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Abstract 
 Microscopically, torbanite and cannel coal are composed of coarser macerals set in a 
fine-grained to amorphous groundmass. It is often assumed that the amorphous groundmass 
is genetically related to the distinct macerals. The separation of macerals and groundmass 
from 14 late Paleozoic torbanite, cannel, and humic coals permits the analysis of individual 
constituents using elemental analysis and flash pyrolysis-gas chromatography/mass 
spectrometry (Py-GC/MS). Cluster and principal component analyses of the Py-GC/MS data 
further reveal the chemical similarities and differences between the various constituents. 
Pyrolyzates of Botryococcus-related alginites are characterized by an abundance of normal 
alkadienes, alkenes, and alkanes. Even their alkylbenzenes and alkylnaphthalenes exhibit a 
relatively higher concentration of isomers with a single, linear alkyl side-chain than do other 
macerals and groundmass. ln contrast, vitrinite pyrolyzates are dominated by phenolic and 
aromatic compounds. Sporinites are enriched in aliphatic, aromatic, and phenolic structures, 
especially the short chain aliphatics and alkylbenzenes. They are also characterized by a 
predominance of 1,2-dimethylbenzene and 1-ethyl-2-methylbenzene. The groundmass is 
further divided into lamalginitic, bituminitic, and vitrinitic. The chemistry of the brightly-
fluorescing lamalginitic groundmass is basically similar to that of alginite, but also resembles 
other groundmass types in normal hydrocarbon and alkylphenol distributions. The vitrinitic 
groundmass can be described as an aliphatic-rich vitrinite. The pyrolyzate of the bituminitic 
groundmass is characterized by the predominance of long chain normal hydrocarbons. Their 
pyrolyzates have a chemical nature intermediate between alginite and vitrinite. The relatively 
higher contents of hopanoids in their pyrolyzates and elemental nitrogen suggest a bacterial 
role in the formation of the groundmass. Chemical analysis and subsequent multivariate 
statistical analysis suggest that the groundmass is likely to be a mixture of bacterially-
degraded algal and humic organic matter. The proportions of the two primary components 
vary from sample  to sample, as does the extent of degradation. Bacterially-produced 
hopanoids are also incorporated. 
 
Keywords: Maceral chemistry; Amorphous organic groundmass; Pyrolysis GC/MS; Density 
gradient centrifugation; Cluster analysis; Principal component analysis; Torbanite; Cannel 
coal 
 
1. Introduction 
 
 Like the kerogen in oil shales and source rocks (e.g. Burgess, 1974; Teichmüller and 
Ottenjann, 1977; Alpern, 1980; Mukhopadhyay et al., 1985; Teichmüller, 1986; Thompson-
Rizer and Dembicki, 1986; Senftle et al., 1987), the organic constituents in torbanite and 
cannel coal are divided into distinct macerals or phytoclasts and fine-grained to amorphous 
groundmass (e.g. Hower et al., 1986; Hutton, 1987; Han and Crelling, 1993). The macerals 
include alginite, sporinite, vitrinite, and inertinite, plus minor amounts of cutinite and resinite. 
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They generally fit the maceral definitions of coal petrology. Based on texture and 
morphology, they can be attributed to Botryococcus-related algae, various parts of higher 
plants and bacterial precursors (Stach et  al., 1982). Based on the variation in texture, 
composition, and fluorescence, groundmass can be divided into three petrographic types: 
lamalginitic, bituminitic, and vitrinitic (Han et al., 1999). However, due to the lack of a 
definite morphology and structure, it is difficult to relate a groundmass to specific precursor 
organisms using microscopy. It is also difficult to determine the chemical properties of the 
groundmass because the maceral particles and the groundmass are usually intimately 
associated. 
 Prior to the application of high purity maceral separation techniques to torbanite and 
cannel coal, significant progress had been made in the elucidation of the chemical structure 
and origin of Botryococcus-related alginite, by investigation of a natural algal concentrate - 
torbanite (e.g. see Cane and Albion, 1971; Largeau et al., 1984; Derenne et al., 1988a; 
Derenne et al., 1988b). With the advent of density gradient centrifugation (DGC) as a tool for 
maceral separation, research has focused on understanding the chemistry of individual 
macerals like vitrinite, sporinite, cutinite, and inertinite separated from humic coals (Dyrkacz 
and Horwitz, 1982; Dyrkacz et al., 1984; Winans and Crelling, 1984; Crelling, 1988, 1989; 
Nip et al., 1988, 1992; Taulbee et al., 1989; Kruge et al., 1991; Hartgers et al., 1994). Recent 
improvements in separation techniques have permitted the study of the individual organic 
constituents in kerogen (Stankiewicz et al., 1994a, 1994b; Han et al., 1995).  
 The successful separation of torbanite and cannel coal using density gradient 
centrifugation (DGC) has pro- vided us with high purity density concentrates of the various 
maceral and groundmass types (Han et al., 1995, 1999). ln this paper, the research will focus 
on the chemical properties of these concentrates. ln the past, it was postulated that the 
amorphous groundmass might be genetically related to the distinct coarser macerals. The 
capability to isolate several varieties of amorphous groundmass has enabled us to test this 
hypothesis directly by chemically comparing the coarser macerals with the groundmass. 
 A total of 32 density concentrates of Botryococcus- related alginite, sporinite, 
vitrinite, and varieties of groundmass were chosen for flash pyrolysis-gas chromatography-
mass spectrometry (Py-GC/MS) analysis. The Py-GC/MS data were further subjected to 
cluster analysis and principal component analysis. ln addition, elemental analysis was 
employed on the various density fractions to determine bulk chemistry. 
 
