagrama en bloques del proyecto, en el cual se detallarán las etapas que intervendrán en el proceso y trabajarán enlazadas para el buen funcionamiento de todo el sistema de monitoreo remoto.

3.3. Diagrama pictórico

En la Figura 19 podemos visualizar el diagrama pictórico del sistema, donde identificaremos los diferentes equipos y como se interconectarán en el proceso para su buen funcionamiento. En el cual se visualiza la central de monitoreo, la cual se conecta a la red primaria y secundaria por radioenlaces para transmitir las imágenes captadas por las cámaras IP.

Figura 19: Diagrama pictórico Fuente propia

3.4. Conversión de coordenadas UTM a grados decimales

En la siguiente tabla se visualizan las coordenadas dadas inicialmente en el sistema UTM, con el uso de una calculadora geodésica en línea se han obtenido los valores de latitud y longitud en grados decimales.

Ubicación	Coordenadas UTM		Grados decimales		
	ESTE (X)	NORTE (Y)	Latitud	Longitud	
PO	671754	9300586	-6.322711	-79.4472938943283	
P1	671220	9304372	-6.288503	-79.4522217200910	
P2	670887	9299627	-6.331403	-79.4551041351657	
P3	668321	9301492	-6.314613	-79.4783456342972	
P4	670303	9298624	-6.340485	-79.4603555834482	
P5	670864	9304772	-6.284896	-79.4554497297991	
P6	671590	9298653	-6.340188	-79.4487239769008	
P7	669074	9299313	-6.33429	-79.4714821437417	
P8	668080	9302347	-6.306891	-79.4805463226313	

Tabla 5: Conversión de coordenadas

Fuente propia

3.5. Estudio de radio enlace en la banda de 5.8 GHz

El siguiente estudio de radio enlace tiene por finalidad validar teóricamente enlaces PTP (punto a punto) en la banda no licenciada de 5.8Ghz el cual formará las principales conexiones de una red inalámbrica que transmitirá video y datos que comprende el punto inicial desde la sede central de Laquipampa hasta los puntos indicados por el personal de la reserva de vida silvestre Laquipampa, opcionalmente se puede aprovechar la infraestructura instalada para proveer los mismos servicios a otros puntos que sean de utilidad.

Para el estudio se han realizado cálculos matemáticos, así como el uso de la aplicación Radio Mobile, el cual es un software de propagación que combina mapas de elevación digital y características del radio, para simular el enlace y poder apreciar el performance del sistema.

En el presente estudio se mostrarán imágenes de los perfiles de los enlaces, imágenes satelitales proporcionadas por GOOGLE EARTH entre otros, para poder apreciar de forma clara el enlace.

Figura 20: Herramientas para el estudio de radio enlaces Fuente propia

3.5.1. Distancia del enlace

En la figura 21 se muestra los nodos del sistema de radio enlace, donde se han colocado los enlaces que se realizarán para la transmisión de las señales de video y datos.

Figura 21: Nodos del sistema de radio enlace Fuente: Google Earth

Haciendo el uso de la ecuación (3) y los datos de las tablas 4 y 5, realizamos el cálculo de la distancia de cada enlace.

$$d = \sqrt{[111.32 * (LatPuntoA - LatPuntoB)]^2 + [111.32 * (LongPuntoA - LongPuntoB)]^2 + \left(\frac{AltPuntoA - AltPuntoB}{1000}\right)^2}$$

Distancia enlace P0-P1:

$$[111.32 * (-6.322711 + 6.288503)]^2 = 14.50112721 km$$

 $[111.32 * (-79.4472938943283 + 79.452221720091)]^2 = 0.300924695km$

$$\left(\frac{898 - 1681}{1000}\right)^2 = 0.613089m = 0.000613089km$$

 $d = \sqrt{14.50112721 + 0.300924695 + 0.000613089} = 3.847423163 km$

Distancia enlace P0-P2:

$$[111.32 * (-6.322711 + 6.331403)]^2 = 0.936237065 km$$

$$[111.32 * (-79.4472938943283 - 79.4551041351657)]^{2} = 0.755918813km$$
$$\left(\frac{898 - 1213}{1000}\right)^{2} = 0.099225m = 0.000099225km$$
$$d = \sqrt{0.936237065 + 0.755918813 + 0.000099225} = 1.300867058km$$

Distancia enlace P1-P3:

$$[111.32 * (-6.288503 + 6.314613)]^2 = 8.417540321km$$

$$[111.32 * (-79.452221720091 + 79.4783456342972)]^{2} = 8.457125066km$$
$$\left(\frac{1681 - 1845}{1000}\right)^{2} = 0.026896m = 0.000026896km$$
$$d = \sqrt{8.417540321 + 8.457125066 + 0.000026896} = 4.107881727km$$

Distancia enlace P1-P5:

$$[111.32 * (-6.288503 + 6.284896)]^2 = 0.161227336km$$

$$[111.32 * (-79.452221720091 + 79.4554497297991)]^{2} = 0.129125925km$$
$$\left(\frac{1681 - 1823}{1000}\right)^{2} = 0.020164m = 0.000020164km$$
$$d = \sqrt{0.161227336 + 0.129125925 + 0.000020164} = 0.538863085km$$

Distancia enlace P2-P6:

$$[111.32 * (-6.331403 + 6.340188)]^2 = 0.95637877 km$$

$$[111.32 * (-79.4551041351657 + 79.4487239769008)]^{2} = 0.504440021km$$
$$\left(\frac{1213 - 669}{1000}\right)^{2} = 0.295936m = 0.000295936km$$

 $d = \sqrt{0.95637877 + 0.504440021 + 0.000295936} = 1.208765787 km$

Distancia enlace P2-P4:

$$[111.32 * (-6.331403 + 6.340485)]^2 = 1.022137661km$$

$$[111.32 * (-79.4551041351657 + 79.4603555834482)]^{2} = 0.341747121km$$

$$\left(\frac{1213 - 1305}{1000}\right)^{2} = 0.008464m = 0.000008464km$$

$$d = \sqrt{1.022137661 + 0.341747121 + 0.000008464} = 1.171472911km$$

Distancia enlace P3-P8:

$$[111.32 * (-6.314613 + 6.306891)]^2 = 0.738934578km$$

$$[111.32 * (-79.4783456342972 + 79.4805463226313)]^{2} = 0.060015597km$$
$$\left(\frac{1845 - 2014}{1000}\right)^{2} = 0.028561m = 0.000028561km$$
$$d = \sqrt{0.738934578 + 0.060015597 + 0.000028561} = 0.893856104km$$

Distancia enlace P4-P7:

 $[111.32 * (-6.340485 + 6.33429)]^2 = 0.47558595 km$

 $[111.32 * (-79.4603555834482 + 79.4714821437417)]^2 = 1.534151411km$

$$\left(\frac{1305 - 1556}{1000}\right)^2 = 0.063001m = 0.000063001km$$

 $d = \sqrt{0.47558595 + 1.534151411 + 0.000063001} = 1.417674279 km$

ENLACE	DISTANCIA (Km)
PO-P1	3.85
PO-P2	1.3
P1-P3	4.1
P1-P5	0.53
P2-P6	1.2
P2-P4	1.17
P3-P8	0.89
P4-P7	1.41

Tabla 6: Distancia de enlaces.

Fuente propia.

En la tabla 6 se muestra las distancias expresadas en kilómetros de cada enlace.

3.5.2. Pérdidas en el espacio libre

Haciendo el uso de la ecuación (4) y utilizando la frecuencia de 5.8 GHz, realizamos el cálculo de las pérdidas en espacio libre de cada enlace.

$$L_{bf} = 92.44 + 20 log f(Ghz) + 20 log d(km)$$

Enlace P0-P1:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(3.8474) = 119.4119dB$$

Enlace P0-P2:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(1.3009) = 109.9934dB$$

Enlace P1-P3:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(4.1079) = 119.9809dB$$

Enlace P1-P5:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(0.5389) = 102.3387dB$$

Enlace P2-P6:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(1.2089) = 109.3564dB$$

Enlace P2-P4:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(1.1715) = 109.0834dB$$

Enlace P3-P8:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(0.8939) = 106.7343dB$$

Enlace P4-P7:

$$L_{bf} = 92.44 + 20\log(5.8) + 20\log(1.4177) = 110.7402dB$$

ENLACE	PÉRDIDAS EN EL ESPACIO LIBRE (dB)
PO-P1	119.4
PO-P2	109.9
P1-P3	119.9
P1-P5	102.3
P2-P6	109.3
P2-P4	109.1
P3-P8	106.7
P4-P7	110.7

Tabla 7: Pérdidas en el espacio libre

Fuente propia.

En la tabla 7 se muestra los valores obtenidos de las pérdidas en la señal al viajar por el aire para la conexión entre transmisor y receptor.

3.5.3. Pérdidas en las líneas de transmisión

Pérdidas de conexión entre la antena y radio, en este caso se utilizaron cable superflex de ¼" y cable RG58, cuya atenuación a 5.8Ghz es de 15.8 dB y 51.6dB cada 30.5 metros respectivamente. De acuerdo a estos datos realizamos el cálculo de las pérdidas.

Enlace P0-P1: Distancia de la antena a la radio en P0 es igual a 3 metros y en P1 es 1.5 metros con cable superflex.

$$L_{TXP0} = \frac{3 * 15.8}{30.5} = 1.55 dB$$

$$L_{RXP1} = \frac{1.5 * 15.8}{30.5} = 0.78 dB$$

$$L_{P0-P1} = 1.55dB + 0.78dB = 2.33dB$$

Enlace P0-P2: Distancia de la antena a la radio en P0 es igual a 3 metros y en P2 es 1.5 metros con cable superflex,

$$L_{TXP0} = \frac{3*15.8}{30.5} = 1.55 dB$$

$$L_{RXP2} = \frac{1.5 * 15.8}{30.5} = 0.78 dB$$

$$L_{P0-P2} = 1.55dB + 0.78dB = 2.33dB$$

Enlace P1-P3: Distancia de la antena a la radio en P1 es igual a 1.5 metros y en P3 es 1.5 metros con cable superflex.

$$L_{TXP1} = \frac{1.5 * 15.8}{30.5} = 0.78 dB$$
$$L_{RXP3} = \frac{1.5 * 15.8}{30.5} = 0.78 dB$$

$$L_{P1-P3} = 0.78dB + 0.78dB = 1.56dB$$

Enlace P1-P5: Distancia de la antena a la radio en P1 es igual a 0.5 metros y en P5 es 0.5 metros con cable RG58.

$$L_{TXP1} = \frac{0.5 * 51.6}{30.5} = 0.85 dB$$
$$L_{RXP5} = \frac{0.5 * 51.6}{30.5} = 0.85 dB$$

$$L_{P1-P5} = 0.85dB + 0.85dB = 1.7dB$$

Enlace P2-P6: Distancia de la antena a la radio en P2 es igual a 0.5 metros y en P6 es 0.5 metros con cable RG58.

$$L_{TXP2} = \frac{0.5 * 51.6}{30.5} = 0.85 dB$$

$$L_{RXP6} = \frac{0.5 * 51.6}{30.5} = 0.85 dB$$

$$L_{P2-P6} = 0.85dB + 0.85dB = 1.7dB$$

Enlace P2-P4: Distancia de la antena a la radio en P2 es igual a 1.5 metros y en P4 es 1.5 metros con cable superfelx.

$$L_{TXP2} = \frac{1.5 * 15.8}{30.5} = 0.78dB$$
$$L_{RXP4} = \frac{1.5 * 15.8}{30.5} = 0.78dB$$
$$L_{P2-P4} = 0.78dB + 0.78dB = 1.56dB$$

Enlace P3-P8: Distancia de la antena a la radio en P3 es igual a 0.5 metros y en P8 es 0.5 metros con cable RG58.

$$L_{TXP3} = \frac{0.5 * 51.6}{30.5} = 0.85 dB$$
$$L_{RXP8} = \frac{0.5 * 51.6}{30.5} = 0.85 dB$$

$$L_{P3-P8} = 0.85dB + 0.85dB = 1.7dB$$

Enlace P4-P7: Distancia de la antena a la radio en P4 es igual a 0.5 metros y en P7 es 0.5 metros con cable RG58.

$$L_{TXP4} = \frac{0.5 * 15.8}{30.5} = 0.85 dB$$

$$L_{RXP7} = \frac{0.5 * 15.8}{30.5} = 0.85 dB$$

$$L_{P4-P7} = 0.85dB + 0.85dB = 1.7dB$$

En la tabla 8 se muestra los valores de atenuación dado por el tipo de cable y distancia entre las antenas y radios de cada enlace.

ENLACE	PÉRDIDAS EN LINEAS TRANSMISIÓN (dB)
PO-P1	2.33
PO-P2	2.33
P1-P3	1.56
P1-P5	1.7
P2-P6	1.7

Tabla 8: Pérdidas en las líneas de transmisión por enlace

P2-P4	1.56
P3-P8	1.7
P4-P7	1.7

Fuente propia.

3.5.4. Pérdidas en conectores

En los enlaces P0-P1, P0-P2, P1-P3 y P2-P4 se utilizaron conectores tipo N, cuyo valor de pérdida de acuerdo a fábrica es de 0.2dB.

En los enlaces P1-P5, P2-P6, P3-P8 y P4-P7 se utilizaron conectores tipo SMA, cuyo valor de pérdida de acuerdo a fábrica es de 0.3db.

Enlace P0-P1:

 $L_{DPO-P1} = 0.4 dB$

Enlace P0-P2:

 $L_{DPO-P2} = 0.4 dB$

Enlace P1-P3:

 $L_{DP1-P3} = 0.4dB$

Enlace P1-P5:

 $L_{DP1-P5} = 0.6dB$

Enlace P2-P6:

 $L_{DP2-P6} = 0.6dB$

Enlace P2-P4:

 $L_{DP2-P4} = 0.4dB$

Enlace P3-P8:

 $L_{DP3-P8} = 0.6 dB$

Enlace P4-P7:

$L_{DP4-P7} = 0.6dB$

En la tabla 9 se muestra los valores de atenuación debido al tipo de conector utilizado para la conexión entre antena y radio de cada enlace.

ENLACE	PÉRDIDAS EN CONECTORES (dB)
PO-P1	0.4
PO-P2	0.4
P1-P3	0.4
P1-P5	0.6
P2-P6	0.6
P2-P4	0.4
P3-P8	0.6
P4-P7	0.6

Tabla 9: Pérdidas en los conectores por enlace.

Fuente propia.

3.5.5. Primera zona de fresnel

Haciendo el uso de la ecuación (6) y con las distancias de cada enlace se procede a realizar el cálculo de la primera zona de Fresnel a una frecuencia de 5.8 GHz en cada enlace.

$$F1 = 17.32 * \sqrt{\frac{D}{4f}}$$

Enlace P0-P1:

$$F1 = 17.32 * \sqrt{\frac{3.85km}{4 * 5.8GHz}} = 7.06m$$

Enlace P0-P2:

$$F1 = 17.32 * \sqrt{\frac{1.30km}{4 * 5.8GHz}} = 4.09m$$

Enlace P1-P3:
$$F1 = 17.32 * \sqrt{\frac{4.11km}{4 * 5.8GHz}} = 7.29m$$

Enlace P1-P5:

$$F1 = 17.32 * \sqrt{\frac{0.54km}{4 * 5.8GHz}} = 2.64m$$

Enlace P2-P6:

$$F1 = 17.32 * \sqrt{\frac{1.21km}{4 * 5.8GHz}} = 3.96m$$

Enlace P2-P4:

$$F1 = 17.32 * \sqrt{\frac{1.17km}{4 * 5.8GHz}} = 3.89m$$

Enlace P3-P8:

$$F1 = 17.32 * \sqrt{\frac{0.89km}{4 * 5.8GHz}} = 3.39m$$

Enlace P4-P7:

$$F1 = 17.32 * \sqrt{\frac{1.42km}{4 * 5.8GHz}} = 4.28m$$

En la tabla 10 se muestra la primera zona de fresnel obtenida, del cual se considera el 60% de la distancia obtenida para que la señal pueda transmitirse en cada enlace sin tener obstrucciones.

ENLACE	PRIMERA ZONA DE FRESNEL (m)
PO-P1	7.06
PO-P2	4.09
P1-P3	7.29
P1-P5	2.64
P2-P6	3.96

Tabla 10: Primera zona	de fresnel p	por enlace
------------------------	--------------	------------

P2-P4	3.89
P3-P8	3.39
P4-P7	4.28

Fuente propia.

3.5.6. Potencia de recepción

Se hace uso de la ecuación (9) y se realiza el cálculo en cada enlace.

$$P_{Rx}(dBm) = P_{TX}(dBm) + G_{TX}(dBi) + G_{RX}(dBi) - L_{TX}(dB) - L_{RX}(dB) - L_{D}(dB) - L_{bf}(dB)$$

Enlace P0-P1:

$$P_{Rx}(dBm) = 20(dBm) + 20(dBi) + 20(dBi) - 1.55(dB) - 0.78(dB) - 0.4(dB) - 119.41(dB)$$

 $P_{Rx}(dBm) = -62.14(dBm)$

Enlace P0-P2:

$$P_{Rx}(dBm) = 20(dBm) + 20(dBi) + 20(dBi) - 1.55(dB) - 0.78(dB) - 0.4(dB) - 109.99(dB)$$

$$P_{Rx}(dBm) = -52.32(dBm)$$

Enlace P1-P3:

$$P_{Rx}(dBm) = 20(dBm) + 30(dBi) + 30(dBi) - 0.78(dB) - 0.78(dB) - 0.4(dB) - 119.98(dB)$$

$$P_{Rx}(dBm) = -41.94(dBm)$$

Enlace P1-P5:

 $P_{Rx}(dBm) = 20(dBm) + 20(dBi) + 20(dBi) - 0.85(dB) - 0.85(dB) - 0.6(dB) - 102.34(dB)$

$$P_{Rx}(dBm) = -44.64(dBm)$$

Enlace P2-P6:

$$P_{Rx}(dBm) = 20(dBm) + 20(dBi) + 20(dBi) - 0.85(dB) - 0.85(dB) - 0.6(dB) - 109.36(dB)$$

$$P_{Rx}(dBm) = -51.66(dBm)$$

Enlace P2-P4:

$$P_{Rx}(dBm) = 20(dBm) + 20(dBi) + 20(dBi) - 0.78(dB) - 0.78(dB) - 0.4(dB) - 109.08(dB)$$

$$P_{Rx}(dBm) = -51.04(dBm)$$

Enlace P3-P8:

 $P_{Rx}(dBm) = 20(dBm) + 30(dBi) + 30(dBi) - 0.85(dB) - 0.85(dB) - 0.6(dB) - 106.73(dB)$

$$P_{Rx}(dBm) = -29.03(dBm)$$

Enlace P4-P7:

$$P_{Rx}(dBm) = 20(dBm) + 20(dBi) + 20(dBi) - 0.85(dB) - 0.85(dB) - 0.6(dB) - 110.74(dB)$$

$$P_{Rx}(dBm) = -53.04(dBm)$$

En la tabla 11 se muestra los valores de potencia de cada enlace, al sumar las ganancias y atenuaciones que se presentan en todo el recorrido del enlace.

ENLACE	POTENCIA DE RECEPCIÓN (dBm)
PO-P1	-62.1
PO-P2	-52.3
P1-P3	-41.9
P1-P5	-44.6
P2-P6	-51.6
P2-P4	-51
P3-P8	-29
P4-P7	-53

Tabla 11: Potencia de recepción por enlace.

Fuente propia.

3.5.7. Margen de desvanecimiento

Se hace el uso de la ecuación (10) y se realizan los cálculos correspondientes.

$$F_m = 30 \log d + 10 \log(6ABf) - 10 \log(1 - R) - 70$$

Enlace P0-P1:

$$F_m = 30\log(3.85) + 10\log(6 * 1 * 1.25 * 5.8) - 10\log(1 - 0.9999) - 70$$

 $F_m = 3.95 dB$

Enlace P0-P2:

 $F_m = 30\log(1.30) + 10\log(6 * 1 * 1.25 * 5.8) - 10\log(1 - 0.9999) - 70$

$$F_m = 10.19 dB$$

Enlace P1-P3:

$$F_m = 30\log(4.11) + 10\log(6 * 1 * 1.25 * 5.8) - 10\log(1 - 0.9999) - 70$$

$$F_m = 4.8 dB$$

Enlace P1-P5:

 $F_m = 30\log(0.54) + 10\log(6*1*1.25*5.8) - 10\log(1 - 0.9999) - 70$

$$F_m = 21.6 dB$$

Enlace P2-P6

 $F_m = 30\log(1.21) + 10\log(6 * 1 * 1.25 * 5.8) - 10\log(1 - 0.9999) - 70$

$$F_m = 11.13 dB$$

Enlace P2-P4:

$$F_m = 30\log(1.17) + 10\log(6 * 1 * 1.25 * 5.8) - 10\log(1 - 0.9999) - 70$$

$$F_m = 11.56 dB$$

Enlace P3-P8:

 $F_m = 30\log(0.89) + 10\log(6 * 1 * 1.25 * 5.8) - 10\log(1 - 0.9999) - 70$

$$F_m = 15.13 dB$$

Enlace P4-P7:

$$F_m = 30\log(1.42) + 10\log(6 * 1 * 1.25 * 5.8) - 10\log(1 - 0.9999) - 70$$

$$F_m = 9.05 dB$$

En la tabla 12 se muestra los valores obtenidos del margen de desvanecimiento, valores que se encuentran dentro de lo permitido en cada enlace, este parámetro puede variar de acuerdo con la potencia del radio y ganancia de antena seleccionada.

ENLACE	MARGEN DE DESVANECIMIENTO (dB)
PO-P1	3.95
PO-P2	10.19
P1-P3	4.8
P1-P5	21.6
P2-P6	11.13
P2-P4	11.56
P3-P8	15.13
P4-P7	9.05

Tabla 12: Margen de desvanecimiento por enlace.

