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ABSTRACT 

The industrial demand for higher capacity, light-weight battery materials has skyrocketed 
in recent years due to heavy investments in portable electronics, electronic vehicles, and 
renewable energy sources. However, rechargeable battery technology has seen little 
improvement since the invention of the Lithium-Ion battery in the 1980s. The low energy density 
of the traditionally utilized LiCoO2 cathodic material (specific capacity: 272 mAh g-1), has 
limited its potential to meet these increasing demands. To solve this problem, our research group 
is investigating new types of lightweight, organic, polymeric materials with conductive 
backbones as a possible replacement for the cathodic materials in Lithium-Ion batteries. These 
polymers could be utilized as a rechargeable battery material by relying upon the redox couple 
between the nitroso and phenylhydroxylamine functional groups. These rechargeable materials 
would have a calculated theoretical capacity of 459.60 mAh g-1 or 433.52 mAh g-1. NMR results 
show that we have successfully prepared two monomers with thiophene functional groups and 
another model compound. Initial electrochemical study indicates multiple electron transfer 
reaction occurs during the reduction at about 2.5 V vs. Li/Li+ redox couple. Future work would 
focus on the optimization of polymerization condition of the monomers and to begin preliminary 
lithium battery discharge testing. This project explores the field of light-weight organic cathodic 
materials and has the potential to greatly increase the energy density for Lithium-Ion batteries. 
This would ultimately serve to remove the technology bottleneck that is holding research in other 
areas back and would be to the benefit of anyone who relies upon battery technology in their 
daily life. 
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CHAPTER 1: Introduction and Background 

1.1: Battery Overview 

 With every passing day, technology continues to rapidly evolve. Massive advancements 

in the field of medicine, energy, transportation, and portable electronics have provided increased 

opportunities for advancement, extended our lifespans, expanded global markets, and have 

brought about a great increase in life satisfaction. However, each one of these areas of 

technological research and development have been hindered in their development. This 

hindrance is directly related to a bottleneck effect caused by the slow advancement of battery 

research and design, of which each of these industries heavily rely upon.1-4 Since the commercial 

development of the lithium-ion rechargeable battery in 1991, very slow progress has been made 

in this field of research. In fact, since the inception of lithium-ion (Li-ion) batteries, battery 

performance has increased only six-fold, but the performance of electronics powered by these 

batteries has increased by 10,000% over the same time frame.5 This limitation creates a 

substantial opportunity for progress in an exciting field of research.  

 These physical limitations, associated 

with traditional lithium-ion batteries, can be 

directly attributed to the materials used in their 

construction and the mechanism by which they 

operate. Traditional Li-ion batteries contain, at 

their most basic, three main components: the 

positive electrode (cathode), the negative 

electrode (anode), and the electrolyte in 

between. When the two electrodes are connected via an external circuit, the battery discharges 

Figure 1: Li-Ion Battery Diagram7 
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the energy stored by the cathodic materials spontaneously (electrons through the circuit and 

lithium-ions in solution). The reverse reaction occurs when a negative, external potential is 

applied to the battery (anode to cathode) (Figure 1). The flow of lithium-ions only in solution is 

due to the electrolyte being electronically insulating but ionically conductive and a porous 

membrane separating the two electrodes.6  

The most common mechanism by which these reactions occur within commercial Li-ion 

batteries is intercalation; which is “the process by which a mobile ion or molecule is reversibly 

incorporated into vacant sites in a crystal lattice”.6 There are a variety of reasons as to why initial 

attempts at Li-ion batteries would capitalize on this mechanism specifically, but it essentially 

boils down to commercial viability. Regardless of the limited capacities that these styles of 

batteries offer (Table 1), the seating of alkali ions into their crystal lattice structure results in 

minimal volume change and mechanical strain on the system. This, in turn, produces a battery 

that is stable through multiple charge/discharge cycles. The stable product produced through this 

method may have been functional enough to get mankind this far, but the capacity must improve.  

