
PRODUCTIVITY PREDICTION MODEL BASED ON BAYESIAN ANALYSIS

AND PRODUCTIVITY CONSOLE

A Dissertation

by

SEOK JUN YUN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2005

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4269436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PRODUCTIVITY PREDICTION MODEL BASED ON BAYESIAN ANALYSIS

AND PRODUCTIVITY CONSOLE

A Dissertation

by

SEOK JUN YUN

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

Dick B. Simmons
(Co-Chair of Committee)

William M. Lively
(Co-Chair of Committee)

S. Bart Childs
(Member)

Ho-Yeong Kang
(Member)

Valerie E. Taylor
(Head of Department)

May 2005

Major Subject: Computer Science

iii

ABSTRACT

Productivity Prediction Model Based on Bayesian Analysis and Productivity

Console. (May 2005)

Seok Jun Yun, B.S., Korea Military Academy;

M.S., Naval Postgraduate School

Co–Chairs of Advisory Committee: Dr. Dick B. Simmons
Dr. William M. Lively

Software project management is one of the most critical activities in modern software

development projects. Without realistic and objective management, the software de-

velopment process cannot be managed in an effective way. There are three general

problems in project management: effort estimation is not accurate, actual status is

difficult to understand, and projects are often geographically dispersed. Estimat-

ing software development effort is one of the most challenging problems in project

management. Various attempts have been made to solve the problem; so far, how-

ever, it remains a complex problem. The error rate of a renowned effort estimation

model can be higher than 30% of the actual productivity. Therefore, inaccurate es-

timation results in poor planning and defies effective control of time and budgets in

project management. In this research, we have built a productivity prediction model

which uses productivity data from an ongoing project to reevaluate the initial pro-

ductivity estimate and provides managers a better productivity estimate for project

management. The actual status of the software project is not easy to understand

due to problems inherent in software project attributes. The project attributes are

dispersed across the various CASE (Computer-Aided Software Engineering) tools and

are difficult to measure because they are not hard material like building blocks. In

this research, we have created a productivity console which incorporates an expert

iv

system to measure project attributes objectively and provides graphical charts to

visualize project status. The productivity console uses project attributes gathered

in KB (Knowledge Base) of PAMPA II (Project Attributes Monitoring and Predic-

tion Associate) that works with CASE tools and collects project attributes from the

databases of the tools. The productivity console and PAMPA II work on a network, so

geographically dispersed projects can be managed via the Internet without difficulty.

v

To my families for their love, patience and encouragement.

vi

ACKNOWLEDGMENTS

This dissertation would not have been successful without the help and support of

many people. I would like to particularly express my deep appreciation and gratitude

to my advisor, Dr. Dick Simmons, for his guidance, invaluable comments, and the

countless hours he spent on me during my graduate studies at Texas A&M University.

This research work would not have been possible without his guidance and support.

His knowledge and experience have enriched both my academic and work experience.

I would like to thank research committee co-chair, Dr. William Lively for his guidance

in the area of software engineering and for his interest in my research. I would also

like to thank research committee member as well as graduate advisor, Dr. Bart

Childs, for giving me an opportunity to extend my knowledge in computer science.

Special thanks go to Dr. Ho-Yeong Kang for his friendly guidance and suggestions in

the area of statistics and project management. Thanks to the Ministry of National

Defense and the Army of the Republic of Korea (R.O.K.) for their economic support

and for giving me this great opportunity to pursue a Ph.D. degree at Texas A&M

University. I wish to thank my parents and in-laws for their continued support and

encouragement. Finally, to my wife Youngah and my daughter, Chaerin, and my son,

Seojin, I express sincere thanks for their assistance in helping me achieve my goals

by their support, patience and sacrifice over the years.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

I.1 Motivation . 1

I.2 Research Objective . 9

I.3 Organization of the Dissertation 12

II LITERATURE SURVEY . 13

II.1 Introduction . 13

II.2 Software Project Management 13

II.3 Definition of Productivity 30

II.4 Effort Estimation Model 34

II.5 COCOMO II . 47

II.6 Commercial Off the Shelf (COTS) Components 57

III BAYESIAN ANALYSIS . 59

III.1 Statistical Analysis . 59

III.2 Bayesian Analysis . 62

III.3 Model Assumption . 66

III.4 Multi-Parameter Estimation 66

IV DEVELOPMENT OF PAMPA II 68

IV.1 Overview of PAMPA II 68

IV.2 Framework of PAMPA II 69

IV.3 System Architecture of PAMPA II 74

IV.4 Subsystems of PAMPA II 77

V PRODUCTIVITY PREDICTION MODEL 83

V.1 Model Building Based on Bayesian Analysis 83

V.2 Productivity Console 87

V.3 Rules and Facts . 89

V.4 Project Attributes Gathering from CASE Tools 93

V.5 Visual Interface . 98

VI EXPERIMENTAL RESULTS 104

viii

CHAPTER Page

VI.1 Project Description . 104

VI.2 Preliminary Productivity Estimation 107

VI.3 Data Collection and Experimental Results 112

VII CONCLUSIONS AND FUTURE EXTENSION 116

VII.1 Conclusions . 116

VII.2 Future Extension . 118

REFERENCES . 121

APPENDIX A . 134

VITA . 162

ix

LIST OF TABLES

TABLE Page

1 User function types . 50

2 FP complexity levels . 52

3 UFP complexity weights . 53

4 Default UFP to SLOC conversion ratios 54

5 Effort required for COTS based development 58

6 Subsystems of PAMPA II . 77

7 Initial facts . 90

8 Earned value . 97

9 PAMPA II schema 1 . 102

10 PAMPA II schema 2 . 103

11 ACAP cost driver . 109

12 PCAP cost driver . 109

13 PCON cost driver . 109

14 APEX cost driver . 110

15 PLEX cost driver . 110

16 LTEX cost driver . 110

17 Posterior distribution on 2-27-04 . 114

x

LIST OF FIGURES

FIGURE Page

1 Uncertainty estimate . 6

2 Progress curve . 7

3 Project tracking and control model 14

4 Simmons’ project triangle . 26

5 Considering people, process, and product together 28

6 16 critical software practices for performance-based management . . . 29

7 Project management style . 31

8 Current productivity model . 33

9 Statistical analysis . 59

10 Overview of PAMPA II system architecture 69

11 Project . 70

12 Plan . 71

13 Work breakdown structure . 72

14 Software product . 74

15 Knowledge base framework and relationship 75

16 Three-tier architecture . 76

17 Outline of the system . 78

18 Data transformation module . 81

19 Productivity prediction model . 84

xi

FIGURE Page

20 Productivity console and PAMPA II 88

21 Expert system diagram . 89

22 Forms of the IF-THEN rule . 91

23 Detailed KB schema on plan . 96

24 Productivity console shows a project level view 100

25 Productivity console shows a team level view 101

26 Format of the weekly status report 107

27 Productivity estimates for the project 111

28 A sample of planned activities and effort/cost 112

1

CHAPTER I

INTRODUCTION

The process of controlling a software engineering project may well be

the most talked about and least understood of all the project managers’

functions. Lehman [73]

I.1 Motivation

A critical problem facing software development in today’s competitive environment

is project management. Project management is the primary key to software project

success or failure. Without realistic and objective management, the software devel-

opment process cannot be managed in an effective way.

A software project is a planned process of activities creating artifacts that occur

within a specified time and have the goal of delivering to customers a satisfactory

software product on time and within budget. Kemerer and Patrick [64], however,

provided ample anecdotal evidence that in general these goals are not being met. They

quoted that average budget overrun of 36% in 72 medium-scale software projects [56],

and cancellation of 25% in 500 software projects due to cost overruns [37].

The problem of project cancellation and cost overrun mainly depends on unpre-

dictable feature of the software project management. This unpredictability is the

basis of what has been referred to for the past 30 years as the “software crisis” [93].

Simmons pointed out that many software projects fail because of the manager’s in-

ability to visualize what is being created in time to influence project outcome [98].

Managing and overseeing large software projects is extremely difficult. In 1989,

This dissertation follows the style of IEEE Transactions on Software Engineering.

2

the record showed that software development was plagued with cost overruns, late

deliveries, poor reliability and user dissatisfaction [2]. Even today, software projects

are still late, over budget, and unpredictable [89]. Sometimes, the entire project fails

before ever delivering a software product. The Chaos study, published by the Standish

Group, found that 26% of all software projects fail (down from 40% in 1997), but 46%

experience cost and schedule overruns or significantly reduced functionality (up from

33% in 1997) [111]. Several attempts have been made to overcome these problems,

but few have been successful [86].

Managers would like to deliver products on time, within the budget, and with

few defects. However, it is impossible for them to accurately steer the project in

the right direction because there are no accurate ways for the managers to measure

where the product is at any given time. Managers have no decent project attributes

that can tell them when the project is going astray. Thus, managers have no way to

know when to initiate corrective action until it is too late [86]. For example, in 1995,

the Denver airport was delayed because of the software that controls the automatic

baggage system [17]. The delay caused by the software problem cost Denver $1.1

million a day in interest and operating costs. In 1996, after spending $7 billion, the

U.S. Federal Aviation Administration (FAA) ended up with a project that was “out

of control” [99]. In these cases, the true nature and pervasive extent of underlying

software project problems remained invisible to project managers until it was too

late. Because of planning, management, and visualization problems software systems

cost far more to build and take much longer to construct than the office buildings

occupied by the companies that have commissioned the software [57]. In addition to

the previous examples, Standish illustrated [105]:

• In 1995, only 16% of software projects were expected to finish on time and on

3

budget

• Projects completed by the largest US organizations have only 42% of originally

proposed functions

• An estimated 53% of projects will cost nearly 190% of their original estimates

• In large companies, only 9% of projects will be completed on time and on

budget.

• Cancelled projects cost the US $81 billion in 1995

• Average Management Information System (MIS) are one year late, 100% over

budge

Software projects have the potential to suffer from numerous problems including:

missed deadlines, inaccurate budgets, unmet specifications, product defects, unfore-

seen project risks, changing requirements, poor resource planning, and poor man-

agement. These risk factors have the potential to turn any software project into a

disaster. There are three general problems existing in the software project manage-

ment environment:

1. Effort estimation is not accurate.

Many factors must be dealt with when constructing an accurate software effort

estimate and developing a realistic project development plan. Current methods

for effort estimation are inadequate for developing an accurate plan. Jones [58]

stated that one of the reasons why a software project fails is management’s

failure to use accurate effort estimate due to fault of existing cost estimation

models. Even though many effort estimation models were suggested to date,

none of them succeeded to predict development effort accurately. The error rate

4

can be higher than 30% of the actual productivity [28]. Managers use wrong

software effort estimates and brute force plans to manage software development

projects.

2. Actual status is difficult to understand.

Measuring the status of a software project involves collecting, validating, and

presenting true accurate status of software metrics and project data in a timely

manner. However, the project attributes are dispersed across the various CASE

tools and are difficult to measure because they are not hard stuff like building

blocks. They often do not know the actual status of the software product, when

problems happen, and how to refine the plan to solve problems. To date, no sys-

tem of standard check points for software projects exists that functions to point

out clear and unambiguous indicators of possible failure or success [58]. This

leads to the subjective “90% completion” assertions by managers or developers.

3. Projects are often geographically dispersed.

In modern software development environments where organizations are sepa-

rated and dispersed across countries and continents and where a software project

can be made up of a number of different initiatives, controlling software projects

becomes very difficult. Existing project management software does not come

close to supporting wide area collaboration and project management.

The main tasks of software project management include planning, estimating,

tracking, and decision making. If the project’s progress continues to match the plan,

the project is in good shape. If there are some mismatches between the progress and

plan, then corrective action must be taken.

The software project management depends on the plan. Planning information

5

includes schedule and resource estimates, which provide the standards used for as-

sessing the significance of what is happening. Indeed, it has been stated that the

degree of control over a project can be no greater than the extent to which adequate

plans have been made for the project [84]. Therefore, accurate planning information

is a key to a successful software project. However, planning information is often not

accurate in the beginning of a project due to incorrect information about project

environment, resource estimates, customer requirement, etc. In the very early stages,

one may not know the specific nature of the product to be developed to better than

a factor of 4 [21].

In a software development project, managers use an effort estimation model

to estimate initial productivity. However, there is anecdotal evidence that effort

estimation models have high error rates [63][68][76]. As a result, it is recommended

to calibrate the model to an organization’s own actual data to increase the model’s

accuracy [28]. But it is usually hardly successful to calibrate the model because:

• Most managers don’t have knowledge and experience in calibration

• Organizations often have no enough history data available

• The suggested method to calibrate is academic oriented but not practical

With the problems listed above, a project plan can be fraught with inaccuracies and

managers can suffer from poor control over the development process, which result in

budget overrun or project failure.

Figure 1 shows the uncertainty estimate according to the project life cycle. The

uncertainty decreases as the life cycle proceeds, because product decisions are made,

and the nature of the product and its consequent features are better known. The un-

certainty of a project nature adds serious difficulty to providing of accurate planning

6

x

2x

4x

0.5x

0.25x

Feasibility Requirements Design Code
Delivery

Fig. 1. Uncertainty estimate

information. Therefore, the reevaluation of the planning information as the project

evolves gives more accurate management of the project.

To manage a software project, managers should know the status of every task

of the process. In short, project management is a management activity aimed at

ensuring that the progress of a project conforms to its plan. However, most assessment

depends on manual procedures. Inaccurate status information resulting in developer’s

subjective objection could lead to faulty decision making and cause project delays. For

example, a manger asks a developer the following questions regarding the progress

of an activity, “How are you doing with your coding?” and the developer replies,

“Well, I am almost done.” or “I have my coding 90% done already.” Those kinds

of verbal communications might not be correctly reflecting the actual status of the

software project. Manual procedures are fraught with inaccuracies and subjective

interpretations of what should be accurate quantitative measurements. An incorrect

decision based on faulty assessment can result in project failure.

7

Effort/Schedule

P
ro

gr
es

s

ac tual

planned

0

Progress Deviation

Project
final

milestone
Review

time

Fig. 2. Progress curve

Figure 2 shows a plot of progress in a project development cycle. The plot of

progress is an S-shaped curve [70]. A project starts slowly at the initial stage, because

progress is low due to a new development environment, technology, and suffering from

slow learning curve, incomplete and ambiguous specification, and frequent changes of

user requirements. Once those problems settle down, progress increases rapidly. At

the completion time nears, progress slows again when developers start testing and

debugging, minor changing of programming module, writing comment and documen-

tation, etc.

More over, many unforeseen factors can affect software project management.

Many mangers use the typical ad hoc software project management model. When

project starts, everyone works hard, and software comes out some time later. If

someone asks, the project is always “on the schedule.” The manager only has the

cloud view of the project status. This, together with the fact that the end software

product is hard to visualize, has led to a situation where many software development

8

projects are carried out in an ad hoc fashion and very often fail to meet their success

criteria. In Figure 2, actual progress does not coincide with planned progress at a

review time so a progress deviation exists. Therefore, it is essential to provide objec-

tive assessment of project progress in project management as software development

evolves.

Software development is harder to visualize than hardware fabrication. Software

is largely invisible. Relative to hardware, it is mostly intellectual. People can touch

a computer, a car or a building and can hold a printout of software or a disk or tape

containing magnetic images of software, but software is viewed through the minds

of an observer. When starting a software project, they have a clear start time, and

people typically know when they are finished, but the body of the software product

is largely hidden. For software projects, it becomes difficult to meet the deadlines

and to deliver the product features as promised and within the budget. The software

industry has faced its share of trouble as it has grown. It is possible to minimize

these risks by using automated project management tools [53].

A number of process management environments (PMEs) and project manage-

ment tools (PMTs) have been developed for project management. In general, PMEs

provide various features to support process modeling, process automation, and coop-

eration among workers. PMTs, such as Microsoft Project, AMS Timekeeper, Busi-

ness Engine, CASCADE, Innate Multi-Project and Timesheets, Micro-Frame Pro-

gram Manager for Windows, Risk+, Schedule Publisher, and Time Line [29] provide

features to support project planning and scheduling. However, they fall short of

supporting the project managers in their decision making processes.

Those tools are based on the deterministic optimization techniques and do not is-

sue warnings regarding possible future schedule slippage, analyze the causes of delays,

or provide recommendations for remedial action. Those tools are based on manual

9

gathering and assessing of the project data, which result in subjective assessment of

the project status. They do not provide the necessary features to assist the software

project managers in objective project management. For example, we need a tool to

explicitly describe if the progress of project activities has been accomplished, deter-

mine the current productivity of individual, team and project, or discover if resources

are adequate. Without the correct information, it becomes impossible to actively

monitor project failures and identify appropriate repairs before the project fails. Us-

ing existing tools, the managers do not know whether the project is going according

to the plan. Further aspects, which are not addressed by today’s management sys-

tems to support the software project manager, are the distributed and cross-platform

nature of system development [32].

I.2 Research Objective

Most important aspect of a software development project is to estimate development

productivity, i.e., estimating development productivity is central to the project man-

agement. Productivity is a major attribute for project management to keep track of

project status. Productivity of a project can be estimated with an effort estimation

model, for example, COCOMO II. However, no current effort estimation model can

provide an accurate estimate. As a result, the initial productivity estimate is not

accurate enough to tell the true effort of the project, which contributes to the un-

certainty of a software development project. This leads to the first of two research

questions:

Question 1. Can the reevaluation of the initial productivity estimate reduce the

uncertainty caused by the inaccurate initial estimate?

10

We have researched various statistical tools: regression analysis, logistic regres-

sion analysis, stepwise ANOVA, robust regression analysis, Bayesian analysis, etc. Of

all these tools, we chose Bayesian analysis as a candidate for our research, because

it provides a mechanism of feedback to improve an inference of parameter as well as

a system of using prior information available for the parameter as a starting point.

In this research, we are more interested in the reevaluation of the initial productivity

estimate obtained from an effort estimation model. So we devised the second research

question:

Question 2. Can Bayesian analysis be a good tool in the reevaluation of the initial

productivity estimate?

Compared with probabilistic modeling, the purpose of a statistical analysis is

fundamentally an inversion purpose, since it aims at retrieving the causes summa-

rized by observations. In other words, when observing a random phenomenon directed

by parameter θ, statistical methods allow to deduce from these observations an in-

ference about θ, while probabilistic modeling characterizes the behavior of the future

observations conditional on θ [91]. Bayesian analysis relies on the probabilistic dis-

tribution of parameter θ, therefore, it provides prediction capability. Besides, these

two questions lead to the main hypothesis of this research.

Hypothesis. Productivity prediction based on Bayesian analysis reduces the uncer-

tainty by providing a better productivity estimate in a software development

project.

To prove the hypothesis, we proposed four objectives of this research. First, the

overall goal of this dissertation is to build a productivity prediction model based on

11

Bayesian analysis that, we believe, provides improvement in the inference of param-

eters. Reevaluation of the initial productivity estimate as the project evolves gives

managers more command of the project management.

Second, we will create a system based on the productivity prediction model. It

will be a prototype of integrated three-tier system capable of working on the Internet

environment and PAMPA II system.

Third, we will gather real time data to validate the productivity prediction model.

The required knowledge objects of project attributes are represented in PAMPA II

knowledge base. PAMPA II system is used to gather project attributes in a quanti-

tative and objective procedure that remove inaccuracies and inconsistencies from the

monitoring, measuring, analyzing, and reporting assessment.

Fourth, a productivity console will be created to visualize the project status

on the Internet environment. The productivity console provides a view of progress,

current productivity, productivity and resource balance of a project via graphical

charts. The productivity console can be a navigator for managing a software project

to reach the desired destination. The graphical charts are working on an Internet web

browser, which help managers keep track of project status remotely.

PAMPA II was recently developed to describe plans based on an incremental

evolutionary project life cycle [100]. Knowledge can be acquired from software de-

velopment experts and CASE tool databases to create a knowledge base. Metrics

gathered from CASE tool databases can drive a visualization toolkit to assist man-

agers in directing a software project [97][98][49]. The expanded tool is used with a

Software Project Planning Associate (SPPA) that can track work breakdown struc-

tures compliance to plans [113]. The results of this research have been published in

conferences [115][114].

12

I.3 Organization of the Dissertation

Following this introductory chapter, this dissertation is presented in six additional

chapters. Chapter II presents relevant background research. This includes literature

on the subject of software project management. Bayesian analysis is described in

Chapter III. Chapter IV describes the features and subsystems of PAMPA II. Chapter

V discusses the productivity prediction model. Chapter VI explains project experi-

ment results used to test the research model. Chapter VII presents the conclusions

and discusses future extension of this research.

13

CHAPTER II

LITERATURE SURVEY

II.1 Introduction

Software project management is a key process leading to a successful software project [19].

The goal of the software project is to produce software to customer satisfaction that

is on time and within budget. For many managers of large complex systems, man-

agement is the biggest challenge in the development process. Many methods and

techniques have been studied, and various commercial support tools have been in-

troduced to assist managers in resolving the typical software project management

problems. This chapter describes the software project management, definition of pro-

ductivity, existing effort estimation models and the popular effort estimation model,

COCOMO II, and effort estimation technique of commercial-off-the shelf (COTS)

system.

II.2 Software Project Management

A software project is a planned process of creating artifact activities that occur within

a specified time and have the goal of delivering to customers a satisfactory software

product on time and within budget. Measuring the status of a software project in-

volves collecting, validating, and presenting true accurate status of software metrics

and project data in a timely manner. The main activities of software project man-

agers include planning, estimating, tracking, and decision making. If the project’s

progress continues to match the plan, the project is in good shape. If there are some

mismatches between the progress and plan, then corrective action must be taken.

Fundamentally, control is any process that guides activity toward some prede-

14

Measure DeviationCompare

Planning

Control

Reevaluate Standards

Initiate Preventive Action

Set Standards

Define Control Limits

Initiate Corrective Action

Fig. 3. Project tracking and control model

termined goal. The essence of the concept is in determining whether the activity is

achieving the desired results. Figure 3 depicts a standard model of project control [9].

A control system is shown to have four basic elements:

• a measuring device which detects what is happening

• a mechanism for comparing what is actually happening with some standard or

expectation of what should be happening

• a procedure for altering behavior if the need for doing so is indicated

• a means of transmitting feedback information (reevaluation of standards) to the

planning device.

Two information inputs are vital to effective project control. The first is planning

information, such as resource and schedule estimates, which provide the standards

used for assessing the significance of what is happening. The second is accurate and

timely status information.

15

Software project management is a key process leading to a successful software

project. In simple terms, software project management can be defined as deciding

what to do, how to do it and who does it, setting objectives, breaking work into

tasks, establishing schedules and budgets, allocating resources, setting standards, and

selecting future courses of action [90]. Software project planning is also concerned with

identifying the activities, milestones, and deliverables produced by a project [103]. A

plan must be drawn up to guide the developers toward the project goal. The software

development plan is one of the formal documents for project management. In the plan,

the manager describe, in detail, how the project will be developed, what resources

will be required, and how these resources will be used. A plan is also a tool for

communicating and building commitment. By defining what needs to be done, when,

and in what order, the plan offers a unique opportunity for people to see where they

fit into the big picture.

According to the Software Engineering Process Office (SEPO) of the United

States Navy, the Software Development Plan (SDP) is the most critical planning

document for a software development project. The SDP address cost, size and sched-

ule, project risks, project tracking (metrics), methodologies, and technologies to be

employed. It is a dynamic document that guides the software project manager and

staff members through the software development process.

Boehm [20] defines a plan and summarizes the elements of a good project plan

with WWWWWHH planning: who, what, where, when, why, how and how much, as

follows:

Objectives Why is the system being developed?