Fuente propia.

3.5.8. Voltaje recibido

Se hace uso de la ecuación (11) para realizar los cálculos correspondientes.

$$P_{RX} = \frac{V_{RX}^2}{R}$$

$$V_{RX} = \sqrt{P_{RX(W)} * R}, donde R = 50 ohm$$

$$P_{RX(W)} = 0.001 * antilog \left(\frac{P_{RX(dBm)}}{10}\right)$$

Enlace P0-P1:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-65.13}{10}\right) = 275.42 * 10^{-12}W$$
$$V_{RX} = \sqrt{275.42 * 10^{-12} * 50} = 117.35\mu V$$

Enlace P0-P2:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-79.3}{10}\right) = 11.75 * 10^{-12}W$$
$$V_{RX} = \sqrt{11.75 * 10^{-12} * 50} = 24.24\mu V$$

Enlace P1-P3:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-64.2}{10}\right) = 376.70 * 10^{-12}W$$
$$V_{RX} = \sqrt{376.70 * 10^{-12} * 50} = 137.24\mu V$$

Enlace P1-P5:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-46.64}{10}\right) = 21677.04 * 10^{-12}W$$
$$V_{RX} = \sqrt{21677.04 * 10^{-12} * 50} = 1041.08\mu V$$

Enlace P2-P6:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-51.66}{10}\right) = 6823.39 * 10^{-12}W$$
$$V_{RX} = \sqrt{6823.39 * 10^{-12} * 50} = 584.09\mu V$$

Enlace P2-P4:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-51.04}{10}\right) = 7870.46 * 10^{-12}W$$
$$V_{RX} = \sqrt{7870.46 * 10^{-12} * 50} = 627.31\mu V$$

Enlace P3-P8:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-32.67}{10}\right) = 537031.79 * 10^{-12}W$$
$$V_{RX} = \sqrt{537031.79 * 10^{-12} * 50} = 5181.85\mu V$$

Enlace P4-P7:

$$P_{RX(W)} = 0.001 * antilog\left(\frac{-53.04}{10}\right) = 4965.92 * 10^{-12}W$$
$$V_{RX} = \sqrt{4965.92 * 10^{-12} * 50} = 498.29\mu V$$

En la tabla 13 se muestra los valores de voltaje en el lado receptor, valor que depende de la impedancia de la antena.

Tabla 13: Voltaje recibido por enlace.
--

ENLACE	VOLTAJE RECIBIDO (uV)
PO-P1	117.3
PO-P2	24.24
P1-P3	137.2
P1-P5	1041
P2-P6	584
P2-P4	627.3
P3-P8	5181.8
P4-P7	498.2

Fuente propia.

3.5.9. Ángulo de elevación

Se realiza el cálculo haciendo uso de la ecuación (12).

$$\alpha = sen^{-1} \left(\frac{\Delta H}{d}\right)$$
$$\Delta H = H_1 - H_2$$
$$H_1 = h_1 + h_{a1}$$
$$H_2 = h_2 + h_{a2}$$

Enlace P0-P1:

$$H_1 = 898 + 26 = 924$$
$$H_2 = 1681 + 12 = 1693$$
$$\Delta H = 924 - 1693 = 769$$
$$\alpha = sen^{-1} \left(\frac{0.769}{3.85}\right) = 11.52^{\circ}$$

Enlace P0-P2:

$$H_1 = 898 + 26 = 924$$
$$H_2 = 1213 + 46 = 1259$$
$$\Delta H = 924 - 1259 = 335$$
$$\alpha = sen^{-1} \left(\frac{0.335}{1.30}\right) = 14.93^{\circ}$$

Enlace P1-P3:

$$H_1 = 1681 + 18 = 1699$$
$$H_2 = 1845 + 12 = 1857$$
$$\Delta H = 1857 - 1699 = 158$$
$$\alpha = sen^{-1} \left(\frac{0.158}{4.11}\right) = 2.20^{\circ}$$

Enlace P1-P5:

$$H_{1} = 1681 + 12 = 1693$$
$$H_{2} = 1823 + 12 = 1835$$
$$\Delta H = 1693 - 1835 = 142$$
$$\alpha = sen^{-1} \left(\frac{0.142}{0.54}\right) = 15.25^{\circ}$$

Enlace P2-P6:

$$H_1 = 1213 + 15 = 1228$$

 $H_2 = 669 + 4 = 673$

$$\Delta H = 1228 - 673 = 555$$
$$\alpha = sen^{-1} \left(\frac{0.555}{1.21}\right) = 27.30^{\circ}$$

Enlace P2-P4:

$$H_{1} = 1213 + 15 = 1228$$
$$H_{2} = 1305 + 15 = 1320$$
$$\Delta H = 1228 - 1320 = 92$$
$$\alpha = sen^{-1} \left(\frac{0.092}{1.17}\right) = 4.51^{\circ}$$

Enlace P3-P8:

$$H_1 = 1845 + 12.5 = 1857.5$$
$$H_2 = 2014 + 4 = 2018$$
$$\Delta H = 1857.5 - 2018 = 156.5$$
$$\alpha = sen^{-1} \left(\frac{0.1565}{0.89}\right) = 10.13^{\circ}$$

Enlace P4-P7:

$$H_1 = 1305 + 4 = 1309$$
$$H_2 = 1556 + 18 = 1574$$
$$\Delta H = 1309 - 1574 = 265$$
$$\alpha = sen^{-1} \left(\frac{0.265}{1.42}\right) = 10.76^\circ$$

En la tabla 14 se muestra los valores del ángulo de elevación de las antenas, para obtener la comunicación entre transmisor y receptor.

Tabla	14: /	Ángulo	de	elevaciór	n por	enlace.

ENLACE	ÁNGULO DE ELEVACIÓN
PO-P1	11.52°
PO-P2	14.93°
P1-P3	2.20°
P1-P5	15.25°
P2-P6	27.30°
P2-P4	4.51°
P3-P8	10.13°
P4-P7	10.76°

Fuente propia.

3.5.10. Ángulo azimutal

Se realiza el cálculo haciendo uso de la ecuación (13).

$$Azimut_1 = \alpha_0 - \alpha_s \qquad Azimut_2 = \alpha_0 + \alpha_s + 180$$

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{Latitud2 + Latitud1}{2}\right) * tag\left(\frac{Longitud2 - Longitud1}{2}\right)}{sen\left(\frac{Latitud2 - Latitud1}{2}\right)} \right]$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{Latitud2 + Latitud1}{2}\right) * tag\left(\frac{Longitud2 - Longitud1}{2}\right)}{cos\left(\frac{Latitud2 - Latitud1}{2}\right)} \right]$$

Enlace P0-P1:

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{-6..288503 - 6.322711}{2}\right) * tag\left(\frac{-79.45222 + 79.44729}{2}\right)}{sen\left(\frac{-6..288503 + 6.322711}{2}\right)} \right] = -8.26^{\circ}$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{-6.288503 - 6.322711}{2}\right) * tag\left(\frac{-79.45222 + 79.44729}{2}\right)}{cos\left(\frac{-6.288503 + 6.322711}{2}\right)} \right] = 0.0002^{\circ}$$

$$Azimut_{1} = -8.26 - 0.0002 = -8.26^{\circ} = -8.26 + 360 = 351.73^{\circ}$$

$$Azimut_{2} = -8.26 + 0.0002 + 180 = 188.26^{\circ}$$

Enlace P0-P2:

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{-6.331403 - 6.322711}{2}\right) * tag\left(\frac{-79.45510 + 79.44729}{2}\right)}{sen\left(\frac{-6.331403 + 6.322711}{2}\right)} \right] = 44.17^{\circ}$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{-6.331403 - 6.322711}{2}\right) * tag\left(\frac{-79.45510 + 79.44729}{2}\right)}{cos\left(\frac{-6.331403 + 6.322711}{2}\right)} \right] = 0.0004^{\circ}$$

$$Azimut_1 = 44.17 - 0.0004 = 44.169^{\circ}$$

 $Azimut_2 = 44.17 + 0.0004 + 180 = 224.17^{\circ}$

Enlace P1-P3:

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{-6.314613 - 6.288503}{2}\right) * tag\left(\frac{-79.47835 + 79.45222}{2}\right)}{sen\left(\frac{-6.314613 + 6.322711}{2}\right)} \right] = -72.89^{\circ}$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{-6.314613 - 6.288503}{2}\right) * tag\left(\frac{-79.47835 + 79.45222}{2}\right)}{cos\left(\frac{-6.314613 + 6.288503}{2}\right)} \right] = 0.0014^{\circ}$$

 $\begin{aligned} Azimut_1 &= -72.89 - 0.0014 = -72.8914^\circ &= -72.8914 + 360 = 287.11^\circ \\ Azimut_2 &= -72.89 + 0.0014 + 180 = 107.11^\circ \end{aligned}$

Enlace P1-P5:

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{-6.284896 - 6.288503}{2}\right) * tag\left(\frac{-79.45222 + 79.45545}{2}\right)}{sen\left(\frac{-6.284896 + 6.288503}{2}\right)} \right] = 83.54^{\circ}$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{-6.284896 - 6.288503}{2}\right) * tag\left(\frac{-79.45222 + 79.45545}{2}\right)}{cos\left(\frac{-6.284896 + 6.288503}{2}\right)} \right] = -0.0017^{\circ}$$

$$Azimut_1 = 83.54 - 0.0017 = 83.538^{\circ}$$

 $Azimut_2 = 83.54 - 0.0017 + 180 = 263.53^{\circ}$

Enlace P2-P6:

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{-6.340188 - 6.331403}{2}\right) * tag\left(\frac{-79.44872 + 79.45510}{2}\right)}{sen\left(\frac{-6.340188 + 6.331403}{2}\right)} \right] = -38.40^{\circ}$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{-6.340188 - 6.331403}{2}\right) * tag\left(\frac{-79.44872 + 79.45510}{2}\right)}{cos\left(\frac{-6.340188 + 6.331403}{2}\right)} \right] = 0.00035^{\circ}$$

$$Azimut_1 = -38.40 - 0.00035 = -38.4000^\circ = -38.4000 + 360 = 321.6^\circ$$

$$Azimut_2 = -38.40 + 0.00035 + 180 = 141.6^{\circ}$$

Enlace P2-P4:

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{-6.34085 - 6.331403}{2}\right) * tag\left(\frac{-79.46036 + 79.45510}{2}\right)}{sen\left(\frac{-6.34085 + 6.322711}{2}\right)} \right] = 16.076^{\circ}$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{-6.34085 - 6.331403}{2}\right) * tag\left(\frac{-79.46036 + 79.45510}{2}\right)}{cos\left(\frac{-6.34085 + 6.322711}{2}\right)} \right] = 0.0002^{\circ}$$

 $Azimut_1 = 16.076 - 0.0002 = 16.072^{\circ}$ $Azimut_2 = 16.076 + 0.0002 + 180 = 196.07^{\circ}$ Enlace P3-P8:

$$\alpha_{0} = tag^{-1} \left[\frac{cos\left(\frac{-6.306891 - 6.314613}{2}\right) * tag\left(\frac{-79.48055 + 79.47835}{2}\right)}{sen\left(\frac{-6.306891 + 6.314613}{2}\right)} \right] = -16.05^{\circ}$$

$$\alpha_{s} = tag^{-1} \left[\frac{sen\left(\frac{-6.306891 - 6.314613}{2}\right) * tag\left(\frac{-79.48055 + 79.47835}{2}\right)}{cos\left(\frac{-6.306891 + 6.314613}{2}\right)} \right] = 0.0001^{\circ}$$

 $\begin{aligned} Azimut_1 &= -16.05 - 0.0001 = -16.05^\circ &= -16.05 + 360 = 343.95^\circ \\ Azimut_2 &= -16.05 + 0.0002 + 180 = 163.95^\circ \end{aligned}$

Enlace P4-P7:

$$\begin{aligned} \alpha_0 &= tag^{-1} \left[\frac{cos\left(\frac{-6.33429 - 6.340485}{2}\right) * tag\left(\frac{-79.47148 + 79.46036}{2}\right)}{sen\left(\frac{-6.33429 + 6.340485}{2}\right)} \right] = -60.73^{\circ} \\ \alpha_s &= tag^{-1} \left[\frac{sen\left(\frac{-6.33429 - 6.340485}{2}\right) * tag\left(\frac{-79.47148 + 79.46036}{2}\right)}{cos\left(\frac{-6.33429 + 6.340485}{2}\right)} \right] = 0.0006^{\circ} \end{aligned}$$

 $\begin{aligned} Azimut_1 &= -60.73 - 0.0006 = -60.73^\circ &= -60.73 + 360 = 299.27^\circ \\ Azimut_2 &= -60.73 + 0.0006 + 180 = 119.27^\circ \end{aligned}$

En la tabla 15 se muestra el ángulo azimutal, eje horizontal, en los que deberán ser colocadas las antenas para la comunicación entre transmisor y receptor.

ENLACE	ÁNGULO AZIMUTAL
PO-P1	188.26°
PO-P2	224.17°
P1-P3	107.11°
P1-P5	263.53°
P2-P6	141.6°
P2-P4	196.07°
P3-P8	163.95°
P4-P7	119.27°

Tabla 15: Ángulo azimutal por enlace.

Fuente propia.

3.5.11. Potencia isotrópicamente radiada equivalente (PIRE)

Se realiza el cálculo haciendo uso de la ecuación (14).

$$PIRE(dBm) = P_{TX} + G_{TX} - L_C$$

Enlace PO-P1: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.4 = 39.6dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.6}{10}\right) = 9.12W$$

Enlace PO-P2: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.4 = 39.6dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.6}{10}\right) = 9.12W$$

Enlace P1-P3: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.4 = 39.6dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.6}{10}\right) = 9.12W$$

Enlace P1-P5: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.6 = 39.4dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.4}{10}\right) = 8.71W$$

Enlace P2-P6: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.6 = 39.4dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.4}{10}\right) = 8.71W$$

Enlace P2-P4: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.4 = 39.6dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.6}{10}\right) = 9.12W$$

Enlace P3-P8: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.6 = 39.4dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.4}{10}\right) = 8.71W$$

Enlace P4-P7: Potencia de transmisor es 20dBm, ganancia de la antena de transmisión es de 20 dBi.

$$PIRE(dBm) = 20 + 20 - 0.6 = 39.4dBm$$

Equivalente en Watts.

$$PIRE(W) = 0.001 * antilog\left(\frac{39.4}{10}\right) = 8.71W$$

En la tabla 16 se muestra los valores de PIRE obtenidos en cada enlace, valores dentro de lo permitido al ser un área cerrada.

ENLACE	PIRE (w)
PO-P1	9.12
PO-P2	9.12
P1-P3	9.12
P1-P5	8.71
P2-P6	8.71
P2-P4	9.12
P3-P8	8.71
P4-P7	8.71

Tabla 16: Potencia isotrópicamente irradiada equivalente por enlace.

Fuente propia.

3.5.12. Análisis de ruido

- AB canal=100 MHZ
- Temperatura =28°C 301.15°k
- Carga=50 OHM
- Constante de Boltzman K= 1.381x10E-23 J/ºK

- Voltaje de recepción en cada enlace.

3.5.13. Potencia de ruido.

Se realiza el cálculo con el uso de la ecuación (15),

$$N(dBm) = -174 + 10 \log AB$$

$$N(dBm) = -174 + 10\log 100 = -154dBm$$

3.5.14. Voltaje de ruido

Se realiza el cálculo haciendo uso de la ecuación (16).

$$V_N = \sqrt{2(R_L KTAB)}$$

$$V_N = \sqrt{2(50 * 1.381 * 10^{-23} * 301.15 * 100)} = 0.0064 \mu V$$

3.5.15. Relación señal ruido

Se realiza el cálculo haciendo uso de la ecuación (17)

$$\frac{N}{S}(dB) = 20\log\frac{V_{RX}}{V_N}$$

Enlace P0-P1:

$$\frac{N}{S}(dB) = 20\log \frac{117.35\mu V}{0.0064\mu V} = 85.3dB$$

Enlace P0-P2:

$$\frac{N}{S}(dB) = 20\log \frac{24.24\mu V}{0.0064\mu V} = 71.56dB$$

Enlace P1-P3:

$$\frac{N}{S}(dB) = 20\log \frac{137.24\mu V}{0.0064\mu V} = 86.6dB$$

Enlace P1-P5:

$$\frac{N}{S}(dB) = 20\log \frac{1041.08\mu V}{0.0064\mu V} = 104.2dB$$

Enlace P2-P6:

$$\frac{N}{S}(dB) = 20\log \frac{584.09\mu V}{0.0064\mu V} = 99.2dB$$

Enlace P2-P4:

$$\frac{N}{S}(dB) = 20\log \frac{627.31\mu V}{0.0064\mu V} = 99.8dB$$

Enlace P3-P8:

$$\frac{N}{S}(dB) = 20\log \frac{5181.85\mu V}{0.0064\mu V} = 118.2dB$$

Enlace P4-P7:

$$\frac{N}{S}(dB) = 20\log \frac{498.29\mu V}{0.0064\mu V} = 97.8dB$$

Tabla 17: Relación señal ruido por enlace.

ENLACE	RELACIÓN SEÑAL RUIDO(dB)
PO-P1	85.3
PO-P2	71.56
P1-P3	86.6
P1-P5	104.2

P2-P6	99.2
P2-P4	99.8
P3-P8	118.2
P4-P7	97.8

Fuente propia.

3.5.15. Sensibilidad del receptor

Se realiza el cálculo haciendo uso de la ecuación (18).

$$C_{min} = \frac{N}{S}(dB) + N(dBm)$$

Enlace P0-P1:

 $C_{min} = 85.3dB + (-154dBm) = -68.7dBm$

Enlace P0-P2:

 $C_{min} = 71.56dB + (-154dBm) = -82.44dBm$

Enlace P1-P3:

 $C_{min} = 86.6dB + (-154dBm) = -67.4dBm$

Enlace P1-P5:

 $C_{min} = 104.2dB + (-154dBm) = -49.8dBm$

Enlace P2-P6:

$$C_{min} = 99.2dB + (-154dBm) = -54.8dBm$$

Enlace P2-P4:

$$C_{min} = 99.8dB + (-154dBm) = -54.2dBm$$

Enlace P3-P8:

 $C_{min} = 118.2dB + (-154dBm) = -35.8dBm$

Enlace P4-P7:

$$C_{min} = 97.8dB + (-154dBm) = -56.2dBm$$

En la tabla 18 se muestran los valores obtenidos, los cuales guardan relación con la potencia de recepción y el margen de desvanecimiento en cada enlace, siendo estos valores permitidos.

Tabla 18: Sensibilidad del receptor por enlace.

ENLACE	SENSIBILIDAD DEL RECEPTOR (dBm)
PO-P1	-68.7

PO-P2	-82.44
P1-P3	-67.4
P1-P5	-49.8
P2-P6	-54.8
P2-P4	-54.2
P3-P8	-35.8
P4-P7	-56.2

Fuente propia.

3.5.11. Simulación de enlace con software radio Mobile

Para la simulación de los radioenlaces, se hace uso de la aplicación Radio Mobile, software con el cual podemos validar los radioenlaces.

En la figura 22 se muestra la simulación del enlace P0-P1, en la cual se valida que entre ambos puntos existe línea de vista y los valores son los adecuados para establecer la comunicación entre los 2 puntos

শ		Enlace de Radio			
ditar Ver Invertir					
Azimut=352.08*	Ang. de elevación=11.181	* Despeje a 3.78km	Peor Fresnel=4.3F1	Distancia=3.85	km
Espacio Libre=119.5 dB	Obstrucción=0.9 dB TR	Urbano=0.0 dB	Bosque=0.0 dB	Estadísticas=4.	1 dB
					_
Transmisor SEDE LAQUIPAMPA		S9+30	r IADERA 1		S9+3
Rol	Master	Rol	Ma	ster	
Nombre del sistema Tx	Sistema 1	Nombre	del sistema Rx Sis	tema 1	
Potencia Tx	0.1 W 20 d	JBm Campo E	requerido 25.	98 dBµV/m	
	0.5 dB	Gananci	a de antena 20 i	dBi 17.8 d	Bd
-'érdida de línea			1.17	un l	
Pérdida de línea Ganancia de antena	20 dBi 17.8	dBd <u>+</u> Pérdida	de línea U.5	UD	
Pérdida de línea Ganancia de antena Potencia radiada	20 dBi 17.8 PIRE=8.91 W PRE	3 dBd _+ Pérdida [=5.43 W Sensibilio	de línea 0.5 dad Rx 1μV	/ -107 d	1Bm
Pérdida de línea Ganancia de antena Potencia radiada Altura de antena (m)	20 dBi 17.8 PIRE=8.91 W PRE 26 · +	B dBd Pérdida =5.43 W Sensibilio Deshacer Altura de	de línea 0.5 Jad Rx 1μV antena (m) 11.	-107 c 5 · + [<mark>IB</mark> m Deshace
Pérdida de línea Ganancia de antena Potencia radiada Altura de antena (m) Red	20 dBi 17.8 PIRE=8.91 W PRE 26 • • •	3 dBd + Pérdida =5.43 W Sensibilio Deshacer Altura de	de línea U.5 Jad Rx 1μλ eantena (m) 11. cia (MHz)	-107 c 5 · + _	<mark>IB</mark> m Deshace

Figura 22: Enlace P0-P1 Fuente propia

En la figura 23 se muestra la simulación del enlace P0-P2, obteniendo los parámetros adecuados para la instalación del radio enlace, se logra observar que es necesario tener mayor altura para mejorar la línea de vista.