Table 1: Materials Used in Li-Ion Intercalation Style Batteries6

 

1.2: Conversion-Style Organic Cathodes  
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A remedy to this issue can be found through the implementation of chemical reactions 

within a battery cells that convert the reaction materials to entirely new products through the 

process of lithiation.7 In these batteries, the electric charge is stored via the lithiation (reduction) 

reaction and discharged upon the reverse reaction (oxidation).These types of batteries are 

referred to as “conversion-style” batteries. Organic conversion-style batteries, in particular, have 

the advantage of possessing high theoretical specific capacities, environmental friendliness, 

modularity, high safety, and natural abundance.8 Organic conversion-style batteries have a great 

deal of promise; however, they can be a double-edged sword. In exchange for greatly increased 

capacity, the organic conversion-style batteries have limited cycle life. Reducing the cycle life of 

the materials would slowly degrade the total capacity of the cathodic materials as it undergoes 

many charge/discharge cycles, yielding a battery not fit to be implemented in a commercial 

application. The instability of these materials is typically attributable to the propensity of these 

organic materials to dissolve in the solvents that support the conductive electrolyte.9 This issue 

can be alleviated through the implementation of a polymeric structure in the organic framework 

of the conversion-style battery. The greatly increased stability of the polymer, compared to 

individual molecules, would serve to eliminate some of these potential pit-falls; with a fantastic 

example of this being observed in polymers containing the electrochemically active quinone 

functional groups.10 

1.3: Polymeric Materials as Cathodes 

The options that have been investigated as possibilities for conjugated, aromatic, 

heterocyclic polymers that are electrochemically polymerizable include: polypyrrole, 

polythiophene, and polyaniline.11 These polymers are highly promising options for the 

conductive backbone of an organic, cathodic material due to the incredibly high conductivity of 
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these organic polymers. The conductive properties of these compounds come from the highly π-

conjugated structure of the polymer chains. Polythiophene, specifically, stands out as a potential 

candidate for constructing an organic, cathodic polymer due to the extremely high conductivity 

observed in lab (2-150 S cm-1)12, the abundance of starting materials, and the ability to form 

consistent polymer morphologies upon electrodeposition.13 The electrodeposition of 

polythiophene on the surface of an electrode is a highly efficient method for the synthesis of a 

conductive and pure polymer.13 The mechanism for this specific reaction is a radical cationic 

polymerization14 (Figure 2).15 This process would eliminate the need for any adhesives or 

conductive compounds, such as carbon black, in order to function on the surface of an electrode, 

as current can be conducted directly through the material once deposited.13 This would ultimately 

increase the capacity of the battery because of the reduction in weight compared to non-

electrodeposited compounds. 

 

 

1.4: Redox Active Functional Group  

With an ideal candidate for a polymeric backbone established, an electrochemically 

active portion of the organic cathode must also be established. The ultimate criteria for selection 

would involve maximizing the theoretical capacity of the cathode. This would involve selecting a 

reduction mechanism that would store the greatest number of electrons at the lowest possible 

Figure 2: Mechanism of Radical Polymerization of Thiophene15 
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weight. For this reason, the nitro group was selected. The reduction of nitro groups is typically 

associated with the 6 e-/6 H+ reduction to an amine commonly observed in synthetic reactions. 

However, electrochemical reduction of nitro groups has displayed a different path for reduction. 

It has been observed in aqueous environments that nitro groups actually undergo a 4 e-/4 H+  

reduction to a hydroxylamine group (Figure 3).16 This corresponds to an impressive theoretical 

capacity per nitro group. This reduction, however, is not a reversible process. During the 

reduction process to the phenylhydroxylamine, a water group dissociates from the nitro group.16 

The irreversibility of the process makes it a poor candidate for a rechargeable cathodic material 

(while still leaving the door open for implementation in a single-use battery).  

Figure 3: Reduction of Aromatic Nitro Groups to Phenylhydroxylamine16 

 

The hydroxylamine group, however, still contains potential as a functional element in a 

rechargeable battery system. This is because of the electrochemical relationship between the 

hydroxylamine group and the nitroso group. Electrochemical investigation has shown, that upon 

reduction from a nitro group to the hydroxylamine group, reversible oxidation is possible to a 

nitroso group when a more positive potential is applied.17 This process is a completely reversible 

2e-/2H+ redox couple18 (Figure 4)19. It can be observed that the two mechanisms of reaction are 
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interrelated by observing cyclic voltammetry of the reduction, subsequent oxidation, and final 

reduction of nitrobenzene and the oxidation of phenylhydroxylamine with its subsequent 

reduction (Figure 5)19. It would be a quick transition from the well-documented electrochemical 

results in aqueous environments, to an aprotic, lithium-ion rich solution. This would result in the 

protons typically used in these redox reactions being replaced by lithium-ions. The results of 

which are well-documented in the lithiation of organic quinones in aprotic environments.20 

