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ABSTRACT 

 

Multiscale Approach for Modeling Hot Mix Asphalt. (May 2005) 

Samer Hassan Dessouky, B.S., Ain Shams University;  

M.S., Washington State University  

Chair of Advisory Committee: Dr. Eyad Masad  

 

Hot mix asphalt (HMA) is a granular composite material stabilized by the presence 

of asphalt binder. The behavior of HMA is highly influenced by the microstructure 

distribution in terms of the different particle sizes present in the mix, the directional 

distribution of particles, the distribution of voids, and the nucleation and propagation of 

cracks.  Conventional continuum modeling of HMA lacks the ability to explicitly account 

for the effect of microstructure distribution features. This study presents the development of 

elastic and visco-plastic models that account for important aspects of the microstructure 

distribution in modeling the macroscopic behavior of HMA.   

In the first part of this study, an approach is developed to introduce a length scale to 

the elasticity constitutive relationship in order to capture the influence of particle sizes on 

HMA response.  The model is implemented in finite element (FE) analysis and used to 

analyze the microstructure response and predict the macroscopic properties of HMA.  Each 

point in the microstructure is assigned effective local properties which are calculated using 

an analytical micromechanical model that captures the influence of percent of particles on 

the microscopic response of HMA. The moving window technique and autocorrelation 

function are used to determine the microstructure characteristic length scales that are used 
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in strain gradient elasticity.  A number of asphalt mixes with different aggregate types and 

size distributions are analyzed in this paper.   

In the second part of this study, an elasto-visco-plastic continuum model is 

developed to predict HMA response and performance.  The model incorporates a Drucker-

Prager yield surface that is modified to capture the influence of stress path direction on the 

material response.  Parameters that reflect the directional distribution of aggregates and 

damage density in the microstructure are included in the model.  The elasto-visco-plastic 

model is converted into a numerical formulation and is implemented in FE analysis using a 

user-defined material subroutine (UMAT). A fully implicit algorithm in time-step control is 

used to enhance the efficiency of the FE analysis.  The FE model used in this study 

simulates experimental data and pavement section. 
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CHAPTER I 

INTRODUCTION 

 

PROBLEM STATEMENT 

Permanent deformation is one of the main distresses in asphalt pavements.  It 

occurs primarily due to shear failure in hot mix asphalt (HMA).  The shear strength of an 

asphalt mix is a result of aggregate interlock and adhesion provided by the asphalt 

binder.   

 Careful review of the literature showed that two main approaches have usually 

been followed in modeling permanent deformation: the continuum modeling approach 

and the micromechanical modeling approach.  The advantage of continuum models is 

that once the material properties are known, simulations of material response and 

performance can be achieved through finite element (FE) analysis under different 

boundary conditions. However, detailed information about the initial distribution of the 

microstructure and its evolution is not explicitly considered in these models. In contrast, 

micromechanical models have the capability to consider the microstructure distribution 

and the interactions among the microstructure constituents.  
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 This approach, however, has been limited in modeling the actual geometry of the 

microstructure, as idealized aggregate shape has typically been used in these models. In 

addition, simplified assumptions have been employed to model the interactions among 

the HMA constituents. 

 An appealing approach that has also been developed for modeling granular 

materials relies on quantifying the microstructure in the form of scalar functions and 

directional distribution tensors that are incorporated in continuum constitutive models.  

This is a powerful approach, as it inherits the advantages of continuum modeling in 

terms of the efficiency in numerical simulation and at the same time it explicitly captures 

the influence of the microstructure distribution on the macroscopic response of the 

material.   

This dissertation deals with the development of continuum models for HMA that 

account for key features of the microstructure distribution and with FE implementation 

of these models.  Two main advances are registered in this study.  The first is related to 

enhancing the elastic analysis of the HMA response through employing strain gradient 

theory and effective local material properties.  Strain gradient theory employs length 

scales in the constitutive relationship to account for the size variation within the 

microstructure and its effect on the macroscopic response.  Micromechanics analysis is 

used to obtain the effective local material properties, which are in turn used in the FE 

analysis to obtain macroscopic elastic properties of HMA. 
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The second advancement registered in this study is the development of an elasto-

visco-plastic constitutive model for HMA.  This model considers several factors that are 

known to influence HMA permanent deformation such as aggregate structure friction 

and dilation, confining pressure, strain rate, stress path dependency, and microstructure 

characteristics that reflect anisotropy and damage.  

 

OBJECTIVES 

This study deals with the development of multiscale constitutive models for 

HMA. In these models, key features of the microstructure are measured and incorporated 

in continuum constitutive models of asphalt mixes.  The main objectives of this study are 

to:  

1. Develop a gradient elasticity constitutive relationship that accounts for the 

microstructure characteristics such as different particle size and asphalt film size 

distributions and strain localization.  

2. Implement the gradient elasticity constitutive relationship in a FE model for the 

analysis of HMA response.  The model reduces the sensitivity of FE analysis 

microscopic and macroscopic response to mesh resolution. 

3. Develop an elasto-visco-plastic continuum model that links the microstructural 

properties in terms of aggregate anisotropy and damage to permanent 

deformation of the material.  The model also accounts for the influence of 

loading rate, confining pressure, stress path direction, and dilation under shear 

loading.  
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4. Implement the elasto-visco-plastic continuum model into FE analysis to study 

the response of HMA under a variety of boundary conditions to predict 

permanent deformation. 

 

ORGANIZATION OF THE DISSERTATION 

This dissertation consists of seven chapters arranged as follows: 

 Chapter I is an introduction. The problem statement is presented followed by the 

objectives and the outline of the study. 

Chapter II outlines the causes and mechanisms associated with permanent 

deformation “rutting” in HMA.  It also presents an overview of the continuum and 

micromechanical modeling approaches. This is followed by a brief overview of the 

motivation for using gradient theories in modeling engineering materials as they relate to 

the microstructure distribution of these materials.  Chapter II also includes an overview of 

the basics of plasticity theory as an introduction to the development of the model in Chapter 

IV.  

Chapter III presents a methodology to introduce microstructure length scales and 

account for the interaction among the microstructure constituents in elastic analysis of 

HMA.  Experimental and analytical methods are developed to obtain microstructure 

length scales and local effective material properties that are used in the FE analysis of 

HMA.   

Chapter IV introduces the development of an elasto-visco-plastic constitutive model 

that links the continuum response of HMA to its microstructure properties. The model is 
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developed to account for permanent deformation in HMA.  A modified Drucker-Prager 

yield function with a nonassociated flow rule is implemented in the proposed model to 

account for the influence of loading rate, confining pressure, stress path direction, and 

dilation under shear loading on permanent deformation.  Further, the model includes 

microstructure properties to quantify anisotropy and damage, as they have significant 

influence on the HMA response and performance.   

Chapter V presents a numerical integration scheme with time-step control for the 

elasto-visco-plastic continuum model. A fully implicit procedure and algorithmic tangent 

moduli are incorporated in the scheme. The numerical scheme is implemented in the FE 

analysis to conduct analysis of the sensitivity of HMA response to model parameters that 

describe anisotropy, damage, confining pressure, and rate of loading.   

Chapter VI presents an approach to determine the model parameters using 

triaxial experiments of HMA.  The experiments were conducted in compression and 

extension strain control mode with a variety of confinement pressures and loading rates.  

The details on these experiments are documented by Masad et al. (2003).  The numerical 

scheme from Chapter V is implemented in this chapter to simulate the material response 

under the confining pressure and loading rates used in the experiments.  Chapter VI 

includes comparisons between the FE results and the experimental data to demonstrate 

the efficiency of the model. Field simulation of pavement section is also presented to 

predict permanent deformation developed due to wheel loading. The effect of anisotropy 

is considered to study its influence into permanent deformation. 
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Chapter VII presents an overall summary and the main conclusions of this study. 

Recommendations in regard to future implementations of the developed model are also 

presented in this chapter. 
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CHAPTER II 

LITERATURE REVIEW 

 

Asphalt pavements are composite materials consisting of interspersed aggregates, 

asphalt binder, and air voids. Their constitutive behavior is defined by the interaction of 

these constituents. The load-carrying behavior and resulting failure of such materials 

depends on many mechanisms that occur at the constituent level. 

Traffic loading repetitions and climate condition effects on hot mix asphalt 

(HMA) cause permanent deformation that is considered to be one of the most important 

pavement distresses. This chapter summarizes the causes and mechanisms of permanent 

deformation in HMA and the current approaches found in the literature to model this 

phenomenon. It also discusses the contributions reported in the literature on modeling 

HMA permanent deformation under the two primary approaches; namely the continuum 

approach and the micromechanical approach. A brief review of the basics of plasticity 

and visco-plasticity theories is also presented.  

 

CAUSES AND MECHANISMS OF PERMANENT DEFORMATION 

Permanent deformation in asphalt pavements manifests itself as depressions 

along the wheel paths as shown in Fig. 2.1. According to the National Cooperative 

Highway Research Program (Witczak 1998), permanent deformation was selected as the 

most serious problem for highways and runways in the United States among all the 
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distresses in asphalt pavements. Fatigue cracking was rated the second most serious 

problem, followed by thermal cracking. 

 

 

 
Fig. 2.1. Effect of Wheel Loading Repetitions on Permanent Deformation Profile (after 
Eisenmann and Hilmer 1987) 

 

 

Deformation in HMA is a complex phenomenon where aggregate, binder, and 

aggregate-binder interface properties control overall performance. These properties 

change over time until the mix reaches the end of its design life.  

Prediction of rutting requires a knowledge of material characteristics that relates 

HMA strains to stresses. Rutting develops gradually as the number of load applications 

increases. As summarized by the Strategic Highway Research Program (SHRP 1991), 

rutting principally occurs due to repetitive shear deformation under a variety of traffic 
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loading. Loading conditions in the form of magnitude, tire pressure, and traffic volume; 

environmental conditions in the form of temperature; and HMA properties in the form of 

aggregate characteristics (shape, texture, and structure), and binder type are among the 

major contributors to rutting resistance. Extensive literature of studies that considered 

rutting as a function of loading and environmental conditions can be found in Mclean 

and Monismith (1974), Brown and Bell (1977), Sousa et al. (1993) and Lytton et al. 

(1993). 

The mechanism of permanent deformation is a combination of densification 

(decrease in volume) and shear deformation. Using a wheel-tracking device, Eisenmann 

and Hilmar (1987) concluded that pavement rutting can develop in two stages in HMA. 

First the initial stage is due to the accumulation of the permanent vertical deformation 

within the pavement layers under traffic loads. The increase of irrecoverable 

deformation below the tires is distinctly greater than the increase in the upheaval zones. 

Second, following the initial stage, the volume decreased beneath the tires is 

approximately equal to the volume increased in the adjacent upheaval zones. This 

indicates that compaction under traffic is completed for the most part and that further 

rutting is caused essentially by the displacement of material. 

Based on experimental measurements as well as numerical simulations, Tashman 

(2003) summarized the causes of rutting due to energy dissipation in three internal 

mechanisms: 
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• Overcoming the friction between the aggregates coated with binder, 

• Overcoming interlocking between the aggregates, which is responsible for the 

material dilation, and 

• Overcoming the bonding between the binder elements (cohesion) and between 

the binder and aggregates (adhesion). 

 

MECHANISTIC APPROACHES FOR MODELING HMA RESPONSE  

Most design procedures used in design guides are based on linear elastic multilayer 

analysis. Typically, the elastic response is related to rutting through empricial relationships 

between the elastic strain and plastic strain.  However, it has been shown over the years that 

the highly nonlinear response of HMA is too complex to be captured satisfactorily through 

the linear elastic analysis of HMA response.  Huang (1967) showed that deformation 

behavior is a function of both the hydrostatic and deviatoric stress states.  He also noticed 

that the mixes dilate under purely deviatoric stresses.  Brown and Cooper (1980) concluded 

that the response of HMA in triaxial tests was a function in the deviatoric and confining 

stresses. Deshpande and Cebon (1999) developed a constitutive model for steady-state 

deformation of idealized asphalt mixes to predict rutting under a moving load using triaxial 

compression tests. They reported the dilation phenomenon under compression load and the 

dependency of deformation on the hydrostatic pressure and the deviatoric stress.  

There is overwhelming evidence in the literature that mechanistic models are 

needed to analyze HMA response and performance.  These models have been used to 
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relate microstructure distribution and indvidual constituent properties to macroscopic 

properties and to predict the macroscopic response and performance of HMA.  

 

Continuum Approach  

Although HMA is essentially a multicomponent interacted discrete composite, 

the concept of a continuum representation has been notionally accepted. This allows one 

to use the notations of deformable mechanics principles such as stresses and strains. The 

stresses and strains, or their derivatives with respect to time, can be linked together in a 

constitutive equation. Joined with equilibrium equations and boundary conditions, 

constitutive equations permit the evaluation of the pavement structure response either 

analytically or numerically.  

Experimental observations made by Perl et al. (1983) and Sides et al. (1985), and 

others, proposed that the total strain of HMA has recoverable and irrecoverable 

elements, some of which are time-dependent and some of which are time-independent. 

The total strain is separated into four components as shown in Fig. 2.2 for the first cycle 

of a creep test as follows: 

vppvee ε+ε+ε+ε=ε        (2-1) 

where ε is the total strain and eε  is the elastic strain, which is recoverable and time-

independent, meaning that the material exhibits no permanent strains in a loading 

/unloading cycle and this state is independent of the rate of loading and unloading. veε  is 

the visco-elastic strain, which is recoverable and time-dependent. pε  is the plastic strain, 

which is irrecoverable and time-independent. vpε  is the visco-plastic strain, which is 
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irrecoverable and time-dependent. In general, the viscous components depend on the 

load duration and the rate of loading/unloading. No matter what the rate of 

loading/unloading, the same magnitude of permanent strain is obtained for the same 

loading history. In general, HMA behavior varies from elastic and linear visco-elastic at 

low temperatures and/or fast loading rates to nonlinear visco-elastic, visco-plastic, and 

plastic at high temperatures and/or slow loading rate. 

 

 

 

Fig. 2.2. Schematic Representation of the Various Strain Components in an Elasto-
Visco-Plastic Material 

 

 

The instantaneous response reflects the time-independent component, whereas 

the viscous response reflects the time-dependent component. The relative contribution of 

each component depends on temperature and loading condition. Rutting is due to the 
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visco-plastic deformation, and consequently, the discussion herein will focus on models 

that consider the visco-plastic deformation of HMA.   

Abdulshafi and Majidzadeh (1985) developed a one-dimensional elasto-visco-

plastic constitutive model to characterize asphalt mixes and predict rutting as a result of 

densification of the material under static creep loading. They decomposed the total strain 

into a recoverable part to reflect the elastic and visco-elastic component and a 

nonrecoverable part for the viscous and plastic portion. A frictional slider connected to 

Burger elements was used to account for the plastic deformation with the aid of a 

Drucker-Prager yield criterion. Perl et al. (1983) employed a repeated uniaxial creep 

experiment under constant compression stress and temperature to develop an elasto-

visco-plastic constitutive model for bituminous mixtures. Plastic strain was found to 

depend on the number of load applications, while the visco-elastic component was 

governed by the power law of time. They showed experimentally that visco-elastic and 

visco-plastic strain components are linearly related to stress for a stress level less than 

0.4 MPa.  

Bonnier and Troost (1991) proposed that strains of asphalt mixtures be resolved 

into instantaneous elasticity, visco-elastic, and visco-plastic components. The model 

involved a first component of an elastic spring to account for the instantaneous response, 

a second component of a Kelvin-Voigt element used in the simulation of visco-elasticity, 

and a third element of a frictional slider and a dashpot in parallel used to symbolize the 

visco-plastic strain. A nonassociated flow rule with the power law yield function defined 

in the Perzyna formulation was employed to model visco-plasticity. They exploited three 
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yield functions of Mohr-Coulomb for the three-dimensional presentation of the model. 

These functions were suitable for compressive stresses where for tension they introduced 

another three yield surfaces. They implemented their model into FE and compared it to 

experimental measurements.  

Lytton et al. (1993) developed a permanent deformation model based on a 

Vermeer yield surface (Vermeer 1984).  This model was incorporated in FE to compute 

the stresses and permanent strains under one wheel.  Lytton et al. (1993) proposed using 

the slope of the log εp- log N curve to compute the permanent strain at any number of 

load repetitions (N) once the permanent strain in the first cycle is calculated from the FE 

model.  

Sousa et al. (1993) developed a nonlinear visco-elastic damage model to predict 

permanent deformation of HMA. The model included macro characteristic observations 

such as dilatancy under shear strain, the hydrostatic pressure effect on shear modulus, 

and accumulation of plastic strain under repetitive loading. They utilized a series of 

three-dimensional combinations of Maxwell elements composed of sets of springs and a 

dashpot. The springs captured the dilatancy and hardening phenomena, while 

temperature and rate dependency were captured by the dashpot. Damage was accounted 

for by including a damage parameter in the equilibrium equation for the dashpot and it 

was considered as a function on shear strain. A variety of experiments including the 

uniaxial strain, simple shear at constant height, volumetric simple shear frequency, and 

strain sweep tests were used to determine nonlinear elastic, viscous, and damage 

parameters.  
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In an attempt to characterize HMA behavior under cyclic loading, Sousa and 

Weissman (1995) improved the nonlinear visco-elastic model developed previously by 

Sousa et al. (1993) by including an elastoplastic component using the associated J2-

plasticity (von Mises yield surface) with isotropic and kinematic hardening. They 

assumed that aggregate response is rate independent that dilates elastically under shear 

loading. Their conclusion was to employ a rate-independent elasto-plastic constitutive 

law to model HMA. Nonlinear elastic response that couples volumetric and deviatoric 

response was used. Their model accounted also for shear hardening under hydrostatic 

pressure and provided different elastic responses under tensile and compressive load 

applications.  

In a different attempt to provide a phenomenological approach for materials that 

exhibit plastic and creep deformation, Scarpas et al. (1997a) decomposed total strain into 

elastic and visco-plastic components. Scarpas et al. (1997a) integrated Desai’s yield 

surface and Perzyna’s visco-plasticity formulation for simulating and studying the 

initiation and development of pavement distresses under various loading conditions. 

They used monotonic uniaxial compression and tension tests for evaluating model 

parameters related to path and rate-dependency characteristics and incremental creep 

tests to identify hardening and viscous parameters. They indicated that conventional 

Perzyna’s visco-plasticity can be applied only for simulating the primary creep and 

secondary creep phases. They concluded that degradation of the material under triaxial 

stresses is caused predominantly by the nucleation, localization, and eventual 

propagation of splitting cracks along planes perpendicular to the maximum principal 
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tensile stresses. Their model considered the damage evolution associated with material 

degradation and temperature effects in determining ultimate strength. In addition, the 

model accounted for material dilation under deviatoric stress, hardening, and crack 

evolution by determining the fracture energy. 