ন্দ		Enlace de F	Radio					×
Editar Ver Invertir								
Azimut=214.30* Espacio Libre=111.5 dB Pérdidas=138.3dB (3)	Ang. de elevación=11.678° Obstrucción=22.7 dB Mix Campo E=53.7dBµV/m	Obstrucción a 1.3 Urbano=0.0 dB Nivel Rx=-79.3dB	86km m	Peor Fresnel=-0 Bosque=0.0 dB Nivel Rx=24.33).4F1 IµV	Distancia= Estadístic Rx relativo	=1.51km as=4.2 dB p=27.7dB	
Transmisor			eceptor -					
		🖛 S9+10 🛛 🗖					s s	9+10
SEDE LAQUIPAMPA		- F	2 EL REI	LOJ				-
Ro	Master	,	ol		Esclavo			
Nombre del sistema Tx	Bistema 1	- N	ombre del :	sistema Rx	Sistema	1		-
Polencia Tx	C.1 W 20 dt	Brr Ca	ampo E rec	uerido	25.98 dBi	.√/m		
Péidida de línea	C.5 dB	G	anancia de	antena	20 dBi	1	7.8 dBd	+
Ganancia de antena	20 dBi 17.8	dEd + Pe	érdida de li	inea	0.5 dB			
Polencia radiada	PIRE=8.91 W PRE	=543 W Se	ensibilidad	Bx	1μV	-	107 dBm	
Altura de antena (m)	26 · +	Deshacer Al	ltura de ani	lena (m)	46	·	Desha	icer
Red		Fr	recuencia	MHz)				
laquipampa		•	Mínin	5750		Máximo	5850	

Figura 23: Enlace P0-P2 Fuente propia

En la figura 24 se muestra la simulación del enlace P2-P6, obteniendo los parámetros adecuados para la instalación del radio enlace, se verifica línea de vista libre.

4		Enlace c	le Radio			
Editar Ver Invertir						
Azimut=144.13°	Ang. de elevación=-23.	.356° Despeje a 0.8	9km Peor Fresnel	=10.3F1 Dista	ncia=1.20km	
Espacio Libre=110.0 dB	Obstrucción=7.0 dB TF	Urbano=0.0 d	B Bosque=0.0	dB Esta	dísticas=4.2 dB	
Transmisor —		S9+30	Receptor		s	9+3
P2 EL RELOJ		-	P6 LAJAS			
P2 EL RELOJ Rol	Esclavo	•	P6 LAJAS Rol	Esclavo		
P2 EL RELOJ Rol Nombre del sistema Tx	Esclavo Sistema 1	•	P6_LAJAS Rol Nombre del sistema Rx	Esclavo Sistema 1		
P2 EL RELOJ Rol Nombre del sistema Tx Potencia Tx	Esclavo Sistema 1 0.1 W 2	▼ ▼ 20 dBm	P6_LAJAS Rol Nombre del sistema Rx Campo E requerido	Esclavo Sistema 1 25.98 dBµV/m		
P2 EL RELOJ Rol Nombre del sistema Tx Potencia Tx Pérdida de línea	Esclavo Sistema 1 0.1 W 2 0.5 dB	▼ ▼ 20 dBm	P6_LAJAS Rol Nombre del sistema Rx Campo E requerido Ganancia de antena	Esclavo Sistema 1 25.98 dBμV/m 20 dBi	17.8 dBd	
P2 EL RELOJ Rol Nombre del sistema Tx Potencia Tx Pérdida de línea Ganancia de antena	Esclavo Sistema 1 0.1 W 2 0.5 dB 20 dBi 1	▼ 20 dBm 17.8 dBd +	P6 LAJAS Rol Nombre del sistema Rx Campo E requerido Ganancia de antena Pérdida de línea	Esclavo Sistema 1 25.98 dBµV/m 20 dBi 0.5 dB	17.8 dBd	
P2 EL RELOJ Rol Nombre del sistema Tx Potencia Tx Pérdida de línea Ganancia de antena Potencia radiada	Esclavo Sistema 1 0.1 W 2 0.5 dB 20 dBi 1 PIRE=8.91 W F	▼ 20 dBm 17.8 dBd + PRE=5.43 W	P6 LAJAS Rol Nombre del sistema Rx Campo E requerido Ganancia de antena Pérdida de línea Sensibilidad Rx	Esclavo Sistema 1 25.98 dBμV/m 20 dBi 0.5 dB 1μV	17.8 dBd -107 dBm	
P2 EL RELOJ Rol Nombre del sistema Tx Potencia Tx Pérdida de línea Ganancia de antena Potencia radiada Altura de antena (m)	Esclavo Sistema 1 0.1 W 2 0.5 dB 20 dBi 1 PIRE=8.91 W F 15 - +	▼ 20 dBm 17.8 dBd + PRE=5.43 W Deshacer	P6 LAJAS Rol Nombre del sistema Rx Campo E requerido Ganancia de antena Pérdida de línea Sensibilidad Rx Altura de antena (m)	Esclavo Sistema 1 25.98 dBμV/m 20 dBi 0.5 dB 1μV 4	17.8 dBd -107 dBm + Desha	
P2 EL RELOJ Rol Nombre del sistema Tx Potencia Tx Pérdida de línea Ganancia de antena Potencia radíada Altura de antena (m) Red	Esclavo Sistema 1 0.1 W 2 0.5 dB 20 dBi 1 PIRE=8.91 W F 15 • +	▼ 20 dBm 77.8 dBd + 78E=5.43 W Deshacer	PS LAJAS Rol Nombre del sistema Rx Campo E requerido Ganancia de antena Pérdida de línea Sensibilidad Rx Altura de antena (m) Frecuencia (MHz)	Esclavo Sistema 1 25.98 dBµV/m 20 dBi 0.5 dB 1µV 4	17.8 dBd -107 dBm ▲ Desha	cer

Figura 24: Enlace P2-P6 Fuente propia

En la figura 25 se muestra la simulación del enlace P2-P4, donde se han obtenido los valores adecuados para la comunicación de los dos puntos, para mejorar la línea de vista se deben colocar a mayor altura las antenas.

দ্য		Enlace de R	adio		×
Editar Ver Invertir					
Azimut=209.73° Espacio Libre=109.0 dB Pérdidas=112.4dB	Ang. de elevación=4.661* Obstrucción=-0.8 dB TR Campo E=79.6dBµV/m	Despeje a 1.10km Urbano=0.0 dB Nivel Rx=-53.4dBn	Peor Fresnel= Bosque=0.0 n Nivel Rx=481	=6.4F1 Distan dB Estadi .16µV Rx rela	cia=1.16km sticas=4.2 dB ativo=53.6dB
- Transmisor			ceptor		
		🗖 \$9+40 🛛 🗖			—— \$9+40
P2 EL RELOJ		▼ R	ELOJ 2		-
Rol	Esclavo	Re	d	Esclavo	
Nombre del sistema Tx	Sistema 1	▼ No	mbre del sistema Rx	Sistema 1	•
Potencia Tx	0.1 W 20 dB	im Ca	mpo E requerido	25.98 dBuV/m	
Pérdida de línea	0.5 dB	Ga	inancia de antena	20 dBi	17.8 dBd +
Ganancia de antena	20 dBi 17.8 (dBd + Pé	rdida de línea	0.5 dB	
Potencia radiada	PIRE=8.91 W PRE=	<5.43 ₩ Se	nsibilidad Rx	1μV	-107 dBm
Altura de antena (m)	15 • +	Deshacer Alt	ura de antena (m)	15 ·	+ Deshacer
Red		Fre	ecuencia (MHz)		
laquipampa		-	Mínimo 5750	Máximo	5850

Figura 25: Enlace P2-P4 Fuente propia

En la figura 26 se muestra la simulación del enlace P1-P5, los valores obtenidos en la simulación aseguran la comunicación entre ambos puntos, logrando una línea de vista sin obstáculos.

শ		Enlace de	Radio					×
Editar Ver Invertir								
Azimut=138.38° Espacio Libre=102.6 dB Pérdidas=106.0dB (4)	Ang. de elevación=-15.596 Obstrucción=-0.8 dB TR Campo E=86.0dBµV/m	Despeje a 0.06 Urbano=0.0 dB Nivel Rx=-47.0c	km 1Bm	Peor Fresnel=1 Bosque=0.0 dE Nivel Rx=1003	3.1F1 .52μV	Distanci Estadís Rx relat	ia=0.54km ticas=4.2 dB ivo=60.0dB	
- Transmisor			Receptor -					
		59+50						9+50
P5 MADERAZ		<u> </u>	JPT LA MAU	JERA I				<u> </u>
Rol	Esclavo		Rol		Master			
Nombre del sistema Tx	Sistema 1	-	Nombre del:	sistema Rx	Sistema	1		-
Potencia Tx	0.1 W 20 d	lBm	Campo E rec	querido	25.98 dBp	(V/m		
Pérdida de línea	0.5 dB		Ganancia de	e antena	20 dBi		17.8 dBd	+
Ganancia de antena	20 dBi 17.8	dBd +	Pérdida de li	ínea	0.5 dB			
Potencia radiada	PIRE=8.91 W PRE	=5.43 W	Sensibilidad	Rx	1μV		-107 dBm	
Altura de antena (m)	12 • +	Deshacer	Altura de ani	itena (m)	11.5		• Desha	acer
Red			Frecuencia	(MHz)				

Figura 26: Enlace P1-P5 Fuente propia

En la figura 27 se muestra la simulación del enlace P3-P1, para mejorar la línea de vista se requiere que las antenas sean instaladas a una mayor altura.

Editar Ver Invertir					
Azimut=44.83°	Ang. de elevación=-2.307°	Despeje a 1.25km	Peor Fresnel=	=0.6F1 D	listancia=4.09km
Espacio Libre=119.9 dB	Obstrucción=1.0 dB TR	Urbano=0.0 dB	Bosque=1.0 c	B E	stadísticas=4.1 dB
6101035-120.000	Campo E=73.30bp/7/m	NIVEL IX-97.0001	NIVEL 11A-333		N 16140/0-00.000
Transmisor —		S9+40	ər		S9+
Transmisor P3		S9+40	or		S9+
Transmisor P3 Rol	Esclavo	S9+40	or	Esclavo	 \$9+
Transmisor P3 Rol Nombre del sistema Tx	Esclavo Sistema 1	S9+40 S9+40 Rol Nombre	or del sistema Rx	Esclavo Sistema 1	\$9+
Transmisor P3 Rol Nombre del sistema Tx Potencia Tx	Esclavo Sistema 1 0.1 ₩ 20 d	S9+40 Rol Nombre Bm Campo I	or del sistema Rx E requerido	Esclavo Sistema 1 15.94 dBµV//	59+
Transmisor P3 Rol Nombre del sistema Tx Potencia Tx Pérdida de línea	Esclavo Sistema 1 0.1 W 20 d 0.5 dB	S9+40 S9+40 Nolling Bm Campol Gananc	or del sistema Rx E requerido ia de antena	Esclavo Sistema 1 15.94 dBµV/i 30 dBi	m 27.8 dBd
Transmisor P3 Rol Nombre del sistema Tx Potencia Tx Pérdida de línea Janancia de antena	Esclavo Sistema 1 0.1 W 20 d 0.5 dB 30 dBi 27.8	S9+40 Recept Rol Nombre Bm Gamano dBd + Pérdida	or del sistema Rx E requerido ia de antena de línea	Esclavo Sistema 1 15.94 dBµV// 30 dBi 0.5 dB	m 27.8 dBd
Transmisor P3 Rol Nombre del sistema Tx Potencia Tx Párdida de línea Ganancia de antena Potencia radiada	Esclavo Sistema 1 0.1 W 20 d 0.5 dB 30 dBi 27.8 PIRE=89.13 W PRE	S9+40 S9+40 Rol Nombre Bm Campo I Gananc dBd + -54.34 W Sensibili	del sistema Rx E requerido a de antena de línea dad Rx	Esclavo Sistema 1 15.94 dBµV// 30 dBi 0.5 dB 1μV	m 27.8 dBd -107 dBm
Transmisor P3 Rol Nombre del sistema Tx Potencia Tx Pérdida de línea Banancia de antena Potencia radiada Nutura de antena (m)	Esclavo Sistema 1 0.1 W 20 d 0.5 dB 27.8 91RE=89.13 W PRE 12.5 · +	S9+40 S9+40 Rol Nombre Bm Gananc dBd + Péridia =54,34 W Sensibili Deshacer Altura de	or del sistema Rx E requerido ia de antena del línea dad Rx e antena (m)	Esclavo Sistema 1 15.94 dBμV// 30 dBi 0.5 dB 1μV 10	m 27.8 dBd -107 dBm - + Deshace
Transmisor P3 Rol Nombre del sistema Tx Potencia Tx Pérdida de línea Sanancia de antena Potencia radiada Nutura de antena (m) Red	Esclavo Sistema 1 0.1 W 20 d 0.5 dB 30 dBi 27.8 PIRE=89.13 W PRE 12.5 · +	S9+40 S9+40 Rol Nombre Bm Gananc dBd =54.34 W Deshacer Frecuer	or del sistema Rx E requerido ia de antena del Irnea dad Rx a antena (m) cia (MHz)	Esclavo Sistema 1 15.94 dBμV// 30 dBi 0.5 dB 1μV 10	m 27.8 dBd -107 dBm

Figura 27: Enlace P3-P1 Fuente propia

En la figura 28 se muestra la simulación del enlace P7-P4, los valores de recepción son los adecuados para establecer la comunicación entre ambos puntos, la línea de vista obtenida no tiene obstrucciones.

M Enlace de Radio								×
Editar Ver Invertir								
Azimut=119.21*	Ang. de elevación=-9.944*	Despeje a 0.02	2km	Peor Fresnel=8	3.7F1	Distancia	=1.41km	
Espacio Libre=110.8 dB	Obstrucción=0.9 dB TR	Urbano=0.0 dB	3	Bosque=0.0 d	В	Estadístic	as=4.2 dB	
Pérdidas=115.8dB	Campo E=76.1dBµV/m	Nivel Rx=-56.8	BdBm	Nivel Rx=322.	18μV	Rx relativ	o=50.2dB	
		06°20'34.9''S 0	179°27'37.2''C)				
Concernation of the second sec								
- - Transmisor 06°20'12 6''S I	079*28'17.3''0		- Recentor O	6°20'34 9''S 07:	9°27'37 2''0			
		- 00.20					0	0.00
		33+30						3+30
P7 FAIQUEN		<u> </u>	P4 RELO	J2				-
Rol	Esclavo		Rol		Esclavo			
Nombre del sistema Tx	Sistema 1		Nombre del	sistema Rx	Sistema	1		-
Potencia Tx	0.1.W 20.d	Bm	Campo E re	querido	25.98 dBi	W/m		
Pérdida de línea	0.5 dB		Ganancia d	e antena	20 dBi		17.8 dBd	+
Ganancia de antena	20 dBi 17.8	dBd +	Pérdida de l	línea	0.5 dB		11.0 000	
Potencia radiada	PIRE-8 91 W PRE	-5.43W	Sensibilidad	l Rv	1.07		107 dBm	
r otericia fadiada	111E-0.51 W 111E	-3.43 W	Jensibilidad		- ipov			-
Altura de antena (m)	3.5 • +	Deshacer	Altura de ar	ntena (m)	18	• +	Desha	icer
Red			- Frecuencia	(MHz)				
1			Mínir	mo 5750		Máximo	5050	
Jlaquipampa		<u> </u>		10750			10000	

Figura 28: Enlace P7-P4

Fuente propia

En la figura 29 se muestra la simulación del enlace P3-P8, se logra validar los parámetros adecuados para establecer la comunicación entre ambos puntos, se observa una línea de vista despejada.

In chiece de tidato		-	
Editar Ver Invertir			
Editar Ver Invertir Azimut=344.21° Espacio Libre=106,8 dB Pérdidas=111.7dB (4)	Ang. de elevación=10.398° Despeje a 0. Obstrucción=0.8 dB TR Urbano=0.0 Campo E=90.2dBµV/m Nivel Rx=32	88km Peor Fresnel- 18 Bosque=0.0 .7dBm Nivel Rx=517	-3.5F1 Distancia=0.89km dB Estadísticas=4.2 dB /5.51μV Rx relativo=74.3dB
Transmisor P3 Rol	S9+50 Esclavo	Receptor P8 Rol	S9+50 Esclavo
Nombre del sistema Tx Potencia Tx Pérdida de línea Ganancia de antena Potencia radiada Altura de antena (m)	Sistema 1 ▼ 0.1 W 20 dBm 0.5 dB 20.5 dB 20.8 dBd + 30 dBi 27.8 dBd + PIRE=54.34 W + 12.5 - + Deshacer	Nombre del sistema Rx Campo E requerido Ganancia de antena Pérdida de línea Sensibilidad Rx Altura de antena (m)	Sistema Image: Transmission of the state o
Red 1	T	Frecuencia (MHz) Mínimo 5750	Máximo 5800

Figura 29: Enlace P3-P8 Fuente propia

Se determina que es factible la realización del enlace de red, como se muestra en las imágenes de perfil de enlace, siendo los niveles de recepción aceptables en cada nodo, las torres calculadas cuentan con las alturas adecuadas para poder superar los obstáculos que se encuentren en el trayecto del enlace, en el caso de no tener obstáculos las torres podrían ser de menor tamaño, previa evaluación en campo.

Para la implementación de estos enlaces se recomienda la utilización del equipo de radio con tecnología MIMO 2x2 para evitar reflexiones que ocasionen la degradación de la señal y por ende la pérdida de paquete de datos.

3.5.12. Equipamiento de radio enlaces

Para la selección de equipos de radio enlace en las redes primarias, se muestran 2 opciones, se detallarán algunas características y parámetros para tener en cuenta en la elección.

La primera alternativa corresponde a la marca RADWIN, modelo RW-2954-D200, este equipo posee la admisión de un rango de frecuencia de 5.1 a 6 Ghz, obteniendo hasta un rendimiento de 750 Mbps, provee un espectro con una eficiencia alta haciendo uso de una modulación QAM256, realiza el uso de selección de ancho de banda de hasta 80 Mhz, en situaciones donde el espectro de frecuencia a utilizar se encuentra congestionado, con una menor interferencia para garantizar un buen rendimiento en el enlace. Esta solución posee un alcance de hasta 120 Km y el consumo de potencia es menor a los 20w, asimismo admite sincronización para maximizar su capacidad, utiliza tecnología ODFM y MIMO avanzadas para operaciones en nLOS/NLOS.

La segunda alternativa corresponde a la marca PROXIM Wireless, modelo QB-10100-LNK, este equipo posee un rango de frecuencias de 4.9 a 5.925 Ghz, obteniendo hasta un rendimiento de 633 Mbps, ofrece eficiencia en el espectro de frecuencias haciendo uso de la modulación QAM256, selección flexible de canales de 20, 40 y 80 Mhz, posee un alcance de hasta 40 Km y el consumo de potencia es menor a los 20w, tecnología ODFM y MIMO facilitando la implementación en áreas difíciles, posee un analizador de espectros para la configuración de frecuencias con menos congestión.

En la tabla 19 se hace la comparación de parámetros para la elección del equipamiento.

ALTERNATIVA	PRIMERA	SEGUNDA
Equipo	RW-2954-D200	QB10100LNK
Potencia de salida	25 dBm	28 dBm
Antena	Seleccionable	Seleccionable
Frecuencia	5.1 a 6 Ghz	4.9 a 5.925 Ghz
Modulación	MIMO - ODFM	MIMO - ODFM
Máxima capacidad	750 Mbps	633Mbps
Alcance	120 Km	40 Km
Interfaz	10/100/1000 Base Tx	10/100/1000 Base Tx
Temperatura de operación	´- 35℃ a 60℃	´- 40°C a 60°C
Ancho de banda	10, 20, 40, 80 Mhz	20, 40, 80 Mhz
Potencia de consumo	18w	18w

Tabla 19: Comparación de equipos red primaria

Fuente propia

Se logra observar que las dos alternativas cumplen con los requerimientos necesarios para el diseño, se puede observar que el rango de frecuencias es similar, la potencia de salida en la segunda alternativa es mayor, ambas alternativas cuentan con la modulación ODFM – MIMO. La primera alternativa tiene mayor capacidad y mayor alcance, asimismo cuenta con más opciones de configuración de canales. De acuerdo a la comparación se determina la primera alternativa para el equipamiento de la red primaria.

Para la selección de equipos de radio enlace en las redes secundarias, se muestran 2 opciones, se detallarán algunas características y parámetros para tener en cuenta en la elección.

La primera alternativa corresponde a la marca CAMBIUM, modelo FORCE 110 PTP, este equipo posee la admisión de frecuencia de 5.15 a 5.97 Ghz, obteniendo hasta un rendimiento de 220 Mbps, viene equipado con una antena de 25 dbi, para mejorar el rendimiento utiliza un procesamiento de alta capacidad, incluso en entornos de mayor interferencia, posee canales de 5, 10, 20 y 40 Mhz. Esta solución logra un alcance de hasta 30 Km y un consumo de potencia de 10w, tecnología ODFM y MIMO.

La segunda alternativa corresponde a la marca PROXIM Wireless, modelo QB-10100-LNK 100, este equipo admite frecuencias de 4.9 a 5.925 Ghz, obteniendo hasta un rendimiento de hasta 200 Mbps con licenciamiento, haciendo uso de la modulación ODFM obtiene una mejor eficiencia de espectro, flexibilidad de canales de 20, 40 y 80 Mhz, posee un alcance de hasta 30 Km y un consumo de potencia de 15w, utilizando tecnología ODFM y MIMO facilita la implementación en áreas complicadas, posee un analizador de espectros para la configuración de frecuencias con menor congestión.

En la tabla 20 se hace la comparación de parámetros para la elección del equipamiento.