Figure 4: Reduction of Nitro Groups19 

 

Figure 5: CVs Displaying Electrochemical Activity of Possible Reduction Products of 
Nitrobenzene19 
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1.5: Synthetic Reaction for Monomer Production  

The mechanism by which the electrochemically polymerizable thiophene units were 

introduced to the electrochemically active functional units of the monomer structure is 

nucleophilic aromatic substitution. Utilizing 2,4-Dinitrofluorobenzene (Sanger’s Reagent/DNFB) 

and aromatic amines as reactants, the nucleophilic replacement of fluoride by the amino group 

proceeds through a Meisenheimer complex transition state21 (Figure 6). The reaction of Sanger’s 

reagent with amino groups was first utilized as early as the 1950s to sequence amino acids22-23 

and eventually became Nobel Prize winning work. Today, the nucleophilic aromatic substitution 

of Sanger’s Reagent provides a quick, simple, and affordable one-step method to create an 

electrochemically active monomer for use in an organic cathode. By incorporating 2 nitro groups 

on a single benzene ring, a reversible redox reaction totaling 4e-/4H+ is possible. The three 

candidates for cathodic materials utilizing a combination the previously mentioned research, 

along with the theoretical capacities for each compound are listed below (Figure 7). Theoretical 

capacities were calculated based on the molecular weight of the compounds from the following 

equation: 𝑄𝑄𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑛𝑛
3.6∗𝑀𝑀𝑀𝑀

 mAh g-1 [n = electrons per molecule, F = Faraday Constant 

(96,485.3329 sA mol-1), Mw = molecular weight]. 

Figure 6: Mechanism of Reaction: Nucleophilic Aromatic Substitution – Meisenheimer Complex 
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Figure 7: Two Monomer Candidates (left) and Model Compound (right) for Cathodic Materials 

 

 

 

 

 

 

 

 

 

 

 

 

Monomer 1: Mw=265.26 
(233.26) g mole-1 

Theoretical Capacity 
(Nitroso) – 459.60 mAh g-1 

Monomer 2: Mw=279.29 
(247.29) g mole-1 

Theoretical Capacity 
(Nitroso) – 433.52 mAh g-1 

Model Compound: Mw= 
325.31 (293.31) g mole-1 

Theoretical Capacity 
(Nitroso) – 365.50 mAh g-1 
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Chapter 2: Experimental Details 

2.1: Computational Methods 

 To examine the viability of the nucleophilic aromatic substitution reaction for the 

purposes of constructing one of the proposed monomers, computational modelling was employed 

to help examine the free energy changes of the reactions and electrostatic potential maps of the 

final products. Structures of the starting materials (2,4-dinitrofluoro benzene and the 

corresponding aromatic amines) and final products were built in the modelling software 

Gabedit.23 Gabedit is a freeware graphical user interface, offering preprocessing and 

postprocessing tools for editing, displaying, analyzing, converting, and animating molecular 

systems.24 The command files containing the cartesian coordinates for the atoms in the molecular 

structures underwent geometric optimization and frequency calculations via the DFT:B3LYP/6-

311G(d,p) method. The geometries were set to a tight optimization to ensure adequate 

convergence and reliable frequencies, with all experiments running the scrf specification in 

EtOH (mimicking experimental conditions). The command files for these calculations were 

submitted to the Lawrence Supercomputer at the University of South Dakota. Lawrence operates 

using the Gaussian09 and Gaussian16 version of the Gaussian computational software package. 

Results of the computational studies are displayed in section 3.1.  