Milestones and Schedules What will be done? When?

Responsibilities Who is responsible for a function? Where are they organization-

16

ally located?

Approach How will the job be done technically and managerially?

Resources How much of each resources is needed?

The first major step in planning is to choose a development process that will fit

the product and people [80]. The second major step is to derive tasks and a way

to execute them according to the process model chosen. The planning process must

encompass both the product that is being produced and the accompanying processes

that are required to support the product [82].

According to Phillips, a plan requires three items [81]:

Task list Tasks are the building blocks of a plan. Each task has input and produces

output. The task is not completed until a review approves the output.

Resource Each task requires some degree of time, people, and equipment.

Task network A task network shows task precedence and dependency. It lets the

manager verify that each task receives its prerequisites from previous tasks

and sends its output to another task. If the prerequisites are not present, the

manager needs to create tasks to build them. If the outputs go nowhere, the

manager can eliminate the task.

Making estimates about the software project before it has even begun is very

important to software managers. These estimates can be derived using a variety of

methods. When planning a project, the manager will first consider constraints on

the project. These constraints include the required delivery date, the staff available,

and the budget. The manager will also make estimates about such things as project

size and structure. The manager will then define the milestones and deliverables and

17

construct a schedule. As the project moves toward the goal, the manager assesses

progress and adjusts the schedule accordingly. As more project information becomes

available, the manager will revise the initial estimates and make them better and more

accurate [103]. The foundation of estimation is metrics [101]. Project attributes

and software metrics are the important indicators of how the software project is

progressing. Humphrey [52], in his paper, “The Personal Software Process,” calls for

recording the time required by all tasks in minutes to estimate about how long it

takes to finish the tasks. Recording software metrics and project attributes for every

task and every developer for future use and analysis of the on-going project are the

project visualization process.

Sommerville [103] states that effective management of a software project depends

on thoroughly planning the progress of the project and presents a method for doing

so. The project manager must anticipate problems which might arise and prepare

tentative solutions to those problems. A plan, drawn up at the start of a project,

should be used as the driver for the project. Project planning is probably the activity

that takes most management time. Planning is required for development activities

from specification through to delivery of the system.

Sommerville [103] also describes that most plans should include the following

plan structure:

Introductions This section briefly describes the objectives of the project and sets

forth the constraints (such as budget, development time, and so on) that affect

the project management.

Project Organization This section describes the way in which the development

team is organized, the people involved, and their roles in the teams.

Risk Analysis This section describes possible project risks, the likelihood of these

18

risks arising, and the risk reduction strategies that are proposed.

Hardware and Software Resource Requirements This component describes the

hardware and the support software required to carry out the software project

development. If hardware has to be bought, estimates of the prices and the

delivery schedule should be included.

Work Breakdown (Task Plan) This section describes the breakdown of the project

into activities and identifies the milestones and deliverables associated with each

activity.

Project Schedule This component described the dependencies between activities,

the estimated time required to reach each milestone, and the allocation of people

to activities.

Monitoring and Reporting Mechanisms This section describes the management

reports that should be produced, when these should be produced, and the

project monitoring mechanisms.

Conger [31] also describes the following steps to developing a software project

development plan:

1. Decide the development life cycle, approach, and methodology.

2. For each phase, list the deliverable products that mark completion of the phase.

3. Decide on information gathering technique(s) and use of Joint Application De-

velopment/Design (JAD), prototyping, or other variants to the development life

cycle.

4. Decide which products the technical project team members will develop and

which the users will develop.

19

5. Define dependencies and develop Critical Path Method (CPM) chart.

6. Assign times to tasks and compute total project time.

7. Estimate inputs, outputs, interfaces, queries, and files according to function

point directions.

8. Use function points rating to estimate project complexity.

9. Compute function points.

10. Look up lines of code per function point (FP) in the language table and compute

total lines of code (LOC) for the project.

11. Estimate productivity in LOC/month.

12. Compare FP number of person months to the estimated total time

13. Adjust time estimate, as required, and complete the CPM diagram by adding

times.

The Software Engineering Institute’s Capability Maturity Model (SEI CMM)

provides a well-known benchmark of software process maturity [25][79][102]. The

CMM has become a popular vehicle in many domains for assessing the maturity of

an organization’s software process. The SEI Maturity Questionnaire has a scenario on

software project planning for evaluating the completeness of the planning framework

as follows:

1. Are estimates (e.g., size, cost, and schedule) documented for use in planning

and tracking the software project?

2. Do the plans document the activities to be performed and the commitments

made for the software project?

20

3. Do all affected groups and individuals agree to their commitments related to

the software project?

4. Does the project follow a written organizational policy for planning a software

project?

5. Are adequate resources provided for planning the software project (e.g., funding

and experienced individuals)?

6. Are measurements used to determine the status of the activities for planning

the software project (e.g., completion of milestones for the project planning

activities as compared to the plan)?

7. Does the project manager review the activities for planning the software project

both a periodical and event-driven basis?

Software project planning is a Level 2 Capability Maturity Model (CMM) Key

Process Area (KPA) [79]. Satisfying the KPA is a major step toward achieving Level

2 (Repeatable). This KPA requires a written process for planning a software project.

It also requires the development of a project Software Development Plan (SDP). The

CMM [79] defines 15 activities for the Project Planning KPA. These activities assure

the appropriate participants are involved in the process. It also forces the company

to document a defined process for developing the plan. The 15 steps in the CMM

Planning KPA are as follows:

1. The software engineering group participates on the project proposal team.

2. Software project planning is initiated in the early stages of, and in parallel with,

the overall project planning.

21

3. The software engineering group participates with other affected groups in the

overall project planning throughout the project life.

4. Software project commitments made to individuals and groups external to the

organization are reviewed with senior management according to a documented

procedure.

5. A software life cycle with predefined stages of manageable size is identified or

defined.

6. The project’s software development plan is developed according to a docu-

mented procedure.

7. Software work products that are needed to established and maintain control of

the software project are identified.

8. Estimates for the size of the software work products (or changes to the size of

software work products) are derived according to a documented procedure.

9. Estimates for the software project’s effort and cost are derived according to a

documented procedure.

10. Estimates for the project’s critical computer resources are derived according to

a documented procedure.

11. The project’s schedule is derived according to a documented procedure.

12. The software risks associated with the cost, resources, schedule, the technical

aspects of the project are identified, assessed, and documented.

13. Plans for the project’s software engineering facilities and support tools are pre-

pared.

22

14. Software planning data are documented.

15. Measurements are made and used to determine the status of the software plan-

ning activities

Hughes introduces the Step Wise planning [46] to complement PRINCE, which

is the publication of the government standard in Europe for the management of

Information Technology (IT) projects. It emphasizes the iterations of planning in an

outline first and then in more detail as the time approaches to tackle a part of the

project. An overview of the “Step Wise Planning” framework is the following:

Step 0 Select project

Step 1 Establish project scope and objectives

Step 2 Establish project infrastructure

Step 3 Analysis of project characteristics

Step 4 Identify project products and activities

Step 5 Estimate efforts for each activity

Step 6 Identify activity risks

Step 7 Allocate resources

Step 8 Review/publicize plan

Steps 9/10 Execute plan/lower level of planning

From the disciplines above, one can see that, in general, there are five basic

important components of a software project plan [51].

23

Goals and Objectives In the end, the goal for the project is to deliver a quality

software product that meets a customer’s needs, and to do so on time and within

budget. The project’s goals and objectives are determined in the requirements

negotiation phase. The initial statement of work must be clear, straightforward,

and stable because it will be the statement from which the software development

company will determine the product’s functional goals.

Work Breakdown Structure The WBS was introduced into software project plan-

ning in the early 80’s [107]. WBS provides a hierarchical view for the whole

project, but the precedence relationships among the work packages are not

clearly identified in the Work Breakdown Structure. After the requirements

have been declared, an estimate of the product size and project effort is re-

quired. To produce an effective estimate requires the project to be broken down

into its various work elements comprising the project WBS. Project structure

and the software process affect the WBS. Once the project structure is defined,

the process tasks for each unit of the project will be defined and allocated to

the appropriate design group. The design of the WBS should be as detailed

as possible, such that each task can be completed by a small team in a fixed

time. A well detailed WBS leads to more accurate estimates and a better overall

plan [40].

Product Size and 17 Other Dominators This is probably the most critical por-

tion of the planning process. The 17 project dominators are as follows: De-

velopment Schedule Constraints, Project Life Cycle process, Volume, Amount

of Documentation, Programming Language, Complexity, Type of Application,

Work Breakdown Structure, Management Quality, Lead Designer, Individual

Developers, Personal Turnover, Communications, Number of People, Software

24

Reuse, Customer Interface Complexity, and Requirements Volatility Domina-

tors are project attributes that cause effort (and productivity) to vary by an

order of magnitude (10 to 1) [99]. A poor size and dominators estimate is the

root of many problems in the software industry. Dominators may or may not

appear as variables in effort models. For example, we often assume that all

projects are properly managed, even though they may not be. The result can

be a failed project dominated by poor management. Dominators like manage-

ment often do not have a 10:1 affect on reducing effort, but they definitely can

have over a 10:1 affect on increasing effort [99]. Productivity is improved when

managers reduce the effort to produce a product, as effort required to produce

a product is inversely related to productivity. Dominators that affect effort

prediction are everywhere in the project life cycle and are not independent of

each other. Product size is useful for predicting effort. Two units are common

for size measurement: lines of code and function points. A line of code is a

fixed unit and easier to count, but is language-dependent. Function points are

a more subjective and abstract unit, which is subject to bias [99].

Resource Estimates The amount of effort spent on a project is limited by resource

constraints [99]. Given an estimate of the amount of code that is needed for

the software product, a manager can estimate the resources that are required

to design and implement it. Human resource is the most important of these

resources as it plays the most important role in determining the cost of imple-

mentation. Many tools for cost estimation are available. A software company’s

historical performance plays the most important role when it comes to esti-

mation of resources. The historical productivity rate can be applied to a new

estimate to convert a size estimate into a corresponding estimate of resources.

25

If a cost model such as COCOMO or SLIM is used, its calibrations must match

the software company’s historical experience [99].

Scheduling The scheduling of a project is dependent on the resource estimates.

Two situations arise in scheduling, depending on which side sets the release

date for the product [85]. Usually, the project manager will make the decision

on the release date based on an appropriate starting date and schedule. How-

ever, should the customer require the product by a certain date, the software

developer must schedule all tasks to be completed before this date. The latter

situation is much more difficult. The software developer may or may not be able

to meet the deadline depending on their existing commitments. Overtime and

extra staff may be required. The schedule must fulfill the needs of all parties

involved in the project before the development can begin. If no such schedule

is possible, requirements must be re-negotiated. Three optional approaches are

available for scheduling such as Gantt Charts, Milestone Documents, or Project

Evaluation Review Technique (PERT) Charts [92].

Software project management is, like many other activities in the software pro-

cess, a problem-solving issue. It has two principal phases: planning, including cre-

ation and scheduling, and on-going project control [106]. These involve what is to be

done, a decision regarding how to do it, the control of how it is being done, and an

evaluation (or measurement) of what was done [27]. The issue on “what” typically

takes the form of a plan. Many tasks have to be performed for a manger to properly

manage a software project. In general, these tasks fall into the following categories:

planning, organization, staffing, monitoring, controlling, innovating, and represent-

ing [15]. Every project, no matter what the industry or work type, including the

software development project, is a compromise among three variables: scope, time,

26

Control

Feature s
(Product & Quality)

Schedule

Resources
(People, Money)

Fig. 4. Simmons’ project triangle

and cost.

A project planning process includes the activities of comprising the three vertices

defined in the project triangle as shown in Figure 4. Scope is the total amount of work

to be conducted, the sum of the activities that will lead, at the end of the project, to

the “deliverable” or “product.” Cost is sometimes referred to as “budget,” the total

resource usage required to accomplish the work scope. Time is the total elapsed time,

from the concept to completion, that it takes to perform the work scope. The project

management deals with those three variables to show the impact of any change across

all three.

The role of the project manager is to establish a plan, select the right personnel

for task assignment, track and review the results, and modify the plan when appro-

priate. To succeed at a software project, a manger must compromise those three

variables, resource, feature, and schedule to comply with the plan. If any one of the

triangle vertices is adjusted, one or both of the other vertices must be modified and

the plan has to be tailored for a project to stay on track. If a project is behind

schedule, the manager can add resources or decrease features. If a project is ahead

of schedule, the manager may decide to decrease resource or add features. If the

manager wants to add features, s/he must lengthen the schedule or add additional

27

resources. If the manager wants to reduce resources, s/he must decrease feature or

lengthen the schedule.

According to Dwayne Phillips [81], all undertakings in a software project include

the 3Ps: people, process, and product. A successful software project requires keeping

these three in harmony to comply with a project plan. People are critical to software

development and maintenance. Software development is people-intensive. The best

asset on a software project is people who know how to build the product. Process

has become the most discussed aspect of the 3Ps in recent years including some of

the famous software process improvement methods, the Capability Maturity Model,

the ISO 9000 series, and Best Practices. Process is important because it lets people

build products. Before starting a software project, the manager first defines a process

needed for the project in a plan. Process is repeatable, but the same process does

not fit all projects, even though with the similar goals. The objective of software

development is to create a product. The product must satisfy the customers and

within budget. Without a product, there is no customer, no income, and no software

organization. Figure 5 shows how people, process, and product fit together. The axes

represent the capabilities of people and process. The distance from the origin of the

graph represents how difficult the product is to build. The mission of the manager’s

job is to keep 3Ps in balance to create a good quality product.

The Microsoft process [81] is based on the three dimensions of quality: reliability;

feature set; and schedule. Reliability is how good the product must be before shipping.

Feature set is the product’s definition (the requirement), and schedule is the ship data.

The relative importance of the three variables would be changed with the product.

For example, entertainment products must ship before Christmas, but do not need

to be as reliable as a spreadsheet.

Rapid Application Development (RAD) [65] employs the best available people

28

People

Process

Product Difficulty

Fig. 5. Considering people, process, and product together

and process to build a product with the features most valuable to the customer in

the quickest manner. RAD concentrates on people, process, and product. The people

focus is to discover the 20% of what the customer wants that delivers the 80% of

what they need. This usually begins with people surveys that aim to shorten the list

of wants. From the list, the manager finds the core requirements to build the product

of prototype. The product part of RAD emphasizes essentials only to enable rapid

delivery: bring customers a product quickly. The process part emphasizes throughput

(rapid delivery), but not at the expense of sound engineering. The process is iterative

or evolutionary and gives a product to the customer in a series of deliveries. The first

delivery has limited functionality, but is delivered rapidly. This keeps the customers

involved and gains their confidence and trust.

The software project management discipline is more of a discriminator in success

or failure than are technology advance [59][57][93]. The major disciplines necessary

for an effective management work flow are: planning, organization, automation, and

project control. The challenge is to develop a plan that best balances the available

resources to provide optimal win conditions for all stakeholders. The project orga-

nization discipline concerns itself with the management of people: organizing them

into teams and allocating responsibilities for efficient operations. Automating the

29

Fig. 6. 16 critical software practices for performance-based management

development process with an electronic repository for the artifacts provides a founda-

tion for objective instrumentation. Project control activities act as the “sense” of the

project. They are used to assess the health of the plan, the quality of the artifacts,

and the need for changes to any of the management set of artifacts that define the

expectations among stakeholders.

The correct and effective planning process can lead to a successful software

project. The practice from the Software Program Management Network outlines

the 16 Critical Software Practices [75] that serve as the basis for implementing ef-

fective management of software projects as shown in Figure 6. The “16-Point Plan

and Templates for Critical Software Practices” contain the 16 practices (9 best and 7

sustaining) that are the key to avoiding significant problems for software development

projects and must be incorporated in the planning phase (See Appendix A for de-

tails). These practices have been gathered from past real-world, large-scale, software

30

development and maintenance projects. Together, they constitute a set of disciplines

that is focused on improving a project’s bottom line. These practices can be used

as the starting point for structuring and deploying an effective process for managing

large-scale software development and maintenance.

Shenhar introduces the concept of the software management style in a holistic

way [96] as shown in Figure 7. It assumes that project management is more than just

tools or processes, and it directs people’s attention to higher levels of awareness which

have substantial impact on project performance. The holistic approach includes the

following five components: strategy, culture and attitude, organization, process, and

tools. The key to software project success is integration of all the styles of the previous

techniques and approaches. A holistic framework uses the classical planning concepts

and the project management integration knowledge areas such as cost, time, etc., to

generate an integrated matrix for the project management. This framework raises an

integrated concept of the project management and planning.

II.3 Definition of Productivity

A software Project develops a SoftwareProduct (SP). SP status can be observed

by tracking Features, Artifacts, known Defects, reported Problems, testing Ac-

tivit(y)ies and approved Changes. Examples of Artifact are user requirements,

design documents and source codes. An important Artifact is source code used to

create the executable file that is delivered to a customer.

Volume attribute is used to describe physical magnitude, extent or bulk of

artifacts [99]. Equivalent source lines of code, function points, and object points are

metrics used to measure Volume. Volume can be used to track the progress of

development. Effort attribute is the amount of resource expense required to produce

31

Strategy

Style

Goal

Competitive adv

Success measures

Attitude

Approach

Vision

Policy

Communication

Planning

Monitor

Controlling

Process

Organization

Tools

Strategy

Schedule

Budget

Configuration

Schedule

Budget

Configuration

Style

Goal

Competitive adv

Success measures

Attitude

Approach

Vision

Policy

Communication

Planning

Monitor

Controlling

Process

Organization

Tools

Structure
Teams
People

Strategy

Style

Goal

Competitive adv

Success measures

Attitude

Approach

Vision

Policy

Communication

Planning

Monitor

Controlling

Process

Organization

Tools

Strategy

Schedule

Budget

Configuration

Schedule

Budget

Configuration

Schedule

Budget

Configuration

Schedule

Budget

Configuration

Style

Goal

Competitive adv

Success measures

Attitude

Approach

Vision

Policy

Communication

Planning

Monitor

Controlling

Process

Organization

Tools

Structure
Teams
People

Fig. 7. Project management style

an Artifact. The effort of personnel is the main cost in a software development

project. A widely used effort metric is person-month (PM).

Software productivity is the rate at which SP Artifacts are produced in relation

to the time, and resource. Software productivity is usually defined as Volume divided

by effort. Software productivity Pr is expressed as:

Pri =
Vi

Ei

, (2.1)

where Vi is the Volume of Artifact i, and Ei is the amount of effort expended to

produce Artifact i.

The Internet environment enables development to be distributed across the world.

32

And when the budget for development is limited, employing cheaper labor can de-

crease the total cost of development. For example, an entry-level programmer’s salary

ranges from $167 to $417 per month in India. That programmer’s US counterpart

typically commands $4,167 to $5,000 per month [45]. Therefore, the salary is an im-

portant attribute to account for resource expense in developing an SP in more than

two countries. As shown in Figure 8, the current productivity model assumes dollar

cost as a main factor to estimate productivity. Labor cost LC is:

LCi = Ej × Sj, (2.2)

where Sj is Salary rate of a person j. After taking labor cost into account, we can

change productivity as:

Pri =
Vi

LCi

, (2.3)

Productivity will be calculated in Volume per dollar. Given their performance

are same, programmers in India are 10 times more productive than those in US when

you use labor cost instead of effort. Nowadays, many software companies outsource

their development work to other countries that have cheaper labor. And labor cost

gives a manager a view of controlling resource expense in the multisite development

environment.

Early research in cost estimation concentrated on determining causes for the wide

variation of project productivity. In Boehm’s COCOMO II model [21], 17 software

factors (cost drivers) that have a significant impact on productivity were identified.

In an IBM study by Walston and Felix [110], 29 factors that were significantly corre-

lated with productivity were found. In an analysis of data from the NASA/Goddard

Space Flight Center, Bailey and Basili [11] identified 21 productivity parameters. At

ITT, Vosburgh et al. [108] found 14 significant productivity factors, with modern

33

Software Productivity Model After 2000

Customer and
Corporate Needs

Complexity of
Problem

VALUE

Quality Quantity Reusability

Defects Size

Functions

Difficulty

COST

People Calendar
Time

(Opportunity)

Capital

$’sHLCs
(High Level Chunks)

Object
Points

Software Productivity Model After 2000

Customer and
Corporate Needs

Complexity of
Problem

VALUE

Quality Quantity Reusability

Defects Size

Functions

Difficulty

COST

People Calendar
Time

(Opportunity)

Capital

$’sHLCs
(High Level Chunks)

Object
Points

Fig. 8. Current productivity model

programming practice usage and development computer size explaining 24% of the

variation in productivity.

Several studies attempt to determine nominal productivity rates depending on

the type of software [36][71][87]. The productivity of subsystems that were part of a

ballistic defense system was found to be a function of software type, with real-time

software having the lowest productivity. Vosburgh et al. [108] identified three different

programming environments with business applications having the highest average

productivity followed by normal-time and real-time applications. These environments

were characterized by the hardware used, resource constraints, application complexity

34

and programming language.

Aron [7] found that the variation of productivity for a group of IBM projects in-

volving systems programs and business applications was due to differences in system

difficulty, characterized by the number of interactions with other system elements,

and project duration. Kitchenham [66] found that productivity varied with program-

ming language level and working environment. Productivity has also been found

to vary with hardware constraints [21][108], programmer experience [21][108][71][60],

team size [33][24][55], duration [7][10], project size [108][33][55][14], and modern pro-

gramming practices [21][108][60] among other factors.

II.4 Effort Estimation Model

Software cost estimation is as much a relevant area of research now as it was 30 years

ago, when difficulties of estimating were discussed in “The Mythical Man Month” [24].

The purposes for which an estimation is required are as follows:

• Exploring the feasibility of developing or purchasing a new system

• Planning how to staff a software development project

• Quoting a price or schedule for a new system

• Exploring the impact of changing the functions of an existing system

However, software cost estimates are typically inaccurate, and there is no ev-

idence that the software engineering community is improving its ability to make

accurate estimates. In spite of the research effort in developing software cost estima-

tion models, it is true that most estimates are made informally, or cost models give

estimates with significantly greater inaccuracy [48][72]. This suggest that software

developers have difficulty in applying existing research on software cost estimation.

35

Inaccurate estimates of software cost and delivery times have unacceptable con-

sequences. For example, where effort is underestimated, a cost overrun may make a

project unprofitable, and overruns in delivery time may result in project failure. An

overestimate of effort may also adversely affect the competitiveness of a business, for

example, where a decision is made to cancel what would otherwise have been finished

in time or where the overestimate leads to subsequent overstaffing when a project is

completed.

Over the past three decades there has been considerable activity in the area of

effort estimation with five classes of estimation models:

• Empirical parametric models

• Empirical nonparametric models

• Analogical models

• Theoretical models

• Heuristic

Heuristics are rules of thumb, developed through experience, that capture knowledge

about relationships between attributes of the empirical model. Heuristics can be used

to adjust estimations made by other methods. For example, Cuelenaere et al. [35]

describe an expert system that uses rules to assist in calibrating the PRICE SP

software cost estimation model.

The most common estimation models are empirical parametric models. Any

estimation that relates the attributes of interest to other measurable attributes must

be based on an empirical parametrical model. Where effort is estimated based on one

or more simple measures, these models have been extended, in some cases, by the use

36

of cost drivers. Empirical parametric methods analyze data to establish a numerical

model of the relationship between measures of the attributes in the empirical model.

Statistical regression analysis is one example of empirical parametric models.