2. Samples and methods 
 
 Table 1 lists the 32 density fractions previously separated from 14 torbanites and 
cannel coals (Han, 1995; Han et al., 1999), and three US Pennsylvanian humic coals (Kruge 
and Bensley, 1994; Stankiewicz et al., 1994a) using density gradient centrifugation  (DGC). 
The torbanite and cannel coals were from different locations in Australia, Canada,  China,  
Scotland,  and the United States. Except for the Devonian cannel coal (sample 15, Melville 
lsland, Canada), all the samples are of Permo-Carboniferous age. Detailed petrographic 
analyses were conducted previously, and it was determined that the samples generally fell 
into high volatile bituminous rank (Han et al., 1999). 
 The samples were crushed to less than 75 µm size and subsequently treated by 
successive bitumen extraction, demineralization, cryogenic treatment, and micronization. The 
micronized sample was separated into a series of density fractions with a Beckman J2-21M 
centrifuge using published DGC procedures (Dyrkacz and Horwitz, 1982; Dyrkacz et al., 
1984; Crelling, 1988,1989; Han et al., 1995). Part of each collected density fraction was 
made into pellets and microscopically examined. 
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 Elemental analysis (C, H, O, N, and S) was completed by a commercial laboratory. 
Py-GC/MS analyses were performed using a CDS 120 Pyroprobe, connected to a HP 5890 
gas chromatograph with a HP 5970 mass selective detector (MSD). Up to 2 mg of each 
sample was pyrolyzed in a flow of helium for 20 s in a platinum coil at 610°C. For detailed 
pyrolysis and GC procedures, please refer to previous works by Kruge and Bensley (1994) 
and by Han and Kruge (1999). Prior to chemical analyses, samples were extracted with 
dichloromethane a second time to remove any remaining bitumen and contaminants 
introduced during sample processing. 
 The identification of the pyrolyzates was based on mass spectral signatures and GC 
retention times with reference to the literature (Radke et al., 1990; Douglas et al., 1991; 
Hartgers et al., 1992; Nip et al., 1992; Sinninghe  Damsté et  al., 1989, 1992a, 1993) and the 
US National Bureau of Standards mass spectral library. A total of 102 peaks representing the 
principal compounds in the pyrolyzates were quantitated using the ions specified (Table 2). 
These include n-alkadienes, n-alkenes, n-alkanes, alkylbenzenes, (alkyl)naphthalenes and 
(alkyl)phenols (Table 2). The peak areas were normalized to the maximum for each sample 
and then scaled by taking their square roots. The quantitation data set containing the 102 
variables for each of the 32 samples were statistically analyzed by cluster analysis and 
principal component analysis (PCA) using the SAS/STAT software package, Version 6 (SAS 
lnstitute, 1990). Cluster analysis was performed using the average linkage method available 
in SAS/STAT. 
 
3. Results and discussion 
 
3.1. Petrographic characteristics 
 
 Microscopically the torbanite and cannel coals are composed of distinct, coarser-
grained macerals set in a fine-grained to amorphous groundmass. The coarser macerals 
include Botryococcus-related alginite, sporinite, detrital vitrinite, and inertinite, plus minor 
amounts of resinite and cutinite. The groundmass can be divided into three different types: 
lamalginitic, bituminitic, and vitrinitic (Han et al., 1999). ln a given sample, only one type of 
groundmass is present. Lamalginitic and vitrinitic groundmass are only found in the 
Breckinridge and Linton cannel coals, respectively, whereas bituminitic groundmass is found 
in the remaining samples. Using the DGC technique, high purity density fractions of alginite, 
sporinite, vitrinite, and varieties of groundmass were obtained (Table 1). A brief summary of 
the petrographic characteristics of the various types of organic matter is given below. 
 Botryococcus-related alginite is distinguished by a bright yellow to brown 
fluorescence and colonial cell structure. Its density is between 1.02 and 1.10 g/ml. Sporinite 
is primarily circular microspores with a yellow to brown fluorescence, having a density range 
of 1.14 to 1.23 g/ml. Vitrinite has a uniform appearance with a gray color when illuminated 
with white light. Its density is between 1.28 and 1.35 g/ml. 
 The three types of groundmass are differentiated from each other by distinct optical 
and textural characteristics. Their density also varies in a range of 1.09 to 1.32 g/ml, and 
shows a gradual shift towards higher density from lamalginitic to bituminitic to vitrinitic 
groundmass. They are defined as follows: 
 1. Lamalginitic groundmass - densely packed lamellae with a bright greenish to 
yellow fluorescence with density between 1.09 and 1.17 g/ml. It occurs in the Breckinridge 
cannel (8LG) only. 
 2. Bituminitic groundmass - uniformly amorphous organic matter showing a medium 
brown to dark red fluorescence. Typical bituminitic groundmass is found in torbanite (2G, 
4G, 6G, and 7G). ln some cases, the bituminitic substance is mixed with tiny fluorescing 
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lamellae or stringers (2-3 µm in length), displaying a filamentous texture as seen in the 
Kentucky cannel (10G) and the West Virginia cannel (13G). Occasionally, the amorphous 
bituminitic groundmass contains significant amounts of micrinite, displaying a fine-grained 
texture and an overall reddish fluorescence under blue light. Examples are the two West 
Virginia cannel coals (11G and 12G). The density of bituminitic groundmass ranges from 
1.14 to 1.27 g/ml. 
 3. Vitrinitic groundmass - dark gray amorphous organic matter similar to 
desmocollinite, but distinguished by higher fluorescence intensity. Its density is also close to 
that of vitrinite, ranging from 1.28 to 1.32 g/ml. It is only observed in the Ohio Linton cannel 
coal (14VG). 
 
3.2. Elemental composition 
 
 Atomic carbon, hydrogen, and oxygen contents show a wide variation in abundance 
from sample to sample (Table 1). When the H/C and O/C atomic ratios are plotted on a van 
Krevelen diagram (Fig. 1), the distinctions between the various types of maceral and ground- 
mass are very clear. Consistent with conventional knowledge (Stach et al., 1982; Tissot and 
Welte, 1984), the Botryococcus-related alginite, sporinite, and vitrinite fall into the Type I, 
Type II, and Type III kerogen categories, respectively. 
 The groundmass types display a systematic variation in H/C and O/C ratios. The 
lamalginitic groundmass (8LG) from the Breckinridge cannel plots on the Type I kerogen 
pathway, but it has a relatively lower H/C atomic ratio compared with Botryococcus-related 
alginite. ln contrast the vitrinitic groundmass (14VG) plots as Type III organic matter. The 
bituminitic groundmass fractions are all similar, occurring between the Type II and III 
pathways. 
 Fig. 1 also indicates that most of the samples are thermally mature (equivalent to 0.5 - 
1.0% Rmax, see Stach et al., 1982; Tissot and Welte, 1984) except for the Alpha torbanite 
(sample 1) and the lllinois coal (sample 16). The positions of the same maceral type along the 
evolutionary pathways approximately indicate the relative maturity. For instance, the gradual 
decrease of H/C and O/C ratios of the seven Botryococcus-related alginite along the Type I 
pathway suggests the following sequence of increasing maturity: sample 1, 5, 3, 2, 4, 6, and 
7. Increasing maturity with decreasing H/C and O/ C is also observed for the sporinite and 
vitrinite along the Type II and Type III pathways, respectively. Clearly, each type of organic 
matter has its own thermal evolutionary pathway. Thus it would be erroneous to conclude 
that the groundmass fractions are more mature than their co-occurring phytoclasts, although it 
might appear that way upon casual inspection (Fig. 1). 
 It is noted that the density of the various types of macerals and groundmass is related 
to their elemental composition (carbon, hydrogen, and oxygen). As density increases, the H/C 
atomic ratio decreases linearly from alginite to lamalginitic groundmass to sporinite to 
bituminitic groundmass to vitrinite (and vitrinitic groundmass) (Fig. 2A). ln contrast,  the  
O/C  atomic ratio increases with increasing density (Fig. 2B). Therefore, the density 
variations of various types of maceral and groundmass can be explained in simplest terms by 
the relative abundance of lighter elemental hydrogen versus heavier oxygen. 
 The nitrogen content is low (0.7-2.0%), but shows some regular variations with 
organic matter type. Generally, the nitrogen content of the alginite and sporinite (0.7-1.2%) is 
lower than that of the groundmass and vitrinite (1.4-2.0%). Furthermore, in a given sample 
the groundmass contains more nitrogen than the co-occurring alginite and sporinite (Fig. 3). 
ln contrast, there are not consistent variations in sulfur content with maceral type (Table 1). 
The sulfur contents range from 0.2 to 2.3%. 
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3.3. General characteristics of the pyrolyzates 
 