2.2: Experimental Conditions for Nucleophilic Aromatic Substitution 

Monomer 1: The nucleophilic aromatic substitution reaction between 3-aminothiophene and 2,4-

dinitroflurobenzene is a 1:1 reaction. A reaction based on a 1-gram scale of the 2,4-

dinitrofluorobenzene (Mw=186.1 g/mol) involves 730 mg of 3-aminothiophene hydrochloride 

(Mw=135.62 g/mol) and 600 mg of potassium carbonate (Mw=138.205 g/mol) to neutralize the 
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acidic thiophene salt, freeing the amine group for reaction. A total 54 mL of EtOH was utilized 

as the solvent to ensure 0.1 M concentration, making this reaction essentially a derivative of the 

reaction conditions used in Sanger’s Nobel-Prize winning work.23 The 2,4-dinitrofluorobenzene 

and potassium carbonate are initially dissolved in 40 mL of EtOH, and the 3-aminothiophene 

hydrochloride is dissolved in a separate vial, containing 14 mL of EtOH. The thiophene solution 

is added dropwise over the course of 45 minutes to prevent oxidation of the freebase 3-

aminothiophene that is produced upon introduction to the potassium carbonate. This solution is 

then allowed to sit for 3 hours in a 100 mL round bottom flask to ensure a complete reaction. The 

scarlet red precipitate begins to form during the introduction of the reactants and accumulates 

over the next 3 hours. This product can be purified by simple rinsing with cold methanol. More 

observations from this experiment can be found in section 3.2, and chemical characterization 

results can be found in section 3.3.  

Monomer 2: The reaction to produce the 2nd monomer is also a 1:1 reaction.Thus, a reaction 

based on a scale of 500 mg of 2,4-dinitrofluorobenzene involves 0.27 mL of thiophen-3-

ylmethanamine (Mw=113.18g and density=1.130 g/mL). No carbonate is required as was the 

case with the previous reaction, as the amine already exists as a freebase. This reaction was 

performed at a much greater concentration. 15 mL of EtOH was used resulting in a 0.24 M 

concentration. The reactants were added simultaneously to the flask. This reaction was allowed 

to sit for 3 hours but immediately yielded a yellow precipitate. Purification of this product 

involved recrystallization using dichloroethane as a solvent. Observations from this experiment 

can be found in section 3.2, and chemical characterization results can be found in section 3.3. 

Model Compound: The model compound, created to demonstrate the viability of the nucleophilic 

aromatic substitution of aromatic amines and the electrochemical properties of dinitro 
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compounds, is also a 1:1 reaction. So, a reaction based on a 100 mg scale of the 2,4-

dinitrofluorobenzene also involves 80.19 mg of p-tert-butylaniline (149.23 g/mol). 5 mL of 

EtOH was used as the solvent in a 25 mL round bottom flask, resulting in a concentration of .13 

M. This reaction was allowed to sit for 3 hours but immediately yielded an orange precipitate. 

This reaction was purified through recrystallization using isopropanol as a solvent. Observations 

from this experiment can be found in section 3.2, and chemical characterization results can be 

found in 3.3.  

2.3: Methods of Chemical Characterization  

NMR Spectroscopy: Nuclear Magnetic Resonance (NMR) spectroscopy is the single most 

powerful characterization method available for organic compounds. In this work both one 

dimensional NMR experiments, as well as two-dimensional experiments were utilized to ensure 

accurate characterization. These experiments were conducted using the Bruker AscendTM 400 Hz 

NMR spectrometer at the University of South Dakota. NMR spectra were processed and 

analyzed using Bruker TopspinTM software under the supervision and guidance of the NMR 

specialist at the University of South Dakota. Two-dimensional NMR experiments are important 

as these spectra allow the experimenter to observe “multiple quantum transitions” that are 

undetectable by simple one-dimensional experiments.25  COSY, 13C DEPT, HSQC, 1H, and 13C 

NMR experiments were all utilized in this study. COSY displays the electronic effects that 

adjacent protons have on each other (2D). 13C DEPT provides information about the carbon 

atoms attached to protons within the structure (1D). HSQC provides information about the 

electronic effects of carbon atoms and their attached protons (2D). The proton experiments 

provide information about chemical shift and splitting patterns for the protons in the structure, 
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and the carbon-13 experiment provides the same information for the carbon atoms in the 

structure. The results from these experiments can be found in section 3.3 and discussion in 4.1.  

X-ray Crystallography: X-ray crystallographic techniques were utilized in this research project to 

further affirm synthetic results. The single-crystals of the organic products were made via a 

simple and commonly used evaporation technique.26 Upon successful crystal growth, the crystal 

structure was determined using the Bruker D8 VentureTM x-ray diffractometer. The data 

collection software for this process was the Bruker Apex3TM software, and the crystal structures 

were solved in the WinGXTM software and SHELXTM software. For the solved crystal structures, 

refer to section 3.3, and for the discussion over the data, refer to section 4.1.  

