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ABSTRACT

Intention Is Commitment with Expectation. (May 2005)

James Silas Creel, B.S., The University of Texas at Austin; B.A, The University

of Texas at Austin

Chair of Advisory Committee: Dr. Thomas Ioerger

Modal logics with possible worlds semantics can be used to represent mental

states such as belief, goal, and intention, allowing one to formally describe the

rational behavior of agents. Agent’s beliefs and goals are typically represented in

these logics by primitive modal operators. However, the representation of agent’s

intentions varies greatly between theories. Some logics characterize intention as a

primitive operator, while others define intention in terms of more primitive con-

structs. Taking the latter approach is a theory due to Philip Cohen and Hector

Levesque, under which intentions are a special form of commitment or persis-

tent goal. The theory has motivated theories of speech acts and joint intention

and innovative applications in multiagent systems and industrial robotics. How-

ever, Munindar Singh shows the theory to have certain logical inconsistencies

and permit certain absurd scenarios. This thesis presents a modification of the

theory that preserves the desirable aspects of the original while addressing the

criticism of Singh. This is achieved by the introduction of an additional operator

describing the achievement of expectations, refined assumptions, and new defi-

nitions of intention. The modified theory gives a cogent account of the rational

balance between agents’ action and deliberation, and suggests the use of means-

ends reasoning in agent implementations. A rule-based reasoner in Jess facilitates

evaluation of the predictiveness and intuitiveness of the theory, and provides a

prototypical agent based on the theory.
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CHAPTER I

INTRODUCTION

A. Rational Agents

The concept of agents in software design has recently offered new benefits to pro-

grammers. Just as expert systems were applied to many surprising problems in

the last century [31], agent based systems are now being applied to increasingly

complex problems [1, 2, 38, 43, 26, 25, 19, 48, 54, 62]. In contrast with expert sys-

tems, which suit only classification problems, agent based systems can encompass

solutions to a wide variety of AI problems involving human-computer interaction,

information processing, planning, communication, and teamwork. For instance,

countless agent based systems have been written to perform functions on the web

involving processing and serving information [17, 20, 40].

When discussing agent systems, one often takes the intentional stance, under

which agents are thought to have mental states such as beliefs, desires, wishes,

etc. In answer to the question of whether such mental states should be ascribed

to artificial agents, McCarthy [45] has argued that “To ascribe beliefs, free will,

intentions, consciousness, abilities, or wants to a machine is legitimate when such

an ascription expresses the same information about the machine that it expresses

about a person. It is useful when the ascription helps us understand the structure

of the machine, its past or future behaviour, or how to repair or improve it.” Thus,

the intentional stance is merely an abstraction tool for understanding and dealing

with with complex systems.

Agents generally have a few characteristics that distinguish them from pro-

The journal model is IEEE Transactions on Automatic Control.
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grams in general. Woolridge and Jennings [66] choose to define an agent as

“a computer system that is situated in some environment, and that is capable

of autonomous action in this environment in order to meet its design objec-

tives.” This definition is broad enough to extend even to thermostats and Unix

demons, but one may investigate problems in these areas without the use of

Agent-Oriented programming techniques [64, 57] or the intentional stance. As

with Object-Oriented programming, the intentional stance is best applied when

the abstractions intuitively fit the systems being described. Therefore, the the

term agent is generally applied to programs that exhibit the following features

(adapted from [66]): (1) autonomy: agents encapsulate a state which they must

deliberate and act upon without direct outside intervention (2) reactivity1: agents

are situated in an environment (real or simulated) that they must interact with

in a timely fashion. (3) pro-activeness: in addition to responding to the envi-

ronment, agents initiate goal directed behavior to affect their environment. Note

that a purely reactive system cannot be pro-active. (4) social ability: agents

interact with other agents.

Though purely reactive agents can be useful, proactive agents that exhibit

goal directed behavior offer a greater promise of powerful applications, especially

in the area of multiagent systems. These agents are most effective when endowed

with learning capabilities [47], planning capabilities [3], or both [29].

Sometimes agents require learning capabilities to effectively interact with

their environment. However, sometimes learning capabilities are undesirable:

1Note that this usage of the term reactive is but one of three usages of the term
in AI, introduced by Kaelbing [37]. Pnueli’s definition [50] extends to a larger
class of systems and is useful outside AI. Connah and Wavish [12] define reactive
agents as those agents which never reason explicitly about the environment. Re-
active agents (in the Connah-Wavish sense) respond directly to stimulus without
planning or deliberation, and can be termed purely reactive.
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Georgeff, architect of the PRS agent system [26] gives the example of an air-

traffic control system modifying its behaviour at run-time.

Planning capabilites are more generally applicable. The classical approach to

planning problems typically involves languages similar to STRIPS [21], in which

sets of propositional or first order literals represent environment states, goals are

partially specified states, and actions are represented in terms of preconditions

and postconditions. Goals are satisfied by consistent environment states. This

formalization provides a means for agents to reason symbolically about interac-

tions with environments, and about what they can achieve in the future. Planning

of this sort is referred to as means-ends reasoning.

Rational, symbolic reasoning agents should at least have the ability to plan

courses of events based on the preconditions and postconditions of actions. In-

deed, one might consider many of our non-agent-based programs to have goals in

this sense. But in open [32], multiagent environments, this ability alone seems

inadequate. Practical reasoning requires both means-ends reasoning and delib-

eration [63] (pp 65–86). Programmers want to ascribe various mental states to

processes that engage in complex reasoning and interaction, and logicians want

to describe the mental states of such processes. In addition to goals and desires,

sophisticated agents have other motivations that affect their decisions, including

commitment and intention. These notions provide groundwork for notions of obli-

gation and responsibility, making them integral to implementations of cooperation

and teamwork. The philosopher Bratman [4, 5] notes that intentions influence

an agent’s behavior more strongly than goals or desires. Searle [55] argues that

intention consists of prior intention, the premeditation of an intended act, and

intention in action, the agent’s self awareness in carrying out the intention.

Woolridge [63] shows that intentions influence practical reasoning in 4 ways.
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(1) Intentions drive means-ends reasoning. Thus, upon forming intentions, agents

should attempt to form plans to achieve those intentions, and revise those plans

appropriately. (2) Intentions persist. That is, one should not give up an un-

achieved intention until it is believed impossible or the original reason for the

intention is gone. (3) Intentions constrain future deliberation. An agent will

not consider adopting intentions that conflict with its current intentions. (4)

Intentions influence beliefs upon which future practical reasoning is based. In

particular, one expects one’s intentions to come true. Any theory of rational

agency that models intention should fulfill at least these four requirements.

B. Related Logics and Languages of Agency

The importance of abstact concepts such as intention motivates the use of formal

theories describing goal and intention directed behavior or rational agency. A

popular approach to such formal theories is the use of modal logics with possible

worlds semantics. Modal logics come in many flavors including epistemic logics of

knowledge, doxastic logics of belief, conative logics of goal and desire, and deontic

logics [33] of obligation and permissibility. Possible worlds semantics, originally

used in epistemic logic by Hintikka [34], can provide meaning for any sort of

normal modal logic under the framework devised by Kripke [28]. Researchers

appreciate the power of these modal logics despite numerous problems including

the logical omniscience of agents and a lack of architechtural grounding of the

possible worlds, as described by Woolridge [63]. Possible worlds semantics also

enjoy popularity due to the appeal of the associated correspondence theory [6].

Once one has settled on the idea of designing an artificial agent with inten-

tional states, one has a choice of architectures. The classical approach to artificial
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intelligence is to apply logical deduction to formulae. Under this idealized notion

of an agent as a theorem prover, an agent executes those actions that it can

prove it should do on the basis of its state (data/knowledge base) and rules of

deduction.

This approach suggests the use of logic programming languages such as Pro-

log [11] which perform backward chaining and resolution. A logic programming

approach to multiagent legal systems is given by P. Quaresma and I. Rodrigues

[51]. A logic programming language for multiagent systems is given by Consantini

and Tocchio [13].

However, forward chaining systems (also known as production systems) like

SOAR [42] have proven successful for agent architectures as well. Many such

systems employ the rete match process [23] which allows excellent efficiency of

execution. Languages that employ the rete match process include CLIPS [67], a

forward chainer written in C which was developed for NASA, and its successor

JESS (Java Expert System Shell) [53]. The efficiency of such systems permits

them to respond to their environment reactively (as Kaelbing uses the term),

which makes them well suited for such fast paced applications as the control of

simulated fighter aircraft [36].

The formal logics that deal with rational agency must describe temporal

aspects of the agent’s world, including the passage of time and occurence of

events. We thus find it necessary to integrate temporal logics into our modal

logics. The two typical flavors of temporal logic are linear-time temporal logic

and branching time temporal logic. The advantages of either system are analyzed

at length by Emerson and Halpern [18]. A more recent survey of temporal logic

in AI is given by Chittaro and Montanari [8]. Woolridge and Fisher developed a

first-order branching time logic for multiagent systems [65].
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It is unclear that either linear time or branching time temporal logic is supe-

rior for specification of agents. Generally, we find it necessary to use branching

time temporal logics if the processes in question are nondeterministic and we

must therefore explicitly represent multiple execution paths. Also, branching

time structures have isomorphisms to game trees representing multiagent game

theoretic interactions [41]. Woolridge and Pauly offer an application of modal

logics and a type of branching time temporal logic known as ATL (Alternating-

time Temporal Logic) which makes use of these game theoretic isomorphisms [49].

Linear time temporal logics, on the other hand, offer the benefit of simplicity.

To get an idea of the structure of a temporal reasoning agent consider the

Concurrent MetateM language of temporal logic, developed by Michael Fisher[22].

It is based on direct execution of logical formulae of the form

antecedent about the past ⇒ consequent about present and future

Agents in a Concurrent MetateM system exist as concurrently executing processes

that communicate via asynchronous broadcast message passing. Agent behaviour

is based upon specification in temporal logic. This approach approximates the

idealized notion of deductive agents as theorem provers. Agents in such a system

can be termed deductive reasoning agents.

The Concurrent MetateM language deals only with temporal modalities. In

the case of more complex intentional logics, it behooves us to examine the purely

theoretical underpinnings of our representational schemes before attempting im-

plementations, and to try to develop mathematically consistent and comprehen-

sive models of agents’ mental states. The ascription of intentional states to agents

complicates the underlying logics and therefore obfuscates the details of imple-

mentation.
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Integrated theories of rational agency include multiple modalities such as

belief, knowledge, desire, wish, hope, goal, choice, commitment, intention, or

obligation in various combinations and variations [9, 59, 15, 61, 52, 16, 39, 27,

14, 68]. A theory that includes any such modality or combination thereof can

purport to model some aspect of rational agency. The success of such a model is

determined by the mathematical and philosophical consistency of the logic itself

and more importantly by its effectiveness in motivating innovative applications.

Implementations of systems based on these logics are complicated by the fact that

there is no architectural grounding for possible worlds semantics and by the fact

that every integrated theory of rational agency may suggest one or more basic

design approaches. Woolridge and van der Hoek provide a comparative survey of

the primary approaches in the area of integrated logics of rational agency [60].

A famous approach introduced by Bratman and used by Rao and Georgeff in

their logic of rational agency [52] is known as the Beliefs, Desires, and Intentions

model (BDI). Under this framework, modal operators for belief, desire, and inten-

tion are treated as separate logical primitives. Georgeff and Lansky’s Procedural

Reasoning System (PRS) [26], which employs a BDI architecture, had as its first

application domain fault detection on the NASA Space Shuttle.

C. The Cohen-Levesque Theory of Intentions

A slightly different approach from the logic of BDI is to introduce intention as

a derived operator composed of other modalities, thus avoiding the introduc-

tion of a primitive modal operator for intention. Taking this latter approach

is a well studied and venerable theory of agency entitled “Intention Is Choice

with Commitment” [9] by Philip Cohen and Hector Levesque, henceforth C&L.
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The logic is based on a linear time model, with modalities for goals and beliefs.

Their approach, though rich in derived constructs is parsimonious with primitive

constructs. Parsimony provides advantages in implementations, because modal

operators are a source of great complication in the logic. Furthermore, C&L’s

adherence to formality combines with insight from philosophy of mind to produce

what is in practice a robust and predictive theory, under which intentions exhibit

certain desirable properties motivated by Bratman and avoid the side-effect prob-

lem (in which agents must intend all the forseen results of their intentions [24]).

The theory has found several applications, such as Jennings industrial robotics

application [35] and Tambe’s multiagent system architecture, STEAM (Shell for

TEAMwork)[58], which employs a rule-based system. The theoretical implica-

tions of this theory of intention extend beyond the model itself, since it has found

use in the theory of joint intention [44] upon which Tambe’s and Jennings’ work

is based, and in theories of speech acts [10]. C&L’s theory of intention as a persis-

tent goal was intended as a specification for the design of artificial agents (C&L p

257), and not a logic agents should use for reasoning about their or other agents’

mental states. On this account it has been successful, as evidenced by the work of

Tambe and Jennings. This stance confers upon us certain advantages in dealing

with the logic, for we need not be conerned that it models intentional states in

humans or other agents.

D. Problems with the Theory

The most well known of the criticisms of C&L is given by Singh in “A Criti-

cal Examination of the Cohen-Levesque Theory of Intentions” [56]. He proves

some properties of the theory to be counterintuitive or incorrect. In particu-
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lar, he shows that intentions permit certain absurd scenarios, that agents cannot

maintain multiple intentions, and that agents cannot intend an action they have

just completed. However, if the theory in its problematic form has provided the

groundwork for interesting applications, a modified theory that avoids the prob-

lems while still meeting the desiderata shall prove a useful development. This

thesis presents such a theory.