The principal compounds detected in the flash pyrolyzates of the maceral and groundmass 
fractions are the n-alkadiene/n-alk-1-ene/n-alkane homologous series, alkylbenzenes, 
alkylnaphthalenes, and alkylphenols. These are readily seen on the total ion current traces 
(Figs. 4-9). Alkylindenes, alkylthiophenes, hopanoids, and polycyclic aromatic compounds 
such as phenanthrene, anthracene, fluoranthene, chrysene, pyrene, and their alkylated 
derivatives are also detected usually as minor constituents. The compound distributions in the 
pyrolyzates are closely related to sample type. 
 As shown in Fig. 4, the pyrolyzates of Botryococcus-related alginite are 
overwhelmingly dominated by the n-alk-1-ene and n-alkane homologous series up to C33, as 
was recognized in previous studies (e.g. Largeau et al., 1984, 1986; Derenne et al., 1988b). ln 
addition a distinctive C9-C26 n-𝛼,𝜔-alkadiene homologous series was detected, which are 
considered characteristic of Botryococcus-related alginite (e.g. Gatellier et al., 1993; Han et 
al., 1995). Relative concentrations of aromatic and phenolic compounds are very low. 
Fig. 5 displays the pyrolyzates of fraction 14S, a high purity sporinite concentrate. It shows 
abundant alkylbenzenes, alkylnaphthalenes, and alkylphenols in addition to the alkene/alkane 
pairs. Alkadienes are not detected. Other sporinite concentrates of lesser purity (fraction 5S, 
10S, and 12S) tend to exhibit more straight chain aliphatics likely due to contamination by 
groundmass (Han, 1995). 
 The pyrolyzates of vitrinite show a predominance of C0-C2 alkylphenols, C1-C3 
alkylbenzenes, and C0-C2 alkylnaphthalenes (Fig. 6), consistent with the results obtained in 
previous studies (Senftle et al., 1986; Nip et al., 1988; Hartgers et al., 1994). The relative 
concentration of aliphatics is much lower than for alginite and sporinite. Compared with 
those of the other maceral types, vitrinite pyrolyzates contain larger amounts of 3- and 4-ring 
polyaromatic compounds. 
 Pyrolysis-GC/MS confirms the highly aliphatic nature of the brightly-fluorescing 
lamalginitic groundmass producing predominantly normal alkanes and alkenes (Fig. 7). Most 
importantly, the presence of C9-C26 n-𝛼,𝜔-alkadienes attests its similarity to alginite, while 
distinguishing it from the other types of groundmass that do not contain detectable amounts 
of the alkadienes in their pyrolyzates. However, compared with typical Botryococcus-related 
alginite (Fig. 4), lamalginitic groundmass contains more long chain (>C19) aliphatic 
hydrocarbons as well as aromatic and phenolic compounds. The bituminitic groundmass 
fractions  are  characterized by a predominance of normal alkenes and alkanes with a strong 
contribution of long chains (>C19), and significant amounts of aromatic and phenolic com- 
pounds (Fig. 8). As with the case of their petrographic and elemental signatures, minor 
variations between bituminitic groundmass samples are observed (Han, 1995). 
 The vitrinitic groundmass produces relatively large amounts of alkylbenzenes, 
alkylnaphthalenes, and alkylphenols in addition to straight  chain  aliphatics (Fig. 9). Its 
pyrolyzates contain more aliphatic hydrocarbons and less tri- and tetra-aromatics relative to 
typical vitrinite (Fig. 6). 
 
3.4. Cluster analysis 
 
 The results of cluster analysis of the Py-GC/MS data (square roots of normalized peak 
areas) of the 32 density fractions are summarized in Fig. 10. Examination of the dendrogram 
reveals that the  samples are grouped into four major clusters, two of which further split into 
two distinct sub-clusters. 
 The "alginite" cluster includes seven Botryococcus-related alginite fractions (8A, 2A, 
7A, 6A, 5A, 1A, and 3A). The "lamalginitic" cluster is composed of one Botryococcus-
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related alginite (4A,  Joadja, Australia) and one highly aliphatic lamalginitic groundmass 
(8LG) from the Breckinridge cannel coal. 
 The "groundmass I" cluster includes bituminitic groundmass fractions 2G, 11G, 12G, 
4G, 10G,  and 5G2. ln the cluster, 2G, 11G, and 12G are more closely related to each other, 
whereas 4G, 10G, and 5G2 are related. The "groundmass II" cluster includes six samples: 
five of them are bituminitic groundmass whereas one is an impure sporinite concentrate (12S) 
containing 25% groundmass. The two groundmass fractions,  6G and 7G, are closely related. 
Another group includes two groundmass fractions (13G and 5G1) and one sporinite (12S). 
This cluster also contains the groundmass 1G from the Alpha torbanite. 
 Five of the six members of the "sporinite" cluster are sporinite fractions. The sixth is 
an incompletely-separated groundmass concentrate (3G), containing 28% vitrinite, alginite, 
and sporinite. ln this cluster, the three high purity sporinite samples (13S, 15S, and 14S) are 
the most closely related. The groundmass 3G has its closest linkage to 5S (75% sporinite). 
They are later joined by another concentrate containing 72% sporinite (11S). 
 The "vitrinite" cluster contains four vitrinite fractions (15V, 16V, 17V, and 18V) and 
one vitrinitic groundmass (14VG, Linton cannel). Samples 14VG, 15V, 16V, and 18V are 
closely related. The vitrinite cluster also includes the Pennsylvania humic coal (17V). 
 The cluster analysis of the 32 density fractions is quite consistent with both 
petrographic and chemical data, and generally the same types of constituents are related. The 
Botryococcus-related alginite and vitrinite are the most different, occurring at opposite end of 
the dendrogram (Fig. 10). The groundmass and sporinite are intermediate between the two 
end members. The bituminitic groundmass fractions are grouped into two separate clusters, 
whereas the lamalginitic and vitrinitic groundmass are related to the alginite and vitrinite, 
respectively. It should be pointed out that the two groundmass fractions 5G1 and 5G2, 
separated from the lndiana torbanite, fall into groundmass II and groundmass I clusters, 
respectively. Such a significant dissimilarity in chemistry is obvious from their petrographic 
features. Fraction 5G2 generally has a dark orange fluorescence under blue light, and shows a 
fine-grained texture with white light illumination. ln contrast, the fluorescence of fraction 
5G1 is weaker than 5G2. Fraction 5G1 is also mixed with fine inertinitic debris. Their 
densities are also different at 1.186 g/ml for 5G2 and 1.237 g/ml for 5G1 (Table 1). 
 