High-Resolution Mass Spectrometry: High-resolution mass spectrometry (HRMS) is a very 

powerful characterization tool for synthetic chemists. HRMS features both high resolution mass 

accuracy and allows for the analysis and quantitation of compounds, determination of elemental 

compositions, and identification of unknowns.27 HRMS is used to confirm the presence of a 

compound synthesized via the molecular mass of the compound.  

2.4: Electrochemical Characterization  

The field of electrochemistry relates the flow of electrons to chemical changes. The 

primary method utilized in this study for the electrochemical characterization of compounds is 

cyclic voltammetry (CV). This method is a very powerful tool for probing reactions involving 

electron transfers, and provides a plethora of information regarding the electronic properties of a 

wide-range of materials.28 CVs are recorded as voltammograms, with the x-axis (typically) 

representing the voltage (V) applied to a system and the y-axis representing the current (i) passed 

through a solution (Figure 7).28 The curves in the current vs potential line graphs correspond the 
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diffusion-controlled reduction and oxidation of a species in solution (the reduced/oxidized 

species takes time to diffuse away so the current does not simply hit the max current depending 

on the solution concentration and, rather, follows a curved shape).28  

Electrochemical cells used in this study’s experiments were constructed in glass vials 

using a three-electrode set-up. The working electrode, which shifts potential along with the 

voltammogram and provides the surface for the electrochemical reactions to occur upon, is a 3 

mm diameter glassy carbon electrode. Glassy carbon is used because of its chemical stability and 

ability to be easily resurfaced, which is important for ensuring facile and reproducible electron 

transfer in solution.29 The potential of the working electrode is controlled in comparison to the 

reference electrode which is also in solution. Typically, a reference electrode is isolated from the 

system and contains a solution with a known concentration of ions where the potential difference 

between the two systems can be determined. In a lithium-rich environment, however, a true 

reference electrode cannot be used because of the water that would be introduced to the system. 

So, a quasi-reference electrode made of a silver/silver chloride wire was used. While not a 

perfect substitute, the wire will maintain a quasi “constant” potential during the experiments. 

Finally, the counter electrode in these experiments is a 99.95% pure platinum wire, coiled to 

increase surface area. The counter electrode has the opposite potential as the working electrode, 

and the opposite reaction occurs at the counter electrode to ensure that charge balance is 

maintained within the solution.28 All experiments were conducted in MBraun Labstar 1200 

Argon glovebox (to prevent air/water-lithium reactions) using an Autolab PGSTAT302N 

potentiostat under the command of the Nova 2.0 software. Results of these experiments can be 

found in section 3.4, and the discussion on this topic can be found in section 4.3.  
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Chapter 3: Results and Discussion 

3.1: Results of Computational Studies 

Monomer 1: Results 

Change in free energy (ΔGtotal) = (Sum of Free Energy of Products) – (Sum of Free energy of 

Reactants) 

Free Energy Change: [HF (-63,052.668 kcal/mole) + Monomer 1 (-783,455.4132 kcal/mole)] – 
[3-aminothiophene (-381765.4943 kcal/mole) + DNFB (-464738.5687 kcal/mole)] = ΔGtotal = -
4.018 kcal/mole 

 

 

Figure 8: 3-aminothiophene 
Optimized Structure Figure 9: DNFB Optimized Figure 10: DNFB ESP Map 

Figure 11: Monomer 1 – 
Optimized Structure 

Figure 12: Monomer 1 – ESP 
Map 

Figure 13: Monomer 
1 – HOMO 

Figure 14: Monomer 
1 – LUMO 
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Monomer 2: Results 

Free Energy Change: [HF (-63,052.668 kcal/mole) + Monomer 2 (-808,106.0171 kcal/mole)] – 
[thiophen-3-ylmethamine (-406,417.3514 kcal/mole) + DNFB (-464738.5687 kcal/mole)] = 
ΔGtotal = -2.765 kcal/mole 

 

 

nm  

 

 

 

Figure 15: Thiophen-3-
ylmethanamine Optimized 

Figure 16: DNFB Optimized Figure 17: DNFB ESP 
Map 

Figure 18: Monomer 2 – 
Optimized Structure 

Figure 19: Monomer 2 – 
ESP Map Figure 20: Monomer 

2 – HOMO 
Figure 21: 