A fundamental construct in C&L’s logic is the persistent goal (P-GOAL),

which is a goal that an agent will not give up until it is believed achieved or

forever unachieveable. Persistent goals are thus a sort of achievement goal, which

is a goal to bring about something currently not the case. Persistent goals may

be regarded as a form of commitment. Intention is modeled as a sort of persistent

goal. C&L provide separate definitions for intention toward action and intention

toward well formed formulas or states of the world. An intention toward an action

entails a persistent goal that the action be done under certain circumstances.

C&L prove a theorem called From persistence to eventualitites stating that

agents’ P-GOALs will eventualy come about under certain conditions. Singh shows

these conditions to be inadequate, and suggests that the theorem forces the agent’s

goals to come about even if the agent doesn’t try to bring them about.

Singh’s next criticisim is that that agents cannot intend the same action twice

consecutively: the object of a persistent goal must be believed currently false, so

if an agent has just successfully done an action, he will believe that action is done,

and he cannot intend to presently do it again. The theory presented here allows

agents with basic planning capabilities to overcome this restriction by intending

their actions to have specific outcomes, or rationales.

Finally, Singh observes that it is impossible for agents to hold multiple si-

multaneous intentions when they are not sure which one they will finish first.
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This demonstrates that agents should be able to adopt weak intentional states,

where they have not yet settled on precise plans to bring about their intentions.

This allows agents to maintain multiple intentions simultaneously. The theory

presented here formalizes this notion.

E. Amendments to the Theory of Intention as a Persistent Goal

The theory presented here avoids the logical problems described, and does so

without modification to the syntax of C&L’s theory, or the low-level definitions.

This requires modification of the assumptions of the theory. Then new definitions

of intention which offer at least the advantages of the originals are presented.

Finally, we consider an implementation of a minimal agent based on the new

theory as a proof of concept.

Those who study intention (including Bratman and C&L) are concerned

with the rational balance between an agent’s deliberation and action. Rational

balance addresses the problem that if agents act too hastily without planning

things out, then they will reap bad results, whereas if agents constantly reconsider

their actions, then they will accomplish nothing. A formal definition of intention

should characterize where rational agents lie between these two extremes. In the

theory presented, agents will intentionally act precisely when they can form plans

to bring about their goals.
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CHAPTER II

THE LOGIC OF “INTENTION IS CHOICE WITH COMMITMENT”

So that this document might be self contained, a primer on C&L’s theory is given,

beginning with the syntax. The theory consists of a linear time temporal logic

along with a conative and doxastic logic with possible worlds semantics.

A. Syntax

The formal syntax of C&L’s theory is given in table I. Some dynamic logic and

other portions of the theory are omitted for reasons of space.

B. Semantics

Each sequence of events, a so called possible world, is represented by a function

from the integers to primitive events. The temporal modalities HAPPENS and

DONE are simply defined in terms of the linear sequence of events of each possible

world. HAPPENS describes a sequence of events happening “next” after the

current time. DONE describes a sequence of events happening as “just” having

happened. The doxastic modalities BEL and SUSPECT are given in terms of the

belief accessibility relation B among possible worlds, and the conative modalities

GOAL and ACCEPT are defined in terms of the goal accessibility relation G.

The notation [A → B] is meant to denote the set of all functions from A

to B. We define a model M as a structure 〈U, Agt, T, B, G, Φ〉. Here, U , the

universe of discourse is the union of three sets: Θ a set of things, P a set of

agents, and E a set of primitive event types. Agt ∈ [E → P ] specifies the single

agent of an event. T ⊆ [Z → E] is a set of linear courses of events (intuitively,
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Table I. Syntax

〈ActionVariable〉 ::= a, a1, a2, . . . , b, b1, b2, . . . , e, e1, e2, . . .

〈AgentVariable〉 ::= x, x1, x2, . . . , y, y1, y2, . . .

〈RegularVariable〉 ::= i, i1, i2, . . . , j, j1, j2, . . .

〈Variable〉 ::= 〈AgentVariable〉 | 〈ActionVariable〉 |

〈RegularVariable〉

〈Numeral〉 ::= . . . ,−3,−2,−1, 0, 1, 2, 3, . . .

〈Predicate〉 ::= (〈PredicateSymbol〉〈Variable〉1, . . . ,

〈Variable〉n)

〈PredicateSymbol〉 ::= Q, Q1, Q2, . . .

〈Wff〉 ::= 〈Predicate〉 |

¬〈Wff〉 |

〈Wff〉 ∨ 〈Wff〉 |

∃〈Variable〉〈Wff〉 |

∀〈Variable〉〈Wff〉 |

〈Variable〉 = 〈Variable〉 |

(HAPPENS〈ActionExpression〉) |

(DONE〈ActionExpression〉) |

(AGT〈AgentVariable〉〈ActionVariable〉) |

(BEL〈AgentVariable〉〈Wff〉) |

(SUSPECT〈AgentVariable〉〈Wff〉) |

(GOAL〈AgentVariable〉〈Wff〉) |

(ACCEPT〈AgentVariable〉〈Wff〉) |

〈TimeProposition〉 |

〈ActionVariable〉 ≤ 〈ActionVariable〉

〈TimeProposition〉 ::= 〈Numeral〉

〈ActionExpression〉 ::= 〈ActionVariable〉 |

〈ActionExpression〉; 〈ActionExpression〉 |

〈Wff〉?
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possible worlds) specified as a function from the integers to elements of E. B ⊆

T ×P ×Z×T is the belief accessibility relation which is Euclidean, transitive and

serial, yielding a KD45 doxastic logic. G ⊆ T×P×Z×T is the goal accessibility

relation, and is serial, yielding a KD conative logic. Φ interprets predicates, that

is Φ ⊆ [Predicatek × T × Z × Dk] where D = Θ ∪ P ∪ E∗. Also, we define the

relation AGT ⊆ E∗ × P , where x ∈ AGT [e1, . . . , en] ⇔ ∃i, x = Agt(ei). Thus,

AGT , not to be confused with AGT, specifies the partial agents of a sequence of

events. The operator AGT specifies the only agent of an event.

Semantics are given relative to a model M , an element of T σ, an integer

n, and a set v. This v is a set of bindings of variables to objects in D such that

if v ∈ [V ariable → D], then vd

x
is that function which yields d for x and is the

same as v elsewhere. If a model has a certain world σ that satisfies a Wff w at a

given time under a certain binding, we write M, σ, v, n |= w. If all models under

all bindings always satisfy a Wff w, that is w is valid, we write |= w.

The formal semantics are given in table II.

The test action α? occurs instantaneously if α is the case. An agent will

believe a proposition iff it is true in all worlds given by the belief accessiblity

relation B relative to σ. An agent suspects a proposition could be the case iff it

is true in at least one world given by the belief accessiblity relation B relative to

σ. An agent has a goal toward a proposition iff it is true in every world given by

the goal accessibility relation G relative to σ. An agent accepts a proposition iff

it is true in at least one world given by the goal accessibility relation G relative to

σ. An agent’s GOALs are the alternatives he implicitly chooses. What an agent

SUSPECTs, the agent believes possible. Notice that BEL is the dual of SUSPECT

in the sense that for any x and p, ¬(BEL x ¬p) ≡ (SUSPECT x p), and vice versa,

¬(SUSPECT x ¬p) ≡ (BEL x p). Likewise, GOAL is the dual of ACCEPT.
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Table II. Semantics

1. M, σ, v, n |= Q(x1, . . . , xk) ⇔ 〈v(x1) . . . v(xk)〉 ∈ Φ[Q, σ, n]

2. M, σ, v, n |= ¬α ⇔ M, σ, v, n 6|= α

3. M, σ, v, n |= (α ∨ β) ⇔ M, σ, v, n |= α or M, σ, v, n |= β

4. M, σ, v, n |= ∃x, α ⇔ M, σ, vx

d
, n |= α for some d in D

5. M, σ, v, n |= ∀x, α ⇔ M, σ, vx

d
, n |= α for every d in D

6. M, σ, v, n |= (x1 = x2) ⇔ v(x1) = v(x2)

7. M, σ, v, n, |= 〈TimeProposition〉 ⇔ v(〈TimeProposition〉) = n

8. M, σ, v, n, |= (e1 ≤ e2) ⇔ v(e1) is an initial subsequence

of v(e2)

9. M, σ, v, n, |= (AGT x e) ⇔ AGT [v(e)] = v(x)

10. M, σ, v, n, |= (HAPPENS a) ⇔ ∃m, m ≥ n, such that

M, σ, v, n‖a‖m

11. M, σ, v, n, |= (DONE a) ⇔ ∃m, m ≤ n,

such that M, σ, v, m‖a‖n

12. M, σ, v, n‖e‖n + m ⇔ v(e) = e1e2 . . . em and

σ(n + i) = ei, 1 ≤ i ≤ m

13. M, σ, v, n‖a; b‖m ⇔ ∃k, n ≤ k ≤ m, such that

M, σ, v, n‖a‖k and

M, σ, v, k‖b‖m

14. M, σ, v, n‖α?‖n ⇔ M, σ, v, n |= α

15. M, σ, v, n |= (BEL x α) ⇔ ∀σ∗ such that 〈σ, n〉B[v(x)]σ∗,

M, σ∗, v, n |= α

16. M, σ, v, n |= (SUSPECT x α) ⇔ ∃σ∗ such that 〈σ, n〉B[v(x)]σ∗,

M, σ∗, v, n |= α

17. M, σ, v, n |= (GOAL x α) ⇔ ∀σ∗ such that 〈σ, n〉G[v(x)]σ∗,

M, σ∗, v, n |= α

18. M, σ, v, n |= (ACCEPT x α) ⇔ ∃σ∗ such that 〈σ, n〉G[v(x)]σ∗,

M, σ∗, v, n |= α
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C. Abbreviations, Assumptions, Constraints, and Definitions

The formulas below should be assumed to refer to all agents x, actions a, well

formed formulas p, etc. unless stated otherwise.

1. Abbreviations

Several abbreviations will prove convenient in the logic. C&L define the empty

sequence, NIL ≡ ∀x, (x = x)?. Clearly, ∀b, (NIL ≤ b), that is NIL is a subse-

quence of every event sequence. The abbreviation for the “singleton sequence”

is (SINGLE e) ≡ (e 6= NIL) ∧ (∀x, (x ≤ e) → (x = e) ∨ (x = NIL)). Also, these

following versions of DONE and HAPPENS specify the agent: (DONE x a) ≡

(DONE a) ∧ (AGT x a) and (HAPPENS x a) ≡ (HAPPENS a) ∧ (AGT x a).

The symbol 3 is an abbreviation for “eventally” as in 3α ≡ ∃x(HAPPENS

x; α?). The symbol 2 is an abbreviation for “always” as in 2α ≡ ¬3¬α.

The concept of “later” is defined as eventually but not currently. That is,

(LATER p) ≡ ¬p ∧ 3p.

2. Assumptions

For their theory of intention, C&L adopt the assumption that agents are com-

petent with respect to the primitive actions they have done: ∀x, e (AGT x e) →

[(DONE e) ≡ (BEL x (DONE e))]. Furthermore, they adopt the assumption that

agents believe they shall realize the successful occurence of their actions. Specif-

ically, C&L assume that “if an agent believes he is about to do e resulting in a

world where α is true, then he also believes that after e, he will realize that α is

true.” (p 241) Formally,

|= ∀ e, (BEL x (HAPPENS x e; α?)) → (BEL x (HAPPENS x e; (BEL x α?)).
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Note that the assumption is silent on what an agent believes will happen if his

action does not indeed occur.

Also, C&L make an assumption that appears tautological at first glance: “for

each [primitive] event of which x is the agent, either he believes the next thing to

happen is his causing the event, or he believes it is not the next thing to happen.”

(p 242) Formally,

|= ∀e, (AGT x e) ∧ (SINGLE e) → (OPINIONATED x (HAPPENS e)).

C&L make the uncontentious claim that agents do not infinitely persist in try-

ing to achieve their goals; neither do they infinitely procrastinate. C&L assume No

infinite persistence to capture both these desiderata: |= 3¬(GOAL x (LATER p)).

Singh argues that the assumption of No infinite persistence does not capture the

notion of limited procrastination (No infinite deferral) and permits certain absurd

scenarios.

3. Constraints

C&L place two reasonable constraints on the logic; the first of these is Consistency

which states that B is Euclidean, transitive and serial, and G is serial. The second

is Realism: ∀σ, σ∗, if 〈σ, n〉G[p]σ∗, then 〈σ, n〉B[p]σ∗. That is, G ⊆ B.

4. Definitions

Knowledge is naievely defined as true belief: (KNOW x p) ≡ p ∧ (BEL x p).

C&L define a notion of competency, which says that an agent’s perception of

a fact is correct, as (COMPETENT x p) ≡ (BEL x p) → (KNOW x p). Also,

an agent is opinionated toward a proposition if he believes it is true or false, as

defined by (OPINIONATED x p) ≡ (BEL x p) ∨ (BEL x ¬p).
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To state that if a Wff q comes true, p comes true before it does, we may

use the defininition (BEFORE p q) ≡ ∀c, (HAPPENS c; q?) → ∃a, (a ≤ c) ∧

(HAPPENS a; p?). We define an achievement goal as a goal not currently true, as

distinguished from a maintenance goal. Formally,

(A-GOAL x p) ≡ (GOAL x (LATER p)) ∧ (BEL x ¬p).

From the “atomic” pieces of this conative/doxastic/temporal logic, C&L

build “molecular” constructs that describe rational agency. To capture the notion

of commitment, C&L define a “persistent goal” as

(P-GOAL x p) ≡ (GOAL x (LATER p)) ∧

(BEL x ¬p) ∧

[BEFORE ((BEL x p) ∨ (BEL x 2¬p))

¬(GOAL x (LATER p))]

This definition forms the basis of C&L’s definitions of intention, which are

special kinds of commmitments. They define INTEND1, intention toward an ac-

tion, like so.