3.5. Principal component analysis 
 
 The data set used for cluster analysis was also subjected to principal component 
analysis. The first and second principal components (PC1 and PC2 in Table 1) account for 
75% of the total variation in the data. The loading plot of PC1 and PC2 for the 102 variables 
(Fig. 11) reveals the significance in chemical structure of the two principal components. n-
Alkanes, n-alk-1-enes, and n-𝛼,𝜔-alkadienes, as well as some alkylbenzene and alkyl-
naphthalene isomers, have a positive contribution to PC1. Ethylbenzene, propylbenzene, and 
1,2,3-trimethylbenzene display strong positive contributions to PC1. Toluene, 1-ethyl-3-
methylbenzene, 1-ethyl-4-methylbenzene, 1-ethyl-2-methylbenzene, and 1,2,4-
trimethylbenzene have low positive values in PC1. 1,3-, 1,4- and 1,2-Dimethylbenzenes and 
1,3,5-trimethylbenzene contribute negatively to PC1. Alkylphenols and alkylnaphthalenes, 
except for 2-ethylnaphthalene, also have a negative contribution. 
 Investigation of the alkylbenzene distributions has led to the distinction between so-
called linear and non-linear isomers (Douglas et al., 1991; Sinninghe Damsté et al., 1991, 
1993; Hartgers et al., 1992, 1994). Linear alkylbenzenes include toluene, ethylbenzene, 1,2-
dimethylbenzene, propylbenzene, and 1-ethyl, 2-methylbenzene. They are thought to be 
formed through cyclization and subsequent aromatization of straight chain aliphatic moieties. 
Thus it is observed that relatively more linear alkylbenzenes are produced by aliphatic-rich 
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macerals during pyrolysis (Douglas et al., 1991; Sinninghe Damsté  et al., 1991, 1993; 
Hartgers et al.,  1992, 1994). As illustrated in Fig. 11, ethylbenzene and propylbenzene 
(peaks B2a and B3a) are strongly related to straight chain aliphatics, indeed comparable to 
the linear alkylbenzene category. However, the other linear alkylbenzenes behave differently. 
For instance, 1,2- dimethylbenzene (B2c) displays an inverse relationship with the aliphatics, 
whereas 1-ethyl-2-methylbenzene (B3e), another linear isomer, has a low positive value in 
PC1. On the other hand, 1-ethyl-3-methyl- and 1-ethyl- 4-methylbenzenes (B3b and B3c), 
which are considered to be non-linear isomers, show a minor positive correlation with the 
straight chain aliphatics. Generally, there is a strong correlation between straight chain 
aliphatics and alkylbenzenes with a single, linear alkyl chain. This phenomenon is also 
observed with naphthalenes. 2-Ethylnaphthalene (peak N2a), which has a single, linear alkyl 
chain, is the only alkylnaphthalene possessing a positive value in PC1. Therefore, it is 
appropriate to say that PC1 demonstrates a correlation between aliphatics and truly linear 
alkylated aromatics. 
 The chemical significance of PC2 is relatively straightforward. There is a strong 
positive contribution from alkylbenzenes, alkylnaphthalenes, and alkylphenols. The n-𝛼,𝜔-
alkadienes, which are the alginite marker compounds, have a strong negative contribution. 
The long chain (>C19) n-alk-1-enes contribute positively to PC2, whereas the shorter ones (C8 
to C19) have either negative or little influence. The n-alkanes generally have a positive 
contribution. However, the long chain n-alkanes (>C19) have higher positive values relative to 
the shorter n-alkanes. 
 Fig. 12 is a cross-plot of PC1 and PC2 for the 32 fractions. It shows that the density 
fraction groups determined by the cluster analysis (Fig. 10) are also well separated on the 
principal component plot, demonstrating consistency between the results of the two different 
statistical methods. Horizontally from right to left in Fig. 12, the sequence of alginite to 
groundmass to sporinite to vitrinite documents a gradual increase in aromatics and phenols, 
but a decrease in straight chain aliphatics and aromatics with a single, linear side chain. 
Vertically, it distinguishes the alginite cluster by the predominance of short chain aliphatics, 
and the groundmass l cluster by a strong contribution of long chain aliphatics. The 
lamalginitic branch is distinguished from the main alginite cluster by having relatively more 
long chain (>C19) aliphatic hydrocarbons. 
 
3.6. Generalized chemistry of the various types of maceral and groundmass 
 
3.6.1. Composition of the pyrolyzates 
 Fig. 13 illustrates the average relative abundances of the major classes of compounds 
in the pyrolyzates, including n-alkanes, n-alk-1-enes, n-𝛼,𝜔-alkadienes, alkylbenzenes, 
alkylnaphthalenes, and alkylphenols for the six clusters. There is a general trend of 
decreasing aliphatic content, but increasing aromatic and phenolic compounds from the 
alginite to the lamalginitic to the groundmass I to the groundmass II to the sporinite to the 
vitrinite cluster. 
 Both the alginite and lamalginitic clusters are characterized by a predominance of 
alkenes and alkanes as well as the presence of alkadienes. The lamalginitic cluster is 
relatively enriched in benzenes, naphthalenes, and phenols compared to the alginite cluster. 
 The pyrolyzates of the two groundmass clusters are also dominated by alkanes and 
alkenes. They contain no detectable alkadienes, but have more aromatic and phenolic 
compounds (together comprising about 25%) relative to the alginite. The groundmass II 
cluster possesses slightly more alkylbenzenes and alkylphenols but less alkanes than the 
groundmass I. 
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 Fractions in the sporinite cluster are even richer in aromatics and alkylphenols, 
particularly in alkylbenzenes. The vitrinite is especially enriched in alkylphenols (about 40%) 
and alkylnaphthalenes (about 15%). The relative abundance of alkylbenzenes in vitrinite is 
second only to sporinite. 
 