Monomer 2 –LUMO 
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Model Compound: Results  

Free Energy Change: [HF (-63,052.668 kcal/mole) + Model Comp (-680,793.8028 

kcal/mole)] – [p-tert-butylaniline (-279106.3167 kcal/mole) + DNFB (-464738.5687 kcal/mole)] 
= ΔGtotal = -1.585 kcal/mole 

 

 

 

 

 

 

Figure 22: P-tert-
butylaniline Optimized 

Figure 26: Model 
Compound ESP Map 

Figure 25: Model 
Compound Optimized 

Structure 

Figure 23: DNFB 
Optimized Structure 

Figure 24: DNFB – ESP 
Map 
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Discussion: 

Computational modeling has shown that the free energy change of all three reactions is 

negative. These calculations indicate that all three reactions should, in theory, be spontaneous. 

Monomer 1 had a total free energy change of -4.018 kcal/mole, Monomer 2 had a total free 

energy change of -2.765 kcal/mole, and the model compound had a total free energy change of -

1.585 kcal/mole. These results provide enough information to proceed with the reactions in a 

laboratory setting. The optimized structure of the model compound aligns to a near identical 

match with the crystal structure displayed in section 3.3 (N-H and O-N should, in theory, interact 

in all compounds). Aside from these free energy calculations, the frequency calculations for 

these compounds yielded a great deal of information when mapping the electrostatic potentials 

and HOMOs and LUMOs. From the ESP maps, it can be observed that the greatest electron 

donating effects from the electron rich aromatic ring to the electron deficient ring is displayed by 

Monomer 1. This is worth noting because it indicates that the electrons may be more delocalized 

through the entire molecule in Monomer 1 more so than Monomer 2. The HOMO-LUMO 

Figure 27: Model 
Compound HOMO 

Figure 28: Model 
Compound LUMO 
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surface also provide some interesting information. In these models, the LUMO for these 

compounds is on the nitrogen of the nitro groups. So, theoretically, the first electron added to 

these systems through an electrochemical reduction would be placed within that orbital, and this 

finding corroborates the understood mechanism of reduction.30  

3.2: Results and Observations of Synthetic Work  

 For Monomer 1, the reaction yields a scarlet red powder when given enough time for the 

nucleophilic substitution reaction to proceed. At the concentration given in the experimental 

details section (.1 M), this is typically around an hour before a satisfactory yield is achieved. 

However, this reaction becomes almost instantaneous when the concentration is increased. After 

purification, either by simple rinsing or recrystallization, the scarlet red substance takes the form 

of thin, red fibers. After drying, the bulk substance is light and airy, and it displays electrostatic 

properties. When dissolved, its solution is yellow which is worth noting.  

 For Monomer 2, the reaction yields a neon yellow powder. This reaction was conducted 

at a higher concentration and yielded a precipitate instantaneously with good yield. This product 

was unable to be purified by simple rinsing with an alcohol. TLC results showed the presence of 

two compounds with similar chemical properties in differing amounts. Pure product could be 

obtained through recrystallization. The solvent used in the recrystallization of this compound is 

dichloroethane, due to the high boiling point (70.5 °C) and the compounds excellent solubility in 

it. Purified product takes the form of thin, yellow, needle-like crystals.  

 For the model compound, the reaction yields a neon orange powder. This reaction was 

also conducted at a higher concentration and yielded a precipitate instantaneously with good 

yield. This product was able to be purified through simple rinsing with alcohol (MeOH). This 
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compound, when purified, took on the form of thin, orange, needle-like crystals. This compound 

also generates a yellow solution when dissolved like Monomer 1.  