(INTEND1 x a) ≡ (P-GOAL x [DONE x (BEL x (HAPPENS a))?; a])

where a is any action expression. That is, an intention toward an action is a

commitment to have brought about that action immediately after having believed

it was about to occur. They define INTEND2, intention toward a proposition, like

so:

(INTEND2 x p) ≡

(P-GOAL x ∃e, (DONE x [(BEL x ∃ e′, (HAPPENS x e′; p?))∧

¬(GOAL x ¬(HAPPENS x e; p?))]?; e; p?))

That is, an intention toward a proposition is a commitment that some plan e

have brought about the proposition immediately after (1) having believed that

there exists some event e′ that shall bring about the proposition and (2) having
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Table III. Axioms

1. |= (HAPPENS a; b) ≡ HAPPENS a; (HAPPENS b)?)

2. |= (HAPPENS p?; q?) ≡ p ∧ q

3. |= ∀x, (BEL x p) ∧ (BEL x (p→ q))→ (BEL x q)

4. |= ∀x, (BEL x p)→ (BEL x (BEL x p))

5. |= ∀x,¬(BEL x p)→ (BEL x ¬(BEL x p))

6. |= ∀x, (BEL x p)→ ¬(BEL x ¬p)

7. If |= α, then |= (BEL x α)

8. |= ∀x, (GOAL x p) ∧ (GOAL x (p→ q))→ (GOAL x q)

9. |= ∀x, (GOAL x p)→ ¬(GOAL x ¬p)

10. If |= α, then |= (GOAL x α)

accepted that the particular plan e may bring about the proposition.

D. Axioms and Propositions

C&L adopt the axioms of table III for their formalism. Note that some of these

can be derived from the constraints, but are given for clarity.

From the axioms, assumptions, and constraints C&L give proof for the propo-

sitions of table IV, except for proposition 12 which is true due to the Realism

constraint.

E. Analysis of the P-GOAL

The definition of having a commitment, that is a P-GOAL, is not trivial for an

agent to meet: Two requirements are placed on the agent’s mental state and

future mental states he may adopt. First, the agent has the achievement goal

toward the object of commitment. Second, according to the BEFORE clause,
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Table IV. Propositions

1. |= (HAPPENS a) ≡ (HAPPENS a; (DONE a)?)

2. |= (DONE a) ≡ (DONE (DONE (HAPPENS a)?; a))

3. |= p ≡ (DONE p?)

4. |= p→ 3p

5. |= 3(p ∨ q) ∧ 2¬q → 3p

6. |= 2(p→ q) ∧ 3p → 3q

7. |= ¬(LATER 3p)

8. |= 3q ∧ (BEFORE p q)→ 3p

9. |= ¬p→ (BEFORE (∃e, (DONE ¬p?; e; p?)) p)

10. If |= α, then |= (BEL x 2α)

11. |= (BEL x p)→ (GOAL x p)

12. |= (ACCEPT x p)→ (SUSPECT x p)

13. |= ∀x, e (BEL x (HAPPENS x e))→ (GOAL x (HAPPENS x e))

14. |= (GOAL x p) ∧ (BEL (p→ q))→ (GOAL x q)

15. |= (BEL x ∃e 6= NIL (HAPPENS x e))

→ ∃ e′, (SINGLE e′) ∧ (BEL x (HAPPENS x e′))
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if the agent ever drops the achievement goal, he must first believe it achieved

or impossible. The agent will obviously be competent about such achievement

goals. However, the agent need not be aware of BEFORE clause. Therefore, the

agent may misapprehend its own commitments. Theoretically, the commitments

would still prove useful in motivating the agent’s action, whether or not they were

accurately represented in the agent’s belief structure.

Though sometimes unwieldy, the P-GOAL offers important theoretical prop-

erties. It solves the side-effect problem in many cases, though not perfectly as

C&L admit. Francesco [24] provides further analysis on the side-effect problem

in C&L’s theory.

The P-GOAL has appropriately weak logic, given in table V.
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Table V. The Logic of P-GOAL

Conjunction,Disjunction, and negation

6|= (P-GOAL x (p ∧ q))→ (P-GOAL x p) ∧ (P-GOAL x q)

6|= (P-GOAL x (p ∧ q))← (P-GOAL x p) ∧ (P-GOAL x q)

6|= (P-GOAL x (p ∨ q))→ (P-GOAL x p) ∨ (P-GOAL x q)

6|= (P-GOAL x (p ∨ q))← (P-GOAL x p) ∨ (P-GOAL x q)

|= (P-GOAL x ¬p) → ¬(P-GOAL x p)

No consequential closure of P-GOAL

6|= ((P-GOAL x p) ∧ (p→ q)) → (P-GOAL x q)

6|= [(P-GOAL x p) ∧ (BEL x (p→ q))] → (P-GOAL x q)

6|= [(P-GOAL x p) ∧ (BEL x 2(p→ q))] → (P-GOAL x q)

6|= [(P-GOAL x p) ∧ 2(BEL x 2(p→ q))] → (P-GOAL x q)

The entailment |= (p→ q) is compatible with

(P-GOAL x p) ∧ ¬(P-GOAL x q)

If |= (p ≡ q) then |= (P-GOAL x p) → (P-GOAL x q)
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CHAPTER III

THE CRITICISM DUE TO SINGH

A. Persistence Is Not Enough

Using their constructs, C&L prove a powerful theorem, called From persistence

to eventualities, which states that “If someone has a persistent goal of bringing

about p, p is within his area of competence, and, before dropping his goal, the

agent will not believe p will never occur, then eventually p becomes true.”(p 239)

Formally,

|= ((P-GOAL y p) ∧ 2(COMPETENT y p)∧

¬[BEFORE (BEL y 2¬p) ¬(GOAL y (LATER p))])→ 3p

On the surface, this theorem seems pleasing. However, Singh describes a

scenario that counters this intuition: “For example, let me be the agent and

let p by my favorite implausible proposition: that Helmut Kohl is on top of Mt

Everest. I can easily (1) have this P-GOAL, (2) for eternity not hold the belief

that Herr Kohl will not ever make it to the top of Mt Everest, and (3) be always

COMPETENT about p. Therefore, by the above theorem, Herr Kohl will get to

the top of Mt Everest. He does not need to try; nor do I. He does not even need

to know that his mountaineering feat had been my persistent goal.”(sec. 3)

Therefore, according to Singh, the From persistence to eventualities theorem

relates inadequate requirements on an agent to non-trivial requirements on the

world. Singh indicates that the theory does not adequately address agents’ ability

to achieve their goals; he points out two aspects of the theory that fail in this

respect. First he implicates the improper formalization of No infinite persistence

as a culprit in making the theorem too powerful because it does not properly pro-
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hibit infinite deferral (procrastination). Second, Singh indicates that the theory

includes no assumption of “fairness,” an assumption whereby if an agent repeat-

edly attempts an action then it will eventually succeed. The modified theory

drops the original assumption of No infinite persistence in favor of a more limited

set of assumptions.

B. An Unexpected Property of INTEND1 with Repeated Events

Singh’s next argument (sec 4.1) is a counterexample to C&L’s claim (p 247) that

“an agent who intends a; b also intends to do a.” In this counterexample, the

model’s set of possible worlds contains σ and σ′. At time n, σ′ is the only belief

accessible world and the only goal accessible world from σ. Also, σ′ is the only

belief accessible world and the only goal accessible world from itself. This is

compatible with having (DONE a) at time n in world σ′, in which case the agent

would be aware of having done a. Since having a P-GOAL toward a proposition

means believing the propositon is currently false, the agent would be unable to

have a P-GOAL toward having done a, and therefore would be unable to have an

intention toward a.

The problem arises from the fact that intention involves a persistent goal

which is a type of achievement goal (the object of which must be believed currently

false). Yet we want an agent who intends a; b to intend a as well, regardless of a’s

prior occurence. Why would an agent commit to bringing about what has just

happened?

Suppose that our agent is a farmer, each time increment is a planting season,

and as his action the farmer may elect to produce various crops, represented by

actions including a = To raise alfalfa and b = To raise beans. In each season each
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crop would have an associated yield or utility which may not be known to the

agent. In this scenario, it is clear why the agent could intend a; b when a just took

place: the agent would anticipate that alfalfa would produce the greatest utility,

even though he planted it last season. The farmer does not engage in planting for

its own sake, but rather for expected yields, from which he derives utility. So in

a case like this, where actions are somewhat independent and can be reasonably

conducted out of sequence, it is necessary that our definition of intention toward

action should involve the outcome of the action.

Consider another case where actions are more closely related. Suppose an

agent wishes to ascend a steep cliff which just barely within reach. In this simple

story there are the primitive events of a = To jump with arms extended upward

and b = To grab ahold of the cliff. To carry out b constitutes success in this

story. One can concieve of many such stories; the point is that the actions must

be performed in a specific sequence. At time n − 1, the agent who intends at

this time to carry out a; b, performs a with the expectation that (HAPPENS a; b).

On this account, the agent is incorrect, for his jump ends at time n with him

standing once again on the ground rather than in midair in position to grasp

the ledge. Whereupon he attempts the intended jump again at time n, with

the original intention intact. Here, our definition of intention should address the

issue of sequencing of actions. It may be the case that a was just done, but an

achievement goal toward a is still possible if it stipulates that a bring about any

condition that it did not bring about last time.

At this point, the incisive reader may wonder what kind of structure is en-

forced on E the set of primitive event types. In particular, agents would never

intend what has already occured if the event types described actions occuring at

specific points in time, i.e. if to perform an action at noon and 12:01 are two
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different event types. Fortunately, this is an unnecessary constraint, because E

can be of arbitrary granularity. That is, E may include only one event type for

each agent or arbitrarily many.

Since we allow for the repetition of events of the same event type in sequence,

the only way characterize a commitment toward what has already been done with

an intention (or any achievement goal) is to incorporate the reasons for the action,

that is the expected outcome of the action. Otherwise, the requirement that the

object of an achievement goal must be currently believed false will derail any

repetitive intentions (recall that persistent goals and therefore intentions are a

particular type of achievement goal). Of course, incorporating the reasons for an

action into persistent goals means agents must have some conception of causality

in order to be reasonable about what commitments they adopt. As this is a theory

of intention, not a theory of everything, we must remain silent on the nature of

causality. According to the semantics, there are no causal links between actions

and predicates, only different interpretations of predicates on different time lines

at different times. Nevertheless, a modeler creating a set of possible worlds and

specifying Φ would intuitively consider the various effects of the events in E under

different circumstances. Furthermore, any agent architecture capable of basic

planning includes domain knowledge involving the results of actions. Therfore, it

seems not unreasonable to stipulate that agents intend actions for a reason.

It may seem that we have sidestepped the issue of repeated actions only to

introduce a problem with repeated outcomes. For our problem is not solved if

we need agents to intend the same action and the same outcome consecutively.

However, agents performing consecutive actions need not encounter this problem

in practice. Indeed, to require that the successive Wffs are different encourages

the creation of more robust agent architectures. Suppose an agent acts by means
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of conditionally executing recipes, i.e. it uses the most basic planning. Then in

the context of a plan, an intended, successfully achieved Wff that results from an

intended action that happens at time n can always be different from an intended,

successfully achieved Wff that results from an intended action at time n + 1 .

Some examples illustrate this point. Consider the case of the two stories above.

The farming agent tries to bring about some new condition that is not true yet

when he iteratively (and intentionally) performs action a. The cliff ascending

agent also tries to bring about something not yet the case as he performs action

a twice in succession. The agents in these cases are not necessarily engaging in

lengthy plans, and can intend things on a moment by moment basis. But more

complex agents exhibit this feature. Consider the case of an agent iteratively

chopping down a tree. One can imagine that in an implementation of the tree

cutting agent, a top level intention to cut down the tree would, through whatever

planning apparatus and domain knowledge, motivate individual intentions to chop

the tree. Until his task is completed, in each timestep the agent intends to

perform an action, say chop, with the outcome that the tree’s girth be diminished,

bringing it closer to falling than it was before. In such a situation, the Wff

representing this outcome would upon the first chop at time n take a form like

WoodThicknessn+1 = WoodThicknessn − x, where the subscript indicates the

time at which the variable is evaluated and x is the agent’s impression of how

much damage he can do with an axe. This indicates that the thickness of the tree

should diminish with the chop. But in timestep n + 1, the outcome of the chop

is subtly different, that WoodThicknessn+2 = WoodThicknessn+1 − x. Thus,

we can see that repeated actions in the context of plans typically allow distinct,

accumulative outcomes.

Now, it can be argued that if an agent’s behavior is purely reactive (in the
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sense that it merely responds directly to the world and do not reason about

the world), then the agent could reasonably intend to bring about exactly the

same Wff repeatedly. Fortunately, we need not be concerned with this limita-

tion because purely reactive agents have no use for logics of intention in their

specifications.