Lu and Wright (1998) introduced a numerical approach for developing an elasto-

visco-plastic constitutive model assuming that material response is decomposed into 

elasticity, visco-elasticity, and visco-plasticity. Hooke’s law was used to model the 

elastic component; a power law function of stress and time was used to model the visco-

elastic component; and Perzyna’s theory of visco-plasticity was utilized to model the 

visco-plastic component.  Lu and Wright (1998) took the hardening parameter to be 

equal to zero while the viscosity parameter in Perzyna’s theory was taken to change with 

time.  The model parameters were determined using repetitive loading. The study also 

adapted the constitutive model in a numerical formulation to be implemented in FE 

analysis.  

Seibi et al. (2001) developed an elasto-visco-plastic constitutive model for HMA 

under high rates of loading using uniaxial and triaxial compression experiments with 

different temperatures. They noticed that yielding stress is increased by increasing both 

strain rate and temperature. They utilized the Drucker-Prager yield surface and Perzyna’s 

theory of visco-plasticity for isotropic work hardening and strain rate sensitive materials 

to describe the stress-strain behavior of HMA. They concluded that rate dependency of 

the material is governed mainly by visco-plastic response and is more prominent in the 

plastic range. 
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Huang et al. (2002) implemented the visco-plastic constitutive model developed 

by Desai et al. (e.g., Desai et al. 1986; Desai and Zhang 1987), which incorporates 

temperature and loading rate effect into a Hierarchical Single surface (HISS) plasticity-

based model. The yield surface of the HISS model incorporated the first invariant of 

stress, 1J , and the second and third invariant of deviatoric stress, 2J and 3J , respectively: 
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where Pa is the atmospheric pressure; αps is the hardening of growth function; and αps, β, 

γ, m and n are material parameters defining the yield surface. HISS models are elasto-

plastic constitutive relationships that share the same yield function. Huang et al. (2002) 

modified the HISS model to account for temperature effects in the form of: 

( )θασ= ,,FF ij         (2-4) 

where ijσ  is the stress tensor component, α is the hardening function, and θ is the 

temperature. They used Perzyna’s visco-plasticity postulate modified with the 

temperature effect to model the visco-plastic component. Creep tests were conducted to 

obtain viscous properties, while conventional triaxial tests were used to calibrate thermo-

plastic parameters.  
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Chehab et al. (2003) proposed a constitutive model by incorporating damage, rate 

of loading, and the temperature effects. They decomposed their model to visco-elastic 

and visco-plastic components and developed a separate model for each component then 

combined them to develop a single elasto-visco-plastic model. All model parameters 

were determined using different testing modes in uniaxial tension tests. Their model was 

able to detect the material response before the localization point, while at the post-

localization zone to capture material degradation they used fracture process zone strains 

measured using digital image correlation. The visco-elastic behavior was determined 

based on Shapery’s continuum damage model, while an empirical strain hardening 

model was used to characterize the visco-plastic behavior. They concluded that the 

portion of visco-plastic strain with respect to visco-elastic strain increases as temperature 

increases and strain rate decreases.  

Collop et al. (2003) developed an elasto-visco-plastic constitutive model that 

includes elastic, delayed elastic and visco-plastic components. Continuum damage 

mechanics were introduced to account for the damage mechanism during viscous flow. 

They implemented the model in an incremental formulation into a FE program with the 

aid of a local strain compatibility condition to explicitly find the incremental stresses and 

the incremental strains at each integration point. 

Gibson et al. (2004) and Schwartz et al. (2004) developed a constitutive model 

based on an extended form of the Schapery continuum damage formulation (Schapery 

1999). The model considered the visco-elastic (including instantaneous elastic), visco-

plastic (including instantaneous plastic), and nonlinear visco-elastic damage components 
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in a uniaxial unconfined compression tests. Their study focused on the visco-plastic 

response component at intermediate and high temperatures. By using the concept of 

time-temperature superposition for visco-plastic response, they extracted the visco-

plastic material parameters from uniform load creep and recovery tests.  The approach 

used to model the visco-plastic component is similar to that of Chehab et al. (2003).  

Compression tests were conducted by Schwartz et al. (2004) to determine the model 

parameters. They found that confinement suppressed visco-plasticity and increase 

nonlinearity of the hardening behavior while no change in damage was recorded.  

Oeser and Moller (2004) presented a study to develop a three-dimensional 

rheological model. A one-dimensional formulation was adopted and it was further 

extended to three-dimensional using an energy hypothesis and a special yield function 

that consisted of Von Mises in the tension zone and Drucker-Prager in the compression 

zone. A combined Hook-Kelvin-Newton element was employed to account for elastic, 

visco-elastic, and visco-plastic components, respectively. With the use of nonmonotonic 

loading, they adopted a damage-healing element to account for damage and healing 

behavior resulting from dynamic loading. They emphasized that tertiary creep in a 

loading cycle is composed of a positive loading phase, which is considered as a damage 

stage, followed by a healing phase if negative stress is applied, and as the cycle repeats, 

the damage stage is rebound. Their model accounted for temperature effects, but it was 

applicable only to small deformation. They converted the model into a differential form 

in a numerical algorithm to be implemented in a computational model.  
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Tashman (2003) developed a nonassociated microstructural visco-plastic model 

for HMA. The model accounted for microstructure characteristics like particle 

orientation, damage evolution as a result of air voids, and nucleation of microcracks, 

work hardening, and dilation in the material response. The study considered anisotropy 

by modifying the stress formulation with a microstructure fabric that is a function of 

vector magnitude. Damage and work hardening were taken as a function of effective 

visco-plastic strain. The study concluded that a nonassociated flow rule is essential to 

model the dilation response of the material.   

The advantage of continuum models is their computational simplicity, and once the 

material properties are known, simulations of material deformation under static or dynamic 

loading can be easily implemented in FE analysis to predict HMA performance. 

Bonnier and Troost (1991) employed FE analysis to compare the performance of 

their elastic-visco-elastic model with a closed-form semi analytical solution of a two-

layered system loaded with a constant circular load. Sousa et al. (1993) implemented their 

constitutive model into a FE program to simulate a boundary value problem of a pavement 

lane. A repetitive haversine load defined in plane strain configuration was used to simulate 

slow moving traffic. Lu and Wright (1998) adapted their constitutive model into 

numerical form to find the response of HMA using FE analysis under different loading 

conditions. Lu and Wright (1998) used a step-by-step time integration approach with a 

Newton-Raphson iteration procedure to determine strain in the constitutive equation. As a 

result, an increment form of stress and strain was obtained in time-step control.  

Papagiannakis et al. (2002) is an example of a study that related the microstructure of HMA 
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to its visco-elastic behavior. They used FE analysis to model the material stress-strain 

relationship in the time domain. They employed a user subroutine associated with FE 

analysis to account for the nonlinearity of the material.  

Although most analytical methods assume two-dimensional axisymmetric 

conditions, Zaghloul and White (1993), Scarpas et al. (1997a), Seibi et al. (2001), Collop et 

al. (2003) and Oeser and Moller (2004) applied three-dimensional FE analyses to simulate 

realistic traffic loads. Zaghloul and White (1993) used a visco-elastic model for HMA, an 

extended Drucker-Prager model for the granular base course, and a Cam Clay model for 

clay subgrade soils. Scarpas et al. (1997a) utilized FE analysis to investigate the dynamic 

nonlinear response of HMA. They simulated the pavement system by using two different 

subgrade layers that differed in strength. Seibi et al. (2001) extended the uniaxial visco-

plastic model to a multiaxial case by using a pavement structure simulation and FE to 

determine material parameters.  

Collop et al. (2003) used FE to demonstrate the capability of an elasto-visco-plastic 

model to simulate field conditions. Elastic material properties were used for all pavement 

layers except the HMA. Load simulations were equivalent to dynamic configurations with 

loading and unloading cycles. They demonstrated a numerical algorithm to evaluate stress 

and strain in their constitutive relationship. They used a local strain compatibility condition 

such that the incremental stresses were determined explicitly from the incremental strains at 

each integration point.  

Erkens et al. (2002) developed a constitutive model to account for the strain rate 

and temperature effects on HMA. They utilized the model to simulate the response of a 
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pavement system by imposing three-dimensional stress conditions in the FE formulations. 

The FE model was used also to investigate damage development under repeated loading 

conditions in different pavement systems. Erkens et al. (2002) used nonlinear Newton-

Raphson methodology to evaluate incremental volumetric and deviatoric plastic strain. The 

updated stress was computed by means of a trial stress and stress correction. 

However, in continuum approach, when describing the material response using a 

single set of material properties, only stress-strain at the boundaries is known but not the 

exact distribution along different locations within the material. Detailed information about 

particular features such as initial distribution of the microstructure and evolution of its 

macroscopic behavior is thus lost. Heterogeneous multiphase of HMA is complicated by 

nature, and classical continuum mechanics are not able to address the significance of this 

nature into macroscopic response.  

 

Micromechanical Approach  

In contrast to the continuum approach, the micromechanical approach is being 

utilized to further predict HMA behavior under different loading conditions. 

Micromechanical models consider the microstructure distribution, properties of 

components, and interactions between aggregates and asphalt binder. Therefore, 

micromechanical models can include most of the important factors that govern the 

performance of HMA. 

Careful review of the literature shows that significant progress has been made in 

laboratory investigations of the influence of HMA constituent properties on the 
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macroscopic response.  Morris et al. (1974), and Button et al. (1990) are examples of 

research that relates macroscopic mechanical behavior of HMA to its microscopic 

functions. These studies reflect the influence of a number of microscopic factors such as 

aggregate characteristic (size, shape, type, texture, and orientation), properties of binder, 

and concentration of aggregate, binder, and air voids in HMA.  

An approach found in literature was to generate numerical representation of HMA 

microstructure. The representation is used to study interactions between different 

constituents and their influence on macroscopic properties. Two methods were used to 

simulate microstructure, the discrete element method (DEM), and the FE method.  

DEM analyzes particulate systems by modeling the translational and rotational 

response of particles by applying Newton’s second law to particle-particle contact forces.  

The method is used to simulate interactions of individual particles in a matrix medium. 

Rothenburg et al. (1992) proposed a micromechanical discrete model of HMA. In this 

model, HMA was represented by a set of discrete elastic elements bounded by a linearly 

visco-elastic binder, and the binder within voids was treated as a compressible Newtonian 

fluid. Chang and Meegoda (1997) used DEM to simulate the interaction between idealized 

representations of elastic aggregates and a visco-elastic asphalt binder. Buttlar and You 

(2001) utilized the DEM to study the behavior of HMA in indirect tension test.  

On other hand, FE analysis with different constitutive models for the individual 

constituents has been used to analyze HMA microstructure (e.g., Sepehr et al. 1994, 

Weissman et al. 1999; Kose et al. 2000; Masad et al. 2001; Papagiannakis et al. 2002).  In 

these models, the microstructure was either assumed to exhibit some idealized distribution 
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or was captured through photographic and X-ray computed tomography imaging 

techniques.  These studies showed that FE analysis is useful in providing information on 

stress and strain distribution within the microstructure. Masad and Somadevan (2002) 

calculated strain distribution within the microstructure and compared it to experimental 

measurements of strain distribution using image correlation techniques.  Papagiannakis et 

al. (2002) used FE analysis in addition to the image processing to simulate HMA 

microstructure visco-elastic stress-strain behavior in the time domain. 

In summary, micromechanical models directly consider the characteristics of the 

microstructure geometry, such as aggregate size effect, and nature, such as contact 

evolution, interlocking, and localization in modeling HMA. They also explicitly provide 

information on the influence of changes in the microstructure on material response when 

the material undergoes deformation. This approach, however, has not been able to 

realistically simulate the actual geometry of material microstructure or the interaction 

among the constituents.  This approach is valuable in relating microstructure properties to 

macroscopic response; however, it consumes tremendous computing time, for which it has 

not been applicable and reliable for performance prediction models.  

 

THEORETICAL BACKGROUND ON PLASTICITY 

Theory of plasticity deals with two equally important aspects; first, the general 

technique used in developing stress-strain relationships with work hardening/softening to 

define real material behavior; and second, the general numerical solution for solving a 

material problem under the action of loads and/or displacements. 
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The first task of the theory is to establish an adequate relationship between stress 

and strain to describe the linear and nonlinear deformation of the material. The second 

task concerns with the development of numerical technique for implementing the 

relationship between the stress and strain. Because of the nonlinear nature of HMA 

deformation, solutions may inevitably present considerable difficulties. However, 

development of computers and modern techniques of FE analysis have provided 

powerful tools for solving nonlinear problems.  

In classical plasticity, models contain three fundamental ingredients (Chen and 

Han 1988):  

• A yield function or yield criterion defines the limit of elastic behavior for a 

general state of stress. In visco-plasticity, the term “flow surface” or “overstress 

function” is used instead of yield surface, 

• A flow rule determines the relative magnitudes of the components of the plastic 

strain increment tensor, 

• A hardening rule defines the changes in the yield function as a result of plastic 

straining. 

Each ingredient is discussed briefly in the next section with the focus on the 

Drucker-Prager yield function, since it is the basis for developing the visco-plastic model 

presented in this study. 
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Drucker-Prager Yield Surface 

If there is a continuous function ( )κεσ ,,f  such that there is a region that 

satisfies the condition ( ) 0,, <κεσf  in the stress space, then this region constitutes the 

elastic range. On other hand, the condition ( ) 0,, =κεσf  defines the yield surface in this 

stress space, and the orientation of this surface is defined by the elastic range that 

outlines its interior (Lubliner 1991). The yield surface may be written as a function of 

stress and a hardening parameter. Experimental results showed that the plastic yield 

surface is affected by shear stresses or normal stresses or a combination of both. One 

well-known yield surfaces is the one proposed by Drucker-Prager. A three-dimensional 

yield surface is shown in Fig. 2.3. (Drucker and Prager 1952) 
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Fig. 2.3. Three-Dimensional Diagram of the Linear Drucker-Prager Yield Surface 
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The Drucker-Prager yield surface can be described by the general expression in 

Eq. (2-5):  

κ−αΙ= ),,( 12JFf         (2-5) 

where 1Ι and 2J  are the first stress invariant and the second deviatoric stress invariant, 

respectively and α and κ are material parameters: the first reflects the frictional potential 

of the material, while the second reflects the material hardening.  

Abdulshafi and Majidzadeh (1985), Seibi et al. (2001), Tashman (2003), and 

Oeser and Moller 2004 among others, are examples of work that used the Drucker-

Prager yield function or modified versions of it to describe visco-plastic behavior in 

HMA. The advantages of using the Drucker-Prager over other models are summarized as 

follows: 

• The yield surface is continuous and smooth, and hence does not have sharp 

edges; 

• The model allows for initiation of dilation in terms of plastic strain before 

reaching the ultimate stress; 

• The model expresses the hardening rule as a function of plastic strain; 

• The model incorporates the main terms to account for the plastic deformation; 

behavior of the material, and the hydrostatic and deviatoric stress; and 

• The model incorporates factors to account for nonassociative behavior. 
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Associated and Nonassociated Flow Rules 

Experimental evidence from tests on granular materials has clearly indicated that 

use of the associated flow rule overestimates dilation or expansion.  Many studies have 

shown that a nonassociative flow rule should be employed to characterize volume 

changes (e.g., Zeinkiewicz et al. 1975; Oda and Nakayama 1989). In the nonassociated 

response, another surface is associated with the deformation flow, called plastic potential 

surface. In general, plastic potential and yield surfaces can have similar form and hence 

they coincide, while for nonassociated flow the two families of surfaces cross each other.  

 

Work Hardening and Strain Softening 

Plastic deformation occurs in the HMA when the applied stress exceeds the 

yielding point. The stress-strain curve resulting from this load application in the plastic 

range is called the “flow curve”. If the specimen is unloaded after some plastic 

deformation has taken place and then reloaded a new and higher yield stress is attained. 

The material may be regarded as having been hardened due to plastic deformation in a 

process namely work hardening. 

In the literature, the work hardening phenomenon is an important factor 

governing plastic deformation of HMA. In simple terms, the phenomenon occurs during 

plastic deformation of the material at a microscopic level due to the generation and 

changing interaction between constituents at the aggregate-aggregate and aggregate-

binder interfaces as the degree of deformation increases. 
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Chen and Han (1988) reported two basic approaches that were utilized to develop 

constitutive equations for work hardening materials. First is the deformation theory, 

which relates the total stress to total strain, and can be given in general form: 

 ( )ij
e
ijij

p
ij f σ=ε−ε=ε        (2-6) 

where ijσ  is the state of stress in which the plastic strain occurs. Despite its simplicity, 

the deformation theory could not describe hardening phenomena near the yield surface 

along the neutral loading path associated with loading/unloading. Second is the flow 

theory, which relates the plastic strain increment p
ijdε to the state of stress ijσ  and the 

stress increment ijdσ . As the stress increment increases gradually above the yield limit, 

a new yield surface is specified, called the subsequent yield surface, on which plastic 

deformation takes place. The hardening rule that applies for the post-yield response can 

be given in the form of: 

ij

p
ij

g
σ∂
∂

γ=ε &&          (2-7) 

where γ&  is a positive coefficient that is nonzero only when plastic deformation occurs. It 

represents the magnitude of the plastic strain increment due to the applied subsequent 

stress. The vector 
ij

g
σ∂
∂  implies the direction of the plastic potential surface associated 

with the applied stress. g as a function of stress ijσ  defines a plastic potential surface 

that coincides with the yield surface function f, in which the hardening rule is called an 

associated flow rule. In this case, Eq. (2-7) is simplified to: 
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ij

p
ij

f
σ∂
∂

γ=ε &&          (2-8) 

 

Visco-plasticity Formulation 

Theories of plasticity and nonlinear elasticity improve the layered elastic solution 

but still fail to capture an important characteristic of pavement materials, which is the 

time dependency of plastic behavior under traffic loading. The theory of visco-plasticity 

has been chosen by many researchers as the most suitable constitutive framework for 

modeling the time-dependent response of HMA. The theory has emerged as an attempt 

to provide a realistic, unified, and phenomenological approach for modeling materials 

that exhibit both plastic and creep deformation.  

A widely used visco-plastic formulation is the Perzyna model (Perzyna, 1966). 

The formulation preserves the fundamental of classical plasticity notions of yield 

surface, decomposition of strains, and hardening, and at the same time, it is well-

appropriate for FE implementation. 

The main feature of this formulation is that it introduces the concept of the 

“overstress” effect in which the yield function used for describing the visco-plastic strain 

can become larger than zero. Perzyna’s original model assumed that visco-plastic strain 

can occur only when the stress state reaches the yield surface and that visco-plastic strain 

is not significant in the elastic zone below the yield surface. The direction of the visco-

plastic strain is specified by an associated flow rule. The visco-plastic strain rate depends 

on the amount by which the effective stress exceeds the current static yield stress 
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(overstress).  In this model the yield surface does not change with time when the visco-

plastic strain is held constant. In addition, the visco-plastic strain rate is zero when the 

overstress is zero (Lubliner 1991).   