Tabla 20: Comparación de equipo red secundaria

ALTERNATIVA	PRIMERA	SEGUNDA	
Equipo	EPMP FORCE 110 PTP	QB10100LNK 100	

Potencia de salida	30 dBm	28 dBm	
Antena	25 dBi	Seleccionable	
Frecuencia	5.1 a 6 Ghz	4.9 a 5.925 Ghz	
Modulación	MIMO - ODFM	MIMO - ODFM	
Máxima capacidad	220 Mbps	200Mbps	
Alcance	50 Km	40 Km	
Interfaz	100/1000 Base Tx	10/100/1000 Base Tx	
Temperatura de operación	´- 30℃ a 60℃	´- 40°C a 60°C	
Ancho de banda	5, 10, 20, 40 Mhz	20, 40, 80 Mhz	
Potencia de consumo	10w	15w	

Fuente propia

Se logra observar que las dos alternativas cumplen con los requerimientos necesarios para el diseño, se puede observar que el rango de frecuencias es similar, la potencia consumo en la segunda alternativa es mayor, ambas alternativas cuentan con la modulación ODFM – MIMO. La primera alternativa tiene mayor capacidad, cuenta con una antena de 25 dBi a diferencia de la segunda que requiere de antena externa, asimismo cuenta con más opciones de configuración de canales, teniendo en cuenta que por esta red sólo se enviará la información de una sola cámara, soporta anchos de banda intensivos para servicios como video utilizando un mecanismo de calidad de servicio avanzado. De acuerdo a la comparación se determina la primera alternativa para el equipamiento de la red secundaria.

En la figura 30 se visualiza la topología de conexión de las redes primarias, la cual es una topología árbol, siendo el punto principal la central de monitoreo. En estos puntos se trasmite la información de hasta 4 cámaras de video.

Figura 30: Diagrama de conexión de las redes primarias.

Fuente: Propia

En la figura 31 se visualiza el diagrama de conexiones de los enlaces secundarios, los equipos seleccionados para estas redes son los radios Cambium ePMP Force 110 PTP, equipos para enlaces punto a punto. En estos puntos sólo se transmite la información de 1 cámara de video hacia las redes primarias.

Figura 31: Diagrama de conexión de las redes secundarias.

Fuente: Propia

3.6. Sistema fotovoltaico

El sistema de monitoreo remoto CCTV, está distribuido en 8 ubicaciones remotas, en las cuales se realizará la instalación y conexión de dispositivos, los cuales requieren puntos de alimentación, al encontrarse en zonas alejadas y de difícil acceso, en las que no se cuenta con fluido eléctrico, se ha planteado la implementación de un sistema de energía fotovoltaico.

En la tabla 21 se muestra la lista del consumo de cargas en cada ubicación remota, para poder obtener la potencia total en cada punto y la que consumirán en un día.

UBICACIONES	DISPOSITIVOS	CANT.	POTENCIA (W)	POTENCIA TOTAL (W)	HORAS/ DIA	Energía – E (w/h dia)	Total de consumo E _T (w/h día)
P1 y P2	Cámara IP	1	21	79	24	504	1896
	Equipo radio enlace 1	2	40		24	960	
	Equipo radio enlace 2	1	10		24	240	
	Switch	1	8		24	192	
	Cámara	1	21	59	24	504	
P3 y P4	Equipo radio enlace 1	1	20		24	480	1410
	Equipo radio enlace 2	1	10		24	240	1416
	Switch	1	8		24	192	
P5, P6, P7 Y P8	Cámara	1	15.2		24	364.8	
	Equipo radio enlace	1	10	25.2	24	240	604.8

Fuente propia.

De acuerdo a la tabla 21, se puede observar que las cargas son iguales en algunos puntos, por lo que se realizará el dimensionamiento de 3 sistemas fotovoltaicos.

- Sistema fotovoltaico 1: Se aplicará para los puntos P1 y P2.
- Sistema fotovoltaico 2: Se aplicará para los puntos P3 y P4.
- Sistema fotovoltaico 3: Se aplicará para los puntos P5, P6, P7 y P8.

El sistema fotovoltaico 1 y 2 presentan una potencia total de 1896 y 1416 w/h respectivamente, teniendo en cuenta que la hora solar pico en la zona de Laquipampa es 4.47, el consumo en cada sistema sería 400 y 316.77 watios por lo que el sistema debería tener una potencia acorde a estos consumos. Se ha optado por trabajar con paneles de 150 watios para cubrir esta potencia, tipo policristalino por tener una mayor duración y parte de su rendimiento se mantiene con el tiempo, asimismo se trabajará con un sistema de 24 voltios.

Para la elección del panel se tienen dos alternativas, se muestran 2 opciones de paneles solares en la tabla 22.

ALTERNATIVA	PRIMERA	SEGUNDA	
Equipo	JS150	POLICRISTALINO 150W	
Potencia de salida	150 W	150 W	
Tolerancia potencia de salida	+/- 5%	+/- 5%	
Eficiencia de modulo	15%	15%	
Tensión en potencia máxima	18.5V	18.3V	
Corriente en potencia máxima	8.12A	8.2A	
Corriente en cortocircuito	8.61A	8.69A	
Tensión en circuito abierto	22.9V	22.7V	
Dimensiones	1470mm/680mm/25mm	1482mm/676mm/35mm	
Temperatura de operación	-40 °C a 85°C	-30 °C a 80°C	
Peso	10.8 Kg.	11 kg.	

Tabla 22: Comparación de características de paneles solares 1

Fuente propia

La primera alternativa muestra el panel de la marca YINGLI SOLAR, modelo JS150, y la segunda alternativa de la marca AUTOSOLAR, modelo POLICRISTALINO 150W, ambos modelos presentan una eficiencia de 15%, lo cual disminuye costos de instalación y aumenta el desempeño en la potencia de salida Kwh, tienen la misma tolerancia en potencia de salida de +/- 5%, lo que implica no tener muchas variaciones en los valores de salida. Se logra observar que ambas alternativas cumplen con los requerimientos de instalación. Se elige la primera alternativa por ser un panel más económico y tener un rango de temperatura de operación mayor que la segunda alternativa. El sistema fotovoltaico 3 presentan una potencia total de 604.8 w/h, teniendo en cuenta que la hora solar pico en la zona de Laquipampa es 4.47, el consumo en el sistema sería 135.3 watios por lo que el sistema debería tener una potencia acorde a este consumo. Se ha optado por trabajar con paneles de 100 watios para cubrir esta potencia, tipo policristalino por tener una mayor duración y parte de su rendimiento se mantiene con el tiempo, asimismo se trabajará con un sistema de 24 voltios.

Para la elección del panel se tienen dos alternativas, se muestran 2 opciones de paneles solares en la tabla 23.

ALTERNATIVA	PRIMERA	SEGUNDA		
Equipo	JS100	POLICRISTALINO 100W		
Potencia de salida	100 W	100 W		
Tolerancia potencia de salida	+/- 5%	+/- 3%		
Eficiencia de modulo	15%	14.6%		
Tensión en potencia máxima	17.8V	18.3V		
Corriente en potencia máxima	5.63A	5.46A		
Corriente en cortocircuito	6A	5.79A		
Tensión en circuito abierto	22.1V	22.7V		
Dimensiones	1080mm/680mm/26mm	1482mm/676mm/35mm		
Temperatura de operación	-40 °C a 85°C	-30 °C a 80°C		
Peso	7.69 Kg.	7.5 kg.		

 Tabla 23: Comparación de características de paneles solares 2

Fuente propia

La primera alternativa muestra el panel de la marca YINGLI SOLAR, modelo JS100, y la segunda alternativa de la marca AUTOSOLAR, modelo POLICRISTALINO 100W, el primer modelo presenta una eficiencia de 15%, con respecto a la eficiencia del segundo modelo que es menor, el segundo modelo presenta menor tolerancia en la potencia de salida lo que implica no tener muchas variaciones en los valores de potencia. Se logra observar que ambas alternativas cumplen con los requerimientos de instalación. Se elige la primera alternativa por ser un panel más económico, mejor eficiencia y tener un rango de temperatura de operación mayor que la segunda alternativa.

3.6.1. Sistema fotovoltaico 1

Teniendo el consumo energético diario, procedemos a calcular el consumo energético real utilizando las ecuaciones (23) y (24).

$$R = (1 - K_b - K_c - K_v) x \left(1 - \frac{K_a N}{P_d}\right)$$
 Ecuación (23)

$$E_{(w-h)} = \frac{E_T}{R}$$
 Ecuación (24)

Reemplazando valores se procede a realizar el cálculo del parámetro de rendimiento global, considerando 2 días de trabajo en condiciones de baja irradiación y el 50% de descarga.

$$R = (1 - 0.05 - 0.05 - 0.05)x\left(1 - \frac{0.005 * 2}{0.5}\right) = 0.83$$

El consumo energético real:

$$E_{(w-h)} = \frac{1896}{0.83} = 2284.34w - h$$

Con el consumo energético real, se procede al cálculo de la capacidad de las baterías, considerando 2 días de funcionamiento haciendo uso de la ecuación (25).

$$C = \frac{ExN}{VxP_d} (A - H)$$
 Ecuación (25)

$$C = \frac{2284.34 * 2}{24 * 0.5} = 380.72(A - H)$$

De acuerdo con el resultado necesitamos un banco de baterías de 400 A-h, lo cual se puede obtener con un arreglo de 2 baterías en serie y 2 en paralelo, estas de 12v a 200Ah.

Teniendo en cuenta la radiación solar incidente en Lambayeque de acuerdo con la tabla 24, se toma la irradiación global en condiciones en que la irradiación es baja, es por eso que seleccionamos el mes de junio como la condición más desfavorable, calculamos la hora sol pico con la ecuación (26)

Mes	Irradiación Global (kWh/m2/dia)
Enero	5.70
Febrero	5.55
Marzo	5.84
Abril	5.38
Mayo	4.88
Junio	4.47
Julio	4.48
Agosto	4.91
Septiembre	5.59
Octubre	5.95
Noviembre	5.98
Diciembre	5.86
Promedio Anual	5.38

Tabla 24: Irradiación global promedio en un plano horizontal [kWh/m2/día]

(Gastelo, 2017, pág. 3)

$$HSP = \frac{4470wh/m^2}{1000w/m^2} = 4.47$$

Teniendo la hora solar pico, el número de paneles se determina por la siguiente ecuación (27), se ha elegido el panel solar JS150 el cual cuenta con una potencia de 150W. En la figura 32 se muestran las características técnicas.

CARACTERISTICAS ELETRICAS					
Parâmetros elétricos para as condições padrões (STC)					
Módulo			JS 150		
Tipo de módulo			YLxxxP-17b		
Potência de saída	P _{max}	W	150		
Tolerância potência saída	ΔP _{max}	w	+/- 5		
Eficiência módulo	η"	%	15.0		
Tensão em P _{max}	V _{mpp}	V	18.5		
Corrente em P _{max}	I _{mpp}	Α	8.12		
Tensão em circuito aberto	V _{oc}	V	22.9		
Corrente em curto-circuito	I _{sc}	A	8.61		

CARACTERÍSTICAS ELÉTRICAS

Figura 32: Características del panel solar YL50P-17B (Yingli solar, 2016, pág. 2)

Cantidad de paneles $=\frac{2284.34x1.2}{4.47x150} = 4.08$

Para determinar los paneles que se colocarán en paralelo utilizamos la ecuación (28), y se realiza el cálculo de la corriente del sistema, se indica que este sistema funcionará a 24 voltios.

$$I_{GV} = \frac{2284.34}{24 * 4.47} = 19.29A$$

La corriente nominal del panel es 8.12 Amp.

$$N_p = \frac{19.29}{8.61} = 2.3$$

Los paneles en serie se determinan por la ecuación (30).

$$N_s = \frac{24}{18.5} = 1.4$$

De acuerdo a los cálculos se colocarán 2 paneles en serie y 2 en paralelo.

Para realizar el cálculo de la unidad de control debemos tener en cuenta la corriente máxima del arreglo de los módulos fotovoltaicos, en este caso la corriente máxima en corto circuito del panel es 8.61 Amp., siendo la corriente máxima del arreglo 17.22Amp. Haciendo uso de la ecuación (31), calculamos la corriente para la selección del regulador.

$$I_{SR}(A) = 1.25 * 17.22 = 21.52A$$

Para poder seleccionar el inversor, se debe tener en cuenta la potencia de las cargas instaladas en el sistema fotovoltaico, considerando un margen de seguridad del 25%, se calcula la potencia requerida para el inversor haciendo uso de la ecuación (31)

$$P_{INV}(w) = 1.25 * 79 = 98.75w$$

De acuerdo a los cálculos realizados se elige la unidad de control, se utilizará un controlador de carga MPPT (seguimiento ultrarrápido del punto de máxima potencia), este tipo de controladores utiliza al máximo la eficiencia de un panel solar, por lo que brinda más energía. Se tienen 2 alternativas para la elección del controlador de carga.

La primera alternativa es la marca VICTRON ENERGY, BLUE SOLAR Controlador MPPT 150/35 (12,24/36/48), posee una eficiencia superior al 95% con lo cual el valor de corriente de salida es hasta los 40°C, posee una protección electrónica de alta eficiencia, aplicada en temperaturas altas y reducción de potencia, brinda protección en los paneles solares en situaciones de polaridad inversa y corto circuitos, servicio de compensación en la tensión de carga de flotación y absorción.

La segunda alternativa es de la marca BAUER ENERGY, modelo SR-MC2430, posee una eficiencia de 95%, viene equipado con un módulo de monitoreo de temperatura, lo que garantiza el funcionamiento en altas y bajas temperaturas, permite la conexión de baterías de litio y plomo ácido.

En la tabla 25 se muestra una tabla comparativa de los dos equipos, para poder definir la elección del controlador a instalar.

ALTERNATIVA	PRIMERA	SEGUNDA
Equipo	MPPT150/35	SR-MC2430
Voltaje del sistema	12/24/36/48V	12/24V
Corriente de carga máxima	35A	30A
Potencia nominal	24V:1000W	1040W
Voltaje panel en circuito abierto	150V	100V
Eficacia máxima	98%	95%
Tensión carga de absorción	14.4/28.8/43.2/57.6 V	14.4/28.8 V
Tensión carga en flotación	13.8/27.6/414/55.2 V	13.8/27.6 V

Tabla 25: Comparación de características de controlador de carga 1

Fuente propia

De acuerdo a la tabla 25, se elige la primera alternativa, por tener una mejor eficiencia de 98%, corriente de carga de 35A con respecto a la segunda alternativa, asimismo posee más variaciones para definir el voltaje del sistema. Al instalarse en una red primaria el sistema puede ampliar las cargas a futuro. En la figura 33 se muestra el controlador seleccionado.

MPPT 150/35

Figura 33: Unidad de control

(Ficha técnica Blue Solar, 2018, pág. 1)

De acuerdo a los cálculos realizados se elige el inversor de voltaje adecuado, se utilizará un inversor de onda pura, el cual genera una onda de corriente cuadrada que simula a la onda de corriente real, asimismo deberá tener una potencia 150% mayor a la potencia nominal o máxima. Se tienen 1 alternativa para la elección del inversor de voltaje, ya que comercialmente los distribuidores en nuestro país poseen la marca VICTRON ENERGY.

El inversor seleccionado es el modelo Phoenix 24/375, posee niveles de disparo al detectar alarmas y compensación cuando las baterías llegan a una baja tensión, tensión de salida 210-245V, frecuencia 50-60Hz, posee protección a prueba de cortocircuitos y sobrecalentamiento, alta potencia de arranque. En la figura 34 se muestra el inversor seleccionado.

Figura 34: Inversor de voltaje. (Ficha técnica Blue Solar,2018)

En la figura 35 se muestra el diagrama de conexiones, donde se muestra la conexión de 4 paneles de 12v con conexión en serie y paralelo, conectado a un controlador de carga con conexión al banco de baterías e inversor de voltaje, cumpliendo con los cálculos obtenidos.

Figura 35: Diagrama de sistema fotovoltaico 1. Fuente: Propia

En la tabla 26 se muestra la selección y cantidad de equipos a instalar.

ITEM	EQUIPAMIENTO PRINCIPAL	UNID	CANT
01	Panel Solar Policristalino 36 celdas	Unid.	4
02	Controlador MPPT 150/35	Unid.	1
03	Batería Solar 200Ah / 12vcd	Unid.	4
04	Inversor Onda Pura 24V/350W 230V/60Hz	Unid.	1

Tabla 26: Selección de equipos sistema 1.

Fuente propia

3.6.2. Sistema fotovoltaico 2

Teniendo el consumo energético diario, procedemos a calcular el consumo energético real utilizando las ecuaciones (23) y (24).

Reemplazando valores se procede a realizar el cálculo del parámetro de rendimiento global, considerando 2 días de trabajo en condiciones de baja irradiación y el 50% de descarga.

$$R = (1 - 0.05 - 0.05 - 0.05)x\left(1 - \frac{0.005 * 2}{0.5}\right) = 0.83$$

El consumo energético real:

$$E_{(w-h)} = \frac{1416}{0.83} = 1706.02w - h$$

Con el consumo energético real, se procede al cálculo de la capacidad de las baterías, considerando 2 días de funcionamiento haciendo uso de la ecuación (25).

$$C = \frac{1706.02 * 2}{24 * 0.5} = 284.34(A - H)$$

De acuerdo al resultado necesitamos un banco de baterías de 300 A-h, lo cual se puede obtener con un arreglo de 2 baterías en serie y 2 en paralelo, estas de 12v a 150Ah.

Teniendo la hora solar pico igual a 4.47 el número de paneles se determina por la siguiente ecuación (27), se ha elegido el panel solar YL150P-17B el cual cuenta con una potencia de 150W.

Cantidad de paneles =
$$\frac{1706.02x1.2}{4.47x150}$$
 = 3.33=4 paneles

Para determinar los paneles que se colocarán en paralelo se utilizamos la ecuación (28), y se realiza el cálculo de la corriente del sistema, se indica que este sistema funcionará a 24 voltios.

$$I_{GV} = \frac{1706.02}{24 * 4.47} = 15.90A$$

La corriente nominal del panel es 8.12 Amp.

$$N_p = \frac{15.29}{8.12} = 1.88$$

Los paneles en serie se determinan por la ecuación (30).

$$N_s = \frac{24}{18.5} = 1.4$$

De acuerdo a los cálculos se colocarán 2 paneles en serie y 2 en paralelo.

Para realizar el cálculo de la unidad de control debemos tener en cuenta la corriente máxima del arreglo de módulos fotovoltaicos, en este caso la corriente máxima en corto circuito del panel es 8.61 Amp., siendo la corriente máxima del arreglo 17.22Amp. Haciendo uso de la ecuación (31), calculamos la corriente para la selección del regulador.

$$I_{SR}(A) = 1.25 * 17.22 = 21.52A$$

Para poder seleccionar el inversor, se debe tener en cuenta la potencia de las cargas instaladas en el sistema fotovoltaica, considerando un margen de seguridad del 25%, se calcula la potencia requerida para el inversor haciendo uso de la ecuación (32)
$$P_{INV}(w) = 1.25 * 59 = 73.75w$$

De acuerdo a los cálculos realizados, los valores no tienen mucha diferencia y teniendo en cuenta que el sistema fotovoltaico 1 y 2 pertenecen a la red de enlaces primaria se elige el mismo controlador de carga BLUE SOLAR Controlador MPPT 150/35 (12,24/36/48) VICTRON y el inversor modelo Phoenix 24/375, como se muestra en el diagrama de conexión de la figura 36.

En la tabla 27 se muestra la selección y cantidad de equipos a instalar, en el sistema fotovoltaico 2, perteneciente a la red de enlaces primarias.

ITEM	EQUIPAMIENTO PRINCIPAL	UNID	CANT
01	Panel Solar Policristalino 36 celdas	Unid.	4
02	Controlador MPPT 150/35	Unid.	1
03	Batería Solar 150Ah / 12vcd	Unid.	4
04	Inversor Onda Pura 24V/375W 230V/60Hz	Unid.	1

Fuente propia

3.6.3. Sistema fotovoltaico 3

El consumo energético real:

$$E_{(w-h)} = \frac{604.8}{0.83} = 728.67w - h$$

Con el consumo energético real, se procede al cálculo de la capacidad de las baterías, considerando 1.5 días de funcionamiento haciendo uso de la ecuación (25).

$$C = \frac{728.67 * 1.5}{24 * 0.5} = 91(A - H)$$

De acuerdo al resultado necesitamos un banco de baterías de 100 A-h, lo cual se puede obtener con un arreglo de 2 baterías en serie, estas de 12v a 100Ah.

Calculamos la hora sol pico con la ecuación (26)

$$HSP = \frac{4470wh/m^2}{1000w/m^2} = 4.47$$

Teniendo la hora solar pico, el número de paneles se determina por la siguiente ecuación (27), se ha elegido el panel solar YL100P-17B el cual cuenta con una potencia de 100W.

Parámetros Eléctricos en Condiciones de Prueba Estándar					
Módulo			JS 105	JS 100	
Tipo YL105P-17b 55/78				YL100P-17b 55/78	
Potencia	Pmax	w	105	100	
Tolerancia	ΔP	%	+/- 5	+/- 5	
Eficiencia del Módulo	η_	%	15.0	14.20	
Voltaje a P _{mas}	V.,,,	v	-	17.80	
Corriente a Pmas	1	Α	-	5.63	
Voltaje Circuito Abierto	V	v	-	22.10	
Corriente Corto Circuito	L.	Α		6.00	

.....

> Figura 37: Características del panel solar YL100P-17B (Yingli solar, 2016, pág. 2)

Cantidad de paneles = $\frac{728.67x1.2}{4.47x100}$ = 1.96

Para determinar los paneles que se colocarán en paralelo utilizamos la ecuación (28), y se realiza el cálculo de la corriente del sistema, se indica que este sistema funcionará a 24 voltios.

$$I_{GV} = \frac{728.67}{24 * 4.47} = 6.79A$$

La corriente nominal del panel es 5.63 Amp.

$$N_p = \frac{6.79}{5.63} = 1.1$$

Los paneles en serie se determinan por la ecuación (30).

$$N_s = \frac{24}{17.8} = 1.3$$

De acuerdo a los cálculos se colocarán 2 paneles en serie.