3.6.2. Straight chain hydrocarbons 
 Straight chain hydrocarbons are ubiquitous in the pyrolyzates of the various types of 
maceral and groundmass (Figs. 4-9, and 13). Fig. 14 shows the average distributions of the 
total aliphatics (sum of alkadienes, alkenes, and alkanes) of the six clusters by carbon 
number. It is noted that the aliphatic distributions of each of the clusters are distinctly 
different from each other. The differences in aliphatic distributions are also expressed by the 
alkyl chain length ratio (ACLR) defined as the sum of n-C20-n-C33 divided by the sum of n-
C8-n-C19, which gives the relative abundance of long versus short chain hydrocarbons. This 
parameter is suggested by the principal component analysis results, which show a differential 
loading of n-alkenes and n-alkanes according to carbon number. A distinct change in loading 
values is observed to occur between C19 and C20 for n-alkenes (Fig. 11). 
 The pyrolyzates from the seven samples in the alginite cluster exhibit a predominance 
of short chain hydro-carbons showing a maximum at C10 with little variation between 
individual samples. The average ACLR is 0.28. The aliphatic distribution of the lamalginitic 
cluster is similar to the alginite cluster, but is relatively richer in long chain aliphatics having 
an ACLR of 0.42. However, the lamalginitic cluster has only two samples, so this 
generalization is provisional. 
 The groundmass I cluster samples are very different from the alginite and lamalginitic 
samples, showing no clear carbon number maximum. They are characterized by a flat 
distribution with almost equal abundances of hydrocarbons from C10 to C15 (Fig. 14). In 
addition they are enriched in long chain hydrocarbons with an average ACLR of 0.52. A high 
variability among samples occurs in the middle C18 to C25 hydrocarbon range. The 
Groundmass II cluster is similar to groundmass I except that it is relatively depleted in long 
chain aliphatics as indicated by a lower ACLR value of 0.48. 
 The straight chain hydrocarbons of the sporinite cluster are similar to the alginite 
cluster having a predominance of short chain homologues. However, there is a wide variation 
among the six samples in the sporinite cluster possibly due to the sample purity factor. The 
average ACLR value is 0.32. 
 Relative to alginite and sporinite, hydrocarbons of the vitrinite cluster display a shift 
towards higher carbon numbers having a maximum at C14 and a high ACLR of 0.54 
(average). ln addition vitrinites have less C8 to C11 aliphatics compared to the alginite, 
sporinite, and groundmass clusters. 
 Fig. 15 illustrates the relative abundances of normal hydrocarbons of each cluster. It 
shows that the distributions of the groundmass generally fit the average distribution of 
vitrinite in long chain hydrocarbons (C12-C33) whereas they overlap with alginite in the short 
chain hydrocarbon (C8-C11) range. However, the hydrocarbon distribution  of  the  sporinite  
does not fit well with those of the groundmass due to the relatively high abundance of C8-C11 
hydrocarbons in the sporinite. It seems that the aliphatics of the groundmass bear the 
characteristics of both alginite and vitrinite. 
 Therefore, it is possible that the aliphatics of the groundmass might have been formed 
via multiple pathways. The aliphatics, which produce predominantly shorter chain 
hydrocarbons upon pyrolysis, likely come from algal (or, less likely, spore) precursors, 
whereas those responsible for the generation of the long chain aliphatic pyrolyzates might 
have an origin similar to that of vitrinite. The aliphatics contained in vitrinite, particularly 
those long chain aliphatics, are believed to originate from higher plant lipids (Taylor et al., 
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1998). They are incorporated during the microbial reworking of the cellulose and lignin 
woody tissues. The higher plant origin of the long chain aliphatics in the groundmass is also 
supported by their close relation to the aromatic and phenolic compounds as revealed by the 
principal component analysis (Fig. 11). 
 
3.6.3. Aromatic and phenolic compounds 
 The major differences in internal distributions of alkylbenzenes, alkylnaphthalenes, 
and alkylphenols for the various types of maceral and groundmass (Figs. 4-9) are 
quantitatively expressed as molecular ratios (Table 3), averaged for each cluster defined by 
the multivariate statistical analysis. When the molecular ratios in Table 3 are plotted against 
organic matter type (Fig. 16), the Botryococcus-related alginite and vitrinite are well 
distinguished from each other, and the various types of groundmass generally fall between 
them. 
 The alginite has the highest values of (B2a+B3a+ B3g)/B (0.15) and (B2a+B3a)/B 
(0.11), illustrating higher concentrations of ethylbenzene (B2a), propylbenzene (B3a), and 
1,2,3-trimethylbenzene (B3g) relative to other types of organic matter. As revealed by the 
loading plot of PC1 (Fig. 11), ethylbenzene, propylbenzene, and 1,2,3-trimethylbenzene are 
associated with straight chain hydrocarbons. ln contrast the vitrinite is relatively depleted in 
ethylbenzene, propylbenzene, and 1,2,3-trimethylbenzene, with (B2a+ B3a+B3g)/B and 
(B2a+B3a)/B ratios of 0.09 and 0.06. 
 Analogous to alkylbenzenes, alkylnaphthalenes are also divided into linear isomers 
(labeled with b in Table 2) and non-linear isomers. Linear alkylnaphthalenes are believed to 
be formed through the same mechanism as that of linear alkylbenzenes, but with an 
additional cyclization reaction and subsequent aromatization of the second cyclohexyl ring 
(Hartgers et al., 1994). Alginite is particularly enriched in linear alkylnaphthalenes, showing 
relatively higher N1b/N1 (1-methylnaphthalene/all C1 naphthalenes) ratio (0.45) and N2f/N2 
(2,3-, 1,4- and 1,5-dimethylnaphthalenes/all C2 naphthalenes) ratio (Table 3, Fig. 16). In 
contrast vitrinite has the highest N2d/N2 ratio (0.28) possessing more non-linear structures. 
 As noted previously, 2-ethylnaphthalene (N2a) with its single, linear, two carbon, 
side-chain, is the only alkylnaphthalene member positively contributing to PC1, i.e. the only 
one correlated with aliphatics (Fig. 11). The higher N2a/N2 value of alginite is clearly related 
to its highly aliphatic nature. On the other hand, vitrinite is depleted in 2-ethylnaphthalene. 
 In alkylphenols, the most prominent peaks (Figs. 4-9) are F1a (2-methylphenol), F1b 
(3- and 4-methylphenols), F2c (2,4-dimethylphenol), and F2f (3-ethylphenol and 3,5-
dimethylphenol). The variation in the relative abundance of F1a, F1b, F2c, and F2f  are  
monitored with two ratios, i.e. F1a/F1 and F2c/(F2c+F2f). Alginite shows a preference for 2-
methylphenol (0.48 of F1a/F1) and 2,4-dimethylphenol [0.71 of F2c/ (F2c+F2f)], but vitrinite 
does not (0.30 and 0.51, respectively). 
 The alkylbenzene, alkylnaphthalene, and alkylphenol distributions of the density 
fractions comprising the two groundmass clusters are generally intermediate between the 
alginite and the vitrinite (Table 3 and Fig. 16). For example, the (B2a+B3a)/B ratio of the 
groundmass l and groundmass ll are 0.09 and 0.08, respectively, and the ratios of alginite and 
vitrinite are 0.11 and 0.06. The lamalginitic groundmass is almost identical to alginite in 
alkylbenzene and alkylnaphthalene distributions, but its alkylphenol distribution pattern is 
more similar to other groundmass clusters, intermediate between alginite and vitrinite (Fig. 
16). 
 The sporinites are particularly enriched in 1,2-dimethylbenzene (B2c) and 1-ethyl-2-
methylbenzene (B3e) with the highest B2c/B2 and B3e/B3 ratios of 0.41 and 0.23, 
respectively. The other two alkylbenzene  ratios and the two alkylphenol ratios fall between 
the alginite and vitrinite, similar to the groundmass. ln the alkyl-naphthalenes three molecular 
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ratios (N1b/N1, N2a/N2, and N2d/N2) of the sporinites resemble those of alginite, but 
N2f/N2 is between alginite and vitrinite. 
 
