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ABSTRACT

Constitutive Modelling of Shape Memory Alloys and Upscaling of Deformable

Porous Media. (May 2005)

Petar Angelov Popov, Dipl. Sofia University ”St. Kliment Ohridski”, Bulgaria

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas

Shape Memory Alloys (SMAs) are metal alloys which are capable of changing

their crystallographic structure as a result of externally applied mechanical or thermal

loading. This work is a systematic effort to develop a robust, thermodynamics based,

3-D constitutive model for SMAs with special features, dictated by new experimental

observations. The new rate independent model accounts in a unified manner for the

stress/thermally induced austenite to oriented martensite phase transformation, the

thermally induced austenite to self-accommodated martensite phase transformation

as well as the reorientation of self-accommodated martensite under applied stress. The

model is implemented numerically in 3-D with the help of return-mapping algorithms.

Numerical examples, demonstrating the capabilities of the model are also presented.

Further, the stationary Fluid-Structure Interaction (FSI) problem is formulated

in terms of incompressible Newtonian fluid and a deformable solid. A numerical

method is presented for its solution and a numerical implementation is developed.

It is used to verify an existing asymptotic solution to the FSI problem in a simple

channel geometry. The SMA model is also used in conjunction with the fluid-structure

solver to simulate the behavior of SMA based filtering and flow regulating devices.

The work also includes a numerical study of wave propagation in SMA rods.

An SMA body subjected to external dynamic loading will experience large inelastic

deformations that will propagate through the body as phase transformation and/or
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detwinning shock waves. The wave propagation problem in a cylindrical SMA is

studied numerically by an adaptive Finite Element Method. The energy dissipation

capabilities of SMA rods are estimated based on the numerical simulations. Compar-

isons with experimental data are also performed.
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CHAPTER I

INTRODUCTION

Shape Memory Alloys (SMAs) are metallic alloys that can undergo martensitic phase

transformations as a result of applied thermomechanical loads and are capable of

recovering permanent strains when heated above a certain temperature. At high

temperatures the crystal lattice is in a high symmetry, parent austenitic phase. The

key characteristic of all SMAs is the occurrence of a martensitic phase transformation

between the austenitic phase and the different variants of the low temperature, low

symmetry martensitic phase. The martensitic transformation is a shear-dominant

diffusionless solid-state phase transformation occurring by nucleation and growth of

the martensitic phase from the parent austenitic phase (Olson and Cohen, 1982).

What make SMAs remarkably different from other materials are primarily the Shape

Memory Effect (SME) and Pseudoelasticity, which are associated with the specific

way the phase transformation occurs.

When a shape memory alloy undergoes a martensitic phase transformation, it

transforms from its high-symmetry, usually cubic austenitic phase to a low-symmetry

martensitic phase, such as the monoclinic variants of the martensitic phase in a NiTi

SMA. In the absence of applied stresses, the variants of the martensitic phase usu-

ally arrange themselves in a self-accommodating manner through twinning, resulting

in no observable macroscopic shape change. By applying mechanical loading the

martensitic variants are forced to reorient (detwin) into a single variant leading to

large macroscopic inelastic strains. After heating above certain temperature, the

martensitic phase returns to the austenitic phase, and the inelastic strains are re-

The journal model is Mechanics of Materials.
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covered. This behavior is known as the SME. Pseudoelasticity is observed when

the martensitic phase transformation is induced by applied thermomechanical load-

ing of the austenitic phase in which case detwinned martensite is directly produced

from austenite. The process is associated with large inelastic (transformation) strains

which are recovered upon unloading due to the reverse phase transformation (Way-

man, 1983). The extensive list of alloys exhibiting SME and pseudoelasticity includes

the Ni-Ti alloys, and many copper-, iron-, silver- and gold-based alloys (Nishiyama,

1978).

Martensitic transformations are usually divided into two groups - thermoelastic

and nonthermoelastic. The nonthermoelastic transformations occur mainly in fer-

rous alloys and are associated with non-mobile martensite-parent phase interfaces

pinned by permanent defects and proceed by successive nucleation and growth. Due

to re-nucleation of austenite during the reverse (martensite to austenite) transforma-

tion, these transformations are crystallographically nonreversible in the sense that

the martensite cannot revert to the parent phase in the original orientation. The

thermoelastic martensitic transformations, on the other hand, are associated with

mobile interfaces between the parent and martensitic phases. These interfaces are ca-

pable of “backward” movement during the reverse transformation by shrinkage of the

martensitic plates rather than nucleation of the parent phase, which leads to a crys-

tallographically reversible transformation (Otsuka and Wayman, 1999). The unique

properties of SMAs (i.e. Shape Memory Effect, Pseudoelasticity) are the result of

thermoelastic martensitic transformation.

For a review of commonly used SMAs, their chemical composition, mechanical

properties and the kinematics of phase transformations in single crystals the reader

is referred to Patoor et al. (2005). In the next Section 1 some general aspects of the

martensitic phase transformation in SMAs are reviewed and the complex thermome-
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chanical response of SMAs is described.

1. Properties of martensitic phase transformations

In SMA materials, the martensitic phase transformation is a rate independent, re-

versible, crystallographic reorientation process between the two stable phases. Sum-

marized below are the main characteristics of martensitic phase transformations that

distinguish them among other solid state transformations:

• The transformation is diffusionless, rate-independent (Nishiyama, 1978), inelas-

tic deformation of the crystal lattice; it is a results of cooperative and collective

motion of atoms over distances smaller than the lattice parameters (Otsuka and

Wayman, 1999).

• Latent heat is generated during the transformation (Jackson et al., 1972; Otsuka

and Wayman, 1999); The transformation is thus first order and parent and

product phases can coexist (Landau et al., 1976).

• Several variants of martensite may be formed from a single austenitic crys-

tal (De Vos et al., 1978).

• The transformation produces volumetric and shear strains along well defined

planes of a crystallographic unit. The shear strain can be an order of magni-

tude larger than the pure elastic deformation of the crystal lattice (Otsuka and

Wayman, 1999).

• The phase transformation is highly sensitive to temperature and applied stresses

(Cross et al., 1969; Delaey, 1990; Jackson et al., 1972).
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When the martensitic transformation takes place, numerous physical properties

are modified. During the transformation, a latent heat associated with the transfor-

mation is absorbed or released based on the transformation direction. The forward,

austenite-to-martensite transformation (denoted A→ M) is accompanied by the re-

lease of heat corresponding to a change in the transformation enthalpy (exothermic

phase transformation). The reverse, martensite-to-austenite transformation (denoted

M → A) is an endothermic phase transformation accompanied by absorption of ther-

mal energy. For a given temperature, the amount of heat is proportional to the

volume fraction of the transformed material. The two phases also have different resis-

tance due to their different crystallographic structures, so the phase transformation

is associated with a change in the electrical resistivity. These changes allow for the

measurement of the transformation temperatures. Generally, differential calorime-

try and electrical resistance are used for that purpose. In addition, thermoelectrical

power, x-ray analysis, acoustic waves, interior friction, and the measure of Young’s

modulus are also used.

Transformation in the absence of externally applied stress field. Since the phase

transformation is very sensitive to applied external stress, first the case of zero applied

stress is considered. The forward A→M transformation occurs when the free energy

of martensite becomes less than the free energy of austenite. A critical temperature

T0 is assumed to exist, at which the free energies of the two phases are equal. As

the temperature is lowered below T0, the transformation does not begin exactly at

T0 but, at a temperature Ms (martensite start temperature at zero stress), which

is less than T0. The free energy necessary for nucleation and growth is responsible

for this shift (Delaey, 1990). The transformation continues to evolve as the tem-

perature is lowered until a temperature Mf (martensitic finish temperature at zero

stress) is reached. When the SMA is heated from the martensitic phase the reverse
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martensite to austenite transformation (denoted M → A) begins at the temperature

As (austenitic start temperature at zero stress), higher than T0. The transforma-

tion continues until a temperature Af (austenite finish at zero stress) is reached and

the material is entirely in the austenitic phase. The equilibrium temperature T0 is

approximately (Ms + Af )/2 (Tong and Wayman, 1974).

For shape memory alloys, the transformation temperatures Ms, Mf , As, Af , and

the difference Ms−Mf , Af−As are important factors in characterizing shape memory

behavior. The transformation temperatures depend mainly on the alloy’s composition

and processing. Microstructural defects, degree of order in the parent phase, and grain

size of the parent phase can also alter the transformation temperatures by several

degrees (MacQueron et al., 1991). Note that the existence of exact temperatures Ms,

Mf , As and Af is an assumption. In reality, small amounts of either phase can exist

beyond the finish temperatures and be formed before the start temperatures.

As will be discussed in Section 1.1, upon cooling of the SMA, the martensite is

generated in twinned structures (Otsuka and Wayman, 1999), which accommodate

the transformation strain of the individual martensitic variants. Two twinned variants

are formed on each side of a mirror plane, so that no observable macroscopic strain

is generated. The formation of twins can be hampered by introduction of defects

and inhomogeneities introduced during the manufacturing or training of the material

(Otsuka and Wayman, 1999)

Effects of externally applied stress. Due to the displacive character of the marten-

sitic transformation, applied stress plays a very important role. The application of

stress on a volume of austenite has the effect of orienting the different martensitic

variants in the direction of the stress during the A→M phase transformation. This

leads to the development of large inelastic strains composed of a shearing component

that induces shape change and an expansion component that effects volume change.
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The shearing component is the dominating one and is oriented in the direction of the

stress.

This oriented, or detwinned martensite is metallurgically the same as the twinned

martensite discussed previously, however, the presence of inelastic strains has signif-

icant implications. As a result positive work (the inelastic strains and stress have

the same direction) is being done by the material, thus its total energy is reduced.

Therefore, the A→M phase transformation starts at higher temperature (i.e. earlier)

compared to the zero stress case. A more quantitative calculation (see (Otsuka and

Wayman, 1999; Roytburd and Pankova, 1985; Wollants et al., 1979) shows that the

equilibrium temperature T0 obeys a linear relationship in stress-temperature space.

The development of large inelastic strains during some types of martensitic de-

formations and not in others is of primary engineering concern when modeling SMA

based components and devices. Moreover, as it will be discussed in the next Sec-

tion 1.1, twinned martensite, can be forced to reorient or detwin if an appropriate

stress field is applied. Hence, in this work a distinction is made between the twinned

and detwinned martensitic phases. While this distinction is not based on metallur-

gical considerations it will be very instrumental in developing accurate models for

SMAs. In the rest of the thesis, the twinned martensite will be denoted by M t and

the detwinned by Md, wherever this distinction is necessary.

The phase transformation (both forward and reverse) occur over a strip in tem-

perature - stress space. This is mainly due to inhomogeneities in the stress and strain

fields inside the material. These parameters are very sensitive to the internal state

of the material and to the loading mode (tension, compression, shear). A conve-

nient way of describing the regions of stability of the different phases is the phase

diagram shown Figure 1. The SMA can exist in either austenite and martensite,

and the martensite can further be either in twinned or detwinned. There are three
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Fig. 1. Stress-Temperature diagram showing the relationship of stress and temperature

and the austenitic and martensitic domains.

regions where the material can be in a pure phase along with the transformation lines

(surfaces in multiple dimensions) which separate them. When the material crosses

a transformation surface it undergoes phase transformation (A → M t, A → Md,

M t → A, Md → A) or detwinning (M t →Md). In some areas, a mixture of the three

phases is also possible. The critical temperatures are denoted on the temperature

axis. In addition, the critical uniaxial stresses for beginning σs and finish σf of the

detwinning deformation are shown on the stress axis. The shape memory effects and

pseudoelasticity will be discussed in the next two sections with the help of the two

loading paths shown on the figure.

This form of the phase diagram has been proposed initially by Brinson and

Lammering (1993), based on the experimental observations of Cross et al. (1969);

Delaey (1990); Jackson et al. (1972). The diagram has been successively refined by

other authors Bekker and Brinson (1997, 1998); Sakamoto (2002), however some ba-
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sic questions have remained unanswered. An example is, starting from fully twinned

martensitic state (at T < Mf ), what is the transformation line for the M t →Md de-

formation at temperature Mf < T < As? Based in recent experimental observations

performed in the course of this work, the above phase diagram will be extended and

modified (Chapter III) to accommodate such cases.

1.1. Shape memory effect

As mentioned earlier, the Shape Memory Effect (SME) is a property of SMAs under-

going thermoelastic martensitic transformation. It is exhibited when the SMA is de-

formed while in the martensitic phase and then unloaded while still at a temperature

below Mf . When subsequently heated above Af it regains its original shape by trans-

forming back into the austenitic phase. A typical loading path 1 → 2 → 3 → 4 → 1,

in which the SME is observed is shown in Figure 1. The same path, schematically

plotted in Stress-Strain-Temperature space is shown in Figure 2. During the cooling

of the parent phase (1 → 2) it transforms to twinned martensite. The material is

then loaded (2 → 3) causing stress induced detwinning and development of inelastic

strains. Upon unloading (3 → 4) the material remains in detwinned state and the

inelastic strains are not recovered. Finally, when it is heated above Af (4 → 1), the

SMA returns to its cubic parent phase and the inelastic strains are recovered.

The crystallographic changes during this loading path are explained next. The

stress-free cooling of austenite produces self-accommodating growth of the marten-

sitic variants (1 → 2) such that there is no macroscopic transformation strain (Saburi

et al., 1980). The self-accommodated morphology is a characteristic of the crystal-

lography of the alloy used. For example, in copper-based alloys, twenty-four variants

of martensite constitute six self-accommodated groups scattered around the 〈011〉

poles of austenite with a typical diamond morphology. The growth of such groups
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Fig. 2. Stress-Strain-Temperature schematic of the crystallographic changes involved

in the Shape Memory Effect.

produces no macroscopic transformation strain, but the multiple interfaces present

in these structures (boundaries between the martensite variants and twinning inter-

faces) are very mobile. This great mobility is at the heart of the shape memory effect.

Movement of these interfaces accompanied by detwinning is obtained at stress levels

far lower than the plastic yield limit of martensite. This mode of deformation, called

reorientation of variants, dominates at temperatures lower than Mf .

During the second stage (2 → 3), the mechanical loading in the martensitic

phase leads to reorientation of the variants and results in development of large inelas-

tic strains. This inelastic strain is not recovered upon unloading (3 → 4). During the

last step (4 → 1), heating the sample above Af induces the reverse transformation

and recovers the inelastic strain. When the material approaches Af , the martensitic

phase becomes unstable in the absence of stress. This results in a complete trans-

formation to the parent phase. Since martensite variants have been reoriented by



10

stress, the reversion to austenite produces a large transformation strain having the

same amplitude but opposite direction to the inelastic strain. As a result, the SMA

returns to the original shape it had in the austenitic phase.

1.2. Pseudoelasticity

The pseudoelastic behavior of SMAs is associated with stress induced strain recovery

upon unloading at temperatures above Af . Under most general conditions, pseudoe-

lastic thermomechanical loading paths start at zero stress in the austenitic region,

then move to the detwinned martensite region and then unload again to the start-

ing point. An example is the path a → b → c → d → e → a shown on Figure 1.

Other examples are the isothermal and isobaric loading paths shown schematically

on Figure 3. For clarity, the initial loading from austenite to achieve the required

constant stress for the isobaric path is not shown. Note that isothermal condition

can be achieved only by quasi-static (small strain increments) loadings, so that the

latent heat generated/absorbed during the phase transformation has time to dissi-

pate. For convenience, in this section mostly isobaric or isothermal loading paths will

be considered.

Consider the thermomechanical loading path a → b → · · · → a, which starts at

zero stress level, above Af . When the material is loaded at temperatures above Af , the

parent phase (Austenite) undergoes thermoelastic loading up to a critical stress level

called the Transformation stress (a→ b). At this stress level the material undergoes

a stress induced phase transformation (b → c) from austenite to martensite during

which large inelastic strains are developed. Any subsequent loading in the detwinned

martensitic region (c→ d) does not produce further phase transformation, although

reorientation of the martensitic twins may occur in multi-axial loading conditions.

When the point (d) is reached, the reverse transformation begins (martensite-to-
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austenite), leading to recovery of the inelastic strains. The material fully transforms

to austenite at (e) and the final segment of the loading path (e→ a) is characterized

by recovery of the thermoelastic strains, leading to zero macroscopic strains upon

completion of the path. The transformation process results in a hysteresis which

reflects the energy dissipated in the cycle.
S

tr
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Detwinned
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Twinned
Martensite

fM σ
sAσ

sM σ
fAσ

Msσ

Mfσ

Afσ

Asσ

Fig. 3. Isothermal and isobaric pseudoelastic loading paths. The two most commonly

encountered pseudoelasticity loading paths - and isothermal and isobaric one.

For clarity, the initial loading from austenite to achieve the required constant

stress for the isobaric path is not shown.

To better illustrate the uniaxial stress strain response, consider the (quasistatic),

isothermal loading path shown on Figure 3, and the corresponding schematic of the

stress-strain response in Figure 4. The path begins at zero-stress, zero strain state

in the austenitic region and proceeds by monotonously increasing the stress level.
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The initial material response is elastic, until the critical stress σMs is reached1. At

this point on the stress-temperature diagram, the material hits the forward A→Md

transformation strip and begins to develop large inelastic strains. The transformation

proceeds until the critical stress σMf is reached. The maximal uniaxial transforma-

tion strain is denoted by H t (Figure 4). Further increase in stress leads to elastic

material response. The transformation region is characterized by significant decrease

in stiffness as can be seen from stress-strain response in Figure 4. Upon unloading,

the material response is again linear until the stress decreases to the critical level

σAs, when the reverse transformation strip Md → A is reached. A similar decrease in

stiffness is observed during the reverse transformation. The completion of the reverse

transformation occurs at a critical stress level σAf . Further unloading is characterized

again by elastic response. A typical pseudoelastic SMA response of a NiTi specimen

is shown in Figure 5.

The response of an SMA under isobaric cooling/heating exhibits similar hys-

teretic behavior. Under cooling at constant applied stress σ (Figures 3 and 6) the

material initially shows small thermoelastic change in strain until the critical temper-

ature Mσs is reached. The forward phase transformation A → Md is characterized

again by development of large transformation strain H t and is complete when the

martensitic finish temperature Mσf is reached. Further cooling leads to only ther-

moelastic change in strain. The reverse transformation occurs when the material is

heated to temperature Aσs and is complete by Aσf .