Para realizar el cálculo de la unidad de control debemos tener en cuenta la corriente máxima del arreglo de módulos fotovoltaicos, en este caso la corriente máxima en corto circuito del panel es 6 Amp., siendo la corriente máxima del arreglo 12 Amp. Haciendo uso de la ecuación (31), calculamos la corriente para la selección del regulador.

$$I_{SR}(A) = 1.25 * 12 = 15A$$

Para poder seleccionar el inversor, se debe tener en cuenta la potencia de las cargas instaladas en el sistema fotovoltaico, considerando un margen de seguridad del 25%, se calcula la potencia requerida para el inversor haciendo uso de la ecuación (32)

$$P_{INV}(w) = 1.25 * 25.2 = 31.5w$$

De acuerdo a los cálculos realizados se elige la unidad de control, se utilizará un controlador de carga PWM, al tener una carga menor y sin proyección a incrementar en las redes de enlaces secundarios. Se tienen 2 alternativas para la elección del controlador de carga.

La primera alternativa es la marca VICTRON ENERGY, BLUE SOLAR PWM Light 12/24V, posee la capacidad de realizar desconexión el voltaje de salida en la carga por baja tensión en el banco de baterías, carga de baterías en las etapas de absorción y flotación, brinda protección en la salida de carga ante cortocircuitos y sobre voltaje, tiene una eficiencia superior al 95%, logrando una corriente de salida completa hasta los 50°C, protección en polaridad inversa de los paneles y/o baterías y corto circuitos.

La segunda alternativa es de la marca MUST SOLAR, modelo PC1500B 10-20, posee una detección automática de voltaje, auto compensación por temperatura, protección ante inversión de polaridad en las baterías, protección por sobre voltaje, eficiencia de 95%, obteniendo una corriente de salida hasta los 55°C.

En la tabla 28 se muestra una tabla comparativa de los dos equipos, para poder definir la elección del controlador a instalar.

ALTERNATIVA	PRIMERA	SEGUNDA
Equipo	PWM Light 12/24V	PC1500B 10-20
Voltaje del sistema	12/24V	12/24V
Corriente de carga máxima	20A	20A
Autoconsumo	<10 mA	<13mA
Eficacia máxima	95%	95%

Tabla 28: Comparación de características de controlador de carga 2

Tensión carga de absorción	14.2/28.4 V	14.4/28.8 V
Tensión carga en flotación	13.8/27.6 V	13.8/27.6 V

Fuente	nronio
Fuente	propia

De acuerdo a la tabla 28, ambas alternativas cuentan con una eficiencia de 98%, corriente de carga de 20A, funcionan en sistemas de 12 y 24V; se elige la primera alternativa por contar con autoconsumo inferior a la segunda alternativa. Al instalarse en la red de enlaces secundarios las cargas son mínimas. En la figura 38 se muestra el controlador seleccionado BLUE SOLAR 12/24V 20 Amp.

Figura 38: Unidad de control sistema fotovoltaico 3 (Ficha técnica Blue Solar, 2018)

De acuerdo a los cálculos realizados se elige el inversor de voltaje adecuado, se utilizará un inversor de onda pura, ya que es el que genera una onda de corriente cuadrada similar a una onda de corriente real, asimismo deberá tener una potencia 150% mayor a la potencia nominal o máxima. Se tienen 1 alternativa para la elección del inversor de voltaje, ya que comercialmente los distribuidores en nuestro país poseen la marca VICTRON ENERGY.

El inversor seleccionado es el modelo Phoenix 24/250, posee niveles de disparo al detectar alarmas y compensación ante caídas de voltaje en las baterías, tensión de salida 210-245V, frecuencia 50-60Hz, brinda protección a prueba de cortocircuitos y

temperaturas elevadas, alta potencia de arranque. En la figura 39 se muestra el inversor seleccionado VE DIRECT IEC 24/250.

Figura 39: Inversor de voltaje sistema fotovoltaico 3. (Ficha técnica Blue Solar, 2018)

En la figura 40 se muestra el diagrama de conexión del sistema fotovoltaico 3, donde se puede observar la conexión de 2 paneles en serie, conectados al controlador de carga, con conexión al banco de baterías e inversor de voltaje, el cual energizará los equipos de radio enlace de la red secundaria.

Figura 40: Diagrama de sistema fotovoltaico 3. Fuente: Propia

En la tabla 29, se muestra la selección de equipos elegidos para la instalación del sistema fotovoltaico 3.

ITEM	EQUIPAMIENTO PRINCIPAL	UNID	CANT
01	Panel Solar Policristalino 36 celdas	Unid.	2
02	Controlador PW Light Controller 20amp	Unid.	1
03	Batería Solar 100Ah / 12vcd	Unid.	2
04	Inversor Onda Pura 24V/250W 230V/60Hz	Unid.	1

Fabla 29:	Selección	de equ	iipos s	sistema	fotovoltaico	3.
-----------	-----------	--------	---------	---------	--------------	----

Fuente propia

3.7. Sistema CCTV (Circuito cerrado de televisión)

El sistema CCTV a implementar cumplirá 2 funciones, grabar imágenes y videos durante 60 días, espacio de tiempo en el que se podrán realizar descargas de videos con eventualidades consideradas de importancia, la otra función a cumplir es la vista de imágenes en tiempo real, para así poder prevenir y organizar la gestión efectiva del refugio de vida silvestre Laquipampa.

Se realizará la instalación de 8 cámaras (4 fijas y 8 domos PTZ), ubicadas en los puntos con mayor nivel de índice de actividades en las cuales se tiene que tener suma importancia. El equipo encargado de almacenar y gestionar los videos es el NVR, por lo cual requiere de una capacidad de almacenamiento de acuerdo a los días en que se requiere la grabación, así como los modos de grabación que se puedan dar, como por ejemplo grabaciones por movimiento o eventos.

Para la elección de las cámaras se presentan dos alternativas, AXIS y AVIGILON, marcas reconocidas en sistemas CCTV, para las cámaras PTZ se presenta la siguiente comparación en la tabla 30.

		CECUNDA.
ALIERNATIVA	PRIMERA	SEGUNDA
Equipo	AXIS P5635-E	AVIGILON 2.0W-H3PTZ-DP20
Resolución	1920 x 1080	1920 x 1080
Lente	4.3 – 129 mm	4.7 – 94 mm
Enfoque	Automático	Automático
Carcasa	IP66 – IK 10	IP66 – IK10
Potencia de consumo	20 W	25.5 W
Mínima iluminación / color	0.3 lux	0.4 lux
Mínima iluminación / blanco negro	0.01 lux	0.04 lux
Compresión de video	H264 – MPEG4	H264 – MPEG4
Peso	2.5 Kg.	3.9 Kg.

Fuente propia

De acuerdo a la tabla 30, se elige la primera alternativa por tener mejores características que la segunda, como una mejor de apertura de lente, esencial para vistas con zoom a distancias mayores, posee un menor consumo de potencia, parámetro importante ya que no se cuenta con sistema de energía convencional.

En la figura 41 se muestra el modelo de cámara PTZ seleccionado para la instalación en los puntos primarios P1, P2, P3 y P4.

Figura 41: Cámara Axis5635-E. (Ficha técnica Axis, 2016)

Para las cámaras fijas se presenta la siguiente comparación en la tabla 31.

ALTERNATIVA	PRIMERA	SEGUNDA
Equipo	AXIS Q1765-IE	AVIGILON 2.0W-H3PTZ-DP20
Resolución	1920 x 1080	1920 x 1080
Lente	4.7 – 84.6 mm	4.7 – 22 mm
Enfoque	Automático	Automático
Carcasa	IP66	IP66
Potencia de consumo	12.95 W	22 W
Mínima iluminación / color	0.5 lux	0.4 lux
Mínima iluminación / blanco negro	0.04 lux	0.02 lux
Compresión de video	H264 – MPEG4	H264 – MPEG4
Peso	1.8 Kg.	1.15 Kg.

Tabla 31: Comparación de características de cámara fijas

Fuente propia

De acuerdo a la tabla 31, se elige la primera alternativa por tener mejores características que la segunda, como una mejor de apertura de lente, esencial para vistas con zoom a distancias mayores, posee un menor consumo de potencia, parámetro importante ya que no se cuenta con sistema de energía convencional.

En la figura 42 se muestra el modelo de cámara fija seleccionado para la instalación en los puntos primarios P5, P6, P7 y P8.

Figura 42: Cámara Axis Q1765-LE. (Ficha técnica Axis, 2016) Para realizar el cálculo de almacenamiento utilizamos la aplicación de Axis como se muestra en las figuras 43 y 44, en la cual se ingresan parámetros como el modelo de cámara, cuadros por segundo, resolución, días de almacenamiento, compresión de video y el tiempo de grabación.

Nombre	Modelo	Cantidad Escenario	0
Nuevo producto	AXIS P5635-E	 Patio de o 	colegio 🔹 🔳
Aerfil	0		
Personalizado			
	S Visualización	🔄 Grabación continua	Grabación de eventos
Velocidad de imagen 6	10 *	30 *	30 •
Resolución	1080p *	1090p *	VGA 🔻
Codificación de video	H.264 •	H.264 T	H.264 T
Compresión 6) 30 · · ·	30 *	30 •
Audio 6	Desactivado •	Desactivado 🔹	Desactivado 🔻
Grabación		24 h 🔹	20%
Ancho de banda	1.34 MBit/s	3.13 MBit/s	0 Bit/s

Figura 43: Ingreso de parámetros de cámara. Fuente: Propia

🗰 Plinto

INFORME DE BANDA ANCHA

Proyecto: Nuevo proyecto Fecha: 24/8/2019 Almacenamiento: 60 días

Nombre	Modelo	No	Ver	Grabar	Evento	Almacenamiento
Nuevo producto	AXIS P5635-E	4	5.36 MBit/s	12.5 MBR/s	0 Bit/s	8.12 TB
Nuevo producto	AXIS Q1765-LE	4	5.36 MBit/s	12.5 MBit/s	0 Bit/s	8.12 TB
Resumen de proyec	sto	8	10.7 MBib/s	25.1 MBit/s	0 Bit/s	16.2 TB

Figura 44: Reporte de banda ancha Axis. Fuente: Propia

En la figura 44 se valida el espacio de almacenamiento requerido para el NVR para un tiempo de grabación de 60 días, así como el ancho de banda que consumirá la red de CCTV. De acuerdo a los resultados se requiere un equipo con almacenamiento mínimo de 16TB, esto indica que el NVR tendrá 4 discos duros de 4TB.

3.7.1. Gestión NVR

Para la gestión de video, se instala el software Axxonext de Axis, el cual contará con las licencias suficientes para las cámaras disponibles.

En la figura 45, se visualiza el inicio del software de CCTV, aplicación de la marca Axis, con la cual se empezará a detectar las cámaras que se encuentran en la red y se añadirán al sistema para visualizar las imágenes y almacenarlas, como se muestra en la figura 46 y 47.

eda: 0 de 0	Añadir dispositivo							
Default	Search							
🗧 🖬 1. Madero	📕 🛛 Configuración n	no sapi	ortada	Parámetros para adicionar dis	spositivos			
al 2.Reloj 1 do na re-serve	🛄 🗹 Dispositivos cor	nfigura	edos manualmente) Start with default settings				
Entranel	Dispositivos tot	talmen	te soportados	(i) Guardar configuración actu	lai			
- 2.0.Telemetry	Dispositivos encontrados	s (0):	Filtro:	() Comenzar con los pará		- Añadir todo		
- 🔮 2.0.Microphone - 🗧 2.0.Almacenamiento incorporado	Add device manually:							
📾 3.Reloj 2	Dirección IP P	Puerto	Productor		Username	Vincular al archivo	0	
A Chacuapampa	0000 3	3600	360Vision	v	Auto	Archivo Por Inicio	✓ Auto	
Unallocated servers	Tipo de dispositivo		Model		Password	Recording	Norrbre	
	Dispositivo IP	v	Predator Pred-XX-IP		****	On motion	✓ Auto	
				Para añadir un disposit	tivo pulse el boto	in 土 , para añadir todos,	, el botón Añadir	todos.

Figura 46: Proceso para añadir cámaras. Fuente: Propia

Figura 47: Cámaras agregadas al software. Fuente: Propia

CAPÍTULO 4

RESULTADOS

4.1. Resultados

Para el diseño de la red de monitoreo remoto CCTV, se planteó el diseño e implementación de los sistemas de radio enlace, sistema de energía fotovoltaica y el sistema de CCTV, los cuales ya se encuentran en funcionamiento óptimo. Se mostrarán imágenes y cuadros que validan el funcionamiento de los sistemas en conjunto.

En la tabla 32, 33 y 34 se muestran la relación de los equipos de radioenlace de la red primaria y secundaria que se encuentran en conectividad con las cámaras.

MARCA	UBICACIÓN	FUNCIÓN	DIRECCIÓN IP	FRECUENCIA (MHz)
RADWIN	P1 - Madera	BASE	10.10.0.4	5220
RADWIN	Sede central	SUBSCRIPTOR	10.10.0.5	5220
RADWIN	P2 - Reloj	BASE	10.10.0.6	5180
RADWIN	Sede central	SUBSCRIPTOR	10.10.0.7	5180
RADWIN	Sede central	SUBSCRIPTOR	10.10.0.8	5280
RADWIN	P4 - Reloj 2	BASE	10.10.0.9	5280
RADWIN	P1 - Madero	SUBSCRIPTOR	10.10.0.10	5240
RADWIN	P3 - Chacuapampa	BASE	10.10.0.11	5240

Tabla 32: Dispositivos de radioenlace RVSL Laquipampa red primaria.

Fuente propia.

Tabla 33: Dispositivos de radioenlace RVSL Laquipampa red secundaria.

MARCA	UBICACIÓN	FUNCIÓN	DIRECCIÓN IP	FRECUENCIA (MHz)
CAMBIUM EPMP	P5 - Madero 2	AP	10.10.0.12	5810
CAMBIUM EPMP	P1 - Madero 1	CLIENTE	10.10.0.13	5810
CAMBIUM EPMP	P6 - Lajas	AP	10.10.0.14	5840
CAMBIUM EPMP	P2 - Reloj	CLIENTE	10.10.0.15	5840
CAMBIUM EPMP	P7 - Faiquen	AP	10.10.0.16	5870
CAMBIUM EPMP	P4 - Reloj 2	CLIENTE	10.10.0.17	5870
CAMBIUM EPMP	P8 - Poste Chacua	AP	10.10.0.18	5880
CAMBIUM EPMP	P3 - Chacuapampa	CLIENTE	10.10.0.19	5880

Fuente propia.

Tabla 34: Relación de cámaras instaladas.

MARCA	ΤΙΡΟ	UBICACIÓN	DIRECCIÓN IP
AXXIS	PTZ	P1 - Madero 1	192.168.200.10
AXXIS	PTZ	P2 - Reloj	192.168.200.11
AXXIS	PTZ	P3 - Chacuapampa	192.168.200.12
AXXIS	PTZ	P4 - Reloj 2	192.168.200.13
AXXIS	Bullet	P5 - Madera 2	192.168.200.14
AXXIS	Bullet	P6 - Lajas	192.168.200.15
AXXIS	Bullet	P7 - Faiquen	192.168.200.16
AXXIS	Bullet	P8 - Chacuapampa	192.168.200.17

Fuente propia.

4.1.1. Sistema de radioenlace

Se realiza la validación de conectividad mediante IP scanner desde la central de monitoreo y se logra detectar las 8 cámaras en el segmento 192.168.200.x, confirmando el funcionamiento de los radioenlaces, como se muestra en la imagen 48. Igualmente se valida la conectividad de los radioenlaces que se encuentran en el segmento 10.10.0.x, como se muestra en la figura 49.

	ner v1.5							
ile Commands C	ptions H	elp						
🆢 🔜 🖻 🖉	× 🕵 🛛	🔊 🖪 🚨 🛛	2 💈	2 🖸 💽 🧕				
lect range: 192.16 e this name to get IP:	38.200.1 DESKTOP	to 132.168.20 P-OMNRVFQ	Rast fast	ADMIN® ote control softwa t. secure. afford	are dable.			
an results:	31 .							
2	Chables	Name	Ding	NotPIOS upor	NotPIOS comp	NotPIOS group	MAC address	Commo
1	Status	Name	Ping	NetBIOS user	NetBIOS comp	NetBIOS group	MAC address	Comme
192.168.200.10	Status alive	Name C/R	Ping 154	NetBIOS user Madero 1	NetBIOS comp	NetBIOS group	MAC address	Comme
192.168.200.10 192.168.200.11	Status alive alive	Name C/R C/R	Ping 154 154	NetBIOS user Madero 1 Reloj 1	NetBIOS comp	NetBIOS group	MAC address 00-00-00-00-00-00	Comme
192.168.200.10 192.168.200.11 192.168.200.12	Status alive alive alive	Name C/R C/R C/R	Ping 154 154 140	NetBIOS user Madero 1 Reloj 1 Chacuapampa	NetBIOS comp	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00-00	Comme
192.168.200.10 192.168.200.11 192.168.200.12 192.168.200.12 192.168.200.13	Status alive alive alive alive	Name C/R C/R C/R C/R	Ping 154 154 140 140	NetBIOS user Madero 1 Reloj 1 Chacuapampa Reloj 2	NetBIOS comp	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00-00 00-00-	Comme
192.168.200.10 192.168.200.11 192.168.200.12 192.168.200.12 192.168.200.13	Status alive alive alive alive alive	Name C/R C/R C/R C/R C/R	Ping 154 154 140 140 140	NetBIOS user Madero 1 Reloj 1 Chacuapampa Reloj 2 Madera 2	NetBIOS comp	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00-00 00-00-	Comme
192.168.200.10 192.168.200.11 192.168.200.12 192.168.200.13 192.168.200.14 192.168.200.14	Status alive alive alive alive alive alive	Name C/R C/R C/R C/R C/R C/R	Ping 154 154 140 140 140 158	NetBIOS user Madero 1 Reloj 1 Chacuapampa Reloj 2 Madera 2 Lajas	8 CAMA	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00-00 00-00-	Comme
192.168.200.10 192.168.200.11 192.168.200.12 192.168.200.13 192.168.200.14 192.168.200.15 192.168.200.16	Status alive alive alive alive alive alive alive	Name C/R C/R C/R C/R C/R C/R C/R	Ping 154 154 140 140 140 158 76	NetBIOS user Madero 1 Reloj 1 Chacuapampa Reloj 2 Madera 2 Lajas Faiquen	NetBIOS comp	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00 00-00-	Comme
192.168.200.10 192.168.200.11 192.168.200.12 192.168.200.13 192.168.200.14 192.168.200.15 192.168.200.16 192.168.200.17	Status alive alive alive alive alive alive alive alive	Name C/R C/R C/R C/R C/R C/R C/R C/R	Ping 154 154 140 140 140 158 76 76	NetBIOS user Madero 1 Reloj 1 Chacuapampa Reloj 2 Madera 2 Lajas Faiquen Chacuapampa 2	8 CAMA	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00-00 00-00-	Comme
192.168.200.10 192.168.200.11 192.168.200.12 192.168.200.13 192.168.200.14 192.168.200.15 192.168.200.16 192.168.200.75	Status alive alive alive alive alive alive alive alive alive	Name C/R C/R C/R C/R C/R C/R C/R C/R C/R DESKTOP-0M	Ping 154 154 140 140 140 158 76 76 76 0	NetBIOS user Madero 1 Reloj 1 Chacuapampa Reloj 2 Madera 2 Lajas Faiquen Chacuapampa 2	8 CAMA	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00 00-00-	Comme
9 9 9 9 9 9 9 9 9 9 9 9 9 9	Status alive alive alive alive alive alive alive alive alive alive	Name C/R C/R C/R C/R C/R C/R C/R DESKTOP-0M C/R	Ping 154 154 140 140 140 158 76 76 0 0	NetBIOS user Madero 1 Reloj 1 Chacuapampa Reloj 2 Madera 2 Lajas Faiquen Chacuapampa 2	8 CAM	NetBIOS group	MAC address 00-00-00-00-00-00 00-00-00-00-00 00-00-	Comme

Fuente: Propia

🛃 Advanced IP Scan	ner v1.5							
File Commands	Options He	lp						
👺 🔜 🖻 💈	k 🕵 🛛	😼 🚊 🛛	P 😰	0 💽 🖸]			
		R	RA remote fast.	e control softw secure. affor	are dable.	NGO DE IP EAR PARA	A LAS	
Select range: 10 . 1	10.0.1	to 10.10.	D . 255	Scan		US SERA D	E	
Use this name to get IP:	DESKTOP				10.10).0.1 A 10.	10.0.255	
Scan results:								
IP	Status	Name	Ping	NetBIOS user	NetBIOS comp	NetBIOS group	MAC address	Comment
🧶 10.10.0.4	alive	C/R	1	1			00-00-00-00-00-00	
🧖 10.10.0.5	alive	C/R	1	SE DEBE	N CONTAR	16	00-00-00-00-00-00	
쿚 10.10.0.6	alive	C/R	149				00-00-00-00-00-00	
🧟 10.10.0.7	alive	C/R	4	DIRECCI	ONES IP		00-00-00-00-00-00	
🐙 10.10.0.8	alive	C/R	4	PARA A	SEGURAR		00-00-00-00-00-00	
🐙 10.10.0.9	alive	C/R	177				00-00-00-00-00-00	
💯 10.10.0.10	alive	C/R	1	QUE EL S	SISTEMA		00-00-00-00-00-00	
🧟 10.10.0.11	alive	C/R	1	FUNCIO	NF		00-00-00-00-00-00	
2 10.10.012	alive	C/B	1	1 Oncio			00-00-00-00-00-00	
10.10.0.13	alive	C/R	1	ADECUA	DAMENTE		00-00-00-00-00-00	
2 10 10 0 14	alive	C/B	202				00-00-00-00-00-00	
10 10 0 15	alive	C/B	148	$< \square$			00-00-00-00-00-00	
10 10 0 16	alive	C/B	264				00-00-00-00-00-00	
10 10 0 17	alive	C/B	194				00-00-00-00-00-00	
10 10 0 18	alive	C/B	194				00-00-00-00-00-00	
10 10 0 19	alive	C/B	194				00-00-00-00-00-00	
<u>4</u> 10 10 0 230	alive	DESKTOP-0M	0 .			I EC	00-00-00-00-00-00	
	GITO	e zorer offille	ଁ <		A DIRECCIUI	V ES		
				DE N	/II PC			

Se ingresa a la plataforma de los enlaces de la red primaria para confirmar el acceso para la administración de los enlaces, como se muestra en la figura 50.