The simplest form of an empirical parametric model is a function that relates

the effort to develop a system or program to a size measures. In this context, a

size measure is a count of some feature of a product of the development process,

for example, a count of the number of lines of code in a program. Effort is often

measured in person-months. The models are developed by fitting the function to a

data set of size and effort value pairs, using regression techniques. Models with linear

and exponential relationships between effort and the size measure are most commonly

explored. Whatever the exact niceties of the model, the general form tends to be:

E = a × V b, (2.4)

where E is effort, V is Volume typically measured as lines of code (LOC) or function

points, a is a productivity parameter and b is an economies or diseconomies of scale

parameter. This model has been investigated by Walston et al. [110], Bailey et al. [11]

and Boehm [18]. COCOMO II represents an approach that could be regarded as “off

the shelf.” Here the estimators hope that the equations contained in the cost model

adequately represent their satisfactorily accounted for in terms of cost drivers or

parameters built into the model.

Another empirical parametrical approach is to calibrate a model by estimating

values for the parameters (a and b in the case of (2.4)). However, the most straight-

forward method is to assume a linear model, that is set b to unity, and then use

regression analysis to estimate the slope (parameter a) and possibly introduce an

37

intercept so the model becomes:

E = a1 + a2 × V, (2.5)

so that a1 represents fixed development costs (for example regression testing will

consume a fixed amount of effort irrespective of the size the software) and a2 represents

productivity.

As seen in above, the development of an empirical parametric model is an exercise

in curve fitting. So there are some pitfalls inherent in the development of these

models. Courtney et al. [34] report that researchers who set out to discover empirical

relationships by trying different combinations of measures and functional forms before

choosing the one with the highest correlation tend to make a good model with small

data sets.

Models based on empirical parametric approach give higher error rate in explain-

ing the variation in effort, whether the functional form is linear or nonlinear. Conte

et al. [33] give an example of a linear model with a correlation coefficient, R2, of 82%

and mean absolute relative error of 37%. Miyazaki et al. [76] give an example of a

calibrated COCOMO model with a lower mean absolute relative error of 20%.

When a model has many input parameters, each with a range of possible values,

the range of estimates generated by the model increases. Although such a wide

variation in input values would not occur in practice, Conte et al. [33] report that

a variation in effort of up to 800% possible in Intermediate COCOMO when the

range from highest to lowest values for each cost driver is combined. The range of

possible values for an estimate increases further when the uncertainty in input values

is combined with the uncertainty associated with the model.

Furthermore, when empirical models are applied outside of the organization or

environment on whose data are based, the estimations made by the model are likely

38

to be inaccurate, unless the model is re-calibrated using local data [63][68][55]. Even

more genetic models such as COCOMO fail to make accurate estimations without

calibration. Boehm and Miyazaki et al. describe procedures how to calibrate mod-

els [18][76]. However, models that include a large number of cost drivers are difficult

to calibrate. The immediate difficulty is that the data set required for calibration

may be much larger than is typically available within a single organization.

Briand et al. [23] describe the optimized set reduction (OSR) technique which

uses the empirical nonparametric approach. It is a pattern recognition model for

analyzing data sets based on decision trees. They compare the accuracy of the OSR

technique to a COCOMO model calibrated for the combined COCOMO and Kemerer

data sets and a stepwise regression model. The OSR technique has a lower mean

absolute relative error than both the two parametric models, with the COCOMO

model performing least favorably.

One advantage of OSR is that it can be applied with incomplete input data. It

is possible to make an estimate for a project where only a subset of the cost driver

values are known. Another advantage is that nominal or ordinal cost driver values

can be used as inputs without being mapped to numeric multiplier values.

Srinivasan and Fisher [104] describe two further nonparametric methods for gen-

erating effort models. The first method uses a learning algorithm to derive a decision

tree. The second method uses back-propagation to train an artificial neural network.

These methods were also tested on the COCOMO and Kemerer [63] data sets. The

effort estimates from the artificial neural network had a lower mean absolute relative

error than the decision tree. Differences in the sampling techniques mean that the re-

sults presented by Srinivasan and Fisher [104] are not directly comparable with those

of Briand et al. [23], although the same data sets are used. It appears likely that the

accuracy of both the artificial neural network and the decision tree is comparable with

39

that of OSR and the stepwise regression model. However, Srinivasan and Fisher [104]

indicate that the computatinal cost of training the artificial neural network is high in

comparison to the cost of deriving the decision tree.

While most research into project effort estimation has adopted approach de-

scribed above, there has been limited exploration of artificial intelligence methods.

Karunanithi et al. [67] studied the use of neural nets for predicting software reliability,

and conclude that both feed forward and Jordan networks with a cascade correlation

learning algorithm, out of perform traditional statistical models. Wittig et al. [112]

described the use of back propagation learning algorithms on a multilayer perception

in order to predict development effort.

To be applied confidently, each of the techniques just described require a large

number of data points because of the large number of independent variables and

value ranges covered by the models. Both set of authors comment on the small

size of the COCOMO data set (63 projects) for applying their techniques and on

the desirability of all projects in the data set coming from the same environment.

However, although the COCOMO data set may be small, it is significantly larger

than many organizations could hope to collect. Even though, there is a large enough

data set available within a single organization, it is hard to believe that all projects

come from the same environment.

Decision tree, artificial neural network, and OSR techniques can still be applied

where the number of independent variables is reduced to complement the size of

the available data set, for example, lines of code as the single independent variable.

However, it is unclear whether these techniques are superior to simple regression

techniques under those circumstances.

Another study by Samson et al. [94] used an Albus multilayer perception in order

to estimate software development effort. The work compares linear regression with

40

a neural net approach using the COCOMO data set. There have been a number of

attempts to use regression and decision trees to estimate aspects of software engineer-

ing. Srinivasan et al. [104] described the use of a regression tree to estimate effort.

They found the result were less good than using either a statistical model derived

from function points or a neural net.

Analogical estimation methods use measures of the attributes from the empiri-

cal model to characterize the current case, for which the estimation is to be made.

Known values of measures for the current case are used to search a data set for anal-

ogous cases. The estimation is made by interpolating from one or more analogous

cases to the current cases. An advantage of these approaches to estimation is that

they can succeed where no statistically significant relationships can be found in the

data. Case-based reasoning is a form of analogical reasoning that employs five basic

processes [109]:

• Construction of a representation of the target problem

• Retrieval of a suitable case to act as source analog

• Transfer of the solution from the source case to target

• Mapping the differences between source and target cases

• Adjusting the initial solution to take account of these differences

ESTOR is a case-based reasoning model to estimate development effort [77]. In

ESTOR, the cases are software projects, and each is represented by the values of

a set of measures. The measures used by ESTOR are function point components

and Intermediate COCOMO model inputs. ESTOR retrieves one case to act as a

source analog based on the values of the function point components of the project

41

for which the estimate is sought. A vector distance calculation is used to find the

nearest neighbor. The initial solution or effort estimate for the project is the effort

value for the analogous project. The differences between the analog and new project

are determined by comparing the values of their measures. The effort value for the

analog is adjusted to take account of these differences by applying a set of rules. The

rules used by ESTOR are derived from verbal protocols of an expert whose estimates

were accurate for the data set used. The rules adjust the effort value by a multiplier

if particular preconditions on the target and source project values are met. The data

set used to develop ESTOR is a subset of 10 projects from the Kemerer [63] data set.

ESTOR was tested on all 15 projects of this data set, with a reported mean absolute

relative error of 53%.

Atkison and Shepperd [8] describes a method for estimating development effort

for a software project by analogy, which represents projects by their function point

components [6]. Analogous projects are neighbors of the new project, identified by

calculating the vector distance from the new project to other projects in the data set.

Effort for the new project is estimated from a weighted mean of the effort values of

its neighbors.

Shepperd et al. describe the tool ANGEL, which also supports estimation by

analogy. ANGEL is based on a generalization of the approach of Atkison and Shep-

perd [8]. In ANGEL, the user can specify the measures on which the search for

analogous projects is based. ANGEL can also automatically determine an optimal

subset of measures for a particular data set. ANGEL can be requested to search

for one, two, or three analogous projects and calculates an unweighted mean of their

effort values to estimate effort for the new project.

Both ANGEL and ESTOR represent projects by values of readily available mea-

sures, and use a vector distance calculation to search for analogs. ESTOR uses only

42

one analog on which to base its estimate, whereas ANGEL may retrieve and use the

effort values from several analogs. The main difference is that ESTOR adjusts the

effort value of the analogous case by applying rules, whereas ANGEL will either use

the effort value directly where one analog only is retrieved, or calculate a mean of the

effort values for analogs.

ANGEL performed as well as or better than linear and stepwise regression models

for effort. The regression models were based on the measures in the data set that

displayed the highest correlations with effort. On the Kemerer [63] data set, the

reported mean absolute relative error for ANGEL is 62%, which compares with more

than 100% for the regression models and 53% for ESTOR. Although ESTOR appears

to perform better than ANGEL on this data set, the adjustment rules for ESTOR

were developed based on 10 of the 15 projects in the set, and these rules may not be

as successful when applied to projects from difference data sets.

Abdel-Hamid and Madnick [95][4][3] have developed a theoretical model of soft-

ware development project. Dynamic feedback relationships among staff management,

software production, planning, and control are modelled via a simulation language.

Simulations of project management scenarios can be run to investigate the effects of

management policies and decisions. The model works from an initial estimate for

overall effort and then explores how the actual effort is influenced by the model’s

assumptions about the interactions and feedback between project and decisions.

As estimates for new projects are based on past projects, they suggest that their

model can be used to explore what the minimum effort for a completed project would

have been, if it had been estimated correctly at the outset. Future estimates can then

be based on the corrected effort for the project. Therefore, the model’s assumption

should be examined to see whether they are valid when the model is applied in

a new environment, because the model relies on assumptions about management

43

policies that may be inaccurate in a new environment and hence invalidate the existing

model. The model also relies on a number of parameters that have to be determined

specifically for each environment in which it is applied.

Their overall contribution is to demonstrate how both underestimates and overes-

timates of project effort can lead to lower average productivity and increased overall

effort. However, the published material includes only a small number of example

projects from similar environment. This makes it hard to asses how accurate the

model would be for projects from a wider range of environments.

In addition to those formal approaches described above, expert judgment is also

recognized as an estimation method [18][48]. Experts may employ one or more of the

other methods in making estimations, either informally or formally. It is likely that

expert judgment is employed to make estimations whenever an expert is available.

Expert judgment is not included in the framework for selecting estimation methods,

as this method cannot easily be characterized, and it assumed that it is selected

whenever experts are available.

It is hard to assess which method described above best suits for a software devel-

opment project on hand. Of the methods described from developing models, empirical

parametric method is some of the easiest to apply. The popular COCOMO II [21]

model is based on this method. Empirical nonparametric methods such as an artifi-

cial intelligent neural network are hard to set up, because it involves more work than

preparing a model based on a statistical regression [41]. Analogy based estimation

is also straightforward to apply, provided only a small data set needs to be searched

for analogs, and the number of variables to consider is no more than half a dozen.

However, specific tools are needed to support to build the model based on analogy

when the number of cases and variables increase [109] [41]. Moreover, how similar a

new project development project is to historical projects also influences the selection

44

of method. If the new project differs from all historical projects, in a way that is

recognized, then ideally an estimate should take this difference into account.

From the viewpoint of an organization’s management and from the viewpoint of

a customer, the most interesting software cost estimation measures are total effort

and total duration, and once development is under way, the totals to complete. Indi-

vidual developers are less likely to be interested in total effort estimates. They may

want to track their own productivity, however, to make effort estimates for their own

activities. For example, in some organizations, developers are expected to sign up to

meet a target duration for a particular activity. Estimates based on group produc-

tivity figures generally will not be satisfactory, because of the significant variations

commonly found between individual developers [37].

Estimates of total effort are clearly useful prior to or at the start of system

development. However, this is the time relative to system development activities when

there is the least information available on which to base an estimation. Especially,

models that estimate total effort based on lines of code cannot give an accurate effort

estimate due to lack of detailed information at this time.

Models for estimating total effort that are based on measures available early in

the system development life cycle are clearly desirable. Models based on function

points offer some improvement over lines of code, as it appears that function points

can be estimated more consistently from specification and design descriptions than

lines of code [74]. However, considerably more experience and effort is involved in

counting function points than lines of code, so data pairs of total effort and function

points are likely to be harder to obtain.

As initial software cost estimates are made based on limited information, re-

estimating is desirable when additional information is available. Once system devel-

opment is under way, the interest shifts from total effort to total effort to complete

45

development. For this measure, the re-estimate of total effort needs to take into ac-

count the actual progress that has been made so far, as well as the effort so far. For

example, an initial estimate of the total effort to develop a system may be based

on a rough, preliminary estimate of function points. Thus a new estimate may be

calculated from a re-estimate of function points which is made after a high level de-

sign is complete. However, the model assumes the same average productivity for

system development for both estimates. If the productivity of the development team

is substantially different from that assumed by the model, the new total effort esti-

mate will not incorporate this knowledge, and the estimate of total effort to complete

the development also will not. Issues such as those complicate the process of re-

estimation and indicate that measures that reflect actual progress will be important

for accurate software cost estimation, once a project is under way. Estimation models

need to incorporate these measures to estimate the total effort or time to complete

successfully.

The environment for system development contributes factors such as targets and

constraints. When a project starts there is often a target for delivery date and

constraints on how many staff can ultimately be assigned to work on the project

and on the availability of these staff. Estimates of these are needed to plan system

development or check whether it is feasible to deliver within the desired time. Total

effort, duration, and staffing are closely related and interdependent, but there may

be independent constraints on all three. This makes the problem of estimating any

one or two of them complex.

Existing parametric models such as COCOMO [18] and Putnam [88] have not

proved widely successful in explaining the relationships among effort, duration, and

staffing across a range of organizational settings. The dynamic model of Abdel-Hamid

and Madnick [3] appears able to explain interrelationships among staffing, duration,

46

and overall cost in a qualitative way, but the model is not easy to apply, because it

requires a specialized simulation tool.

Historical data are arguably the most important elements of an organization’s

experience base. The availability of historical data is critical in model development,

as the measures that can be estimated are dictated by the measures for that data

values already collected. Experience in developing and applying measures and models

must also be cultivated within organizations, if the benefits of collecting local data are

to be realized. The simplest models to develop and apply are empirical parametric

models, with few variables, and analogical models. Models that are more difficult

to develop and apply may be models based on a large number of variables such as

Abdel-Hamid and Madnick [3].

We can discuss some limitations and difficulties found in software cost estimation

approaches described so far. First, the lack of measurement within the software

development environment is constraining accurate effort estimation. Second, most

models for estimating total system development effort are in the focus of research area.

Therefore, the models lack practicality in estimating effort for system development

activities needed for planning and monitoring progress under process. Third, making

accurate estimates using existing cost estimation models is difficult. Uncertainty is

introduced because the model explains only part of the variation in effort. Developing

models that are better at explaining this variation, and hence more accurate, is a great

challenge. Forth, Uncertainty is also introduced where the values of input parameters

cannot be measured. There are arguably too few models that are suitable for early

life-cycle estimation [109]. Finally, an obvious difficulty with the cost estimation

models is that the accuracy of models is not improving [109]. One of the reasons

is that most practitioners take an informal approach to estimation that does not

incorporate the feedback to improve the model in use. This highlights the need for a

47

software cost estimation process that incorporates feedback.

II.5 COCOMO II

COCOMO II is one of the popular software engineering cost models, which is based

on the multiple regression approach. COCOMO II is a recent update of the CO-

COMO model published in 1981 [18]. COCOMO II provides two models, the Post-

Architecture and Early Design models. The Post-Architecture is a detailed model that

is used once the project is ready to develop and sustain a fielded system. The system

should have a life-cycle architecture package, which provides detailed information on

cost driver inputs, and model that is used to explore architectural alternatives or

incremental development strategies. This level of detail is consistent with the general

level of information available and the general level of estimation accuracy needed.

Both the Post-architecture and Early Design models use the same functional form

to estimate the amount of effort and calendar time it will take to develop a software

project. These nominal-schedule (NS) formulas exclude the Cost Driver for Required

Development Schedule (SCED). The amount of effort in person-months, PMNS, is

estimated by the formula:

PMNS = A × SizeE ×
n∏

i=1

EMi, (2.6)

E = B + 0.01 ×
5∑

j=1

SFj

E is the scaling exponent for the effort equation, and F scaling exponent for schedule.

The amount of calendar time, TDEVNS, it will take to develop the product is

estimated by the formula:

TDEVNS = [C × (PMNS)F] × SCED%

100
, (2.7)

48

F = D + 0.2 × [E − B],

where the values of A,B,C, and D are 2.94, 0.91, 3.67 and 0.28, respectively.

A good size estimate is very important for an effort estimation. Projects are

generally composed of new code, code reused from other sources - with or without

modifications - and automatically translated code. Size attributes are used to de-

scribe physical magnitude, extent or bulk. A size attribute can represent relative or

proportionate dimensions. Software size attributes are classified as volume, structure,

and rework. Volume attributes can be used to predict the amount of effort required

to produce a software product, Defects remaining in a software product, and time

required to create a software product.

There is no single volume attribute that should be applied by itself to measure the

bulk of a software product. They should be used in combination to provide informa-

tion related to controlling software projects and improving the software development

process. The SLOC volume attribute is probably still the most widely used attribute

because it is;

• relatively easy to define and discuss unambiguously,

• easy to objectively measure,

• conceptually familiar to software developers,

• used directly or indirectly by most cost estimation models and rules of thumb

for productivity estimation, and

• is available directly from many organization’s project databases.

However, Jones suggested several problems with the SLOC attribute as fol-

lows [60]:

49

• It does not accurately support cross-language comparisons for productivity or

quality for the more than 500 programming languages in current use.

• There is no national or international standard for a source line of code.

• Paradoxically, as the level of language gets higher, the most powerful and ad-

vanced languages appear to be less productive than the lower level languages.

Even with these deficiencies, SLOC is still gathered by most metric programs.

Simmons et al. [99] introduced the Chunk metric. The intent is to measure

software at the cognitive level at which software is developed. Chunks can be applied

to objects, scripts, spreadsheets, graphic icons, application generators, etc.

Object points are similar to function points. They have the same advantages and

disadvantages, but can be estimated and counted earlier than function points. Func-

tion points are based on functional requirements and can be estimated and counted

much earlier than lines of code. Function points let organizations normalize data

such as cost, effort, duration, and defects. Even though function points are a popular

measure, they also have problems:

• They are based on a subjective measure which have resulted in a 30% variance

within an organization and more than 30% across organizations [68].

• Function points behave well when used within a specific organization, but they

do not work well for cross-company bench marking.

There are several sources for estimating new lines of code. The best source is

historical data. For instance, there may be data that will convert function points,

components, or anything available early in the project to estimate lines of code.

Lacking historical data, expert opinion can be used to derive estimates of likely,

lowest-likely, and highest-likely size.

50

Table 1. User function types

Function Point Description

External Input (EI) Count each unique user data or user control input type

that enters the external boundary of the software system

being measured
External Output (EO) Count each unique user data or control output type that

leaves the external boundary of the software system be-

ing measured
Internal Logical File

(ILF)

Count each major logical group of user data or control

information in the software system as a logical internal

file type. Include each logical file (e.g., each logical group

of data) that is generated, used, or maintained by the

software system
External Interface File

(EIF)

Files passed or shared between software systems should

be counted as external interface file types within each

system
External Inquiry (EQ) Count each unique input-output combination, where in-

put causes and generates an immediate output, as an

external inquiry type

Code size is expressed in thousands of source lines of code (KSLOC). A source

line of code is generally meant to exclude nondelivered support software such as test

drivers. Defining a line of code is difficult because of conceptual differences involved

in accounting for executable statements and data declarations in different languages.

Difficulties arise when trying to define consistent measures across different program-

ming languages. In COCOMO II, the logical source statement has been chosen as the

standard line of code. The Software Engineering Institute (SEI) definition checklist

51

for a logical source statement is used in defining the line of code measure. The SEI

has developed this checklist as part of a system of definition checklists, report forms

and supplemental forms to support measurement definitions [78] [44].

The function points cost estimation approach is based on the amount of func-

tionality in a software project and a set of individual project factors [14] [1]. Function

points are useful estimators since they are based on information that is available early

in the project life cycle. Function points measure a software project by quantifying

the information processing functionality associated with major external data or con-

trol input, output, or file types. Five user function types should be identified as

defined in Table 1.

Each instance of these function types is then classified by complexity level. The

complexity levels determine a set of weights, which are applied to their corresponding

function counts to determine the Unadjusted Function Points (UFP) quantity. This

is the function points sizing metric used by COCOMO II. The usual function points

procedure, which is not allowed by COCOMO II involves assessing the degree of influ-

ence (DI) of fourteen application characteristics on the software project determined

according to a rating scale of 0.0 to 0.05 for each characteristic. The fourteen ratings

are added together adjustment factor that ranges from 0.65 to 1.35.

Each of these fourteen characteristics, such as distributed functions, performance,

and reusability, thus have a maximum of 5% contribution to estimated effort. Having,

for example, a 5% limit on the effect of reuse is inconsistent with COCOMO expe-

rience; thus COCOMO II uses Unadjusted Function Points for sizing, and applies

its reuse factors, cost drivers, and scale factors to this sizing quantity to account for

the effects of reuse, distribution, etc. on project effort. The four steps of counting

procedure are as follows:

52

Table 2. FP complexity levels

For Internal Logical Files and External Interface Files

Data Elements

Record Elements 1-19 20-50 51+

1 Low Low Avg.

2-5 Low Avg. High

6+ Avg. High High

For External Output and External inquiry

Data Elements

Record Elements 1-5 6-19 20+

0 or 1 Low Low Avg.

2-3 Low Avg. High

4+ Avg. High High

For External Input

Data Elements

Record Elements 1-4 5-15 16+

1 Low Low Avg.

2-3 Low Avg. High

3+ Avg. High High

Determine function counts by type The unadjusted function counts should be

counted by a lead technical person based on information in the software require-

ments and design documents. The number of each of the five user function types

should be counted [Internal Logical File (ILF), External Interface File (EIF),

External Input (EI), External Output (EO), and External Inquiry (EQ)].

Determine complexity levels Classify each function count into Low-, Average-

and high-complexity levels depending on the number of data element types

contained and the number of file types referenced. Use the scheme in Table 2.

Apply complexity weights Weight the number of function types at each com-

plexity level using the scheme in Table 3. (the weights reflect the relative effort

53

Table 3. UFP complexity weights

Complexity-Weight

Function Type Low Average High

Internal Logical Files 7 10 15

External Interface Files 5 7 10

External Inputs 3 4 6

External Outputs 4 5 7

External Inquiries 3 4 6

required to implement the function).

Compute Unadjusted Function Points Add all the weighted functions counts to

get one number, the Unadjusted Function Points.

Next, convert the Unadjusted Function Points (UFP) to lines of code. The UFP

has to be converted to source lines of code in the implementation language (Ada,

C, C++, Pascal, etc.). COCOMO II does this both for both the Early Design and

Post-Architecture models by using tables to convert UFP into equivalent SLOC. The

current conversion ratios are shown in Table 4 [60].

In addition to the newly built code, code that is taken from another source and

used in the product under development also contributes to the product’s effective

size. Reusable code is composed of code that is reused without modification, and

adapted code that is used with modification. New code equivalent size of SLOC can

be obtained by adjustment of reused and adapted code. In COCOMO II, Boehm et.

al. [21] suggest a reuse model.