In some cases aging of martensite phase can enable reversal of martensitic twins.

This phenomenon of reversible detwinning and twinning of the martensitic variants

1Note, that the critical stress is a function of temperature, since the A → Md

transformation strip is temperature dependent, cf. Figures 1 and 3. In general,
the correct notation is σMs(T ), where T is the temperature, however for isothermal
examples, like the current one, the temperature dependency can be omitted.
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Fig. 4. Schematic of isothermal, pseudoelastic stress-strain curve. The critical stresses

σMs, σMf , σAs and σAf required for initiation and completion of the forward

and reverse transformation are obtained from the phase diagram on Figure 3.

The maximum uniaxial transformation strain H t is also shown.
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creates a S-S curve similar to the pseudoelastic curve. This phenomenon is called

rubber-like effect (Otsuka and Wayman, 1999). This effect, first observed in a Au-Cd

alloy (Olander, 1932), constitutes the first studied manifestation of shape memory

effect. This type of behavior is a characteristic of the martensitic phase (T < Mf ). It

is observed in specific SMA materials, and unlike the superelastic phenomenon, this

involves reorientation within the same phase. Since twin boundaries are very mobile,

the critical stress required to move them is very small (a few MPa). Temperature

plays only a secondary role in this behavior since there is no phase change. When

the motion of twin boundaries is not reversible, the loading/unloading path results

in an inelastic strain. However, when the twin boundary motion is reversible during

unloading (e.g., in Au-Cd alloys), the macroscopic strain thus obtained is composed

of the usual elastic strain and a reversible component associated with the movement

of these interfaces. Some authors (Otsuka et al., 1976; Otsuka and Wayman, 1999)

use the term pseudoelasticity to denote both austenite to detwinned martensite phase

transformations and the rubber-like effect of reversible detwinning of twinned marten-

site. In order to distinguish between the two, the term superelasticity is used for the

first process. In this work the rubber-like effect is not considered, so the term pseudoe-

lasticity will be used throughout in the sense of superelasticity as defined by Otsuka

et al. (1976); Otsuka and Wayman (1999).

2. Modelling of polycrystalline SMAs

During the last two decades the area of constitutive modeling of polycrystalline SMAs

has been a topic of many research publications and significant advancements have

been reported. The majority of the constitutive models reported in the literature can

be formally classified to belong to one of the two groups:
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• micromechanics-based models

• phenomenological models.

The micromechanical models attempt to predict the SMA response by taking

into account the granular microstructure of polycrystalline SMAs. Theoretically, if

the micro-structure is well-known it is possible to use the well developed knowledge

of single crystal SMA behavior and solve boundary value problems in a polycrys-

talline material. Anand and Gurtin (2003) for example, use a model for single crystal

SMA and perform representative numerical calculations for the response of polycrys-

tals with random orientation of the single crystals. In practice, however one neither

has exact representation of the micro-structure, nor is it possible to solve numeri-

cally problems involving sufficient number of grains, as would happen in realistic,

three-dimensional boundary value problems. It is therefore necessary to use homoge-

nization techniques in order to obtain representative thermomechanical properties of

a polycrystalline material.

These type of problems first arose in the context of homogenizing the macro-

scopic properties of heterogeneous composite materials. Many homogenization meth-

ods have been developed over the years for elastic and elastoplastic materials, among

which averaging methods (Christensen, 1991; Hershey, 1954; Hill, 1965; Kröner, 1958;

Mori and Tanaka, 1973; Nemat-Nasser and Hori, 1993) which typically consider ellip-

soid inclusion in a Representative Volume Element (RVE) and asymptotic expansion

methods, initially developed for periodic microstructure (Bakhvalov and Panasenko,

1990; Bensoussan et al., 1978; Gaymonat et al., 1993; Sanchez-Palencia, 1980; Zhikov

et al., 1994). Most of the micromechanical models for polycrystalline SMAs are based

on a self consistent type of averaging methods (Falk, 1990; Gao and Brinson, 2002;

Lagoudas and Bhattacharya, 1997; Lu and Weng, 1998; Patoor et al., 1987, 1996).
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Such an approach was developed for the elastoplastic behavior of heterogeneous ma-

terials by Berveiller et al. (1994). Since micromechanical modelling of SMAs will not

be adopted here, the reader is referred to (Patoor et al., 2005; Roubicek, 2004) for a

detailed review of the subject.

The other class of models for polycrystalline SMAs are phenomenological ones

which rely on continuum thermomechanics with internal variables to account for the

changes in the microstructure due to phase transformation. These type of mod-

els usually assume a macroscopic energy function that depends on state and internal

variables used to describe the degree of phase transformation. Evolution equations are

then postulated for the internal variables. The macroscopic energy and the evolution

equations are assumed to have a certain functional form, which must be compatible

with thermodynamics. The fundamental structure of all these models is very simi-

lar, and can be classified as that of constitutive models with internal state variables

(Hill, 1967; Kestin and Bataille, 1978; Kestin and Rice, 1970; Rice, 1971). The re-

sulting phenomenological models do not directly depend on material parameters at

the microscopic level, but on a set of parameters at the macroscopic level which are

determined by experimental observations. Such models can be very simple, for ex-

ample modeling the uniaxial pseudoelastic response of an SMA by a piecewise linear

function, or can be very complex, as in 3-D models, involving a number of material

parameters which have to be determined by extensive experimentation and often do

not have obvious physical interpretation. Phenomenological models are easily imple-

mentable in numerical methods for the solution of boundary value problems on the

structural (macroscopic) level, and, depending on the application, one has the flexi-

bility to make numerous trade-offs between accuracy and complexity. An alternative

to using internal variables and defining evolution equations, as in classical plasticity,

are the energy minimization methods. In one of the early examples, Ball and James
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(1987) modeled the SMA as a nonlinear elastic material and postulated a two-well

free energy function. By determining energy minimizing deformations with two co-

herent and macroscopically unstressed variants of martensite it is possible to find a

microstructure which corresponds to the loading conditions. Energy minimization

methods will not be discussed in this work.

Other approaches to phenomenological SMA models have also been proposed.

The work of Brocca et al. (2002) presents a three-dimensional model for SMAs which

is based on the microplane model by Bažant (1984). The main idea of the model is to

deduce the macroscopic constitutive behavior of an SMA by describing the response

of the SMA along planes of different orientations, called microplanes. The SMA

constitutive behavior on the microplanes is described by a one-dimensional model.

First, the normal and shear components of the stress on each microplane are defined in

terms of the unit normal and tangential vectors of the plane and the macroscopic stress

tensor. Next, the normal and shear components of the strain are calculated based on

the constitutive model for the microplane. Finally, the components of the macroscopic

strain tensor are calculated from the normal and shear strain components for a set

of microplanes using the principal of virtual work. The particular SMA constitutive

model on the microplane implemented in the work by Brocca et al. (2002) is the

one presented by Bekker and Brinson (1998), however, it is noted that any other

model can easily be implemented. The effect of the hydrostatic pressure and the

tension/compression asymmetry are also taken into account by modifying the critical

stress values for phase transformation and the transformation temperatures. Various

results demonstrating the capabilities of the microplane model are presented and

compared with experimental data.

In this work, the phenomenological approach is selected for the purpose of mod-

eling complicated loading paths involving both twinned and detwinned martensite.
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This is done for two reasons. First, there is an extensive volume of phenomenological

models aimed at separately predicting the stress-induced martensitic transformations,

and, to a lesser degree, the detwinning of self-accommodated martensite. In this re-

spect the 3-D model proposed in the current work is a combination of these two

separate regimes of SMA constitutive behavior which is exhibited often in complex

thermomechanical loading paths. Secondly, the very complex microstructural changes

which occur during a complicated loading path make it intrinsically difficult to use

micromechanical methods. A review of phenomenological SMA models is presented

next.

3. Literature review of phenomenological models

Significant effort has been devoted over the past decade to establish phenomeno-

logical constitutive models describing the macroscopic thermomechanical response

of polycrystalline SMAs (Bekker and Brinson, 1997, 1998; Berveiller et al., 1991;

Bo and Lagoudas, 1999a,b,c; Boyd and Lagoudas, 1994b, 1996a,b; Brinson, 1993;

Graesser and Cozzarelli, 1991; Juhasz et al., 2002; Lagoudas and Bo, 1999; Lagoudas

et al., 1996, 1994; Lagoudas and Entchev, 2004; Lagoudas and Shu, 1999; Leclercq

and Lexcellent, 1996; Lexcellent et al., 2000; Liang and Rogers, 1990, 1992; Marketz

and Fischer, 1995; Marketz et al., 1995; Ortin and Planes, 1988, 1989; Patoor et al.,

1987, 1988; Raniecki and Lexcellent, 1994; Sato and Tanaka, 1988; Sun and Hwang,

1993a,b; Sun et al., 1991; Tanaka, 1986; Tanaka et al., 1992, 1995). Most of the con-

stitutive models adopt a thermodynamic structure and select the martensitic volume

fraction as an internal state variable to account, on the average, for the influence of

the microstructure.

The early constitutive models (Boyd and Lagoudas, 1994b, 1996a; Brinson, 1993;
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Liang and Rogers, 1990, 1992; Tanaka, 1986; Tanaka et al., 1986, 1995) have been

used to derive the pseudoelastic response of SMAs and their main difference is the

hardening function selected to model the stress-strain response during the stress in-

duced martensitic phase transformation. A unified framework for these early consti-

tutive models has been presented by Lagoudas et al. (1996). Further improvements

in the accuracy of SMAs models was achieved by Lexcellent et al. (2002); Qidwai

and Lagoudas (2000b); Raniecki and Lexcellent (1998), who proposed different trans-

formation functions in order to capture the asymmetric response that SMAs exhibit

in tension and compression. Qidwai and Lagoudas (2000b) also studied the conse-

quences the principle of maximum dissipation during phase transformation has on the

transformation surface and flow rules. The one-dimensional model of Brinson (1993)

was one of the first to include modeling of detwinning of martensite. The work was

based on a phase diagram approach and used two volume fractions of martensite to

model pseudoelasticity and detwinning separately. It was further refined by Bekker

and Brinson (1997, 1998). A thermodynamics based model of detwinning has been

proposed by Juhasz et al. (2002); Lagoudas and Shu (1999); Leclercq and Lexcellent

(1996). Reorientation of martensite during non-proportional loading has been taken

into account by Boyd and Lagoudas (1994a), who used a non-associative flow rule

during the reverse transformation. Juhasz et al. (2002) addressed this issue by using

both the martensitic volume fraction and the transformation strain as separate in-

ternal variables. Cyclic loading and transformation induced plasticity in SMAs has

also been a major research topic in SMA modeling (Bo and Lagoudas, 1999a,b,c;

Lagoudas and Bo, 1999; Lagoudas and Entchev, 2004; Lexcellent and Bourbon, 1996;

Lexcellent et al., 2000; Tanaka et al., 1995). In the works of Lexcellent and Bourbon

(1996); Tanaka et al. (1995) it is assumed that a portion of the martensite does not

recover after each cycle, which leads to observable unrecoverable strain, which even-
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tually saturates with the number of cycles. In the one dimensional model of Bo and

Lagoudas (1999a,b,c) and Lagoudas and Bo (1999) the stress-induced transformation

is modelled by allowing both transformation and plastic strains to develop simulta-

neously as a result of the applied load. The work was later extended by Lagoudas

and Entchev (2004) to three dimensions.

The models reviewed above are rate independent ones, having a stress-strain

response dependant only on the loading path. Rate dependent constitutive models

have also been proposed in the literature. An early example is the model by Achen-

bach (1989), who uses two-well potentials for the free energy and statistical physics

to justify transition probabilities between two different variants of martensite (one in

tension and one in compression) and austenite. The formulation of the model allows

for a softening stress-strain relationship. In a recent paper this model is extended my

Govindjee and Hall (2000), who used multi-well potentials and an arbitrary number of

martensitic variants. Other authors have directly coupled a nonlinear thermoelastic

potential and a kinetic relation to solve wave propagation problems in one-dimensional

SMA rods. Abeyaratne and Knowles (1994a,b, 1997) have solved the Riemann prob-

lem in both isothermal and adiabatic settings for an SMA with softening behavior.

A kinetic relation defining the speed of propagation of the phase front is introduced

as a constitutive relation in order to enforce uniqueness of the Riemann problem.

The numerical implementation of phenomenological models has also been an

active area of research (Auricchio, 2001; Auricchio et al., 1997; Govindjee and Miehe,

2001; Qidwai and Lagoudas, 2000a). While the computational methods have their

roots in algorithms used in computational plasticity (cf. Ortiz and Popov (1985);

Simo and Hughes (1998)), the complex behavior of SMAs requires the development

of specialized algorithms.

Describing the complex characteristics involved in the phase transitions in poly-
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crystalline SMAs has been a significant challenge to researchers. These include mod-

eling the hardening during phase transformation; the asymmetric response that SMAs

exhibit in tension and compression; the modeling of detwinning of martensite and,

more generally, complicated thermomechanical paths beyond isobaric or isothermal

ones; two-way shape memory effect; the effects of reorientation and the accumulation

of plastic strains during cyclic loading. Historically, the first subject addressed by

researchers was the choice of transformation hardening functions. These topics have

been covered in the review paper by Birman (1997). A detailed account can also be

found in Lagoudas et al. (1996) and thus will not be discussed here. The remaining

topics are discussed in detail below.

3.1. Transformation surface

The topic of transformation surfaces and tension-compression asymmetry of the SMA

response has been investigated by Raniecki and Lexcellent (1998) who presented a

model for pseudoelasticity of SMAs. A distinct feature of the model is its capability to

take into account the difference between the tension and compression loading. This is

accomplished by using a J2− J3 transformation surface. The model uses exponential

hardening functions. It was used in a later work by Raniecki et al. (2001) to study

bending of SMA beams undergoing pseudoelastic loading. In this particular work the

tension-compression difference was neglected. The authors were able to determine the

distribution of the martensitic volume fraction along the thickness of the beam during

both loading and unloading. Additional results included plots of the beam curvature

versus the applied moment. Rejzner et al. (2002) have further extended the work on

pseudoelastic beams, by including the effect of tension-compression asymmetry in the

analysis and comparing the results with experimental data. It was found, however,

that the tension-compression asymmetry does not have a significant influence on the
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macroscopic beam response.

The comprehensive study of Qidwai and Lagoudas (2000b) focused on the choice

of different transformation functions and their effect on the material response. In

particular, the asymmetry of the material behavior under tension and compression,

as well as the volumetric transformation strain, can be modeled by choosing an ap-

propriate functional form of transformation function. Qidwai and Lagoudas (2000b)

proposed a transformation function, based on the J2, J3 and I1 stress invariants

which can account for the observed asymmetry. The subject of the form of the

transformation function has been revisited in a recent paper by Lexcellent et al.

(2002). Multiaxial experiments on CuZnAl and CuAlBe polycrystalline SMAs have

been performed to determine the initial transformation surface. The experiments

have revealed tension-compression asymmetry, consistent with the results found in

the literature. Motivated by the experimental results, Lexcellent et al. (2002) have

proposed an analytical expression for the transformation function, based on the J2

and J3 stress invariants.

3.2. Detwinning of martensite

Another important aspect of the SMA response is the detwinning of martensite. The

one-dimensional model of Brinson (1993) was one of the first to include modeling of

detwinning of self-accommodated martensite. The work was based on a phase diagram

approach and used two volume fractions of martensite to model pseudoelasticity and

detwinning separately. It was further refined by Bekker and Brinson (1997, 1998) by

incorporating different hardening functions and minor transformation loops. While an

important step in the incorporation of twinned martensite into SMA modelling, these

models however use a phase diagram which is inconsistent with available experimental

data. As a result certain modifications are needed in order to correctly predict the
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detwinning of twinned martensite for temperatures between Ms and As.

Leclercq and Lexcellent (1996) have presented a thermodynamics model formu-

lated in a 3-D framework; however, only 1-D implementation and numerical results

have been provided. Comparisons are made with experimental data for both pseu-

doelastic mechanical loading as well for isobaric thermally-induced transformation.

It has been found that the results are in reasonably good agreement, with the largest

discrepancies observed for the case of isobaric thermally-induced transformation. In

another study, Lagoudas and Shu (1999) have proposed a 3-D model with three in-

ternal variables but again with only 1-D numerical implementation and results. The

main drawback of this model is its inability to simulate repeated SME loading paths,

due to the specific selection of hardening function for the detwinning of twinned

martensite. Juhasz et al. (2002) proposed a thermodynamics model consistent with

the phase diagram of Brinson (1993) which takes into account the detwinned marten-

site by using both the twinned martensitic volume fraction and the transformation

strain as separate internal variables.

3.3. Cyclic loading and transformation induced plastic strain

One of the important problems recently addressed by the researchers is the behav-

ior of SMAs under cycling loading (Abeyaratne and Kim (1997); Bo and Lagoudas

(1999a,b,c); Fischer et al. (1998); Lagoudas and Entchev (2004); Lexcellent and Bour-

bon (1996); Lexcellent et al. (2000); Tanaka et al. (1995)). During cyclic phase trans-

formation a substantial amount of plastic strains is accumulated. In addition, the

transformation loop evolves with the number of cycles and TWSME is developed.

Based on the experimental observations researchers have attempted to create models

able to capture the effects of cycling loading. One-dimensional models for the be-

havior of SMA wires under cycling loading have been presented by Lexcellent and
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Bourbon (1996); Lexcellent et al. (2000); Tanaka et al. (1995) and Abeyaratne and

Kim (1997), among others.

A series of papers by Bo and Lagoudas (1999a,b,c) and Lagoudas and Bo (1999)

studies the cyclic behavior of SMA wires in one dimension. The work focuses on the

modeling of stress-induced transformation, where both transformation and plastic

strains occur simultaneously as a results of the applied stress. The resulting model is

able to account for simultaneous development of transformation and plastic strains

during phase transformation under applied loads. In addition to the plastic strain, the

changes in the material response are also modeled by introducing evolution equations

for the material parameters. Finally, minor hysteresis loops are also modeled by Bo

and Lagoudas (1999c). This is accomplished by modifying the transformation crite-

rion and the hardening parameters during a minor loop. All of the above-mentioned

features of the model have been demonstrated and the results have been compared

with experimental data for NiTi SMA wires. The results have been found to be in

very good agreement.