3.3: Results of Characterization – Novel Compounds 

1H NMR (400 MHz, DMSO-d6) δ 10.07 (s, 1H), 8.901-8.984 (d, 1H), 8.293- 

8.262 (dd, 1H), 7.731-7.710 (dd, 1H), 7.582-7.570 (dd, 1H), 7.196-7.190 (m, 

1H), 7.181-7.172 (m, 1H); 13C DEPT NMR (1400 MHz, DMSO-d6) 130.5, 

127.6, 125.96, 123.83, 119.62, 117.44.  (Pictures in Supporting Information – 

Above, COSY, HSQC)  

 

 

 

 

Figure 29: Crystal Structure of 
Monomer 1 

Figure 30: Dimer View of Monomer 1 
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1H NMR (400 MHz, DMSO-d6) δ 10.116 (s, 1H), 8.898-8.891 (d, 

1H), 8.24-8.21 (dd, 1H), 7.542- 7.521 (dd, 2H), 7.327-7.306 (dd, 2H), 

7.106-7.082 (d, 1H), 1.321 (s, ~8H (*should be 9)); 13C DEPT NMR 

(1400 MHz, DMSO-d6) δ 130, 127.04, 125.96, 124, 117.3.  (Pictures 

in Supporting Information – Above, COSY, HSQC)  

 

 

Figure 26: Crystal Structure of Model 
Compound  

Figure 27: Dimer View of Model 
Compound 
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1H NMR (400 MHz, CDCl3) δ 9.176-9.169 (d, 1H), 8.884 (s, 1H), 8.291-8.261 (dd, 1H), 

7.430- 7.410 (dd, 1H), 7.280-7.263 (m?, 1H), 7.106-7.090 (dd, 1H), 9.989-6.965 (d, 1H), 

4.69-4.67 (d, 2H); 13C DEPT NMR (1400 MHz, CDCl3) δ 130.40, δ 127.62, δ 126.36, δ 

124.23, δ 122.74, δ 114.25; 13C NMR (1400 MHz, CDCl3) δ 148.05, δ 136.49, δ 136.36, 

δ 130.75, δ 130.40, δ 127.62, δ 126.35, δ 124.23, δ 122.74, δ 114.24; HRMS: Base peak 

(M+H) at 280.0382 amu. (Pictures in Supporting Information – Above, COSY, HSQC)  

 

 

 

 

 

 

 

3.408 

Figure 28: Crystal Structure of 
Monomer 2  

Figure 29: Interplanar Distance 
between Dimers of Monomer 2 
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Discussion – Characterization:  

 The characterization work conducted on each of these compounds confirms the structure 

of the compounds as predicted by the computational modelling. Analysis of the NMR spectra 

confirm the position and relationship of the hydrogen atoms and carbon atoms in the structures. 

The crystal structures for Monomer 2 and the Model Compound further affirm the fact that the 

nucleophilic aromatic substitution has occurred. HRMS was conducted on Monomer 2 as well, 

and the base peak corresponding to the M+H ion can be located at 280.0382 amu (which 

corroborates the calculated Mw of 279.29). The conclusion that can be drawn from the sum of 

these characterization methods is that a novel application of the Sanger’s Reagent has been 

successfully implemented.  

3.4: Electrochemical Results  

Monomer 1: 
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Figure 31: Reduction of Monomer 1 
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Monomer 2: 

 

 

 

 

 

 

 

Figure 33: Reduction of Monomer 2 
in DFB//TBAPF6 (2 Waves) 
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Model Compound: 
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Figure 37: Reduction of Model 
Compound in DFB//TBAPF6 

Figure 37: Reduction of Model 
Compound in DFB//TBAPF6 
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Discussion:  

 Electrochemical reduction of Monomer 1 in an aprotic environment yields two distinct 

reduction waves, with one smaller wave that appears as a shoulder at -1.5V. The second 

reduction wave appears to be a reversible process, and the first wave does not. Upon further 

investigation, the first wave begins to become more easily reversible as the scan rate increases 

(see supporting information). The oxidation scans of this compound display the polymerization 

and electrodeposition of the thiophene units on the surface of the electrode. After initial decrease 

in current, the current slowly begins to climb back up during repetitive scans. The 

electrochemical reduction of Monomer 2 looks strikingly similar to the reduction of Monomer 1. 