RT-B	(HSU) Config	uration MADERA	8
Backup	Restore >	🕐 Buzzer Off 🕨	C Refresh
System	Description	Wireless Link	
Air Interface	ObjectID	1.3.6.1.4.1.4458.20.6.1.2	
	Name	MADERA	
Tx & Antenna	Contact	cesar	
Management	Location	LAQUI	Coordinates)
Inventory	Last Power Up	5/8/2018 7:26:09 AM	
Security			
Date & Time			
Ethernet	_		
Operations	OF	Cancel	Apply

Figura 50: Interfaz de radwin. Fuente: Propia

De igual manera se ingresa vía web a la plataforma de los enlaces de la red secundaria, para confirmar el acceso y administración de los enlaces, como se muestra en la figura 51.

C () () http://10.10.0.17/		- 0 Duscar					
Cambium Networks ePMP 1000 ePMP1000_d43022	Subscriber Module		2	0 0	2		Administrator
A Home	Home						
A Quick Start	Device Name	ePMP1000_d43022		١	Vireless MAC Address	00:04:56:D4:30:23	3
	Operating Frequency	5760 MHz		E	thernet MAC Address	00:04:56:D4:30:22	2
Configuration -	Operating Channel Bandwidth	20 MHz			IP Address	10.10.0.17	
-Monitor-	Transmitter Output Power	19 dBm			Date and Time	04 Sep 2015, 00:4	5:08 PET
F Tarl	Antenna Gain	5 dBi			System Uptime	3 days, 0 hour, 45	minutes, 12 seconds
TOOIS	Country	Other			System Description		
	Subscriber Module Mode	Standard WiFi			Registered AP SSID	P4-P7	
	Network Mode	Bridge		Regist	ered AP MAC Address	00:04:56:D4:30:97	7.
	Downlink RSSI	-64 dBm			Device Coordinates	12	
	Downlink SNR	32 dB			Ethernet Status	100 Mbps / Full	
	Uplink MCS	MCS 15			Wireless Status	Up	
	Downlink MCS	MCS 15					
	cnMaestro Remote Management	Enabled					
	cnMaestro Connection Status	Cambium-ID Not Configured					
	cnMaestro Account ID	-					

Figura 51: Interfaz web cambium. Fuente: Propia

Se realiza un ping de conectividad hacia la dirección IP 192.168.200.10, ubicación P1, teniendo respuesta satisfactoria de conexión.

En la tabla 35 se muestra las pruebas realizadas para validar el envío de video desde los puntos remotos a la central de monitoreo.

TIPO	UBICACIÓN	DIRECCIÓN IP	IMAGEN	TIEMPO DE RESPUESTA	MOVILIDAD PTZ
PT7	P1 - Madero 1	192 168 200 10			CON LEVE
112		192.100.200.10	Continua	154ms	RETARDO
		102 169 200 11			CON LEVE
PTZ	P2 - Reloj	192.108.200.11	Continua	154ms	RETARDO
		102 169 200 12			CON LEVE
PTZ	P3 - Chacuapampa	192.108.200.12	Continua	140ms	RETARDO
		102 169 200 12			CON LEVE
PTZ	P4 - Reloj 2	192.108.200.15	Continua	140ms	RETARDO
		192 168 200 1/			
Bullet	P5 - Madera 2	192.108.200.14	Continua	140ms	NO APLICA
		192 168 200 15			
Bullet	P6 - Lajas	192.100.200.19	Continua	158ms	NO APLICA
		192 168 200 16			
Bullet	P7 - Faiquen	152.100.200.10	Continua	76ms	NO APLICA
Bullet	P8 - Chacuapampa	192.168.200.17	Continua	76ms	NO APLICA

Tabla 35:	Pruebas de	conectividad.
Tublu 00.	1 100000 00	oonootiviada.

Fuente propia

En la figura 52 se muestra la instalación del sistema de radio enlace en un nodo primario.

Figura 52: Sistema de radioenlace. Fuente: Propia

4.1.2. Sistema de energía fotovoltaica.

El sistema de energía fotovoltaica se implementó en cada ubicación remota, logrando capturar la energía de la irradiación solar a través de los paneles y convertirla a energía alterna, obteniendo un sistema de alimentación óptima, resultado de este funcionamiento es la operatividad de la red de radioenlaces y el sistema de cámaras de video vigilancia, dispositivos que ya pueden visualizar y enviar información hacia el grabador NVR, para la administración de esta información.

En la tabla 36 se muestra los voltajes de operación entregado por cada etapa del sistema de energía fotovoltaica, los cuales cumplen con los rangos de operación de los dispositivos conectados.

UBICACIÓN	VOLTAJE PANELES(VDC)	VOLTAJE BANCO DE BATERÍAS (VDC)	VOLTAJE SALIDA UNIDAD DE CONTROL (VDC)	VOLTAJE SALIDA INVERSOR (VAC)
P1 - Madero 1	25.6	25.3	24.2	223.2
P2 - Reloj	25.8	25.1	24.1	224.2
P3 - Chacuapampa	24.9	24.8	24.1	222.6
P4 - Reloj 2	27	24.7	24.1	221.5
P5 - Madera 2	26.6	24.2	24.4	2214
P6 - Lajas	26.3	24.2	24.3	222.1
P7 - Faiquen	24.5	24.6	24.3	222.5
P8 - Chacuapampa	24.9	25.1	24.2	221.6

Tabla 36: Cuadro de voltajes.

Fuente propia

En la figura 53 se observa un sistema de energía fotovoltaico instalado en las ubicaciones remotas.

Figura 53: Sistema de energía fotovoltaico. Fuente: Propia

4.1.3. Sistema CCTV

Las cámaras IP que conforman el sistema de monitoreo remoto CCTV, fueron instaladas en exteriores en las ubicaciones remotas, logrando su funcionamiento al conectarse al sistema de energía fotovoltaico y el sistema de radioenlaces, logrando el envío de imágenes en tiempo real hacia la central de monitoreo. En la figura 54 se muestra el grabador NVR instalado en gabinete de comunicaciones.

Figura 54: Grabador NVR. Fuente: Propia

Este sistema tiene la capacidad de operar en exteriores, debido a que las cámaras instaladas cuentan con una carcasa metálica con protección IP66 y NEMA4x, lo que garantiza la operatividad del sistema. En la figura 55 se muestra una cámara IP PTZ en una de las ubicaciones remotas instalada sobre torre de telecomunicaciones ventada.

Figura 55: Cámara IP PTZ instalada. Fuente: Propia

El sistema de monitoreo remoto CCTV, será supervisado por un centro de control, el cual se encargará del monitoreo constante y la administración de las imágenes en tiempo real y grabado, permitiendo así poder responder efectivamente ante cualquier eventualidad que pueda ocurrir en las ubicaciones remotas. En la figura 56 se visualiza el centro de control para el monitoreo de imágenes captadas.

Figura 56: Centro de control Fuente: Propia

Se realizan pruebas de video, siendo estas satisfactorias, como se muestra en la figura 57, donde se puede observar imágenes de las 8 ubicaciones remotas con la resolución adecuada para el constante monitoreo.

Figura 57: Cámaras en operación de día. Fuente: Propia

En la figura 58, se valida la operatividad de las cámaras en horarios nocturnos, lo que confirma la funcionalidad de los filtros infrarrojos para poca o nula iluminación.

Figura 58: Cámaras en operación nocturna. Fuente: Propia

4.2. Presupuesto

La siguiente tabla 37 hará referencia a los costos que se generaron para el desarrollo del sistema de monitoreo remoto CCTV en el refugio de vida silvestre Laquipampa.

ITEM	REF	DESCRIPCIÓN	UNIDAD	CANTIDAD	VALOR UNITARIO	VALOR TOTAL
		EQUIPAMIENTO Y MATERIALES				
Α		EQUIPAMIENTO PARA CENTRAL DE MONITOREO				\$ 20,897.11
В		CABLEADO ESTRUCTURADO CENTRAL DE MONITOREO				\$ 5,518.69
С		CAMARAS DE VIDEO VIGILANCIA				\$ 24,789.93
D		SOLUCION DE RADIOENLACES				\$ 33,343.95
E		SOLUCION DE PANELES SOLARES (PUNTOS PRIMARIOS)				\$ 16,147.61
F		SOLUCION DE PANELES SOLARES (PUNTOS SECUNDARIOS)				\$ 7,784.23
G		SERVICIOS DE INSTALACION	GLB	1.00		\$ 27,586.63
					SUBTOTAL	\$ 136,068.15
					IGV 18%	\$ 24,492.27
					TOTAL	\$ 160,560.42

Tabla 37: Presupuesto equipamiento e instalación.

Fuente propia.

CONCLUSIONES

- En este informe de suficiencia profesional se diseñó e implementó la red de monitoreo remoto CCTV con el uso de energía fotovoltaica en el refugio de vida silvestre Laquipampa, con el cual se logra la captación de imágenes de las especies existentes en el refugio así como de nuevas especies, se obtiene un mejor control de las áreas que son producto de deforestación, así como mejorar los tiempos de respuesta ante posibles desastres naturales, logrando una gestión efectiva de las áreas naturales del refugio. El sistema de monitoreo solo abarca un 25% del refugio de vida silvestre en 8 ubicaciones estratégicas.

- Se diseñó e implementó el sistema de radioenlaces, para ser utilizado como el medio de transmisión de video desde las cámaras ubicadas en puntos remotos hacia la central de monitoreo, mediante cálculos matemáticos y simulación en el software de radio mobile para garantizar la transmisión de datos en tiempo real, logrando garantizar líneas de vista en las coordenadas suministradas. Se implementaron 8 radio enlaces inalámbricos en una topología tipo árbol, con enlaces punto a punto debido a la geografía del lugar, divididos en 4 redes primarias y 4 secundarias de acuerdo al tráfico de datos que trasmitirán las señales de video desde las ubicaciones remotas al centro de monitoreo, se garantizó que los radioenlaces obtengan interconexión mediante el uso de la aplicación radio mobile, con la cual se verificaron que existan líneas de vistas libres

entre los puntos transmisores y receptores, así como los niveles de recepción de señal sean los adecuados.

- Se implementó el sistema de energía fotovoltaica mediante un dimensionamiento de equipos a base de los cálculos matemáticos de acuerdo a las cargas que cada sistema tiene que soportar, eligiendo el equipamiento necesario para garantizar la operatividad de los dispositivos en condiciones en las que la irradiación solar será mínima. Se implementó 3 tipos de sistemas de energía fotovoltaico instalados en 8 ubicaciones remotas, los cuales soportarán cargas de 79, 59 y 25.2 watts con una funcionalidad de 24 horas al día mediante arreglos de paneles solares de 150 y 100 Wp con conexión en paralelo y serie de acuerdo a la potencia de la carga conectada en cada ubicación remota; de acuerdo a los cálculos realizados se instaló un banco de baterías que garantiza la funcionalidad del equipamiento las 24 horas al día mediante la conexión de un controlador de carga y un inversor de voltaje el cual suministra la intensidad de corriente y voltaje alterno con el que funcionan los equipos de radioenlace y CCTV.

- Se implementó un sistema CCTV con cámaras capaces de operar en ambientes exteriores y visualización cuando el nivel de luminosidad es mínimo o nulo con la capacidad de los filtros infrarrojos que posee cada cámara, así como la protección IP66, conectadas a través de una red local de enlaces inalámbricos a un grabador NVR, con capacidad de almacenar hasta 60 días de vídeo, tiempo que puede ser superior de acuerdo a la actividad en cada ubicación remota. Se implementaron 4 cámaras PTZ para los puntos de las redes primarias y 4 cámaras bullet fijas para los puntos de las redes primarias y 4 cámaras bullet fijas para los puntos de las redes secundarias, ubicaciones con mayor afluencia de actividad, con las cuales se ha logrado la captura de imágenes en horarios nocturnos y diurnos mediante la aplicación Axxonext, software de la plataforma Axis, monitoreado por operadores en un centro de control, con proyección a crecimiento de cámaras a través de licencias. Se ha logrado captar imágenes de las especies del refugio en su hábitat natural, con estas imágenes se espera incrementar el 30% del área que ya es destinada al turismo.

RECOMENDACIONES

 En caso de presentar inconvenientes en el sistema se recomienda la revisión técnica por personal especializado o capacitado en sistemas de CCTV, radio enlaces y sistemas fotovoltaicos.

 No realizar modificaciones en las configuraciones de los equipos, esto podría ocasionar perdidas o distorsiones en las señales de video.

 Se debe tener en cuenta un plan de mantenimiento preventivo para los equipos que se encuentran en las ubicaciones remotas, esto garantizará un mejor rendimiento del sistema.

- En este tipo de sistemas de comunicación por radio enlace es necesario contar con un sistema de energía alterno, ante una interrupción o falla del sistema eléctrico, por lo que se debe solventar este problema considerando otras alternativas para que el correcto funcionamiento del sistema no se vea interrumpido.

- Se debe tener en cuenta el uso de seguridad en las redes inalámbricas para evitar que la red permita accesos no deseados y poder brindar seguridad a la información.

- El uso de equipos de marcas reconocidas garantiza que el proyecto no fracase por la buena calidad de estos.

- Se recomienda la instalación de un mayor número de cámaras para poder monitorear más áreas del refugio de vida silvestre.

BIBLIOGRAFÍA

Vela Remache P. (2015). Estudio y diseño de un radio enlace para transmisión de datos, e internet en frecuencia libre para la cooperativa indígena "Alfa y Omega" utilizando equipos Airmax Ubiquiti. Quito – Ecuador.

Obtenido de https://bibdigital.epn.edu.ec/bitstream/15000/10776/1/CD-6315.pdf

Monteros Mejía J. (2015). *Diseño de un sistema de video – vigilancia inalámbrica para la ciudad de Cayambe*. Quito – Ecuador.

Obtenido de https://bibdigital.epn.edu.ec/bitstream/15000/10648/1/CD-6285.pdf

Márquez Tocas J. (2015). Implementación de sistemas para la atención de emergencias en La Municipalidad distrital de Belén en la ciudad de Iquitos. Lima – Perú.
Obtenido de http://repositorio.utp.edu.pe/bitstream/UTP/257/1/0720576.pdf

Ubierna O. (2017). Video vigilancia inalámbrica en municipalidades. Madrid - España Obtenido de https://comunicacionesinalambricashoy.com/wireless/videovigilancia-inalambrica-en-municipalidades/

Rueda Quiroga E. (2017). Sistema de alimentación dual conmutada con energía solar para sistema de CCTV. Bogotá - Colombia

Obtenido de https://repository.ucatolica.edu.co/bitstream/10983/14673/1/ Sistema-alimentación-dual-conmutada-con-energía-solar-para-sistema-CCTV.pdf

Duran Vargas M., López Vargas A. & Prada Morante C. (2018). Diseño de un sistema de video vigilancia por medio de enlaces microondas para la empresa DISAM Sucursal Santa Marta. Magdalena – Colombia.

Obtenido de:

https://repository.ucc.edu.co/bitstream/20.500.12494/6175/1/2018_diseño_siste ma_vigilancia.pdf

- Martí Martí S. (2013). Diseño de un sistema de televigilancia sobre IP para el edificio CRAI de la Escuela Politécnica Superior de Gandia. Gandia - España Obtenido de https://riunet.upv.es/bitstream/handle/10251/34082/memoria.pdf
- Peláez Salvador J. (2013). Diseño de un sistema de video vigilancia IP para la Corte
 Superior de Justicia La Libertad. Trujillo Perú
 Obtenido de https://es.scribd.com/document/244305250/Diseno-de-un-Sistema-

de-Video-Vigilancia-IP-para-la-Corte-Superior-de-Justicia-pdf

Arapa Arapa G. & Condori Sucapuca G. (2013). Diseño e implementación de un prototipo para un sistema de video vigilancia utilizando wifi en el estándar 802.11n para la ciudad de Juliaca. Puno – Perú.

Obtenido de http://repositorio.unap.edu.pe/handle/UNAP/1788

 Poma Choque L. (2015). Diseño e implementación de un radioenlace de microondas en Achocalla y Aranjuez del departamento de La Paz. La Paz – Bolivia.
 Obtenido de https://es.scribd.com/document/377580104/Diseno-e-

Implementacion-de-Un-Radioenlace-De

- Tomasi W. (2003). Sistemas de comunicaciones electrónicas cuarta edición. México. Obtenido de http://fernandoarciniega.com/books/sistemas-de-comunicacioneselectronicas-tomasi-4ta-edicion.pdf
- Portabella Cilveti I. (2010). Proceso de creación de una planta solar fotovoltaica conectada a red. Barcelona España.

Obtenido de https://docplayer.es/5817906-Proceso-de-creacion-de-una-plantasolar-fotovoltaica-conectada-a-red.html Zuñiga Nuñez T. & Cruz Orneta V. (2013). Diseño de sistemas de energía solar fotovoltaica – Aplicación en el Perú. Lima – Perú.
 Obtenido de file:///C:/Users/CIV/Downloads/935-Texto%20del%20art%C3%ADculo-2055-1-10-20170918.pdf

Moreno Martín A. (2016). Dimensionado de una instalación fotovoltaica para una vivienda rural aislada. Leganés – España.

Obtenido de https://e-archivo.uc3m.es/handle/10016/24317#preview

López Ruiz P. (2015). Diseño de una instalación solar fotovoltaica para el suministro de energía eléctrica de una vivienda aislada. Cataluña – España.

Obtenido de http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2317pub.pdf

Galarza Valarezo G., Gordillo Vera C. & Rivera Cáceres C. (2012). Implementación de energía solar y estudio de la energía eólica en Puerto Roma. Guayaquil – Ecuador.

Recuperado de https://dspace.ups.edu.ec/bitstream/123456789/2106/11/UPS-GT000288.pdf

- Gonzáles Peñafiel G., Zambrano Manosalvas J. & Estrada Pulgar E. (2014). Estudio diseño e implementación de un sistema de energía solar en la comuna Puerto Roma de la Isla Mondragón del Golfo de Guayaquil, Provincia del Guayas. Guayaquil – Ecuador.
 - Obtenido de https://dspace.ups.edu.ec/bitstream/123456789/6553/1/UPS-GT000602.pdf

Yacelga Cusín J. (2017). Estudio de factibilidad y diseño de una red inalámbrica isp, para proveer servicio de internet en las comunidades de la cuenca del lago San Pablo. Quito – Ecuador.

Obtenido de http://repositorio.puce.edu.ec/handle/22000/13691

Cieza Coronado J. (2017). Dimensionamiento de un sistema fotovoltaico para las instalaciones de alumbrado en el hostal Lancelot ubicado en Chiclayo – Chiclayo – Lambayeque. Lambayeque – Perú.

Obtenido de http://repositorio.unprg.edu.pe/handle/UNPRG/1919

Gastelo Roque J., Morales Acevedo A. & Tineo Soto J. (2017). Estimación de la radiación solar diaria y ángulos de inclinación óptimos para Lambayeque (Perú) utilizando el modelo Hargreaves – Samani. Lambayeque – Perú.

Obtenido de http://revistas2.unprg.edu.pe/ojs/index.php/RC/article/view/53/39

Buettrich S. (2007). Cálculo de radioenlace. Perú.

Obtenido de http://www.itrainonline.org/itrainonline/mmtk/wireless _es/files/06_es_calculo-de-radioenlace_guia_v02.pdf

SERFOR (2016) Plan Nacional de conservación de la pava aliblanca, período 2016-2021. Lima – Perú.

Obtenido de https://www.serfor.gob.pe/wp-content/uploads/2018/10/PLAN-Conservaci%C3%B3n-de-la-Pava-Aliblanca_Versi%C3%B3n-Final.pdf

Defensa civil (2016). Incendio forestal en la región Lambayeque afecta al distrito de Incahuasi. Lima – Perú.

Obtenido de

http://sinpad.indeci.gob.pe/sinpad/emergencias/Evaluacion/Reporte/rpt_eme_sit uacion_emergencia.asp?EmergCode=00079697

Ministerio de energía y minas (2008). Atlas eólico del Perú.

Obtenido de

https://www.osinergmin.gob.pe/seccion/centro_documental/Institucional/Estudio

s_Economicos/Otros-Estudios/Atlas-Eolico/AtlasEolicoLibro.pdf

Atenuación de cables coaxiales (2018). RF Electronik.

Especificaciones técnicas Radwin 2000 (enero de 2016). RADWIN.

Especificaciones técnicas Altelix AD-M2 Series (octubre de 2017). ALTELIX

Especificaciones técnicas Force 110 PTP (20189. CAMBIUM

Especificaciones técnicas JS 100 series (2016). YINGLI SOLAR

Especificaciones técnicas JS 150 series (2016). YINGLI SOLAR

Especificaciones técnicas controlador de carga MPPT 150/35 (2018). VICTRON ENERGY.

Especificaciones técnicas controlador de carga PWM Light 12/24v (2018). VICTRON ENERGY.

Especificaciones técnicas inversores Phoenix (2018). VICTRON ENERGY.