3.7. Evidence for bacterial activity 
 
 Bacterial alteration during early diagenesis is a key process in the transformation of 
sedimentary organic matter (Tissot and Welte, 1984). It is postulated that the various 
groundmass types are formed through bacterial attack of precursor materials. To test this 
hypothesis, it would be appropriate to find direct chemical evidence of bacterial contribution. 
 Hopanoid compounds in sedimentary organic matter are considered to be related to 
anaerobic bacteria activities (Peters and Moldowan, 1993; Tissot and Welte, 1984). They 
have recently been detected in kerogen pyrolyzates (e.g. Sinninghe Damsté  et al., 1992b; 
Han et al., 1995; Salmon et al., 1997; Stalker et al., 1998). ln this study, hopanoid compounds 
are found in most of the maceral and groundmass pyrolyzates. Fig. 17 shows the m z 191 
mass chromatograms of the alginite and groundmass fractions separated from the Joadja 
torbanite, which exhibit the 11 major hopenes/hopanes (C27 to C31) present in the pyrolyzates. 
The hopanoid identifications are based on mass spectral assessment, retention times, and 
literature (Sinninghe Damsté  et al., 1992b). 
 Significantly, the hopanoids are found to be preferentially concentrated in the 
groundmass, rather than in the co-occurring phytoclasts (Fig. 17). This is further confirmed 
by the ratio of the sum of the hopanoid compounds (m z 191) relative to the sum of the 
aliphatic, aromatic, and phenolic compounds listed in Table 2 (Fig. 18). Only nine samples 
are shown in Fig. 18 as the hopanoid concentrations in other samples are too low to 
quantitate. The relative hopanoid concentration is always higher in the groundmass than in 
the major maceral for a given sample, which unambiguously indicates the bacterial 
contribution to the organic groundmass. 
 Fig. 18 also indicates that both the alginite (4A) and groundmass (4G) from the Joadja 
torbanite have higher hopanoid concentrations compared to other samples, suggesting a 
stronger bacterial contribution. The chemical variation caused by this relatively greater 
microbial action might explain why the Joadja alginite fraction (4A) falls in the lamalginitic 
cluster rather than being grouped with the other Botryococcus-related alginites in the 
multivariate analyses (Figs 10 and 12). 
 As discussed previously, nitrogen is preferentially enriched in the groundmass relative 
to the co-occurring macerals (Fig. 3). It is generally believed that the nitrogen in organic 
sediments comes from various sources (e.g. Charlesworth, 1986; Bakel and Philp, 1990; Li et 
al., 1997). One possible mechanism for preservation of nitrogen involves incorporation of the 
microbial degradation products of proteinaceous substances into the sedimentary organic 
matter during the decomposition and recondensation process (Schmitter and Arpino, 1983; 
Bakel and Philp, 1990; Zegouagh et al., 1999). Therefore, the relatively high nitrogen content 
in the groundmass indicates a relatively high incorporation of protein-derived products. Since 
bacteria yield much protein (Taylor et al., 1998), the incorporation of the decomposition 
products of these proteins likely plays a role in the nitrogen preservation as well. 
 In addition to protein, nitrogen heterocyclic structures such as pyrroles, pyridines, and 
quinolines are commonly present in source materials of various origins. For example, pyrrole 
structures are present in porphyrins and related biologic pigments, and quinoline structures 
are found in higher plant alkaloids (Pelletier, 1970). The incorporation of those nitrogen 
heterocyclic structures during early diagenesis also enhances the preservation of nitrogen in 
sedimentary organic matter. Bacterial decomposition of less resistant components such as 
starch, cellulose, and hemicellulose in source materials could lead to relative enrichment of 
more stable substances including the nitrogen heterocyclic moieties. 
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3.8. Origin of the various groundmass types 
 