However, the shoulder is much more pronounced in these scans. The first reduction wave is also 

a completely reversible process at scan rates of 10 mV/s to 300+ mV/s (see supporting 

information). The differential pulse scan was utilized to resolve the shoulder from the other two 

reduction waves. Electrochemical polymerization of the thiophene units is not quite as clean of a 

process as it was with Monomer 1. The oxidation wave is apparent in the positive region of the 
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scan, but the current decreases upon subsequent oxidation cycle. The model compound also 

appears to have similar electrochemical properties to the other two monomers. However, the first 

reduction wave is much less reversible upon increasing the scan rate (see supporting 

information). A differential pulse scan was also used on this compound to resolve the shoulder 

from the other two reduction waves. Overall, the reduction scans indicate that all compounds are 

electrochemically active, and the oxidation scans indicate that both Monomer 1 and Monomer 2 

appear to be polymerizable.  
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Chapter 4: Future Work 

 Clearly, this project encompasses a variety of disciplines and has been elucidated from 

many hours’ worth of work. Still, there are many future avenues that can be pursued to further 

refine some of the results presented in this study. This would encompass further electrochemical 

characterization of these compounds. Including, refinement of electrodeposition of the thiophene 

polymer of the surface of an electrode, characterization of the morphology of the polymer, and 

eventual electrochemical testing of the polymer. It would also include work in alkali, non-

aqueous environments with both the monomers in this study and the polymers that can be 

produced from these compounds. This would paint a much clearer picture of the practical 

abilities of these compounds as cathodes in real-world battery cells.  

 Aside from work done on these compounds alone, incorporation of more functional 

groups within the compounds and further refinement of the chemical structure of these 

electrochemically active compounds would yield compounds with even higher energy density 

than the compounds proposed. One compound, that has shown promise for this purpose, is the 

aromatic imine bond,31 and our group has already experimented with some compounds featuring 

this structure. These novel compounds would undergo a similar computational 

modeling/chemical and electrochemical characterization process as the compounds in this study. 

To this point, enough data has been gathered to confirm the identity of the compounds discussed 

in the study. However, further information such as the final crystal structure for Monomer 1 as 

well as an HR-MS study of Monomer 1 and the Model compound would serve to cement the 

findings of the NMR studies.   
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Chapter 5: Conclusion 

In conclusion, a possible alternative to the traditionally utilized lithium-metal oxide 

intercalation-style batteries has been proposed. Three compounds, all with theoretical capacities 

greater than traditional cathodic materials, have been designed, synthesized, and characterized 

(both chemically and electrochemically). With much work left to be done, the current findings of 

this study suggest that Sanger’s Reagent (2,4-dinitrofluorobenzene) is a practical candidate for 

the design and synthesis of dinitro compounds for use as organic, cathodic materials. This work 

has the propensity to drastically change the pace of development in the rechargeable battery 

industry and could finally widen the bottleneck that is hindering the success of nearly all other 

tech industries once completed.  
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SI 1: COSY NMR (400 MHz, DMSO-d6) 
Spectrum of Model Compound 

       

SI 2: HSQC NMR spectrum of 
Model Compound 
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SI 3: 1H NMR (400 MHz, DMSO-d6) of 
Model Compound 

SI 4: 13C DEPT 135 NMR (1400 MHz, DMSO-d6) 
Spectrum of Model Compound 
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SI 5: 13C Spectrum of Model 
Compound (1400 MHz – DMSO) 
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SI 7: COSY NMR (400 MHz, DMSO-d6) 
Spectrum of Monomer 1 
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SI 8: 13C Spectrum of Monomer 1 (1400 MHz -DMSO) 
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SI 9: HSQC NMR Spectrum of 

Monomer 1 

SI 10: 13C DEPT NMR Spectrum of Monomer 1 
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SI 11: 1H NMR (400 MHz, CDCl3) Spectrum 
of Monomer 2 

SI 12: 13C NMR (1400 MHz, CDCl3) 
Spectrum of Monomer 2 
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SI 13: COSY NMR (400 MHz, CDCl3) 
Spectrum of Monomer 2 

SI 14: 13C DEPT (1400 MHz, CDCl3) 
NMR Spectrum of Monomer 2 
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SI 15: HSQC NMR Spectrum of Monomer 2 
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SI 16: Inter and intra-molecular 
interactions present in crystal structure 

of Monomer 2 

SI 17: Inter and intra-molecular 
interactions present in crystal structure 

of Model Compound 

SI 18: Inter and intra-molecular 
interactions present in crystal 

structure of Monomer 1 
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SI 18: Crystal packing of Monomer 2 along b axis. 
Color Code: C-dark grey, H-light grey, N-purple, O-red, 

S-yellow 

SI 19: Crystal packing of Model Compound along b-axis. Color Code: C-dark 
grey, H-light grey, N-purple, O-red  
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