A three-dimensional model for transformation induced plasticity has been pre-

sented by Fischer et al. (1998). In contrast to the work by Bo and Lagoudas (1999b),

separate phase transformation condition and plasticity yield condition are used by

Fischer et al. (1998). The theory is presented in general terms, but the identification

of the material parameters and the implementation are not discussed.

4. Outline of current research

The research in this thesis consists of four separate topics listed below.
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4.1. Development of an adaptive finite element method for wave propagation

problems in SMAs

Shape Memory Alloys have recently been considered for dynamic loading applications

for energy absorbing and vibration damping devices. An SMA body subjected to ex-

ternal dynamic loading will experience large inelastic deformations that will propagate

through the body as phase transformation and/or detwinning shock waves. The wave

propagation problem in a cylindrical polycrystalline SMA rod induced by an impact

loading is considered in Chapter II. The constitutive model of Boyd and Lagoudas

(1994b) is used. The model, originally designed for pseudoelasticity, is reinterpreted

to model detwinning of SMAs. Numerical solutions for various boundary conditions

are presented for stress induced martensite and detwinning of martensite. The nu-

merical simulations utilize an adaptive Finite Element Method (FEM) based on the

Zienkiewicz-Zhu (ZZ) error estimator. Selected results are compared to known ana-

lytical solutions to verify the adaptive FEM approach. The energy dissipation in an

SMA rod is evaluated for a square pulse stress input applied at various temperatures

involving both stress induced martensite and detwinning of martensite. Comparisons

with available experimental data is also given.

The reinterpretation of the constitutive model (Boyd and Lagoudas, 1994b) used

for the one-dimensional wave propagation problem cannot be generalized to cases

where significant changes in the temperature occur and the SMA exhibits detwinning

and pseudoelasticity, either simultaneously or at different instances of time. While

the numerical simulations were successfully applied to a range of wave propagation

problems, many practical problems require a comprehensive SMA model, capable of

accounting for all phase transitions, both simultaneously and sequentially.
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4.2. Development of a three phase, 3-D constitutive model for SMAs

The analysis of the existing models and their comparison to the experimental results

has shown that current SMA constitutive models can handle successfully different

types of thermomechanical loading paths but have difficulties doing so in a unified

manner. While the models which take into account the development of stress-induced

martensite have reached a high level of sophistication, generally they lack the ability

to handle other loading paths, involving detwinning and reorientation of martensite.

Some of the models presented in the literature address the above problem but in a

limited way, usually restricted to a one-dimensional description and/or cannot handle

certain classes of thermomechanical loading paths (Bekker and Brinson, 1997, 1998;

Brinson, 1993; Lagoudas and Shu, 1999).

The current applications of SMAs in multifunctional smart structures have ma-

tured beyond the simple, one-dimensional actuators. For e comprehensive review of

early SMA based devices, the reader is referred to Birman (1997); Funakubo (1987).

Recent application designs, however, involve complex SMA structures undergoing

non-proportional thermomechanical loading paths. Devices such as SMA micro-grips

(Kohl et al., 2002) or self-expanding medical stents (Jung et al., 2004), to name a few,

have complex geometry and undergo complicated thermal and mechanical paths. In

addition to the common and well studied development of stress-induced martensite,

parts of the thermomechanical loading process often involve generation of twinned

martensite, detwinning of twinned martensite and various simultaneous transforma-

tion of twinned, detwinned martensite and austenite. Thus, in order to further ad-

vance existing applications and promote the development of new ones, it is necessary

to have a comprehensive three-dimensional model for SMAs, which can handle a wide

variety of loading paths and reliably predict the thermomechanical response of SMA
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actuators and devices.

In this work (Chapter III), a thermodynamics based model with three internal

variables is formulated for the simultaneous modeling of pseudoelasticity and detwin-

ning of self-accommodated martensite associated with the SME. The model is formu-

lated in three dimensions and is made consistent with a uniaxial phase diagram in

stress-temperature space. The phase diagram incorporates new experimental results,

presented in Section 1, which demonstrate that twinned and detwinned martensite

transform to austenite at different temperatures. The phase diagram is constructed

in Section 2 based on these new observations, as well as, on a careful reexamination

of published experimental data on detwinning of twinned martensite and the conver-

sion of twinned martensite to austenite. This modified phase diagram is important in

deriving a robust model which can correctly predict the material behavior for a wide

range of paths. Specifically, paths which generate a mixture of the austenitic, twinned

martensitic and detwinned martensitic phases and may cycle repeatedly between dif-

ferent regions of the phase diagram. The model is utilized to simulate two uniaxial

problems which illustrate its capabilities over a wide temperature/stress range.

4.3. Numerical implementation of SMA constitutive model

The numerical implementation of the constitutive model is developed and presented in

Chapter IV. The implementation is designed for displacement based Finite Element

Methods (FEM). The approach of Qidwai and Lagoudas (2000a), based on return

mapping algorithms (Ortiz and Popov, 1985; Ortiz and Simo, 1986; Simo and Hughes,

1998) and specifically designed for pseudoelastic SMA materials, has been generalized

to multi-surface inelasticity and multiple simultaneous transformations. Appropriate

algorithmic tangent modulii are derived so that Newton-type iteration methods can

be utilized to solve the nonlinear system of algebraic equations, arising from the FEM
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discretization. The implementation is coded in the C++ programming language in

order to facilitate integration with modern FE analysis software.

Several nontrivial model problems are also solved. Two of them, one for a per-

forated square in plane strain (Chapter IV, Section 2.1) and one for a 3D structural

member (Chapter IV, Section 2.2) are simulated. The boundary conditions lead the

material through a complicated loading path starting from low temperature and going

through M t →Md, M t → A, Md → A in both successive and simultaneous manner,

thus testing extensively the 3-D numerical implementation of constitutive model.

The third model problem is a coupled fluid-structure interaction problem with

a Stokes fluid flowing through a channel with an SMA membrane (Chapter V, Sec-

tion 4). It is performed in conjunction with a Fluid-Structure Interaction (FSI) solve,

developed in Chapter V. The example is designed to test the feasibility of temperature

actuated flow regulating devices.

4.4. Investigation of fluid-structure interaction problems with application to SMA

based flow regulating devices

The current work also involves modeling of fluid-structure interaction problems. The

effort was motivated by the recent advent of Porous SMAs which have various poten-

tial applications such as bone replacements, filters in the automotive and chemical

industries, and light-weight structures for aerospace applications. The introduction

of a fluid passing through an open pore SMA can be used to significantly extend

the functionality of such devices. In order to investigate these possibilities a Fluid-

Structure Interaction (FSI) numerical solver was developed for the fully coupled FSI

problem (Chapter V). The FSI problem is formulated for Stokes flow and the solid

can be either linear or include material nonlinearities. The solver utilizes mesh re-

generation schemes to support large displacements of the solid phase.
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The numerical method was implemented and tested on a range of numerical

examples (Chapter V, Section 3). It was further used to verify an existing asymptotic

solution to the FSI problem in a simple channel geometry. As a precursor to porous

based SMA flow regulating devices, the FSI solver was used to simulate a simple

temperature regulated flow device (Chapter V, Section 4). The device consist of a

SMA membrane embedded in a rigid channel. The simulation involves a temperature

sweep to determine the flow rate at different temperatures. The model developed in

Chapter III was especially suited for simulating such devices since it captures correctly

the phenomena occurring in SMAs over a wide temperature range.
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CHAPTER II

NONLINEAR WAVE PROPAGATION IN SMA RODS

Shape Memory Alloys (SMAs) have recently been considered for dynamic loading

applications as energy absorbing and vibration damping devices. An SMA body

subjected to external dynamic loading will experience large inelastic deformations

that will propagate through the body as phase transformation and/or detwinning

shock waves. There are many areas of applications which can successfully utilize

the unique properties of SMAs. The engineering research presented in this chapter

relates directly to the design of SMA components capable of absorbing dynamic loads.

Such components can be integrated into critical parts of structures that may need

protection from impact loads. Examples include joints that connect the hull of an

underwater vehicle with its internal structure, tank armor or blast resistant cargo

containers. Another promising field of application includes various active or passive

vibration damping devices. Many different SMA devices have been proposed among

which nonlinear hysteretic SMA springs (Graesser, 1995; Yiu and Regelbrugge, 1995),

wires (Fosdick and Ketema, 1998; Thomson et al., 1995) or rods (Feng and Li, 1996).

In a recent series of papers (Khan et al., 2004; Lagoudas et al., 2004) the authors

investigate numerically the vibration damping capabilities of SMAs.

The main focus of this chapter is the study of the one-dimensional dynamic

problem of loading an SMA rod under conditions of pseudoelasticity and detwinning.

Both the pseudoelastic response and detwinning of self-accommodated martensite in

classical SMAs is characterized by strictly monotonous stress-strain curves. As a

result the field equation describing the impact of an SMA rod (Section 1) form a

second order, nonlinear, strictly hyperbolic problem. It is a well-known fact that

solutions to nonlinear hyperbolic problems posses self-inducing discontinuities, that
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is, given an arbitrarily smooth initial data, after some finite time, the solution may

become discontinuous in space (see, for example Godlewsky and Raviart, 1996; Re-

nardy and Rogers, 1996). The speed of these shocks is dependent on the strain level

and shocks travelling at different speed may further interact. The problem therefore

is very complicated and few wave-propagation results in SMA materials are known.

Classical rate-independent plasticity theory is not sufficient to describe the be-

havior of SMA materials. While it is still capable of partially predicting the shape

memory effect (without capturing the strain recovery upon heating), it cannot model

the pseudoelastic response. However, for rate independent models of SMAs both

theoretical and experimental developments of dynamic elasto-plasticity can be used

for guidance. Theoretical developments on elasto-plastic wave propagation in long

rods dates back to the works of Rakhmatulin (1945); Taylor (1958); Von Karman

and Duwez (1950). Extensive experiments on elasto-plastic wave propagation have

been carried out by Bell (1962); Bodner and Clifton (1967); Chiddister and Malvern

(1963); Clifton and Bodner (1966); Kolsky (1949) using a split-Hopkinson bar appa-

ratus. The split bar technique itself was introduced by Kolsky (1949). The reader

is referred to classical texts on wave propagation such as Kolsky (1963) and Graff

(1975) for additional information.

There has been a limited amount of experimental work done on characterizing

the dynamic response of SMAs. An experimental study on the propagation of shear

waves in single crystal Cu-Al-Ni shape memory alloy has been done by Escobar and

Clifton (1993). Phase transition shocks are not observed directly due to their low

propagation speed. Instead, their presence is inferred from the measurements of the

elastic waves at the rear end of the specimen. An analytical attempt to model these

experiments is presented in Abeyaratne and Knowles (1997).

In a recent paper (Chen and Lagoudas, 2000) the rate independent model for
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polycrystalline SMAs (Lagoudas et al., 1996) is employed to obtain solutions to the

coupled thermomechanical problem for SMA materials. The authors take into account

the latent heat generation and assuming adiabatic conditions they solve the problem

by the method of characteristics together with jump conditions that yield unique

solutions. A similar study (Bekker et al., 2002), but for different constitutive models

has been carried out for both isothermal and adiabatic conditions. In a different

setting Oberaigner et al. (1996) investigates numerically the coupled problem of wave

propagation and heat transfer in an SMA rod. The authors focus on stress pulses of

low magnitude that cause only elastic deformations. The temperature at one end of

the SMA rod is chosen as a function of time in such a way as to utilize the phase change

due to the shape memory effect in order to maximize the damping characteristics of

the rod.

The dynamics of phase transformation in piecewise linear elastic materials with

non-monotone hysteresis is also studied by Abeyaratne and Knowles (1991). A unique

solution is obtained with the use of a kinetic relation controlling the rate of the

phase transformation together with a nucleation condition for the initiation of the

transformation. In later work the same authors extend the analysis to account for

thermal effects (Abeyaratne and Knowles, 1994a,b). In a general setting Pence (1986)

considers wave propagating in a nonlinear elastic bar with a non-monotonic stress-

strain relationship subjected to a monotonically increasing load. It is found that for

sufficiently high loads a strain discontinuity associated with phase transformation is

being created.

The complex nature of most constitutive models for SMA materials makes direct

integration of even the simplest uniaxial transient initial boundary value problems

(IBVP) very complicated. Closed form solutions can usually be obtained for simple

boundary conditions, e.g. impact step loading (Chen and Lagoudas, 2000) or by
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simplifying the constitutive model so that the stress can be obtained as an explicit

function of strain (Bekker et al., 2002). Numerical solutions of the impact loading

problem have been obtained by (Bekker et al., 2002; Jimenez-Victory, 1999) by mainly

using the Lax-Friedrichs finite difference scheme. This FD scheme has been found to

produce a considerable amount of numerical dissipation which makes the distinction

between a self-contained nonlinear shock and a rarefaction wave difficult. In this

chapter numerical simulations of step and pulse shock loading both for stress induced

phase transformation and detwinning of martensite are performed using the FEM

method. An adaptive meshing technique based on the ZZ error estimator (Zienkiewicz

and Zhu, 1987) is utilized in order to improve the accuracy of the method and decrease

computational time. Comparisons with analytical solutions are made whenever such

solutions are available. Based on the simulation results, the energy dissipation of

SMA rods for pulse loads are discussed. Finally recent experimental data (Lagoudas

et al., 2003) on impact induced detwinning in a polycrystalline NiTi SMA rod is

analyzed and compared with numerical simulations.

Summarized below are the key points addressed in this chapter:

• An adaptive Finite Element Method (FEM) based on the Zienkiewicz-Zhu (ZZ)

error estimator is developed and implemented for wave propagation problems in

SMA rods. Numerical solutions for various boundary conditions are presented

for stress induced martensite and detwinning of martensite. Selected results are

compared to known analytical solutions to verify the adaptive FEM approach.

• A one-dimensional adaptation of the constitutive model of (Boyd and Lagoudas,

1994b; Lagoudas et al., 1996) is chosen, assuming rate independence in the

constitutive thermomechanical response of SMAs.

• The energy dissipation in an SMA rod is evaluated for a square pulse stress
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input applied at various temperatures involving both stress induced martensite

and detwinning of martensite.

• Actual experimental observations from a split Hopkinson bar test on an SMA

rod in detwinning conditions are analyzed. Due to experimental limitations

the stress levels in the bar could not reach high enough levels to cause pseu-

doelasticity, so wave propagation data only from detwinning of martensite was

available.

• The quasi-static and dynamic stress-strain hysteretic response of the SMA, both

due to detwinning, are found to be nearly identical, validating the assumption

of rate independence.

• Strain history records obtained by strain gauges placed at different locations

along the SMA rod are compared with numerical simulations for a square pulse

stress input. The quasi-static tests are used to calibrate the rate independent

constitutive model. The numerical simulations are found to match the experi-

mental observations reasonably well.

As it was mentioned above, the rate independent constitutive model of Boyd

and Lagoudas (1994b); Lagoudas et al. (1996) is used. This model was originally

developed for purely pseudoelastic response of SMAs. Dictated by actual experimen-

tal constraints, it is shown that the model can be adapted to simulate detwinning

of SMAs by reinterpreting the material constants and using a high-order polynomial

hardening function. This made possible the simulations of the available experimental

data. Such an approach however, is applicable only in cases when the entire loading

history of the SMA component is confined to detwinning phenomena. If, for example,

due to energy dissipation sufficient amount of heat is released during the impact inside
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the material, or the temperature is changed through the boundary conditions then

the material may undergoes pseudoelastic and detwinning deformations during the

duration of the loading. A model capable of handling both phenomena is therefore

required to simulate the dynamic response under more general conditions. The work

presented in this chapter thus serves as a real-life motivation for the comprehensive

SMA model presented in Chapter III.

The chapter continues with Section 1 which is devoted to a brief overview of the

field equations, boundary conditions and constitutive model defining the problem.

The implementation of the FEM for the NiTi SMA is outlined in Section 2.1. The

adaptive strategy is presented in Section 2.2. In order to verify the implementation

of the adaptive FEM a boundary value problem with a step-function stress boundary

condition is solved in Section 3.1. This specific boundary condition allows for the

construction of analytical solutions which can be used to verify the numerical solution

methodology. Then, a square pulse IBVP is solved for conditions of stress induced

martensite (Section 3.2) and detwinning (Section 3.3). Expected values for energy

dissipation as the pulse propagates through the rod are presented. Section 4 describes

the split-Hopkinson bar experiment and discusses the dynamic characterization of

SMA materials. Finally, in Section 4.2 the numerical schemes developed in this

chapter are utilized to simulate available experimental results.

1. Field equations and constitutive model for the impact problem of SMA rods

A cylindrical SMA rod of uniform cross-section and length L is considered. A coor-

dinate cover is associated with the centroidal axis of the rod spanning the interval

0 ≤ x ≤ L. The rod which is initially stress free and at rest is subjected to an impact

load at its left end (x = 0). The right end (x = L) is assumed to remain traction
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free. The field equations, initial and boundary conditions are presented next followed

by a description of the thermomechanical constitutive model for SMAs.

1.1. Field equations, initial and boundary conditions

The rod is assumed to be long compared to its diameter so it is under uniaxial stress

state and the stress σ(x, t) depends only on the axial position and time. The axial

component of the displacement is denoted by u(x, t). Linearized strain is further

assumed so the axial component of the strain ε(x, t) is related to the displacement by

ε(x, t) = ∂u/∂x. Finally, the density of the material ρ is assumed constant. The local

form of the balance of linear momentum and energy then read (Graff, 1975; Malvern,

1969):

ρ
∂2u

∂t2
=

∂σ

∂x
, (2.1)

ρ
∂

∂t

(
U +

1

2

(
∂u

∂t

)2
)

=
∂

∂x

(
∂u

∂t
σ − q

)
, (2.2)

where U is the internal energy per unit mass and q(x, t) is the heat flux.

The timescale of the impact problem is on the order of micro- to milliseconds.

The physically meaningful IBVP is an adiabatic one because such time-intervals are

too short for heat conduction to take place as well as for convection to remove heat

through the surface of the rod. In the adiabatic approximation, therefore, the heat

conduction term q in (2.2) can be neglected so the balance of energy in conjunction

with (2.1) yields

ρ
∂U
∂t

= σ
∂2u

∂x∂t
. (2.3)

Equation (2.1) and (2.3) involve the field variables u, σ and U . Through appropriate

constitutive assumptions to be discussed in the following section only u(x, t) and the

temperature T (x, t) will become the independent variables.
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For the field variables the following initial and boundary conditions are assumed:

u|t=0 = 0,
∂u

∂t
|t=0 = 0, T |t=0 = TR, (2.4)

σ|x=0 = σ0(t), σ|x=L = 0, (2.5)

The initial conditions indicate that the rod is at rest and its temperature is equal

to the ambient temperature TR. The boundary conditions specify the traction σ0(t)

applied1 to the left end of the rod. The right end is kept traction free.