C. An Unexpected Property of INTEND1 and Multiple Intentions

Singh’s next argument involves an agent having multiple intentions. Singh demon-

strates that C&L’s theory is restrictive in that it does not allow for agents to

maintain multiple intentions simultaneously. This is because under C&L’s defi-

nition, an agent is commited to bring about an intended action immediately after

believing it was about to happen in its entirety. Singh demonstrates the problem

in a brief story (sec 4.2). “As a natural example, imagine an agent who runs a

cafeteria. He takes orders from his customers, forms the appropriate intentions,

and acts on them. When asked to serve coffee, he forms an intention to do the

following complex action: pick up a cup; pour coffee into it; take the cup to the

table. When asked to serve tea, he forms an intention to do the corresponding

action for tea. Suppose now that two orders are placed: one for tea and the

other for coffee. The agent adopts two intentions as described above. The agent

initially ought to pick up a cup; let us assume that this is the action he chooses,

and the one he believes he is about to do. However, at the time the agent picks up

a cup, he might not have decided what action he will do after that, i.e., whether

he will pour coffee or pour tea into the cup. Indeed, whether he pours coffee or

tea into the cup might depend on other factors, e.g., which of the two brews is

prepared, or whether other agents are blocking the route to one of the pots.”
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He goes on to say that “While this is a fairly ordinary state of affairs and

a natural way for an agent to operate, it is disallowed by the theory. This is

because the theory requires beforehand that he is going to do the given action,

no matter how complex it is (and then do it). In the present example this is not

the case: the agent knows what he is doing before each subaction, but does not

have a belief about a complex action before beginning to execute it. Also, for the

agent to even have an intention, the theory requires that he have a P-GOAL to

satisfy it in the above sense.”

Here, let a =To pick up a cup, bc =To pour coffee in a cup, bt =To pour tea

in a cup, and c =To bring a cup to the table. In Singh’s example, prior to picking

up a cup, the agent does not believe either complex action is about to happen.

Formally, we have ¬(BEL x (HAPPENS x a; b; c)) where b is either bc or bt.

Therefore, as Singh argues, the agent x who first picks up the cup will not

presently be able to succeed in

[P-GOAL x (DONE x (BEL x (HAPPENS x a; b; c))?; a; b; c)]

at time n+3 upon completion of the complex action of which picking up the

cup is the first step, and he will not fulfill this P-GOAL as a result of not having

held the above belief.

Thus, the agent will intentionally do neither the complex action a; bc; c nor

a; bt; c since the object of his persistent goal will not have been satisfied at time

n + 3 when, assuming all goes well, he finishes one of the complex actions by

serving either coffee or tea.

However, Singh’s story about the beverage serving agent does not preclude

that the agent anticipate having later done the complex action right after believing

it was about to happen. Formally, as the agent picks up the cup we could have



29

[GOAL x (LATER (HAPPENS x a; b; c))]. Thus, given the definition of P-GOAL,

which stipulates that the agent choose that the proposition be brought about

later, the agent could still be committed in the P-GOAL sense to performing these

complex actions, and successfully fulfill such commitments.

Singh is right to say that when the agent recieves the two orders, he should

form intentions toward both serving tea and serving coffee. These are not the

strongest of intentions, however. In the above scenario, the agent clearly has

not settled on precise plans to serve tea nor to serve coffee, as he inhabits an

unpredictable environment that threatens to thwart either intention at every turn.

The agent does however resolve to bring about a state of affairs for each intention,

in which the beverage is dispensed and presented to the restaurant patron.

In the situation that Singh describes, the agent has at its disposal of a set

of predefined sequence of events expected to bring about either intention. Such a

sequence, which is known in advance but not currently planned to be conducted,

could be called a recipe. This terminology corresponds to that in the SharedPlans

framework of Grosz and Kraus [30]. If the agent had a specific plan we would

definitely say in a strong sense that he intended to serve a beverage. But here, the

agent has no plan, only recipes, and yet still should intend to serve both beverages.

This demonstrates the ambiguity of different senses of the word “intention.” To

capture these different senses a theory of intention should define a notion of a

weak intention, whereby the agent is committed, but does not forsee the exact

course of events that brings about his objective.
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CHAPTER IV

NEW NOTIONS OF INTENTION

Three problems have been identified with the original theory. (1) The From

persistence to eventualities theorem, which links persistent goals with eventual

outcomes, is too powerful. To solve this problem most easily, one can drop the

original assumption of From Persistence to eventualities, which is the crux of the

proof of the undesirable theorem. (2) When an agent executes two actions of

the same event type successfully two consecutive times, it is impossible that the

second action be intentional. In regards to this problem, recall that INTEND1,

intention toward action, is a persistent goal that some action have been done under

certain circumstances. Thus, an agent can not have the persistent goal (much less

the intention) to have done what he has just done. One may solve this problem

by requiring that an agent’s intention toward action involve some propositional

outcome of the action. In this way an agent may intentionally perform the same

action twice consecutively as long as the intended outcome of the second action is

different from the actual outcome of the first action. Intuitively, the agent should

expect his action to cause some desired condition to become true. (3) Agents are

unable to maintain multiple intentions simultaneously. The third problem makes

clear the need for a definition of intention that corresponds to the sense of the

word “intention” which does not have the connotation that the agent knows every

detail of his plan to fulfill the intention. Only in the strongest, most bona-fide

sense of intention (present directed intention) must the agent know in advance

the action sequence supposed to bring about the intention.

New definitions of intention were therefore devised based on these criteria.

The definitions were developed through gradual modification of the basic P-GOAL
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construct, progressively adding or removing operators and checking each new con-

figuration against the desiderata for intention. We have here a presentation of

the results themselves, not the thought processes that gave rise to them. Never-

theless, a basic account of the rationale for all these changes can be gleaned from

the arguments of the previous section.

A. A Refined Notion of Commitment

The criticism regarding repeated actions suggests that intention toward action

should entail commitment to a particular outcome. One could naively indicate

this like so:

(WEAK-INTEND1 x a) ≡ ∃p,

(P-GOAL x (DONE x a; p?))

However, the syntax prohibits quantification over formulas like p.

We may introduce another set of entites into the universe of discourse as

surrogates for formulas. We define J ⊆ ℘(T ) corresponding to a pre-defined set of

possible expected outcomes defined as sets of possible worlds. J , then, consists

of sets of possible worlds (timelines). We introduce 〈JustificationV ariable〉s

whose denotations are elements of J . An element j ∈ J may be used as T in

constructing a model. Intuitively, J specifies sets of “desired” formulas, namely

those compatible with its elements. We introduce semantics of a test action

for expectations instead of formulas. The “¿” test action is analogous to the

“?” test action, except it succeeds when the current world is an element of the

“justification”, or possible-worlds-set specification of the desired end state.

In the definition of a model, U therefore, is redefined to include J , the set of

justifications. D, which is necessary for the interpretation of predicates by Φ, is

redefined as D = Θ ∪ P ∪ E∗ ∪ J .
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Table VI. Revised Syntax

〈JustificationVariable〉 ::= s, s1, s2, . . . , t, t1, t2, . . .

〈Variable〉 ::= 〈JustificationVariable〉 | . . .

〈Wff〉 ::= 〈JustificationVariable〉¿ | . . .

The syntax of C&L’s theory needs no changes except the introduction of the

“¿” test action, and variables whose denotations are elements of J . These changes

are expressed in table VI. The semantics of the new operator are given by

M, σ, v, n‖s¿‖n ⇔ v(s) = j and σ ∈ j ∈ J ⊆ ℘(T ).

The weak sense of intention is captured using personal commitments (per-

sistent goals) that adhere the requirements discussed.

(WEAK-INTEND1 x a) ≡ ∃s,

(P-GOAL x (DONE x a; s¿))

(WEAK-INTEND2 x p) ≡

(P-GOAL x ∃a, (DONE x a; p?))

Thus, an agent weakly intends that which he is committed to bringing about

himself, regardless of having a plan to do so. However, in the case of intention

toward action, the agent will indeed have a plan, this being the action itself. In

the case of intention toward action, the agent also believes the action will have a

particular result, to enable repetition of equivalent event types as discussed above.

Under this definition, Singh’s cafeteria-agent could say it was serving both coffee

and tea intentionally.
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B. Intention Is Commitment and Expectation

In the stronger sense of the word, one has a plan to carry out what one intends.

This stronger notion of intention is applicable to both intention toward propo-

sitions INTEND2 and intention toward actions INTEND1. Therefore, the new

definition of intention consists of a weak intention and a what the agent thinks is

a sure-fire plan to presently bring it about.

(INTEND
′

1 x a) ≡ ∃s,

(P-GOAL x (DONE x a; s¿))

∧ (BEL x (HAPPENS x a; s¿))

(INTEND
′

2 x p) ≡ ∃e,

(WEAK-INTEND2 x p)

∧ (BEL x (HAPPENS x e; p?))

In this very strong sense of intention, the agent does not forsee (believe in)

any futures under which his intention does not come true. He believes that other

outcomes are ruled out by the inevitability of his present action. However, the

agent may freely change his mind about this fact as conditions develop (his belief

is not restrained by any BEFORE clause), and thus readily update his intentions,

which would maintain a degree of consistency due to the agent’s commitment.

Note that in the above story Singh’s restaurant agent would likely form a strong

intention toward the serving of a beverage at time n + 1, when he has to choose

action bt or bc.

These definitions resemble Searle’s analysis [55], under which intention entails

a prior intention (here represented by commitment), and an intention in action

(here a belief by the agent that it performs an action). In an agent architecture

based on this theory, the intention in action would cause and be contemporaneous
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with the (current) action itself.

C. From Intention to Eventualities

As examined earlier, the No infinite persistence assumption of C&L produces

undesirable results when combined with the definition of P-GOAL. Since we retain

the definition of P-GOAL, we must drop the assumption. It could be replaced

by an assumption on an agent’s intentions. Therefore we redefine No infinite

persistence as

|= 3¬(WEAK-INTEND2 x p).

Notice that this redefinition alone may sanction theorems similar to From

persistence to eventualities. However, the problem is eliminated by ensuring that

agents to not perpetually procrastinate. Therefore, we also adopt the assumption

of No infinite deferral, defined as

|= (WEAK-INTEND2 x p) ∧

¬[BEFORE (BEL x 2¬p) ¬(GOAL x (LATER p))]

→ 3(INTEND
′

2 x p)

This definition allows for the case where the agent realizes his weak intention has

been derailed by uncontrollable events in the world, such as the intervention of

other agents.

Under these assumptions, as long as an agent is competent with respect to

his belief that he is carrying out the intention, then the intention must come true.

That is, if the agent x is (COMPETENTx (HAPPENS x e; p?)) with e and p as

in the definition of INTEND2, then the strong intention’s plan will succeed. One

could define a notion of capability whereby the conditions are satisfied for No

infinite deferral, and the agent is competent with respect to the belief component
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of the strong intention that comes about.
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CHAPTER V

MEETING THE DESIDERATA FOR INTENTION

The revised assumptions and definitions complete the modifications to the theory

needed to address all of the formal criticisms of Singh. One can show that the

many desiderata given in section 7 of C&L still hold.

Intentions normally pose problems for the agent; the agent needs to determine a

way to achieve them: In the case of intention toward action, the agent already

plans to achieve its goals by performing the intended action. In the case of

intention toward propositions, by the assumption of No infinite deferral and the

new definition of INTEND2 clearly an agent will try to come up with a plan once

he is commits to doing something.

Intentions provide a “screen of admissibility” for adopting other intentions: If

an agent intends b, as in (INTEND1 b), and always believes that doing a forever

prevents doing b, as in 2(BEL (HAPPENS a) → 2¬(HAPPENS b)), then the

agent cannot intend to do a before b in any sequence of actions. Suppose for

contradiction that the agent did (INTEND
′

1 x a; b). Then the agent would believe

a would occur, forever preventing b. But the agent would also believe b would

occur, a contradiction. Therefore, we may formally say

|= ∀x (INTEND
′

1 x b)

∧ 2(BEL x [(DONE x a) → 2¬(DONE x b)]) →

¬(INTEND
′

1 x a; b)

Agents “track” the success of their attempts to achieve intentions: Agents main-

tain their intentions after failure, contingent upon being able to come up with a
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plan. Suppose it is the case that

(DONE x[(INTEND
′

1 x a) ∧ (BEL x (HAPPENS x a; p?))]?; e;¬p?),

that is the agent’s intended action did not occur just now when he thought it

would. Further suppose that

(BEL x ¬(DONE x a; p?)) ∧ ¬(BEL x 2¬(DONE x a; p?)),

which means the agent is aware the intention did not succeed, but still believes

it possible to succeed. By the BEFORE clause, its is obvious that the P-GOAL

or weak intention component of the strong intention conjunct remains true. The

agent at this point will be disposed to form a new belief about what action he

should take; presumably, he would like to try again. In order to try again, he

must resolve to do so; the agent would adopt (BEL x (HAPPENS x e; p?)). As we

would expect, successful maintenance maintenance of strong intentions therefore

depends on agents’ ability to maintain plans. This case meets all the conditions

for INTEND
′

1.

If the agent intends action a, then the agent believes it is possible to do action a:

The theory has no modal operator for possibility. However, by definition an agent

cannot adopt intentions he considers impossible. Since the agent must adopt a

goal, the agent will suspect the intention will succeed (see Axiom 12).

If the agent intends action a, sometimes the agent believes he will in fact do a:

Under from the definition of WEAK-INTEND1, the agent has an persistent goal and

therefore an achievement goal toward having done the action: (A-GOAL (DONE a));

hence the agent will have the goal that the intended act comes true later (by

definition of A-GOAL) meaning (GOAL (LATER (DONE a))). Recalling that by
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definition goals entail acceptance, and applying axiom 12, we may conclude that

(SUSPECT (LATER (DONE a))), meaning that the agent believes it possible that

a occurs. This is not quite so strong as belief, but the agent has not made defini-

tive plans to execute a.

On the other hand, in the case of strong intention under INTEND
′

1, quite

simply the agent believes he is doing the intended act.

If the agent intends action a, the agent does not believe he will never do a: This

follows from the Realism constraint.

Agents need not intend all the expected side-effects of their intentions: This follows

from the lack of consequential closure of the P-GOAL, as discussed in the analysis

of the P-GOAL.