EquivalentKSLOC = AdaptedKSLOC ×
(
1 − AT

100

)
× AAM, (2.8)

AAM =
[AA + AAF (1 + (0.02 × SU × UNFM))]

100
, AAF ≤ 50, (2.9)

54

Table 4. Default UFP to SLOC conversion ratios

Language SLOC/UFP Language SLOC/UFP

Access 38 Jovial 107

Ada 83 71 Lisp 64

Ada 95 49 Machine Code 640

APL 32 Pascal 91

Assembly-Basic 320 PERL 27

Basic-ANSI 64 Prolog 64

Basic-Visual 32 Report Generator 80

C 128 2nd Generation Lang. 107

C++ 55 Simulation-Default 46

Database-Default 40 3rd Generation Lang. 80

5th Generation Lang. 4 Unix Shell Scripts 107

1st Generation Lang. 320 USR 1 1

Fortran 95 71 USR 4 1

4th Generation Lang. 20 USR 5 1

High Level Lang. 64 Visual Basic 5.0 29

HTML 3.0 15 Visual C++ 34

Java 53

AAM =
[AA + AAF (SU × UNFM))]

100
, AAF > 50, (2.10)

where AA represents assessment and assimilation, AAM adaptation adjustment mod-

ifier, AT amount of automatic translated, SU software understanding, UNFM pro-

grammer unfamiliarity.

AAF = (0.4 × DM) + 0.3 × CM) + 0.3 × IM) (2.11)

Adaptation adjustment modifier (AAF) contains the quantities such as percent design

modified (DM), percent code modified (CM), and percent of integration required

55

for adapted software (IM). While reusable code saves much effort, it still requires

effort such as understanding the software to be modified, and checking inter module

interfaces.

To aggregate the new, adapted and reused code, COCOMO II provide the sizing

equation as follows:

Size =
(
1 +

REV L

100

)
× (NewKSLOC + EquivalentKSLOC), (2.12)

where REV L is percentage of requirements evolution and volatility.

The effort of personnel is the main cost in a software development project. Ef-

fort of an organization is the person months required to produce a specific size of a

software product. Of all effort estimation models, COCOMO is the most complete

and thoroughly documented model. Boehm et al. [21] introduces the COCOMO 2.0

effort estimation model.

Effort = A × SizeE ×
n∏

i=1

×EMi, (2.13)

where Size is KSLOC, A = 2.94, E is an aggregation of scale factors, and EM is

effort multipliers. The unadjusted function points (UFP) can be used if converted to

KSLOC.

The scale factors are: Precedentedness (PREC), Development Flexibility (FLEX),

Architecture/Risk Resolution (RESL), Team Cohesion (TEAM), and Process Matu-

rity (PMAT). The exponent E in Equation 2.13 is an aggregation of five scale factors

that account for the relative economies or diseconomies of scale encountered for soft-

ware projects of different sizes. If E < 1.0, the project exhibits economies of scale.

If the product’s size is doubled, the project effort is less than doubled. The project’s

productivity increases as the product size is increased. Some project economies of

scale can be achieved via project-specific tools (e.g., simulations, testbeds), but in

56

general these are difficult to achieve. For small projects, fixed start-up costs such as

tool tailoring and setup of standards and administrative reports are often a source of

economies of scale.

If E = 1.0, the economies and diseconomies of scale are in balance. This linear

model is often used for cost estimation of small projects.

If E > 1.0, the project exhibits diseconomies of scale. This is generally because

of two main factors: growth of interpersonal communications overhead and growth

of large-system integration overhead. Larger projects will have more personnel, and

thus more interpersonal communications paths consuming overhead. Integrating a

small product, but also the additional overhead effort to design, maintain, integrate,

and test its interfaces with the remainder of the product.

There are seventeen EM grouped in four factors: product factors, platform fac-

tors, personnel factors, and project factors. They are used to adjust the nominal

effort, PM , and to reflect the software product under development. The product

factors account for variation in the effort required to develop software caused by

characteristics of the product under development. A product that is complex, has

high-reliability requirements, or works with a large testing database will require more

effort to complete. There are five effort multipliers in the product factors, and com-

plexity has the strongest influence on estimated effort. The effort multipliers are

Required Software Reliability (RELY), Database Size (DATA), Product Complexity

(CPLX), Developed for Reusability (RUSE), and Documentation Match to Life-Cycle

Needs (DOCU).

The platform refers to the target-machine complex of hardware and infrastruc-

ture software. There are three effort multipliers in the platform factors: Execution

Time Constraints (TIME), Main Storage Constraint (STOR), and Platform Volatility

(PVOL).

57

The personnel factors are for rating the development team’s capability and ex-

perience - not the individual. These ratings are most likely to change during the

course of a project reflecting the gaining of experience or the rotation of people onto

and off the project. There are five effort multipliers: Analyst Capability (ACAP),

Programmer Capability (PCAP), Personnel Continuity (PCON), Applications Expe-

rience (APEX), Platform Experience (PLEX), and Language and Tool Experience

(LTEX).

The project factors account for influences for influences on the estimated effort

such as use of modern software tools, location of the development team and com-

pression of the project schedule. There are three effort multipliers: Use of Software

Tools (TOOL), Multisite Development (SITE), and Required Development Schedule

(SCED).

II.6 Commercial Off the Shelf (COTS) Components

COTS components are an increasingly influential factor to the productivity, and

widely used in current software projects. It is not likely that a single large software

system is being designed without the incorporation of at least one COTS component.

COTS components have several characteristics such as: the COTS source code cannot

be accessed; the vendor has the control of the COTS software life cycle. Although

COTS components reduce the development effort, integrating COTS components in-

volves activities such as assessment, tailoring, and developing glue code. Basili et al.

[12] report effort required for COTS based development.

Determining the use of and how many of COTS components are used should

affect the productivity. The COTS approach still requires effort such as selecting,

installing and configuring to the system but less effort than approach to build system

58

Table 5. Effort required for COTS based development

Activity Average Effort(%) Standard Deviation(%)

Glue Code 37 ± 36

Tailoring 26 ± 30

Assessment 24 ± 20

Volatility 13 ± 11

entirely from scratch. While COTS approach seems to have advantage of reducing

development cost, amount of COTS components can affect the economic life of the

SP. After including COTS components in a system, they can disappear or evolve

in different directions in response to the market demand. As a result, the system

depending on the COTS components should be replaced or developed. Abts [5]

proposed COTS functional density (CFD) metric to solve the problem of maximizing

the amount of functionality in the system provided by COTS components but using

as few COTS components as possible.

CFD =
(

CFP

NCFP + CFP

)
× 1

NCC
, (2.14)

where CFP is COTS function points, NCFP is non COTS function points, and

NCC is number of COTS components in the system. CFD represents the percentage

of overall system functionality delivered per COTS component. The implication is

that the larger the CFD, the greater the “efficiency” of a given COTS based system

design.

As seen in Table 5, glue code accounts for less than half the total COTS based

development effort. However, developing glue code consumes effort three times more

than developing same amount of new code. More investment in assessment, therefore,

could reduce the total cost for integrating COTS components.

59

CHAPTER III

BAYESIAN ANALYSIS

III.1 Statistical Analysis

The main purpose of statistical analysis is to derive from observations of a random

phenomenon an inference about the probability distribution underlying this phe-

nomenon [26]. That is, it is comprised of two steps: building a probabilistic model

based on observed phenomenon; and predicting a future phenomenon of a similar

nature with the model. This type of reasoning is called inductive logic or plausible

reasoning. Statistical inference obtains conclusions from the data to answer: esti-

mation of a parameter value; testing a hypothesis about the statistical model; and

prediction. Figure 9 shows the concept of statistical analysis. However, statistical

analysis is not deduction, which means that the conclusions made are subject to error,

even when one has accounted for the possibility of error.

M odel

Population param eters

Data

Sam ple s tatis tic s

Experim ental des ign

Statis tic al inferenc e

Quality of inferenc e

Fig. 9. Statistical analysis

60

Statistical analysis has two approaches to solve the real world problem. The first

approach assumes that statistical analysis must incorporate as much as possible of

the real world complexity, and thus aims at estimating the distribution underlying

the phenomenon under minimal assumptions. This approach is called nonparametric.

Conversely, the parametric approach represents the distribution of the observations

through a distribution function f(x|θ), where only the parameter θ (of finite dimen-

sion) is unknown. The second approach is more pragmatic, since it takes into account

that a finite number of observations can efficiently estimate only a finite number of pa-

rameters. Moreover, a parametric modeling authorizes an evaluation of the inferential

tools for finite sample sizes.

Once the statistical model is defined, the main purpose of the statistical analysis

is to lead to an inference on the parameter θ. This means that observation x is

used to improve the knowledge on the parameter θ, so that one can take a decision

related with this parameter, i.e., either estimate a function of θ or a future event

whose distribution depends on θ. The inference can deal with some components of

θ, precisely “What is the value of θ1?” or “Is θ2 larger than θ3?”. More generally,

inference covers the random phenomenon directed by θ and thus includes prediction,

that is, the evaluation of the distribution of a future observation y depending on θ

(and possibly the current observation x), y ∼ g(y|θ, x). Indeed, the ultimate goal of

statistical analysis is, in the overwhelming majority of cases, to support to a decision

as being optimal (or at least reasonable).

Compared with probability modeling, the purpose of a statistical analysis is fun-

damentally an inversion purpose, since it aims at retrieving the causes - reduced to

the parameters of the probabilistic generating mechanism - from the effects - sum-

marized by the observations. In other words, when observing a random phenomenon

directed by a parameter θ, statistical methods allow to deduce from these observa-

61

tions an inference (that is, a summary, a characterization) about θ, while probabilistic

modeling characterizes the behavior of the future observations conditional on θ. A

general description of the inversion of probabilities is given by Bayesian theorem [16]:

if A and E are events such that P (E) �= 0, P (A|E) and P (E|A) are related by

P (A|E) =
P (E|A)P (A)

P (E|A)P (A) + P (E|Ac)P (Ac)
=

P (E|A)P (A)

P (E)
. (3.1)

The equation expresses the fundamental fact that, for two equiprobable causes,

the ratio of their probabilities given a particular effect is the same as the ratio of

the probabilities of this effect given the causes. This theorem also is an actualization

principle since it describes the updating of the likelihood of A from P (A) to P (A|E)

once E has been observed. Thomas Bayes (1764) actually proved a continuous version

of this result, namely, that given two random variables x and y, with conditional

distribution p(y|x) and marginal distribution p(x), the conditional distribution of x

given y is

p(x|y) =
p(y|x)p(x)∫
p(y|x)p(x)dx

. (3.2)

While this inversion theorem is quite natural from a probabilistic point of view,

Bayes and Laplace went further and considered that the uncertainty on the parame-

ters θ of a model could be modelled through a probability distribution, called prior

distribution. The inference is then based on the distribution of θ, p(θ|y), called pos-

terior distribution and defined by

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

. (3.3)

From the equation, we can notice that p(θ|y) is actually proportional to the

distribution of y conditional upon θ, i.e., the likelihood, multiplied by the prior dis-

62

tribution of θ. The main addition brought by a Bayesian statistical model is thus to

consider a probability distribution on the parameters.

III.2 Bayesian Analysis

Bayesian analysis means practical methods for making inferences from data using

probability models for quantities to observe and for quantities to know. The essential

characteristic of Bayesian methods is the explicit use of probability for quantifying

uncertainty in inferences on statistical data analysis. The process of Bayesian data

analysis has following steps:

1. Setting up a full probability model

2. Conditioning on observed data

3. Evaluating the fit of the model and the implications of the resulting posterior

distribution

In statistical terms, Bayes’ Theorem actualizes the information on θ by extracting

the information on θ contained in the observation y. Bayesian statistical conclusions

about a parameter θ, or unobserved data y, are made in terms of probability state-

ments. These probability statements are conditional on the observed value of y, and

are written as p(θ|y). It is at the fundamental level of conditioning on observed

data that Bayesian analysis departs from the approach to statistical analysis, which

is based on a retrospective evaluation of the procedure used to estimate θ over the

distribution of possible y values conditional on the true unknown value of θ [91].

Bayesian analysis provides a mechanism for updating initial probability state-

ments about parameters with the sample data observed [43].

p(θ|y) ∝ p(y|θ)p(θ), (3.4)

63

where p(θ) is the prior distribution, and p(y|θ) is the sampling distribution. The

posterior distribution p(θ|y) is proportional to the product of prior and sampling dis-

tribution. Bayesian inference on a parameter θ is, therefore, conditional on observed

sample data y. Typically, Bayesian analysis implies that the inference on θ should

rely entirely on the posterior distribution p(θ|y). Even though θ is not necessarily a

random variable, the posterior distribution p(θ|y) can be used as a regular probabil-

ity distribution to describe the properties of θ: summarizing indices of the posterior

mean; the posterior mode; the posterior median; and the posterior variance [91].

The prior distribution is used to summarize the available information about the

parameters (or even lack thereof), as well as the residual uncertainty, thus allowing

for incorporation of this imperfect information in the decision process. The prior

distribution is the most critical point of Bayesian analysis [16]. The prior distribution

is unconditional to the sampling data, while the posterior distribution is conditional

to the sampling data and prior information. And this is the key point of Bayesian

analysis, since once this prior distribution is known, inference can be led in an almost

mechanic way afterwards. However, in practice, it seldom occurs that the available

prior information is precise enough to lead to an exact determination of the prior

distribution. The following questions may then be asked frequently regarding on the

prior distribution.

• Where do the models come from?

• How can we go about constructing appropriate probability specifications?

The difficulty with the choice of the prior distribution comes from that the de-

cision maker, the client or the statisticians do not have the time or resources to hunt

for an exact prior and they have to complete the partial information with a subjective

input to build a prior distribution. Therefore, it is often to make a partly arbitrary

64

choice of the prior distribution which leads to drastic change of the subsequent infer-

ence. In particular, the systematic use of parametrized distributions such as normal,

gamma, beta, etc. and the further reduction to conjugate distributions can be recom-

mended. Some settings nonetheless call for a partly automated determination of the

prior distribution when prior information is totally lacking. However, they can trade

an improvement in the analytical treatment of the problem for the subjective deter-

mination of the prior distribution and therefore ignore part of the prior information.

The main points about the prior distribution are as follows:

• Ungrounded prior distribution produce unjustified posterior inference

• There is no such thing as the prior distribution except for very special settings

In Bayesian analysis, the subjectivity issue is always critical, because of the

reliance on a prior distribution. However, all statistical methods that use probability

are subjective in the sense of relying on mathematical idealizations of the world, and

most problems in the science field demand scientific judgement which are subjective in

terms of the likelihood [91]. From a philosophical point of view, it is generally agreed

that knowledge stems from a confrontation between a prioris and experiments. This

point of view is found in Poincaré [83]:

It is often stated that one should experiment without preconcieved ideas.

This is simply impossible; not only would it make every experiment sterile,

but even if we were ready to do so, we could not make implement this

principle. Everyone stands by his own conception of the world, which he

cannot get rid of so easily.

Thomas Kuhn also discusses the point of view [69]:

65

Some accepted examples of actual scientific practice provide models from

which spring particular coherent traditions of scientific research.

In fact, without a prioris, that is, without a pre-established structure of the world, ob-

servation is meaningless because it does not come as a support of or as a confrontation

to a referential model. Therefore, the building of knowledge through experimentation

implies the existence of a prior representation system, which is very primitive at the

beginning, but gets progressively actualized via these experiments. Bayesian analysis

is obviously in accordance with this perspective, since prior distributions are most

often based on the results of previous experiments.

The posterior distribution represents the state of knowledge about the truth of

the parameter in the light of the data. This distribution operates conditional upon

the observations. It thus avoids averaging over the unobserved values of y, which

is the essence of the frequentist approach [91]. Indeed, the posterior distribution is

the updating of the information available on θ, owing to the information contained

in the sampling distribution, while the prior distribution represents the information

available a priori, that is, before observing y. Furthermore, Bayesian analysis has two

advantages: the order in which i.i.d. (identically independently distributed) observa-

tions are collected does not matter; updating the prior one observation at a time, or

all observations together, does not matter. Therefore, Bayesian analysis can perform

sequential analysis. The power of Bayesian analysis lies in the fact that it encapsu-

lates the process of learning, i.e., the prior information is transformed to posterior

distribution. And the posterior distribution can be used as a prior distribution to

construct a new model when new data are coming.

In summary, Bayesian analysis is the process of fitting a probability model to a

set of data and summarizing the result by a probability distribution on the parameters

66

of the model and on unobserved quantities such as predictions for new observations.

III.3 Model Assumption

The normal distribution is central to statistical inference and modeling. Undoubtedly,

the most widely used model for the distribution of a random variable is a normal dis-

tribution. The characteristics of the normal distributions are having two parameters,

the mean µ as a measure of location, and the variance σ2 measuring the extent of

scatter around that central location.

θ ∼ N(µ, σ2) (3.5)

The normal distribution has several advantages such that distributions are very

tractable analytically, symmetry bell shape makes it an appealing choice for many

population models, and the distribution can be used to approximately a large variety

of distributions in large samples under the central limit theorem.

The central limit theorem states that whenever a random sample of size of n

is taken from any distribution with mean µ and variance σ2, the sample mean y

will have a distribution which is approximately normal with mean µ and variance

σ2/n [26]. The central limit theorem helps further to justify the normal distribution

as an approximation for the posterior distribution of many summary statistics, even

those deriving from non-normal data, as sample size increases.

III.4 Multi-Parameter Estimation

Virtually every practical problems involve more than one unknown parameter or un-

observable quantity. Although a problem can include several parameters of interest,

conclusions will often be drawn about one, or only a few, parameters at a time. In this

67

case, we need to obtain the marginal posterior distribution of the particular param-

eters of interest [43]. In principle, we first construct the joint posterior distribution

of all unknowns, and then we integrate this distribution over the unknowns that are

not of immediate interest to obtain the desired marginal distribution. Other than the

particular parameters, the others are called nuisance parameters.

Suppose we are interested in two parameters θ1 and θ2. The joint posterior

distribution will be

p(θ1, θ2|y) ∝ p(y|θ1, θ2)p(θ1, θ2) (3.6)

And we can get marginal distribution of θ1 by averaging over θ2.

p(θ1|y) =
∫

p(θ1, θ2|y)dθ2 (3.7)

This is the final form of the marginal posterior distribution of the parameter of interest

given the sampling data.

68

CHAPTER IV

DEVELOPMENT OF PAMPA II

IV.1 Overview of PAMPA II

In 1997, PAMPA (Project Attributes Monitoring and Prediction Associate) tool was

developed to help managers gather project information from any software develop-

ment environment, save it in an understandable object/attribute/relationship format,

view it using an inexpensive workstation, and supply input to expert system building

tools used for creating intelligent agents. A version of PAMPA tool is available in the

book on software measurement by Simmons et al [99]. PAMPA runs in the Microsoft

Windows and Office environment and uses an expert system building tool for creating

intelligent agents. PAMPA can gather project information from any software devel-

opment project that can share directories over a network to a Microsoft Windows

client workstation. New features have been added to PAMPA to create the proto-

type version of PAMPA II. The main new capability is that it operates from Internet

browsers and uses a three-tier architecture as shown in Figure 10. PAMPA II is a

tool to help a manager view projects by gathering project attributes and presenting

project status.

As the complexity of software development environment increases, Computer-

Aided Software Engineering (CASE) tools such as MS Project, Rational Rose, Requi-

sitePro, ClearCase, ClearQuest, and Test Studio are used to support developers.

PAMPA II has evolved to gather critical project attributes from the CASE tool

databases, store them into PAMPA II KB, and provide status of a project via web-

based consoles.

69

Launch Internet Explorer Browser.lnkLaunch Internet Explorer Browser.lnk
Thin Clients

Microsoft
Project
Server

Microsoft
Project
Server

Jess
Engine for
Decision
Support

Jess
Engine for
Decision
Support

Apache
Tomcat/PHP
Web Server

Apache
Tomcat/PHP
Web Server

Rational Tools Engine

Charting Engine for Data VisualizationCharting Engine for Data Visualization

Data GatherersData Gatherers
PAMPA II – Application Server

(Servlets, JSP)

Data Server (MS SQL – 2000), Configuration Management Repository

Fig. 10. Overview of PAMPA II system architecture

IV.2 Framework of PAMPA II

PAMPA II expands the PAMPA KB to include a project version, plan, and milestone

object classes [100]. The Unified Modelling Language (UML) [22] is used to describe

object classes, attributes, and relationships. The objects that comprise a software

Project are displayed in Figure 11. In this chapter, names of objects such as Project

are written using a Arial bold font. A KB reflecting all attributes and relationships of

a Project can be constructed to reflect Project status at all stages of development.

The ProjectList is made up of knowledge bases of all Projects being tracked. The

fact that there is a single ProjectList is shown by the number one (1) next to the

70

Organization

Project

ProjectList

Supplier SoftwareProduct

*

1

ProjectVersion
*

1

1.. *
* *

Plan Customer
*

SLCModelList

SLCModel
*

1

Fig. 11. Project

interconnecting line between ProjectList and Project. The asterisk adjacent to

the line above Projects indicates that there are zero or more Projects in the list.

The objects that make up a Project continually change with the passage of time.

ProjectVersions are archived at selected times during a development. Snapshots

of all aspects of a Project can be replayed in a manner similar to how airline flight

recorders replay flight data to determine what happened during a flight before a plane

crashes.

The diamond symbol below ProjectVersions in Figure 11 indicates that the ob-

jects connected by the bold line are an aggregation that comprises a ProjectVersion.

Each ProjectVersion is composed of zero or more Plans, zero or more Suppliers

of reusable software, one or more Organizations staffed by Project personnel, a

SoftwareProduct that is being created by the Project and Customers that will

use the SoftwareProduct.

A Plan is shown in Figure 12. The thin line connecting the bottom side of the

Plan object to the top side of the Plan object indicates that the different Plans are

related to each other. A Plan contains Processes and desired Activity(ies).

A Process can be related to other Processes and is made up of an aggregation

71

Plan

Process

Activity

* *

*

InitialMilestone FinalMilestone

Criteria

*

*

*

*

Risk

Fig. 12. Plan

of other Processes and Activity(ies) as shown in Figure 12. A Process begins with

an InitialMilestone and ends with a FinalMilestone. As part of planning, Risk

attributes are assessed for each Process. Each Activity also has an InitialMile-

stone, a FinalMilestone, and Risk attributes.

The Supplier shown in Figure 13 provides commercial off the shelf (COTS)

software or reusable software from software reuse libraries found within Organi-

zations. The first is supplied as COTSRunFiles and the second is supplied as

72

Organization

Salary

Supplier

COTSRunFile

ReusableSourceFile

Individual

*

*

1.. *

*

1.. * member 1 manager

{subset}

*

*

*

1.. *

Process
* *

WorkBreakdownStructure

*

*

Fig. 13. Work breakdown structure

ReusableSoftwareFiles. Both of these are provide SoftwareProduct Features.

Their relationships to Features are shown by the named relationship “is related to”

in Figure 15.

The Organization structure is shown in Figure 13. An Organization is com-

posed of other Organizations or of Individuals. An Organization has one or

more Individuals and has a WorkBreakdownStructure assigned to it. At least

one of the Individuals is the manager of the Organization. Each Individual has

one (1) or more Salary(ies) and is assigned a WorkBreakdownStructure.

The WorkBreakdownStructures are usually related to other WorkBreak-

downStructures and are composed of Processes as shown in Figure 13. A Work-

BreakdownStructure is a hierarchy of elements that decomposes the Plan into

the discrete work Processes or Activity(ies). Each WorkBreakdownStructure

provides a clear task decomposition information for assignment of responsibilities. It

73

is the baseline for plan scheduling, budgeting, and plan tracking.