1.2. Uniaxial thermomechanical constitutive model for polycrystalline SMAs

The field equations (2.1), (2.3) and initial and boundary conditions (2.4), (2.5) alone

are not sufficient to form a complete IBVP. A thermomechanical constitutive model

that captures the key characteristics of pseudoelasticity and detwinning of the SMA

response is needed.

1.2.1. Stress induced martensite

The constitutive model used is formulated in terms of the Gibbs free energy G and

employs the volume fraction of detwinned martensite ξ formed from austenite as an

internal variable (Lagoudas et al., 1996). The specific form ofG in the one dimensional

case is:

G = G(σ, T, ξ) = − 1
2ρ
Sσ2 − 1

ρ
σ (α(T − TR) + εt)

+c
(
(T − TR)− T ln

(
T
TR

))
− s0T + u0 + f(ξ),

(2.6)

and it is linked to the internal energy U by a Legendre transformation:

U = G+ Ts+ 1
ρ
σε. (2.7)

1There is no continuity requirement on σ0(t) i.e. impact loads are allowed



40

The definition of G includes the inelastic transformation strain εt associated with

the phase transformation. The function f(ξ) is taken to be a quadratic polynomial

in ξ and is responsible for the transformation hardening:

f(ξ) =


1
2
ρbMξ2 + (µ1 + µ2)ξ, ξ̇ > 0

1
2
ρbAξ2 + (µ1 − µ2)ξ, ξ̇ < 0

, (2.8)

where material constants ρbA, ρbM , µ1 and µ2 define the transformation surfaces

and the hardening during the forward and reverse transitions (Qidwai and Lagoudas,

2000b). In the above ξ̇ > 0 denotes the forward transformation and ξ̇ < 0 the reverse.

The remaining material properties in (2.6) are the effective compliance S, effective

thermal expansion coefficient α, effective specific heat c, effective specific entropy at

the reference state s0 and effective specific internal energy at the reference state u0

for the SMAs which is composed of a mixture of austenite and martensite. They are

approximated by the following averaging expressions, which are good approximations

for polycrystalline SMAs with random orientation distributions of the martensitic

grains (Boyd and Lagoudas, 1994b):

S = S(ξ) = SA + ξ∆S, ∆S := SM − SA,

α = α(ξ) = αA + ξ∆α, ∆α := αM − αA,

c = c(ξ) = cA + ξ∆c, ∆c := cM − cA,

s0 = s0(ξ) = sA
0 + ξ∆s0, ∆s0 := sM

0 − sA
0 ,

u0 = u0(ξ) = uA
0 + ξ∆u0, ∆u0 := uM

0 − uA
0 .

(2.9)

Quantities with subscript A denote the appropriate material constant for the austenite

phase and those with subscript M for the martensite phase. Following a standard
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thermodynamic procedure the following constitutive relations are obtained:

s = −∂G
∂T

, (2.10)

ε = −ρ∂G
∂σ

, (2.11)

π = −ρ∂G
∂ξ

, (2.12)

where s is the entropy and π is the driving force for the transformation. Using (2.11)

the following constitutive relation is obtained:

σ = E(ξ)(ε− α(ξ)(T − TR)− εt), (2.13)

where E(ξ) = 1/S(ξ) is the effective elastic modulus. The evolution of the inelastic

variable ξ is given by a consistency condition derived from a transformation crite-

rion (Lagoudas et al., 1996). The evolution of εt follows that of ξ and in the one

dimensional case can be integrated explicitly to yield:

εt = Hsgn(σ)ξ. (2.14)

Here H is a positive material constant corresponding to the maximum transformation

strain. The principle of maximum transformation dissipation in conjunction with the

second law of thermodynamics leads to the following transformation surface:

π = ±Y ∗, (2.15)

where Y ∗ = −1
2
ρ∆s0(Af −Ms)− 1

4
ρ∆s0(Ms−Mf −Af +As). The +Y ∗ at the right

hand side stands for the forward (A → M) transformation surface and −Y ∗ for the

reverse (M → A) transformation surface.

For detailed description of the transformation rule and conditions for the for-

ward and reverse phase transformation the reader is referred to the original paper by
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Lagoudas et al. (1996). The next section describes how detwinning is incorporated

into the constitutive model.

1.3. Detwinning of martensite

The detwinning deformation will be accounted for by adapting the constitutive model.

The material constants for twinned and detwinned martensite are the same. Conse-

quently, the initial response and the response after the completion of detwinning will

both be elastic with the slope being the modulus of elasticity of martensite EM . The

deformation is irreversible upon unloading which, consequently, will also be elastic.

The material constants in the constitutive model can be reinterpreted, replacing

the ones for the austenitic phase with the ones for martensite. This will ensure the

same elastic response prior to the onset of detwinning and after its completion. The

internal variable ξ should be interpreted as the volume fraction of detwinned with

respect to self-accommodated martensite and H is the maximum inelastic strain.

From equation (2.15) the transformation surface will have the following simple form:

σH − ∂f

∂ξ
= 0. (2.16)

The hardening function in this case may be expressed as follows:

f(ξ) =
1

2
ρbdξ2 + Y dξ, for ξ̇ > 0, (2.17)

where Y d = σsH and ρbd = σfH−Y d. For convenience, the critical stress level σs for

the onset and σf for the completion of the detwinning deformation are introduced as

material constants. Note that for the detwinning case ξ̇ can only be positive since the

unloading is entirely elastic. This adaptation of the model allows for the modelling

of detwinning deformations when no stress induced martensite is being produced.
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1.4. Isentropic approximation

The adiabatic heat equation can be simplified in order to facilitate the numerical

treatment of the impact problem. Using the Legendre transformation (2.7) the inter-

nal energy can be eliminated from equation (2.3):

ρT
∂s

∂t
= π

∂ξ

∂t
. (2.18)

Further, upon combining (2.6) and (2.10) an explicit expression for the entropy is

obtained

s = ασ/ρ+ c ln(T/TR) + ∆s0ξ + sA
0 . (2.19)

On substituting (2.19) into (2.18) the balance of energy becomes:

ρc
∂T

∂t
= −T ∂

∂t
(ασ + ρ∆s0ξ) + π

∂ξ

∂t
. (2.20)

According to Cory and McNichols (1985); McNichols (1987) π � ρ∆s0T for most

SMAs. For NiTi the precise values yield π/ρ∆s0T � 0.013 so equation (2.20) can be

approximated by

ρc
∂T

∂t
= −T ∂

∂t
(ασ + ρ∆s0ξ) , (2.21)

which is equivalent to the isentropic condition ∂s
∂t

= 0. The heat capacity c can be

assumed constant for the two phases (i.e. cA = cM). Then equation (2.21) can be

integrated directly, yielding:

T = TRe
− 1

ρc
(α(ξ)σ+ρ∆s0ξ). (2.22)

Consequently, the differential equation (2.3) is replaced by the algebraic equation

(2.22). The impact problem then reduces to solving the balance of linear momentum

(2.1) for the only field variable u(x, t). The remaining field variables σ and T are

coupled with the strain ε and the internal variable of the constitutive model ξ by
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equations (2.13) and (2.22).

1.5. Tangent modulii

A nonlinear displacement-based FEM solver utilizing the Newton-Raphson iteration

to resolve the nonlinearity requires partial derivatives of the stress with respect to an

increment of the strain. An increment in the strain causes increments in both stress

(equation (2.13)) and temperature (equation (2.22)):

dσ

dε
=
∂σ

∂ε
+
∂σ

∂T

dT

dε
. (2.23)

In order to find the total derivative dσ
dε

a closed form expression for ∂T
∂ε

is needed.

This is done by differentiating equations (2.13) and (2.22) with respect to the strain

and combining the result to obtain:

dT

dε
= −

(
α
∂σ

∂ε
+ (σ∆α+ ρ∆s0)

∂ξ

∂ε

)/(
ρc

T
+ α

∂σ

∂T
+ (σ∆α+ ρ∆s0)

∂ξ

∂T

)
. (2.24)

Second order approximations for the partial derivatives ∂σ
∂ε

, ∂σ
∂T

, ∂ξ
∂ε

and ∂ξ
∂T

are

developed in (Qidwai and Lagoudas, 2000a) and thus all the quantities in (2.23) can

be computed numerically.

2. Numerical implementation

The numerical techniques used to implement the constitutive laws are described first.

For given strain increment ∆ε and temperature increment ∆T the stress σ given

by equation (2.13) is computed with the help of the cutting plane return-mapping

algorithm described in (Qidwai and Lagoudas, 2000a). A displacement based FEM

provides strain increments. In the impact problem both stress and temperature de-
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pend on the strain increment ∆ε, that is for given strain both (2.13) and (2.22) have

to be satisfied simultaneously. This is done via an iterative process.

The process starts with given values ε(0), σ(0), T (0) for strain, stress and temper-

ature which satisfy (2.13) and (2.22). Given a strain increment ∆ε the pair (σ, T )

corresponding to strain ε = ε(0) + ∆ε is found through the iteration:

σ(n+1) = E
(
ε− α

(
T (n) − TR

)
− εt(n)

)
, (2.25)

T (n+1) = TRe
− 1

ρC (ασ(n+1)+ρ∆s0ξ(n+1)). (2.26)

The first equation (2.25) uses the return-mapping algorithm to compute a new value

σ(n+1) for the stress based on the old temperature T (n). The second equation (2.26)

attempts to enforce the isentropic heat equation by computing a corrected tempera-

ture T (n+1). The process is terminated when there is no further progress, i.e. when∣∣σ(n+1) − σ(n)
∣∣ and

∣∣T (n+1) − T (n)
∣∣ both become smaller than certain tolerance. The

algorithm showed linear convergence in the test cases, however a detailed theoretical

study is required to establish its properties.

2.1. FEM procedure

A standard semi-discrete Galerkin approximation is used to generate the weak form

of the problem. In this chapter only linear elements will be used. Let P 1([0, L]) ⊂

H1([0, L]) be the set of piecewise linear functions over each element and {ψi}N
i=1 be

the usual basis of P 1([0, L]). The weak form of (2.1) then reads:

Find uh(x, t) =
∑N

i=1 Ui(t)ψi(x) such that for ∀vh ∈ P 1([0, L]):

ρ

∫ L

0

∂2uh

∂t2
vhdx+

∫ L

0

σ
∂vh

∂x
dx = −σvh

∣∣
x=0

. (2.27)

As usual the number of nodes is N (i.e. N − 1 elements) and the nodal values for the

displacement are denoted by Ui(t). Whenever appropriate, vector notation will be
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used, that is U = (U1, ..., UN)t. Problem (2.27) is reduced to a second order nonlinear

system of ODEs (cf., e.g., Reddy, 1993):

MÜ = F(U), (2.28)

where M is the mass matrix and Fξ(t)(U) is the forcing term. The subscript ξ(t)

stands to indicate that Fξ(t)(U) does not depend on the displacement only but on the

whole loading history. However, for any given loading history the stress and hence

Fξ(t)(U) can be viewed as well defined single valued functions. Thus, without loss of

generality the subscript ξ(t) will be dropped in the discussion that follows. The mass

matrix and load vector are given by:

Mij = ρ

∫ L

0

ψiψjdx, (2.29)

Fi(U) = −
∫ L

0

σ
∂ψi

∂x
dx. (2.30)

It is also useful to introduce the forcing term F̃(U) due to inelastic strains and the

stiffness matrix K(U) which are given by2:

Kij(U) =

∫ L

0

E(ξ)
∂ψi

∂x

∂ψj

∂x
dx, (2.31)

F̃i(U) =

∫ L

0

E(ξ)
[
εt(ξ) + α(ξ)(T − TR)

] ∂ψi

∂x
dx. (2.32)

Note that the decomposition F(U) = F̃(U)−K(U)U holds and (2.28) can be rewrit-

ten as:

MÜ + K(U)U = F̃(U). (2.33)

The time integration in (2.28) (or (2.33)) is done by the backward difference

method, a member of the Newmark family (Newmark, 1959; Reddy, 1993). For

2Similarly, a more precise notation for K and F̃ would be Kξ(t)(U) and F̃ξ(t)(U),
respectively.
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t = ts the Newmark scheme is defined by3:

Us+1 = Us + τU̇s +
1

2
τ 2
(
(1− γ)Üs + γÜs+1

)
, (2.34)

U̇s+1 = U̇s + τ
(
(1− α)Üs + αÜs+1

)
. (2.35)

The backward difference method is obtained by setting α = 3
2

and γ = 2. It is easy

to show (see e.g. (Reddy, 1993)) that the above difference equations lead to the

following system of nonlinear algebraic equations for Us+1:

2

γτ 2
MUs+1 = F(Us+1) + Gs, (2.36)

or, equivalently, to (
2

γτ 2
M + K(Us+1)

)
Us+1 = F̃(Us+1) + Gs, (2.37)

where Gs = M
(

2
γτ2Us + 2

γτ
U̇s + 1−γ

γ
Üs

)
. The nonlinear problem (2.36) is solved by

linearizing the right-hand side

Fi(U + ∆U) ' Fi(U) +
N∑

j=1

∂Fi(U)

∂Uj

∆Uj

and using the chain rule to obtain:

Lij(U) :=
∂Fi(U)

∂Uj

=

∫ L

0

∂σ

∂Uj

∂ψi

∂x
dx =

∫ L

0

dσ

dε

∂ψj

∂x

∂ψi

∂x
dx. (2.38)

The solution Us+1 is found through a Newton-Raphson iterative process. Set the

initial guess to U
(0)
s+1 = Us and for n = 1, 2 . . . until convergence compute:

U
(n+1)
s+1 =

(
2

γτ 2
M− L(U

(n)
s+1)

)−1 (
F(U

(n)
s+1)− L(U

(n)
s+1)U

(n)
s+1 + Gs

)
. (2.39)

The cutting plane method (Qidwai and Lagoudas, 2000a) which is used to re-

3The usual notation Us := U(ts) is used
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solve the nonlinear behavior of the material also provides second order numerical

approximation for the derivative dσ/dε which results in a quasi-Newton algorithm.

Since the Newton algorithm is only locally convergent in the cases when it diverges

the simple iteration was applied to (2.37). Again, set U
(0)
s+1 = Us and for n = 1, 2 . . .

until convergence compute:

U
(n+1)
s+1 =

(
2

γτ 2
M + K(U

(n)
s+1)

)−1 (
F̃(U

(n)
s+1) + Gs

)
. (2.40)

In all numerical examples tested the later iteration demonstrated global linear con-

vergence.

2.2. Adaptive mesh refinement

Let σh
n be the stress at the completion of the Newton iterations for given time step

n, i.e. t = tn. Since there is no risk of confusion the subscript n will be dropped.

For linear elements σh is a piecewise constant function. Let σh be the continuous,

piecewise linear function in [0, L] which assumes the averaged value of σh at each nodal

point. The error indicator ησ(e) is defined locally over each element e by (Zienkiewicz

and Zhu, 1987):

ησ(e) =
∥∥σh − σh

∥∥
0,e
, (2.41)

where ‖·‖0,e is the L2 norm. An element e is refined if

ησ(e)/σmax > TOL1, (2.42)

where σmax is the absolute value of the maximum attainable stress in the rod, which

for impact problems is known in advance. Two neighboring elements ei and ei+1 are

merged into one if

ησ(ei)/σmax < TOL2, ησ(ei+1)/σmax < TOL2. (2.43)
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Two aspects of the actual implementation details of the FE analysis should be

emphasized. The linear system (2.36) (or (2.37)) is tridiagonal and poses no com-

putational problems. Secondly, the most time-consuming parts of the FE procedure

are the assembly of the stiffness matrix at each Newton step (because of the nonlin-

ear dependance of the stiffness on the strain) and the assembly of the force vector.

They require the execution of the stress update procedure via the return-mapping

algorithm which is a computationally expensive operation and is performed once for

each element at each Newton step.

Clearly a global uniform h-refinement strategy used to achieve satisfactory spatial

discretization will impose severe restrictions on the problem size due to the assembly

time issues. In order to avoid this the local criterion (2.42) is applied to each element

at the completion of the Newton iteration to refine or coarsen the mesh. If there is no

further need to refine the mesh the algorithm proceeds to the next time step. It was

found that this approach works very well for the class of SMA hysteretic materials

under consideration.

3. Numerical examples

The implementation of the FEM was tested in three different numerical examples.

The step loading problem under conditions of pseudoelasticity (T > Af ) presented

in the next section is used to compare the numerical solution to existing analytical

solutions (Bekker et al., 2002; Chen and Lagoudas, 2000). It is also used to demon-

strate the capabilities of the adaptive mesh refinement strategy. Secondly, a problem

with pulse boundary conditions is solved, again under pseudoelastic conditions. The

third problem also features a pulse boundary condition but at a lower temperature

(T < Ms) so only detwinning of martensite is involved.



50

Table I. Material parameters used in the uniaxial SMA model.

Material constant Value Material constant Value

EA 70× 109 Pa dσ
dT

7.0× 106 Pa/(m3K)

EM 30× 109 Pa Mf 275 ◦K

αA 22× 10−6/K Ms 291 ◦K

αM 10× 10−6/K As 295 ◦K

H 0.05 Af 315 ◦K

The material properties (Table I) for all model problems are taken from (Qidwai

and Lagoudas, 2000a) and represent generic NiTi SMA properties. In addition to

that for all numerical simulations the length of the rod was taken to be 0.5m. All

calculations were performed on a 933 Mhz PIII machine running Windows NT.

3.1. Step loading problem

The fixed impact stress initial-boundary value problem4 is defined by setting the

boundary condition to be the step function:

σ0(t) =

 0 for t ≤ 0

σ0 for t > 0
. (2.44)

The strain level ε0 which causes the constant impact stress σ0 can be found from

equation (2.13). This particular boundary condition is chosen because it is a natu-

ral starting point for nonlinear hyperbolic equations and because there are existing

analytical solutions for it.