Dropping futile intentions: The final theorem given by C&L, which appears at

the end of section 7, states that “if an agent believes anyone else is truly going to

achieve p, then either the agent does not intend to achieve p himself, or he does

not believe p can be achieved only once. Contrapositively, if an agent intends

to achieve p, and always believes p can be achieved only once, the agent cannot

simultaneously believe someone else is going to achieve p”

|= ∀x, (y 6= x) ∧ (BEL x 3∃e(DONE y ¬p?; e; p?)) →

¬(INTEND2 x p) ∧

¬(BEL x [∃e (DONE y ¬p?; e; p?) → 2¬∃e (DONE x ¬p?; e; p?)])

This holds for the new definition as well. If the agent x were to believe y would

achieve p, and intended to achieve p himself as well, then he would not believe

that p could be achieved only once. If instead the agent x believed that y would
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achieve p and p could be achieved only once, then x could never adopt an intention

to achieve p due to the fact that the requisite achievement goal could not hold:

in all of x’s belief accessible worlds, p is achieved only once, by y.

The Case Due to Chisholm: C&L rightly observe that their definition of INTEND2

handles the following case, due to Chisholm [7], paraphrased by C&L (page 248):

“An agent intends to kill his uncle. On the way to his uncle’s house, this intention

causes him to become so agitated that he loses control of his car, and runs over a

pedestrian, who happens to be his uncle. Although the uncle is dead, we would

surely say that the action that the agent did was not what was intended.” Under

the definition of WEAK-INTEND2, which we characterize as personal commitment,

the agent would have fulfilled his intention in this case. Thus, agents are able to

fulfill their commitments (weak intentions) accidentally. However, the accident

will not occur in any of the agent’s belief accessible worlds, so the agent could

not have a strong intention (or even a goal) toward the occurrence.

Finally, note that the criticisims of Singh have been addressed. As discussed,

agents’ commitments will never be brought about inappropriately. Furthermore,

agents may intend actions of the same type repeatedly by expecting their actions

to have outcomes. Finally, agents may maintain multiple weak intentions and

use these to form whatever strong intention is appropriate at a particular time,

thus allowing agents to act opportunistically and interleave execution of different

recipes.
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CHAPTER VI

RAMIFICATIONS FOR SYSTEM ARCHITECTURES

This theory should be considered a high level specification to suggest design pat-

terns for artificial agents. It should not be seen as a logic that agents should

use for reasoning about mental states. It certainly should not be seen as a logic

describing the mental states of human agents. In the case of artificial agents, how-

ever, it places a number of useful restrictions on architectures we may implement.

Clearly, agents must have a particular mental state corresponding to GOAL and

a particular mental state corresponding to BEL, with relationships as discussed.

More importantly, agents should commit to certain goals, with the results that

these goals persist through time. Also, Singh’s criticism has revealed that agents

should not intend actions for their own sake, but rather to have some effect.

This should come as no surprise to those who study planning and means-ends

reasoning.

SOAR [42] offers built-in belief maintenance capabilities for agents and other

features that distinguish it from other rule based systems. STEAM essentially

contains a SOAR implementation of joint-intentions, which we have not discussed

here. Nevertheless, STEAM gives us precedent for implementing a C&L-style

logic in a forward chaining system. However, in our logic, belief has a specific

deontic meaning we want to encode, eschewing SOAR’s automatic belief main-

tenance (STEAM involves no such concern: its rules involve inferences primarily

about high level constructs like joint-intentions, not low level constructs like be-

lief). Since any other forward chaining inference engine would do, Jess was chosen

due to its ease of interface with Java and the efficiency of the rete match process.

The agent developed serves as a proof of concept for agents based on the theory of
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intention as a persistent goal, and demonstrates the utility of principles embodied

in the theory.

A. An Experimental Agent Implementation in Jess

In the Jess implementation presented, the agent and its environment are encoded

by a set of rules that are used to infer facts from an initial fact base. These facts

represent Wffs or action expressions in the logic. The rules represent axiomatic

or theroem based inferences about the facts that affect the world or the agent.

Integer cost values are attached to each fact to control the production system’s

infinite explosion of inferences. Thus, a crude solution to the logical omniscience

problem is trivial in practice.

The basic data structures of the implementation include the unordered facts

actionExpression, used to represent events, and the unordered fact Wff which

represents formulas or propositions. A set of such facts can describe the states

of the world and state transitions (events). For now, only one agent and one

possible world are modeled. An actionExpression may represent a single prim-

itive event, a sequence (denoted by the semicolon) which points to two other

actionExpressions, or a test action (denoted by the question mark). A Wff

may represent any formula expressible in the logic. Each fact encodes a single

operator, and operators may be nested by having such facts refer to other facts as

their subjects. The Wffs or actionExpressions that appear thusly “inside” an-

other fact have the special time abstract. In contrast, an actionExpression or

Wff that directly describes the world has an integer time value. The specifications

for these unordered facts are given in figure 1.

To demonstrate the relation between planning and intention advocated in
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this paper, unordered facts representing “recipes” consisting of single or multiple

actions enable means-ends reasoning on the part of the agent. These unordered

facts are used to compose plans or courses of actions when motivated by a P-

GOAL, and determine what event (action) the agent believes will happen next.

As argued, believing one’s own action is happening entails that one is attempting

to indeed do it.

Code discussed by figure appears in Appendix A. The full code of the ex-

tended Jess scenarios and agent implementation appears in Appendix B. The

complete code of the scenarios and the companion parser are availible as an on-

line appendix at http://students.cs.tamu.edu/jsc6064/projects/appendix.

We now turn to an account of how persistent goals and recipes may motivate

the formation of intentions. If the agent has a persistent goal, a recipe whose

postcondition fulfills the goal, and whose preconditions are met, then unless the

agent is involved in the execution of another plan, the agent will begin executing

that recipe. The code to handle the simplest case applying single action recipes

is given in figure 2. The multi-action case requires recipes to be constructed by

chaining single actions together by matching preconditions to postconditions in

a manner similar to STRIPS.

Scenarios suitable for initial encodings include McDermott’s [46] story in

which Little Nell is saved (or not) by Dudley (C&L p 219), the story about the

beer delivering robot (C&L p 213), Chisholm’s case, and Singh’s restaurant agent.

Let us consider the encoding of the world for the “Little Nell” story, given in figure

6.

The Little Nell story demonstrates a problem with naively designed planning

systems. In this story, the heroine, called Nell, has been villainously tied to the

railroad tracks with a train approaching. Believing that Nell will be mashed,
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Dudley accordingly plans to save Nell, with the result that he comes to believe

that Nell will no longer be mashed. Since Nell will no longer be mashed, he drops

the intention, but that means that Nell is going to be mashed again, causing him

to again intend to save her, and so on. If one models intention as a persistent

goal, this problem does not arise, since a persistent goal can be dropped only

under certain circumstances (in particular, it will not be dropped just because it

is expected to come true).

In the case of this story, the agent is able to form a strong intention toward

saving Nell, which is motivated by his recipe to save Nell and his persistent

goal to save Nell. In this instance, his efforts succeed. While Jess produces

inferences based on the facts, we recieve word that the agent determines what

to do: Intention toward action save Nell formed. Typing (facts) at the

Jess> prompt after this yields this fact (among many others):

(MAIN::Wff (mode INTEND1) (subj save Nell) (subj2 nil)

(time 0) (cost 10) (aux nil))

The fact of this intention, along with the persitent goal, allows for the infer-

ence of a variety of formulas concerning the agent’s mental state, including the

desired sets of goals and beliefs.

However, as these facts when printed out by the (facts) function refer to

their component abstract facts by id, the facts are unreadable to humans. To

alleviate this problem, a Java based parser was developed to produce human-

readable versions of the facts. Thus,

f-344 (MAIN::Wff (mode Goal) (subj <Fact-332>) (subj2 nil)

(time 0) (cost 10) (aux nil))

becomes after processing
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<Fact-344> At time 0 (Goal (Later (Neg (Pred NellInDanger ) ) ) ).

The human reader in this case avoids the three layers of indirection.

Chishom’s story about the patrucidal 1 agent can play out in different ways.

The agent could inadvertently run his uncle over on the way there, as in the

original story. Alternatively, the agent could drive to his uncle’s house and murder

him. The version where the agent succeeds is encoded for demonstration purposes.

The agent is motivated at the first timestep by his commitment that his uncle

be dead to form an intention to kill his uncle by driving to his uncle’s house and

killing him. Therefore, at the first timestep, the agent intends to drive to his

uncle’s house. In the original story, he adopts no intention to kill his uncle at the

next timestep, as his commitment has been accidentally satisfied. In the variant

version encoded here, at the next timestep he actually does adopt the intention

to kill his uncle.

The agent has a set of recipes encoding domain knowledge about killing his

uncle. These single action recipes can be chained together to encode longer plans,

by means of the modest planning rule in figure 3. According to this rule, an agent

can produce a multiple action recipe consisting of two single action recipes if the

postcondition of the first is the precondition of the second. Here, ?prequel is the

first recipe and ?r is the second. The composite recipe has postcondition ?p, the

subject of a P-GOAL, this being the “ends” of our means ends reasoning. The

recipes longer than two single actions are formed by means of the planning rule

in figure 4.

Figure 5 completes the puzzle of how the first intention (toward driving to

the uncle’s house) is formed - it is recognized as part of a recipe that can presently

1Patrucide: The killing of one’s paternal uncle.
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bring about the agent’s commitments. How then is the second intention (to kill

the uncle) formed when no P-GOAL is explicitly declared for that timestep as

required by the rule of figure 2? Simply because the P-GOAL persists, according

to the BEFORE clause, from the first timestep to the second. These rules ensure

that in each scenario presented, the agent adopts only those intentions that it

theoretically should.

Finally, this implementation allows agents to act on the appropriate intention

at the appropriate time, like Singh’s restaurant agent. In an encoding of the

restaurant story, the agent begins with persistent goals to serve coffee and tea, and

at each timestep, adopts a strong intention toward an action that gets him closer

to one of his goals (according to his recipes and the satisfaction of preconditions).

The result is a series of six strong intentions: To pick up a cup, to pour tea into

it, to serve tea, to pick up a cup, to pour coffee into it, and to serve coffee. The

persistent goal to serve tea is dropped after serving tea, and the persistent goal

to serve coffee is dropped after serving coffee.

This closed, single-agent system demonstrates the feasability of developing

agents based on the theory of intention as a persistent goal. The agent in this

implementation adopts only intentions toward actions, INTEND1, as these suffice

to produce the desired beliefs about action. For simple domains, rational agency

in practice does not require the use of multiple definitions of intention. However,

the underlying theory must include definitions to encompass nearly every natural

language use of the word “intention” in order to counter problematic scenarios

involving intention, including Chishom’s, McDermott’s, and Singh’s examples.

This rule system provides an unwieldy means for encoding world states and

domain knowledge, but it saves work in encoding agent states because arbritrarily

complex sequences of intentions can be produced from a single initial commitment.
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CHAPTER VII

CONCLUSION

Rational agents can be approached with a wide variety of logical theories. Open,

multiagent environments require agents to proactively decide upon courses of

action and reconsider their own activities. To specify the behavior of such an

agent demands the use of a logic of intention. We have seen how one model with

great potential for application but certain logical problems can be saved from

absurdity without severely upsetting the underlying syntax or semantics.

C&L’s theory of intention as a persistent goal has furnished a great founda-

tion for new theory and application. Theories of joint intention and theories of

speech acts can both be built from its constructs, and Tambe and Jennings have

provided us with creditable implementations. However, Singh makes disturbing

observations about the original theory. In particular, agents’ commitments can

be automatically (and inappropriately) brought about, agents can not intend the

same action twice consecutively, and agents are unable to hold multiple intentions.

The original theory suffers from these problems, in addition to some vestige

of the side-effect problem and the full fledged logical omniscience problem. Yet

it has proved quite inspring in practical use. Since the theory is intended as a

specification for the design of an agent, but the deduction of formulae in the logic

is generally intractable, every agent based on it must embody an approximation

of the theory. This approximation may include a subset of the logic with or

without modifications. For example, the Jess implementation presented here can

infer only a subset of true formulas, although these are adequate for the purposes

of intention formation. Thus, designers are able to utilize the desirable features

of the theory while ignoring or avoiding the undesirable aspects.
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While the logical problems are not fatal to C&L’s theory, there is insight to

be had in solving some of these problems. The notion of intention as a persis-

tent goal formalizes a partial solution to the problem of rational balance, making

it clear that intentions should persist. The notion of weak intention as a form

of commitment provides a framework to assist agents in constructing plans. Fi-

nally, plans may be executed by means of strong (present-directed) intentions,

completing the formalization of rational balance.

By capturing these notions, and implicitly tying agents’ beliefs to their ac-

tions, the theory presented here gives us certain insights into the rational agency.

First of all, agents become more rational by being intentional, because they can

persistently concentrate on goals and plans, and this facilitates means-ends rea-

soning. In addition, agents intend things to occur in the future with unspecified

plans, but agents always know exactly what they are doing when they intention-

ally do it. These insights concur with certain conclusions of Searle and Bratman.

The revised theory then, like the original, has philosophical appeal. On the im-

plementation side of the problem, it seems feasible to design agents based on the

revised theory of intention as a persistent goal, as demonstrated by the prototype

agent presented. Future work involving the theory should involve applying the

revisions to higher level constructs such as joint intentions, and developming more

extensive experimental agent architectures, especially multiagent systems.
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(deftemplate actionExpression

"an action expression is an action var, two

actionExpressions separated by ;, or a Wff?."