In the small-strain theory, the total strain rate ε&  in an elasto-visco-plastic 

material may be additively decomposed into an elastic component eε&  and a visco-plastic 

component vpε&  that accounts for both irreversible and viscous deformation: 

vpe ε+ε=ε &&&          (2-9) 

when using the elasticity principle it follows: 

eD ε=σ &&          (2-10) 

where D  is the fourth-order tangent elastic stiffness tensor. In the Perzyna model, 

evolution of the visco-plastic strain rate vpε&  is defined as (Perzyna 1966): 

σ∂
∂

⋅>φ<⋅Γ=ε
gfvp )(&        (2-11) 

where >φ<⋅Γ )( f  specifies the magnitude of vpε& . The second-order tensor 
σ∂

∂g  

determines the direction of the visco-plastic strain rate, in which g is the visco-plastic 

potential function and σ is the stress tensor. Γ  is a viscosity parameter, and φ  is the 

overstress function that depends on the rate-independent yield surface ( )κσ,f .  
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Combining Eq. (2-7) and Eq. (2-11), the consistency parameter can be obtained as: 

>φ<⋅Γ=γ )( fvp&         (2-12) 

In Eq. (2-12), ”< · >” are McCauley brackets, such that: 

⎭
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CHAPTER III 

FINITE ELEMENT ANALYSIS OF HOT MIX ASPHALT MICROSTRUCTURE 

USING EFFECTIVE LOCAL MATERIAL PROPERTIES AND STRAIN 

GRADIENT ELASTICITY * 

 

INTRODUCTION 

Asphalt mixes are particulate composite materials that consist of asphalt binder, 

particles, and air voids.  There has been long-term interest in relating the macroscopic 

response of hot mix asphalt (HMA) to the properties of the constituents.  This has been 

done mainly through laboratory investigations that relate mechanical behavior of asphalt 

mixes to aggregate characteristics, binder type and content, and percent of air voids (e.g., 

Monismith 1992). 

Analytical studies based on micromechanics concepts, have been used to estimate 

HMA effective material properties.  The first micromechanics model was proposed by Van 

der Poel (1954) based on the analysis of a concentrated suspension of rigid spheres in an 

elastic matrix.  Another attempt to model the viscous behavior of asphalt mixes was 

reported by Hills (1973).  He described the internal structure of HMA in terms of asphalt 

film thickness and the evolution of this state variable as a function of macroscopic straining 

of the material. 

_________________________ 

* Material in this chapter is printed with permission from “Finite element analysis of hot mix asphalt 
microstructure using effective local material properties and strain gradient elasticity.” by Dessouky, S., 
Masad, E., Little, D., and Zbib, H. Journal of Engineering Mechanics, by American Society of Civil 
Engineers (ASCE). Accepted but not yet appeared 
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Classical micromechanical models, developed to estimate the effective properties of 

random particulate composites, have been found to underestimate the elastic properties of 

HMA (Deshpande 1995).  This underestimation is due to high volume fraction of 

particulates in HMA; such that the interaction among these particulates is an important 

factor that is not taken into account by these micromechanical models.  In addition, 

effective material properties are not sufficient representation of HMA response, as it 

averages fluctuations in stress and strain distributions caused by the wide range of particle 

sizes and the several orders of magnitude differences in stiffness between the constituents 

(Masad et al. 2001).  The local distribution and spatial fluctuations of these stresses and 

strains are important factors that influence the overall mix response, especially at the 

microscopic level (e.g., Kose et al. 2000; Masad and Somadevan 2002; Masad et al. 2001).  

As stated by Graham and Baxter (2001), assuming homogeneous response of a composite 

material represented only by effective properties ignores the local microscopic response 

often associated with failure phenomena.   

Numerical simulations of the microstructure response have been used to study 

interactions between different HMA constituents and their influence on localized 

microstructure response and macroscopic properties. Rothenburg at al. (1992), Chang and 

Meegoda (1997), Deshpande and Cebon (1999), and Buttlar and You (2001) are examples 

of work that used discrete element method (DEM) to simulate the microstructure of HMA, 

while Bahia et al. (1999), Weissman et al. (1999), Kose et al. (2000), Abbas et al. (2001), 

and Masad and Somadevan (2002) are examples of studies that focused on using FE 

analysis to achieve this approach. 
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DEM analyzes particulate systems by modeling the translational and rotational 

behavior of each particle by applying Newton’s second law to particle-particle contact 

forces.  In DEM studies, aggregates are represented by a set of discrete elastic particles and 

their interactions are controlled by the mechanical properties of an elastic or visco-elastic 

asphalt film.  

FE analysis with different constitutive models for the individual constituents has 

been used to analyze HMA microstructure (e.g., Weissman et al. 1999; Kose et al. 2000; 

Masad et al. 2001; Papagiannakis et al. 2002).   These studies have shown that FE 

analysis is appropriate in providing information on the stress and strain distribution 

within the microstructure. However, this approach was found, due to experimental and 

computational limitations, to underestimate the effective properties of the HMA and the 

results can be mesh size dependent (e.g., Abbas et al. 2001; Masad and Somadevan 

2002).    

This chapter presents a methodology for the analysis of HMA microstructure 

using FE analysis.  This methodology offers two main contributions.  The first is using 

strain gradient elasticity in modeling material behavior.  Strain gradient theories or 

nonlocal theories have been implemented in different constitutive models to introduce an 

internal length scale in the standard equations of continuum mechanics (e.g., Aifantis 

1984, 1987; Zbib and Aifantis 1989, and 1992).  Therefore, it is believed that using a 

strain gradient theory will assist in capturing the differences among mixes due to 

different particle and asphalt film size distributions, and reducing the effect of FE mesh 

resolution on the microscopic and macroscopic response.  The gradient coefficients, 
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which are directly related to the material characteristic length scale, are determined by 

analyzing the microstructure distribution using the autocorrelation function and the 

moving window technique.  

The second contribution in this study is using a micromechanical model along 

with the moving window technique to calculate the local effective material properties 

used in the FE analysis. These calculations are supported by experimental measurements 

of the stiffness of HMA. 

 

MICROSTRUCTURE FE ANALYSIS USING EFFECTIVE MATERIAL 

PROPERTIES 

 This section discusses the development of a FE analysis of HMA microstructure 

using effective local material properties.  FE implementation of gradient elasticity is 

presented first, followed by the procedures used to determine the effective local material 

properties using micromechanics principles.   

 

FE Implementation of Gradient Elasticity 

Generalization of elasticity theory by incorporating the effect of higher gradients of 

the displacement field into the strain energy density function was studied by Cosserat and 

Cosserat (1909).  A modern systematic treatment of gradient elasticity was given by 

Truesdell and Toupin (1960).  Subsequently, it was extended by Toupin (1962), Green and 

Rivlin (1964), and Mindlin (1965).  They implemented the higher gradients of the 

displacement field to higher order stresses instead of directly introducing higher gradients 
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into the constitutive equation.  The gradient approach is typically employed to provide the 

standard equations of solid mechanics with a characteristic internal length scale.  In this 

study, the feature of gradient elasticity (i.e., internal length scale) is being utilized to capture 

the differences in mechanical response among mixes with different particle size 

distributions and to reduce the influence of mesh size on this response. 

Assuming that the elastic strain at a position vector x depends linearly on the 

relative strain with respect to an element movement from x to r, which occurs in a small but 

finite material volume V surrounding x. The average strain can be obtained by the volume 

average of the local strain distribution within the representative volume element (RVE) as 

follows: 

∫ −=
fV

dVrx
V

Re

)(1
εε         (3-1) 

The Taylor’s series expansion limited to the second-order term of the function 

)( rx −ε  around x gives (Zbib and Aifantis 1989): 

εεε 22)( ∇+= clx         (3-2) 

where lc is a characteristic length scale of the material microstructure.  The following 

gradient elasticity model is obtained when Eq. (3-2) is substituted in Hooke’s law: 

εεσ 22 ∇+= AA cl         (3-3) 

where σ  and ε  are the stress and strain tensors, respectively, and A is the fourth-order 

elasticity tensor.  Following standard FE formulation, e.g., the Galerkin’s method, the 

equation of equilibrium can be written in the weak form:  
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[ ] [ ]( )∫∫ ⋅=
SV

dSn NdV  N grad σσ       (3-4) 

where [ ]N  is a matrix containing the shape functions and n  is a unit vector normal to 

the surface.  By substituting Hooke’s formula in Eq. (3-3) into Eq. (3-4) and noting that 

the right-hand side of the equation is the surface traction sf , one obtains 

[ ] [ ] [ ] s

V

2
c

V

T fdV BludVBB =∇+ ∫∫ εAA 2          (3-5) 

where u  is a displacement vector and [ ]B , the strain displacement matrix, is a first 

derivative of [ ]N .   Rearranging the equation and considering the gradient term as a body 

force, Eq. (3-5) can be written as follows: 

[ ]∫ ε∇−=
V

2
c

s dV BlfuK A2][        (3-6) 

where ][K  is the global stiffness matrix and the term includes the strain gradient is defined 

as body force vector bf . 

A numerical scheme is used to evaluate the strain gradient at every integration 

point. The gradient quantity depends on the strain values at this point and the neighboring 

points.  Also it depends inversely on the distance between the center point and the 

neighboring points.  Consider a plane strain element that contains the points A, P, B, and Q 

at distances of ah, ph, bh, and qh from the center integration point O, respectively.  h is a 

fixed distance, and a, p, b, and q are constant multipliers.  A and P are in the x-direction and 

B and Q are in the y-direction.  The expansion of strain at points A and P, for example, is 

given by: 
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By disregarding the odd order terms and the higher terms, the second-order derivatives 

become: 

 2

2 2

2 1
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and the gradient is the summation of the second order derivatives in both directions as 

follows: 
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For the boundary elements where there are no adjacent elements in the free side, the 

gradient is calculated using only the available values of strain while the other components 

drop out.  Eq. (3-10) is applied to the various strain components in plane strain and is used 

to calculate the average strain gradient ][ 12
2

22
2

11
22 ε∇ε∇ε∇=ε∇        for each integration 

point within the element.  This gradient is used in the second term of the right-hand side of 

Eq. (3-6) to evaluate the body forces.  

In FE analysis, the first iteration (indicated by superscript o) does not include the 

effect of the strain gradients (body force = 0).  In the following iteration i, the average strain 

gradient is computed and substituted in Eq. (3-6) to evaluate the body forces after assigning 

lc.  The body forces (strain gradient effects) in the second iteration will provide different 

displacements ui than the ones calculated in the first iteration.  In each iteration, the body 

forces determined at the integration points are averaged and transferred to the nearest 

nodes.  This iterative procedure is repeated until convergence is achieved if the change in 

displacement becomes less than tolerance value of 1.0E-8.  A flow chart illustrating the FE 

implementation of gradient elasticity is given in Fig. 3.1. 
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Fig. 3.1. Flow chart illustrating the FE algorithm 
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The advantages of using strain gradient elasticity is illustrated here with the aid 

of an idealized plane strain model of a binder film between two blocks representing 

aggregates, as illustrated in Fig. 3.2.   The 5-inch square model is subjected to a uniaxial 

pressure (P = 2.5 MPa) on the top, and the bottom is fixed in the horizontal and vertical 

directions.  The aggregate blocks are modeled using Young’s modulus = 25 GPa and 

Poisson’s ratio = 0.25.  The binder film is modeled with Young’s modulus = 30 MPa and 

Poisson’s ratio = 0.49.  The idealized model is used to explore the relationship between 

element size and computed strain distribution.  This is done by using 10×10, 30×30, 

50×50. and 100×100 plane strain elements to represent the model in Fig. 3.2.  Assuming 

that the finest mesh converges to the accurate solution, the value of lc as shown in Fig. 

3.3 is selected according to mesh size resolution. The results in Fig. 3.3 show that 

reducing the number of elements without including the strain gradient terms causes a 

reduction in the strain magnitude.  However, when higher lc values are assigned for finer 

meshes, all models converges to the same strain.  This demonstrates that lc reflects the 

influence of length scale (i.e., the mesh resolution with respect to the microstructure 

geometry) on the finite element results (see Fig. 3.3). It is worth mentioning that the 

computation time was not influenced by the gradient effect and the overall time was 

extremely small because the FE problem is still two-dimensional. 

 



 

 

43

BINDER

AGGREGATE

AGGREGATE

P

 

Fig. 3.2. Illustration of the Idealized Model 
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Fig. 3.3. Vertical Strain Distribution for the Idealized Model 
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Similar to the model in Fig. 3.2, idealized microstructure representations of HMA 

with different particle sizes randomly dispersed in a matrix of asphalt binder at volume 

concentrations of 30%, 40%, and 50% with lc values of 1.50 mm for fine and 5.5 mm for 

coarse, are used to examine the sensitivity of strain distribution to particle size and 

concentration. The values of the lc is taking as a fraction of the average length of particles 

diameters. 50×50 plane strain elements with similar material properties of the constituents 

to those used in Fig. 3.2 are used. By recording vertical deformation due to the uniaxial 

load, results in Fig. 3.4a show that macroscopic (continuum) strains are not sensitive to 

particle size.  However, sensitivity to particle size is significantly increased by using 

different lc and strain gradients as shown in Fig. 3.4b. 

The presence of fine particles is expected to produce more uniform strain 

distribution within the microstructure.  Fig. 3.5 shows the strain distribution within the 

microstructure in which the ordinate gives the percent of elements that has a strain value 

equal to the corresponding magnitude on the x-axis.   
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Fig. 3.4. Macroscopic Strain for Media with Different Percentages and Sizes of Particles 
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Fig. 3.5. Microscopic Strain Distributions for Media with Different Percentages and Sizes 
of Particles 
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It is interesting to note in Fig. 3.5(a) that the effect of particle size on microstructure 

distribution is very small.  The FE analysis becomes capable of capturing the difference in 

microstructure strain distributions when strain gradients and different lc values are used for 

the fine and coarse media (Fig. 3.5b).  The strain gradient distributions in the coarse and 

fine media are shown in Fig. 3.6. 

An image of the HMA microstructure is usually limited, due to image resolution 

and experimental constraints, in capturing all fine particles present in a mix (e.g., Masad et 
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al. 2001; Papagiannakis et al. 2002).   Typically, the stiffening effect of these fine particles 

is compensated for by using an equivalent modulus for the mastic, which includes these 

fine particles, higher than that of the binder. Here the author explores the effect of using the 

equivalent modulus on microstructure strain distribution.  Consider model “A” as shown in 

Fig. 3.7 that consists of coarse particles, fine particles, and binder.  Model “B” represents 

the captured microstructure with the fine particles embedded within the mastic.  FE analysis 

is conducted using the same material properties for all particles in model “A” and coarse 

particles in model “B” (Young’s modulus = 25 GPa, and Poisson’s ratio = 0.25).  The 

binder in model “A” is represented with Young’s modulus = 30 MPa and  Poisson’s ratio = 

0.49.  The same Poisson’s ratio is used for the mastic in model “B”, while a higher 

equivalent Young’s modulus of 0.4 GPa is used for the mastic such that the macroscopic 

strains for both models “A” and “B” are equal.  As shown in Fig. 3.7, the two models have 

distinct microstructure strain distributions indicating that increasing the mastic modulus 

alone does not represent the model response at the microscopic level.  Therefore, an 

alternative approach is followed in which the mastic is modeled using a higher equivalent 

modulus to reflect the stiffening effect of fine particles, and at the same time strain 

gradients with appropriate lc represents the neglected particles are used to capture the 

influence of these fine particles on the microscopic strain distribution (see Fig. 3.7). 
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Fig. 3.7. Influence of Strain Gradient on Microscopic Strain Distribution 
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EFFECTIVE LOCAL MATERIAL PROPERTIES 

Baxter and Graham (2000) presented an approach for FE analysis of composite 

material microstructure where the effective material properties are averaged within a 

moving window using the Generalized Method of Cells proposed by Paley and Aboudi 

(1992).  In this study, we follow a similar approach; however, the effective material 

properties are calculated using a micromechanics solution that captures the influence of 

aggregate concentration within the moving window on the effective material properties.  

This approach is motivated by previous findings indicating that using the properties of 

the individual constituents in FE analysis of HMA microstructure significantly 

underestimates the macroscopic properties due to the experimental limitation of 

capturing all sizes of fine particles present in the microstructure (e.g., Masad and 

Somadevan 2002; Papagiannakis et al. 2002).  

Christensen (1979) developed the well-known dilute suspension approximation 

for effective shear and bulk moduli µ and κ, respectively, of a macroscopically isotropic 

composite as follows:  
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where i and m refer to the inclusion (aggregate) and matrix, respectively, νm is the matrix 

Poisson’s ratio, and c is the volume fraction of the inclusions.   

The model in Eq. (3-11) cannot be used for nondilute composites, such as HMA, 

in which interactions between particles influence the composite properties.  Christensen 

(1990) modified the model in Eq. (3-11) using the differential method to better represent 

nondilute composites. The concept of the differential method is to add small percentages 

of particles (∆c) incrementally into the matrix.  New effective properties are obtained for 

the composite in each increment and are subsequently used as matrix material properties 

in the following increments until c = 100%.  The differential equations that represent this 

method are as follows: 
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       (3-12) 

Christensen (1990) presented closed-form solutions for the effective properties of 

an incompressible material where κ >>µ and for the case of νm = 0.2.  However, the κ/µ 

ratio for HMA depends on the concentration of aggregates, and consequently, these 

solutions are not representative of asphalt mixes (Kim and Little 2004).  Therefore, 

motivated by previous experimental measurements by Buttlar et al. (1999) and Kim and 

Little (2004), the following relation between κ and µ is proposed to solve Eq. (3-12): 

( )[ ]c−αβ=
µ
κ 1exp         (3-13) 
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where α and β are material constants determined based on experimental measurements 

and the properties of aggregates and binder as discussed later in this chapter.  Eqs. (3-12, 

and 3-13) are solved such that the composite material properties are equal to those of the 

binder when c = 0.  Eq. (3-12) is undefined for c = 1.  Therefore, an approximate 

solution is sought where the composite properties are equal to those of aggregates when 

c = 0.94. A Gaussian quadrature numerical scheme is used to solve Eqs. (3-12 and 3-13) 

due to their implicit form, and the following expressions are obtained: 
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  (3-14) 

The integration part can be solved numerically, and µ and κ are then found as a 

function of volume fraction.  The Young’s modulus E and Poisson’s ratio ν are 

calculated using the elastic relationship with µ and κ. 

 

EXPERIMENTAL CHARACTERIZATION  

Description of Asphalt Mixes and Image Acquisition 

Asphalt mixes were designed using the Superpave procedure (Roberts et al. 