4When the same initial boundary value problem is reformulated as an initial prob-
lem on an infinite domain with the initial condition being a step function it is usually
referred to as the Riemann problem.
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Fig. 7. Schematic of the loading portion of a stress-strain relationship and the critical

points defining the solution to the problem.

3.1.1. Analytical solutions to the step loading problem

The structure of the solution depends strongly on the impact stress σ0. Let the pair

(εel, σel) be the point on the hysteresis curve that corresponds to the start of the

phase transformation. In this example σ0 it is taken to be sufficiently high so that

full phase transformation has occurred. It is also required that the value of σ0 be

high enough, so that the graph of the stress strain relationship of the SMA is below

the line connecting the points (εel, σel) and (ε0, σ0) (see Figure 7).

Following Bekker et al. (2002); Chen and Lagoudas (2000) it can be shown that

for material with initial linear stress-strain relationship prior to the onset of phase

transformation the solution has the following two-shock structure:

σ(x, t) =


σ0 for 0 ≤ x/t ≤ Vph

σel for Vph < x/t ≤ Vel

0 for Vel < x/t

, (2.45)
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T (x, t) =


T0 for 0 ≤ x/t ≤ Vph

Tel for Vph < x/t ≤ Vel

0 for Vel < x/t

, (2.46)

where T0 is the temperature corresponding to the impact stress σ0 and Tel is the

temperature just prior to the onset of the phase transformation. The faster shock is

a linear thermoelastic elastic shock and has velocity

Vel =

√
σel

ρεel

. (2.47)

This shock is due to the shock type of the boundary condition and the initial linear

stress-strain response.

The second, slower shock, is a transformation shock which travels with velocity

Vph =

√
σ0 − σel

ρ(ε0 − εel)
. (2.48)

This shock occurs not only because of the boundary condition but also because of

the convex-down nature of the stress-strain relationship for ε > εel. Higher stress

levels travel with higher velocity than lower stress levels which make the shock self

sustained and independent of the boundary condition (see (Godlewsky and Raviart,

1996, pg. 83-97) for a general discussion as well as (Bekker et al., 2002; Chen and

Lagoudas, 2000) for solutions specific to SMA materials). The phase transformation

shock specifies the point of abrupt phase transition. For material points with x ≤ Vpht

the material is in the martensitic phase and the region x ≥ Vpht is still in the austenitic

phase.

Note that the adiabatic heat equation (2.22) does not provide for a completely

linear initial response. However, prior to the onset of phase transformation, ξ = 0
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and the heat equation (2.22) can be linearized as follows:

T = TR(1− α

ρc
σ) +O

(
(
ασ

ρc
)2

)
. (2.49)

By neglecting the higher order terms in (2.49) the remaining linear part can be sub-

stituted in (2.13) to obtain a completely linear adiabatic stress-strain response. The

linear approximation in (2.49) is justified in the thermoelastic range before commence-

ment of phase transformation because ασ0

ρc
≈ 10−3. If equation (2.22) is not linearized

the elastic shock will be replaced by a continuous function with very high gradient.

The velocity of the points on the graph of this function will deviate from the velocity

Vel of the elastic shock by ≈ 10−5.

3.1.2. Numerical results for the step loading problem

For all numerical simulations the impact stress level is σ0 = −400MPa corresponding

to impact strain of ε0 = −0.0635. The reference temperature is TR = 320 ◦K. The

FEM solver was set to use the backward difference time integration scheme and the

Newton-Raphson method to solve the nonlinear system (2.36). The Newton-Raphson

iteration showed quadratic convergence at all time steps except for the first few ones

when the shock were forming. In the cases when it was diverging the alternative

direct iteration (2.40) approach was used.

Significant computational savings can be obtained if isothermal instead of adi-

abatic conditions are assumed. In an isothermal problem the temperature is held

constant T = TR and the balance of energy (2.2) is not considered. Thus the quasi-

static hysteresis of the material is used instead of solving equations (2.13) and (2.22).

For a NiTi SMA with the material data from Table I the difference between the adia-

batic and isothermal hysteresis is shown in Figure 8. The shape of the hysteresis is the

same and the differences in the transformation portion will not affect the structure
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Fig. 8. Difference between adiabatic and isothermal loading. Shown are an adiabatic

and an isothermal path at TR = 320 ◦K for the material data in Table I.

Under adiabatic conditions higher stress levels are required to complete the

phase transformation compared to isothermal hysteresis loops.

of the solution provided that σ0 is well above the stress level required to finish the

transformation. Consequently, no matter whether isothermal or adiabatic conditions

are assumed the shock speeds Vph and Vel will only depend on the values for εel, σel,

ε0, σ0. From a computational point of view this simplification avoids the iteration

process (2.25),(2.26) (typically 6-7 iterations) which results in a significant reduction

in computational time. While the structure of the solution is not compromised very

fine spatial meshes can be explored for the purposes of comparing analytical and

numerical solutions.

For the isothermal hysteresis (Figure 8) an impact stress of σ0 = 400MPa is

sufficient for the full completion of the phase transformation under isothermal con-

ditions. The onset of phase transformation begins at σel = −195MPa for a strain

εel = 2.78× 10−3. Given this, the speed of the two shocks (2.48) and (2.47) are found
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to be:

Vph = 723m/s (2.50)

Vel = 3294m/s (2.51)

Based on the first few numerical results (Figure 9) and (Figure 10) several observa-

tions can be made. First, all numerical solutions have the expected two shocks - one

elastic and another corresponding to the phase transformation. Fixed meshes with

coarse spatial discretizations have oscillations close to the phase shock location. A

comparison of the two meshes in Figure 9, both for a fixed time-step of τ = 0.1µs

at time t = 30µs shows that oscillations can be eliminated by refining the mesh.

Secondly, the backward difference scheme which was used in these computations, in-

troduced numerical dissipation which is most pronounced at the elastic shock. Several

other members of the Newmark family were tested. Explicit methods as well as the

constant acceleration scheme were found to be unconditionally unstable producing

highly oscillatory solutions that were diverging with time. Of those methods that

were able to converge the backward difference was found to dampen the high fre-

quency oscillations (Figure 9(a)) in the most efficient manner and was subsequently

chosen for all future computations. The numerical dissipation can be decreased by

appropriately decreasing the time step. The quasi-Newton method used to solve the

nonlinear system (2.36) showed quadratic convergence at all time steps but the first

few ones when the shock were forming. In that case the alternative direct iteration

(2.40) approach was used.

Quantitatively the results obtained by both the fixed and adaptive FEM are in

agreement with the analytical solution. In regions away from the shocks the relative

difference in the values of the stress for the numerical and the exact solution is less
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Fig. 9. Comparisons of FEM solutions with different mesh sizes and time steps. Shown

are the stress profile at 30µs for a fixed mesh with 500 (a) and 2000 elements

(b). The position of the elastic shock is marked by a dashed line. Numerical

oscillations are eliminated for the finer spatial discretization.
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Fig. 10. Adaptive meshing and numerical dissipation. Shown are stress profile at

30µs for an adaptive mesh with two different time steps – τ = 0.1µs and

τ = 0.001µs. Mesh nodes are marked with black squares and the thin line at

the top shows the density of elements. The linear shock is smeared for the

larger time step (a) and is much sharper when a finer step (b) is used.
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then 10−4. The accuracy of the solutions therefore is determined based on the quality

of the numerical solution close to the shock locations. The interval covering a shock

(phase or elastic) where the numerical values for the stress differ from the exact ones

by more than 1% is assumed to be the range of uncertainty for the numerical value of

the shock location. Consequently, the left and right end of this interval are assumed

to be bounds for the position of the shock of the numerical solution.

Based on this measure of error, for a time step of τ = 0.1µs the phase shock is

found to travel with velocity in the range 693 − 900m/s. The velocity of the elastic

front is calculated to be in the range 3316 ± 420m/s. These results are the same

for a fixed (Figure 9(b)) and adaptive mesh (Figure 10(a)). This indicates that the

adaptive and fixed FEM converge to the same solution.

The smearing of the stress profile in the region of the elastic shock is due to

the time-integration scheme. When the time step is decreased the slope becomes

steeper and eventually converges to the shock. For an adaptive solution with a time

step τ = 0.001µs (the same computation for a fixed mesh was time prohibitive)

the calculated values for the phase shock are now in the range 723− 733m/s and the

elastic shock is within the bounds 3256−3366m/s (Figure 10(b)). This indicates that

the lower bound for the transformation shock is very close to the actual value (2.50)

and that the elastic shock (2.51) is virtually in the middle of the suggested numerical

range. The relative error in the predicted value for the phase shock velocity decreases

from 24% for τ = 0.1µs down to 1.3% for τ = 0.001µs. The error in the elastic shock

speed decreases from 12% to 1.1% which is a clear indication that the FEM algorithm

is converging to the exact solution.

An inspection of Figure 9 reveals that there are large regions in the bar with no

variation in the stress. This is fully utilized by the adaptive approach. Figure 10(a)

shows an adaptive FE solution with the same time step as the solution on Figure 9(b)
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Table II. Execution times for fixed and adaptive meshes.

Time Fixed Mesh Adaptive Mesh

Elements Time (min) Elements Time (min)

10 µs 16000 56 161 1:12

20 µs 16000 113 199 2:37

40 µs 16000 226 256 6:10

80 µs 16000 451 301 15

and an adaptive tolerance (see (2.42)) set to 10−4. This accuracy is comparable to the

one of a fixed mesh with 2000 elements. The maximum number of elements that the

adaptive mesh contained was 305. The order of magnitude fewer number of elements

in the adaptive meshes induced a corresponding order of magnitude decrease in the

computational time.

A comparison in the performance of the fixed and adaptive FE methods is given

in Table II. The time step is τ = 0.01µs. The number of elements for the fixed FEM

is 16000. The adaptive solution was chosen so that it had comparable accuracy with

the one for the fixed mesh solution. A comparison of the execution times for the

fixed and adaptive methods shows that the adaptive procedure delivers an order of

magnitude improvement in performance.

3.2. Square pulse loading problem in pseudoelastic conditions

A more realistic initial-boundary value problem is one for which, instead of step

loading, the boundary condition is a square pulse, that is
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σ0(t) =


0 for t ≤ 0

σ0 for 0 < t < tpulse

0 for t ≥ tpulse

(2.52)

where tpulse is the duration of the pulse. Due to the complicated constitutive response

and boundary conditions there is no analytical solution to be compared with. More-

over, there are unresolved questions regarding the uniqueness of the weak solution for

times t > tpulse when unloading takes place.

The stress level used for the numerical simulation is σ0 = 800MPa and the initial

temperature is TR = 320 ◦K > Af . The simulation is done for adiabatic conditions,

utilizing both equations (2.13) and (2.22) to calculate the adiabatic response of the

SMA. The stress level is chosen so that the full adiabatic hysteresis loop can be realized

(see Figure 8). The pulse length is tpulse = 10µs and the time step is t = 0.001µs.

The evolution of the stress and temperature in the rod up to 90µs is shown in

Figures 11, 12 and 13. As predicted by (2.45) the two-shock solution for the stress is

clearly visible at the end of the pulse load at t = 10µs (Figure 11). The temperature

profile (Figure 13) also has two shocks (equation (2.46)). The maximum temperature

T0 = 378.8 ◦K is achieved in the region of full phase transformation. The jump in

the elastic shock is Tel − TR = 0.66 ◦K and for this reason it is not clearly visible in

the figure.

The most noticeable feature observed in Figure 12 is the structure of the unload-

ing pulse. Again a two wave shock structure is seen that corresponds to the initial

elastic unloading and the following reverse transformation M t → A as can be seen

from the stress profile at 10 and 20µs. Both unloading shocks travel faster than the

forward phase transformation shock. When the faster unloading front catches up

with the forward phase transformation shock (t ≈ 22µs) a left-travelling reflection is
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Fig. 11. Stress profile at different instances of time for a square pulse in adiabatic

loading.
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Fig. 12. Magnified view of solution to square pulse adiabatic problem. The unloading

(10µs) produces two right-travelling shock waves (20µs). The faster unloading

wave reflects off the transformation shock (≈ 21µs) and forms a left-travelling

wave (24µs). What follows is a series of complicated reflections that gradually

kill the initial non-linear shock.
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Fig. 13. Temperature profile at various times. The jump at the forward transformation

shock is T0 − Tel = 58.2 ◦K. The elastic shock is not visible clearly because

of its small magnitude of Tel − TR = 0.66 ◦K.

generated. The left-travelling wave, as seen for t = 24µs, partially reflects from the

slower unloading shock and partially continues (t = 26µs) until it reflects off the left

end of the rod. A complicated series of reflection waves follows. The first reflection

results in approximately 34% decrease of the peak stress level (t = 24µs). The picture

becomes even more complicated when the slower unloading shock eventually catches

up with the forward travelling phase transformation shock. Eventually the peak stress

levels are reduced to values below σel, the critical stress corresponding to the onset of

phase transformation. The temperature profile at t = 90µs is hardly visible because

the material is entirely in the elastic range and the temperature in the rod is very

close to the reference temperature. The large amounts of latent heat generated during

the initial loading phase are gradually consumed in the reverse transformation as the

stress is reduced within the elastic limits.

For pulse loading it is physically meaningful to compute the energy dissipation

due to the phase transformation. If P (τ) is the work done by the external forces at
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the left end of the rod from t = 0 up to t = τ , K(τ) is the kinetic energy of the

rod at time t = τ and W(τ) is the stored elastic energy of the rod then the energy

dissipation is defined by

D(τ) =
P (τ)− (K(τ) +W(τ))

P (τ)
. (2.53)

The quantities P , K and W given by

P (τ) =

∫ τ

0

σ(0, t)v(0, t)dt,

W(τ) =
1

2

∫ L

0

σ(x, τ)εe(x, τ)dx,

K(τ) =
1

2

∫ L

0

ρ(v(x, τ))2dx,

can be easily computed numerically at each time step.

The calculations show (Figure 14) that the dissipation level goes from 40% at

the end of the pulse (t = 10µs) to 64% at t ≈ 22µs when the faster unloading

wave reflects off the forward travelling transformation wave. The high stress levels

are then gradually reduced within the elastic limits. The energy dissipation reaches

approximately 84% at 100 µs, shortly before the elastic front reaches the right end.

3.3. Detwinning induced by a pulse load

In this numerical simulation the same boundary condition (2.52) as in the previous

section is used. The initial temperature is set to TR = 295 ◦K which is in the

detwinning range and the material is initially in the M t state. The stress pulse has

magnitude σ0 = 400MPa which is sufficient to complete the detwinning and then

obtain the elastic response of the martensite phase.

There is no latent heat generation during the detwinning deformation. If it is

assumed that all the work dissipated through inelastic deformations is transformed
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Fig. 14. Energy dissipation for a 10 µs square pulse in adiabatic conditions.
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Fig. 15. Stress profiles at various times for a square pulse in detwinning conditions.

The attenuation of the stress to values within the elastic material response is

clearly visible.
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Fig. 17. Energy dissipation for a 10 µs square pulse (detwinning).
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into heat, then the change in temperature would be ≈ 2 ◦K. Therefore it is both

physically and computationally justified to perform the simulation in an isothermal

setting. The loading part of the hysteresis is of the same type as the loading part

(A → Md) of the stress-strain relationship for stress induced martensite. Therefore

for the duration of the pulse a two-shock structure for the stress distribution can be

expected (see equations (2.45), (2.50) and (2.51)). This is observed clearly for the

stress profile at t = 10µs in Figure 15.

The unloading is completely elastic and a single linear shock forms, travelling at

the speed of the forward elastic shock (both the initial loading response and unloading

are linear with the elastic modulus of martensite). The unloading shock is therefore

fast enough to catch up with the nonlinear shock caused by the detwinning. This is

followed by a series of reflections between the left end (which is traction free after

the pulse is over) and the forward propagating detwinning shock. A magnified view

of the stress profile at several different instances of time is presented in Figure 16.

The energy dissipation (Figure 17) in the rod follows a similar path as in the

previous numerical simulation. The first significant rise in the dissipation levels occurs

immediately after unloading, at t = 10µs. After the unloading wave reaches the

forward propagating detwinning front at t ≈ 18µs a new rise in the dissipation occurs

leading to final levels of approximately 86%. It should be noted that this case is not

equivalent to the pulse load in pseudoelastic conditions because of different initial

stress levels. Another difference with the pseudoelastic case is that the material is

permanently deformed and in order to recover its shape the rod has to be reheated.
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4. Comparisons with impact loading experiment of an SMA rod

The computational studies in the previous section indicate that adaptive FEM meth-

ods can be successfully applied to impact problems in SMA materials. In this section

the numerical scheme is used to simulate recent experimental data on impact induced

detwinning an SMA bar.

The experimental data used here is reported by Lagoudas et al. (2003). The

dynamic response of a nearly equiatomic NiTi alloy rod is obtained in a split Hopkin-

son bar test. The testing itself was performed at the Research Center for Mechanics

of Solids, Structures and Materials at the University of Texas at Austin by Prof.

Ravi-Chandar and Dr. Khalid Sarh. The details of the apparatus and the specimen

preparation can be found in (Lagoudas et al., 2003). For the sake of completeness,

they are summarized in the next section along with the test results.

4.1. Experimental data

Hopkinson bar apparatus has become standard in the characterization of the dynamic

response of materials and detailed descriptions are provided in many handbooks and

textbooks (Graff, 1975; Kolsky, 1963). A schematic of the impact device is given in

Figure 18.

The apparatus consists of a striker bar, an input bar and an output bar, all of

diameter d = 15.5mm and all made of a 4340 steel, quenched and tempered to a

martensitic state. The yield strength of these bars is about 1.8 GPa and they remain

elastic during the impact experiments. The density of the bars is ρ = 7800kg/m3, the

measured bar wave speed Cb =
√
Eb/ρ = 5300m/s and Eb is the modulus of elasticity

of the steel bar. The striker bar (18) of length L is propelled from an air gun at speeds

in the range of 10 to 40 m/s. This striker impacts the input bar which is 1.7m long.
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Fig. 18. Geometry and arrangement of strain gauges in Hopkinson apparatus (Figure

not drawn to scale).