(slot mode (default Actionvar))

(slot subj (default e))

(slot subj2 (default nil))

(slot length (default 1))

(slot time (default abstract))

(slot cost (default 10))

)

(deftemplate Wff

"a well formed formula "

(slot mode (default Pred))

(slot subj (default nil))

(slot subj2 (default nil))

(slot time (default abstract))

(slot cost (default 10))

(slot aux (default nil))

)

(deftemplate Single-Action-Recipe

(slot precondition)

(slot action)

(slot postcondition)

)

(deftemplate Multi-Action-Recipe

(slot precondition)

(slot first)

(slot rest)

(slot postcondition)

)

Fig. 1. Data Structures of the Implementation
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(defrule handleSingleActionExecution

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1) (subj2

?s2))

?pre met <- (Wff (time ?t&~abstract) (mode ?m1)

(subj ?s1)

(subj2 ?s2))

?r <- (Single-Action-Recipe (precondition ?pre)

(action ?e) (postcondition ?p))

=>

(assert (Wff (mode INTEND1) (subj ?e) (time ?t)))

(printout t "Intention toward action " ?e " formed." crlf)

)

Fig. 2. Intending the Immediate

(defrule handleSingleActionReasoning

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2))

?r <- (Single-Action-Recipe (precondition ?pre)

(action?e) (postcondition ?p))

(not (Wff (time ?t&~abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2)))

?prequel <- (Single-Action-Recipe (precondition ?prepre)

(action ?e2) (postcondition ?pre))

(not (Multi-Action-Recipe (precondition ?prepre)

(postcondition ?p)))

=>

(assert (Multi-Action-Recipe (precondition ?prepre)

(first ?prequel)

(rest ?r) (postcondition ?p)))

(printout t "2-Action-Recipe formed from " ?prequel " and

" ?r crlf)
)

Fig. 3. Planning Two-Action Sequences of Events
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(defrule handleMultiActionReasoning

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2))

?r <- (Multi-Action-Recipe (precondition ?pre) (first ?e1)

(rest ?e2)

(postcondition ?p))

; precondition of our recipe is not met:

(not (Wff (time ?t&~abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2)))

; but there exists a recipe to meet it:

?prequel <- (Single-Action-Recipe (precondition ?prepre)

(action ?e)

(postcondition ?pre))

(not (Multi-Action-Recipe (precondition ?prepre)

(postcondition ?p)))

=>

(assert (Wff (mode PGOAL) (subj ?pre) (time ?t)))

(assert (Multi-Action-Recipe (precondition ?prepre)

(first ?prequel)

(rest ?r) (postcondition ?p)))

(printout t "Multi-Action-Recipe formed from " ?prequel "

and " ?rcrlf)

)

Fig. 4. Planning Multi-Action Sequences of Events
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( defrule handleMultiActionExecution

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2))

; actual preconditions met:

?pre met <- (Wff (time ?t&~abstract) (mode ?m1)

(subj ?s1) (subj2 ?s2))

?r <- (Multi-Action-Recipe (precondition ?pre) (first ?r1)

(rest ?rs) (postcondition ?p))

(not (Wff (mode INTEND1) (time ?t)))

=>

(assert (Wff (mode INTEND1) (subj (fact-slot-value ?r1

action))

(time ?t)))

(printout t "Intention toward " (fact-slot-value ?r1

action) ", first

action of " ?r " formed at time " ?t " because "

?pre met crlf)

)

Fig. 5. Intending Progress on Long Action Sequences
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(deffacts just-the-facts

;First, we need some abstract propositions to work with

;fact 1: Little Nell in Danger

(Wff (subj NellInDanger) (time abstract) (cost 0))

;fact 2: Little Nell saved - not in danger

(Wff (subj (fact-id 1)) (mode Neg) (time abstract)

(cost 0)(aux Special))

;Next, we need a plan library for the agent

(Single-Action-Recipe (precondition (fact-id 1))

(action save Nell) (postcondition (fact-id 2)))

;Now we can describe the world at each timestep

; agent commits to save nell;

(Wff (subj (fact-id 2)) (mode PGOAL) (time 0)

(cost 0))

(Wff (subj NellInDanger) (time 0) (cost 0))

(Wff (subj (fact-id 1)) (mode Bel) (time 0) (cost 0))

(actionExpression (subj save Nell) (time 0) (cost 0))

(Wff (subj (fact-id 1)) (mode Neg) (time 1) (cost 0))

(Wff (subj (fact-id 2)) (mode Bel) (time 1) (cost 0))

)

Fig. 6. Encoding of McDermott’s Little Nell Story
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APPENDIX B

UNABBREVIATED AGENT AND SCENARIO CODE

A. Chisholm’s Patrucidal Agent

(deffacts chisholm-facts

;First, we need some abstract propositions to work with

; fact 1: At Agent’s House

(Wff (subj AtHome) (time abstract) (cost 0))

;fact 2: At Uncle’s

(Wff (subj AtUncles) (time abstract) (cost 0)

(aux Special))

;fact 3: Uncle alive

(Wff (subj UncleAlive) (time abstract) (cost 0))

;fact 4: Not at home

(Wff (subj (fact-id 1)) (mode Neg) (time abstract)

(cost 0)

(aux Special))

;fact 5: Not at Uncle’s

(Wff (subj (fact-id 2)) (mode Neg) (time abstract)

(cost 0))

;fact 6: Uncle dead

(Wff (subj (fact-id 3)) (mode Neg) (time abstract)

(cost 0) (aux Special))

;fact 7: To drive to the Uncle’s house

(actionExpression (subj drive to uncles) (time abstract)

(cost 0))

;fact 8: To kill the Uncle

(actionExpression (subj kill uncle) (time abstract)

(cost 0))

;fact 9: agent at uncle’s and uncle is living

(Wff (subj (fact-id 2)) (subj2 (fact-id 3)) (cost 1)

(mode And))
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;fact 10: agent at home and his uncle is living

(Wff (subj (fact-id 1)) (subj2 (fact-id 3)) (cost 1)

(mode And))

;Next, we need a plan library for the agent

;recipe 1: driving to the uncle’s will get us there

;with him alive!

(Single-Action-Recipe (precondition (fact-id 10)) (action

(fact-id 7))

(postcondition (fact-id 9)))

;recipe 2: if one is at the uncle’s house and the uncle

; is alive, then one can kill the uncle

(Single-Action-Recipe (precondition (fact-id 9)) (action

(fact-id 8))

(postcondition (fact-id 6)))

; time 0: agent commits to uncle being dead

(Wff (subj (fact-id 6)) (mode PGOAL) (time 0)

(cost 1))

; at home

(Wff (subj AtHome) (time 0) (cost 1) (aux Conj))

; not at uncle’s

(Wff (subj (fact-id 2)) (mode Neg) (time 0) (cost 1))

; uncle alive

(Wff (subj UncleAlive) (time 0) (cost 1) (aux Conj))

; believe at home

(Wff (subj (fact-id 1)) (mode Bel) (time 0) (cost 1))

; believe uncle alive

(Wff (subj (fact-id 3)) (mode Bel) (time 0) (cost 1))

(actionExpression (subj drive to uncles) (time 0)

(cost 1))

;time 1: agent drove to uncle’s house

; not at home

(Wff (subj (fact-id 1)) (mode Neg) (time 1) (cost 1))

; at uncle’s
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(Wff (subj AtUncles) (time 1) (cost 1) (aux Conj))

; uncle alive

(Wff (subj UncleAlive) (time 1) (cost 1) (aux Conj))

; believe at uncle’s

(Wff (subj (fact-id 2)) (mode Bel) (time 1) (cost 1))

; and believe uncle alive

(Wff (subj (fact-id 3)) (mode Bel) (time 1) (cost 1))

(actionExpression (subj kill uncle) (time 1) (cost 1))

;time 2: agent succeeded in heinous crime

; not at home

(Wff (subj (fact-id 1)) (mode Neg) (time 2) (cost 1))

; at uncle’s

(Wff (subj AtUncles) (time 2) (cost 1))

; uncle dead

(Wff (subj (fact-id 3)) (mode Neg) (time 2) (cost 1))

; believe at uncle’s

(Wff (subj (fact-id 2)) (mode Bel) (time 2) (cost 1))

; and believe uncle dead

(Wff (subj (fact-id 6)) (mode Bel) (time 2) (cost 1))

)

B. Singh’s Restaurant Agent

(deffacts singh-restaurant

"An agent intends to serve tea and coffee; he knows the recipes to

do so. To serve tea, he may place a filled cup of coffee on the

counter. To serve coffee, he may place a filled cup of coffee on

the counter. To fill a cup with tea, he may pour from the pitcher

into an empty cup he holds. To fill a cup with coffee, he may

pour from the coffee pot into an empty cup he holds. To hold a

cup, he must pick up a cup."

;First, we need some abstract propositions to work with

;fact 1: HoldingCupTea

(Wff (subj HoldingCupTea) (time abstract) (cost 0)

(aux Special))



65

;fact 2: HoldingCupCoffee

(Wff (subj HoldingCupCoffee) (time abstract) (cost 0)

(aux Special))

;fact 3: HoldingEmptyCup

(Wff (subj HoldingEmptyCup) (time abstract) (cost 0)

(aux Special))

;fact 4: CoffeePotAvilible

(Wff (subj CoffeePotAvailible) (time abstract) (cost 0))

;fact 5: TeaPitcherAvailible

(Wff (subj TeaPitcherAvailible) (time abstract) (cost 0)

(aux Special))

;fact 6: EmptyCupAvailible

(Wff (subj EmptyCupAvailible) (time abstract) (cost 0))

;fact 7: TeaServed

(Wff (subj TeaServed) (time abstract) (cost 0)

(aux Special))

;fact 8: CoffeeServed

(Wff (subj CoffeeServed) (time abstract) (cost 0)

aux Special)

;fact 9: Not holding a cup of tea

(Wff (subj (fact-id 1)) (mode Neg) (time abstract)

(cost 0) )

;fact 10: Not holding a cup of coffee

(Wff (subj (fact-id 2)) (mode Neg) (time abstract)

(cost 0))

;fact 11: Not holding an empty cup

(Wff (subj (fact-id 3)) (mode Neg) (time abstract)

(cost 0) )

;fact 12: Coffee Pot is not availible

(Wff (subj (fact-id 4)) (mode Neg) (time abstract)

(cost 0) )

;fact 13: Tea Pitcher is not avialible

(Wff (subj (fact-id 5)) (mode Neg) (time abstract)

(cost 0))

;fact 14: An Empty Cup is availible

(Wff (subj (fact-id 6)) (mode Neg) (time abstract)
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(cost 0) )

;fact 15: Tea Not Served

(Wff (subj (fact-id 7)) (mode Neg) (time abstract)

(cost 0))

;fact 16: Coffee Not Served

(Wff (subj (fact-id 8)) (mode Neg) (time abstract)

(cost 0) )

;fact 17: To serve tea

(actionExpression (subj serve tea) (time abstract)

(cost 0))

;fact 18: To serve coffee

(actionExpression (subj serve coffee) (time abstract)

(cost 0))

;fact 19: To pour tea

(actionExpression (subj pour tea) (time abstract)

(cost 0))

;fact 20: To pour coffee

(actionExpression (subj pour coffee) (time abstract)

(cost 0))

;fact 21: To pick up a cup

(actionExpression (subj pick up cup) (time abstract)

(cost 0))

;fact 22: Tea Pitcher availible and holding empty cup

(Wff (subj (fact-id 3)) (subj2 (fact-id 5)) (cost 1)

(mode And) (aux Special))

;fact 23: Coffee Pot availible and holding empty cup

(Wff (subj (fact-id 3)) (subj2 (fact-id 4)) (cost 1)

(mode And) (aux Special))

;Next, we need a plan library for the agent

;recipe 1: to serve tea, place a filled cup of tea on

;the counter

(Single-Action-Recipe (precondition (fact-id 1))

(action (fact-id 17)) (postcondition (fact-id 7)))

;recipe 2: to serve coffee, place a filled cup of coffee

;on the counter

(Single-Action-Recipe (precondition (fact-id 2))
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(action (fact-id 18)) (postcondition (fact-id 8)))

;recipe 3: to fill tea, pour pitcher into cup you are

;holding

(Single-Action-Recipe (precondition (fact-id 22))

(action (fact-id 19)) (postcondition (fact-id 1)))

;recipe 4: to fill coffee, pour pot into cup you are

;holding

(Single-Action-Recipe (precondition (fact-id 23))

(action (fact-id 20)) (postcondition (fact-id 2)))

;recipe 5: to pick up cup, pick up an availible cup

(Single-Action-Recipe (precondition (fact-id 6))

(action (fact-id 21)) (postcondition (fact-id 22)))

;recipe 6: to pick up cup, pick up an availible cup

(Single-Action-Recipe (precondition (fact-id 6))

(action (fact-id 21)) (postcondition (fact-id 23)))

;Now we can describe the world at each timestep

;time 0: agent commits to serve tea and coffee

;the agent should pick up cup

;the empty cup is availible.

; agent commits to serve tea

(Wff (subj (fact-id 7)) (mode PGOAL) (time 0) (cost 1))

; agent commits to serve coffee

(Wff (subj (fact-id 8)) (mode PGOAL) (time 0) (cost 1))

; empty cup availible

(Wff (subj EmptyCupAvailible) (time 0) (cost 1))

;time 1: the coffee pot is not availible. The

;tea pitcher is availible. (the agent should pour tea)

; Tea Pitcher availible and holding empty cup

(Wff (subj (fact-id 3)) (subj2 (fact-id 5)) (mode And)

(time 1) (cost 1))

;time 2: (It happens that the agent should

;serve tea)

; holding cup of tea.

(Wff (subj HoldingCupTea) (time 2) (cost 1))

;time 3: An empty cup is availible. (the agent

;should pick up the cup)
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(Wff (subj EmptyCupAvailible) (time 3) (cost 1))

(Wff (subj TeaServed) (time 3) (cost 1))

;time 4: The coffee pot is availible. (the

;agent should pour coffee)

(Wff (subj (fact-id 3)) (subj2 (fact-id 4)) (mode And)

(time 4) (cost 1))

(Wff (subj HoldingEmptyCup) (time 4) (cost 1))

;time 5: (It happens that the agent should

;serve coffee.)