1996) with the variables shown in Table 3.1.  The mixes were prepared with different 

nominal maximum aggregate sizes (aggregate size larger than about 90% of particles), 

two different gradations (fine and coarse), and two aggregate types (limestone and 

uncrushed gravel).  HMA specimens were compacted using the Superpave gyratory 
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compactor.  Each specimen had a diameter of 150 mm and a height of about 100 mm.  A 

diamond saw was used to cut these specimens vertically.   

 

 

Table 3.1. Description of Asphalt Mixes 

Mix 
Aggregate 

Type 
Gradation NMAS* 

Natural 

Sand (%) 
OAC (%)** 

A 9.5 0 5.3 

B 19 0 4.4 

C 

Coarse 

19 40 4.7 

D 

Limestone 

Fine 9.5 0 6.2 

E 9.5 0 6.3 

F 
Gravel Coarse 

19 0 5.4 

* Nominal maximum aggregate size. 

** Optimum asphalt content. 

 

 

Gray scale images were captured using a digital camera connected to a computer.  

The original image was first reduced to a rectangular image with dimensions of 400×400 

pixels and a resolution of 0.3 mm/pixel.  A pixel in a gray-scale image has intensity from 

0, representing black, to 255, representing white.  Examples of images captured from the 

mixes are shown in Fig. 3.8.  An image was thresholded and converted to a black-and-

white image, where white represented aggregate particles larger than the image 
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resolution of 0.3 mm and black represented the matrix, which consisted of asphalt, air 

voids, and particles smaller than 0.3 mm.   

 

 

  

 

       
 
 

 

 

 

       
 

Fig. 3.8. Examples of Images with Different Aggregate Sizes 

Mix “A” Mix “D” 

Mix “C” Mix “D” 

Mix “B” 
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Moving Window Technique 

The moving window technique was used to calculate the effective elastic 

material properties in Eq. (3-14) and the characteristic length scale, lc, in Eqs. (3-2, 3-4, 

3-5 and 3-6).  In this method, an image that represents the RVE of a mix is divided into 

cells or windows of equal sizes.  Each window is shifted from the adjacent window by 

one pixel in the horizontal direction.  A parametric analysis is first conducted to 

determine the appropriate window size to calculate the effective material properties.  The 

percent of particles in windows of different sizes that included 10×10 pixels (3×3 mm), 

20×20 pixels (6×6 mm), 40×40 pixels (12×12 mm), and 80×80 pixels (24×24 mm) were 

calculated for mixes A and B.  

Small variations in percentage of particles between windows indicate more 

uniform distribution of particle sizes, while high variations indicate that a wide range of 

particle sizes is present within the microstructure.  Fig. 3.9 shows that window sizes of 

10×10 and 20×20 pixels produced high variations in percent aggregates for both mixes, 

which made it difficult to capture the differences between these two mixes in terms of 

percentage of particles and size distribution.  Using a window size of 80×80 pixels was 

also not effective in capturing the difference between the two mixes, as it showed almost 

the same percentage of particles in windows for both mixes.  However, the intermediate 

window size of 40×40 pixels captured the differences between mixes A and B (Fig. 3.9).  

Therefore, a window size of 40×40 pixels was employed in calculating the effective 

local material properties according to Eq. (3-14). 
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Fig. 3.9. Volume Fraction of Particles for Different Window Sizes 
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Effective material properties are calculated in three steps.  First, the volume 

fraction of aggregates is determined within the moving window.  Second, Eq. (3-14) is 

used to calculate the effective shear and bulk moduli.  Finally, the corresponding 

Young’s modulus and Poisson’s ratio are calculated using elasticity theory.  These 

effective properties are assigned to the element in the center of the moving window. The 

coefficients α and β in Eq. (3-13) are calculated using the material properties for 

aggregate and binder used earlier in the idealized microstructure. Consequently, the 

coefficients α and β are found to be 3.40 and 1.67, respectively. 

Fig. 3.10 depicts the field of Young’s moduli within the microstructure using 

both the properties of the individual constituents and the effective local properties, 

respectively.  It is evident that a more uniform field of material properties is obtained 

using the effective material properties.  This distribution is less affected by small 

changes that might occur in the microstructure distribution during image capturing and 

processing.   
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(a) Individual Constituent Properties 

 

 
(b) Effective Properties 

 

Fig. 3.10. Young’s Modulus Distribution for Microstructures with Individual 
Constituent Properties and Effective Properties 
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FE analysis using the effective properties also has a numerical advantage over 

using the individual constituent properties.  The several orders of magnitude difference 

in the moduli of the aggregate and binder can cause a numerical instability in the FE 

solution (Somadevan 2000).  Using the effective material properties reduces the 

difference in material properties between adjacent elements, and consequently, 

eliminates this numerical limitation.   

As discussed in the derivation of the constitutive model in Eqs. (3-2, 3-3, 3-4, 3-5 

and 3-6), the value of the characteristic length scale, lc depends on the microstructure 

distribution.  The moving window technique is used to analyze the microstructure 

distribution and calculate lc.  Fig. 3.11 presents a schematic diagram of the application of 

the moving window technique.  The method starts by converting an image to a two-

dimensional text array where 1 indicates a pixel that belongs to the aggregate phase and 

0 refers to a pixel that belongs to the matrix.  The average volume fraction over the RVE 

domain at position vector x is given as: 

∫ −=
fV

dVrxg
V

g
Re

)(1         (3-15) 

where g is the percentage of particles within the moving window and g  is the average 

percentage of particles in the whole microstructure represented by an image. The 

Taylor’s series expansion around x gives: 

glxgg c
22)( ∇+=         (3-16) 

where )(xg  is found by averaging the volume fraction within each window in the RVE.  

g2∇  is found by applying the central difference procedure between three adjacent 
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windows in the horizontal direction. lc is calculated for every moving window, and then 

an average value is calculated to represent the microstructure.   

lc for the different mixes is shown in Table 3.2.  As the range of aggregate sizes 

becomes smaller, the probability for the moving windows to have more uniform 

percentages of particles increases, and consequently, lc becomes smaller.  However, 

variation in the concentration of aggregates among windows increases as the aggregate 

size distribution becomes wider.  Consequently, lc increases as the particle size 

distribution becomes wider.  This can be seen in Table 3.2, where lc for the 19 mm 

NMAS mixes is higher than that for the 9.5 mm NMAS mixes.  The wide range of lc 

values in Table 3.2 indicates the sensitivity of this parameter to microstructure 

distribution.  However, more mixes with different microstructure distributions are 

needed to establish a conclusive relationship between particle size distribution and lc. 

 

 

 

 

 

 

 

 

 

 



 

 

62

 

 

 

 

 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 

1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

 

Fig. 3.11. Schematic Diagram of the Application of the Moving Window 
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Table 3.2. Results of Microstructure Analysis of Asphalt Mixes 

Mix NMAS 
(mm) 

Characteristic 
Length Scale 

lc  
(mm) 

Specific 
Surface 
area “s” 
(1/mm) 

Mean 
Free 
Path 
“rc” 
(mm) 

Effective 
Particle 

Size 
“rg” 

(mm) 

Average 
Percentage 

of 
Particles 

“ f ” 

 

 
*

f
2

 

Measured 
 

 
**

f
2

 

A 9.5 4.11 0.60 1.51 5.40 0.660 0.436 0.433 

B 19 5.19 0.50 1.69 9.90 0.670 0.450 0.450 

C 19 5.28 0.47 1.97 8.40 0.611 0.373 0.365 

D 9.5 3.19 0.67 1.41 3.90 0.625 0.391 0.383 

E 9.5 2.79 0.61 1.54 4.80 0.672 0.452 0.454 

F 19 4.72 0.55 1.59 9.00 0.718 0.516 0.509 

* Using direct measurement of percentage of particles. 

** Evaluated using graphical analysis of Fig. 3.12. 

 

 

Autocorrelation Function 

 The autocorrelation function (ACF) describes the relative arrangement of 

different phases in a composite material.  It evaluates the probability of locating two 

points of the same material, whether aggregate or matrix, separated by a certain vector.  

It is assumed that the microstructure of asphalt mixes is statistically homogeneous, and 

consequently, ACF depends on the average difference in the coordinate values between 

two points rather than the locations of these points.  In addition, the directional 

distribution of particles is not of interest in this study, and the ACF is taken as a function 
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of the magnitude of the vector rather than its direction.  Consequently, the two-point 

ACF is given as (Berryman and Blair 1986): 

∑ ∑
−

=

−

= −−
++×

=
iM

x

jN

y jNiM
jyixfyxfjiS

1 1 ))((
),(),(),(      (3-17) 

where ( ) 1, =yxf  if a pixel at point ( )yx,  is located within the aggregate phase, and 

( ) 0, =yxf  otherwise. i and j are the distances between any two pixels in two orthogonal 

coordinate axes.  M and N are the number of pixels in the HMA microstructure image in 

two orthogonal coordinate axes.  

The ACF carries important information about the microstructure distribution.  

Debye et al. (1957) and Berryman and Blair (1986) have shown that the following 

microstructure features can be estimated from the ACF (Fig. 3.12): 

fS =)0( , 
2

)(lim frS
r

=
∞→

,   
4

)0( sS −=′ ,  
s

ffrc
)1(4 −

=    (3-18) 

where f  is the average volume fraction of aggregate particles, 22 jir +=  is the 

distance between two points in the microstructure, s is the specific surface area, and rc is 

the effective distance between particles (mean free path).  The effective particle size, rg, 

can also be determined from the ACF as shown in Fig. 3.12. 
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Fig. 3.12. Illustration of the Autocorrelation Function 

 

 

Fig. 3.13 shows the trend of the correlation function for all mixes. A three-

dimensional plot of the ACF distribution for two mixes assuming periodic 

microstructure is given in Fig. 3.14.  According to the results in Table 3.2 and Figs. 3.13 

and 3.14, mixes with 19 mm NMAS have higher rg values than the 9.5 mm NMAS 

mixes (A vs. B) and (E vs. F).  In addition, coarse-graded mixes have higher rg values 

than the fine-graded mixes (A vs. D).  There are also differences between gravel and 

limestone mixes with similar particle size distributions.  Limestone mixes have higher 

values for rc and rg and lower values for s than gravel mixes.  These results can be 

interpreted by the fact that limestone aggregate are more elongated (or less spherical) 

and the particles tend to be oriented more toward the horizontal in a mix than gravel 

aggregates.  Therefore, the ACF measured in the horizontal direction gives larger 

f

S′(0) = -s / 4 

rg 
rc 

2
f

S(
 r 

) 

r = (i2+j2)0.5 
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effective length for limestone aggregates.  This shows that the parameters from the ACF 

can be used to reflect the length scales associated not only with the size of particles but 

with their shape as well. 
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Fig. 3.13. Autocorrelation Function for Different Mixes 
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b) Mix “C” 

Fig. 3.14. Three-Dimensional Representation for the Autocorrelation Function 
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Fig. 3.15 shows the relationship for the length scale parameters computed by the 

moving window and ACF methods.  The results of the two methods have good 

agreement and either method can be applied to determine lc for strain gradient theory.  

 

HMA Microstructure FE Analysis and Results 

The analyses of HMA microstructure are conducted using three approaches: (1) 

each element is assigned the elastic properties of the constituent that the element belongs 

to (conventional model), (2) each element is assigned effective local properties without 

strain gradients and characteristic length scales, and (3) each element is assigned 

effective local properties with the strain gradients and characteristic length scales.  The 

FE model is subjected to uniaxial displacement at the top, and is fixed at the bottom 

from translation and rotation displacement.   It is worth mentioning that FE analysis with 

strain gradients did not experience any convergence problems, and a maximum of three 

iterations were needed for the solution to converge using the procedure in Fig. 3.1. 

 

 



 

 

69

R2 = 0.74

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 0.50 1.00 1.50 2.00 2.50

Effective distance between particles rc (mm)

C
ha

ra
ct

er
is

tic
 le

ng
th

 s
ca

le
 l c

 (m
m

)

 

R2 = 0.84

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 2.00 4.00 6.00 8.00 10.00

 Effective particle size rg (mm)

C
ha

ra
ct

er
is

tic
 le

ng
th

 s
ca

le
 l c

 (m
m

)

 
Fig. 3.15. Correlations Between the Characteristic Length Scale (lc), Effective Distance 
Between Particles (rc), and Effective Particle Size (rg) 
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Fig. 3.16 shows vertical strain distributions using approaches 1 and 2 described 

above for mix A.  The conventional model (approach 1) produces high strain values in 

the thin film binder elements and low strain values in the elements occupied by 

aggregate particles.  On the other hand, the model with effective material properties 

(approach 2) yields more uniform strain distribution.  

Young’s moduli are determined using the three approaches.  These values are 

compared to experimental measurements of dynamic modulus at 10 Hz (Dessouky et al. 

2004) and a temperature of 40°C.  This comparison is not intended to evaluate the 

equality between FE results and measurements since the measurements are frequency 

dependent, but rather to determine how the analysis and experiments rank these mixes.  

The comparison is shown in Fig. 3.17 in terms of the ratio of the modulus of each mix to 

that of mix B.  Measurements show that approaches 1 and 2 do not rank the Young’s 

moduli of the mixes in the same order as the experimental measurements.  However, 

approach 3, which combines the use of effective properties and strain gradients, ranks 

the mixes similar to the experimental measurements.  
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Fig. 3.16. Vertical Strain Contours for Microstructure Using Individual Properties of 
Constituent and Effective Material Properties 
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Fig. 3.17. Moduli for Models with Different Microstructure Material Properties (Each 
Point Represents the Ratio of the Modulus of Mix A to the Modulus of Mix B)   
 

 

SUMMARY 

A methodology for microstructure analysis of HMA is presented in this chapter.  

The methodology is based on using effective material properties that capture the influence 

of percentage of particles on the local microscopic response.   Strain gradient elasticity is 

employed in the FE analysis to capture the influence of the material length scale on material 

response.  Experimental procedures are developed to determine the material characteristic 

length scale using the moving window technique and the ACF. 

The results show that the developed methodology is successful in overcoming 

some of the limitations of using the individual properties of the constituents in the FE 
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analysis of HMA microstructure. For example, this new methodology reduces mesh size 

dependency and reduces sensitivity of the response to small changes in microstructure 

caused by image capturing and processing.  It also reduces the risk of numerical 

instability that can be caused by the several orders of magnitude difference in stiffness 

between adjacent elements of the microstructure.  In addition, the methodology captures 

the influence of HMA length scales on the microscopic and macroscopic responses.  The 

results show that the developed methodology yields HMA effective properties that are 

more consistent with experimental measurements. 
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CHAPTER IV 

MICROSTRUCTURAL ELASTO-VISCO-PLASTIC CONTINUUM 

MODEL FOR HOT MIX ASPHALT 

 

INTRODUCTION 

As discussed in Chapter II of this dissertation, rutting in hot mix asphalt (HMA) 

develops gradually as the number of load applications increases. It is caused by a 

combination of densification (decrease in volume and hence increase in density) and shear 

deformation. The visco-plastic continuum models available in the literature do not 

explicitly consider the influence of microstructure distribution on material response. The 

main objective of this chapter is to develop an elasto-visco-plastic microstructure model 

that accounts for important microstructure properties such as anisotropy and damage.  

The new model builds upon the formulation developed by Tashman (2003), but it is 

expanded to include the elastic response of the material and to account for the influence of 

stress path direction.  In addition, the procedure to account for anisotropy in the constitutive 

relationship is more simplified.  Therefore in summary, the new model accounts for the 

following phenomena: 

• Elastic response prior to reaching the yielding stress threshold; 

• Shear as the dominant stress causing permanent deformation; 

• Dilation and hydrostatic pressure dependency of the material; 

• Stress path dependency of the visco-plastic response; 

• Work hardening/softening of the material; 
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• Aggregate directional distribution in the microstructure; and 

• Damage in terms of cracks and air voids. 

 

DEVELOPMENT OF ELASTO-VISCO-PLASTIC MODEL 

Abdulshafi and Majidzadeh (1985), Scarpas et al. (1997a) Lu and Wright (1998), 

Seibi et al. (2001), and Collop et al. (2003), among others, are examples of research that 

related HMA response to the presence of elastic, visco-elastic, visco-plastic, and plastic 

components under load application, where the presence of each is mainly affected by 

temperature and loading rate. In the new model, material response is assumed to have an 

elastic recoverable component and a visco-plastic irrecoverable component at the high 

temperatures associated with permanent deformation.  The total strain rate ε&  is 

decomposed into  

vp
ij

e
ijij ε+ε=ε &&&          (4-1) 

where the superscript (e) refers to the elastic part and (vp) refers to the visco-plastic part. 

 A simple approach has been followed by many researchers in which constitutive 

relationship is developed for each strain component without coupling between the elastic 

and visco-plastic components. The elastic strain component can be defined according to 

Hook’s law as follows: 

e
klijklij D ε=σ &&          (4-2) 

where σ&  is the stress rate tensor and ijklD  is the fourth-order elastic stiffness tensor.  
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By inserting Eq. (4-1) into Eq. (4-2) one may obtain the rate form of the constitutive 

equation as follows: 

( )vp
klklijklij D ε−ε=σ &&&         (4-3) 

 For axisymmetric configuration, the stiffness matrix reduces to the following 

expression: 
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where E is Young’s modulus and ν is Poisson’s ratio.  

The visco-plastic component dominates the response for the material at higher 

magnitudes of stress and higher temperatures.  The visco-plastic strain rate component is 

defined through the following flow rule:  

ij

vpvp
ij

g
σ∂
∂

γ=ε &&          (4-5) 

where vpγ&  is a visco-plastic multiplier that is nonzero only when plastic deformation 

occurs, and g is a visco-plastic potential function. The potential surface is a surface in 

stress space containing the actual stress state and in case of the associated flow rule it 

coincides with the yield surface f: 

)()( ''
ijij fg σ=σ         (4-6) 
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Hence, the associated flow rule becomes 

ij

vpvp
ij

f
σ∂
∂

γ=ε &&          (4-7) 

The gradient 
ij

f
σ∂
∂ indicates the direction of the visco-plastic strain increment 

normal to the yield surface in the associated flow rule, while the magnitude of the strain 

vector is determined by the loading multiplier vpγ& .  