A one dimensional compression wave propagates into both bars. Since the striker bar

is short, the reflected tension pulse arrives at the striker-input bar interface at a time

tpulse = 2L/Cb. At this point, the striker comes to a stop and is disengaged from

the input bar. Hence, a compression pulse of duration tpulse is propagated down the

length of the input bar. This wave is coupled into the specimen which is in contact

with the far end of the input bar. Due to the impedance mismatch between the

specimen and the input bar, part of the pulse is reflected back into the input bar and

part of the pulse propagates into the specimen. A strain gauge mounted at about the

middle of the input bar is used to monitor the incident compressive pulse and the

reflected tensile pulse propagating in the input bar. The wave propagating through

the specimen, gets coupled into the output bar, again with a reflected component due

to the impedance mismatch. The output bar is free at the far end and so a tensile

pulse reflects from the far end of the output bar and is unable to transmit into the

specimen. Hence the specimen is loaded only once. A strain gage mounted at the

middle of the output bar is used to monitor the strain pulses, in particular the first

transmitted pulse, in the output bar.

Experimental data is available for a single SMA specimen, 345 mm long and
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Fig. 19. Experimental data on wave propagation in an SMA rod (Lagoudas et al.,

2003). Strains are measured by the gauges mounted on the SMA bar. Gauge

3 suffered a partial debond at the point indicated by the dark circle and hence

the data beyond this time should not be interpreted.

tested at room temperature (nominally 20 ◦C). The initial preparation of the speci-

men ensured that it was in the twinned martensitic state with all previous deformation

history deleted by appropriate annealing. (Lagoudas et al., 2003). The data consist

of strain history obtained by six strain gauges placed at distances 10 mm, 20 mm,

40 mm, 80 mm, 160 mm and 320 mm from the impact end. The output from these

gauges is shown in Figure 19. Strain gauge number 3 (40mm) suffered a partial

debond during the test and hence the results from this gauge are not meaningful

beyond the point marked by the dark dot in the figure. The elastic wave in the input

bar was not recorded due to an error in the device; all other gauges worked well and

recorded the strain profile as the wave propagated down the length of the SMA rod.

As seen in Figure 19, the strain in the first two gauges increases rapidly to a
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level of about 1.3% and levels off as the load from the input bar levelled off. The

oscillations seen in these gauges near the plateau are Pochhammer-Chree oscillations

that appear in bars. At around 290 µs the unloading wave from the end of the loading

pulse reaches the first two gauges and the strain begins to decrease; however, because

the strains beyond 0.3% were the result of detwinning (see the quasi-static results in

Figure 20), these strains are not recovered and a permanent strain of about 1% is left

at these locations. The signal in gauge 4 clearly indicates the dispersion of the wave

- higher strain levels propagate at significantly slower speeds and arrive later at the

gauge location. Hence a broadening of the strain pulse can be seen - the peak in the

strain at gauge 4 occurs 75 µs after elastic wave arrival while it occurs in about 20 µs

in gauge 1. This delay also results in the peak strain not being sustained for too

long as the elastic unloading pulse reaches the gauge quickly; once again a residual

strain of peak strain - 0.3% is left at this gauge location. The same behavior is seen

in gauge 5 where due to its distance from the impact end, and due to the slowness of

the inelastic waves, the peak strain reached is only about 0.5%. Once again a residual

strain is left in this location. In gauge 6, the reflected wave from the end of the SMA

rod (left free in this experiment) causes unloading of the gauge; a very small, but

measurable permanent strain or detwinning is observed in this location. Subsequent

to the test, the rod was heat treated through a temperature cycle taking it above

Af first, holding for 1 hour and then cooling below Mf and warming back to room

temperature. All strain gauges recovered their original state indicating full recovery

of the specimen.
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4.2. Numerical simulations of the Hopkinson bar experiment

4.2.1. Quasi-static hysteresis and calibration of the SMA model

In order to obtain preliminary information on the mechanical behavior of this material

quasi-static compression test was performed on a short SMA specimen in a standard

testing machine. The specimen used was from the same batch as the long rod used in

the impact test. The testing was performed by Eric Vandygriff at the Active Materials

Lab at Texas A&M University. Since the dynamic test involved only detwinning of

martensite the quasi-static tests were done at room temperature. These tests were

used to obtain the stiffness of the martensitic phase EM and the critical stresses σs and

σf for onset and finish of detwinning. The material constants used for the detwinning

model are summarized in Table III. The hysteresis simulated by the model (Section

1.3) and the actual hysteresis from the quasi-static test are given in Figure 20.
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Fig. 20. Quasi-static hysteresis of SMA specimen and the model simulation.
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Table III. Material parameters used in the uniaxial SMA model for detwinning.

Material constant Value Description

EM 42× 109 Pa Modulus of elasticity in martensite

H 0.027 Maximum detwinning strain

σs -125MPa Start of M t →Md deformation

σf -273MPa Completion of M t →Md deformation

Y d σsH

ρbd σfH − Y d

4.2.2. Dynamic hysteresis and rate independence

The results of the Hopkinson bar experiment can be used to extract the dynamic

stress-strain response by applying the theory of one-dimensional wave propagation

in plastic rods due to (Rakhmatulin, 1945; Taylor, 1958; Von Karman and Duwez,

1950). The idea is a simple extension of the rod theory for elastic waves. Let us

assume that stress is only a function of strain, i.e. σ = σ(ε). Then the balance of

linear momentum (2.1) can be written in the form

utt =
σ′(ε)

ρ
uxx. (2.54)

Note that this is not an incremental theory, but a total strain theory; therefore

unloading cannot be considered here. The wave speed C(ε) of disturbances is no

longer a constant as in the linear elastic case, but a function of strain:

C(ε) =

√
σ′(ε)

ρ
. (2.55)

The main result of this one dimensional theory is that a given strain (or stress)

level will propagate into the rod with a characteristic speed given by equation (2.55).
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If the propagation speed of strain waves in a one-dimensional rod is known (measured

with strain gauges as in the experiment discussed above), equation (2.55) can be

inverted to determine the stress-strain behavior of the material:

σ(ε) =

∫ ε

0

σ′(ζ)dζ = ρ

∫ ε

0

C2(ζ)dζ. (2.56)

This representation of the wave speed is used to extract the constitutive behavior of

the material (Bell, 1960; Kolsky and Douch, 1962).

(Lagoudas et al., 2003) calculated the propagation speeds of different strain levels

from the results shown in Figure 19. The time of arrival of different strain levels at

each one of the five gauges were determined from the strain measurements. The speed

of each strain level C(ε) was then determined from the known distances between the

gauges (Figure 21). The results are averaged for all the strain gauges and a smooth

approximation of C(ε) is obtained (for details, see Lagoudas et al., 2003). After nu-

merical integration of equation (2.56), the stress strain relationship associated with

the detwinning deformation in the SMA rod. It is shown in Figure 22 and for com-

parison, the quasi-static hysteresis is also plotted. An important observation that can

be made from this figure is that the quasi-static and dynamic stress-strain response

of the SMA in detwinning conditions are identical, thus justifying the assumption of

rate-independence used throughout the SMA model.

4.2.3. Numerical simulations

A numerical simulation was performed and results were compared with the experi-

mental data. As indicated earlier, due to a trigger failure, the signal in the input bar

was lost so only the readings of the six strain gauges on the specimen were available.

In order to supply proper boundary conditions the signal from the first strain gauge

(at 10mm) was used and the remaining gauges were simulated. Gauge number 3 was
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measurements. The line is an eyeball fit to indicate the data trend. Cubic fits

over short segments were used to determine the wave speed corresponding to

each strain level in the determination of the stress-strain behavior (Lagoudas

et al., 2003).
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surements (scatter plot) and quasi-static data (solid line). The close match

between the two indicated that the material response is rate independent

(Lagoudas et al., 2003).

not included in the modelling because it unglued during the test.

The Hopkinson bar experiment was done at room temperature and due to the

heat treatment of the specimen prior to the test it was in fully twinned martensitic

state. The SMA model was applied in detwinning conditions (Section 1.3) with the

material constants given in Table III, see also Figure 20. The adaptive FEM scheme

was chosen because of its accuracy and ability to predict precisely the positions of

both the elastic and transformation shocks. The results are presented in Figure 23.

As expected from the numerical examples studied in Section 3.1 the strain wave

splits into an elastic and a transformation front. The transformation front timing

and magnitude at all strain gauges is in good agreement with the experiment. The

small oscillations observed at the first two gauges are due to surface effects caused

by the impacting projectile. Such effects cannot possibly be modeled within a 1-D

formulation.

There is, however, a noticeable disagreement in the timing of the elastic fronts.
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Fig. 23. An adaptive FE analysis of experimental data using SMA constitutive model

with linear hardening. The first strain gauge is used to define the boundary

condition.
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Fig. 24. An adaptive FE analysis of experimental data using deformation plasticity

model. The first strain gauge is used to define the boundary condition.
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The reason for this is the deviations from linear behavior for small strains. The

polynomial model always predicts a linear response until the beginning of the detwin-

ning deformation. However an inspection of Figure 20 shows a smoother nonlinear

stress-strain relationship for small strain values.

To verify the hypothesis that the disagreement is due to the initial elastic response

of the model an independent numerical simulation of the dynamic experiment was

performed. A phenomenological deformation plasticity model was used instead of

the constitutive model of Section 1.3. The loading is assumed to have the form of a

sixth degree polynomial that curve fits the loading part of the quasi-static hysteresis

in Figure 20. The unloading was assumed linear, the slope being the modulus of

martensite, 42GPa, as measured by the quasi-static experiments. Due to the fact that

the deformation is mostly detwinning of martensite there is no significant release of

latent heat, so the quasi-static hysteresis is very close to the actual material behavior

in the dynamic case (Figure 22).

The results of the simulation of the dynamic problem are shown in Figure 24.

This time the wave profiles are matched much more closely and the small disagree-

ments can be attributed to measurement errors and effects of lateral inertia not in-

cluded in the simulation. It should be noted that unlike a constitutive model based

on physical principles such an approach will only work for a particular SMA specimen

and particular operating temperature. However using a curve fit for the loading part

of the hysteresis is sufficient to check whether disagreements between experiments

and simulations are indeed due to the constitutive model.
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5. Conclusions

The problem of dynamic loading of one-dimensional polycrystalline SMA rods has

been explored numerically and recent experimental data was analyzed. FEM simula-

tions were performed for SMAs experiencing both pseudoelastic phase transformation

as well as detwinning deformations. Computational solutions were shown to coincide

with known analytical results. Nonlinear shock formation and velocities were cap-

tured correctly by the FEM simulations. The standard semi-discrete FEM approach

for hyperbolic problems was complemented by an adaptive mesh refinement tech-

nique. The utilization of the Zienkiewicz-Zhu error indicator lead to an order of

magnitude decrease of the computational time. Energy dissipation calculations for

both detwinning of martensite and stress-induced phase transformation showed that

the strain energy can be reduced by 80-90% which suggests that SMAs can be used

effectively as shock-absorption devices.

Further, through analysis of Hopkinson bar data, it is shown that dynamic and

quasi-static material response are in excellent agreement, thus validating the assump-

tion of rate independent constitutive response. Through careful calibration of the

constitutive model for SMAs the peak strain levels of the Hopkinson bar experiment

were accurately predicted. The main drawback of this model is its initial linear re-

sponse in the case of detwinning and the existence of kinks in the hysteresis curve.

Accurate predictions of the entire experimental data were obtained by using a poly-

nomial curve fit of the quasi-static hysteresis of the material. Both the wave timings,

shape and peaks were modeled within experimental error.

Theoretical work can also be extended to more realistic 2-D and 3-D geometries.

Complicated SMA components and structures can be simulated to better understand

the nonlinear wave propagation phenomena as well as the practical aspects of their
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energy dissipation capabilities. More refined models which incorporate both detwin-

ning and pseudoelastic deformations simultaneously and also predict accurately the

smooth hysteresis of the detwinning deformation will be extremely helpful in further

studies of wave propagations. One such model is presented in the next chapter.
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CHAPTER III

A THREE PHASE, 3-D CONSTITUTIVE MODEL FOR POLYCRYSTALLINE

SMAS

In this chapter, a thermodynamics based model with three internal variables is for-

mulated for the simultaneous modelling of pseudoelasticity and detwinning of self-

accommodated martensite associated with the SME. The model is formulated in

three dimensions and is made consistent with a uniaxial phase diagram in stress-

temperature space. The chapter begins with new experimental results which demon-

strate that twinned and detwinned martensite transform to austenite at different

temperatures (Section 1). The phase diagram used in this work is motivated by the

new experimental evidence of different transformation temperatures for twinned and

detwinned martensite presented in Section 1. It is constructed in Section 2 based

on these observations, as well as a careful reexamination of published experimental

data on detwinning of twinned martensite and the conversion of twinned martensite

to austenite. The 3-D constitutive model is presented in Section 3. A discussion of

how to identify the material parameters used in the model from experimental mea-

surements is given in Section 4. Two thermomechanical loading paths which indicate

the capabilities of this model are presented in Section 5.

First let us summarize the notation used in the introduction. The three phases

will be denoted by A, M t and Md for austenite, twinned martensite and detwinned

martensite, respectively. The five possible phase transformations will be denoted by

A → M t, A → Md, M t → A, Md → A and M t → Md for austenite to twinned

martensite, austenite to detwinned martensite, twinned martensite to austenite, de-

twinned martensite to austenite and twinned to detwinned martensite, respectively.

The detwinning of twinned martensite M t → Md does not involve phase transfor-
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mation and is, in fact, an inelastic deformation process, involving reorientation of

martensitic variants. For the sake of simplicity, the collective term transformations

will be applied to it whenever the distinction is not important. Finally, the critical

start and finish transformation temperatures at zero stress level for the A → M t

transformation will be denoted by Ms and Ms, for the M t → A by At
s and At

f , and

for the Md → A by Ad
s and Ad

f . The clarification that these temperatures are for a

zero stress level will be omitted, and only the term transformation temperatures will

be used.

1. Experimental results on the transformation temperatures of twinned and de-

twinned martensite to austenite.

In a recent paper, Sakamoto (2002) questioned the tacit assumption made by many

researchers that, at zero stress, the transformation temperatures for M t → A and

Md → A coincide. He introduced the concept of shape change stress which is an

elastic back stress generated in the matrix when twinned martensitic variants are

formed. In stress induced martensite this elastic stress field is absent, and a detailed

analysis of the magnitude of this elastic back stress with respect to specimen and

martensitic plate sizes leads to the conclusion of different transformation temperatures

for twinned and detwinned martensite. In this section, mechanical testing combined

with calorimetric measurements are used to confirm this idea.

1.1. Setup and experimental procedure

A 2.16mm NiTi wire was used in the experiment. Two specimen were annealed

at 800 ◦C for 30min, slowly cooled to 0 ◦C and then brought to room temperature

(22 ◦C). A DSC test was performed in order to establish the transformation tem-
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peratures and characterize the material state after the annealing. It was found that

the transformation temperatures were Ms = 47 ◦C, Mf = 3 ◦C, At
s = 35 ◦C and

At
f = 76 ◦C. Since the austenitic start temperature was well above room tempera-

ture it was concluded that after the heat treatment the wire was entirely in the M t

state.

Next, the two specimen were mechanically loaded at room temperature in a

standard MTS test frame. Due to the initial state of the specimens (M t) the self-

accommodated martensite underwent the detwinning (M t →Md) deformation. Upon

completion of the mechanical loading, development of large inelastic strain of about

7% was observed, implying a detwinned material state (Md). The specimens were

then mechanically unloaded, and the inelastic strain was not recovered, indicating

that they were still in the Md state. In order to quantify the amount of inelastic

strain due to detwinning of M t and the amount due to plastic deformations the

first specimen was heated. During the process about 5% of the inelastic strain was

recovered, indicating it was due to detwinning and the remaining 2% is due to plastic

deformations.

The second specimen, immediately after unloading and hence entirely in the Md

state, was further cut in order to obtain a sample from the region subjected to the

mechanical loading (that is, in between the grips of the test frame). This sample was

subjected to further DSC testing, described below. Care was taken to prepare the

DSC sample so that the material state (Md), achieved at the end of the unloading

step, was not altered in the process.

1.2. Successive DSC results

A total of five thermal loading steps were executed by the Perkin-Elmer DSC ap-

paratus. The resulting DSC test is shown in Figure 25. The specimen was first
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heated from room temperature to 200 ◦C. The first signs of the forward, Md → A

transformation, were observed at As = 82 ◦C, the peak of the transformation was at

approximately 96 ◦C and the transformation ended at approximately Af = 108 ◦C.

At this point the sample was in the austenitic phase. The sample was then cooled

from 200 ◦C to −60 ◦C. During the cooling a single peak was observed at approxi-

mately 28 ◦C, corresponding to the A → M t transformation. Note that, due to the

nature of a DSC test, the sample always remains stress free. The beginning of the re-

verse transformation indicated Ms = 47 ◦C and Mf = 3 ◦C, which is consistent with

the first DSC test performed before the wire was subjected to mechanical loading. A

repeatability in the A→M t temperatures was therefore observed.
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Fig. 25. DSC results after a single mechanical loading of an untrained NiTi wire. The

initial state of the wire is Md and is first heated, revealing the transformation

temperatures for Md → A. This is followed by cooling step during which the

wire undergoes A → M t transformation, followed by a second heating which

reveals the transformation temperatures for M t → A.
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The third thermal loading step was again heating from −60 ◦C to 200 ◦C. The

transformation temperatures were markedly different from the first heating step: At
s =

35 ◦C, At
f = 76 ◦C with the peak at 59 ◦C. At the beginning of this step the sample

was entirely in the M t state, therefore the transformation temperatures correspond

to the M t → A transformation. Two more loading steps, not shown on Figure 25,

were performed. These included an additional cooling and a heating cycle. Due

to the stress free state of the SMA, the transformations involved were A → M t and

M t → A, respectively. Results were close to those from the second (cooling) and third

(heating) cycles, respectively, indicating repeatability of the A↔M t transformation

temperatures.

The entire testing procedure was applied to materials with different loading his-

tory with similar results. The DSC shown on Figure 26 is for the same type of test

(one mechanical loading/unloading at room temperature followed by DSC test), but

for a wire trained for stable pseudoelastic response. The training consisted of 20 me-

chanical loading/unloading cycles at elevated temperature (80 ◦C) which resulted in

a stable pseudoelastic hysteresis loop. The training introduced plastic strains into the

material which resulted in partial two-way SME, as indicated by one heating-cooling

cycle at zero stress level.

The detwinning test was again performed at room temperature and, upon unload-

ing, some partial reversal of the detwinned martensite into austenite was observed.