 The fine-grained to amorphous groundmass of the torbanite and cannel coal samples 
accounts for 10 to 80% of the total volume (Han et al., 1999). Petrographically, three 
groundmass types are recognized: lamalginitic, bituminitic, and vitrinitic, based on their 
texture and optical properties. lt is often assumed that the amorphous groundmass in torbanite 
and cannel coal is generally related to the co-occurring phytoclasts. lf this is the case, 
however, microbial degradation has effectively destroyed the primary phytological 
morphology. It is difficult and unreliable to determine the phyletic affinity of the groundmass 
precursor organisms using petrographic methods. Elucidation of the chemical properties 
would certainly be useful for understanding the origin of the amorphous groundmass, but it 
was also very difficult before the advent of efficient maceral separation techniques. In the 
present research, the separation of major macerals and varieties of groundmass using DGC 
makes it possible to directly analyze the individual constituents with minimal mutual 
interference. 
 Among the 17 samples used in this study, lamalginitic groundmass is only identified 
in the Kentucky Breckinridge cannel. Physically, it is composed of densely packed lamellae 
exhibiting a yellow fluorescence that while bright, is less intense than the co-occurring 
Botryococcus-related alginite. Chemically, its pyrolyzate is similar to that of typical 
Botryococcus-related alginite with its highly aliphatic nature, including the C9 to C26 
alkadienes especially. However, it is distinguished from the alginite by relatively more long 
chain aliphatics, and more aromatic and phenolic compounds. Its alkyl-phenol distribution  
pattern is similar to the other types of groundmass. In a previous study of the Breckinridge 
cannel (Hower et al., 1986), the brightly-fluorescing groundmass is considered likely to be 
dominated by algal remains .  The overall physical and chemical data obtained in this study 
suggest that the lamalginitic groundmass might be derived from algal remains with minor 
degradation. However, it is not possible at this point to relate it to any specific precursor 
organism. 
 The vitrinitic groundmass is only found in the Ohio Linton cannel. Petrographically, it 
resembles typical desmocollinite, except for its distinct reddish fluorescence. It is chemically 
similar to vitrinite, as demonstrated by both elemental and flash Py-GC/MS data, but its 
pyrolyzates contain relatively more aliphatics and less polyaromatic and phenolic compounds 
compared to typical vitrinite. Its overall chemical and optical properties suggest that it be 
likely derived from strongly-decomposed humic material. 
 The bituminitic groundmass, comprising the majority of the two groundmass clusters 
statistically defined in this study (Figs. 10 and 12), is common in both torbanite and cannel 
coal. The physical features of the bituminitic groundmass vary from sample to sample, due to 
the presence of admixed microlamellae or micrinite in some cases. However, the density 
fractions of bituminitic groundmass from different samples are generally similar in their 
chemical properties. ln the van Krevelen diagram (Fig. 1), they plot in the same region 
between the Type II and Type III kerogen pathways. Their pyrolyzates are dominated by n-
alkene/n-alkane pairs. They are also richer in nitrogen and hopanoids (Table 1, Figs. 
3 and 18) relative to the co-occurring phytoclasts, demonstrating more significant bacterial 
contribution. 
 Detailed comparison of the pyrolyzates of the bituminitic groundmass with the 
alginite, sporinite, and vitrinite shows that groundmass pyrolyzates have characteristics 
intermediate between liptinite and vitrinite. According to Teichmüller and Ottenjann (1977) 
and Teichmüller (1986), the occurrences and the properties of the maceral bituminite suggest 
that it represent a decomposition product of algae, animal plankton, and bacterial lipids. The 
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chemical data of this research suggest that there is also a significant contribution of humic 
material during the formation of the bituminitic groundmass. The limited occurrence of 
torbanite and cannel coal in coal measures suggests that they are formed in restricted water 
bodies within peat-forming swamps (Moore, 1968; Taylor et al., 1998). Therefore, the 
groundmass might be formed through a decomposition of both in-situ algal precursors and 
humic material introduced from the surrounding swamps. The anaerobic bacterial-produced 
hopanoid compounds are also incorporated. 
 The multivariate statistical analysis further divides the DGC fractions of bituminitic 
groundmass into two clusters. The chemical differences between these two groups of 
groundmass are minor. Groundmass I fractions are distinguished by relatively more 
aliphatics, especially long-chain hydrocarbons. Groundmass II is more closely related to 
vitrinite with its relatively higher concentrations of aromatic and phenolic compounds (Fig. 
13). Its internal distribution patterns of aromatic and phenolic compounds also tend to be 
similar to that of vitrinite (Table 3, Fig. 16). The variation in chemical composition of the two 
groundmass clusters is consistent with their difference in density. The relatively aliphatic 
groundmass I cluster has an average density of 1.197 g/ml, whereas the groundmass II 
cluster, with higher concentrations of aromatic and phenolic compounds, displays a 1.222 
g/ml average density. 
 In summary, chemical analysis and subsequent multivariate statistical processing of 
the 32 density fractions including 13 examples of amorphous to fine-grained organic 
groundmass, indicate that the groundmass is likely a mixture of bacterially-degraded algal 
and humic organic matter. The proportions of the two primary components vary from sample 
to sample, as does the extent of degradation. 
 
4. Conclusions 
 
 1. The separation of the constituents from torbanite and cannel coal using DGC 
permits the analysis of individual constituents with minimal mutual interference. Cluster and 
principal component analyses of the Py-GC/MS data group the maceral and groundmass 
density fractions into six clusters and sub-clusters, generally consistent with the petrographic 
determinations. 
 2. The alginite cluster is comprised of seven Botryococcus-related alginite fractions. 
ln addition to their well-known highly aliphatic nature, the alginite pyrolyzates are found to 
be enriched in alkylbenzenes and alkylnaphthalene with a single, linear side chain, which are 
well correlated statistically with normal alkadienes, alkenes, and alkanes. Among the 
alkylphenols the relative concentrations of 2-methylphenol and 2,4-dimethylphenol are 
higher in alginite than in other types of maceral and groundmass. 
 3. The pyrolyzates of the sporinite cluster are enriched in aliphatic, aromatic, and 
phenolic compounds, particularly short chain aliphatics, 1,2- dimethylbenzene, and 1-ethyl-2-
methylbenzene. 
 4. The vitrinite produces predominantly phenolic and aromatic compounds upon 
pyrolysis. The normal hydrocarbons shift to higher carbon numbers relative to alginite and 
sporinite. Examination of the distribution patterns of alkylbenzenes, alkylnaphthalenes, and 
alkylphenols reveals that vitrinite is dissimilar to alginite in many respects. The single sample 
of vitrinitic groundmass is also part of the vitrinite cluster, but is distinguished from typical 
vitrinite by a higher abundance of straight chain aliphatics and less polyaromatics. It is likely 
derived from strongly-decomposed humic material. 
 5. The lamalginitic groundmass from the Kentucky Breckinridge cannel is chemically 
similar to Botryococcus-related alginite, as shown by a pre-dominance of aliphatics and the 
presence of the alkadiene series in the pyrolyzates. However, it produces relatively more long 
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chain  aliphatics, and aromatic and phenolic compounds compared with alginite. Its 
alkylphenol distribution pattern more closely resembles that of other types of groundmass 
than alginite. Its overall properties suggest that it be likely composed of partly-degraded algal 
remains. 
 6. The density fractions of the bituminitic groundmass are generally similar in their 
chemical properties. On a van Krevelen diagram, they plot in the same region between the 
Type II and III pathways. Their pyrolyzates are characterized by a predominance of straight 
chain hydrocarbons, with carbon number distributions showing characteristics of both 
alginite and vitrinite pyrolyzates. The aromatic and phenolic compounds in their pyrolyzates 
are relatively more abundant than in alginite, but much less than in sporinite and vitrinite. 
Examination and calculation of molecular ratios reveal that the distributions of 
alkylbenzenes, alkylnaphthalenes, and alkylphenols are intermediate between those of 
alginite and vitrinite. Such an intermediate chemical nature suggests that the bituminitic 
groundmass is a microbial decomposition product of in-situ algal debris, plus humic material 
brought into the lacustrine depositional environment from the surrounding swamps. The 
proportions of the two primary components vary from sample to sample, as does the extent of 
degradation. Anaerobic bacterial degradation is also indicated by the relative enrichment of 
hopanoid structures and elemental nitrogen in the groundmass. 
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Table 1. Sample identification, petrography, elemental data, and principal component 
analysis results. 
a A, alginite; S, sporinite; V, vitrinite; G, groundmass (L, lamalginitic; B, bituminitic; V, 
vitrinitic). 
b Sample 9 not used in this study. 
c Blank spaces indicate that elemental analysis not performed. 
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Table 2. Compounds and MS ions used in quantitation. 
a Codes are used to identify peaks in Figs. 4-9. 
b Compounds with linear structure according to Hartgers et al. (1992, 1994). 
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Table 3. Molecular parameters based on the concentration of benzenes, naphthalenes, and 
phenolsa,b 
a Values are averages for each cluster, and clusters are defined in Fig. 10. 
b Alg., Alginite; Lam., Lamalginitic; G I, Groundmass I; G II, Groundmass II; Spor., 
Sporinite; Vitr., Vitrinite. 
c Compound code refers to Table 2. 
d B, benzene; F, phenol; N, naphthalene; M, methyl; DM, dimethyl; TM, trimethyl; E, ethyl; 
P, propyl. 
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Fig. 1. Plot of atomic H/C vs. O/C, showing the maceral and groundmass concentrates falling 
into different organic matter categories. The position of each point along the maturation 
pathway also shows that most of them fall in a high volatile bituminous rank. Plot is 
calibrated to mean maximum vitrinite reflectance (Rmax, Tissot and Welte, 1984). The 
numbers are matched with the sample ID codes in Table 1. 
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Fig. 2. The correlation of density with the H/C atomic ratio 
(A) and O/C atomic ratio (B) of the various types of maceral and groundmass. 
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Fig. 3. Bar plots showing that nitrogen is preferentially enriched in the groundmass relative 
to the co-occurring macerals. See Table 1 for sample ID code. 