Perzyna’s theory replaces the classical plastic flow rule by incorporating an 

overstress function and a viscosity parameter that relate the rate of visco-plastic strain to 

the current stresses and loading history. Analogous to the classical theory of incremental 

plasticity, the visco-plastic strain rate is computed by means of a postulated flow rule as 

follows (Perzyna 1966): 

ij

vp
ij

gf
σ∂
∂

⋅>φ<⋅Γ=ε )(&        (4-8) 

where >φ<⋅Γ )( f  specifies the magnitude of the vector vpε& , Γ  is a viscosity parameter 

that can be a constant or time-dependent, and φ  is an overstress function that is typically 

taken as a power function of f. The visco-plastic potential and yield surfaces are assumed 

in this study to take the same form but with different material properties, as explained 

subsequently. In the above expressions, “< · >”, McCauley brackets, imply that: 

⎭
⎬
⎫

⎩
⎨
⎧

>φ=φ

≤φ
=>φ<

0)(,)(

0)(            ,0
)(

fff

f
f N      (4-9) 

where N is a rate sensitivity parameter to be determined experimentally.  
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 Eqs. (4-8 and 4-9) indicate that visco-plastic strain will take place only if the 

overstress function exceeds zero. The flow rule given by Perzyna is the necessary 

kinematic assumption postulated for visco-plastic deformation or plastic flow. Since it 

may be represented by a vector in strain space, the flow rule in Eq. (4-8) therefore also 

defines the direction of the visco-plastic strain increment.  

 

Extended Drucker-Prager Yield Surface 

The yield function determines a surface in stress space defined as follows: 

0)( =κ−σ= ijFf         (4-10) 

The yield surface f  is defined as the geometric locus of states of stress corresponding to the 

same level of viscous flow. )( ijF σ  is a stress-dependent function. To account for the effect 

of confinement, shear stress and dilative behavior in HMA, an extended Drucker-Prager 

yield function with hardening is proposed in this study. The conventional Drucker-Prager 

yield function has been used by a number of researchers to describe the viscous flow 

behavior of HMA (e.g., Abdulshafi and Majidzadeh 1985; Seibi et al. 2001; Oeser and 

Moller 2004).  The extended Drucker-Prager model is presented in the τ−Ι1  space as 

shown in Fig. 4.1 (ABAQUS 2004, Park et al. 2001) 

κ−Ια−τ= 1f         (4-11) 

where τ is the deviatoric shear stress, I1 is the hydrostatic stress, and α and κ are material 

properties. α is a parameter that reflects the material frictional properties of the material and 
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κ is a hardening parameter that reflects the combined effect of the cohesion and frictional 

properties of the material. 

 

 

α

Κ

τ

Ι1  

Fig. 4.1. Schematic Diagram of the Extended Drucker-Prager Yield Surface  

 

 

In the extended model the hydrostatic stress and deviatoric shear stresses are defined as 

(ABAQUS 2004) 
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Sij is defined as the deviatoric stress tensor and is expressed as  

ijkkijijS δσ−σ=
3
1

        (4-14) 

ijδ  is the Kronecker delta, where its components are 1 if ji =  and 0 if ji ≠ . I1, J2 and 

J3 are the first stress invariant, second deviatoric stress invariant, and third deviatoric 

stress invariant, respectively. These invariants account for the effect of confinement, the 

dominant shear stress causing the visco-plastic deformation, and the direction of stress 

path, respectively. d is a material parameter representing the sensitivity of yield behavior 

to the hydrostatic pressure I1. In uniaxial compression, Eq. (4-12b) indicates that 

12/3
2

3 =
J
J

 and 2J=τ , where 
d
J 2=τ   in uniaxial tension. To ensure convexity of the 

yield surface d ranges between 0.778 and 1. d value less than 1 indicates that the strength 

of the material in tension is lower than that in compression, as shown in Fig. 4.2.  When 

d = 1, the dependence on the third deviatoric stress invariant vanishes and the Mises 

circle is recovered in the deviatoric plane. 
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Fig. 4.2. Shape of the Yield Surface at the Deviatoric Plane as a Function of d (ABAQUS 
2004; Park et al. 2001) 

 

 

The influence of the d parameter on the model response is illustrated in Fig. 4.3.  

Consider a point that is under confining pressure and is represented by point A.  Once the 

point is subjected to an increase in axial stress, both the first stress invariant and the second 

deviatoric stress invariant will increase with stress path until it starts to yield at point B. 

Conversely, if the specimen is subjected to a decrease in the axial stress (extension test), the 

stress path will be represented by the path AC and the point will yield under the stress state 

represented by point C.  Even under the conventional Drucker-Prager yield function, the 

yield stress in compression will be higher than the yield stress in tension simply because the 

confinement at points B and C are different.   In the modified model represented by Eq. (4-

11), the yield stress under tension is further reduced as the slope ( 'α ) and the intercept ( 'κ ) 

of the yield surface in the 21 J−Ι  plane are multiplied by d.  
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Fig. 4.3. Illustration of the Influence of Stress Path on the Yielding Point 

 

 

An important factor governing the viscous behavior of a material is the 

phenomenon of work hardening. In simple terms, the phenomenon occurs during plastic 

deformation of the material at a microscopic level due to changing interactions in the 

aggregate-aggregate and aggregate-binder interfaces as the degree of deformation 

increases. Basically, the larger the number of particle contacts produced, the larger their 

interaction and hence the larger the stresses required for material yielding. When the 
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stress level approaches the yield point, the yield surface is pushed outward and causes 

increasing in surface volume. This growing mechanism can be defined by a hardening 

evolution law.   

Material hardening can be captured by the evolution of α, κ or both, Tan et al. 

(1994) concluded that α remains almost constant as the material undergoes permanent 

deformation, while κ value evolves.  This conclusion is supported by the analyses 

conducted on experimental measurements used in this study and presented in Chapter VI.  

The general form for the evolution of κ  is a function of effective visco-plastic strain.  The 

specific form determined in this study and based on experimental measurements is 

presented in Chapter VI. 

 

MICROSTRUCTURE CHARACTERIZATION 

Anisotropy 

It is well documented in the literature that unbound granular materials display 

significant anisotropic behavior because of the preferred distribution of particles (e.g., 

Oda and Nakayama 1989; Li and Dafalias 2000). Tobita and Yanagisawa (1988) stated 

that a constitutive model with anisotropic dependency can account for more aspects of 

deformation features of geomaterials than conventional plasticity theory because it 

represents information about anisotropic internal structure. Oda and Nakayama (1989) 

summarized the three sources of anisotropy in granular materials: anisotropic 

distribution of contact normals, which is due to particle interactions; preferred 

orientation of void spaces; and preferred orientation of nonspherical particles. Oda et al. 
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(1985) observed that the first two sources can be significantly effective during low levels 

of deformation, while the last source dominates the behavior at later stages of 

deformation.  

HMA microstructure distribution can be measured using an image analysis 

technique (IAT), which is the process of converting an image into a digital form and 

applying various mathematical procedures to extract significant information from the 

image. Masad et al. (1998, 1999a, and 1999b) developed automated computer image 

analysis techniques to analyze the internal structure of HMA. The techniques were 

successfully implemented to evaluate different laboratory compaction procedures. Tashman 

et al. (2001) developed an IAT to quantify the microstructure of HMA based on aggregate 

orientation, aggregate gradation, aggregate contacts, aggregate segregation, and air void 

distribution. 

In this study, microstructure directional distribution is formulated based on 

particle orientation distribution.  This choice is motivated by a number of factors 

discussed by Masad et al. (2003).  First, particle orientation resists reorientation under 

loading, and consequently, inherent anisotropy is better preserved in a formulation that 

accounts for particle orientation (e.g., Oda et al. 1985; Tobita 1989).  This phenomenon 

has been captured experimentally by Tashman (2003) as shown in Fig. 4.4.  Second, 

previous experimental measurements of directional quantities have shown that it is easier 

and more practical to measure particle orientation than particle contacts (Masad et al. 

2002).  Third, particle preferred orientation is directly related to the deviation of particle 

shape from a spherical reference.  Such a relationship offers the opportunity to predict 
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the anisotropy level based on measurements of particle shape without the need to 

conduct microstructure measurements (Masad et al. 2003).   
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Fig. 4.4.   Effect of Deformation on the Vector Magnitude (after Tashman 2003) 

 

 

Tashman et al. (2001) measured aggregate directional distribution in HMA, 

where the orientation of an aggregate particle is defined by the angle between its major 

axis and a horizontal line on the scanned image. The major axis length is defined by the 

greatest distance between two edge points of the boundary contour.  Masad et al. (1998) 

reported that aggregate orientation in HMA exhibits inherent transverse anisotropy with 

respect to the horizontal direction.  The major axes of particles tend to be oriented in the 

horizontal direction, and consequently, the horizontal plane represents the major 

principal direction and the vertical plane represents the minor principal direction.   
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The directional distribution of particles has been quantified on images of  vertical 

sections of HMA by using the vector magnitude, ∆  (e.g., Masad et al. 1998; Tashman et 

al. 2001):  

( ) ( ) (%)2cos2sin100)( MagnitudeVector 22
kkn

 θ∑+θ∑=∆   (4-15) 

where θk is the orientation of the major axis of an individual aggregate on an image from     

-90o to +90o measured from the horizontal direction (the positive sign indicates that the 

angle is measured counterclockwise from the horizontal direction, as shown in Fig. 4.5) and 

n is the number of aggregates on that image.  Theoretically, the value of ∆ ranges between 0 

and 1, and practically it varies from 0 to 0.5 for HMA. A value of 0 indicates the aggregates 

are completely randomly distributed, which reflects an isotropic distribution, and a value of 

1 indicates the aggregates are all oriented in the same direction.  

Oda et al. (1985) and Tobita (1989) introduced a microstructure tensor that aimed 

to describe the particle orientation in the material response.  

∫
Ω

Ω= dmEmmF jiij )(   (i, j = 1, 2)     (4-16) 

where mi (i = 1, 2) are components of a unit vector m projected on the orthogonal 

reference axes xi (i = 1, 2); Ω is a solid angle corresponding to the two-dimensional plane 

(Ω = 2π); and E(m) is a probability density function that describes the spatial distribution 

of the vector m. Given the transverse anisotropic distribution of particles in HMA, the 

ijF  tensor can be presented in diagonal form by three principal values: F1, F2, and F3, as 

follows (Oda and Nakayama 1989):  
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Fig. 4.5. Schematic Diagram of Anisotropy in a Conventional HMA Microstructure  
 

  

Microstructure directional distribution is accounted for within the framework of the 

representation theorem of isotropic functions such that the principle of material objectivity 

or frame indifference is satisfied (Tobita 1989).  An effective stress tensor is introduced that 

combines the stress tensor and the microstructure distribution tensor as follows:   

[ ]kjikkjikij FF σ+σ=σ
2
3        (4-18) 

where ijσ  is the modified stress tensor that considers the material anisotropy. The 

formulation for the effective stress tensor can involve higher-order microstructure 
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tensors. However, for simplicity, only the second-order microstructure tensor is 

considered.    

 

Damage 

Damage models describe material weakening caused by formation of air voids 

and propagation of cracks that consequently may lead to material failure. A new 

discipline has been developed recently to investigate the growth of microcracks and the 

mechanical behavior of damaged materials by representing the effect of distributed 

cracks in terms of certain mechanical variables (Murakami 1983). This method is called 

continuum damage mechanics (CDM), in which damage is defined as a microstructural 

change that induces some deterioration in the material.  Kachanov (1958) introduced the 

concept of the effective stress theory, which has been successfully implemented to 

describe damage in terms of crack nucleation and growth within the framework of CDM.  

The effective stress theory indicates that material damage can be characterized 

mainly by the decrease in the load-carrying effective area caused by the development of 

microscopic cracks and cavities (Murakami 1988). The theory postulates that a damaged 

material subjected to a state of stress can be represented by a perfect material subjected 

to a fictitious stress. The fictitious stress is equal to the stress applied to the damaged 

material magnified by the decrease in the load-carrying effective area as shown in Eq. 

(4-19). This magnification factor is referred to as the damage parameter and is an 

indication of the material state of damage.  
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ij
e
ij σ

ξ−
=σ

1
1          (4-19) 

where ξ is an internal variable that accounts for the effect of damage in terms of cracks and 

air voids that varies from 0 for presently undamaged material to 1 for a completely 

damaged phase. Pioneering work by Desai (1998) proposed to adopt the notion that damage 

is a function of confining pressure and effective visco-plastic strain as follows: 

),( 1 vpεΙξ=ξ          (4-20) 

 Implementing the modified stress tensor using Eq. (4-18) and the effective stress 

theory in Eq. (4-19) into the extended Drucker-Prager yield function Eq. (4-11), the 

invariants ee JI 21 ,  and eJ 3  become as follows: 

( )

( ) kijkij
e
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e

kiik
ee

SSSJ

SSJ

Ftrace

⋅
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⋅
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⋅=
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1
1)(
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1

      (4-21) 

and the extended Drucker-Prager yield function is modified to the form 

κ−Ια−τ= eef 1         (4-22) 

Assuming a power law function for the viscous flow, Eq. (4-22) and Eq. (4-8) lead to 

( )
( ) ( )⎪⎩

⎪
⎨
⎧

>κ−Ια−τκ−Ια−τ

≤κ−Ια−τ
=>φ<

0,

0,0
)(

11

1

eeNee

ee

 

                   
f     (4-23) 

The modified stress tensor modified for anisotropy and damage is used instead of 

the stress tensor in the constitutive relationship shown in Eq. (4-3).  Therefore, the 
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influences of anisotropy and damage are reflected in the elastic and visco-plastic 

deformation of the material. 

 

PLASTIC POTENTIAL FUNCTION 

It is well documented in the literature that granular materials exhibit 

nonassociative behavior in which the yield surface and the potential surface do not 

coincide. Experimental observations indicate that the associated flow rule produces more 

dilation than experimental measurements (e.g., Zeinkiewicz et al. 1975; Oda and 

Nakayama 1989). It follows that a dilation parameter of a value less than α should be 

incorporated in the model. It is assumed as shown in Fig. 4.6 that the potential surface 

takes the same linear form of the yield surface but with smaller slope β which influences 

the proportions of the volumetric and deviatoric strains. 

 
 
 

 
Fig. 4.6. Relationship Between Slopes of the Yield Surface and the Potential Surface 
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 In order to evaluate the gradient operator for the potential function 
ij

g
σ∂
∂  in the 

constitutive Eq. (4-8), a triaxial state of stress is utilized. According to Eqs. (4-17 and 4-

18), the principal state of stresses for the triaxial setup is expressed as 
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ij   (4-24) 

and the modified invariants as defined by Eq. (4-21) are given in the form 

( )
( )

( )
( )3

3133

2
3122

1
1

1
1

σ−σ
ξ−

=

σ−σ
ξ−

=

e

e

J

J

       (4-25) 

Substituting Eq. (4-25) into Eq. (4-12b) one obtains 

( ) ( ) ⎥
⎥
⎦
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⎢
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⎛ −++
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32 1111
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ee
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J
     (4-26) 

The gradient of the potential surface can be expressed with respect to the stress 

dependent variables to become 

ij

e

ij

e

ij

g
σ∂
Ι∂

β−
σ∂
τ∂

=
σ∂
∂ 1         (4-27) 

Considering β and κ as stress-independent parameters, the derivatives of the invariants 

with respect to the stress can be expressed as follows: 
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Substituting Eq. (4-28) into Eq. (4-27) the derivative of the yield function becomes 
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By decomposing Eq. (4-29) the components of the gradient 
ij

g
σ∂
∂  are expressed in the 

following forms: 
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     (4-30) 

 

EFFECTIVE STRESS AND EFFECTIVE VISCO-PLASTIC STRAIN 

In order to evaluate the hardening and damage parameters explained previously, an 

expression for effective stress and effective visco-plastic strain is required. Chen and Han 

(1988) indicated that to evaluate effective stress the stress function )( ijF σ  defined in Eq. 

(4-10) is employed. For a uniaxial compression state of stress effective stress is reduced to 
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the uniaxial stress σ1. Chen and Han (1988) showed that )( ijF σ  can be defined as a power 

law function in terms of effective stress 

( )m
ef

ee
ij CF σ=Ια−τ=σ 1)(        (4-31) 

where C and m are constant coefficients. Following similar manipulation using a uniaxial 

state in Eq. (4-18) and the modified invariants in Eq. (4-21) one can obtain  
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By inserting Eq. (4-32) into Eq. (4-31) one can solve for the constants  
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and effective stress is found to be 
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Chen and Han (1988) also emphasized a methodology for finding the effective 

visco-plastic strain by using the principle of visco-plastic work per unit volume assuming a 

homogeneous stress function in the form of  

vpefvp FmfW εσ=>φ<Γ= && )(       (4-35) 
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and from Eq. (4-8) 
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Substituting Eqs. (4-27, 4-30, 4-31, 4-33, 4-34, and 4-36) into (4-35) yields:  
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 It can be shown that for the triaxial state of stresses, Eq. (4-37) is reduced to 

uniaxial visco-plastic strain rate vp
11ε& , and effective visco-plastic strain obtained by 

integrating Eq. (4-37) over time.  

 

EFFECT OF ANISOTROPY ON MATERIAL DILATION  

The anisotropic distribution of particles affects the relative sliding of particles, 

and hence it influences the dilation of granular materials.  The relationship between 

anisotropy and dilation has been studied experimentally by several researchers (e.g., Oda 

1972; Wan and Guo 2004).  This section offers an analytical derivation of the 

relationship between the level of anisotropy and dilation.   

The slope of the potential function for an isotropic material (∆ = 0, d = 1) is 

defined by the slope β. In the modified stress space τ−Ι1 , the slope of the plastic 

potential function is *β , which is defined as the ratio of the volumetric strain rate vp
vε& to 
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the deviatoric strain rate vp
dε& as follows: 

vp
d
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after manipulations using Eqs. (4-8, 4-30, and 4-39) and substituting into Eq. (4-38) it 

follows that 
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where for an isotropic material Eq. (4-40) reduces to β .  

Fig. 4.7 shows the relationship between *β  and β.  It can be seen that dilation 

increases with an increase in anisotropy represented by the ∆ value.  This is an important 

finding, as it captures the experimental measurements made by other researchers on 

granular materials.  For example, Oda (1972) found that maximum dilation was obtained 

when particles were oriented in the horizontal direction while the major principal stress 

was imposed in the vertical direction.  It is found in recent experimental measurements 

that Wan and Guo (2004) agreed with Oda’s results.   
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Fig. 4.7. Relationship Between Dilation Parameters at Different Anisotropy Levels 

 

 

The dilation parameter β can be determined experimentally for the triaxial case 

using the ratio of lateral and uniaxial visco-plastic strain rate. Using Eqs. (4-8, and 4-30) 

the visco-plastic strain rate ratio can be given as: 
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SUMMARY 

This chapter includes the development of a microstructure elasto-visco-plastic 

nonassociated continuum model that links microstructure properties in terms of aggregate 

orientation and nucleation of voids to visco-plastic deformation of a material. The model 
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was developed within the continuum framework and it has elastic and visco-plastic 

components.  Hook’s law is used to evaluate the elastic strain, while an extended Drucker-

Prager yield surface is implemented to account for the visco-plastic component. The model 

has a damage parameter to account for the effect of void growth in softening the material 

and also has an anisotropy parameter to account for the aggregate distribution within the 

microstructure. The model also accounts for the dependency of HMA response on stress 

path direction by using the yield stress ratio parameter d.  