A SoftwareProduct is created by a Project. In Figure 14, we show that Soft-

wareProducts are composed of the Features described in the requirements docu-

ments, the Defects tracked by a defect tracking system, and the different Versions

that are built during development.

A Version is composed of Subsystems, VandVTests, and UsabilityTests, as

described in Figure 14. The VandVTests (verification and validation tests) are often

managed using a test management system. UsabilityTests are people intensive and

are conducted in usability test cells. The attributes resulting from UsabilityTests

are saved as Usability attributes.

A SoftwareProduct Subsystem is composed of Artifacts as shown in Fig-

ure 14. Artifact stores the artifact information: artifact type, file name, directory,

and programming to develop the artifact. An Artifact is composed of smaller cogni-

tive Chunks which can be composed of other Chunks. Examples of chunks of code

are subroutines, functions, packages, spreadsheets, query commands, and scripts.

Chunks are measured in terms of Volume and Structure attributes. Volume at-

tributes are measured in units of source lines of code, function points, logical source

statements, object points and unique source lines of code [99].

Named relationships between Individuals are shown in Figure 15. Process im-

provement relies upon empowering Individuals to help improve a Process. Along

with empowerment, process improvement requires individuals to be accountable. Em-

powerment and accountability can be evaluated and tracked by expressing the owner-

ship relationship. Individuals are shown to own each ReusableSourceFile, COT-

SRunFile, Subsystem, VandVTest, UsabilityTest, Artifact, Feature, Defect,

Version and SoftwareProduct. The Individual that owns an object is the person

responsible for it. Also, the Individual that authors an object is tracked. Individ-

74

Feature

SoftwareProduct

Version

VAndVTest UsabilityTestSubsystem

Artifact Usability

Chunk

Volume

Defect

*

*

*

*

* * *

*

*

Structure

Rework

Problem

Change
*

*

Fig. 14. Software product

uals are shown as authors of Subsystems, Artifacts, VandFTests and Usabili-

tyTests. An Individual runs VandVTests and UsabilityTests.

IV.3 System Architecture of PAMPA II

PAMPA II uses the three-tier architecture described in Figure 16. The first tier

contains thin clients, the second tier contains a middleware server, and the third

tier contains a database server. The three-tier architecture enhances separation of

business logic from the graphical user interface (GUI) and database, and improves

security, performance, and reliability. The first tier communicates with the manager

75

Organization

Project

ProjectList

Salary

Supplier

Feature

SoftwareProduct

COTSRunFile

ReusableSourceFile

Version

VAndVTest UsabilityTestSubsystem

Artifact Usability

authors
runs

Chunk

Individual

Volume

is located in Defect

is
related

to

*

1

ProjectVersion
*

1

owns

*

*

*

*

*

*

1.. *

*

1.. * member 1 manager

{subset}

*

*

*

*

*

*

*

* *

* * *

*

1.. *

Plan Customer
*

Structure

Process

Activity

* *

*

InitialMilestone FinalMilestone

*

WorkBreakdownStructure

Rework

Criteria

*

*

*

*

* authors

*

* * *

*

*

SLCModelList

SLCModel
*

Risk

1

Problem

Change
*

*

View[Productivity, Organization, Process, Project Dominator,
Plan and WBS Gannt, Plann and WBS Activity Network,Feature Status,
Project Design, Testing, Documentation]

Fig. 15. Knowledge base framework and relationship

and developer workstations. Each workstation represents thin clients that contain

only a web browser and a Java virtual machine. Java applets operate in the clients.

The middleware server application runs on PHP server. The first-tier client appli-

cation of PAMPA II is a Java applet, which is served by the second-tier middleware

server and downloaded to the first-tier browsers for execution. The advantage of a

Java applet over HTML is that it provides a cleaner and friendlier user interface with

more powerful functions. In addition, the security restrictions on Java applets make

them safe (no viruses, they can not write to a hard disk, etc.) to run. As a Java

applet can only make network connection to the middleware server from which the

76

Fig. 16. Three-tier architecture

applet is downloaded, it can not communicate directly with the database.

The second-tier houses the middleware server. PAMPA II system and Java Ex-

pert System Shell (JESS) operate on the Middleware server. The second-tier commu-

nicates with the third-tier database servers via Java Database Connectivity (JDBC).

Database files are stored in relational database management systems (RDBMS). A

plan, organization, work breakdown structure, software product, and project knowl-

edge base all reside on third-tier database servers. Currently, we are using a central-

ized relational MS SQL 2000 server to store our databases, but any RDBMS could

be used.

Recently, more and more businesses have turned to three-tier architecture instead

77

Table 6. Subsystems of PAMPA II

Subsystems Primary features

Application/Data server Project project attributes and draw charts

Store project attributes

Plan gatherer Transfer project plan from MS project

Software metric parser Calculate volume from source files

Data gatherer Rational tools

of two-tier architecture because three-tier architecture offers clearer logic, better secu-

rity and reliability. In a three-tier system, the application logic (the core) is properly

separated from the user interface on the client side and the persistence domains on

the server side. This separation makes code more portable.

IV.4 Subsystems of PAMPA II

Features have been developed to help managers of software project from those manned

by a small team at one location to those with many teams dispersed all over the world.

PAMPA II includes the following subsystems specified in Table 6. A prototype version

of PAMPA II has been developed to run on the Internet. The following subsystems

are also included in the prototype version. Figure 17 shows the outline of the system.

PAMPA II was created based on Internet technology. The Apache web server

was used for HTTP service. We used the Tomcat and PHP engines to support script

language capability to process data. JpGraph engine was used to draw charts with

the project attributes. The engine is based on PHP technology. Jess is a rule engine

and scripting environment written entirely in Sun’s Java language, which provides

a technology to create an intelligent agent for decision support. Database engine is

78

PAMPA 2
KB

Rational RequsitePro

Rational ClearCase

MS Project

Project
Plan

Requirements
Specification

Artifact

Rational ClearQuest

Defect/Change

Fig. 17. Outline of the system

the MS SQL 2000 server, which is a typical RDBMS and supports Structured Query

Language (SQL).

Plan gatherer transfers plan, process, activity and resource attributes from MS

Project and stores them into the PAMPA II KB. MS Project is a software package

tool to make a project plan. A project plan consists of activities, work breakdown

structure (WBS), resource information such as skill, salary, and experience.

The software metric parser takes the source files as inputs from the data transfor-

mation module and parse them into tokens. By analyzing tokens, the software metric

parser can come up with results of software metrics. The metrics of source files are

indications of how a software project is going. Then, the parser can generate metrics

stored in a database and presented with a GUI that allows the manager to gather

and parse a particular version of a project. After gathering files from a particular

version of a working directory, the GUI invokes its parser to start generating metrics.

79

When the parsing is complete, the manager is prompted and can, in turn, store the

data into the PAMPA II KB. The software metrics are used to identify the current

progress of the on-going project.

The Software metric parser provides some of the popular metrics from the liter-

ature, such as following:

• Bytes

• Source Line of Code (SLOC)

• Unique SLOC

• Chunks

• Volume

• Unique Reference LOC

• Source Statements (SS),

The source files can be written in Java, C++, C, or PHP programming language.

Today, multiple programming languages are used in developing an SP. And it is needed

to compare cost between artifacts created with different programming languages.

Jones provided a conversion ratio chart of more than 20 programming languages [60].

The chart shows ratios to convert volume of one programming language to that of

another. For example, if we use C++ as a main programming language, the volume

of other languages can be converted to the equivalent volume of C++. Therefore, it

is possible to equate product volume between programming languages.

Data gatherer collects feature attributes from RequisitePro, change/defect at-

tributes from ClearQuest, and volume attributes from ClearCase, respectively, and

80

stores them into the KB. RequisitePro is a requirements management system. Ratio-

nal RequisitePro is used to help software developers manage requirements to create

software products. Requirement is a “condition or capability that must be met or

possessed by a system or system component to satisfy a contract, specification, stan-

dard, or other formally imposed documentation” [38]. The requirements are the most

important one in the project planning stage, because requirements are things to which

the system being built must conform, and conformance to some set of requirements

defines the success or failure of projects. However, requirements management has

some problems such that requirements are frequently changed, requirements are re-

lated to one another and to other deliverables of the process in a variety of ways, and

requirements must be managed by cross-functional groups of people like customers,

analyst, and developers/testers. Rational RequisitePro is a tool to enable managers

to organize, prioritize, trace relationships, and easily track changes to project require-

ments. The tool supports the database connection. Data gatherer gathers require-

ment attributes from the RequisitePro storage, and stores them into the PAMPA II

knowledge base.

ClearQuest is a change and defect management system. ClearQuest works with

ClearCase to track change/defect in an evolving project. ClearQuest is used to help

software developers track defect/change in developing software products. ClearQuest

is a customizable defect/change tracking system which supports developer, tester,

project leader, and administrator. The tool can help manage every type of change

activity associated with software development, including enhancement requests, de-

fect reports, and documentation modifications. Data gatherer gathers defect/change

attributes from the ClearQuest storage, and stores them into the PAMPA II knowl-

edge base.

ClearCase is a Configuration Management System (CMS) to help software de-

81

Storage
(VOB)

CMSArtifacts

COM Interface

PAMPA 2
KB

Parser

Data
Transformation

Volume

Fig. 18. Data transformation module

velopers track files and directories used to create an SP. Configuration Management

System (CMS) is used to help software developers track files and directories used to

create a software product. During the development stage, developers create artifacts

according to requirements. Rational ClearCase is used for on-line storage of project

artifacts and version control management.

We created a Data Transformation module which accesses to source files in

ClearCase storage through the COM interface (ClearCase Automation Library). The

Data Transformation module collects source files and passes them to the software

metric parser to calculate volume. The volume attribute returns to the Data Trans-

formation module which stores it into the PAMPA II KB. The detailed diagram is

shown in Figure 18.

ClearCase supports parallel software development and software reuse across ge-

ographically distributed project teams. Developers at different locations can use the

same VOB. Each site has its own copy, or replica, of that VOB. The set of replicas for

a particular VOB is called a VOB family. At any time, a site can propagate changes

82

to other sites, using either an automatic or manual synchronization process.

83

CHAPTER V

PRODUCTIVITY PREDICTION MODEL

V.1 Model Building Based on Bayesian Analysis

Productivity is a major attribute for project management in estimating budget and

time. Without an accurate objective productivity estimate, a software development

project could result in budget overrun and project failure. And predicting develop-

ment effort based on productivity estimate is central to project management. Project

management consists of planning process such as scheduling activities and defining

work breakdown structures, and controlling process such as measuring progress and

reallocating resources.

In the planning process, we estimate initial productivity of a project using one

of the effort estimation models, and predict development effort to make a plan. As

the project evolves, we measure productivity from volume and effort of finished arti-

facts to determine the progress of the project. If the project’s progress continues to

match the plan, the project is in good shape. If there are some mismatches between

the progress and plan, then corrective action must be taken. To make the project

management harder, the initial productivity estimate given by any effort estimation

model has high error rate so the plan based on it tends to be fraught with inaccu-

racies. Furthermore, the control based on the poor productivity estimate would lead

the project to nowhere but failure. Therefore, it is necessary to transmit feedback

information for reevaluation of the initial productivity estimate.

Bayesian analysis comes in handy to reevaluate the initial productivity estimate,

because we have prior information about productivity (initial productivity), and sam-

ple data (measured productivity). Thus we can use Bayesian analysis to integrate

84

Ini tial Productivi ty

Prior/Posterior
Distribution

Measure
Progress

Productivi ty
Data

Bayesian
Analysis

Predict Effort/
Reshape Plan

Fig. 19. Productivity prediction model

the information about productivity. And the updated productivity can be used to

predict development effort for the rest of the project and to reshape the plan.

Figure 19 shows the process of productivity prediction model. With the initial

productivity estimate, we can create a prior distribution of productivity. And we

can predict development effort to make a plan. During the development process, we

can gather productivity data which are used to measure the progress of the project.

Also, the productivity data can be combined with the prior distribution via Bayesain

analysis to get the posterior distribution. After getting the updated productivity,

then we can predict development effort of the remaining activities of the project, and

reshape the plan according to the new predicted effort. And the posterior distribution

can act as the prior distribution for the next observed productivity data. Therefore,

this procedure is continuously performed till the project ends.

The prior distribution is the most critical point of Bayesian analysis. The prior

85

distribution is unconditional to the sampling data, while the posterior distribution is

conditional to the sampling data and prior information. And this is the key point

of Bayesian analysis, since, once this prior distribution is known, inference can be

led in an almost mechanic way afterwards. We used the following steps to build a

prior/posterior distribution of productivity.

Step 1: In this research, we use the popular effort estimation model, COCOMO

II, to determine the prior distribution. While not accurate enough to give the true

estimate, the effort estimation model can provide a substantial estimate of produc-

tivity of a project. COCOMO II is an algorithmic model to estimate effort [21]. It

requires volume of artifacts and cost drivers to estimate effort in PM. A cost driver is

a model factor that affects the effort to complete a project. There are 17 cost drivers

in COCOMO II. Effort multiplier (EM) is a value of rating level of a cost driver. And

effort is estimated with the model:

PM = 2.94 × V olumeE ×
n∏

i=1

EMi, (5.1)

where V olume is the volume, EM is the effort multiplier, and E is the scale factor.

We manipulated the equation (5.1) to calculate initial productivity directly estimate.

The following model provides productivity estimate, Pr for a project:

Pr =
V olumeE

PM
=

1

2.94 ×
n∏

i=1

EMi

. (5.2)

There are two ways to determine the prior distribution with COCOMO II. First,

the estimation of the COCOMO II depends on human judgment on the cost drivers.

Therefore, the judgment can be different between humans. Multiple managers who

have experience in using the effort estimation model can participate. Each of them

86

can provide different productivity estimate of the same project. And with these

estimates, we can create the prior distribution of the project.

Second, we can use the team level productivity estimation. A project can consist

of multiple teams. The 18 cost drivers are divided into four factors: product, platform,

team and project. For the same project, the product, platform and project factors

have same values while the team factor varies between teams. For example, if there

are 9 teams in a project, a manager can obtain 9 productivity estimates. The prior

distribution can be created with the estimates. The distribution of productivity is

well known of its positive skewness [21][62]. To approximate the normal distribution,

natural log transformation should be applied to productivity.

Step 2: In this research, we use a two-parameter univariate normal sampling

model to make inferences about mean and variance of productivity. And we assume

that the mean and variance are interdependent. After observing n sample data, the

marginal posterior distribution of µ is:

p(µ|y) ∼ N(k, σ2/(m0 + n)), (5.3)

where k = (m0µ0 + ny)/(m0 + n) is the precision weighted average of the prior and

sample data mean, σ2 is the variance, µ0 is the prior mean, y is the sample mean, m0

is the prior sample size, and n is the sample size [30].

The variance, σ2 is the inverse of the precision. The precision is an important

parameter, because the higher the precision, the more highly concentrated are obser-

vations expected to be around the mean. The precision has a Gamma distribution.

The marginal posterior distribution of τ is:

τ = σ−2 ∼ G(v/2, vσ2
n/2), (5.4)

where v is the posterior degrees of freedom, and σ2
n is the sample variance [30]. The

87

expected value of the precision τ is then 1/σ2

V.2 Productivity Console

The productivity console is developed to help managers keep track of project status

in the life cycle of a software development project as well as to incorporate the pro-

ductivity update model. The system is working with PAMPA II KB. The system is

based on the architecture as shown in Figure 20.

Productivity measure collects facts from PAMPA II KB

Expert system fires rules and facts to track progress

Productivity update update productivity to reevaluate standards

Visual interface visualize progress status

PAMPA II gathers project attributes such as effort, salary, and volume from

CASE tools and stores them into the KB. The productivity console uses the project

attributes to visualize project status. The system is built on the Internet technology

to help managers of software projects from those manned by a small team at one

location to those with many teams dispersed all over the world.

The productivity console helps managers keep track of current project status

based on expert system approach. In various AI approaches of interest, expert system

is a very successful approximate solution to the classic AI problem of programming

intelligence. An expert system makes extensive use of specialized knowledge to solve

problems at the level of a human expert. An expert is a person who has expertise in

a certain area. That is, the expert has knowledge or special skills that are not known

or available to most people.

88

PAMPA 2
KB

PAMPA IIProject
Attributes

Productivity
Measure

Productivity Update

Expert SystemVisual Interface

Manager

Productivi ty Console

CASE Tools

Fig. 20. Productivity console and PAMPA II

An expert system crystallizes and codifies the knowledge and skills of experts into

a tool that can be used by non-specialists [61]. An expert system consists of a knowl-

edge base and an inference engine. The knowledge base contains the domain-specific

knowledge of a problem. The inference engine consists of procedures for processing

the encoded knowledge of the KB together with any further specific information at

hand.

Many Expert System Building tools used for academic research and industry have

been evaluated from the literature [39][47][50][54][101]. In this research, JESS (Java

Expert System Shell) is used to create an expert system. JESS is a Java version of the

C Language Integrated Production System (CLIPS), an Expert System Building Tool.

JESS allows users to build Java applets and applications that have the capacity to

reason using knowledge supplied in the form of declarative rules and facts. Figure 21

shows the basic architecture used in the research.

89

Knowledge
Elicitation

from Experts

Generate
Rules and Facts

Milestone &
Criteria

(Rules and
Intial Facts)

Inference
Engine Facts

Action
Response

Data Collection

Objective Assessment

Fig. 21. Expert system diagram

V.3 Rules and Facts

Many factors affect a project. Factors exist as rules and facts which can be acquired

from experts’ knowledge. Knowledge in the form of rules and facts is acquired from

experts. PAMPA II stores the knowledge into the KB. PAMPA II gathers facts

(project attributes) from an ongoing project. Inference engine analyzes project at-

tributes (Facts) with the knowledge (Rules and Initial Facts), and reports objec-

tive assessment as shown in Figure 21. Therefore, when a software project encounters

problems such as progress delay or resource deficit, expert system assists a manager

in making appropriate decisions.

90

Table 7. Initial facts

Fact Unit Values

LowerLimit,

Planned Effort PM Expected,

UpperLimit

LowerLimit,

Planned Productivity Volume/Dollar Expected,

UpperLimit

LowerLimit,

Planned Cost Dollar Expected,

UpperLimit

Planned Artifact Volume Volume Expected

Main facts primarily related to productivity are shown in Table 7. A software

development expert defines the facts, and sets the values of the facts as initial facts for

each activity. Planned Effort is the amount of effort allocated to an activity in plan,

which has LowerLimit, Expected and UpperLimit value. The Expected value

means that an activity would be best to finish in the time. And the LowerLimit

and UpperLimit values give an interval within which the completion of an activity

is expected to fall with a marginal effect on plan. If an activity takes longer than

UpperLimit or finishes earlier than LowerLimit, then the expert system will report

the problem to managers. The values of Planned Productivity, Planned Cost, and

Planned Artifact Volume can be set as well. The project attributes (Facts)

gathered from an ongoing project are:

• Measured effort to create artifacts

• Measured productivity

91

IF

THEN

Condition part

Action part

IF

THEN

Condition1

Action1

Condition2
Condition3

 :
ConditionN

Action2
Action3

 :
ActionN

Rule 1: A simple form of the IF-THEN rule

Rule 2: An enhanced form of IF-THEN rule

Fig. 22. Forms of the IF-THEN rule

• Measured cost to create artifacts

• Measured volume of artifacts

The expert system takes the knowledge (Rules and Initial Facts) stored in

the KB and tests them against the project attributes (Facts). By firing the rules

and facts from the KB, the expert system can dynamically advise the manager of the

project status.

Generally, a rule consists of a condition-part and an action-part as shown in rule

1 of Figure 22. And some of rules contain more than one condition in the condition-

part or more than one action in the action-part as shown in rule 2 of Figure 22.

Following are some examples of the rules:

Rule example 1: This example shows that the expert system tests if measured

productivity of an activity is lower than the LowerLimit value of the Planned

92

Productivity of the activity.

(defrule isLowerThanLowerLimitOfPlannedPr

?activity<-(activity (id ?x)

(name ?a) (date ?xx))

=>

(new PrintMan "The activity is"

(create

?a

)

)

)

(deffunction isLower (?a ?b)

(if (> ?a ?b) then

(return TRUE)

else

(return FALSE)

)

)

Rule example 2: This example shows that the expert system tests if measured

cost of an activity is higher than the UpperLimit value of the Planned Cost of

the activity.

(defrule isHigherThanUpperLimitPlannedCost

?activity<-(activity (id ?x)

(name ?a) (date ?xx))

93

=>

(new PrintMan "The activity is"

(create

?a

)

)

)

(deffunction isHigher (?a ?b)

(if (> ?a ?b) then

(return TRUE)

else

(return FALSE)

)

)

Once defined and set, Rules and Initial Facts are stored in the Criteria of

the KB. The expert system monitors new Facts and tests the Rules and Initial

Facts on them without intervention of a manager.

V.4 Project Attributes Gathering from CASE Tools

Many software development projects do not gather metrics because of the expenses

involved with the metric gathering process. PAMPA II reduces the cost to a mini-

mum. PAMPA II can automatically on a periodic or continuous basis gather project

attributes in an Internet environment. Once project attributes have been gathered

and stored into the KB, measurement and assessment of activities can be easily per-

94

formed.

A software project has a plan. The software project plan tells the manager the

desired software project status. Accurately measured status can be compared with

planned status. Inaccurate status information could lead to faulty decision making

and cause project delays. On the other hand, accurate status comes from measuring

software project attributes. The measured project attributes can then be compared

with attributes of planned work activities.

The basic planning information is a work activity, which contains the following

attribute:

• Id number/Owner

• Owner

• Name/Activity type

• Description/Feature/Requirement

• Predecessor and successor work activities

• Artifact volume to be produced

• Type of language

• Initial milestone for beginning an activity

• Final milestone for terminating an activity.

During the execution of the work activity, resources used, actual time, work

products produced, and so forth are measured and compared to the work activities

defined in the plan. The planned effort, predecessor, and successors of each work

activity can be used to prepare an activity network analysis for the project and

95

identify the critical path(s), which determines the overall schedule. PAMPA II gathers

the planning information from MS Project, and stores it into the KB. The information

will be used as the knowledge (Initial Facts) for the expert system.

With a solid detailed project plan and accurate status, the manager can take

corrective action when problems or risks occur. Software project control is concerned

with initiating corrective actions, tracking them to closure, and analyzing correc-

tive action trends. Corrective action strategies include describing the requirements or

changing the design, and/or tailoring the project plan to extend the schedule; adding,

modifying, or replacing resources; extending the work hours (overtime); and/or cut-

ting corners on planned work activities such as reviews, testing, source codes, docu-

mentation, and artifacts. Status indicators include (at least) the quantity and quality

of work products developed or modified, schedule milestones achieved, resources ex-

pended, risk indicators, and rework to correct defects. Project control is concerned

with comparing the current status of the software project to planned status and ap-

plying corrective action if current status, as measured by the status indicators, does

not conform to plans.

During the development stage, developers create artifacts based on the require-

ments. ClearCase provides on-line storage of artifacts and version control manage-

ment. We used Data Transformation module to access to the storage via the COM

interface (ClearCase Automation Library) as shown in Figure 18. PAMPA II has an

interface to relate the information to a specific activity in the plan.