That is, at the completion of the mechanical test, the material was not in the pure

Md state, but in mixture of Md and A. This implies that the first heating curve of

the successive DSC measurements (Figure 26) may not give information about the

beginning of the Md → A transformation (and hence, Ad
s), because there already is

some amount of austenite. However the region where the bulk of the transformation

occurs and the transformation finish will not be affected, hence the data for the latent
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heat peak (54 ◦C) and the Ad
f temperature (62 ◦C) is still reliable.

Due to the partial two-way SME, during the cooling step, some amount ofMd has

formed. Therefore, during the second heating (third DSC step), the DSC curve will

indicate the transformation of a mixture M t,Md → A. Since it was already demon-

strated that the twinned martensite transforms at lower temperature than detwinned,

the presence of detwinned martensite will tend to broaden the transformation region

to the right. As a result, both the actual peak for the M t → A transformation and

the At
f temperature will be lower, or at most equal to what is observed in the second

DSC curve: 40 ◦C for the peak and 71 ◦C for At
f , respectively. Therefore, by compar-

ing the peaks and finish temperatures for the first heating (first DSC step) and the

second heating (third DSC step), the difference in the M t → A and Md → A region

is again significant, suggesting separate critical temperatures for the two processes.

Note that due to the training, the critical transformation temperatures have

shifted, compared to the untrained specimen. The peak for the forward (A → M t)

transformation during the first cooling step (second DSC step) is barely visible, there-

fore a precise estimate of Ms, Mf and the latent heat during the A → M t transfor-

mation is difficult to make.

The simplest conclusion from these experiments is that theM t → A andMd → A

transformation temperatures at zero stress are, generally, different. A qualitative

explanation for this results can be done as follows: the twinned martensite, requires

some energy input to transform back to austenite. The detwinned martensite, also

requires this energy output, but in addition it also needs more energy in order to

reverse the inelastic strains which are present. Thus, the reverse phase transformation

occurs at higher temperatures, compared to twinned martensite.

The theoretical study by Sakamoto (2002) arrives at the same conclusion with

the help of microstructural arguments and by analyzing an elastic back stress which
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Fig. 26. DSC results after a single mechanical loading of a trained NiTi wire. Same test

as the one shown on Figure 25, but for a trained NiTi wire. The transformation

temperatures have shifted due to the pseudoelastic training, and the peak for the

reverse transformation is barely visible. The regions where the reverse transforma-

tions M t → A and Md → A occur are still noticeably different.



86

is different for twinned and detwinned martensite. His study also suggests notice-

able size effects. It will therefore be of particular interest to correlate the observed

difference of the M t → A and Md → A transformation temperatures with the char-

acteristic size of the SMA (in this case the diameter of the wire). From the modelling

point of view, the experimental results, alone, motivate the assumption of different

transformation temperatures At
s, A

d
s, A

t
f and Ad

f .

2. Modified SMA phase diagram

The phase transformations from austenite to martensite as well as the detwinning

of self-accommodated martensite occur due to thermomechanical loading. In the

previous section one particular type mechanical path (isothermal) and one purely

thermal loading path (heating/cooling at zero applied stress) were used to measure

the critical temperatures for phase transformation Ms, Mf , A
t
s, A

d
s, A

t
f and Ad

f . A

convenient way of describing more general thermomechanical loading paths leading

to the different transformations is a phase diagram in stress-temperature space. A

1-D phase diagram that includes the detwinning process of M t has been proposed,

for example, by Brinson (1993). Such a phase diagram includes the stable domains of

A, M t and Md in stress-temperature space as well as transformation strips in which

the various transformations take place. The transformation strips consist of start

and finish lines for each individual transformation. In this section the phase diagram

will be presented in uniaxial stress setting. The appropriate modifications, such as

effective stress and transformation flow rules, required to generalize it for use in the

3-D model proposed in this work will be discussed in Sections 4. A 3-D numerical

implementation will be presented in Chapter IV.

The phase diagram used in this work is given in Figure 27 and can be viewed as
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a modification of the one first proposed by Brinson (1993). The regions where the

three phases exist in a pure state are shaded and labeled A, M t and Md, respectively.

The three regions are separated by transformation strips which are labeled according

to the transformations (A → M t, A → Md, M t → A, Md → A, M t → Md) which

takes place. Note that some of these strips overlap and in an overlap region multiple

transformations are possible. In the non-shaded region of the phase diagram various

mixtures can exist.
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Fig. 27. The SMA phase diagram used in this work. All the three pure phase regions

(A, Md and M t) are enclosed by transformation strips. The diagram is com-

pletely defined by the respective transformation temperatures Ms, Mf , A
t
s,

At
f , A

d
s, A

d
f , the critical stresses for detwinning σs and σf and initial slope k.

The critical temperatures for the start and finish of the A→M t transformation

are denoted by Ms and Mf . Based on the experimental results of Section 1, the
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critical start and finish temperatures at zero stress for the M t → A transformation

are denoted by At
s and At

f . They are assumed different from the corresponding critical

temperatures at zero stress for the Md → A transformation which are denoted by

Ad
s and Ad

f . The start and finish lines for the forward and reverse transformations

A ↔ M t are vertical and pass through the critical temperatures Ms, Mf , A
t
s, A

t
f ,

respectively. The start and finish lines for the reverse strip Md → A pass through

the critical temperatures Ad
s and Ad

f and exhibit a temperature dependence, defined

by the positive slope k.

The critical uniaxial start and finish stresses at the specific temperature Ms

required for detwinning of twinned martensite (M t → Md) are denoted by σs and

σf , respectively. The transformation strip M t → Md exhibits a mild temperature

dependence characterized by a negative slope kd. The start and finish lines for the

forward A → Md transformation exhibits the same temperature dependence as the

reverse transformation Md → A and the finish line for A → Md passes through the

triple point (Ms, σf ).

The modifications of this phase diagram compared to, for example, the one by

Brinson (1993) are several. First, and most importantly, based on the experimental

results of Section 1, the critical start and finish temperatures at zero stress for the

M t → A are assumed different from the corresponding critical temperatures are zero

stress for the Md → A transformation.

Secondly, the M t →Md strip is a single, well-defined strip for the entire temper-

ature range T < Af . The original work of Brinson (1993) assumes that detwinning

strip M t →Md has the same form as the one assumed here for temperatures T < Ms

but coincides with that the strip for stress induced martensite A→ Md at tempera-

tures T > Ms . This question is critically examined in Section 2.2. With the help of

the experimental study of Cross et al. (1969), it is shown that a single transformation
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strip extending to temperatures as high as At
s and possibly to At

f , as done in this

work, is a more natural assumption.

In the SMA modelling literature which employs phase diagrams (cf., e.g., Bekker

and Brinson, 1997; Brinson, 1993; Juhasz et al., 2002; Lagoudas and Shu, 1999;

Leclercq and Lexcellent, 1996) there is also an ambiguity in the definition of the

A → Md low stresses and temperatures (T < Ms and σ < σs). Some authors have

proposed that it extends to zero-stress level (Bekker and Brinson, 1997), while others

(Lagoudas and Shu, 1999) suggest, that in the region T < Ms the dependence on

temperature disappears and there is a critical stress below which A → Md does not

occur. There are two possible ways of completing it, depending mainly on the train-

ing history of the material. In this work, for trained materials, it will be assumed

that the A → Md transformation strip extends all the way to zero stress level. For

untrained SMA materials the respective lines in Figure 27 are labeled accordingly.

Also, the start and finish lines (below Ms) for the untrained case are also marked

with a dashed line.

A related question for untrained SMA materials is the existence of a triple point

for the A → Md, A → M t, M t → Md. In this work, it is first assumed to exist and

second that it is located at the intersection of the finish lines for A→Md, M t →Md

with the start line for A → M t. One implication is that the critical start stress for

detwinning σs at T = Ms is not necessarily the same as the minimal stress below

which A→Md does not occur. This question is discussed in Section 2.3.

There is also an ambiguity on the shape of the reverse M t → A strip. In the

original work of Brinson (1993) it is assumed to coincide with the Md → A strip

while other authors Lagoudas and Shu (1999); Leclercq and Lexcellent (1996) have

used a vertical M t → A strip, which is independent of stress. An argument can be

made (Section 2.1) that the later is more natural case.
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The remainder of this section presents a detailed description of the proposed

extensions and modifications of the phase diagram of Figure 27 in comparison with

the earlier literature on the subject.

2.1. Austenite to martensite (A↔M t, A↔Md).

An early observation in quasi-static isothermal loading tests was that the transfor-

mation surfaces for A↔ Md exhibit a strong temperature dependence (Cross et al.,

1969; Jackson et al., 1972; Otsuka and Wayman, 1999; Wayman, 1983). These and

many other experimental results show that the critical transformation stress required

for initiation and completion of both the A → Md and Md → A forward and re-

verse transformations increase, more or less linearly, with increase in temperature.

The reason for this dependence on temperature is the development of transformation

strain during the transformation and the associated work expended by the SMA. The

theoretical derivation of the precise functional dependence of the critical transforma-

tion stress for detwinning is based on a Clausius-Clapeyron relation (Wollants et al.,

1979). After some simplifying assumptions such as equal stiffness and thermal expan-

sion coefficient of austenite and martensite, a linear dependence on temperature is

obtained (Otsuka and Wayman, 1999; Wollants et al., 1979). This has been observed

consistently by many experimentalists ever since the work of Cross et al. (1969). Vir-

tually any constitutive model for pseudoelastic SMA response, including the current

work, takes this into account.

Unlike the A ↔ Md transitions, the phase transformation from A to M t does

not involve generation of macroscopic strains. At zero stress level, the A→M t phase

transformation begins when a critical temperature Ms is reached and is completed

when a second, and lower, critical temperature Mf is reached. Due to the lack

of transformation strain, a Clausius-Clapeyron argument suggests that there is no
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dependence of the critical temperatures Ms and Mf on stress. As a consequence one

can expect that the transformation strip A → M t is nearly vertical when plotted in

the stress-temperature space (Figure 27. This fact has been used in most models that

take into account the separate development of twinned and detwinned martensite

(cf., e.g., Bekker and Brinson, 1997; Brinson, 1993; Juhasz et al., 2002; Lagoudas

and Shu, 1999; Leclercq and Lexcellent, 1996). There is however disagreement on

what the shape of the reverse transformation strip M t → A should be. Bekker and

Brinson (1997); Brinson (1993) assume the same stress-temperature dependence as

for the Md → A transformation. Others (Juhasz et al., 2002; Lagoudas and Shu,

1999; Leclercq and Lexcellent, 1996) take the M t → A strip to be stress independent

There are surprisingly few experiments reported in the literature, which aim at

determining the shape of the A ↔ M t strips. It should be noted that, due to lack

of macroscopically observable mechanical quantities, such as inelastic strains, it is

very difficult to experimentally detect the formation of twinned martensite under

applied stress. Differential scanning calorimeter measurements (DSC), which are

usually employed for revealing the transformation temperatures at zero stress level

cannot be directly used under applied stress. The two direct methods of measuring

the progress of martensitic transformation under applied load that have been used by

researchers are electrical resistivity measurements (cf., e.g., Kotil et al., 2003; Šittner

et al., 2000) and in-situ neutron diffraction measurements (cf., e.g., Šittner et al.,

2003). In both cases sophisticated testing procedures in precisely controlled thermal

environment in a MTS-type testing frame are required. The focus of these and other

direct measurement studies however was not the stress dependence of the critical

temperatures for the A↔M t transformation.

An alternative indirect method, used specifically for determining the M t,Md →

A transformation temperatures at different pre-strain levels during heating and cool-
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ing cycles has recently been performed by Tsoi et al. (2003). The experiment is

done by first loading an SMA wire and embedding it in a epoxy matrix. After the

epoxy has cured, it keeps the SMA deformed without the need for external appara-

tus and composite can further be cut into small enough specimen, suitable for DSC

measurements. The tests included pre-strain levels low enough that only M t → A

transformation can be expected during heating. While the DSC results are difficult

to interpret conclusively, it can be inferred that the M t → A temperatures do not

depend on applied stress.

Due to the lack of inelastic strains associated with the M t → A transformation

and the experimental indications of Tsoi et al. (2003), in this work it will be assumed

that both M t → A and A → M t are stress independent. In Section 5.1 a different

indirect experimental method, based on the different stiffness of the pure martensitic

and austenitic phases will be proposed.

2.2. Detwinning of self accommodated martensite (M t →Md)

The three pure phases regions (A, M t and Md) are separated by transformation

strips that indicate which transformations occur (A → Md, A → M t, etc). In the

original phase diagram of Brinson (1993) the transformation strip M t → Md is not

defined at temperatures above T > Ms. If the initial conditions are such that M t

is not present and once it is produced, the temperature is never increased beyond

Ms, this will not cause problems. This is the case with a major class of SME paths,

where all the M t is depleted via the M t → Md deformation before the temperature

is increased above Ms. Since these types of SME loading paths are quite important

in characterization and testing of SMAs, the possibility that M t may be present at

temperatures in the range Ms < T < At
f (for example, by detwinning only part of

the M t) has generally been overlooked. Brinson (1993) have assumed for simplicity



93

that the transformation strip for M t → Md coincides with the A → Md one in this

temperature range. This assumption creates the inconvenience of having a concave

transformation surface in stress-temperature space. It can also be argued that the

detwinning of martensite is an inelastic deformation process and does not involve

change in the crystal lattice. Therefore the temperature dependence of the detwinning

surface should not change drastically as suggested, that is, from slightly decreasing

yield stress as the temperature is raised in the range T < Ms to rapidly increasing

with increase of temperature for Ms < T < At
f ).

More importantly though, the assumption that the M t → Md strip coincides

with A → Md for temperatures higher than Ms does not seem to be supported by

experimental results. A careful review of the pioneering work of Cross et al. (1969)

suggests that it extends to temperatures higher than Ms. The reader is referred

specifically to Figure 16 on page 26 of (Cross et al., 1969), which reports two sets

of experiments. In both cases the material is loaded mechanically, under isothermal

conditions at several different temperatures. The difference is that prior to the me-

chanical loading, in the first set, the material is cooled form high temperature and

once the prescribed temperature is reached, it is fixed and the SMA is mechanically

loaded. In the second set, the material is heated from low temperature, and then

loaded. The initial yield stress is recorded in both cases. A look at the transforma-

tion temperatures, reported by the authors, shows, that for the first set of experiments

the initial material state is A, while for the second it is M t. The later implies that

the initial yield stress measured in the second set corresponds to the beginning of

the M t → Md deformation over the entire range T ≤ At
s. The results in the range

At
s ≤ T ≤ At

f cannot be easily interpreted since in this range the material before

loading is a mixture of A and M t. The observed values for the critical stress for

detwinning exhibit only very slight dependence on temperature, decreasing slowly
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as temperature is increased. Since for the first experimental set the initial material

state is A, then a transformation surface for M t →Md can be inferred from the yield

stress results only in the range T ≤ Mf . Observe that, the measured yield stress in

the range T ≤ Mf for both sets of experiments is the same, which means that the

experimentation results are consistent.

Based upon this analysis, it is assumed in this work, that the shape of the

M t → Md has the same dependence on temperature, both for temperatures below

and above Ms (Figure 27). Note, that the region of the phase diagram covered both

by the M t → Md and M t → A (to be discussed next) completely surround the

region where pure M t can exists, therefore there is no possibility that a loading path

may lead to existence of M t at high temperature or high-stress regions of the phase

diagram.

2.3. Combined austenite to detwinned martensite at low stresses

As was explained in the previous section, it is difficult to determine experimentally

when the transformation to twinned martensite is occurring. Therefore another out-

standing question, for which there is little experimental information, is what is the

shape of the A→Md surface at low stress σ < σs and temperatures. In this region of

the phase diagram it can be expected that both A → Md and A → M t occur. Note

that the A→Md is measured experimentally by observing the critical transformation

stress required for the A→Md transformation.

Bo and Lagoudas (1999a); Miller (2000) have measured the development of trans-

formation strain during isobaric heating and cooling of annealed NiTiCu wires at

different, constant, stress levels. Such a test can be represented by a horizontal line

on the phase diagram and allows to determine the location of the A → Md (dur-

ing cooling) and Md → A (during heating) transformation surfaces. The results for
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untrained specimen suggest that there A → Md does not take place at stress levels

below 40MPa. They therefore argue that there is a critical stress level, below which

detwinned martensite cannot form. This has usually been incorporated into SMA

models (Brinson, 1993; Lagoudas and Shu, 1999) by assuming the Md → A surface

is independent of temperature below T < Ms.

This SMA behavior at low temperatures and stresses however is heavily influ-

enced by the material composition, manufacturing process (e.g. cold work), heat

treatments, etc. If a wire is trained for pseudoelastic operation, then development

of transformation strain is observed even at zero stress level, which implies that the

Md → A surface should extend to zero stress. In order to take into account both

types of behavior, the model developed here will include both the capability to pro-

ceed with the A→Md transformation at arbitrary stress level and the possibility of

a critical stress below which production of Md does not happen. In the first case,

the A→Md transformation strip would reach zero stress (dotted line in Figure 27),

while in the second, it becomes horizontal at T < Ms

3. Description of the constitutive theory

3.1. Kinematic assumptions

In order to simplify the presentation, the term ”transformation” will be used to denote

both the phase transformation from austenite to twinned and detwinned martensite

as well as the detwinning deformation of self-accommodated martensite. We start

with the volume fractions ci, i = 1, 2, 3 of the self accommodated martensite M t,

stress-induced martensite Md and austenite A. The volume fractions are subject to

the obvious constraints:

c1 + c2 + c3 = 1, (3.1)
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0 ≤ ci ≤ 1, for i = 1, 2, 3. (3.2)

While the state of the material is represented completely by the three volume fractions

ci, it is also useful to know how this state was achieved. To do this, the volume

fractions ξ1 of M t produced from A, the volume fraction ξ2 of Md produced from A,

and the volume fraction ξ3 of Md, produced from M t, are introduced:

c1 = c10 + ξ1 − ξ3, (3.3)

c2 = c20 + ξ2 + ξ3, (3.4)

c3 = c30 − ξ1 − ξ2, (3.5)

where ci0, i = 1, 2, 3 are the initial volume fractions of the three phases, subject to

the constraint

c10 + c20 + c30 = 1.

These two representations of the phase state of the material are schematically por-

trayed in Figure 28. The two phase transformation A↔M t and A↔Md can proceed

both ways, hence, ξ̇1, ξ̇2 can take arbitrary real values. The detwinning deformation

M t → Md however is irreversible, therefore ξ̇3 ≥ 0. Note that the constraint (3.1) is

automatically satisfied.