(Wff (subj HoldingCupCoffee) (time 5) (cost 1))

;time 6: coffee is served

(Wff (subj CoffeeServed) (time 6) (cost 1))

)

C. Agent and World State Code

;******************************************************************

;General helper rules - generate abstract propositions to work with

;******************************************************************

;eleminate negations

(defrule eliminateNegations

?p <- (Wff (mode ?m) (subj ?s) (subj2 ?s2) (cost ?c)

(time abstract))

?neg <- (Wff (mode Neg) (subj ?p) (time abstract))

?neg2 <- (Wff (mode Neg) (subj ?neg) (time abstract))

?prop <- (Wff (mode ?what) (subj ?neg2) (subj2 nil) (time ?t))

(not (Wff (mode ?what) (subj ?p) (subj2 nil) (time ?t)))

=>

(assert (Wff (mode ?what) (subj ?p) (cost (+ ?c 1)) (time ?t)))



69

;(printout t "Elminated a double negation in " ?prop crlf)

)

;error - logical contradiction

(defrule contradiction

?a <- (Wff (time ?t&~abstract))

?b <- (Wff (mode Neg) (subj ?a) (time ?t&~abstract))

=>

(printout t " ***** ERROR: Logical contradiction between " ?a "

and "

?b crlf)

)

(defrule abstractBelief

?p <- (Wff (cost ?c) (time abstract))

(not (Wff (mode Bel) (subj ?p)))

(test (< ?c 2))

=>

(assert (Wff (mode Bel) (subj ?p)))

)

;Abstract Propositions

(defrule abstractProps

(Wff (mode ?m) (time ?t&~abstract) (subj ?x) (subj2 ?y)

(cost ?c))

(not (Wff (mode ?m) (time abstract) (subj ?x) (subj2 ?y)))
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(test (< ?c 2))

=>

(assert (Wff (mode ?m) (time abstract) (subj ?x) (subj2 ?y)

(cost (+ 1 ?c))))

)

;Abstract negations of propositions

(defrule abstractNegs

(Wff (mode ?m) (time ?t&~abstract) (subj ?x) (subj2 ?y)

(cost ?c))

?pabs <- (Wff (mode ?m) (time abstract) (subj ?x) (subj2 ?y)

(cost ?c2))

(not (Wff (mode Neg) (time abstract) (subj ?pabs)))

(test (< ?c2 2))

=>

(assert (Wff (mode Neg) (time abstract) (subj ?pabs)

(cost ?c2)))

)

;NOT NOT

(defrule doublenegL

?pabs <- (Wff (time abstract) (cost ?c) (mode ?m) (subj ?x)

(subj2 ?y))

?p <- (Wff (time ?t&~abstract) (cost ?c2) (mode ?m )

(subj ?x)

(subj2 ?y))
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(test (< ?c2 2))

?pnegabs <- (Wff (time abstract) (cost ?c3) (mode Neg)

(subj ?pabs))

(not (Wff (time ?t) (mode Neg) (subj ?pnegabs)))

=>

(assert (Wff (time ?t) (cost (+ 1 ?c)) (mode Neg)

(subj ?pnegabs)))

)

;Abstract time events - useless if events abstractly

;declared in facts

(defrule abstractEvents

(actionExpression (mode ?m) (time ?t&~abstract)

(length ?l)

(subj ?ev) (subj2 ?ev2) (cost ?c))

(not (actionExpression (mode ?m) (time abstract)

(subj ?ev) (subj2 ?ev2)

(length ?l)))

(test (< ?c 2))

=>

(assert (actionExpression (time abstract) (cost (+ 1 ?c))

(subj ?ev)

(subj2 ?ev2) (length ?l) (mode ?m)))

)

;******************************************************************
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; Definitions - Produce elaborations on world state description

;******************************************************************

;Occurrence of sequences (defrule SequenceOccurs

?e1 <- (actionExpression (mode ?typ1) (subj ?s)

(subj2 ?s2)

(time ?t1&~abstract) (length ?l) (cost ?c1))

?e1abs <- (actionExpression (mode ?typ1) (subj ?s)

(subj2 ?s2)

(time abstract) (length ?l))

?e2 <- (actionExpression (mode ?typ2) (subj ?s3)

(subj2 ?s4)

(time ?t2&~abstract) (length ?l2) (cost ?c2))

?e2abs <- (actionExpression (mode ?typ2) (subj ?s3)

(subj2 ?s4)

(time abstract) (length ?l2))

(test (< (+ ?c1 ?c2) 1))

(test (eq (+ ?t1 ?l) ?t2))

(not (actionExpression (mode Semicolon) (time ?t1)

(subj ?e1abs)

(subj2 ?e2abs)))

=>

(assert (actionExpression (mode Semicolon) (time ?t1)

(length (+ ?l ?l2))

(cost ( + 1 (+ ?c1 ?c2))) (subj ?e1abs ) (subj2 ?e2abs )))

;(printout t "Sequence " ?e1 ";" ?e2 " occurs at time "

?t1 " to " ?t2 ",
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cost " (+ ?c1 ?c2) crlf)

)

;Test Action

(defrule TestActionOccurs

(Wff (subj ?s) (subj2 ?s2) (mode ?m) (time ?ti&~abstract)

(cost ?c))

?wabs <- (Wff (subj ?s) (subj2 ?s2) (mode ?m) (time abstract)

(cost ?c1))

(test (< ?c 2))

(not (actionExpression (mode Testaction) (subj ?wabs)

(time ?ti)))

=>

(assert (actionExpression (mode Testaction) (subj ?wabs)

(time ?ti)

(length 0) (cost (+ ?c 1))))

;(printout t "Test Action on " ?wabs " occurs at time

" ?ti ", cost "

?c crlf)

)

;EVENTUALLY

(defrule whenEventually

?trash <- (Wff (time ?t&~abstract) (cost ?c1) )

?pabs <- (Wff (time abstract) (mode ?m) (subj ?s) (subj2 ?s2)

(cost ?c3))
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?p <- (Wff (time ?t2&~abstract)(mode ?m) (subj ?s)

(subj2 ?s2)

(cost ?c2))

(not (Wff (time ?t) (mode Eventually) (subj ?pabs)))

(test (<= ?t ?t2))

(test (< ?c2 3))

=>

(assert (Wff (time ?t) (mode Eventually) (subj ?pabs)

(cost (+ 1 ?c2))))

;(printout t "Eventually " ?pabs " occurs at time "

?t ", cost "

(+ ?c1 ?c2) crlf)

)

;LATER (defrule whenLater

;If ?p is not the case but is the case eventually,

;then Later ?p.

?pneg <- (Wff (time ?t&~abstract) (mode Neg)

(subj ?p) (cost ?c1))

?peventually <- (Wff (time ?t) (mode Eventually)

(subj ?p) (cost ?c2))

(test (< (+ ?c1 ?c2) 4))

(not (Wff (time ?t) (subj ?p) (mode Later)))

=>

(assert (Wff (time ?t) (cost (+ ?c2 ?c1)) (mode Later)

(subj ?p) ))
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;(printout t "Later " ?p " occurs at time " ?t ", cost "

(+ 1 (+ ?c2 ?c1))

crlf)

)

;HAPPENS

(defrule ActionsHappen

?act <- (actionExpression (mode ?typ) (subj ?s) (subj2 ?s2)

(time ?t&~abstract) (length ?l) (cost ?c))

?actabs <- (actionExpression (mode ?typ) (subj ?s) (subj2 ?s2)

(time abstract) (length ?l) )

(test (< ?c 3))

(not (Wff (mode Hap) (subj ?actabs) (time ?t) ))

=>

(assert (Wff (mode Hap) (subj ?actabs) (time ?t)

(cost (+ ?c 1))))

;(printout t "Happens Action " ?actabs " at time " ?t ", cost "

?c crlf)

)

;DONE

(defrule ActionsDone

?act <- (actionExpression (mode ?typ) (subj ?e) (subj2 ?e2)

(time ?t&~abstract) (length ?l) (cost ?c))

?actabs <- (actionExpression (mode ?typ) (subj ?e) (subj2 ?e2)

(time abstract) (length ?l) )
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(test (< ?c 3))

(not (Wff (mode Done) (subj ?actabs) (time ?t)))

=>

(assert (Wff (mode Done) (subj ?actabs) (time (+ ?t ?l))

(cost (+ ?c 1))))

;(printout t "Done Action " ?actabs " at time " (+ ?t ?l) ",

cost " ?c

crlf)

)

;BEFORE

;(BEFORE p q)

; if q occurs in a sequence of events, p occurs before it does.

(defrule whenBefore

(Wff (time ?t&~abstract)) ?q <- (Wff (time ?tq&~abstract) (subj ?x)

(subj2 ?x2)

(mode ?m)

(cost ?cq))

?qabs <- (Wff (time abstract) (subj ?x) (subj2 ?x2) (mode ?m))

?p <- (Wff (time ?tp&~abstract) (subj ?y) (subj2 ?y2)

(mode ?m2)

(cost ?cp))

?pabs <- (Wff (time abstract) (subj ?y) (subj2 ?y2) (mode ?m2))

(test ( <= ?t ?tp ))

(test ( <= ?tp ?tq))

(test ( < (+ ?cp ?cq) 1))
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(not (Wff (mode Before) (subj ?pabs) (subj2 ?qabs)))

=>

(assert (Wff (mode Before) (subj ?pabs) (subj2 ?qabs) (cost (+ 1

(+ ?cp ?cq))) (time ?t)))

;(printout t "Before " ?pabs " " ?qabs " at time " ?tp " and "

?tq ", cost " (+ (+ 1 ?cp) ?cq) crlf)

)

;AND

(defrule whenAnd

?alpha <- (Wff (time abstract) (subj ?x1) (subj2 ?y1) (mode ?m))

?beta <- (Wff (time abstract) (subj ?x2) (subj2 ?y2) (mode ?m2))

(and (Wff (time ?t&~abstract) (subj ?x1) (subj2 ?y1) (mode ?m)

(cost ?c1) (aux Conj)) (Wff (time ?t&~abstract) (subj ?x2)

(subj2 ?y2) (mode ?m2) (cost ?c2) (aux Conj)))

(not (Wff (time ?t) (subj ?alpha) (subj ?beta) (mode And)))

(test (< (+ ?c1 ?c2) 3))

=>

(assert (Wff (time ?t) (mode And) (subj ?alpha) (subj2 ?beta)

(cost ( + (+ ?c1 ?c2) 1 ))))

;(printout t ?alpha " AND " ?beta " occurs at time " ?t " cost "

?c1 " +"

?c2 " = " (+ ?c1 ?c2) crlf)

)

;AND2
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(defrule whenAnd2

?alpha <- (Wff (time abstract) (subj ?x1) (subj2 ?y1) (mode ?m))

?beta <- (Wff (time abstract) (subj ?x2) (subj2 ?y2) (mode ?m2))

(and (Wff (time ?t&~abstract) (subj ?x1) (subj2 ?y1) (mode ?m)

(cost ?c1) (aux Conj)) (Wff (time ?t&~abstract) (subj ?x2)

(subj2 ?y2) (mode ?m2) (cost ?c2) (aux Conj)))

(not (Wff (time ?t) (subj ?beta) (subj ?alpha) (mode And)))

(test (< (+ ?c1 ?c2) 3))

=>

(assert (Wff (time ?t) (mode And) (subj ?beta) (subj2 ?alpha)

(cost ( + (+ ?c1 ?c2) 1 ))))

;(printout t ?beta " AND " ?alpha " occurs at time " ?t " cost "

?c1 " +"

?c2 " = " (+ ?c1 ?c2) crlf)

)

;OR

(defrule whenOr

?alpha <- (Wff (time abstract) (subj ?x1) (subj2 ?y1) (mode ?m))

?beta <- (Wff (time abstract) (subj ?x2) (subj2 ?y2) (mode ?m2))

?trash <- (Wff (time ?t&~abstract) (subj ?x1|?x2)

(subj2 ?y1|?y2) (mode ?m|?m2) (cost ?c1|?c2))

(or (Wff (time ?t&~abstract) (subj ?x1) (subj2 ?y1) (mode ?m)

(cost ?c1)) (Wff (time ?t&~abstract) (subj ?x2) (subj2 ?y2)

(mode ?m2) (cost ?c2)))

(not (Wff (time ?t) (subj ?alpha) (subj ?beta) (mode Or)))
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(test (< (+ ?c1 ?c2) 2))

=>

(assert (Wff (time ?t) (mode Or) (subj ?alpha) (subj2 ?beta)

(cost ( + (+ ?c1 ?c2) 1 ))))

;(printout t ?alpha " OR " ?beta " occurs at time " ?t " cost "

(+ ?c1 ?c2) crlf)

)

(defrule whenOr2

?alpha <- (Wff (time abstract) (subj ?x1) (subj2 ?y1) (mode ?m))

?beta <- (Wff (time abstract) (subj ?x2) (subj2 ?y2) (mode ?m2))

?trash <- (Wff (time ?t&~abstract) (subj ?x1|?x2)

(subj2 ?y1|?y2) (mode ?m|?m2) (cost ?c1|?c2))

(or (Wff (time ?t&~abstract) (subj ?x1) (subj2 ?y1) (mode ?m)

(cost ?c1)) (Wff (time ?t&~abstract) (subj ?x2) (subj2 ?y2)

(mode ?m2) (cost ?c2)))

(not (Wff (time ?t) (subj ?beta) (subj ?alpha) (mode Or)))

(test (< (+ ?c1 ?c2) 2))

=>

(assert (Wff (time ?t) (mode Or) (subj ?beta) (subj2 ?alpha)

(cost ( + (+ ?c1 ?c2) 1 ))))

;(printout t ?beta " OR " ?alpha " occurs at time " ?t " cost "

(+ ?c1 ?c2) crlf)

)

;******************************************************************



80

; REST OF IMPLEMENTATION IS AGENT CODE

;******************************************************************

;******************************************************************

; Rules for planning

;******************************************************************

;What we should do about single actions if no current plan but

preconditions met

(defrule handleSingleActionExecution

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1) (subj2 ?s2))

?pre met <- (Wff (time ?t&~abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2))

(not (Wff (mode INTEND1) (time ?t)))

?r <- (Single-Action-Recipe (precondition ?pre) (action ?e)

(postcondition ?p))

=>

(assert (Wff (mode INTEND1) (subj ?e) (time ?t)))

(printout t "Intention toward action " ?e " formed at time " ?t

crlf)

)

;What we should do about single actions if no current plan

; and no preconditions met

(defrule handleSingleActionReasoning

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1) (subj2 ?s2))
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?r <- (Single-Action-Recipe (precondition ?pre) (action ?e)

(postcondition ?p))

; precondition of our recipe is not met...