An activity is the smallest work package that has milestones and assigned in-

dividuals such as manager, designer, developer, and tester. As shown in Figure 23,

PAMPA II stores activity information (id number, activity name, activity type, etc)

in Activity, and milestones in InitialMilestone and FinalMilestone. Individ-

ual is many-to-many mapping to Activity. Each Individual has salary rate in

96

Salary

Artifact

Chunk

Individual

Volume

*

1.. *

Process

Activity

*

InitialMilestone FinalMilestone

*

WorkBreakdownStructure

Criteria

Plan

*

Feature

*

*

Project

ProjectVersion
*

1

*

*

Fig. 23. Detailed KB schema on plan

Salary. As a software project evolves, programmers create artifacts according to

the requirements. Artifact stores the artifact information: artifact type, file name,

directory, and programming language to develop the artifact. Artifact is one-to-one

mapping to Activity. An artifact can have several chunks. Volume metric is stored

in Volume.

The volume and cost gathered in the KB are used to measure productivity.

For example, if an activity is completed, we can get effort from the difference of

97

Table 8. Earned value

Value Name Definition

BCWS Budgeted cost of work scheduled

BCWP Budgeted cost of work performed

ACWP Actual cost of work performed

SV Schedule Variance: BCWP - BCWS

CV Cost Variance: BCWP - ACWP

BV Budget Variance: BCWS - ACWP

CPI Cost performance index: BCWP / ACWP

SPI Schedule performance index: BCWP / BCWS

CR Critical ratio: CPI * SPI

InitialMilestone and FinalMilestone, salary rate from Salary, and volume from

Volume.

In addition to productivity, we gathers earned value to follow the progress of

project. The earned value compares work completed to work planned for completion

and cost of work completed to cost of work planned for completion in each reporting

interval [42]. If cumulative work completed is less than planned work, the project

is behind schedule; if cumulative cost of work completed is greater than planned

(budgeted) cost the project is over budget. All combinations are possible: ahead of

schedule, under budget, behind schedule, over budget, and so forth.

Fundamental values gathered directly from the KB are BCWS, BCWP, and

ACWP as shown in Table 8. The other six variables are calculated from the three

fundamental values. With evaluation of the earned values, managers easily detect

current resource or schedule problem. For instance, a cost performance index (CPI)

of 0.8 means the project spent 25% more resource than scheduled. The earned values

are the barometer to the resource and schedule status.

98

The KB schema showing the relationship between project attributes and CASE

tools is in Tables 9 and 10 at the end of this chapter.

V.5 Visual Interface

Productivity console provides four dial charts for managers to quickly discern the

true status of a project. Productivity console gives a manager a quick view of project

status, which will be used to monitor project management. It consists of Schedule,

Progress, Productivity, and Resource meter. Schedule meter shows time spent

in a schedule, Progress meter progress of a project, Productivity meter productiv-

ity, and Resource meter resource balance. In short, the productivity console helps

managers do the following tasks:

• Oversee person-month spent

• Check the status of activities (finished, and goal)

• View the current and estimated productivity

• Check the resource balance

Figure 24 shows the project level status view on the review date, 2-27-2004.

Schedule meter has an arrow which points to the expended time in plan. In the

figure, we can tell the project spent 1590 out of 6890 PM. Progress has an arrow and

a line. The arrow points to the number of finished activities, while the line points to

the number of activities currently working on the review date. Currently, 37 activities

were completed out of 55 current activities. The meter shows the total number of

activities, 159. Productivity meter has an arrow and a line as well. The arrow

indicates the measured productivity while the line shows the updated productivity.

99

Project’s current productivity of the project is 0.26 whereas the updated productivity

is 0.301 SLOC/dollar. Resource meter has two areas. The left area shows that

resource is deficient, and the right one shows otherwise. The arrow points to the

center line when resource is consumed as planned. We tell the project is suffering

from budget deficits of $7,328. The project view provides information about team

such as team name, description, and each team’s current productivity.

The productivity console can provide the status view of team level as well. Fig-

ure 25 shows the detailed view of a team progress: 180 PM were spent out of 780 PM;

5 activities were finished out of 18; current productivity is 0.25; resource balance is

$360 below the plan. The team’s updated productivity is 0.289. And the view shows

each member’s name, title and current productivity.

100

Fig. 24. Productivity console shows a project level view

101

Fig. 25. Productivity console shows a team level view

102

Table 9. PAMPA II schema 1

PAMPA II Source

Objects Attributes Relationships

ProjectList Name, Description contains Projects MS Project

Project Name, Description, contained MS Project

Cost, EffortToDate in a ProjectList

ProjectVersion Name, Description, contained MS Project

Cost, Time in a Project

Plan Name, Description part of a ProjectVersion MS Project

Name, Description, contained in

Process InitialMilestone, a Plan and MS Project

FinalMilestone WorkBreakdownStructure

Name, Description, contained in

Activity InitialMilestone, a Process and related MS Project

FinalMilestone to Activit(y)ies

InitialMilestone PlannedStartDate, an attribute MS Project

AcualStartDate of Process, Activity

FinalMilestone PlannedEndDate, an attribute MS Project

AcualEndDate of Process, and Activity

an attribute of Project

Criteria Rule InitialMilestone, Object

FinalMilestone

Supplier Name, Description are contained in a Project

ProjectVersion Object

ReusableSourceFile Name, Description provided by Suppliers ClearCase

COTSRunFile Name, Description provided by Suppliers ClearCase

Organization Title, Description contain Individual, perform MS Project

WorkBreakdownStructure

Individual Title, Productivity authors Artifacts, perform MS Project

WorkBreakdownStructure

103

Table 10. PAMPA II schema 2

PAMPA II Source

Objects Attributes Relationships

Salary Amount, are related to MS Project

EffectiveDate an Individual

WorkBreakdown Name, Description associated with an MS Project

Structure Organization, Individual

SoftwareProduct Name, Description, contained in a Project

Size ProjectVersion Object

Feature Name, Description contained in a Project

SoftwareProduct Object

PreviousVerId, contained in a SP

Version SourceDir, Id, owned by an Individual ClearCase

DateCreated related to Features

Subsystem Name, Type contained in a Version ClearCase

Artifacts Name, Language authored by an ClearCase

Individual, Organization

Chunk Name, Size contained in Artifact ClearCase

Volume ObjectPoint, attribute of a Chunk ClearCase

FunctionPoint, SLOC

104

CHAPTER VI

EXPERIMENTAL RESULTS

VI.1 Project Description

In order to illustrate the research result of the productivity prediction model, soft-

ware project data have been collected from nine undergraduate class projects of the

Computer Science Software Engineering course at Texas A&M University. The nine

software projects of the Software Engineering course focus on developing Internet

application software packages. Those course projects developed Web Based Software

Metrics Collection/Visualiztion systems and used the Extreme Programming devel-

opment process for their projects. Extreme Programming or XP is a development

process that can be used by small to medium sized teams to develop high quality soft-

ware within a predictable schedule and budget and with a minimum of overhead [13].

XP is currently one of the most widely used agile processes in the industry.

The course projects, used for the demonstration of the research result, lasted

from January 20, 2004 through May 14, 2004. All projects used PHP, Java, Visual

Basic and Visual C++ as the programming language to implement the three-tier

architecture running on the Internet. In this research, we chose the Java as a base

langauge to calculate volume. We developed an equation to convert the volume of a

language to the equivalent SLOC based on the SLOC conversion ratios table 4.

EquiSLOC = 53 × (
y1

34
+

y2

29
+

y3

15
). (6.1)

where EquiSLOC is equivalent SLOC, y1 the volume of Visual C++, y2 the volume

of Visual Basic, and y3 the volume of PHP.

Each software package involved the development of database, middleware, core

105

modules for parsing source codes, and a Graphical User Interface to represent the

metrics information. ClearCase from the IBM Company was used as the CMS running

on the Microsoft Windows Server environment.

Project teams and descriptions are as follows:

Project Team 1 (Knowledge Base) It had one team leader and four team mem-

bers and developed a database schema and prepare database schema for all

objects, attributes and relations.

Project Team 2 (Interface Enhancement) It had one team leader and five team

members and developed the web interface and gather/test the interface with

class project data.

Project Team 3 (Data Conversion Module) It had one team leader and six team

members and developed the data transformation module which converts a project

plan from MS Project to the KB. The module includes database connection,

and transforms plain data format to database format.

Project Team 4 (ClearCase Volume Gatherer) It had one team leader and five

team members and developed programs to gather volume from ClearCase. The

program includes a parser to convert programming language and gather SLOC

volume of chunks from ClearCase.

Project Team 5 (Visual Studio Volume Gatherer) It had one team leader and

four team members and developed programs to gather volume from Visual Stu-

dio. The program includes a parser to convert programming language and

gather SLOC volume of chunks from Visual Studio.

Project Team 6 (Source Safe Volume Gatherer) It had one team leader and

six team members and developed programs to gather volume from Source Safe.

106

The program includes a parser to convert programming language and gather

SLOC volume of chunks from Source Safe.

Project Team 7 (Gantt Chart) It had one team leader and five team members

and developed Gantt chart program.

Project Team 8 (Activity Network Chart) it had one team leader and five team

members and developed Activity Network chart program.

Project Team 9 (Control Center) It had one team leader and five team members

and developed control center.

The above projects went through the following software development phases:

1. Requirement analysis

2. System design

3. Unit design

4. Coding

5. Unit testing

6. Integration testing

7. Product release/demo and final report.

For better control and tracking the progress of the project, each student had to

turn in a Weekly Status Report at the end of each week. The format of the Weekly

Status Report is shown in Figure 26. The report is for the manager’s reference to the

current status of each person’s activity on the project. In this case, by comparing the

progress information reported from each developer with the productivity console, the

107

Weekly Individual Status Report Template

Date:

Nam e:

T EAM ST ORIES AND T ASKS:

INDIVIDUAL ST ORIES AND T ASKS:

ACCOMPLISHMENT S:

CURRENT T ASKS:

PROBLEMS:

SUGGEST ED PROBLEMS SOLUT IONS:

T ASKS T O ACCOMPLISH NEXT W EEK:

Fig. 26. Format of the weekly status report

manager can see if any incorrect report of the project information from developers

may exist.

VI.2 Preliminary Productivity Estimation

The project initiated on 1-20-04. The project teams started analysis of the project

requirements, and designed the system to develop till 2-6-04. After finishing the anal-

ysis and design, they started the actual programming work on 2-9-04. Deliverables

108

in the analysis and design period were documents as follows:

• Functional requirement document

• Non functional requirement document

• User interface story

• Metric document

• Knowledge Base design document

• Module design document

• Test plan

Based on the analysis and design, we estimated productivity of the project to de-

termine the prior distribution of productivity with the COCOMO II effort estimation

model. While there are 4 factors in the COCOMO II model, the product, plat-

form, and project factors are same for one project. For example, the target products

were the same Internet applications, and they used the same development platform

and worked at the same environment. Therefore, we fixed the three factors at same

values for all project teams and judged the values of the personnel factors of each

team. The personnel factors are for rating the development team’s capability and

experience. The detailed descriptions are as follows:

Analyst Capability (ACAP) Analysts are personnel who work on requirements,

high-level design, and detailed design. The major attributes are analysis, and

design ability, efficiency and thoroughness, and the ability to communicate and

cooperate. See Table 11.

109

Table 11. ACAP cost driver

Descriptors 15th 35th 55th 75th 90th
percentile

Rating Levels Very Low Nominal High Very Extra
Low High High

Effort Multipliers 1.42 1.19 1.00 0.85 0.71 n/a

Table 12. PCAP cost driver

Descriptors 15th 35th 55th 75th 90th
percentile

Rating Levels Very Low Nominal High Very Extra
Low High High

Effort Multipliers 1.34 1.15 1.00 0.88 0.76 n/a

Table 13. PCON cost driver

Descriptors 48%/year 24% 12% 6% 3%
Rating Levels Very Low Nominal High Very Extra

Low High High
Effort Multipliers 1.34 1.15 1.00 0.88 0.76 n/a

Programmer Capability (PCAP) Major attributes are ability, efficiency and thor-

oughness, and the ability to communicate and cooperate. See Table 12.

Personnel Continuity (PCON) Major attributes are annual personnel turnover.

See Table 13.

Application Experience (APEX) Major attributes are level of applications ex-

perience of the project team developing the software system or subsystem. See

Table 14.

Platform Experience (PLEX) Major attributes are level of experience of the use

of more powerful platform, including more graphic user interface, database,

110

Table 14. APEX cost driver

Descriptors ≤ 2 months 6 1 year 3 years 6 years
Rating Levels Very Low Nominal High Very Extra

Low High High
Effort Multipliers 1.22 1.10 1.00 0.88 0.81 n/a

Table 15. PLEX cost driver

Descriptors ≤ 2 months 6 1 year 3 years 6 years
Rating Levels Very Low Nominal High Very Extra

Low High High
Effort Multipliers 1.22 1.10 1.00 0.88 0.81 n/a

Table 16. LTEX cost driver

Descriptors ≤ 2 months 6 1 year 3 years 6 years
Rating Levels Very Low Nominal High Very Extra

Low High High
Effort Multipliers 1.20 1.09 1.00 0.91 0.84 n/a

networking, and distributed middleware capabilities. See Table 15.

Language Experience (LTEX) Major attributes are level of programming lan-

guage and software tool experience of the project team developing the software

system or subsystem. See Table 16.

Figure 27 shows productivity estimates and values of personnel factors of 9

project teams. The average productivity is 914 SLOC per PM. COCOMO II treats

the number of person-hours per person-month as an adjustable factor with a nominal

value of 152 hours per PM. And we used an estimated equivalent cost of $15.00 per

hour. After applying the adjustment, the average productivity was then 0.4 SLOC per

dollar. We used this productivity estimate as an initial productivity for the project.

111

Fig. 27. Productivity estimates for the project

The distribution of productivity is well known of its positive skewness [21][62].

To approximate the normal distribution, natural log transformation was applied to

the productivity. We created a prior distribution with mean µ, -0.914, and variance

σ2, 0.052 in log form.

Figure 28 shows a sample of the planned activities and effort/cost of a team.

This project continued for about three months beginning from 1-20-04 to 5-14-04 and

the effort of two work hours on the project per day for each student. The actual

development started on 2-9-04 and finished on 4-23-04. There were 9 teams in the

project, which had 159 activities with planned 6890 person-hour and $103,350 for the

budget. The development process consisted of unit build and weekly build. Each

developer built his/her programming modules in his/her own work place in the CMS

till Thursday and submitted the modules to a shared work space to integrate with

other team member’s modules on Friday. We collected project attributes on every

Friday.

112

Fig. 28. A sample of planned activities and effort/cost

VI.3 Data Collection and Experimental Results

To evaluate the research, the project attributes were collected from the software

project environment. The project attributes information from project teams will be

used in different cases to effectively validate the productivity prediction model. The

comparison for both Bayesian analysis and conventional statistical analysis will be

explained in detail.

In the software project environment, each developer had a working directory

113

that stored all source files. The working directory had a link to the directory under

the control of the CMS. In order to test the accuracy of the productivity prediction

model, some of the source files were collected and then analyzed by hands. This

type of project attributes collection has been assured to the same project attributes

collected from PAMPA II. The project attributes used by the research are:

• Activities

• Planned artifact volume

• Planned Productivity

• Measured Productivity

• Planned effort

• Measured effort

• Planned cost

• Measured cost

We measured productivity on weekly basis. The actual development took 13

weeks starting from 2-9-04. The development activities finished on 4-23-04 when we

obtained the true average productivity of each team. Every Friday during the devel-

opment, we checked out the volume change of artifacts and effort to build them, and

stored the measured productivity into the KB. After collecting productivity data, we

then applied Bayesian analysis to get the posterior distribution of productivity. With

the posterior distribution, we obtained the productivity mean, standard deviation,

and 95% confidence intervals of each team. Confidence refers to the probability that

the ultimate conclusion will be a correct statement.

114

Table 17. Posterior distribution on 2-27-04

Team Posterior Posterior 2.5% 97.5% True

No. Mean SD Percentile Percentile Productivity

1 0.250 0.017 0.217 0.283 0.217

2 0.253 0.013 0.228 0.278 0.239

3 0.337 0.032 0.274 0.400 0.317

4 0.289 0.021 0.248 0.330 0.265

5 0.305 0.020 0.266 0.344 0.266

6 0.221 0.012 0.197 0.245 0.243

7 0.332 0.032 0.269 0.395 0.316

8 0.299 0.015 0.270 0.328 0.317

9 0.308 0.021 0.267 0.349 0.305

We analyzed the true average productivity with the confidence intervals which

we obtained each Friday. And we found that all teams’ true average productivity fell

within their confidence intervals on 2-27-04 when the developers spent three weeks

which were less than 25% of the total development period. The results of the evalua-

tion are shown in Table 17. The table shows the experimental results of 9 teams which

participated in the experiment: posterior mean; posterior standard deviation; 95%

confidence interval; and true average productivity. As shown in the table, for example,

team 1’s confidence interval covers its true average productivity. In Bayesian terms,

we can claim that team 1’s true average productivity is inside the confidence interval

with 95% probability. We can claim the other teams’ true average productivity as

well.

Considering the time to obtain the confidence intervals, we can claim that the

115

reevaluation of the initial productivity with productivity data shows promise in re-

ducing the uncertainty caused by an effort estimation model in the early life cycle of

a software development project.

116

CHAPTER VII

CONCLUSIONS AND FUTURE EXTENSION

VII.1 Conclusions

In this research we explored the possibility to build a productivity prediction model

based on Bayesian analysis. But the model is not developed as a replacement of any

effort estimation model. There is a big difference in them: an effort estimation model

provides productivity estimate before a project starts; the productivity prediction

model provides productivity estimate during an ongoing project. The productivity

prediction model plays an important role to reevaluate the initial productivity esti-

mate and provide better guidelines to control over the development process.

Bayesian analysis shows its strength through the research experiment. The choice

of a prior distribution stirs many debates among statisticians because it is actually

rare to have a completely specified prior distribution. However, the prior distribution

can be considered either a tool that provides a single inferential procedure or a way

that summarizes the available prior information and the uncertainty surrounding this

information [91]. As shown in the research, the carefully chosen prior distribution

leads to considerably good inferences about the parameter of interest.

From a practical point of view, the development of a prior distribution relies on

the ability of individuals to represent their knowledge (or even the limitations of this

knowledge thereof) in terms of probabilities. The effort estimation model used in this

research suffers from a large margin of error, however, both researchers and industry

practitioners have devoted considerable effort to improve the accuracy of the model.

Therefore, a manager can construct a good prior distribution about productivity when

s/he trains to get better knowledge and experience on the model.

117

The main hypothesis of this research proved to be true according to the research

results - productivity prediction based on Bayesian analysis reduces the uncertainty

by providing a better productivity estimate in a software development project. And

we strongly believe that the productivity prediction model clearly proves to be a good

tool to predict productivity of developers in an ongoing software development project

since it updates the inaccurate productivity estimate with real data automatically.

Therefore, managers can command better control over the development process with

the aid of the model.

This research describes also a productivity console that is created to assess

project attributes and to provide graphical charts to visualize the status of a project.

Actual status represented on the console can help project managers continually mon-

itor projects and control developers and resources. Tools based on this technology

can help managers make timely assessment of project status and will allow plan mod-

ification early in a project life cycle before major problems develop. More over, the

console works on the Internet, which allows managers to monitor projects taken place

remotely.

Several other exploratory studies of this research have been conducted in the fol-

lowing areas: the use of the dynamic collection of project data as facts for updating

an initial standard during the software development process; knowledge elicitation

from the manager to define rules; the use of project attributes for objective mea-

surement/assessment instead of subjective observation from the developers and the

managers.

In this research, several objectives have been reached. First, a productivity

prediction model has been created, which can be used in a software development

project. Second, we have gathered real data from a course project to validate the

productivity prediction model. Third, a productivity console has been created to

118

help managers monitor and control a software development process. Finally, The

primary benefits of this research are:

• Productivity prediction: Bayesian approach provides a convenient way of up-

dating productivity. And it gives a powerful inference in terms of probability.

It help managers better control software development processes.

• Attributes gathering: The automatic attribute gathering feature of PAMPA II

increases effectiveness of project attributes measurement and assessment.

• Adopting labor cost: It gives a manager a view of controlling resource expense

in the international development environment.

• Project attributes assessment: Objective assessment of project attributes helps

a manager easily find out problems and take corrective actions.

• Web-based console: It helps a manager monitor project status via Internet.

In conclusion, we believe that the productivity prediction model can provide a

unique opportunity for software development project managers to control resources

in a software development project, and that the productivity console can give a better

view of monitoring a software development process on Internet environment.

VII.2 Future Extension

While doing the experiment, we encountered some problems. Those problems are

missing values, personnel turnover, quality problem of software products, and inac-

curate productivity estimation by COCOMO II. The first two problems inhabit in

academic projects. Some of the difficulties found in the project are: students’ negli-

gence of observance of the development process, no previous experience of using CASE

119

tools for the development, missing class attendance, and dropping the course during

the semester. We found the missing values cause the reliability and credibility of the

model. Therefore, the generic applicability of the research should be tested further

using more real world project data from a variety of corporations or the military.

The third problem suggests the problem of a quantity based approach. Success of

a software development project depends not only on the expense of time and budget,

but also on the quality of products. Thus, quantity based approach alone doesn’t

guarantee the success of a software development project. Therefore, we suggest the

use of standard functional and usability test at each evaluation.

The forth problem confirms again the inaccuracy of the current effort estimation

models. Especially, the academic environment in which we used COCOMO II to

estimate productivity is different from that in which COCOMO II has been built.

And the suggested calibration method needs a lot of historical data and expertise

which academic institutes usually don’t have. Therefore, it is recommended for a

manager to use productivity estimate by any effort estimation model with a grain of

salt.

The productivity console we have created provides basic features to monitor the

software development process. To enhance the console to become a versatile software

project management tool, it is recommended to add more features as follows:

• Using more cost estimation tools for more accurate cost comparisons

• Risk warning and recommendations for avoiding project failure

• Suggestions which help the manager balance cost, quality, and time in making

decisions about the project progress in compliance to the planed activities

• Measurement which enables the manager to visualize how well the software

120

project is reaching greater project goals and re-plan the way to reach these

goals if necessary

Overall, the future extension of this research is encouraged to improve the in-

tegrated software project management, control and tracking system in the following

aspects:

1. PAMPA II provides many useful software metrics. However, for the feasibility of

the demonstration purpose, only some of the important project attributes have

been used in this research. Future experiments may include all the metrics from

PAMPA II to strengthen the capability of the productivity console.

2. The productivity console should have ability to keep track of the effects caused

by the requirement changes, since requirement changes bring about reevaluation

of the project plan in cost, effort and resource to reflect the change.

3. The productivity console should have a more advanced expert system to suggest

an alternative control for the software development process. Therefore, the

expert system may assist the manager in making the appropriate decisions when

the software project encounters problems or risks.

121

REFERENCES

[1] Function Point Counting Practices: Manual Release 4.0. Blendonview Office

Park, OH: International Function Point Users’ Group, 1994.

[2] T. Abdel-Hamid and S. Madnick, “Lessons Learned from Modeling the Dynam-

ics of Software Development,” Communications of the ACM, vol. 32, no. 12, pp.

1426–1438, 1989.

[3] T. Abdel-Hamid, “Adapting, Correcting, and Perfecting Software Estimates: A

Maintenance Metaphor,” Computer, vol. 26, no. 3, pp. 20–29, 1993.

[4] T. Abdel-Hamid and S. Madnick, Software Project Dynamics: An Integrated

Approach. Englewood Cliffs, NJ: Prentice Hall, 1991.