Especificaciones técnicas Axis P5635-E PTZ (2016). AXIS COMUNICATIONS.

Especificaciones técnicas Axis Q1765-LE (2016). AXIS COMUNICATIONS.

ANEXOS

ANEXO 1: Diagrama de red – sistema monitoreo CCTV

ANEXO 2: Diagrama unifilar sistema fotovoltaico 1

Product Specifications:

Configuration											
Architecture	Outdoor Unit connectorized for external antenna (2 x N-type)										
PoE to ODU Interface	Outdoor CAT-5e	tdoor CAT-5e; Maximum cable length: 100m for 10/100BaseT and 75m for 1000BaseT									
Radio											
Max Capacity 750 Mbps net aggregate throughput											
Range	Up to 120 km / 75 miles										
Channel Bandwidth	Configurable: 10, 20, 40, 80 MHz (for the default band)										
Modulation	MIMO-OFDM (BPSK/QPSK/16QAM/64QAM/256QAM)										
Adaptive Modulation, Coding &	Supported										
Channel BW											
Automatic Channel Selection	Supported upon power up										
DFS	Not Supported										
Diversity	Supported										
Spectrum Viewer	Supported										
Max Tx Power	25 dBm										
Duplex Technology	TDD										
Error Correction	FEC k = 1/2, 2/3, 3/4, 5/6										
Encryption	AES 128; FIPS 197										
Support Indoor units	RADWIN POE devices (RW-9921-101X)										
Uplink / Downlink Allocation	Configurable: Symmetric or Asymmetric										
005	oS Parket classification to 4 priority queues according to 802 1P or Diffeory										
VLAN Support	Support \$20210_0in0_d094.VLANs										
TDD Intra Site Synchronization	Intrastite Synchronization Supported										
TDD Inter Site Synchronization	Supported throu	igh common GPS	receiver per site								
Supported Bands	- Supported through		receiver per site								
Band	CBW 10MHz	CBW 20MHz	CBW 40MHz	CBW 80MHz	Radio Compliance						
	[GHz]	[GHz]	[GHz]	[GHz]							
5.1 GHz Universal	5.145-5.340	5.140-5.345	5.130-5.355	5.130-5.375	Universal						
5.4 GHz Universal (default)	5 470-5 725	5 465-5 730	5 455-5 740	5 455-5 760	Universal						
5.8 GHz FCC/IC	5,730-5,845	5,730-5,845	5.730-5.845	5,730-5,845	FCC 47CFR Part 15.247: IC R55-210						
5.0 6.12 1 66,16	2.120 2.042	2.720 2.042	5.825-5.875	2	WPC (India) G.S.R. 38(E) dated 19						
5.8 GHz WPC	5.825-5.875	5.825-5.875		-	January, 2007 Notification						
5.9 GHz Universal	5.725-5.955	5.720-5.960	5.710-5.970	5.710-5.990	Universal						
6.0 GHz Universal	5 695-6 055	5 690-6 060	5 680-6 070	5 680-6 090	Universal						
5.8 GHz MII	5,735-5,840	5,730-5,845	5.720-5.855	5,700-5,875	CMIIT RTA						
Mechanical											
ODU Dimensions	28(w) x 19 5(h)	x 8(d) cm									
ODU Weight	2.4 kg / 5.29 lbs	(of a) cm									
Power											
Power Feeding	Power provided	over ODU-IDU ca	hle								
Power Consumption	<20W										
Environmental	-2011										
Operating Temperatures	-35°C to 60°C /-	31°E to 140°E									
Humidity	100% condensing IP67 (totally protected against dust and against immersion up to 1m)										
Safety	20070 Condensa	B, it of (cotaily p	orected against a	use and ugamsen	inicial of the any						
ECC/IC (cTUVus)											
FTSI	Fill En/IEC 6090-1 Fill En/IEC 6090-1 Fill En/IEC 6090-1 Fill Fill										
FMC											
FCC 47 CFR Class B. Part15. Subpart B.											
FTSI		arcas, subpdit b									
	EN 300 386 EN	301 489-1 EN 30	1 489-4								
CAN/CSA-CEI/IEC	EN 300 386, EN	301 489-1, EN 30	1 489-4								

Ordering Info

Part Number: RW-2954-D200 Description: RADWIN 2000 D-Plus ODU, connectorized for external antenna (2 x N-type), supporting multi frequency bands at 5.x GHz, factory default 5.4 GHz Universal.

Corporate Headquarters, T. +972.3.766.2900, E. sales@radwin.com, www.radwin.com The RADWIN name is a registered trademark of RADWIN Ltd. @ All rights reserved, November, 2016 DS RW-2954-D200/11.16

ANEXO 6: Hoja de datos antena Altelix.

MIMO Antenna Kits

Each of these Dish antennas are also available in Altelix's MIMO antenna kits. These kits are designed for use with radios such as the Rocket® 5, Rocket® M2 and UniFi® UAP-AC-M from Ubiquiti®, BaseBox® 5, BaseBox® 2, NetBox® 5 and NetMetal® 5 from MikroTik and the Mimosa C5c. Each kit includes:

- (1) Altelix M2 Series MIMO Dish Antenna
- (1) Radio Mounting Bracket
- (2) RP-SMA Male to N Male Low Loss cable assemblies

Altelix AD-M2 Series

Specifications

	1			
Model	AD4958G25M2-NF	AD5158G30M2-NF	AD5158G34M2-NF	
Frequency Range	4900-5850 MHz	4900-6050 MHz	4900-6050 MHz	
Bandwidth	950 MHz	1150 MHz	1150 MHz	
Gain	25 dBi	29 dBi @ 4.9 GHz / 30 dBi @ 5.8 GHz	32 dBi @ 4.9 GHz / 34 dBi @ 5.8 GHz	
Polarization	Vertical & Horizontal or X-Pol (+45° & -45°)	Vertical & Horizontal or X-Pol (+45° & -45°)	Vertical & Horizontal or X-Pol (+45° & -45°)	
Vertical Beamwidth	7.5 Degrees	5.5 Degrees	3 Degrees	
Horizontal Beamwidth	7.5 Degrees	5.5 Degrees	4 Degrees	
F/B Ratio	≥32 dB	≥32 dB	≥32 dB	
Isolation	≥28 dB	≥28 dB	≥28 dB	
VSWR	<1.6:1	<1.6:1	<1.6:1	
Impedance	50 Ohm	50 Ohm	50 Ohm	
Maximum Power	100 Watts	100 Watts	100 Watts	
Connector	(2) Type N Female	(2) Type N Female	(2) Type N Female	
Dimensions	Ø15.7 × 10.5 In. (Ø400 × 267 mm)	Ø25.6 × 12.3 In. (Ø651 × 311 mm)	Ø37.4 × 16.3 Inches (Ø950 × 412 mm)	
Mast Diameter	1.5-2.4 Inches (38-60 mm)	1.6-2.8 Inches (40-70 mm)	1.6-2.8 Inches (40-70 mm)	
Weight	5.0 Lbs. (2.26 Kg)	11.9 Lbs. (5.4 Kg)	18.6 Lbs. (8.42 Kg)	
Temperature Range	-40°F - 185°F (-40°C - 85°C)	-40°F - 185°F (-40°C - 85°C)	-40°F - 185°F (-40°C - 85°C)	
Lightning Protection	DC Short	DC Short	DC Short	
Wind Loading Data				
Wind Speed (MPH)	Loading	Loading	Loading	
100	105 lbs.	113 lbs.	266 lbs.	
125	164 lbs.	177 lbs.	400 lbs.	

Altelix LLC USA: 866-660-WIFI (9434) +1 561-660-9434 <u>sales@altelix.com</u> Copyright (C) 2017 Altelix LLC. All rights reserved. Altelix and the Altelix logo are Trademarks and/or Registered Trademarks of Altelix LLC. Specifications are subject to change without notice. See <u>www.altelix.com</u> for most current information. DS_AD-M2_SERIES Rev C 10/24/17

ANEXO 7: Hoja de datos radio FORCE 110 PTP.

ePMP™ Force 110 PTP SPECIFICATION SHEET

SPECIFICATIONS	
PRODUCT	
Model Number	5 GHz: C050900P011A/C0509008051A , BI51A, B251A (ROW), C058900P112A/589008052A (FCC), C050900P013A/ C0509008053A (EU)
SPECTRUM	
Channel Spacing	Configurable on 5 MHz increments
Frequency range	5 GHz 5150 – 5970 MHz (exact frequencies as allowed by local regulations)
Channel Width	5, 10, 20 or 40 MHz
INTERFACE	
MAC (Media Access Control) Layer	Cambium Proprietary
Physical Layer	2x2 MIMO/OFDM
Ethernet Interface	100/1000 BaseT, rate auto negotiated (802.3af compliant)
Protocols Used	IPv4/IPv6 (Dual Stack), UDP, TCP, ICMP, SNMPv2c, NTP, STP, IGMP, SSH
Network Management	IPv4/IPv6, HTTPs, SNMPv2c, SSH, Cambium Networks CnMaestro™
VLAN	802.1Q with 802.1p priority
PERFORMANCE	
ARQ	Yes
Nominal Receive sSnsitivity (w/FEC) @ 20MHz Channel	MCSD = -93 dBm to MCS15 = -69 dBm (per branch)
Nominal Receive Sensitivity (w/FEC) @ 40MHz Channel	MCS0 = -90 dBm to MCS15 = -66 dBm (per branch)
Modulation Levels (Adaptive)	MCS0 (BPSK) to MCS15 (640AM 5/6)
Quality of Service	Three level priority (Voice, High, Low) with packet classification by DSCP, COS, VLAN ID, IP & MAC Address, Broadcast, Multicast and Station Priority
Transmit Power Range	-17 to +30 dBm (combined, to regional EIRP limit) (1 dB interval)
PHYSICAL	
Surge Suppression	1 Joule Integrated
Environmental	IP55
Temperature	-30°C to +60°C (-22°F to +140°F)
Weight	4.1 kg (9 lbs)
Wind Survival	145 km/hour (90 mi/hour)
Dimensions (Dia x Depth)	47 cm x 27 cm (18.5 in x 10.6 in)
Pole Diameter Range	5.7cm -7.6cm (2.25in - 3in)
Power Consumption	10 W Maximum, 7.5 W Typical
Input Voltage	23 to 56 V
SECURITY	
Encryption	128-bit AES (CCMP mode)
CERTIFICATIONS	
FCCID	5 GHz: Z8H89FT00012
Industry Canada Cert	5 GHz: 109W-00012
CE	5.4 GHz EN 301 893 V2.1.1 5.8 GHz EN 302 502 V2.1.1

Notes:

C050900B051A (ROW) – consists of a ePMP Radio Module [C050900R051A/C050900P011A] (no power cord) and ePMP Dish Antenna [C050900D07B] C050900B151A (ROW) – consists of a ePMP Radio Module [C050900R051A/C050900P011A] (EU Cord) and ePMP Dish Antenna [C050900D07B] C050900B251A (ROW) – consists of a ePMP Radio Module [C050900R051A/C050900P011A] (EU cord) and ePMP Dish Antenna [C050900D007B] C050900B052A (FCC) – consists of a ePMP Radio Module [C050900R052A/C050900P012A] and ePMP Dish Antenna [C050900D007B] C050900B053A (EU) – consists of a ePMP Radio Module [C050900R053A/C050900P013A] and ePMP Dish Antenna [C050900D007B]

ePMP™ Force 110 PTP SPECIFICATION SHEET

SPECIFICATIONS

ANTENNA SPECIFICATIONS	5 GHZ SPECIFICATION
Frequency Range	5150 – 5970 MHz
Antenna type	DISH
Peak Gain	25 dBi
3dB Beamwidth-Azimuth	7º
3dB Beamwidth-Elevation	79
Front-to-Back Isolation	>25 dB
Cross Polarization	>15 dB

AZIMUTH & ELEVATION PATTERNS

ePMP Force 110 PTP Azimuth Patterns

V -POL Elevation Gain (dBi) for Zero Azimuth

ePMP[™] Force 110 PTP SPECIFICATION SHEET

ePMP Force 110 PTP Elevation Patterns

V-POL Azimuth Gain (dBi) or Zero Elevation

© 2018 Cambium Networks Ltd. All rights reserved.

SS ePMP 1000 Force 110 PTP 06222018

JS 100 SERIES

RENDIMIENTO ELÉCTRICO

Parâmetros Eléctricos en Condiciones de Prueba Estándar				
Módulo			JS 105	JS 100
Tipo YL105P-17b 55/78				YL100P-17b 55/78
Potenola	P	w	105	100
Toleranola	ΔP	%	+/- 5	+/- 5
Eficiencia del Módulo	n	%	15.0	14.20
Voltaje a P	v	v		17.80
Corriente a P	1 La 1	A		5.63
Voltaje Circuito Abierto	V_	v	-	22.10
Corriente Corto Circuito	1 C -	A	-	6.00

CARACTERÍSTICAS GENERALES

Dimensiones (Long./Anoh./Profun.)	1080mm/ 880mm/ 26mm	
Peso	7.69 kg	

ESPECIFICACIONES DE EMBALAJE

Cantidad de Módulos por Caja	6
Dimensiones por Caja (Longitud /Anohura /Profundidad)	1090mm / 690mm / 190mm

Imadiancia 1000W/m2, 25°C temperatura de ceida, AM1.5g espectro de acuerdo a EN 60004-3.Promedio de reducción relati de eficiencia 5% a 200W/m² de acuerdo a EN 60904-1.

Unidad: mm

Nuestros Socios

CARACTERÍSTICAS TÉRMICAS

Temperatura Nominal de la Celda	NOCT	*C	46 +/- 2
Coeficiente de Temperatura P _{mas}	۲	%/*C	-0.45
Coeficiente de Temperatura V_	B	%/*C	-0.37
Coeficiente de Temperatura I_	۹.	%/*C	0.06

CONDICIONES DE OPERACIÓN

Voltaje Máximo del Sistema	600V _{pc}
Voltaje Máximo del Sistema	10A
Limitación de Corriente Inversa	No aplica a voltajes externos superiores al Voo del módulo
Rango de Temperatura de Funcionamiento	-40 to 85°C
Máx. Carga Estática Frontal (viento, nieve)	2400Pa
Máx. Carga Estática Posterior (viento)	2400Pa
Máx, impaoto por Granizo (diámetro/velooidad)	25mm / 23m/s

MATERIALES

Cubierta Frontal (material/especor)	Vidrio tempiado de bajo contenido en hierro / 3.2mm
Ceidas (cantidad / material / dimensiones)	38 / silloón multioristalino /168mm x 110mm
Material Encapsulante	Etiivinilaoetato (EVA)
Marco (material / oolor / oolor del anodizado)	Aluminio Anodizado / piata / transparente

 Obido a la continue innovación, investigación y majoras de producto, la información y especificaciones en este flote técnica están sujetas a cambicas inperios vincis, cas aspecificaciones publicano vatera ligenerata y no astega parentizadas.
 Los datos no se refleren a un sólo modulo y no son parte de la oferta, sirven solo para la comparación entre diferentes tipos de módulos.

Baoding Jiasheng Photovoltaic Technology Co., Ltd. 333 North Lekai Avenue Baoding, China 071051 Service Hotline:+86 312 863 1510 Fax:+86 312 892 2202

GAINSOLAR.CN

Baoding Jiasheng Photovoltaic Technology Co., Ltd JS100P-17b_5578_EU_EN_201403_v02

Advertencia: Leer el Manual de Instalación y Uso en su totalidad antes de manejar, instalar y operar módulos Yingli.

EN_201403_v02

JS 150 SERIES

CARACTERÍSTICAS ELÉTRICAS

Parâmetros elétricos para as condições padrões (STC)				
Módelo			J5150	
Tipo de módelo			YLxxxP-17b	
Potência de salida	P	w	150	
Tolerância potência saída	ΔΡ	w	+/- 5	
Eficiência módelo	η,	%	15.0	
Tensão em P _{res}	٧	v	18.5	
Corrente em P	L.,	A	812	
Tensão em circuito aberto	٧_	v	22.9	
Corrente em curto-circeito	Ц.,	A	8.61	

STC: 1000 W / m2 imutilencia, tempenatura do módulo de 25 ° C, AM1.5 distribuição espectral de acordo com a norme EN 60704-3 Redução málei de 5 % de eficiência relativa de 200 W / m2 de acordo com EN 60904-1

CARACTERÍSTICAS TÉRMICAS

Temperatura nominal da câlula	NOCT	°C	46+/-2
Coefficiente de temperatura para P _{aus}	۷	%/*C	-0.45
Coeficiente de temperatura para V.,	β.,	%/*C	-0.37
Coefficiente de temperatura para I _a	۹.	%/*C	0.06

CONDIÇÕES DE FUNCIONAMENTO

Tensão máxima do sistema	600V _{ac}	
Valor máximo fusivel em série	15A	
Limitação de corrente inversa	Não se deve aplicar a tensão inalor do que o Voc do módulo	
Patra de temperatura em funcionamento	-40°C to 85°C	
Carga estática máxima frontal (neve)	2400Pa	
Carga estática máxima inversa (vento)	2400Pa	
Másimo impacto por granizo (diâmetro/velocidade)	25mm/23m/s	

MATERIAIS

Proteção frontal (material / espessura)	O vidro temperado contêm baixo teor de ferro / 3.2 mm		
Călela solar (nûmero/tipo/tamanho)	36/ silicio nulticristalino/ 156mmx 156mm		
Encapselante (material)	Etilano acetato de vinilo (EVA)		
Quadro (material / cor / anodização)	Liga de alumínio anodizado /prata / ciaro		

• Owido a continua i rompio, penquias e meñoria de produto, informações e especificações citades nesta foiha de dedos estilo sujeitos a alterções sem entro právio. As especificações podem ser ligeismente diferentes emic estilo grantidos.

Os dados não se referem a um único módulo e não faz parte da oterta, servem para companção entre diferentes tipos de apenas módulos

Baoding Jiasheng Photovoltaic Tehnology Co., Ltd. Add:No.333 North Lekai Avenue 071051, Baoding, China Email: jsgd⊛yinglisolar.com Web:www.gainsolar.cn Service hotline:+86 312 863 1510/892 2683 Fax: +86 312 892 2529

GAINSOLAR.CN

© Baoding Jiashang Photovoltaic technology Co. Ltd. JS150P-17b_BR_052016

CARACTERÍSTICAS GERAIS 1

Dimensões (C/L/A)	1470mm/680mm/25mm			
Paso	10.Skg			
ESPECIFICAÇÕES DA EMBALAGEM				
Número de módelos por palete	2			
Dimensões da embalagem (C/L/A)	1485mm/605min/70mm			
Número de módelos por palete	26			
Dimensões da embalagem (C/L/A)	1520mm / 740mm / 860mm			
CARACTERÍSTICAS GERAIS 2				
Dimensões (C/L/A)	1470 mm/ 680mm / 35mm			
Paso	10.Skg			
ESPECIFICAÇÕES DA EMBALAGEM				
Número de módelos por palete	2			
Dimensões da embalage m (C/L/A)	1485min / 605mm / 00mm			

Unidade: mm

Atanção: Leia o Manual de Instalação e de Operação em sua totalidade antes de utilizar, instalar e operar módulos Yingil Solar.

Parceiros da Yingli Solar:

ANEXO 10: Hoja de datos controlador solar Blue solar.

Victron Energy B.V. | De Paal 35 | 1351 JG Almere | Paises Bajos Centralita: +31 (0)36 535 97 00 | E-mail: sales@victronenergy.com www.victronenergy.com

wictron energy

ANEXO 11: Hoja de datos controlador solar Blue solar.

Características

- Función de desconexión de la salida de carga por baja tensión de la batería.
 Función de control de retroiluminación, un solo temporizador.
 Pantalla de dos dígitos y siete segmentos para un ajuste rápido y sencillo de la función de salida de carga, incluyendo el ajuste del temporizador.
- Carga de las baterías de tres etapas (inicial, absorción y flotación), no programable.
 Salida de carga protegida contra sobrecarga y cortocircuitos.
 Protegido contra la polaridad inversa de los paneles solares y/o de la batería.

BlueSolar PWM-Light 10 A

Opciones de temporizador día/noche Consulte el manual para más detalles.

Blue Solar PWM-Light	12/24-5	12/24-10	12/24-20	12/24-30
Tensión de la batería	12/24V con detección automática de la tensión de entrada			
Corriente de carga nominal	5 A	30 A		
Desconexión automática de la carga			si	
Tensión solar máxima		28	8 V / 55 V (1)	
Autoconsumo			< 10 mA	
Salida de carga	Control manual + desconexión por baja tensión			
Protección	Inversión de la polaridad de la batería (fusible) Cortocircuito de salida Sobretemperatura			
	(Desconexión tras 6o s en	caso de alcanzar el 13	o% de carga
Protección contra sobrecarga	1	Desconexión tras 5 s en o	caso de alcanzar el 16	o% de carga
	Desconexión inmediata en caso de cortocircuito			
Puesta a tierra		Po	sitivo común	
Rango de temp. de trabajo		-20 8 +50°	C (carga completa)	
Humedad (sin condensación)			Máx. 95 %	
		BATERÍA		
Tensión de carga de "absorción"	14,2 V/28,4 V			
Tensión de carga de "flotación"	42,8 V/27,6 V			
Desconexión de carga por baja tensión	13,2 V/22,4 V			
Reconexión de carga por baja tensión	12,6 V / 25,2 V (manual) 12,4 V / 26,2 V (automática)			
CARCASA				
Clase de protección	IP20			
Tamaño de los terminales	5 mm² / AWG10			
Peso	0,45 kg			o, 2 kg
Dimensiones (al x an x p)	70 X 433 X 33,5 MM (2.8 × 5.3 × 3,3 pulgadas)			
	ESTÁNDARES			
Seguridad	IEC 6210g-1			
EMC	EN 61000-6-1, EN 61000-6-3, ISO 7637-2			
 Usar paneles solares de 36 celdas par Usar paneles solares de 72 celdas par o 2 de 36 celdas en conectados en ser 	is para sa V 2) E controlador commuta el nivel de tensión de flotación a horas de s para sa V de alcanzada la tensión de absorción n serie Siempre que la tensión de la batería cae por debajo de s3 V, se inicia mayor cifo de carana.		tensión de flotación 2 horas después ae por debajo de 13 V, se inicia un	

ANEXO 12: Hoja de datos inversor Phoenix.