The aggregate distribution is described by the vector magnitude (∆), which 

quantifies the material anisotropy. Nucleation of air voids and microcracks is accounted for 

by a damage parameter based on the effective stress theory. The damage parameter is found 

to be a function in effective visco-plastic strain and hydrostatic pressure. Material 

hardening as a result of microstructure constituent interaction is modeled using a hardening 

parameter that depends on effective visco-plastic strain.  The effect of anisotropy is 

included in the elastic and visco-plastic components of the model, while damage is 

considered only in the visco-plastic phase. 

The visco-plastic model was used to develop an analytical relationship between 

dilation and anisotropy.  It was found that material dilation increases as the level of 

anisotropy increases.   
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CHAPTER V 

FINITE ELEMENT IMPLEMENTATION AND PARAMETRIC ANALYSIS OF 

THE ELASTO-VISCO-PLASTIC CONTINUUM MODEL 

 

INTRODUCTION 

The advantage of using continuum modeling is the feasibility of its implementation 

in finite element (FE) analysis. The model is expressed in a time-step framework, and thus 

the concept of the viscous phenomenon is implemented through an incremental step.  

Numerical integration including explicit and implicit methods of time integration 

for rate-dependent materials like hot mix asphalt (HMA) has been presented in many 

studies. Hughes and Taylor (1978), Peirce et al. (1984), Yoshimura et al. (1987), Szabo 

(1990), Auricchio and Taylor (1995), Marin and Mcdowel (1997), and Alfano et al. (2001) 

are examples of work that developed an integration algorithm for elasto-visco-plasticity 

problems.  

Hughes and Taylor (1978) proposed an application for implicit methods that 

requires inversion of a compliance matrix.  Peirce et al. (1984) proposed a one-step forward 

gradient time integration scheme that leads to a tangent stiffness type method for rate-

dependent materials. Yoshimura et al. (1987) presented two alternate tangent modulus FE 

methods using a midpoint radial return implicit algorithm for rate-dependent visco-plastic 

material. Szabo (1990) compared different time integration algorithms and proposed a new 

method for calculating effective visco-plastic strain increments. Auricchio and Taylor 

(1995) proposed what is socalled a generalized visco-plastic model that has a visco rate-
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dependent behavior bounded by two rate-independent plasticity models. Marin and 

Mcdowel (1997) presented kinetic equation and dynamic yield surface approaches for a 

semi-implicit constitutive integration procedure for rate-dependent materials. Alfano et al. 

(2001) developed a general solution for solving elasto-visco-plastic problems by replacing 

the consistency condition with a relation between the visco-plastic multiplier and the 

viscous flow. 

Elasto-visco-plasticity problems have made significant progress in the 

computational treatment of the relevant boundary value problem. Numerical algorithms for 

constitutive models have been mainly derived using plasticity theory and rely on classical 

operator methodology based on elastic prediction and plastic correction phases. One of the 

main tasks of computational plasticity is to integrate the rate equations ensuing from elasto-

plasticity and visco-plasticity in a consistent, accurate, and efficient fashion (Heeres 2001). 

Simo and Hughes (1998) indicated that the numerical solution of elastic-visco-plastic 

boundary value problems is based on an iterative solution of the discretized momentum 

balance equations. They summarized the load/time-step solution into three main steps if the 

converged configuration at step n is given: 

1. compute a new configuration for step (n+1) via an incremental motion that is 

used to compute incremental strains ε∆  at every stress point using the discretized 

momentum equations, 

2. Update the state variables such as stress and internal paramters ( 11, ++ φσ nn ) and 

the visco-plastic strain component vp
n 1+ε  by integration of the local constitutive 

equations for the given incremental strains ε∆ , and 
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3. Check the balance of momentum using the new computed stresses and, if 

violated, iterations are performed by returning to step 1. 

 

Step 2 is considered the central problem of computational plasticity, since it plays the 

main role of the constitutive equations in the computations. In FE analysis the elasto-visco-

plastic constitutive equations are usually incorporated through a separate set of constitutive 

subroutines. The purpose of these subroutines at given a deformation history is to integrate 

the elastic-visco-plastic constitutive equations to return the corresponding stress history at 

every stress point. 

This chapter includes implementation of the elasto-visco-plastic constitutive model 

in FE analysis using an implicit numerical integration algorithm, called Euler backward 

predictor, carried out in a time-step control. The equations that govern the evolution of 

stress, internal variables, inelastic deformation, and nonlinear parameters are discretized in 

an incremental format. The algorithm is an elaborating of the elasto-visco-plastic 

constitutive model presented previously in Chapter IV.  The model is implemented in FE 

ABAQUS software to establish material behavior under a variety of loading and boundary 

conditions. Furthermore, the FE program is used to conduct a parametric analysis of the 

developed model to investigate the effect of model parameters, such as anisotropy, damage, 

hardening, stress path direction, and loading conditions, such as confinement, and loading 

rate, on the macroscopic visco-plastic deformation of HMA. 

Currently the FE method is being utilized in several engineering problems for the 

purpose of understanding the role and contribution of engineering properties (e.g., material 
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stiffness, material strength, and fracture energy) of the constituent materials of the 

composite in macroscopic response (e.g., deflections, load carrying, capacity, etc.).  

A number of studies related to pavement analysis have been conducted using FE 

codes. ABAQUS is one of the most versatile FE programs and has been successfully 

implemented by Zaghloul and White (1993), Seibi et al. (2001), Papagiannakis et al. 

(2002), and others. ABAQUS is a general-purpose, two and three-dimensional, dynamic, 

production-oriented FE code designed to address linear and nonlinear structural 

problems. It provides a powerful and efficient way to analyze the nonlinear response of 

pavements to various loading patterns and allows for the following which can be used to 

simulate pavements: 

• Complex and simple geometries; 

• Various boundary conditions and interactions among constituents; 

• Various loading conditions (static, dynamic, uniform and non-uniform contact 

pressure); and 

• Various linear and nonlinear material properties for HMA.  

 

The subroutine to define the material constitutive equation used by ABAQUS is 

called the user-defined material subroutine (UMAT). This subroutine facilitates 

incorporating of different models without affecting the main code of the program. The 

advantage of using UMAT is to define the material’s mechanical behavior. 
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DISCRETE FORMULATION OF THE CONTINUUM MODEL 

 This section describes the development of a numerical scheme for the constitutive 

model. The scheme relies on the classical operator split methodology based on elastic 

predictor and plastic correction phases. A fully implicit integration scheme is adopted to 

ensure accuracy and stability; thus, a backward Euler scheme for the time integration of the 

elasto-visco-plastic model is used. In the case of fully coupled elasto-visco-plastic behavior, 

the Newton-Raphson iterative scheme is associated to define available initial solutions. The 

proposed constitutive model is decomposed into elastic and visco-plastic strain components 

in incremental form as presented in Chapter IV:  

vpe ε∆+ε∆=ε∆         (5-1) 

where the elastic strain increment component can be defined according to Hooke’s law 

and the visco-plastic strain rate is defined using Perzyna’s visco-plastic model and a 

nonassociative flow rule as follows: 

eD ε∆=σ∆ :          (5-2) 

tgfvp ∆⋅
σ∂

∂
⋅>φ<⋅Γ=ε∆ )(        (5-3) 

and hence the stress increment is given by 

 ⎟
⎠
⎞

⎜
⎝
⎛ ∆⋅

σ∂
∂

⋅>φ<⋅Γ−ε∆=σ∆ tgfD )(:       (5-4) 

 The numerical algorithm associated with the elasto-visco-plastic computation is 

based on the return mapping algorithm, which leads to an elastic predictor-visco-plastic 

corrector sequence. In elasto-visco-plasticity, the problem is solved by subdividing the time 
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frame interval into a finite number of time steps.  Let t be a fictitious time quantity. At time 

nt  it is assumed that the total nε and visco-plastic strain vp
nε , the stress fields nσ , and the 

state variables nκ , are converged and known at the initial time; that is, 

 { }nn
vp
nn κσεε ,,,  Given parameters at time nt     (5-5) 

Assuming the incremental displacement field 1+nu – nu  is known, the basic problem 

is to update the fields described in Eq. (5-5) to 1+nt  in a manner consistent with the elasto-

visco-plastic constitutive equations. To integrate these equations over time, the general 

methodology of a return mapping algorithm for a time-dependent problems is integrated. At 

the initial time step, the trial elastic stress is computed using the elastic predictor problem 

that elaborates initial conditions known from the preceding time step. If the trial stress is 

located inside the yield surface then an elastic response occurs, whereas a stress state 

outside the yield surface implies development of visco-plasticity. At this stage the visco-

plastic corrector problem is solved by mapping the trial stress to the yield surface to 

maintain consistency.  

The algorithmic value of a visco-plastic strain increment over a time interval 

nn ttt −=∆ +1  can be defined as  

 ( ){ }vp
n

vp
n

vp
n

vp
n

vp t 11 1 ++ εθ+εθ−∆=ε−ε=ε∆ &&      (5-6) 

where vpε&  is the driven strain and θ  is a coefficient that determines the integration scheme 

state. θ  ranges between 0, for an explicit integration scheme, and 1, for fully implicit or 

backward Euler integration scheme. A mid-point rule is recovered if θ  = 0.5, but it holds 

only for small strain increments. Rather the fully implicit scheme also ensures stability and 
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accuracy for large strain increments. Therefore, throughout this chapter, the backward Euler 

scheme is adopted for the integration algorithm.  

By using Eqs. (5-3, 5-4, and 5-6) the continuum model of evolution may be written 

in the following discrete form: 
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   (5-7) 

where D is the elastic stiffness matrix, and f and g are the yield and potential functions, 

respectively. vpε  is the effective visco-plastic strain, which is necessary to update the 

internal state variable of the model evolutions.  

A time-step-dependent visco-plastic consistency parameter is introduced that, 

according to the viscous flow in Eq. (5-3) it takes the form: 

 ( )),(1 vpn
vp ft εσφΓ⋅∆=γ +&        (5-8) 

The algorithm starts by finding a trial value for t
nf 1+  

 ( )
111 )(

+++ εκ−σ=
n

t
vp

t
n

t
n Ff        (5-9) 

where the trial stress can be given by: 

 )(: 11
vp
nn

t
n D ε−ε=σ ++        (5-10) 

Before the model evolution can be established, it is necessary to define the initiation 

of the viscous flow by introducing the following condition: 
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⎩
⎨
⎧

⇔<
⇔=

=+ response Elastic0
response lasticfor viscopy Possibilit  0

1
t

nf     (5-11) 

01 ≤+
t

nf  implies that elastic response occurs; hence, all the unknowns at 1+nt  are 

set equal to the initial conditions. The trial value 01 >+
t

nf , which is nonadmissible during 

the visco-plastic flow, leads to a positive value for vpγ& ; hence, a visco-plastic correction is 

required (e.g., Ristinmaa and ottosen 2000; Alfano et al. 2001). 

Analogous to the work by Alfano et al. (2001), who established an equivalent to the 

consistency condition in the plasticity problem, the following condition is introduced to 

evaluate the visco-plastic multiplier 

( ) ( ) ( ) 0,1 =γΘ−εσ=γχ +
vp

vpn
vp f &&       (5-12) 

where 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ γ

Γ⋅∆
φ=γΘ − vpvp

t
&&

11        (5-13)
 

Substituting Eqs. (5-9, and 5-13) into Eq. (5-12) one gets 

 ( ) ( )
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Γ⋅∆
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−κ−Ια−τ
ξ−

=γχ
&

&      (5-14) 

Eq. (5-12) replaces the condition of 1+nf = 0 in plasticity, and the Newton-Raphson 

iteration scheme is applied to solve the nonlinear form of this condition. The  Newton 

scheme requires the derivative vpγ∂
χ∂
&

 to be determined, so by applying the chain rule in Eq. 

(5-14) one can obtain 
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Using Eqs. (5-13, and 5-14), the following functions are obtained: 
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 The derivatives 
vpε∂
ξ∂  and 

vpε∂
κ∂  can be obtained from the evolution law of damage 

and hardening formulation described later in Chapter VI. By substituting Eq. (5-16) into 

Eq. (5-15) the derivative function becomes: 
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 Once the visco-plastic multiplier has been determined, the values of the unknowns 

are updated at time 1+nt  according to the following: 
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where λ is a scalar quantity that can be determined by using the equality 

σ∂
∂

⋅
σ∂

∂
ε⋅ε

=γ
gg

vpvp
vp &&
& , 

where  λ = 
11

11 ),(
σ∂

εσ∂ vpg
. 
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ALGORITHMIC ELASTO-VISCO-PLASTIC TANGENT MODULI 

 Nagtegaal (1982) pointed out that using the algorithmic tangent moduli in the 

integration algorithm, as opposed to the continuum moduli, is essential to preserve the 

quadratic rate of asymptotic convergence that characterizes the iteration procedures in FE 

analysis. Pioneering work by Alfano et al. (2001) determined that the formulation of the 

algorithmic tangent moduli is expressed by using linearization of the elastic stress-strain 

relationship in Eq. (5-4), which yields: 

 ( )vp
nnn ddDd 111 : +++ ε−ε=σ        (5-19) 
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In view of Eqs. (5-19, and 5-20) it follows that 
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where  
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To evaluate the quantity vpdγ& , Eq. (5-12) is linearized so that one can obtain the 

visco-plastic consistency condition:  
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Inserting Eq. (5-23) into Eq. (5-21), vpdγ&  can be expressed as: 
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Inserting Eq. (5-24) into Eq. (5-21), and differentiating with respect to 1+εn  yields 
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Defining 
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and noting that the algorithmic tangent moduli is defined as
1

1

+
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ε
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 it follows that 
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A summary of the integration algorithm for the evolution of the constitutive model 

is summarized in Figs. 5.1 and 5.2. 
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1- Assume internal state of strain and compute trial elastic stress  
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ELSE 

3- Compute the visco-plastic multiplier using Fig. 5.2. 

4- Update visco-plastic strain, effective strain and stress 
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5- Compute algorithmic elasto-visco-plastic tangent moduli 
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ENDIF 

Fig. 5.1. Numerical Integration Scheme for Elasto-Visco-plastic Continuum Model 
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1- Initialize 
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2.2 Update effective visco-plastic strain 
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Fig. 5.2. Newton-Raphson Numerical Scheme to Evaluate the Visco-plastic Consistency 
Parameter 
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FINITE ELEMENT IMPLEMENTATION  

ABAQUS was used to develop a quadrilateral two-dimensional four-node 

axisymmetric FE model. The algorithm described previously was programmed using the 

FORTRAN language in a user-defined material subroutine in the ABAQUS/Standard FE 

library, named UMAT. For the purpose of conducting a parametric analysis to study model 

parameter sensitivity, the FE model geometry with loading and constrained condition is 

presented in Fig. 5.3. Model constraint is applied on the lower and lateral sides to prevent 

deformation in the vertical and radial directions, respectively. The upper and opposite sides 

are left free for applying loading conditions. The model is loaded at a uniform vertical 

strain rate in addition to a confining pressure. The analysis is conducted in perturbation 

mode with a time increment. Stress and strain components are recorded at each time step. 

 

   

 

Fig. 5.3. FE Geometric Model and Prescribed Boundary Conditions  
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Parametric Analysis 

Parametric analysis of the constitutive relationship is conducted using the FE 

model.  Parametric analysis is useful to illustrate the efficiency of the constitutive 

relationship in capturing key features of the behavior of HMA.   The parametric analysis 

illustrates the effects of yield function parameters α, β, d, and κ; microstructure parameters, 

∆, and ξ; flow function parameters Γ and N; and loading conditions, such as confinement 

pressure I1 and strain rate ε& , on the model response. In this section the role of each 

parameter is explained briefly and its influence on the model behavior is discussed. The 

values of the parameters used in this analysis represent the range of values obtained in 

Chapter VI based on experimental measurements. 

 

Yield Function Parameters 

When a material undergoes viscous deformation the yield surface geometry 

changes according to the hardening rule that governs this phenomenon.  Several hardening 

rules such as isotropic, kinematic, and mixed hardening can describe the growth of the yield 

surface. In this study, the model parameter κ describes the isotropic hardening of the 

material. The parameter controls the size of the yield surface, which increases with 

increasing κ. κ is a stress-independent parameter, but it is generally defined as a function of 

the deformation history. Throughout the loading if the material continues to harden the 

yield surface continues to grow. In a typical stress-strain relationship, the parameter 

remains constant during the elastic range, in which it reduces to initial hardening (κ = κo). 

However, as soon as the material initiates viscous flow, the hardening increases until the 
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material reaches its ultimate strength (κ = κn) as implied in Fig. 5.4(a). In the degradation 

(softening) phase, once the material starts to soften the hardening stabilizes and the 

evolution of damage is responsible for the softening of the material. In this study, softening 

is due to multiplying the κ value by ( )ξ−1  where ξ is the damage parameter.  As shown in 

Fig. 5.4(b), this parameter controls both the magnitude and location of the ultimate strength.  

Fig. 5.5(a) implies that the model parameter α determines the slope of the yield 

surface, which increases with increasing α. α is a stress-independent parameter, that could 

be a function of visco-plastic strain and strain rate. α is a parameter that reflects the 

frictional properties of the material, which increase with increasing α. The evolution of α is 

the result of changes in the aggregate structure associated with friction and dilation when 

the material is under confinement. An increase in α causes an increase in the material 

yielding stress and ultimate strength as shown in Fig. 5.5(b). 
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Fig. 5.4. Effect of Hardening / Softening Parameter  
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Fig. 5.5. Effect of Frictional Parameter  
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The parameter β is the slope of the visco-plastic potential surface that is associated 

with viscous flow. Granular materials in general develop dilation when they are subjected 

to deviatoric stresses. Experimental observations indicate that the associated flow rule is not 

applicable for granular materials (e.g., Zeinkiewicz et al., 1975; Oda and Nakayama 1989). 

Therefore, a potential surface exists and the slope of this surface is determined by the 

parameter β, which is consequently lower than the slope of the yield surface α. β reflects 

the dilative potential of the material and therefore, influences the proportions of the 

volumetric and deviatoric strains. As expected, Fig. 5.6 indicates that as β increases the 

material exhibits more volumetric change.  Recall from Chapter IV, that the dilation 

parameter in the new model *β  becomes higher than β as the material becomes more 

anisotropic. 
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Microstructure Parameters 

 Vector magnitude ∆ is an internal material parameter that reflects the directional 

distribution of the microstructure. ∆ is a measure of the preferred orientation of particles. 

Increasing anisotropy increases the percentage of particles oriented in the horizontal 

direction, leading to more contacts in the vertical direction. Development of contacts 

increases resistance to deformation in vertical direction. Therefore, Fig. 5.7 illustrates that 

anisotropy tends to increase the stability of the material in the uniaxial direction.   
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Fig. 5.7. Influence of Anisotropy on Stress-Strain Relationship 
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 The damage parameter ξ accounts for softening of the material due to formation of 

cracks and air voids associated with viscous flow. ξ is defined based on the effective stress 

theory as the ratio of the area of voids to the total cross-sectional area of a specimen. The 

shape of the stress-strain curve in the softening phase reflects the level of damage. 