[5] C. Abts, “COTS-based Systems (CBS) Functional Density—a Heuristic for Bet-

ter CBS Design,” International Conference on COTS-Based Software Systems,

pp. 1–9, 2002.

[6] A. Albrecht, “Measuring Application Development Productivity,” Proceedings

in Joint SHARE/GUIDE/IBM Application Development Symposium, pp. 83–

92, 1979.

[7] J. Aron, Estimating Resources for Large Programming Systems. Litton Edu-

cation Publishing, 1976.

[8] K. Atkison and M. Sheppered, “The Use of Function Points to Find Cost Analo-

gies,” Proceedings in European Software Cost Modelling Conference, 1994.

[9] A. Awani, Data Processing Project Management. Princeton, NJ: Petrocelli,

1986.

122

[10] L. Badley and M. Lehman, The Characteristics of Large Systems. Cambridge:

MIT Press, 1979.

[11] J. Bailey and V. Basili, “A Meta-Model for Software Development Resource

Expenditures,” Proceedings of the Fifth International Conference on Software

Engineering, pp. 107–116, 1981.

[12] V. Basili and B. Boehm, “COTS-Based Systems Top 10 List,” Software Man-

agement, vol. 34, no. 5, pp. 91–93, 2001.

[13] K. Beck, Extreme Programming Explained: Embrace Change. Boston, MA:

Addison-Wesley, 1999.

[14] C. Behrens, “Measuring the Productivity of Computer Systems Development

Activities with Function Points,” IEEE Transactions on Software Engineering,

vol. 9, no. 6, pp. 648–652, 1983.

[15] E. Bennatan, On Time Within Budget: Software Project Management Practices

and Techniques. New York, NY: John Wiley & Sons, 2000.

[16] J. Bernardo and A. Smith, Bayesian Theory. New York, NY: John Wiley &

Sons, 2001.

[17] L. Bernstein, “Software in the Large,” AT&T Technical Journal, vol. 1, pp.

5–14, 1996.

[18] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ: Prentice-

Hall, 1981.

[19] B. Boehm, “Theory-W Software Project Management: Principles and Exam-

ples,” IEEE Transactions on Software Engineering, vol. 15, no. 7, pp. 902–925,

1989.

123

[20] B. Boehm, “Anchoring the Software Process,” IEEE Software, vol. 13, no. 4,

pp. 73–82, 1996.

[21] B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy,

D. Reifer, and B. Steece, Software Cost Estimation with COCOMO II. Upper

Saddle River, NJ: Prentice-Hall, 2000.

[22] G. Booch, J. Rumbaugh, and I. Jacobson, The Universal Modeling Language

User Guide. Reading, MA: Addison-Wesley, 1999.

[23] L. Briand, V. Basili, and W. Thomas, “A Pattern Recognition Approach for

Software Engineering Data Analysis,” IEEE Transactions on Software Engi-

neering, vol. 18, no. 11, pp. 931–942, 1992.

[24] F. Brooks, The Mythical Man-Month: Essays on Software Engineering.

Addison-Wesley, 1995.

[25] Carnegie Mellon Software Engineering Institute, The Capability Maturity

Model: Guidelines for Improving the Software Process. Reading, MA: Addison-

Wesley, 1995.

[26] G. Casella and R. Berger, Statistical Inference. Pacific Grove, CA: Duxbury,

2001.

[27] C. Chang, C. Chao, and T. Nguyen, “Software Project Management Net:

A New Methodology on Software Management,” Proceedings of International

Computer Software and Applications Conference, pp. 534–539, 1998.

[28] S. Chulani, B. Boehm, and B. Steece, “Bayesian Analysis of Empirical Software

Engineering Cost Models,” IEEE Transactions on Software Engineering, vol. 25,

no. 4, pp. 573–583, 1999.

124

[29] L. Chung and K. Chan, “Integrating Project Planning and Process Modeling

for Software Development,” IEEE Symposium on Application-Specific Systems

and Software Engineering and Technology, pp. 276–279, 1999.

[30] P. Congdon, Bayesian Statistical Modeling. New York, NY: John Wiley &

Sons, 2001.

[31] S. Conger, The New Software Engineering. Boston, MA: International Thom-

son Publishing, 1994.

[32] R. Connor and J. Jenkins, “Using Agents for Distributed Software Project

Management,” IEEE Eighth International Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises, pp. 54–60, 1999.

[33] S. Conte, H. Dunsmore, and V. Shen, Software Engineering Metrics and Models.

Menlo Park, CA: Benjamin Cummings, 1986.

[34] R. Courtney and D. Gustafson, “Shotgun Correlations in Software Measures,”

Software Engineering Journal, vol. 8, no. 1, pp. 5–13, 1993.

[35] A. Cuelenaere, M. van Genuchten, and F. Heemstra, “Calibrating a Software

Cost Estimation Model: Why and How,” Information and Software Technology,

vol. 29, pp. 558–567, 1994.

[36] M. Cusumano and C. Kemerer, “A Quantitative Analysis of U.S. and Japanese

Practice and Performance in Software Development,” Management Science,

vol. 36, no. 11, pp. 1384–1406, 1990.

[37] T. DeMarco and T. Lister, Peopleware. New York: Dorset House, 1987.

[38] M. Dorfman and R. Thayer, Software Engineering. Los Alamitos, CA: IEEE

Computer Science Press, 1997.

125

[39] T. Escamilla, D. Simmons, and N. Ellis, “The Management of Uncertainty in

Commercial Expert System Building Tools,” Proceedings of the Second Intelli-

gence, IEEE Computer Society, pp. 471–477, 1990.

[40] R. E. Fairley and R. H. Thayer, Work Breakdown Structures. Los Alamitos,

CA: IEEE Computer Society Press, 1997.

[41] G. Finnie and G. Wittig, “A Comparison of Software Effort Estimation Tech-

niques: Using Function Points with Neural Networks, Case-Based Reasoning

and Regression Models,” Journal of Systems Software, vol. 39, pp. 281–289,

1997.

[42] Q. Fleming and J. Koppelman, Earned Value Project Management. Newtown

Square, Pennsylvania: Project Management Institute, 2001.

[43] A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis. Boca

Raton, FL: Chapman & Hall, 1995.

[44] W. Goethert, E. Bailey, and M. Busby, Software Effort and Schedule Measure-

ment: A Framework for Counting Staff Hours and Reporting Schedule Infor-

mation. Pittsburgh, PA: Software Engineering Institute, 1992.

[45] N. Goth, “Bottlenecked in Bangalore,” Red Herring, vol. 2, pp. 17–23, 1997.

[46] J. Grundy and J. Hosking, “Serendipity: Integrated Environment Support for

Process Modeling, Enactment and Work Coordination,” Automated Software

Engineering: Special Issue on Process Technology, vol. 5, no. 1, pp. 27–60,

1998.

[47] M. Harandi, “Building a Knowledge-Based Software Development Environ-

ment,” IEEE Journal on Selected Areas in Communications, vol. 6, no. 5, pp.

126

862–868, 1988.

[48] F. J. Heemstra, “Software Cost Estimation,” Information on Software Technol-

ogy, vol. 34, no. 10, pp. 627–639, 1992.

[49] K. Huang and D. Simmons, “An Object Knowledge Canonical Form for Knowl-

edge Reuse,” Expert Systems with Applications: An International Journal,

vol. 10, pp. 135–146, 1996.

[50] K. Huarng and D. Simmons, “Integration of Uncertainty Management Systems

with Object-Oriented Expert System Building Tools,” Proceedings of the Eigh-

teenth Annual International Computer Software and Applications Conference,

pp. 51–56, 1994.

[51] W. S. Humphrey, Managing the Software Process. Reading, MA: Addison-

Wesley, 1989.

[52] W. S. Humphrey, A Discipline for Software Engineering. Reading, MA:

Addison-Wesley, 1995.

[53] K. Hutchens, M. Oudshoorn, and K. Maciunas, “Web-based Software Engineer-

ing Process Management,” IEEE Proceedings of the Thirtieth Hawaii Interna-

tional Conference on System Sciences, pp. 676–685, 1997.

[54] L. Jain, Knowledge-Based Intelligent Techniques in Industry. Boca Raton, FL:

CRC Press, 1999.

[55] D. Jeffrey, “Time-Sensitive Cost Models in the Commercial MIS Environment,”

IEEE Transactions on Software Engineering, vol. 13, no. 7, pp. 852–859, 1987.

127

[56] A. Jenkins, J. Naumann, and J. Wetherbe, “Empirical Investigation of Systems

Developed Practices and Results,” Information Management, vol. 7, pp. 73–82,

1984.

[57] C. Jones, “Management Tools and Software Failures and Success,” CrossTalk,

vol. 7, no. 10.

[58] C. Jones, “Determining Software Schedules,” IEEE Computer Magazine,

vol. 28, no. 2, pp. 73–75, 1995.

[59] C. Jones, “Patterns of Large Software Systems: Failure and Success,” IEEE

Computer, vol. 28, no. 3, pp. 86–87, 1995.

[60] C. Jones, Applied Software Measurement: Assuring Productivity and Quality.

New York, NY: McGraw-Hill, 1996.

[61] G. Joseph and R. Gary, Expert Systems: Principles and Programming. Boston:

PWS Publishing Company, 1998.

[62] M. Katrina, Applied Statistics for Software Managers. Upper Saddle River,

NJ: Prentice-Hall, 2002.

[63] C. Kemerer, “An Empirical Validation of Software Cost Estimation Models,”

Communications of the ACM, vol. 30, no. 5, pp. 416–429, 1987.

[64] C. Kemerer and M. Patrick, Staffing Factor in Software Cost Estimation Models.

New York, NY: Windcrest/McGraw-Hill, 1993.

[65] W. Keuffel, “People Based Processes: A RADical Concept,” Software Develop-

ment, vol. 4, pp. 27–30, 1995.

128

[66] B. Kitchenham, “Empirical Studies of Assumptions That Underlie Software

Cost-Estimation Models,” Information and Software Technology, vol. 34, no. 4,

pp. 211–218, 1992.

[67] B. Kitchenham and K. Kansala, “Inter-Item Correlation Among Function

Points,” Proceedings of the 15th International Conference on Software Engi-

neering, pp. 477–480, 1993.

[68] B. Kitchenham and N. Taylor, “Software Cost Models,” ICL Technology Jour-

nal, vol. 4, no. 3, pp. 73–102, 1984.

[69] T. Kuhn, The Structure of Scientific Revolutions. Chicago: The University of

Chicago Press, 1996.

[70] M. J. Lanigan, “Project Control with Delta Analysis,” Engineering Manage-

ment Journal, vol. 4, no. 1, pp. 36–42, 1994.

[71] M. Lawrence, “Programming Methodology, Organizational Environment, and

Programming Productivity,” Journal of Systems and Software, vol. 2, no. 3,

pp. 257–269, 1981.

[72] A. L. Lederer and J. Prasad, “Information System Cost Estimating: A Current

Assessment,” Journal of Information, vol. 8, no. 1, pp. 22–33, 1993.

[73] J. Lehman, “How Software Projects Are Really Managed,” Datamation, vol. 3,

pp. 119–129, 1979.

[74] G. Low and R. Jeffery, “Function Points in the Estimation and Evaluation of

the Software Process,” IEEE Transactions on Software Engineering, vol. 16,

no. 1, pp. 64–71, 1990.

129

[75] F. McGrath, 16 Critical Software Practices for Performance-Based Manage-

ment. Norfolk, VA: Software Program Management Network, 1999.

[76] Y. Miyazaki and K. Mori, “COCOMO Evaluation and Tailoring,” Proceedings

of the Eighth International Conference on Software Engineering, pp. 292–299,

1985.

[77] T. Mukhopadhyav, S. Vicinanza, and M. Prietula, “Estimating the Feasibility of

a Case-Based Reasoning Model for Software Effort Estimation,” MIS Quarterly,

vol. 16, pp. 155–171, 1992.

[78] R. Park, Software Size Measurement: A Framework for Counting Source State-

ments. Pittsburgh, PA: Software Engineering Institute, 1992.

[79] M. C. Paulk, Key Practices of the Capability Maturity Model. Reading, MA:

Addison-Wesley, 1993.

[80] D. Phillips, “Project Management: Filling in the Gaps,” IEEE Software, vol. 13,

no. 4, pp. 17–18, 1996.

[81] D. Phillips, The Software Project Management Handbook, Principles That Work

at Work. Los Alamitos, CA: IEEE Computer Society, 2000.

[82] R. B. Pittman, “Product & Project Planning: Key to Getting It Right the First

Time,” IEEE WESCON/96, pp. 91–95, 1996.

[83] H. Poincaré, La Science and l’Hypothèse. Paris: Flammarion [Reprinted in

Champs 1989], 1902.

[84] U. Pooch and P. Gehring, Advances in Computer Programming Management.

Philadelphia, PA: Heyden, 1980.

130

[85] R. Pressman, Software Engineering: A Practitioner’s Approach. New York,

NY: McGraw-Hill, 1997.

[86] L. Putnam, “Trends in Measurement, Estimation, and Control,” IEEE Soft-

ware, vol. 8, no. 2, pp. 105–107, 1991.

[87] L. Putnam and D. Paulish, Software Metrics: A Practitioner’s Guide to Im-

proved Product Development. London: Chapman & Hall, 1993.

[88] L. Putnam, “A General Empirical Solution to the Macro Software Sizing and Es-

timating Problem,” IEEE Transactions on Software Engineering, vol. 4, no. 4,

pp. 345–361, 1978.

[89] J. Reel, “Critical Success Factors in Software Projects,” IEEE Software, vol. 16,

no. 3, pp. 18–23, 1999.

[90] H. Rehesaar and E. Beames, “Project Plans and Times Budgets in Information

System Projects,” International Conference on Software Engineering: Educa-

tion & Practice, pp. 120–124, 1998.

[91] C. Robert, The Bayesian Choice. New York, NY: Springer, 2001.

[92] M. D. Rosenau and M. D. Lewin, Software Project Management, Step by Step.

Belmont, CA: Lifetime Learning Publications, 1984.

[93] W. Royce, Software Project Management—A Unified Framework. Reading,

MA: Addison-Wesley, 1998.

[94] B. Samson, D. Ellison, and P. Dugard, “Software Cost Estimation Using an

Albus Perception (CMAC),” Journal of Systems Software, vol. 12, pp. 209–218,

1997.

131

[95] K. Sengupta and T. Abdel-Hamid, “Impact of Schedule Estimation on Software

Project Behavior,” IEEE Software, vol. 3, no. 4, pp. 70–75, 1986.

[96] A. Shenhar, “Strategic Project Management: The New Framework,” Portland

IEEE International Conference on Management of Engineering and Technology,

pp. 382–386, 1999.

[97] D. Simmons, “A Win-Win Metric Based Software Management Approach,”

IEEE Transactions on Engineering Management, vol. 39, no. 1, pp. 32–41,

1992.

[98] D. Simmons, N. Ellis, and T. Escamilla, “Manager Associate,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 5, no. 3, pp. 426–438, 1993.

[99] D. Simmons, N. Ellis, H. Fujihara, and W. Kuo, Software Measurement—A

Visualization Tool Kit for Process Control and Process Improvement. Upper

Saddle River, NJ: Prentice-Hall, 1998.

[100] D. Simmons and C. Wu, “Plan Tracking Knowledge Base,” Proceedings of the

Twenty-Fourth Annual International Computer Software and Applications Con-

ference, pp. 299–304, 2000.

[101] D. B. Simmons, “Communication: A Software Group Productivity Dominator,”

Software Engineering Journal, vol. 6, no. 6, pp. 454–462, 1991.

[102] C. R. Snyder, “The Software Development Plan: A Key to Achieve SEI Capa-

bility Maturity Model Compliance,” ACM, vol. 3, no. 7, pp. 106–112, 1992.

[103] I. Sommerville, Software Engineering. Harlow, England: Addison-Wesley,

1996.

132

[104] K. Srinivasan and D. Fisher, “Machine Learning Approach to Estimating De-

velopment Effort,” IEEE Transactions on Software Engineering, vol. 21, no. 2,

pp. 126–137, 1995.

[105] K. Standish, “Chaos,” Open Computing, vol. 7, pp. 4–7, 1995.

[106] A. Tatnall and P. Shackleton, “IT Project Management: Developing On-going

Skills in the Management of Software Development Projects,” Proceedings of

Software Engineering: Education and Practice, pp. 400–405, 1996.

[107] R. C. Tausworthe, “The Work Breakdown Structure in Software Project Man-

agement,” Systems and Software, vol. 81, pp. 181–186, 1980.

[108] J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. M. S. Hoben, and Y. Liu,

“Productivity Factors and Programming Environments,” Proceedings of Sev-

enth International Conference on Software Engineering, pp. 143–152, 1984.

[109] F. Walkerden and R. Jeffery, “Software Cost Estimation: A Review of Models,

Process, and Practice,” Advances in Computers, vol. 44, pp. 59–125, 1997.

[110] C. Walston and C. Felix, “A Method of Programming Measurement and Esti-

mation,” IBM System Journal, vol. 16, no. 1, pp. 54–73, 1977.

[111] R. Whiting, “News Front: Development in Disarray,” Software Magazine,

vol. 10, p. 20, 1998.

[112] G. Wittig and G. Finnie, “Using Artificial Neural Networks and Function Points

to Estimate 4GL Software Development Effort,” Australian Journal of Infor-

mation Systems, vol. 1, no. 2, pp. 87–94, 1994.

133

[113] C. Wu and D. Simmons, “Software Project Planning Associate (SPAA): A

Knowledge Based Approach for Dynamic Software Project Planning and Track-

ing,” Proceedings of the Twenty-Fourth Annual International Computer Soft-

ware and Applications Conference, pp. 305–310, 2000.

[114] S. Yun and D. B. Simmons, “Continuous Productivity Assessment and Effort

Prediction Based on Bayesian Analysis,” Proceedings of the Twenty-Eighth An-

nual International Computer Software and Applications Conference, pp. 44–49,

2004.

[115] S. Yun and D. B. Simmons, “Continuous Productivity Assessment and Predic-

tion Tool,” Proceedings of International Conference on Software Engineering of

Research and Practice, pp. 366–371, 2004.

134

APPENDIX A

16 CRITICAL SOFTWARE PRACTICES FOR PERFORMANCE-BASED

MANAGEMENT

PROJECT INTEGRITY

1. Adopt Continuous Program Risk Management

Practice Essentials

1. Risk management is a continuous process beginning with the definition of the

concept and ending with system retirement.

2. Risk management is a program responsibility impacting on and supported by

all organizational elements.

3. All programs need to assign a risk officer as a focal point for risk management

and maintain a reserve to enable and fund risk mitigation.

4. Risk need to be identified and managed across the life of the program.

5. All risks identified should be analyzed, prioritized-by impact and likelihood of

occurrence-and tracked through an automated risk management tool.

6. High-priority risks need to be reported to management on a frequent and regular

basis.

Implementation Guidelines

1. Risk management should commence prior to contract award and shall be a

factor in the award process.

135

2. The DEVELOPER needs to establish and implement a project Risk Manage-

ment Plan that, at a minimum, defines how points 3 through 8 will be imple-

mented. The plan and infrastructure (tools, organizational assignments, and

management procedures) will be agreed to by the ACQUIRER and the DE-

VELOPER and need to be placed under configuration management (CM).

3. DEVELOPER and ACQUIRER senior management should establish report-

ing mechanisms and employee incentives in which all members of the project

staff are encouraged to identify risks and potential problems and are rewarded

when risks and potential problems are identified early. The ACQUIRER needs

to address risk management explicitly in its contract award fee plan, and the

DEVELOPER needs to provide for the direct distribution to all employees in

furtherance of establishing and maintaining a risk culture.

4. Risk identification should be accomplished in facilitated meetings attended by

project personnel most familiar with the area for which risks are being iden-

tified. A person familiar with problems from similar projects in this area in

the past should participate in these meetings when possible. Risk identifica-

tion should include risks throughout the life cycle in at least the areas of cost,

schedule, technical, staffing, external dependencies, supportability, and main-

tainability and should include organizational and programmatic political risks.

Risk identification need to be updated at least monthly. Identified risks should

be characterized in terms of their likelihood of occurrence and the impact of

their occurrence. Risk mitigation activities need to be included in the project’s

task activity network.

5. Both the DEVELOPER and the ACQUIRER should designate and assign senior

members of the technical staff as risk officers to report directly to their respective

136

program managers and should charter this role with independent identification

and management of risks across the program and grant the authority needed to

carry out this responsibility.

6. Each medium-impact and high-impact risk should be described by a complete

Risk Control Profile.

7. Periodically updated estimates of the cost and schedule at completion should

include probable costs and schedule impact due to risk items that have not yet

been resolved.

8. The DEVELOPER and ACQUIRER risk officers need to update the risk data

and database on the schedule defined in the Risk Management Plan. All risks

intended for mitigation and any others that are on the critical path and their

status against the mitigation strategy should be summarized. Newly identified

risks should go through the same processes as the originally identified risks.

2. Estimate Cost and Schedule Empirically

Practice Essentials

1. Initial software estimates and schedules should be looked on as high risk due to

the lack of definitive information available at the time they are defined.

2. The estimates and schedules should be refined as more information becomes

available.

3. At every major program review, costs-to-complete and rescheduling should be

presented to identify deviations from the original cost and schedule baselines

and to anticipate the likelihood of cost and schedule risks occurring.

137

4. All estimates should be validated using a cost model, a sanity check should be

conducted comparing projected resource requirements, and schedule commit-

ments should be made.

5. Every task within a work breakdown structure (WBS) level need to have an

associated cost estimate and schedule. These tasks should be tracked using

earned value.

6. All costs estimates and schedules need to be approved prior to the start of any

work.

Implementation Guidelines

1. Estimate the cost, effort, and schedule for a project for planning purposes and

as a yardstick for measuring performance (tracking). Software size and cost

need to be estimated prior to beginning work on any incremental release.

2. Software cost estimation should be a reconciliation between a top-down esti-

mate (based on an empirical model; e.g., parametric, cost) and a bottom-up

engineering estimate.

3. Software cost estimation should also be subjected to a “sanity check” by com-

paring it with industry norms and specifically with the DEVELOPER’s past

performance in areas such as productivity and percentage of total cost in various

functions and project phases.

4. All of the software costs need to be associated with the appropriate lower-level

software tasks in the project activity network. Allocate the estimated total

project labor effort among all the tasks in the activity network.

138

3. Use Metrics to Manage

Practice Essentials

1. All programs should have in place a metrics program to monitor issues and

determine the likelihood of risks occurring.

2. Metrics should be defined as part of definition of process, identification of risks

or issues, or determination of project success factors.

3. All metrics definition need to include description, quantitative bounds, and

expected areas of application.

4. All programs need to assign an organizational responsibility for identification,

collection, analysis, and reporting of metrics throughout the program’s life.

5. Metrics information should be used as one of the primary inputs for program

decisions.

6. The metrics program needs to be continuous.

Implementation Guidelines

1. Every project should have a project plan with a detail activity network that

defines the process the team will follow, organizes and coordinates the work,

and estimates and allocates cost and schedule among tasks. The plan should

be broad enough to include each sub-process/phase. The project plan needs to

include adequate measurement in each of these five categories. early indications

of problems, the quality of the products, the effectiveness of the processes, the

conformance to the process, and the provision of a basis for future estimation

of cost, quality, and schedule.

139

2. Metrics should be sufficiently broad based. Data should be collected for each

process/phase to provide insight into the above 5 categories.