(not (Wff (time ?t&~abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2)))

?prequel <- (Single-Action-Recipe (precondition ?prepre)

(action ?e2)

(postcondition ?pre)) ; but there exists a recipe to meet it!

(not (Multi-Action-Recipe (precondition ?prepre)

(postcondition ?p)))

=>

(assert (Multi-Action-Recipe (precondition ?prepre)

(first ?prequel)

(rest ?r) (postcondition ?p)))

(printout t "2-Action-Recipe formed from " ?prequel " and " ?r

" (whose

precondition is " (fact-slot-value ?r precondition) ") with

precondition "

?prepre " and postcondition " ?p crlf)

)

(defrule handleMultiActionReasoning

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1) (subj2 ?s2))

?r <- (Multi-Action-Recipe (precondition ?pre) (first ?e1)

(rest ?e2) (postcondition ?p))
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; precondition of our recipe is not met:

(not (Wff (time ?t&~abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2)))

; but there exists a recipe to meet it:

?prequel <- (Single-Action-Recipe (precondition ?prepre)

(action ?e) (postcondition ?pre))

(not (Multi-Action-Recipe (precondition ?prepre)

(postcondition ?p)))

=>

(assert (Wff (mode PGOAL) (subj ?pre) (time ?t)))

(assert (Multi-Action-Recipe (precondition ?prepre)

(first ?prequel)

(rest ?r) (postcondition ?p)))

(printout t "Multi-Action-Recipe formed from " ?prequel " and "

?r crlf)

)

(defrule handleMultiActionExecution

(Wff (mode PGOAL) (subj ?p) (time ?t))

?pre <- (Wff (time abstract) (mode ?m1) (subj ?s1) (subj2 ?s2))

; actual preconditions met:

?pre met <- (Wff (time ?t&~abstract) (mode ?m1) (subj ?s1)

(subj2 ?s2))

?r <- (Multi-Action-Recipe (precondition ?pre) (first ?r1)

(rest ?rs) (postcondition ?p)) (not (Wff (mode INTEND1) (time ?t)))

=>
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; then intend the action

(assert (Wff (mode INTEND1) (subj (fact-slot-value ?r1 action))

(time ?t)))

(printout t "Intention toward " (fact-slot-value ?r1 action) ",

first action of " ?r " formed at time " ?t " because "

?pre met crlf)

)

;******************************************************************

; Agency helper rules

;******************************************************************

(defrule PersistenceOfPGOAL

?p <- (Wff (time abstract) (mode ?m) (subj ?s1) (subj2 ?s2))

?notp <- (Wff (time abstract) (mode Neg) (subj ?p))

?alwaysnotp <- (Wff (time abstract) (mode Always) (subj ?notp))

(Wff (mode PGOAL) (subj ?p) (time ?t&~abstract) (cost ?c))

; our P-GOAL does not come true next time

(not (Wff (time ?u&:(eq ?u (+ ?t 1))) (mode ?m) (subj ?s1)

(subj2 ?s2)))

; and we don’t believe always not p

(not (Wff (time ?u&:(eq ?u (+ ?t 1))) (mode Bel)

(subj ?alwaysnotp)))

(not (Wff (time ?u&:(eq ?u (+ ?t 1))) (mode PGOAL) (subj ?p)))

=>

(printout t "P-GOAL of " ?p " persists from time " ?t " to "

(+ ?t 1)
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crlf)

(assert (Wff (time (+ ?t 1)) (mode PGOAL) (subj ?p)))

)

;rule to generate abstract always not p

(defrule PGOAL helper gen always not p

?p <- (Wff (time abstract) (aux Special))

?neg <- (Wff (mode Neg) (time abstract) (subj ?p) (cost ?c))

(not (Wff (mode Always) (subj ?neg)))

=>

(assert (Wff (mode Always) (subj ?neg) (cost (+ ?c 1))))

(printout t "P-GOAL helper Always Not " ?p crlf)

)

;rule go generate Bel of always not p

(defrule PGOAL helper gen bel always not p

?p <- (Wff (time abstract) (aux Special))

?neg <- (Wff (mode Neg) (time abstract) (subj ?p))

?always <- (Wff (mode Always) (subj ?neg) (cost ?c))

(not (Wff (mode Bel) (time abstract) (subj ?always)))

=>

(assert (Wff (mode Bel) (subj ?always) (cost (+ ?c 1))))

(printout t "P-GOAL helper Bel Always Not " ?p crlf)

)

;rule to generate disjunction of bel and bel always not p
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(defrule PGOAL helper gen disj

?p <- (Wff (time abstract)(aux Special))

?neg <- (Wff (time abstract) (mode Neg) (subj ?p))

?always <- (Wff (mode Always) (subj ?neg))

?bel2 <- (Wff (time abstract) (mode Bel) (subj ?always))

?bel1 <- (Wff (time abstract) (mode Bel) (subj ?p))

(not (Wff (time abstract) (mode Or) (subj ?bel1) (subj2 ?bel2)))

=>

(assert (Wff (time abstract) (mode Or) (subj ?bel1)

(subj2 ?bel2)))

(printout t "P-GOAL helper disj " ?bel1 ?bel2 crlf)

)

;rule to generate abstract later of p

(defrule PGOAL helper gen later p

?p <- (Wff (time abstract) (cost ?c)(aux Special))

(not (Wff (mode Later) (time abstract) (subj ?p)))

(test (< ?c 2))

=>

(assert (Wff (mode Later) (subj ?p) (cost (+ ?c 1))))

(printout t "P-GOAL helper later " ?p crlf)

)

;rule to generate abstract of Not p

(defrule PGOAL helper gen not p

?p <- (Wff (time abstract) (cost ?c)(aux Special))
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(not (Wff (mode Neg) (time abstract) (subj ?p)))

(test (< ?c 2))

=>

(assert (Wff (mode Neg) (subj ?p) (cost (+ ?c 1))))

(printout t "P-GOAL helper Not " ?p crlf)

)

;rule to generate abstract goal of later of p

(defrule PGOAL helper gen goal later p

?p <- (Wff (time abstract)(aux Special))

?laterp <- (Wff (time abstract) (subj ?p) (mode Later)

(cost ?c))

(not (Wff (mode Goal) (subj ?laterp)))

(test (< ?c 3))

=>

(assert (Wff (mode Goal) (subj ?laterp) (cost (+ ?c 1))))

(printout t "P-GOAL helper goal later " ?p crlf)

)

;rule to generate abstract neg goal later p

(defrule PGOAL helper gen neg goal later p

?p <- (Wff (time abstract)(aux Special))

?laterp <- (Wff (time abstract) (subj ?p) (mode Later))

?goallaterp <- (Wff (mode Goal) (time abstract) (subj ?laterp)

(cost ?c))

(not (Wff (mode Neg) (subj ?goallaterp)))
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(test (< ?c 4))

=>

(assert (Wff (mode Neg) (subj ?goallaterp) (cost (+ ?c 1))))

(printout t "P-GOAL helper neg goal later " ?p crlf)

)

(defrule handleINTEND1 1

(Wff (mode INTEND1) (subj ?s) (time ?t) )

(not (Wff (mode Happens) (subj ?s) (time abstract)))

=>

(assert (Wff (mode Happens) (subj ?s) (time abstract)))

)

(defrule handleINTEND1 2

(Wff (mode INTEND1) (subj ?s) (time ?t) )

?h <- (Wff (mode Happens) (subj ?s) (time abstract))

(not (Wff (mode Bel) (subj ?h) (time ?t)))

=>

(assert (Wff (mode Bel) (subj ?h) (time ?t)))

)

;******************************************************************

; PGOAL definition

;******************************************************************

;infers existence of a P-GOAL

;P-GOAL
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(defrule whenPGOAL

?p <- (Wff (time abstract) (mode ?m) (subj ?s) (subj2 ?s2)

(cost ?c))

; *** Abstract elements of the P-GOAL ***

;abstract of Later p

?later <- (Wff (time abstract) (mode Later) (subj ?p))

;abstract Neg of p

?not <- (Wff (time abstract) (mode Neg) (subj ?later))

;abstract of Always Not p

?always not <- (Wff (time abstract) (mode Always)

(subj ?not))

;abstract of Bel Always Not p

?bel always not <- (Wff (time abstract) (mode Bel)

(subj ?always not))

;abstract of Bel p

?bel <- (Wff (time abstract) (mode Bel) (subj ?p))

;abstract disjunction ?bel

;or ?bel always not

?disj <- (Wff (time abstract) (mode Or) (subj ?bel)

(subj2 ?bel always not))

;abstract goal of ?later

?goal later <- (Wff (time abstract) (mode Goal)

(subj ?later))

;abstract Neg of ?goal later

?neg goal later <- (Wff (time abstract) (mode Neg)

(subj ?goal later))
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; top Level composition of the P-GOAL in current rule

;starts here

;goal of ?later, time t

(Wff (time ?t&~abstract) (mode Goal) (subj ?later))

;bel of ?not, time t

(Wff (time ?t) (mode Bel) (subj ?not))

;before of ?disj ?neg goal later, time t

(Wff (time ?t) (mode Before) (subj ?disj)

(subj2 ?neg goal later))

;P-GOAL not asserted yet

(not (Wff (time ?t) (mode PGOAL) (subj ?p)))

=>

(assert (Wff (time ?t) (mode PGOAL) (subj ?p)

(cost (+ 1 ?c))))

(printout t "P-GOAL of " ?p " at time " ?t ", cost "

?c crlf)

)

;******************************************************************

; results of a PGOAL

;******************************************************************

;what results from a PGOAL

(defrule whatPGOAL

(Wff (mode PGOAL) (subj ?p) (time ?t&~abstract))

;abstract of Later p - has helper

?later <- (Wff (time abstract) (mode Later) (subj ?p))
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(not (Wff (time ?t) (mode Goal) (subj ?later)))

=>

(assert (Wff (time ?t) (mode Goal) (subj ?later)))

(printout t "Asserted the Goal conjunct of a P-GOAL of " ?p crlf)

)

(defrule whatPGOAL2

(Wff (mode PGOAL) (subj ?p) (time ?t&~abstract))

(Wff (mode PGOAL) (subj ?p) (time ?t&~abstract))

;abstract Neg of p

?not <- (Wff (time abstract) (mode Neg) (subj ?p))

(not (Wff (time ?t) (mode Bel) (subj ?not)))

=>

;bel of ?neg, time t

(assert (Wff (time ?t) (mode Bel) (subj ?not)))

(printout t "Asserted the Bel conjunct of a P-GOAL of " ?p crlf)

)

(defrule whatPGOAL3

(Wff (mode PGOAL) (subj ?p) (time ?t&~abstract))

;abstract neg of p

?not <- (Wff (time abstract) (mode Neg) (subj ?p))

;abstract of Later p - has helper

?later <- (Wff (time abstract) (mode Later) (subj ?p))

;abstract of Bel p

?bel <- (Wff (time abstract) (mode Bel) (subj ?p))
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;abstract of Always Not p - has helper

?always not <- (Wff (time abstract) (mode Always) (subj ?not))

;abstract of Bel Always Not p

?bel always not <- (Wff (time abstract) (mode Bel)

(subj ?always not))

;abstract disjunction of ?bel and ?bel always not

?disj <- (Wff (time abstract) (mode Or) (subj ?bel)

(subj2 ?bel always not))

;abstract goal of ?later

?goal later <- (Wff (time abstract) (mode Goal) (subj ?later))

;abstract Neg of ?goal later

?neg goal later <- (Wff (time abstract) (mode Neg)

(subj ?goal later))

(not (Wff (time ?t) (mode Before) (subj ?disj)

(subj2 ?neg goal later)))

=>

;before of ?disj ?neg goal later, time t

(assert (Wff (time ?t) (mode Before) (subj ?disj)

(subj2 ?neg goal later)))

(printout t "Asserted the Before conjunct of a P-GOAL of " ?p crlf)

)

;******************************************************************

; results of an INTEND1 - the agent belives the act occurs.

;******************************************************************
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;what results from an intention toward action

(defrule whatINT1

(Wff (mode INTEND1) (subj ?e) (time ?t&~abstract))

?happening <- (Wff (mode Happens) (subj ?e) (time abstract))

(not (Wff (time ?t) (mode Bel) (subj ?happening)))

=>

(assert (Wff (time ?t) (mode Bel) (subj ?happening)))

(printout t "Asserted the Bel conjunct of an INTEND1 of " ?e crlf)

)
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