Materials with no damage create a stable response represented by an asymptotic response, 

while those with damage produce a reduction in the stresses; the percentage of the 

reduction depends on the damage level as illustrated by Fig. 5.8.  
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Fig. 5.8. Stress-Strain Relationship at Different Damage Levels 
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Flow Function Parameters 

 The viscosity parameter Γ controls the growing rate of the yield surface. It can be 

seen from Fig. 5.9(a) that a slight change in the viscosity parameter Γ could produce a 

significant change in the stress-strain relationship. As the parameter decreases, the yield 

surface size increases and the ultimate strength is reached at a higher strain level. This 

parameter operates only when the material exhibits visco-plastic flow, and when the 

condition 01
⇒

Γ
, the rate-independent elastoplastic model is recovered as shown in Fig. 

5.9(b). Γ is associated with the overstress function to account for stresses outside the elastic 

domain. Fig. 5.9(b) illustrated the influence of the parameter on viscous flow of the 

material. Visco-plastic strain is found to increase as the viscosity parameter increases. This 

observation is true as indicated by Eq. (5-3). 

 The model parameter N controls the shape of the overstress function and the level 

of the non-linearity of the Perzyna model. Fig. 5.10(a) implies that for N = 1 Perzyna model 

reduces to the linear viscous flow formulation while for N > 1 viscous flow becomes non-

linear. By definition N is a material constant which accounts for the rate sensitivity of the 

material. In general, for plastic materials the parameter N ranges from 1 to 10 (Khaleel et al. 

2001). A value less than one is not applicable as indicated by Fig. 5.10(b) where no visco-

plastic strain is detected in uniaxial and lateral directions.  
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Fig. 5.9. Effect of Viscosity Parameter 
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Fig. 5.10. Effect of Rate Sensitivity Parameter 
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Loading Conditions Effect 

 The model parameter d determines the shape of the yield surface in the deviatoric 

plane. When d = 1 the yield surface is a complete circle analogous to the Von Mises yield 

surface, and as d decreases the surface results in a triangular surface. d is a material 

parameter representing the sensitivity of yield behavior to the hydrostatic pressure I1. The 

parameter d is the ratio of yield stress in uniaxial tension to that in uniaxial compression. 

The parameter controls the material behavior according to the state of stress. Material under 

compression or tension shows equal response when d = 1 (circular yield surface), while 

different response is detected at d = 0.778, as shown in Fig. 5.11(a). Changes in the value of 

d may also produce unrealistic shapes for the yield surface. For example, at d = 0.5 the 

surface loses its convexity geometry. Fig. 5.11(b) shows that changes in the anisotropy 

level control the response in the uniaxial axis σ1, leaving the lateral axes with minor 

changes. Appropriate values of the yield stress ratio d alter the compression stress response 

(if θ = 0°) so that compressive stress is higher than that in tension stress.  

The Drucker-Prager yield surface is projected in the deviatoric plane as shown in 

Fig. 5.11 where ρ is the radius from the origin to the yield surface and θ is the measured 

angle from the radius to the σ1-axis. According to the microstructure tensor, anisotropy 

exhibits directional dependency for all ranges of the angle θ. It also provides yield stress 

dependency under the same loading condition according to the imposed plane. For 

example, the tension yield stress at plane θ = 60° is different from that corresponding to 

plane θ = 180°.  Fig. 5.11(b) shows the projection of the yield surface on the deviatoric 

plane at d = 0.778. The yield stress in the axial direction (direction 1) increases as the 
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material anisotropy increases, while no change in stress is recorded for the radial direction 

(directions 2 and 3). 

 
 
 

 
a) Influence of Yield Stress Ratio 

 

 
b) Influence of Anisotropy  

 
Fig. 5.11. Effect of Yield Stress Ratio and Anisotropy on Yield Surface Geometry at the 
Deviatoric Plane 
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HMA is a rate-dependent material. Its properties such as Young’s modulus and 

ultimate strength are highly dependent on loading rate. Fig. 5.12 shows the dependency of 

the material on the rate of loading. Increasing the loading rate increases the material 

strength. The proposed model indicates that the material strength is analogous to the 

behavior of granular materials. Fig. 5.12 shows the axial stress versus the axial strain and 

radial strain for different strain rates and indicates that the material is sensitive to the stress 

path captured by the strength in compression versus tension. Stresses in general are 

sustained by aggregate-aggregate and binder-aggregate interactions. Each interaction 

contributes to the ultimate strength according to the stress path. Aggregate-aggregate 

interaction carries most of the stress in compression while its contribution against tensile 

load is minimal.  Binder-aggregate contributes to sustain tensile load, but its contribution is 

relatively small. This observation is noticed in the hardening evolution zone in compression 

versus tension.  

Lateral strain consequently expresses similar behavior to uniaxial strain, as shown 

in Fig. 5.12(b). Higher strength and relatively more stable response are obtained with 

compressive loads. Fig. 5.12 indicates that material deterioration starts early in the lateral 

direction as can be shown in the strain level corresponding to the ultimate strength. This 

observation can be explained by material anisotropy, as anisotropy increased the stiffness in 

the uniaxial direction. 
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a) Influence on Axial Stress- Axial Strain Relationship 
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b) Influence on Axial Stress- Lateral Strain Relationship 

 

Fig. 5.12. Effect of Strain Rate  
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a) Influence on Axial Stress- Axial Strain Relationship 
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b) Influence on Axial Stress- Lateral Strain Relationship 

 

 

Fig. 5.13. Effect of Confining Pressure  
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The material generates different responses under a variety of confining pressures. 

Confining pressure provides stability to the material to sustain an applied load. On the 

contrary, when the material undergoes extension stresses the minimum strength is attained 

when the material is subjected to a high level of confinement as shown by Fig. 5.13. The 

confining pressure improves the stability of the material during compaction but this 

stability declines in tension. Lateral strain, on the other hand, behaves similar to uniaxial 

response. Analogous to the behavior with respect to the rate of loading and recognizing the 

existence of material anisotropy, the material exhibits more stability in the uniaxial 

direction.  

 

SUMMARY 

The developed elasto-visco-plastic model is incorporated in the UMAT 

subroutine available in ABAQUS.  Implementation of the model in this routine is in the 

form of a fully implicit algorithm with time-step control for numerical integration of the 

internal state variables. Implicit integration in the form of the backward Euler scheme 

provides an efficient local solution to the internal state. The Newton-Raphson iterative 

scheme is utilized to define available initial solutions. The numerical algorithm 

associated with the elasto-visco-plastic treatment is based on the return mapping 

concept, which leads to an elastic predictor-plastic corrector algorithm. The algorithm 

includes a consistency condition analogous to plasticity to evaluate the visco-plastic 

multiplier. As a result of the implicit numerical integration, algorithmic tangent moduli 

are made available to the global ABAQUS solution which results in a quadratic rate of 
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convergence in the global iteration to reduce the computational time in FE analysis.  

A parametric analysis was conducted to investigate the effect of key parameters in 

the model on material response. The results clearly show that the model is sensitive to 

material hardening (κ), dilation (β), anisotropy (∆), void nucleation and growth (ξ), and 

stress path direction (d). The study also shows that increasing loading rate and confinement 

causes increasing in yield stress.  

An increase in the anisotropy level causes an increase in the yield stress of the 

material (increases its strength) in the axial direction normal to the preferred orientation of 

particles.  The yield strength in the direction parallel to the orientation of particles decreases 

slightly with an increase in anisotropy.  
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CHAPTER VI 

EXPERIMENTAL EVALUATION OF MODEL PARAMETERS 

 

INTRODUCTION 

This chapter discusses the experimental and analytical methodologies used to 

determine the model parameters for the yield function, flow rule, and damage function.  

The parameters were determined for three mixes prepared using different aggregates 

compression and extension triaxial tests at different confining pressures and strain rates 

were used to evaluate model parameters.  The parameters were used in the finite element 

(FE) analysis, and the results of FE simulations were compared with experimental 

measurements. FE also is used to simulate pavement section and predict rutting profile due 

to wheel loads.  

 

SPECIMEN PREPARATION AND TESTING PROGRAM 

Twenty four HMA specimens of granite, limestone, and gravel mixes were 

fabricated using the Servopac gyratory compactor to a target air void content of 7.0 %. All 

three mixes were prepared according to the Superpave specifications for high traffic roads 

(10 - 30 million Equivalent Single Axial Loads (ESALs)).  Mix volumetrics laboratory data 

for these mixes are tabulated in Table 6.1, while Fig. 6.1 shows the gradation of the three 

aggregates used in the mixes. 
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Table 6.1.   Mix Design Factors for the Three Asphalt Mixes (after Masad et al. 2003) 
Mix Gravel Limestone Granite
Avg. Measured Air void, % 7.04 6.7 6.89
SD of AV 0.48 0.25 0.30
Binder Type PG 64-22 PG 64-22 PG 64-22 
Binder Content, % 3.6 4.85 4.86
Maximum Specific Gravity 2.484 2.47 2.471
Specimen Height, mm 155 157.5 157.5

Sieve Size, mm
12.5 100 98.8 98.8
9.5 91.748 79.5 79.5

4.75 48.22 46.2 46.2
2.36 32.71 31.6 31.6
1.18 27.96 24.5 24.5
0.6 22.26 17.8 17.8
0.3 9.75 11.2 11.2

0.15 3.94 6.3 6.3
0.075 2.95 1.5 1.5
Pan 0 0 0

Percent Passing
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Fig. 6.1.  0.45 Power Gradation Charts of the Three Mixes (after Masad et al. 2003) 
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Laboratory experiments conducted in this study were strain-controlled triaxial 

compressive strength tests at five displacement rates and three confining pressures and 

triaxial tensile strength tests at three displacement rates and three confining pressures. One 

of the main advantages of using the triaxial test is that the axial and radial (or volumetric 

and shear) strains can be determined relatively easily. Radial ring-type LVDTs were 

attached to a specimen at mid-height, while axial strains were measured by vertical LVDTs 

along a specimen side.  Axial LVDTs were 120o apart from each other. For the compressive 

strength test, the specimens were deformed at strain rates of 0.0660%/min, 0.318%/min, 

1.60%/min, 8.03%/min, and 46.4%/min and at confining pressures of 0, 15, and 30 psi. For 

the tensile strength tests, the same confining pressures and three axial loading rates of 

0.0660%/min, 0.318%/min, and 1.60%/min were used. All specimens were loaded up to an 

axial strain of 8 % or until failure, whichever occurred first. All tests were conducted at a 

temperature of 130o F. Two replicates of each mix were tested for each loading condition, 

and axial and radial stresses and strains were recorded throughout testing. 

 

EVOLUTION LAWS FOR THE MODEL PARAMETERS 

Damage 

 The physical mechanisms of interaction between damage and viscous deformation 

are complicated in nature and may not be modeled through one phenomenological 

constitutive model due to the nature of the material. Asphalt pavement materials usually fail 

because of nucleation, growth, and coalescence of damage following work hardening and 

stiffening of the microstructure. Experimental observations show that accumulation of 
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microdamage has a tendency to form macroscopically localized damage, which is a 

precursor to failure. This progressive physical process of degradation of the material 

mechanical properties up to complete failure is commonly referred to as damage.  

Ductile damage is basically characterized by three mechanisms (Thomason 1990; 

Hertzberg 1996): 

• Nucleation of microscopic voids that initiates at the particle-particle and 

particle-matrix interfaces; 

• Growth of microcracks when the material undergoes viscous deformation, and 

hydrostatic pressure; and 

• Connectivity of the growing microvoids with neighboring ones leading to 

decreased intact area and causing reduction in material load-carrying capacity. 

 

This study proposed to model the phenomenon of strain softening primarily due to 

the damage effect.  In this chapter, similar to the work of Perzyna’s analysis, damage was 

assumed to be a function of the confining pressure and effective visco-plastic strain as 

follows: 

),( 1 vpf εΙ=ξ          (6-1) 

where ξ is the damage parameter, I1 is the first invariant of stresses to account for the 

confining pressure, and vpε  is the effective visco-plastic strain. It is implied from the 

triaxial test results from this study that confining pressure minimizes the growth of air voids 

and cracks, and hence reduces damage as illustrated in Fig. 6.2. 
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The model parameter ξ  is an indicator of the damage percent in the material. The 

parameter is incorporated in the model through the effective stress theory presented by 

Kachanov (1958), who introduced for the isotropic case a one-dimensional damage 

variable.  In this theory, damage is interpreted as the effective surface density of 

microdamage per unit volume. This concept is based on considering a fictitious undamaged 

configuration of a body and comparing it with the actual damaged configuration.  
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Fig. 6.2. Influence of Confining Pressure on Material Softening 

 
 
 

Therefore, a damaged material exposed to a stress σ  exhibits the same deformation 

behavior as an undamaged material exposed to an effective stress eσ  

ξ−
σ

=σ
1

e          (6-2) 



 

 

135

where according to the definition above, damage models can be implemented in 

deformation models by replacing stress with effective stress.  

Desai (1998) adopted an evolution form for the disturbance or damage of the 

material under monotonic loading. The study proposed that damage evolution is a function 

of the ultimate damage at high strain level and plastic deviatoric strain. An exponential 

form has been used to simulate the degradation response as the material passes the ultimate 

stresses. The function in Eq. (6-3) used in this study is similar to the one proposed by Desai 

(1998): 

⎥⎦

⎤
⎢⎣

⎡ Ι
⋅ξ+ε⋅ξ−⋅

Ι
⋅ξ=ξ )

3
exp(1)

3
exp( 1

32
1

1 vp      (6-3) 

where 1ξ , 2ξ , and 3ξ  are coefficients to be determined experimentally. The first 

exponential term controls the asymptotic limit of the function. The last term, which 

includes the confining pressure, controls the damage rate of growth.  

Sousa and Weissman (1995) emphasized that HMA exhibits different response 

under tension and compression. Under compression, the material goes through strain 

hardening due to the newly formulated microstructure with more aggregate contacts trying 

to resist the applied load.  On the other hand, work softening occurs when the aggregate 

rotation and sliding become high enough to cause cohesive and/or adhesive failure within 

the microstructure, resulting in microcracks (Masad et al. 2003).  The situation is different 

in tensile tests, where the formation of aggregate contacts, and consequently hardening, is 

much lower than with compressive loading. Opening of cracks and voids is promoted by 

the applied tensile stresses even before excessive sliding of particles.  In other words, 
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softening in tension occurs earlier and at a faster rate than in compression.  Therefore, it is 

proposed to introduce two sets of parameters to account for damage evolution in 

compression and in tension.   

 

Anisotropy 

 The initial value of the vector magnitude depends on aggregate characteristics, 

aggregate gradation, and the compaction method used to prepare the specimen. 

Dessouky et al. (2003) presented experimental results showing that the initial value and 

the evolution of the vector magnitude during compaction are functions of aggregate 

shape and gradation.  The vector magnitude ∆ describes the aggregate orientation 

distribution measured on two-dimensional images and is a function of aggregate shape 

properties and distribution. ∆ quantifies the level of anisotropy measured on two-

dimensional vertical of asphalt pavement section using the imaging analysis. The vector 

magnitude was determined using Image Analysis Techniques (IAT) developed by 

Tashman et al. (2001) on four images of cut sections of two HMA specimens selected 

randomly. 

Tobita (1989) concluded that preferred orientation of sand particles exhibits minor 

change when the material undergoes inelastic deformation. This observation was later 

verified by Tashman (2003), who showed that aggregate orientations in HMA specimens 

did not change significantly when the material experienced inelastic deformation. Thus, it is 

proposed to utilize the initial vector magnitude only to describe the HMA inherent 

anisotropy. 
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Work Hardening and Frictional Parameters 

The evolution laws for α and κ are postulated based on experimental 

measurements. α is a parameter that reflects the material frictional properties, whereas κ is 

a hardening parameter that reflects the combined effect of the cohesion and frictional 

properties of the material. To illustrate the evolution of the hardening parameters, the yield 

surface is plotted in the  τ−Ι1  plane as shown in Fig. 6.3.  The results show that α tends to 

change only at small strain levels, while the evolution of κ is more pronounced. This 

finding is consistent with the findings of Τan et al. (1994). Therefore, α is assumed to be 

constant.   

The evolution of κ is associated with hardening resulting from deformation in the 

binder, which causes changes in the aggregate contact interface and aggregate frictional 

properties due to the strain driven in the material. Hence, it is proposed to account for the 

evolution of the hardening parameter κ, based on the experimental measurements and 

motivated by the work of Dafalias (1990) as shown in Eq. (6-4): 

{ })exp(1 210 vpε⋅κ−−κ+κ=κ       (6-4) 

where 0κ  defines the initial yield surface and κ1 and κ2 are material coefficients that 

account for the effect of effective visco-plastic strain on the material work hardening. The 

exponential form by itself provides an asymptotic response in the stress-strain relationship 

once the strain level passes the peak stresses. 
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Fig. 6.3. Changes in α and κ During Deformation at Different Deformation Levels 
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DETERMINATION OF THE MODEL PARAMETERS 

A systematic procedure was developed to determine the model parameters. As 

shown in Fig. 6.4, a typical stress-strain response obtained in the experiment is divided 

into three zones. The first zone is the linear response, where initiation of the visco-

plastic flow has not taken place. The linear zone represents the visco-elastic behavior of 

the material where the modulus, E, and Poisson’s ratio, ν, as a function of time can be 

determined.  
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Fig. 6.4. Stress-Strain Relationship Zones for Model Parameters Identification 

 

 

 Experimental measurements indicated that elastic modulus varies with respect to 

loading rate. Material that undergoes a small rate of loading exhibited a small elastic 

modulus. Fig. 6.5 indicates that granite had the largest modulus, while gravel had the 

smallest modulus.  
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Fig. 6.5. Stiffness Modulus Evolution as a Function of Time 

 

 

 

The moduli values agree with the nature of the aggregate characteristics, in which 

granite particles are stiffer than those of limestone and gravel. It is noticed also that, the 

moduli had a negligible dependency on the confinement pressure for all mixes. Therefore, 

it is concluded that the initial modulus is a function of only the loading rate. A power law 

function for the modulus as a function of time has been used by many researchers to find 

such a relation Daniel et al. (2002). The viscoelastic response is represented by Eq. (6-5): 

( ) ( )∫ τ
τ
ε

τ−=σ
t

d
d
dtEt

0

~         (6-5) 
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where ( )τ−tE~  is the relaxation modulus as a function of time, τ  is a time-dependent 

variable, and ε  is the axial strain. For a strain rate-controlled strength test, Eq. (6-5) 

reduces to the following: 

 ( ) ( ) ( )∫ ττ−ε=σ
t

dtEtt
0

~
&         (6-6) 

Assuming a power law for the relaxation modulus and solving the convolution integral in 

the form: 

 ( )[ ] ( ) ( ) ( )[ ] ( )[ ]tQLtPLdtQPLthL
t

=⎥
⎦

⎤
⎢
⎣

⎡
ττ−τ= ∫

0
    (6-7) 

where L is the Laplace operator and solving Eq. (6-6), the stiffness modulus can be 

expressed as follows: 

( )
( )

2
1

EtE
t
tE −=

ε
σ

=         (6-8) 

where E1 and E2 are material parameters to be determined experimentally using the 

relationship between the stiffness modulus and time as presented in Fig. 6.5. 