3. To use these metrics effectively, thresholds need to be established for these

metrics. These thresholds should be estimated initially using suggested industry

norms for various project classes. Local thresholds will evolve over time, based

upon experience (see 1.e above). Violation of a threshold value should trigger

further analysis and decision making.

4. Examples of data, initial thresholds, and analysis of size, defect, schedule, and

effort metrics can be found at http://www.qsm.com.

5. Continuous data on schedule, risks, libraries, effort expenditures, and other

measures of progress should be available to all project personnel along with the

latest revision of project plans.

4. Track Earned Value

Practice Essentials

1. Earned value project management requires a work breakdown structure, work

packages, activity networks at every WBS level, accurate estimates, and imple-

mentation of a consistent and planned process.

2. Earned value requires each task to have both entry and exit criteria and a step

to validate that these criteria have been met prior to the award of the credit.

3. Earned value credit is binary with zero percent being given before task comple-

tion and 100% when completion is validated.

4. Earned value metrics need to be collected on a frequent and regular basis consis-

tent with the reporting cycle required with the WBS level. (At the lowest level

140

of the work package, the earned value reporting should never be less frequent

than 2 weeks).

5. Earned value, and the associated budgets schedules, and WBS elements need

to be replanned whenever material changes to the program structure are re-

quired (e.g., requirements, growth, budget changes, schedule issues, organiza-

tional change).

6. Earned value is an essential indicator and should be used as an essential metric

by the risk management process.

Implementation Guidelines

1. Progress towards producing the products should be measured within the desig-

nated cost and schedule allocations.

2. THE DEVELOPER should develop and maintain a hierarchical task activity

network based on allocated requirements that includes the tasks for all effort

that will be charged to the program. All level of effort (LOE) tasks need to have

measurable milestones. All tasks that are not LOE should explicitly identify the

products produced by the task and have explicit and measurable exit criteria

based on these products.

3. No task should have a budget or planned calendar time duration that is greater

than the cost and schedule uncertainty that is acceptable for the program. The

goal for task duration is no longer than two calendar weeks of effort.

4. Each task that consumes resources needs to have a cost budget allocated to it

and the corresponding staff and other resources that will consume this budget.

Staff resources should be defined by person hours or days for each labor category

working on the task.

141

5. For each identified significant risk item, a specific risk mitigation/resolution

task should be defined and inserted into the activity network.

6. The cost reporting system for the total project needs to segregate the software

effort into software tasks so that the software effort can be tracked separately

from the non-software tasks.

7. Milestones for all external dependencies should be included in the activity net-

work.

8. Earned value metrics need to be collected for each schedule level and be made

available to all members of the DEVELOPER and government project teams

monthly. These metrics are: a comparison of Budgeted Cost of Work Scheduled

(BCWS), Budgeted Cost of Work Performed (BCWP), and Actual Cost of Work

Performed (ACWP). A comparison of BCWP and ACWP, a Cost Performance

Index, a Schedule Performance Index, and a To-Complete Cost Performance

Index.

9. The lowest-level schedules should be statused weekly.

10. The high-level schedules should be statused at least monthly.

11. Earned value reports should be based on data that is no more than two weeks

old.

5. Track Defects against Quality Targets

Practice Essentials

1. All programs need to have pre-negotiated quality targets, which is an absolute

requirement to be met prior to acceptance by the customer.

142

2. Programs should implement practices to find defects early in the process and as

close in time to creation of the defect as possible and should manage this defect

rate against the quality target.

3. Metrics need to be collected as a result of the practices used to monitor defects,

which will indicate the number of defects, defect leakage, and defect removal

efficiency.

4. Quality targets need to be redefined and renegotiated as essential program con-

ditions change or customer requirements are modified.

5. Compliance with quality targets should be reported to customers on a frequent

and regular basis, along with an identification of the risk associated with meeting

these targets at delivery.

6. Meeting quality targets should be a subject at every major program review.

Implementation Guidelines

1. The ACQUIRER and the DEVELOPER need to establish quality targets for

subsystem software depending on its requirements for high integrity. A mission-

critical/safety-critical system may have different quality targets for each sub-

system component. System Quality Assurance needs to monitor quality targets

and report defects as per the Quality Plan.

2. Quality targets can be under change control and established at the design,

coding, integration, test, and operational levels.

3. Quality targets should address the number of defects by priority and by their

fix rate.

143

4. Actual quality or defects detected and removed should be tracked against the

quality targets.

5. Periodic estimates of the cost and schedule at completion should be based on

the actual versus targeted quality.

6. Treat People-as the Most Important Resource

Practice Essentials

1. A primary program focus should be staffing positions with qualified personnel

and retaining this staff through the life of the project.

2. The program should not implement practices (e.g., excessive unpaid overtime)

that will force voluntary staff turnover.

3. The staff should be rewarded for performance against expectations and program

requirements.

4. Professional growth opportunities such as training should be made available to

the staff.

5. All staff members need to be provided facilities, tools, and work areas adequate

to allow efficient and productive performance of their responsibilities.

6. The effectiveness and morale of the staff should be a factor in rewarding man-

agement.

Implementation Guidelines

1. DEVELOPER senior management needs to work to ensure that all projects

maintain a high degree of personnel satisfaction and team cohesion and should

identify and implement practices designed to achieve high levels of staff retention

144

as measured by industry standards. The DEVELOPER should employ focus

groups and surveys to assess employee perceptions and suggestions for change.

2. DEVELOPER senior management should provide the project with adequate

staff, supported by facilities and tools to develop the software system efficiently.

Employee focus groups and surveys should be used to assess this adequacy.

3. The training of DEVELOPER and ACQUIRER personnel should include train-

ing according to a project training plan in all the processes, development and

management tools, and methods specified in the software development plan.

4. The DEVELOPER and the ACQUIRER should determine the existing skills of

all systems, software, and management personnel and provide training, accord-

ing to the needs of each role, in the processes, development and management

tools, and methods specified in the Software Development Plan (SDP)

CONSTRUCTION INTEGRITY

7. Adopt Life Cycle Configuration Management

Practice Essentials

1. All programs, irrespective of size, need to manage information through a pre-

planned configuration management (CM) process.

2. CM has two aspects: formal CM, which manages customer-approved baseline

information, and development CM, which manages shared information not yet

approved by the customer.

3. Both formal and development CM should uniquely identify managed informa-

tion, control changes to this information through a structure of boards, provide

status of all information either under control or released from CM, and conduct

145

ongoing reviews and audits to ensure that the information under control is the

same as that submitted.

4. The approval for a change to controlled information must be made by the

highest-level organization which last approved the information prior to plac-

ing it under CM.

5. CM should be implemented in a centralized library supported by an automated

tool.

6. CM needs to be a continuous process implemented at the beginning of a program

and continuing until product retirement.

Implementation Guidelines

1. CM plans need to be developed by the ACQUIRER and the DEVELOPER to

facilitate management control of information they own. The CM procedures of

the ACQUIRER serve as the requirements for the CM plan that describes and

documents how the DEVELOPER will implement a single CM process. This

plan should control formal baselines and will include engineering information,

reports, analysis information, test information, user information, and any other

information approved for use or shared within the program. The CM process

should include DEVELOPER-controlled and -developed baselines as well as

ACQUIRER-controlled baselines. It should also include release procedures for

all classes of products under control, means for identification, change control

procedures, status of products, and reviews and audits of information under CM

control. The CM plan needs to be consistent with other plans and procedures

used by the project.

146

2. The two types of baselines managed by CM are developmental and formal. De-

velopmental baselines include all software, artifacts, documentation, tools, and

other products not yet approved for delivery to the ACQUIRER but essential

for successful production. Formal baselines are information/products (software,

artifacts, or documentation) delivered and accepted by the ACQUIRER. Devel-

opmental baselines are owned by the DEVELOPER while formal baselines are

owned by the ACQUIRER.

3. All information placed under CM as a result of meeting task exit criteria need

to be uniquely identified by CM and placed under CM control. This includes

software, artifacts, documents, commercial off-the-shelf (COTS), government

off-the-shelf (GOTS), operating systems, middleware, database management

systems, database information, and any other information necessary to build,

release, verify, and/or validate the product.

4. The CM process should be organizationally centered in a project library. This

library will be the repository (current and historical) of all controlled products.

The ACQUIRER and the DEVELOPER will implement an organizationally

specific library. The library(s) will be partitioned according to the level of

control of the information.

5. All information managed by CM is subject to change control. Change control

consists of: Identification Reporting Analysis Implementation

6. The change control process needs to be implemented through an appropriate

change mechanism tied to who owns the information: Change control boards,

which manage formal baseline products. Interface boards, which manage jointly

owned information Engineering review boards, which manage DEVELOPER-

147

controlled information.

7. Any information released from the CM library should be described by a Version

Description Document (Software Version Description under 498). The version

description should consist of any inventory of all components by version iden-

tifier, an identification of open problems, closed problems, differences between

versions, notes and assumptions, and build instructions. Additionally, each

library partition should be described by a current version description that con-

tains the same information.

8. Manage and Trace Requirements

Practice Essentials

1. Before any design is initiated, requirements for that segment of the software

need to be agreed to.

2. Requirements tracing should be a continuous process providing the means to

trace from the user requirement to the lowest level software component.

3. Tracing shall exist not only to user requirements but also between products and

the test cases used to verify their successful implementation.

4. All products that are used as part of the trace need to be under configuration

control.

5. Requirements tracing should use a tool and be kept current as products are

approved and placed under CM.

6. Requirements tracing should address system, hardware, and software and the

process should be defined in the system engineering management plan and the

software development plan.

148

Implementation Guidelines

1. The program needs to define and implement a requirements management plan

that addresses system, hardware, and software requirements. This plan should

be linked to the SDP.

2. All requirements need to be documented, reviewed, and entered into a require-

ments management tool and put under CM. This requirements information

should be kept current.

3. The CM plan should describe the process for keeping requirements data inter-

nally consistent and consistent with other project data.

4. Requirements traceability needs to be maintained through specification, design,

code, and testing.

5. Requirements should be visible to all project participants.

9. Use System-Based Software Design

Practice Essentials

1. All methods used to define system architecture and software design should be

documented in the system engineering management plan and software develop-

ment plan and be frequently and regularly evaluated through audits conducted

by an independent program organization.

2. Software engineering needs to participate in the definition of system architec-

tures and should provide an acceptance gate before software requirements are

defined.

149

3. The allocation of system architecture to hardware, software, or operational

procedures needs to be the result of a predefined engineering process and be

tracked through traceability and frequent quality evaluations.

4. All agreed to system architectures, software requirements, and software design

decisions should be placed under CM control when they are approved for pro-

gram implementation.

5. All architecture and design components need to be approved through an inspec-

tion prior to release to CM. This inspection should evaluate the process used

to develop the product, the form and structure of the product, the technical

integrity, and the adequacy to support future applications of the product to

program needs.

6. All system architecture decisions should be based on a predefined engineering

process and trade studies conducted to evaluate alternatives.

Implementation Guidelines

1. The DEVELOPER should ensure that the system and software architectures

are developed and maintained consistent with standards, methodologies, and

external interfaces specified in the system and software development plans.

2. Software engineers need to be an integral part of the team performing systems

engineering tasks that influence software.

3. Systems engineering requirements trade studies should include efforts to miti-

gate software risks.

4. System architecture specifications need to be maintained under CM.

150

5. The system and software architecture and architecture methods need to be

consistent with each other.

6. System requirements, including derived requirements, need to be documented

and allocated to hardware components and software components.

7. The requirements for each software component in the system architecture and

derived requirements need to be allocated among all components and interfaces

of the software component in the system architecture.

10. Ensure Data and Database Interoperability

Practice Essentials

1. All data and database implementation decisions should consider interoperability

issues and, as interoperability factors change, these decisions should be revisited.

2. Program standards should exist for database implementation and for the data

elements that are included. These standards should include process standards

for defining the database and entering information into it and product standards

that define the structure, elements, and other essential database factors.

3. All data and databases should be structured in accordance with program re-

quirements, such as the DII COE, to provide interoperability with other sys-

tems.

4. All databases shared with the program need to be under CM control and man-

aged through the program change process.

5. Databases and data should be integrated across the program with data redun-

dancy kept to a minimum.

151

6. When using multiple COTS packages, compatibility of the data/referential in-

tegrity mechanisms need to be considered to ensure consistency between databases.

Implementation Guidelines

1. The DEVELOPER needs to ensure that data files and databases are developed

with standards and methodologies.

2. The DEVELOPER needs to ensure that data entities and data elements are

consistent with the DoD data model.

3. All data and databases should be structured in compliance with DII COE to

provide interoperability with other systems.

4. Data integrity and referential integrity should be maintained automatically by

COTS DBMSs or other COTS software packages. The DEVELOPER should

avoid developing its package, if at all possible. Before selecting multiple COTS

software packages, the DEVELOPER should study the compatibility of the

data/referential integrity mechanisms of these COTS packages and obtain as-

surance from the COTS vendors first.

5. Unnecessary data redundancy should be reduced to minimum.

6. Data and databases should be integrated as much as possible. Except data

for temporary use or for analysis/report purposes, each data item should be

updated only once, and the changes should propagate automatically everywhere.

11. Define and Control Interfaces

Practice Essentials

1. Before completion of system-level requirements, a complete inventory of all

external interfaces needs to be completed.

152

2. All external interfaces need to be described as to source, format, structure,

content, and method of support and this definition, or interface profile, needs

to be placed under CM control.

3. Any changes to this interface profile should require concurrence by the interface

owners prior to being made.

4. Internal software interfaces should be defined as part of the design process and

managed through CM.

5. Interfaces should be inspected as part of the software inspection process.

6. Each software or system interface needs to be tested individually and a test of

interface support should be conducted in a stressed and anomalous test envi-

ronment.

Implementation Guidelines

1. All internal and external interfaces need to be documented and maintained

under CM control.

2. Changes to interfaces require concurrence by the interface owners prior to being

made.

3. Milestones related to external interfaces should be tracked in the project activity

network. [Keep these milestones off your critical path.]

4. Subsystem interfaces should be controlled at the program level.

153

12. Design Twice, Code Once

Practice Essentials

1. All design processes should follow methods documented in the software devel-

opment plan.

2. All designs need to be subject to verification of characteristics, which are in-

cluded as part of the design standards for the product produced.

3. All designs should be evaluated through a structured inspection prior to release

to CM. This inspection should consider reuse, performance, interoperability,

security, safety, reliability, and limitations.

4. Traceability needs to be maintained through the design and verified as part of

the inspection process.

5. Critical components should be evaluated through a specific white-box test level

step.

6. Design can be incrementally specified when an incremental release or evolution

life cycle model is used provided the CM process is adequate to support control

of incremental designs and the inspection process is adapted to this requirement.

Implementation Guidelines

1. When reuse of existing software is planned, the system and software architec-

tures should be designed to facilitate this reuse.

2. When an incremental release life cycle model is planned, the system and software

architectures need to be completed in the first release or, at most,extended in

releases after the first without changes to the architecture of previous releases.

154

3. The system and software architectures will be verified using methods specified

in the SDP. This verification will be conducted during a structured inspection

of the software architecture and will include corroboration that the architec-

ture will support all reuse, performance, interoperability, security, safety, and

reliability requirements. The architecture will be under CM.

13. Assess Reuse Risks and Costs

Practice Essentials

1. The use of reuse components, COTS, GOTS, or any other non-developmental

items (NDI) should be treated as a risk and managed through risk management.

2. Application of reuse components, COTS, GOTS, or any other NDI will be made

only after successful completion of a NDI acceptance inspection. This inspection

needs to consider the process used to develop it, how it was document, number

of users, user experience, and compliance with essential program considerations

such as safety or security.

3. Before a decision is made to reuse a product or to acquire COTS, GOTS, or

NDI, a complete cost trade-off should be made considering the full life cycle

costs, update requirements, maintenance costs, warranty and licensing costs,

and any other considerations which impact use of the product throughout its

life cycle.

4. All reuse products, COTS, GOTS, or NDI decisions should be based on ar-

chitectural and design definitions and be traceable back to an approved user

requirement.

5. All reuse components, COTS, and COTS need to be tested individually first

155

against program requirements and in an integrated software and system config-

uration prior to release for testing according to the program test plan.

6. Reuse, COTS, GOTS, and NDI decisions will be continuously revisited as pro-

gram conditions change.

Implementation Guidelines

1. The DEVELOPER will establish a reuse plan for the integration of COTS,

GOTS, and in-house software. This plan needs to include discussion and allo-

cation of whom and by what process reused software code is tested, verified,

modified, and maintained.

2. The reuse plan should be in the SDP and document an approach for evaluating

and enforcing reused functionality against system requirements.

3. The reuse plan should suggest a system engineering process that identifies soft-

ware requirements by taking existing, reusable software components into ac-

count.

4. The test plan should identify the testing of the integrated reused code.

5. When integrating COTS, GOTS, and in-house software, ensure accurate cost

estimation of integrating the reused code into the system. The cost of integrat-

ing unmodified reused code is approximately one-third the cost of developing

code without reuse.

6. The DEVELOPER and the ACQUIRER need to be able to plan for the esti-

mated costs of obtaining the necessary development and run-time licenses over

the system’s life cycle and the maintenance/support critical to the product,

including source code availability.

156

PRODUCT STABILITY AND INTEGRITY

14. Inspect Requirements and Design

Practice Essentials

1. All products that are placed under CM and are used as a basis for subsequent

development need to be subjected to successful completion of a formal inspection

prior to its release to CM.

2. The inspection needs to follow a rigorous process defined in the software devel-

opment plan and should be based on agreed-to entry and exit criteria for that

specific product.

3. At the inspection, specific metrics should be collected and tracked which will

describe defects, defect removal efficiency, and efficiency of the inspection pro-

cess.

4. All products to be placed under CM should be inspected as close to their pro-

duction as feasible.

5. Inspections should be conducted beginning with concept definition and ending

with completion of the engineering process.

6. The program needs to fund inspections and track rework savings.

Implementation Guidelines

1. The DEVELOPER will implement a formal, structured inspection/peer review

process that begins with the first system requirements products and continue

through architecture, design, code, integration, testing, and documentation

products and plans. The plan needs to be documented and controlled as per

the SDP.

157

2. The project should set a goal of finding at least 80% of the defects in every

product undergoing a structured peer review or other formal inspection.

3. Products should not be accepted into a CM baseline until they have satisfacto-

rily completed a structured peer review.

4. The DEVELOPER needs to collect and report metrics concerning the number

of defects found in each structured peer review, the time between creating and

finding each defect, where and when the defect was identified, and the efficiency

of defect removal.

5. Successful completion of inspections should act as the task exit criteria for

non-Level-of-Effort earned value metrics (and other metrics used to capture

effectiveness of the formal inspection process) and as gates to place items under

increasing levels of CM control.

6. The DEVELOPER should use a structured architecture inspection technique

to verify correctness and related system performance characteristics.

15. Manage Testing as a Continuous Process

Practice Essentials

1. All testing should follow a preplanned process, which is agreed to and funded.

2. Every product that is placed under CM should be tested by a corresponding

testing activity.

3. All tests should consider not only a nominal system condition but also address

anomalous and recovery aspects of the system.

4. Prior to delivery, the system needs to be tested in a stressed environment,

nominally in excess of 150% of its rated capacities.

158

5. All test products (test cases, data, tools, configuration, and criteria) should

be released through CM and be documented in a software version description

document.

6. Every test should be described in traceable procedures and have pass-fail criteria

included.

Implementation Guidelines

1. The testing process must be consistent with the RFP and the contract. The

award fee should incentivize implementation of the testing practices described

below.

2. The ACQUIRER and DEVELOPER need to plan their portion of the test pro-

cess and document this plan with test cases and detailed test descriptions. These

test cases should use cases based on projected operational mission scenarios.

3. The testing process should also include stress/load testing for stability purpose

(i.e., at 95% CPU use, system stability is still guaranteed?)

4. The test plan should include a “justifiable testing stoppage criteria.” This gives

testers a goal. If your testing satisfies these criteria, then the product is ready

for release.

5. The test process should thoroughly test the interfaces between any in-house

and COTS functionality. These tests should include timing between COTS

functionality and the bespoken functionality. The test plans need to pay serious

attention to how to demonstrate that, if the COTS software fails, how to test

that the rest of the software can recover adequately. This involves some very

serious stress testing using fault injection testing.

159

6. Software testing should include a traceable white-box and other test process

verifying implemented software against CM-controlled design documentation

and the requirements traceability matrix.

7. A level of the white-box test coverage should be specified that is appropriate

for the software being tested.

8. The white-box and other testing should use automated tools to instrument the

software to measure test coverage.

9. All builds for white-box testing need to be done with source code obtained from

the CM library.

10. Frequent builds require test automation, since more frequent compiles will force

quick turnaround on all tests, especially during regression testing. However, this

requires a high degree of test automation.

11. A black-box test of integration builds needs to include functional, interface,

error recovery, stress, and out-of-bounds input testing.

12. Reused components and objects require high-level testing consistent with the

operational/target environment.

13. Software testing includes a separate black-box test level to validate implemented

software. All black-box software tests should trace to controlled requirements

and be executed using software built from controlled CM libraries.

14. In addition to static requirements, a black-box test of the fully integrated system

will be against scenarios-sequences of events designed to model field operation.

160

15. Performance testing for systems (e.g., performing 10,000 tests/second still yields

response times under 2 seconds) should be tested as an integral part of the

black-box test process.

16. An independent QA team should periodically audit selected test cases, test

traceability, test execution, and test reports providing the results of this audit

to the ACQUIRER. (The results of this or similar audits may be used as a

factor in the calculation of Award Fee.)

17. Each test developed needs to include pass/fail criteria.

16. Compile and Smoke Test Frequently

Practice Essentials

1. All tests should use systems that are built on a frequent and regular basis

(nominally no less than twice a week).

2. All new releases should be regression tested by CM prior to release to the test

organization.

3. Smoke testing should qualify new capability or components only after successful

regression test completion.

4. All smoke tests should be based on a pre-approved and traceable procedure and

run by an independent organization (not the engineers who produced it).

5. All defects identified should be documented and be subject to the program

change control process.

6. Smoke test results should be visible and provided to all project personnel.

161

Implementation Guidelines

1. From the earliest opportunity to assess the progress of developed code, the

DEVELOPER needs to use a process of frequent (one- to two-week intervals)

software compile-builds as a means for finding software integration problems

early.

2. It is required that a regression facility that incorporates a full functional test

suite be applied with the build strategy.

3. Results of testing of each software build should be made available to all project

personnel.

162

VITA

Seok Jun Yun was born in Seoul, Korea. He received a Bachelor of Science in en-

vironmental science at the Korean Military Academy in 1988. After graduation, he

was commissioned as a Second Lieutenant in the R.O.K. Army and worked as a Field

Artillery Officer at the 5th Division. He graduated from the Naval Postgraduate

School at Monterey, CA, in 1995 and obtained a master’s degree in computer science.

Upon graduation, he got a position as a lecturer at the R.O.K. Military Academy.

In February of 1997, he was selected by the R.O.K. Army HQ as a manager of the

project to install the Video-On-Demand system at the Military Academy, which sup-

ports military cadets’ language education. In November of 1997, he was assigned as

a leader of the project to install the network system at the Military Academy to sup-

port the Intranet/Internet environment to faculty and cadets. After this project, he

was assigned as a computer system engineer at the Computing Center at the Military

Academy. In August of 2000, he received a government scholarship to study for his

Ph.D. in computer science in the United States. He received his Ph.D. in computer

science in May 2005. He can be reached at Canaan Animal Hospital 461-61 Su-Yu 1

Dong Kang-Buk Gu Seoul Korea 142-875.