Inversor Phoenix	12 voltios 24 voltios 48 voltios	12/250 24/250 48/250	12/375 24/375 48/375	12/500 24/500 48/500	12/800 24/800 48/800	12/1200 24/1200 48/1200
Potencia cont a 25°C (1)	40 901003	250VA	375VA	500VA	800VA	1200VA
Potencia cont. a 25°C / 40°C		200/175W	300 / 260W	400 / 350W	650 / 560W	1000/850W
Pico de potencia		400W	700W	900W	1500W	2200W
Tensión / frecuencia CA de salida i	(ajustable)		230VCA o 12	20VCA +/- 3% 50Hz	o 60Hz +/- 0,1%	
Rango de tensión de entrada			9.2	17/18,4-34,0/36,8	3-62,0V	
Desconexión nor CC haia (aiustah	le)	9.3/186/37.2V				
Dinámica (dependiente de la carg	a)	Desconexión dinámica, ver				
Desconexión por CC baja (totalme Reinicio y alarma por CC baja (ajus	nte ajustable) stable)	https://www.victronenergy.com/l/we/we direct: phoenix-inverters-dynamic-cutoff 10,9 / 21,8 / 43,6V				
Detector de bateria cargada (ajust	able)			14,0 / 28,0 / 56,0	1	
Eficacia máx.		87/88/88%	89/89/90%	90/90/91%	90/90/91%	91/91/92%
Consumo en vacio		4,2/5,2/7,9W	5,6/6,1/8,5W	6/6,5/9W	6,5/7/9,5W	7/8/10W
Consumo en vacio predeterminad (Intervalo de reintento: 2,5 s, ajust	lo en modo ECO able)	0,8/1,3/2,5W	0,9/1,4/2,6W	1/1,5/3,0W	1/1,5/3,0W	1 / 1,5 / 3,0
Ajuste de potencia de parada y ar ECO	ranque en modo			Ajustable		
Protección (2)		10.000	Secondaria de la composición de la comp	a-r		and the second
Rango de temperatura de trabajo		-40 to +65°C (refr	ngerado por ventilad	or) (reducción de p de 25°C) máx 95%	otencia del 1,25% por	cada "C por encima
numeuau (sin condensacion)			CARCASA			
M + 11 - 1			Charit de com	ou carrar de elécti	co (azul RAL 5013)	
Material y color			chasis de acer	Bornes de tere 'll	CO (azul IVIL 3012)	
Conexión de la bateria				somes de torhille	25/10/10 27	
Sección de cable máxima:		10mm ² / AWG8	10mm ² / AWG8 230V: Schuko (Cl	10mm ² / AWG8 E 7/4). IEC-320 (enct	25/10/10mm ⁴ / AWG4/8/8 sufe macho incluido)	35/25/25 mm² / AWG 2/4/4
Tomas de corriente CA estándar		230V: Schuko (LEE /74), IEL-320 (encluite macho incluido) UK (85 1363), AU/NZ (AS/NZS 3112) 120V: Nema 5-15R				
Tipo de protección				IP 21		
Peso		2,4kg / 5,3lbs	3,0kg / 6,6lbs	3,9kg / 8.5lbs	5,5kg / 12lbs	7,4kg / 16,3lbs
Dimensiones (al x an x p en mm.) (al x an x p, pulgadas)	86 x 165 x 260 3.4 x 6.5 x 10.2	86 x 165 x 260 3.4 x 6.5 x 10.2	86 x 172 x 275 3,4 x 6,8 x 10,8	105 x 216 x 305 4.1 x 8.5 x 12.1 (12V modelo:	117 x 232 x 327 4.6 x 9.1 x 12.9 (12V modelo:
		A	CCESORIOS		105 X 230 X 323)	117 x 232 x 302)
On/Off remoto				Si		
Conmutador de transferencia auto	amático			Filax		
		E	STÁNDARES			
Securidad			EN	LICC 60225-1 / ENLIE	62100-1	
segundad				HEC 00333-17 EN-IE	. 02109-1	1000 6 3
EMC		E	N 55014-17 EN 55014	F271EC 61000-6-171	EC 61000-6-27 IEC 61	1000-6-3
Directiva de automoción				ECE R10-4		
 Carga no líneal, factor de cresta 2) Claves de protección: a) cortocircuito de salida b) sobrecarga c) tensión de la bateria demasia d) tensión de la bateria demasia h) temperatura demasiado alta f) ondulación CC demasiado alt 	st I Ido alita Ido baja a					
Marter style						
Alarma de batería		Mo	nitor de baterías	BWA		
Indica que la tensión está demasia baja por medio de una alarma visu relé de señalización remota	ido alta o demasiad Jal y sonora y de un	o El m com carq cáic sele El m de la	onitor de baterias Bl obinado con un sisten ga/descarga de corrie ulo para determinar ctiva la tensión, corri onitor también alma a bateria.	W dispone de un av na de alta resolución nte. Aparte de esto, exactamente el esta: ente, Ah consumido: cena una multitud d	anzado sistema de co para la medición de l el software incluye un lo de la carga de la ba s o el tiempo restante e datos relacionados	ntrol por microprocesa la tensión de la bateria los complejos algoritm iteria. El BMV muestra o de carga de la bateria. con el rendimiento y us
Mochila VE.Direct a Bluetooth Smart (Debe pedirse por separado)						

Victron Energy B.V. | De Paal 35 | 1351 JG Almere | Paises Bajos Centralita: +31 (0)36 535 97 00 | Fax: +31 (0)36 535 97 40 E-mail: sales⊜victronenergy.com | **www.victronenergy.com**

ANEXO 13: Hoja de datos cámara Axis P5635-E.

www.axis.com

Cámara de red domo AXIS P5635-E PTZ

Modelos	AXIS P5635-E 50 Hz AXIS P5635-E 60 Hz	Activadores de evento	Detectores: acceso a secuencias de video en directo, detección de movimiento por video, detección de golpes, moto diafanche detección de audio
Cámara	CNOS de berride entremetre de 1/2 Of		Hardware: red, temperatura
Sensor de Imagen	CMUS de darrido progresivo de 1/2,8"		Señal de entrada: disparador manual, entradas virtuales, señal de entrada disital
Lente	4,3-129 mm, F1.6-4.7 Campo de visión horizontal: 63.5*-2.4*		PTZ: error, movimiento, posición predefinida, preparado
	Campo de visión vertical: 38.4"-1.5"		Almacenamiento: alteración, grabación
	Enfoque automático, iris automático		Sistema: sistema preparado Tiempo: repetición, uso de programación
De dia y de noche	Flitro de Infrarrojos removible automáticamente	Acciones de	Modo dia/noche, superposición de texto.
lluminación	Color: 0,3 lbx a 30 IRE F1.6 B/N: 0.01 lbx a 30 IRE F1.6	evento	grabación de video en almacenamiento local,
minima	Color: 0,4 lux a 50 IRE, F1.6		memoria de video previa y posterior a la alarma, envio de mensale SNMP tran. modo WDP
	B/N: 0,02 lux a 50 IRE, F1.6		Activación de salida externa, reproducción de clip de audio
Velocidad de	De 1/28 000 s a 2 s		PTZ: posición predefinida PTZ, iniciar/detener ronda de vigilancia
Modelionto	Hastrantal: 2002 Illimitado 0.25k. 2005k		electrónico
horizonta/verti-	Vertical: 180°, 0.2°/s-350°/s		Notificación por correo electrónico, HTTP, HTTPS y TCP
cal y zoom	Zoom óptico de 30x y zoom digital de 12x (total de 360x),	Retransmisión de	Datos de eventos
	100 posiciones predefinidas, E-TIIp, ronda de Vigilancia limitada, cola de control, indicador de la dirección en pantalla, ajuste	datos	Research as the school as
	horizontal nuevo 0°, ventana de enfoque	Ayuda Integrada nara la	Contador de pixeles
Vídeo		instalación	
Compresión de	H.264 Base Profile, Main Profile y High Profile	General	
VIDEO	(MPCG-4 Parte TQ(AVC) Motion JPEG	Carcasa	Clasificación IP66, IK10 y NEMA 4X Caracta matélica (aluminia), domo transportatione (aci)
Resoluciones	1920 x 1080 (HDTV 1080 p) a 320 x 180		embellecedor que se puede pintar
Velocidad de	Hasta 25/30 imágenes por segundo (50/60 Hz) en todas las	Sostenibilidad	Sin PVC
imagen	resoluciones	Memoria	512 MB de RAM, 256 MB de Flash
Retransmisión de	Múltiples secuencias configurables individualmente en H.264 y	Alimentación	Midspan PoE+ de Axis de 1 puerto: 100-240 V CA
VIDEO	Motion JPEG Frecuencia de imagen y ancho de banda controlables		IEEE 802.3at Tipo 2 Clase 4 Consumo máximo de la cámara: 0 W tipicos 20 W máx
	Tecnologia Zipstream de Axis en H.264		Cable multiconector:
	VBR/MBR H.264		20-28 V CC, 9 W tiplcos, 23 W máx.
Parámetros de la	Compresión, color, brillo, nitidez, contraste, contraste local, equilibrio de blancos, control y zonas de		20-24 V CA, 13 VA LIPICOS, 31 VA max. (PoE+ midsnan v fuente de alimentación no incluidos)
imayen	exposición, compensación de contraluz automática,	Conectores	RI45 para 10RASE-T/ 100RASE-TX PpE
	configuración más precisa del comportamiento con poca luz,		Conector RJ45 (IP66) Incluido
	velocidad de obturación manual, superposición de texto		Conector de E/S para CC o CA, 4 entradas/salidas
	e Imágenes, 20 máscaras de privacidad 3D Individuales,		salida de línea (conector de sistema Axis de 10 pines o
	congelación de imagen en PTZ Estabilización de imagen electrónica		alimentación para audio con E/S multicable C de 1 m/S m, no
Audio		Almaconomionto	Compatible con tarianar UNE USDVC UNE 1
Retransmisión de	Bidireccional	Annacchannento	Permite grabación en almacenamiento conectado a la red (NAS)
audio			dedicado.
Compresión de	AAC-LC 8/16 kHz, G.711 PCM 8 kHz, G.726 ADPCM 8 kHz		Para conocer las recomendaciones de tarjeta SU y NAS, consulte www.dxis.com.
Entrada/salida da	Entrada de línes o de micrófono externo y salida de línes	Condiciones de	De -30 "C a 50 "C
audio	(requiere conector de sistema Axis de 10 pines o alimentación	funcionamiento	Humedad relativa: del 10 al 100 % (con condensación)
	para audio con E/S multicable C de 1 m/5 m, no incluido)	Condiciones de	De -40 °C a 70 °C
Red	Provide and the first de discussion in all de de	Homologaciones	EN 55022 Class B, EN 61000-6-1 EN 61000-6-2 EN 55024
Seguridad	HTTPS ^a , control de acceso a la red IEEE 802.1X ^a autenticación	noniologaciones	EN 50121-4, IEC 62236-4, FCC Parte 15 Subparte B Clase A+B,
	Digest, registro de acceso de usuarios, gestión centralizada de		ICES-003 Clase B, VCCI Clase B, RCM AS/NZS CISPR22 Clase B,
	certificados		IEC/EN/UL 60950-22, IEC/EN 60529 IP66, NEMA 250 Tipo 4X
Protocolos	IPv4/v6, HTTP, HTTPS ^a , SSL/TLS ^a , QoS Layer 3 DiffServ, FTP, SFTP, CIEC(SMP, SMTP, Review, UPpPIM, SMMP, v1/v26/v2 (MIP, II)		IEC/EN 62262 IK10, IEC 60068-2-1, IEC 60068-2-2,
compationes	DNS, DynDNS, NTP, RTSP, RTP, TCP, UDP, IGMP, RTCP, ICMP, DHCP,		IEC 60068-2-6, IEC 60068-2-14, IEC 60068-2-27, IEC 60068-2-79, ISO 4992-2
	ARP, SÓCKS, SSH, NTCIP		EN 61000-3-2, EN 61000-3-3
Integración de	sistemas	Dimensiones	217 x 188 x 188 mm
interfaz de	API abierta para la integración de software, incluida VAPIX® y la plataforma de aplicaciones de cómorre AVIS: las acresiónes a	Peso	2,5 kg
de aplicaciones	están disponibles en www.oxis.com	Accesorios	Conector RJ45 (IP66), montaje en techo duro, adaptador de tubo
	AXIS Video Hosting System con conexión con un solo clic	incluidos	flexible, adaptador de tubo con perfil en U, guía de instalación, descedificador de Windows (1 licencia de usuario) circo de
	unvir Profile 5, las especificaciones estan disponibles en www.onvif.org		autenticación AVHS
Analiticas	Detección de movimiento por vídeo y funcionalidad Gatekeeper	Accesorios	Montajes AXIS T91B, montaje empotrado AXIS T94A02L, cable
	avanzada	opcionales	RJ45 para exteriores con conector premontado, midspan
	Detección de audio Compatibilidad con la plataforma de anticaciones de cámaras		pintar
	AXIS que permite la instalación de aplicaciones de terceros, visite		Modo ahumado, conector de sistema Axis de 10 pines,
	www.axis.com/acap	Coffigure de	alimentación para audio con E/S multicable C de 1 m/5 m
		oestión de video	ous camera companion, ous camera station, sortware de destión de vídeo de socios desarrolladores de anticaciones de
		3	Axis disponibles en www.axis.com/techsup/software

ANEXO 14: Hoja de datos cámara Axis Q1765-LE.

Compare			Sussession Aver Avertimeting Print and Lin
Image sensor	1/2.9" progressive scan RGB CMOS		Support for AXIS Camera Application Platform enabling installation of third-party applications, see axis.com/acap
Lens	4J-84.6 mm, F1.6-2.8 Horizontal and a chiefer 50°-4°	Event triggers	Analytics, edge storage events External input
	Autofocus, automatic day/night Thread for 62 mm filters	Event actions	External output activation, video and audio recording to edge storage
Day and night	Automatically removable infrared-cut filter in day mode and infrared-pass filter 720 nm in night mode		Pre- and post-alarm video buffering File upload: FTP, SFTP, HTTP, HTTPS, network share and email Notification: email. HTTP, HTTPS, TCP and SNMP trap
Minimum illumination	Color: 0.5 lux at 30 IRE F1.6 B/W: 0.04 lux at 30 IRE F1.6, 0 lux with IR illumination on	Data streaming	Event data
Shutter time	1/28000 s to 2 s	Built-in installation aids	Remote zoom, pixel counter, leveling assistant, autorotation
Video	H.264 (MPEG-4 Part 10/AVC) Baseline, Main and High Profiles Motion JPEG	General Casing	IP66- and NEMA 4X-rated, impact-resistant aluminum enclosure
Resolution	1920x1080 HDTV 1080p to 160x90		with integrated dehumidifying membrane Color: White NCS S 1002-B
Frame rate	Up to 30/25 fps (60/50 Hz) in all resolutions	Memory	256 MB RAM, 128 MB Flash
Video streaming	Multiple, individually configurable streams in H.264 and Motion JPEG Controllable frame rate and bandwidth VRR/CRR H 264	Power	Power over Ethernet (PoE) IEEE 802.3af, max 12.95 W 8-28 V DC max 15.2 W 20-24 V AC max 22.0 V A
Image settings	Manual shutter time, compression, color, brightness, sharpness, white balance, exposure control, exposure zones, backlight compensation, fine tuning of behavior at low light rotation, text and image overlax. 3D originacy mask day/inight shift level	Connectors	Shielded RJ45 10BASE-T/100BASE-TX PoE DC Power connector Multi-connector (not included): 2 configurable alarm inputs/outputs, Mic in, Line mono input, Line mono output
	Axis Corridor Format WDR - dynamic contrast	IR illumination	Power-efficient, long-life 850 nm IR LED's with adjustable angle of illumination and intensity. Range of reach up to 15 m (50 ft) in wide field of view and up to 40 m (130 ft) in full tele view
Pan/Tilt/Zoom	18x optical zoom and 12x digital zoom, preset positions	Storage	Support for microSD/microSDHC/microSDXC card
Audio streaming	Two-way		Support for SD card encryption Support for recording to network-attached storage (NAS)
Audio	AAC-LC 8/16 kHz, G.711 PCM 8 kHz, G.726 ADPCM 8 kHz	Operation	For SD card and NAS recommendations see axis.com
Audio	Requires multi-connector cable (not included) for external	conditions	-40 °C to 50 °C (-40 °F to 122 °F) Humidity 10-100% RH (condensing)
input/output Audio input	microphone input or line input and line output	Storage conditions	-40 °C to 65 °C (-40 °F to 149 °F) Humidity 5-95% RH (non-condensing)
	3.5 mm jack to minimize in, max 200 mmp for microphone, max 62 Vpp for line signal Impedance: min 1 kQ, mic-power activated; min 4 kΩ line Tip: Signal/Bias Sleeve: Ground Power to external electret microphone: 1.3 - 2.6 V DC (3.0 V DC through 2130 Ω) SNR: > 70 dB	Approvals	EMC EN 55022 Class B, RCM AS/NZS ClSPR 22 Class B, FCC Part 15 Subpart B Class B, ICCS-003 Class B, VCCI Class B, KCC KN22 Class B, KN24 EN 510121-4, EN 55024 Environment EN 61000-3-2, EN 61000-3-3, EN 61000-6-1, EN 61000-6-2 Safety ENVIENUI c0050-22 IS 12252
Audio output	3.5 mm jack for line out, max 2.0 Vpp SNR: > 70 dB Tin: Signa/Bias		Other ENVIEC 62471 risk group 1
	Ring: Bias	Dimensions	146 x 105 x 344 mm (5 3/4 x 4 1/8 x 13 9/16 in)
	Steeve: Ground Output impedance: max 100 Ω, normal < 1Ω	Weight	1.8 kg (4.0 lb) including the bracket
Network Security	Password protection, IP address filtering, HTTPS ² encryption, IEEE 802.1X ² network access control, digest authentication, user access log, centralized certificate management, signed firmware	Included accessories	Installation Guide, Windows [®] decoder 1-user license, connector kit, Resistors [®] L-key AXIS Q1765 Foot Chassis, AXIS T94G015 Mounting Plate, AXIS Sunshield B AXIS Q1765-LE Front Kit
Supported protocols	IPv4/v6, HTTP, HTTPS3, SSL/TLS3, QoS Layer 3 DiffSenv, FTP, CIFS/SMB, SMTP, Bonjour, UPrnPM, SMMP v1/v2q/v3 (MIB-II), DNS, DynDNS, NTP, RTSP, RTP, STP, TCP, UDP, IGMP, RTCP, ICMP, DHCP, ARP, SOCKS, SSH	Optional accessories	AXIS T8604 Media Converter Switch AXIS T91A47 Pole Mount, AXIS T94P01B Corner Bracket For more accessories, see αxis com
System integro	tion	Video	AXIS Companion, AXIS Camera Station, video management software from Axis' Application Development Partners weilable
Application Programming	Open API for software integration, including VAPDX® and AXIS Camera Application Platform; specifications at axis.com	software	at axis confirms French Spanish Italian Bussian Simplified
Interface	AXIS Guardian with One-Click Connection ONVIF® Profile G and ONVIF® Profile S specification at onvif.org	Warranty	Chinese, Japanese, Korean, Portuguese, Traditional Chinese Axis 3-year warranty and AXIS Extended Warranty online see
Analytics	Included AXIS Video Motion Detection, AXIS Fence Guard, AXIS Motion Guard, active tampering alarm, gatekeeper audio detection Supported AXIS Perimeter Defender, AXIS Cross Line Detection, AXIS Loitering Guard	a. This product incl OpenSSL Toolkit. (eay@ayptsoft) Environmental resp	axis com/warranty udes software developed by the OpenSSL Project for use in the (openssLorg), and cryptographic software written by Eric Young com).

AXIS Q1765-LE Network Camera

ANEXO 15: Hoja de datos switch Allied Telesis.

and cost-effective industrial managed switch that meets the high reliability requirements of industrial network operations.

This industrial switch provides a network manager some key features using the simple web-based management function such as; port-based VLANs, IEEE 802.1p QoS, port trunking/link aggregation, port mirroring, priority queues and IEEE 802.1x security support. With support of up to 8k MAC adresses and a IMbit packet buffer the AT-IFS802SP switch is an ideal option for integrating management into your network solution.

30.00-

5.00

15,00

is important to control access to your network. Protocols such as IEEE 802.1x port-based authentication guarantee that only known users are connected to the network. Unknown users who physically connect can be isolated to a pre-determined part of your network offering guests such benefits as Internet access while ensuring the integrity of your private network data.

Gigabit and Fast Ethernet SFP Support

The SFP Ports support both Gigabit and Fast Ethernet Small Form-factor Pluggables (SFPs). This makes the switch

over time. This allows for connectivity to the legacy IOOFX hardware until it is upgraded to Gigabit. Support for both speeds of SFPs allows organizations to stay within budget as they migrate to faster technologies.

High Network Resiliency

The AT-IFS802SP industrial switch supports the X-Ring protocol that can help the network recover from connection failure within 20ms, thus making the network system very resilient. The X-Ring algorithm is similar to spanning tree protocol (STP) algorithm but its recovery time is faster than STP. In addition, Dual Horning and Couple Ring Topology are also supported to further increase the network availability.

ANEXO 16: Fotos de implementación y funcionamiento del sistema.