Following the linear zone in Fig. 6.4 is the stress level (flow stress) at which the 

material exceeds the visco-elastic limit and starts to initiate visco-plastic deformation. At 

the flow stress, the initial Drucker-Prager yield surface parameters α and κο are 

evaluated. The flow stress is determined for each combination of strain rate and 

confining pressure, and the initial yield surfaces are determined as shown in Fig. 6.6.   
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Fig. 6.6. Initial Yield Surfaces for Different HMA Types in Compression Triaxial Testing 
 

 

The slope of the yield surface represents the frictional properties of the 

aggregates within the material microstructure. The intercept reflects the cohesive and 

adhesive properties of the binder within the microstructure. Fig. 6.6 indicates that granite 

and limestone mixes had the same slopes of yield surfaces indicating that they have 

similar aggregate friction potential. On the other hand, the intercept, which is the 

measure of initial hardening, was found higher in the granite mix, and comparable values 

were found for the limestone and gravel mixes. It seems that the strength of the 

limestone mix is produced mainly from its aggregate frictional properties. The granite 

mix combines both aggregate frictional and binder cohesive and adhesive properties to 

develop its strength, which could possibly be the reason for its relatively high strength. 
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 The second zone in stress-strain relationship is the work hardening phase, 

starting from the flow stress to the ultimate response where the parameters Γ and N and 

the hardening parameters κ1 and κ2 are determined simultaneously, as shown in Fig. 6.4. 

The last zone of the curve is the softening phase, where the damage parameters are 

evaluated.  

Finally, another constraint is applied to the material response to find the dilation 

potential by using the ratio of axial and radial strain measurements. The plastic potential 

function, g, is assumed to have the same form as the yield function but with a slope of 

*β , which influences the proportions of the volumetric and deviatoric strains. The 

parameter is determined by the visco-plastic strain rate ratio (VSRR) as shown in Eq. (6-

9) and Eq. (6-10): 
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dd

d        (6-10) 

The derivation for Eq. (6-10) is provided in Chapter IV. Experimental 

measurements indicate that the evolution of β with respect to the effective visco-plastic 

strain was minimal, especially at high strain levels, and thus for simplicity it could be 

assumed to be constant. It is indicated that, the dilation parameter was the lowest for the 

gravel mix and highest for the limestone. 
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 Table 6.2 summarizes the material parameters for all mixes. The limestone mix had 

the highest vector magnitude among the three mixes, while granite and gravel had 

comparable vector magnitudes. In terms of the yield function parameters, the gravel mix 

had the highest N values indicating a higher potential to develop permanent deformation. 

On the other hand, the limestone and granite mixes had comparable values of N, which 

were smaller than that of the gravel. Fig. 6.7 shows the evolution of hardening parameters 

with respect to the effective visco-plastic strain. The figure indicated that granite has the 

highest work-hardening potential where limestone has the lowest. 

 

 

Table 6.2. Summary of Model Parameters  
Parameter Granite Gravel Limestone Notes

∆ 2.860E-01 2.610E-01 4.360E-01 Measured by IAT
d
E1 1.833E+04 7.583E+03 3.798E+04

E2 1.236E-01 6.010E-02 1.158E-01

υ 1.800E-01 3.610E-01 2.180E-01
α 5.862E-01 2.462E-01 5.345E-01
κο 1.468E+01 3.025E+00 1.739E+00
Γ 5.000E-07 1.000E-07 9.000E-07
Ν 2.160E+00 2.993E+00 2.200E+00
β 3.332E-01 3.000E-01 3.570E-01 Dilation parameter

Static parameters

Linear material properties

Perzyna's parameters

7.780E-01
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Fig. 6.7. Evolution of κ with Respect to Effective Visco-plastic Strain 

 

 

FINITE ELEMENT SIMULATIONS OF LABORATORY EXPERIMENTS 

 As discussed in Chapter V, ABAQUS was used to develop a quadrilateral two-

dimensional four-node axisymmetric FE model. This model as presented in Fig. 6.8 was 

used to simulate a laboratory specimen subjected to uniform vertical strain rates and 

confining pressure similar to those used in the experiments. The material properties were 

obtained from the experiments, as discussed in the previous section. The boundary 

conditions were applied such that there was no vertical displacement at the bottom of the 

model and no lateral displacement at the left side of the model to represent symmetry.  The 

model was for a specimen with 4 in diameter and 6.2 in height. The analysis was conducted 
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in perturbation mode with a time increment.  Load was applied in two steps.  Confining 

pressure was applied in the first step, and constant strain rate in the vertical direction was 

applied in the second step.  Stress and strain values were recorded at each time step and 

compared with the experimental measurements.   

 

 

STEP (1)

 

STEP (2)

 

Confining Pressure
“P” (psi)

P P

Strain rate
(in/in/sec)

+

 
Fig. 6.8. FE Geometric Model and Loading Step Procedure  

 

 

 

 Fig. 6.9 show the triaxial compressive and extension strength test data for the three 

mixes. Each curve represents an average of two replicates. Fig. 6.9 show the effect of the 

strain rate and confining pressure. Higher strengths were associated with higher strain rates 

and/or confining pressures. It can be seen that gravel mix is the weakest and granite mix is 

the strongest among the three tested mixes.  
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The model has showed good simulation to the experiments, the model parameters 

are able to distinguish between the three mixes in terms of their response to different 

strain rates and confining pressures.  It is interesting to note that although limestone and 

granite mixes had relatively close material parameters, the significant difference in the 

anisotropy highly governed the response of each mix.  

For triaxial extension strength test, the simulation was conducted using damage 

parameters different than those used in the compression test, while other parameters 

were kept the same.  The extension results were much less influenced by confining 

pressure and strain rate compared with the compression test results. As expected, the 

extension tests experienced softening behavior much earlier than the compression tests. 

As discussed earlier, extension loading promotes opening of cracks and softening 

behavior, while damage in compression tests is associated with sliding particles that 

occurs after some hardening behavior.   

FE simulation results showed that tensile strength is much lower than compressive 

strength for all confining pressures and strain rates.  However, the FE results overestimated 

the tensile strength compared with the experimental measurements.  This overestimation is 

not expected to have a significant impact on the ability of the model to simulate permanent 

deformation under traffic loading, since the tensile strength results are still considered small 

values. 
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Fig. 6.9. Matching Compression and Extension Strength Tests 
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Fig. 6.9. Continued 
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Fig. 6.9. Continued  
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Fig. 6.10. Matching Extension Strength Test (Using Different Damage Parameters) 
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Fig. 6.10. Continued 
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Fig. 6.10. Continued 
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As shown in Fig. 6.9, it is noticed that the material showed independency of the 

confining pressure under tensile stresses. Therefore, another approach is presented to 

simulate extension data by using the same evolution law for damage parameter in Eq. (6-3) 

with no confining pressure effect. Results indicate, as shown in Fig. 6.10 that much 

improved simulation with the experiment is obtained.  

FE simulations of lateral deformation are compared with experimental 

measurements as shown in Fig. 6.11. Radial deformation was measured for all mixes at 

strain rates of 1.60%/min and 46.4%/min and at confining pressures of 0 and 30 psi.  It is 

evident that the FE simulations were able to capture the lateral deformations, especially at 

lower strain levels. As the deformation increases, the simulation model tends to 

underestimate the experimental measurements. The region where the model deviates from 

the experiment is where the material starts to soften, passing the ultimate stress.  
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Fig. 6.11. Lateral Strain Simulation
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Fig. 6.11. Continued  
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Fig. 6.11. Continued 
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AN EXAMPLE OF FINITE ELEMENT SIMULATION OF ASPHALT 

PAVEMENTS 

 A one-lane HMA layer with 15 in thickness and 80 in width, is simulated with 

axisymmetric elements as shown in Fig. 6.12. a static distributed pressure of 100 psi is 

applied at the top layer to simulate tire pressure. Fixed boundary condition in the 

horizontal direction only is maintained. Assuming that permanent deformation to occur 

in the HMA layer only, the subbase layer is considered very stiff and hence, the bottom 

layer of HMA is not allowed to deform in the vertical direction. The analysis is 

conducted by applying pressure in the initial time step, and permanent deformation is 

recorded as a function of time. The analysis is conducted to emphasize the influence of 

anisotropy on permanent deformation. HMA is defined with two different cases, ∆ = 0, 

for isotropic, and ∆ = 30%, for anisotropic case, the remaining model parameters 

represent the limestone mix described earlier in this chapter. 
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Tire Pressure=
100 psi

15 in

80 in

25 in

 
Fig. 6.12. FE Geometric Model for Pavement Lane 

 

 

 

Fig. 6.13 indicates that anisotropy increased the shear stress by about 30 % under 

the wheel loads. Although the anisotropic HMA layer developed more shear stress, 

permanent deformation was found to be less in magnitude when anisotropy is considered as 

shown in Fig. 6.14. The material also exhibited more dilation between the tires as a result of 

anisotropy. This is consistent with the findings in Eq. (4-40) that the angle of dilation 

increases with anisotropy. 
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a) Isotropic layer (∆ =0) 

 

 

b) Anisotropic layer (∆ =30%) 

Fig. 6.13. Shear Stress Distribution in HMA Layer due to Tire Pressure 
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Fig. 6.14. Permanent Deformation Profile in HMA Layer due to Tire Pressure 
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SUMMARY 

A procedure for the determination of the evolutions of model parameters was 

established using triaxial compression and extension strength tests. Model parameters 

were calculated using a systematic approach by dividing the stress-strain relationship. 

FE implementation of the model showed that model parameters were able to distinguish 

between three HMA specimens with different aggregate type and characteristics. 

Experimental results and FE simulations showed that gravel mix had the highest 

potential for permanent deformation while granite had the lowest potential. Granite mix 

also had the highest κ and α values reflecting the adhesion between binder and 

aggregates, and aggregate friction, respectively.  This finding is resulting from the coarse 

texture of granite as indicated by Masad et al. (2003). The influence of aggregate 

angularity was manifested in dilation where the experimental results and model 

parameters showed limestone to have the highest dilation followed by granite.   

The FE simulations had very good agreement with experimental measurements 

under compression loading at almost all strain rates and confining pressures. The 

simulation results also showed that tensile strength of all mixes was much lower than 

compressive strength.  The damage parameters used in simulating the extension tests 

were different than those used in the compression tests.  This is justified by the fact that 

damage is promoted by tensile stresses much earlier than under compressive stresses.  

Tensile stresses cause an increase in cracks and void sizes, leading to softening, while 

damage in compression occurs due to particle sliding after some hardening behavior. 
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Field conditions for a pavement surface subjected to wheel loads were simulated 

using FE. Results indicated that anisotropy increases shear stresses underneath wheel 

loads, decreases permanent deformation in the axial direction, and increase the dilation 

in the lateral direction. Although more shear stress is expressed due to anisotropy, HMA 

exhibited more stiffness in the axial direction and hence, less permanent deformation is 

achieved. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

SUMMARY AND MAIN CONCLUSIONS 

This study focused on the development of continuum models for hot mix asphalt 

(HMA) that account for the influence of microstructure distribution into macroscopic 

behavior. The first advancement in this study was the development of an elasticity gradient 

model that employs the strain gradient concept and effective material properties. The use of 

strain gradient introduces a length scale parameter to the elasticity constitutive model which 

allows the model to capture the influence of particle size distribution on HMA response. 

Analytical procedures were developed in this study to obtain microstructure characteristic 

length scales to be used in the constitutive relationship.  These analytical procedures are the 

moving window technique and the autocorrelation function.   

The elasticity gradient model was implemented in finite element (FE) analysis and 

used to analyze microstructure response and predict the macroscopic properties for HMA 

with different aggregate characteristics and structures.  In FE analysis, each point was 

assigned effective local material properties, which capture the influence of the material in 

the vicinity of a point on the mechanical response of that point.  FE results showed that the 

developed model was successful in overcoming some limitations of using the individual 

properties of the constituents in FE analysis of HMA microstructure. For example the 

model reduced mesh size dependency, reduced sensitivity of the response to small changes 

in the microstructure caused by image capturing and processing, and reduced the numerical 
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instability caused by several orders of magnitude indifference in stiffness between adjacent 

elements of the microstructure.  In addition, the model captured the influence of HMA 

length scales on microscopic and macroscopic responses.  The results showed that the 

determined HMA effective properties using the model were more consistent with the 

experimental measurements. 

The second advancement in this study was the development of an elasto-visco-

plastic continuum model to predict HMA response and performance under wheel loadings. 

The model included microstructure parameters that captured the directional distribution of 

aggregates and density of cracks.  In addition, the model was capable to account for the 

factors affecting the mechanisms of permanent deformation such as shear stress, aggregate 

structure friction and dilation, confining pressure, strain rate, and stress path direction.  

The elasto-visco-plastic model was implemented in FE analysis. The 

implementation of the model was in the form of a fully implicit algorithm using the 

backward Euler scheme in time-step control. The Newton-Raphson iterative scheme was 

used to define available initial solutions. The numerical scheme is based on the return 

mapping algorithm, which leads to elastic predictor-plastic corrector steps. The 

algorithm included a consistency condition analogous to the time-independent plasticity 

theory to evaluate the visco-plastic multiplier. Quadratic convergence was achieved in 

the analysis by using algorithmic elasto-visco-plastic tangent moduli in the algorithm. 

A parametric analysis was conducted to investigate the effect of key parameters in 

the model on the material response. The results showed clearly that the model is sensitive to 

particle friction (α), material hardening (κ), dilation (β), anisotropy (∆), void nucleation and 
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growth (ξ), and stress path direction (d). d affects the geometry of the yield surface in the 

deviatoric plane. d = 0.778 is the minimum value to achieve the convexity of the yield 

surface. An increase in the anisotropy level causes an increase in the material strength in the 

axial direction normal to the preferred orientation of particles.  The yield strength in the 

direction parallel to the orientation of particles decreases slightly with an increase in 

anisotropy level. The study also showed that loading rate and confinement affected the 

model response. Increasing loading rate and confinement caused an increase in the ultimate 

stress. 

Triaxial compression and extension strength tests on granite, gravel, and 

limestone mixes were used in this study to determine model parameters and evolution 

formulation for each mix type. Strength tests were conducted at different loading rates 

and confining pressures. Model parameters were determined using a systematic approach 

by using the stress-strain relationship. Experimental results showed that granite had the 

lowest potential for permanent deformation, the highest work hardening capability. 

Gravel had the highest potential for permanent deformation, and limestone had the 

highest dilation.  

FE analysis was conducted to simulate experimental measurements under 

compression and extension loading with different strain rates and confining pressures.  The 

FE results indicated that the elasto-visco-plastic model parameters were able to distinguish 

between HMA mixtures with different aggregate characteristics.  The simulation results 

showed that tensile strength of the mixes is much lower than compressive strength. The 

damage parameters used in simulating the extension tests are different than those used in 
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the compression tests, because softening in extension test occurs earlier and at a faster rate 

than in compression.   

FE analysis was also utilized to simulate permanent deformation in a pavement 

section. Anisotropy is found to influence shear stress distribution, permanent 

deformation underneath the tires, and dilation in the lateral direction and beneath the 

tires. 

 

IMPLEMENTATIONS AND RECOMMENDATIONS 

The advantage of continuum models is their computational simplicity, and once 

the material properties are known, simulations of material deformation under static or 

dynamic loading can be implemented in FE analysis to predict HMA performance.  

Moreover, the developed model provides a powerful tool to understand the role and 

contribution of fundamental properties of the constituent materials in composite 

structure into the overall response. The model can also be used to directly examine the 

influence of changes in mix design and material properties on microstructure distribution 

and performance. 

The developed continuum model contains the elements needed to account for all the 

characteristics that influence permanent deformation including loading rate, confining 

pressure, dilation under shear loading, and stress path direction. The model also accounts 

for microstructure distribution in terms of damage and anisotropy due to the aggregate 

preferred orientation. Therefore, the model can be used to optimize mix design based on 

performance predictions of the model.   
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The use of axisymmetric presentation of the continuum model in FE analysis is an 

acceptable approach to simulate field conditions. However, it is recommended that the 

model be improved to three-dimensional representation to account for more realistic 

boundary and loading conditions. This representation will improve simulation of field 

conditions and hence will lead to improved predictions of performance.  

The model needs to further development to account for the effects of temperature 

and aging on permanent deformation. This can be accomplished by developing 

relationships between the evolution of model parameters and temperature. 

In this study, damage is assumed to have an isotropic distribution.  However, 

damage can be easily expressed using directional distribution functions to account for the 

anisotropic distribution of damage.  Recent advances in imaging techniques and 

nondestructive evaluation make it possible to characterize the directional distribution of 

damage. 

The model needs to be verified by simulating boundary conditions different than 

those used to determine the model parameters.  These boundary conditions could include 

static creep and repeated loading with different rest periods.   Finally, the model needs to 

be implemented for predicting HMA performance under full-scale accelerated loading 

and actual field conditions.  
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APPENDIX A 

RELATIONSHIP BETWEEN THE DEVELOPED MODEL AND MOHR-

COLOUMB PARAMETERS (c & φ) 
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Extended Drucker-Prager yield surface, assuming no damage, is giving in the form: 

κ−Ια−τ= 1f         (A-1) 

where for extension triaxial state condition 

( )

( )31

311

1

2
3
1

σ−σ=τ

σ+σ=Ι

d

        (A-2) 

Substituting Eq. (A-2) and the values of the effective stress in Eqs. (4-17 and 4-18) into 

Eq. (A-1) yields: 
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For the sign convention that compression is positive, the Mohr-Coloumb yield surface is 

given as (Chen and Han 1988):  

( ) ( ) 0os 2sin1sin1 31 =φ−σφ+−σφ− cc      (A-4) 

by comparing Eqs. (A-3) and (A-4) it follows: 
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For compression triaxial condition, d is dropped out from Eq. (A-2). In isotropic case, 
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Eq. (A-5) reduces to  

( )
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φ−⋅κ
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+
α

α
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sin3

2
3

sin

c

        (A-6) 

Eq. (A-6) is found equivalent to the relationships introduced by Chen and Han (1988) for 

matching Drucker-Prager to Mohr-Coulomb yield surface parameters. 
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