 
 
Fig. 4. Total ion current (TlC) chromatogram of the flash pyrolyzates of the alginite fraction 
(6A) isolated from the Scottish torbanite through DGC. Part of the chromatogram was 
enlarged to show detail. Numbers below the enlarged chromatogram are n-alkane carbon 
numbers. See Table 2 for peak identification. Δn = n-alkene/alkane pairs for which n = 
carbon number. 
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Fig. 5. Total ion current (TlC) chromatogram of the flash pyrolyzates of the sporinite fraction 
(14S) isolated from the Ohio Linton cannel coal through DGC. Part of the chromatogram was 
enlarged to show detail. Numbers below the enlarged chromatogram are n-alkane carbon 
numbers. See Table 2 for peak identification. 

 
 
Fig. 6. Total ion current (TlC) chromatogram of the flash pyrolyzates of the vitrinite fraction 
(15V) isolated from the Canadian Melville cannel coal through DGC. Part of the 
chromatogram was enlarged to show detail. Numbers below the enlarged chromatogram are 
n-alkane carbon numbers. See Table 2 for peak identification. 
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Fig. 7. Total ion current (TlC) chromatogram of the flash pyrolyzates of the lamalginitic 
groundmass fraction (8LG) isolated from the Kentucky Breckinridge cannel through DGC. 
Part of the chromatogram was enlarged to show detail. Numbers below the enlarged 
chromatogram are n-alkane carbon numbers. See Table 2 for peak identification. 

 
 
Fig. 8. Total ion current (TlC) chromatogram of the flash pyrolyzates of the groundmass 
fraction isolated from the Scottish torbanite through DGC. Part of the chromatogram was 
enlarged to show detail. Numbers below the enlarged chromatogram are n-alkane carbon 
numbers. See Table 2 for peak identification. 
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Fig. 9. Total ion current (TlC) chromatogram of the flash pyrolyzates of the vitrinitic 
groundmass fraction (14VG) isolated from the Ohio Linton cannel coal through DGC. Part of 
the chromatogram was enlarged to show detail. Numbers below the enlarged chromatogram 
are n-alkane carbon numbers. See Table 2 for peak identification. 

 
 
Fig. 10. Dendrogram obtained from an average linkage cluster analysis of data on pyrolysis-
GC/MS. Notice the various types of maceral and groundmass falling into six major clusters. 
See Table 1 for explanation of sample code. Alg, alginite; Lam, lamalginitic ; G I, 
groundmass I; G II, groundmass II; Spor, sporinite; Vitr, vitrinite. 
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Fig. 11. Bar plots showing the loadings of principal component 1 (PC1) and principal 
component 2 (PC2) for individual variables. Peak codes refer to compounds listed in Table 2. 
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Fig. 12. Plot of 32 density fractions of maceral and groundmass against values for PC1 and 
PC2, showing the fractions falling into six clusters. Sample groupings are the clusters defined 
in Fig. 10. See Table 1 for definition of sample code. 

 
 
Fig. 13. Average relative concentration of the major classes of the pyrolyzates in the six 
clusters determined by cluster analysis, as a percentage of total peaks quantitated. See Table 
2 for a complete list of peaks employed. 
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Fig. 14.  Straight chain hydrocarbon distributions based on the area summation of C8-C33 
alkadienes, alkenes, and alkanes of the clusters defined by multivariate analyses (Figs. 10 and 
12). The line is the average distribution of each cluster, and the bars show the average plus 
and minus one standard deviation. Data for each sample are normalized to the strongest peak 
in the profile prior to averaging. The alkyl chain length ration (ACLR) is the sum of C21-C33 
divided by the sum of C8 to C20. 
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Fig. 15. Integrated plot of the average distribution of total straight chain hydrocarbons of 
alginite, sporinite, vitrinite, groundmass I, and groundmass ll. 

 
Fig. 16. Plot of molecular ratios of alkylbenzenes, alkylnaphthalenes, and alkylphenols, 
showing separation of the various types of macerals and groundmass. Ratio values are 
averages for each cluster, and parameter code refers to Table 3. 
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Fig. 17. Mass chromatograms of m/z 191 showing the distribution of hopanes and hopenes in 
the pyrolyzates of the alginite and groundmass separated from the Joadja torbanite, Australia. 
Notes: 1=trisnorhopene, 2=22,29,30-trisnorhop-17[21]-ene, 3=17𝛼(H)-22,29,30-
trisnohopane, 4=17𝛽(H)-22,29,30-trisnorhopane, 5=17𝛼(H), 21𝛽(H)-30-norhopane, 
6=17𝛽(H), 21𝛼(H)-30-norhopane, 7=hopene, 8=17𝛼(H), 21𝛽(H)-hopane, 9=hopene, 
10=17𝛽(H),21𝛼(H)=hopane,11=17𝛼(H)21𝛽(H)-homohopane. 

 
Fig. 18.  Bar plots showing the ratio of hopanoid compounds (m/z 191) to the sum of 
aliphatic, aromatic, and phenolic compounds listed in Table 2. The hopanoid compounds are 
preferentially enriched in the groundmass relative to the co-occurring macerals. See Table 1 
for sample ID code. 
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