In this work, the internal variables that describe the phase state of the material

are selected to be:

ξi, i = 1, 2, 3, (3.6)

connected to the volume fractions ci, i = 1, 2, 3 by equations (3.3)-(3.5). This is

done, apart from the convenience of having equation (3.1) always satisfied, for one

additional reasons. There are no general principles which prohibit that three simulta-

neous transformations occur. For example, it may happen, that upon specific thermal

cooling and mechanical loading in the neighborhood of the triple point (Ms, σs) in
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Fig. 28. Schematic of the three phases and the possible transitions between them.

the phase diagram, one has simultaneous A → M t, A → Md and a the same time,

some of the produced martensite is immediately detwinning due to the stress increase

M t → Md. While some authors (Juhasz et al., 2002) argue that such situations

should be forbidden, this in itself is an additional constitutive assumption.

The constitutive theory is formulated for small strains. Let ε be the total strain

tensor, given by

ε =
1

2

(
∇u +∇uT

)
, (3.7)

where u is the displacement. Further, it is assumed that the strain can be decomposed

additively into elastic εel, thermal εth and inelastic strain εin components:

ε = εel + εth + εin.
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The inelastic strain εin is produced during the forward and reverse stress induced

phase transformation (ξ̇2 6= 0) and during the detwinning deformation (ξ̇3 > 0).

Consequently, it can be further decomposed into:

εin = εt + εd, (3.8)

where εt is the stress induced transformation strain (produced during A→Md trans-

formation) and εd is the inelastic strain generated during detwinning (M t →Md).

Finally, it is assumed that the transformation and detwinning strains obey the

following two transformation/detwinning flow rules:

ε̇t = Λtξ̇2, (3.9)

ε̇d = Λdξ̇3, (3.10)

In general, the flow tensors Λt and Λd are different (Lagoudas and Shu, 1999). The

specific form of the transformation tensors will be discussed when the transformation

surfaces are introduced in Section 3.4.

The last assumptions (3.9) and (3.10) allow the formulation of the constitutive

theory in terms of ξi, i = 1, 2, 3 as the only internal variables. It is convenient to use

vector notation ξ = (ξ1, ξ2, ξ3)
T for the internal variables.

3.2. Energy balance and entropy inequality

The purpose of this section is to introduce the balance of energy and the second

law of thermodynamics in a general setting. This will make clear what restrictions

thermodynamics places on the SMA constitutive model.

Given an arbitrary part P of the body, the power Wint expended internally in P
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is given by

Wint =

∫
P

σ : ε̇dV (3.11)

where σ is the Cauchy stress. The external power Wext supplied to P is

Wext =

∫
∂P

(σn) · vdA+

∫
P

b · vdV , (3.12)

where v is the velocity and n is the outward normal to the surface the boundary ∂P .

Let U(P ) denote the internal energy of P and r be a distributed heat source term.

The balance of energy states (Malvern, 1969):

d

dt
U(P ) = −

∫
∂P

q · ndA+

∫
P

ρrdV +Wext(P ). (3.13)

The density ρ of the SMA is assumed constant for all phases. Since, Wint = Wext,

P is arbitrary, and with the help of Gauss-Ostrogradsky’s theorem, the last equation

(3.13) can be written in local form:

ρu̇ = σ : ε̇+ ρr −∇ · q, (3.14)

where u is the specific internal energy per unit mass.

Similarly, the second law of thermodynamics reads

d

dt

∫
P

ρsdV ≥ −
∫

∂P

q · n
T

dA+

∫
P

ρ
r

T
dV , (3.15)

where T is the temperature, and s is the specific entropy per unit mass. After applying

Gauss-Ostrogradsky’s theorem and using the fact that P is arbitrary, the local form

of the entropy inequality is obtained:

ρṡ ≥ −∇ · q
T

+
q · ∇T
T 2

+ ρ
r

T
. (3.16)

The constitutive theory for the SMA is formulated using a Gibbs free energy G,
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which is related to the entropy s and internal energy u by a Legendre transformation

(cf., e.g., Malvern, 1969, page 262):

G = u− sT − 1

ρ
ε : σ. (3.17)

In order to express the entropy inequality (3.16) in terms of the Gibbs energy, the

last equation is differentiated with respect to time

Ġ = u̇− ṡT − sṪ − 1

ρ
σ̇ : ε− 1

ρ
σ : ε̇, (3.18)

and combined with (3.14), (3.16) to obtain an equivalent from of the entropy inequal-

ity:

ρĠ+ σ̇ : ε+ ρsṪ +
q · ∇T
T

≤ 0. (3.19)

The restrictions this last inequality places on the constitutive theory are established

in the next section.

3.3. Constitutive assumptions for the SMA material

A general constitutive equations of the form

G = G
(
σ, T,∇T, ξ, ξ̇

)
(3.20)

ε = ε
(
σ, T,∇T, ξ, ξ̇

)
(3.21)

s = s
(
σ, T,∇T, ξ, ξ̇

)
(3.22)

q = q
(
σ, T,∇T, ξ, ξ̇

)
(3.23)

is considered. The independent state variables are stress σ, temperature T , tempera-

ture gradient ∇T 1, the three production volume fractions ξ given by (3.6) and their

1Recall that the temperature gradient ∇T is not necessarily proportional to the
heat flux q.
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rates of change ξ̇.

A basic assumption of continuum mechanics is that every process related through

the constitutive equations (3.20)-(3.23) must satisfy the entropy inequality (3.19).

Assuming sufficient smoothness of all involved quantities, the total time derivative of

G can be written as:

Ġ = σ̇
∂G

∂σ
+ Ṫ

∂G

∂T
+ (∇T )̇

∂G

∂∇T
+ ξ̇ · ∂G

∂ξ
+ ξ̈ · ∂G

∂ξ̇
(3.24)

and substituting it, into (3.19), the inequality becomes:(
ε+ ρ

∂G

∂σ

)
: σ̇ + ρ

(
s+

∂G

∂T

)
Ṫ + ρ

∂G

∂ξ
· ξ̇

+ρ
∂G

∂ξ̇
· ξ̈ + ρ

∂G

∂∇T
· (∇T )̇ +

q · ∇T
T

≤ 0 (3.25)

The last inequality holds for all fields σ(p, t), T (p, t) ξ(x, t). Observe, that σ̇, Ṫ ,

ξ̈ and (∇T )̇ enter the above inequality linearly. That is, the functions defined in

(3.20)-(3.23) do not depend σ̇, Ṫ , ξ̈ and (∇T )̇, and consequently, all other quantities

in (3.25) also do not depend on them. Therefore,

∂G

∂ξ̇
= 0,

∂G

∂∇T
= 0, (3.26)

and thus, provided G is a smooth function of ξ̇ and ∇T , it does not depend on them:

G = G (σ, T, ξ) . (3.27)

Also, the following two constitutive relations are established:

ε = −ρ∂G
∂σ

, (3.28)

s = −∂G
∂T

, (3.29)
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and the reduced entropy inequality holds:

ρ
∂G

∂ξ
ξ̇ +

∇ · q
T

≤ 0 (3.30)

Further, it will be assumed that the SMA material is strongly dissipative, that

is the two terms in the last inequality (3.30) holds separately:

ρ
∂G

∂ξ
ξ̇ ≤ 0, (3.31)

q · ∇T
T

≤ 0. (3.32)

In light of equation (3.27), observe, that the last assumption is equivalent to assuming

that q is independent of ξ̇:

q = q (σ, T,∇T, ξ) . (3.33)

With this thermodynamic restrictions in mind, the constitutive theory is completed

in the next two sections.

3.3.1. Gibbs free energy for a polycrystalline SMA

The following form of the Gibbs energy, based on the works of Bo and Lagoudas

(1999a); Lagoudas and Shu (1999) is assumed:

G = (c1 + c2)G
M(σ, T ) + c3G

A(σ, T ) +Gmix(σ, T, ξ1, ξ2, ξ3), (3.34)

where GM is the thermoelastic free energy of both martensitic phases (twinned and

detwinned), GA is the thermoelastic component of the free energy of austenite, and

Gmix is the free energy of mixing, which is responsible for the transformation behavior
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of the SMA. The two thermoelastic components are given by:

GA(σ, T, ξ) =− 1

2ρ
σ : SA : σ − 1

ρ
αA : σ(T − T0)−

1

ρ
σ : εin

+ cA
[
(T − T0)− T ln

(
T

T0

)]
− sA

0 T + uA
0 (3.35)

GM(σ, T, ξ) =− 1

2ρ
σ : SM : σ − 1

ρ
αM : σ(T − T0)−

1

ρ
σ : εin

+ cM
[
(T − T0)− T ln

(
T

T0

)]
− sM

0 T + uM
0 (3.36)

Si, αi, ci, si
0 and ui

0 are the compliance tensor, thermal expansion coefficient ten-

sor, specific heat, specific entropy and the specific internal energy at the reference

state of the individual phases with the superscript i = A for austenitic and i = M

for martensite, respectively. It is assumed that the material properties of the two

martensitic phases are the same. Note that this assumption, and correspondingly,

the selection of the same energy for M t and Md is guided by the fact that from a

metallurgical point of view, the two phases are indistinguishable. However, as was

discussed in the beginning of this section, it is the macroscopic mechanical behav-

ior of twinned and detwinned martensite that is different, which is reflected in the

kinematic considerations of Section 3.1.

The two free energies (3.35) and (3.36) depend on ξ due to the presence of the

inelastic strain εin, which is a path-dependent function of ξ:

εin =

∫ t

0

(
Λtξ̇2 + Λdξ̇3

)
dτ =

∫ ξ2

0

Λtdη +

∫ ξ3

0

Λddη

Upon substituting equations (3.35) and (3.36) into (3.34) and using the constraint
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(3.1), the following expression is obtained for the free energy:

G(σ, T, ξ) =− 1

2ρ
σ : S(c1 + c2) : σ − 1

ρ
σ :
[
α(c1 + c2)(T − T0) + εin

]
+ c(c1 + c2)

[
(T − T0)− T ln

(
T

T0

)]
− s0(c1 + c2)T + u0(c1 + c2) +Gmix, (3.37)

where S(c1 + c2), α(c1 + c2), c(c1 + c2), s0(c1 + c2) and u0(c1 + c2) are the effective

compliance tensor, thermal expansion coefficient tensor, specific heat, specific entropy

and the specific internal energy at the reference state, respectively. The above effective

material properties are calculated in terms of the total martensitic volume fraction

c1 + c2 using the rule of mixtures as

S(c1 + c2) = SA + (c1 + c2)(SM − SA) = SA + (c1 + c2)∆S, (3.38a)

α(c1 + c2) = αA + (c1 + c2)(α
M −αA) = αA + (c1 + c2)∆α, (3.38b)

c(c1 + c2) = cA + (c1 + c2)(c
M − cA) = cA + (c1 + c2)∆c, (3.38c)

s0(c1 + c2) = sA
0 + (c1 + c2)(s

M
0 − sA

0 ) = sA
0 + (c1 + c2)∆s0, (3.38d)

u0(c1 + c2) = uA
0 + (c1 + c2)(u

M
0 − uA

0 ) = uA
0 + (c1 + c2)∆u0. (3.38e)

A detailed discussion the functional form (3.37) for the free energy and the resulting

rule of mixtures (3.38), based on micromechanical averaging over a representative

volume element of the polycrystalline SMA can be found in (Bo and Lagoudas, 1999a).

Before introducing the energy of mixing, consider the real functions

fi

(
ξ; sgn

(
ξ̇i

))
, i = 1, 2, (3.39)
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are smooth functions of ξ and depend on the sign of the rate of ξi:

sgn (x) =


1 if x > 0

undefined if x = 0

−1 if x < 0

For fixed ξ, fi has one well defined constant value for all ξ̇i, such that ξ̇i > 0, and

another, possibly different, value when ξ̇i < 0. Now, the value of fi when ξ̇i = 0 is

undefined, however the following integral∫ t

0

fi

(
ξ; sgn

(
ξ̇i

))
ξ̇i(τ)dτ (3.40)

is a well defined function of t. Note that formally,∫ t

0

fi

(
ξ; sgn

(
ξ̇i

))
ξ̇i(τ)dτ =

∫ ξi

0

f1

(
..., η, ...; sgn

(
ξ̇i

))
dη

and therefore the derivative

∂

∂ξi

[∫ t

0

fi

(
ξ; sgn

(
ξ̇i

))
ξ̇i(τ)dτ

]
= fi

(
ξ; sgn

(
ξ̇i

))
has well defined values for ξ̇i 6= 0. On the other hand, the integral is a piecewise

constant function of ξ̇i, possibly discontinuous at ξ̇i = 0. Its derivative with respect

to ξ̇i is, however, identically zero for all values of ξ̇i. Consequently, if a term of

the form (3.40) is included in the Gibbs free energy, it will be consistent with the

thermodynamic constraint (3.27).

The reason for this construction is to have a smooth in ξ, (path-dependent)

free energy whose partial derivatives with respect to ξ can have two different values,

depending on wether ξ̇i, i = 1, 2 is positive or negative. This is important, because

many SMAs exhibit different hardening behavior during loading and unloading, and

the mixing term in the free energy is responsible precisely for this the transformation
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hardening (see the next section). Therefore, from this point onwards the dependence

on ξ̇i of the functions fi will be suppressed and the energy of mixing is assumed to

have the form:

Gmix =
1

ρ

∫ t

0

(
f1(ξ)ξ̇1(τ) + f2(ξ)ξ̇2(τ) + f3(ξ)ξ̇3(τ)

)
dτ

=
1

ρ

∫ ξ1

0

f1(η, ξ2, ξ3)dη +
1

ρ

∫ ξ2

0

f2(ξ1, η, ξ3)dη +
1

ρ

∫ ξ3

0

f3(ξ1, ξ2, η)dη (3.41)

The mixing term is clearly a piecewise continuous function of ξ̇ which may have

jumps when ξ̇i = 0, i = 1, 2. Since the restrictions obtained by the second law were

derived for smooth state variables, it is necessary to check (3.19) in the case when

some ξ̇i = 0. Note that ξ̇ is the only variable, for which G is not smooth and observe

that

Ġmix =
3∑

i=1

(
fi

(
ξ; sgn

(
ξ̇i

))
ξ̇i(t)

)
.

Further, the rate of the smooth part of G can be calculated again as in (3.24), and

taking into account the assumed functional form (3.37) of G, the second law (3.19)

becomes: (
ε+ ρ

∂G

∂σ

)
: σ̇ + ρ

(
s+

∂G

∂T

)
Ṫ + ρ

∂G

∂ξ
· ξ̇ +

q · ∇T
T

≤ 0

In view of the constraints (3.28)–(3.30), the last inequality holds and therefore the

second law is shown to be satisfied for all possible values of the state variables.

The above assumption on the form of the Gibbs free energy mixing term and

equation (3.34) with the help of (3.28) and (3.29) imply the following constitutive

relations:

σ = S(ξ)−1 :
(
ε−α(ξ)(T − T0)− εin

)
, (3.42)

s =
1

ρ
α(ξ)T + c(ξ) ln(T/T0) + s0(ξ), (3.43)
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hold. The thermodynamic forces, conjugate to ξi will be denoted by πi, i = 1, 2, 3,

and where appropriate, the vector notation π = (π1, π2, π3)
T will be used. They are

given by:

π1 = −ρ∂G
∂ξ1

= π̃(σ, T )− f1(ξ), whenever ξ̇1 6= 0, (3.44)

π2 = −ρ∂G
∂ξ2

= σ : Λt + π̃(σ, T )− f2(ξ), whenever ξ̇2 6= 0, (3.45)

π3 = −ρ∂G
∂ξ3

= σ : Λd − f3(ξ), whenever ξ̇3 > 0. (3.46)

where π̃ is:

π̃(σ, T ) =
1

2
σ : ∆S : σ + ∆α : σ(T − T0)

− ρ∆c

[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆s0T − ρ∆u0. (3.47)

In this work, fi, i = 1, 2, 3 are assumed to be polynomial functions:

The hardening function f1 for the A↔M t transformation is assumed to depend

on c1, and may be different for the forward and reverse transformation:

f1 =

 ∆+
1 f

+
1 (c1) for ξ̇1 > 0

∆−
1 f

−
1 (c1) for ξ̇1 < 0

. (3.48)

Here f±1 (c1) are two arbitrary monotonously increasing functions in the interval [0, 1]

for the forward and reverse transformations A→M t and M t → A respectively which

can be determined from experimental measurements. The two material constants ∆±
1

serve as a scaling factors for f±1 (c1) respectively, so that

f±1 (0) = 0, f±1 (1) = 1. (3.49)

The hardening function f±2 , f3 for the stress induced martensitic transformation

A ↔ Md and the reorientation of twinned martensite M t → Md respectively are
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assumed to depend on the volume fraction of twinned martensite c2:

f2 =

 ∆+
2 f

+
2 (c2) for ξ̇2 > 0

∆−
2 f

−
2 (c2) for ξ̇2 < 0

, f3 = ∆3f3(c2) for ξ̇3 > 0. (3.50)

Similarly to equation 3.48, the material constants ∆±
2 and ∆3 are scaling factors for

the monotonous functions f±2 and f3, respectively, and:

f±2 (0) = 0, f±2 (1) = 1, (3.51)

f3(0) = 0, f3(1) = 1. (3.52)

Several things should be noted about this selection of hardening functions. The

choice of c2 as the independent variable for f±2 and f3 has generally been accepted

in the literature. The choice of c1 as the unknown variable for f±1 , while often used

in the literature (Brinson, 1993; Juhasz et al., 2002; Leclercq and Lexcellent, 1996)

is not the only possible option. The total amount of austenite c3 may be an equally

suitable choice for certain classes of SMA materials.

The specific form of the functions fi (e.g. polynomials, trigonometric functions,

exponents, etc.) is material dependent and should be treated as part of the mate-

rial specifications. The experimental tests, required to curve-fit a specific hardening

function will be presented in Section 4.

Finally, the hardening functions depend indirectly on ξ through the volume frac-

tions ci (equations (3.3)-(3.5)). The volume fractions ci have fixed bounds (cf. equa-

tion (3.2)). Hence, a hardening function which depends explicitly on ci will have

the property that the transformation strips (see next section) will not change with

cyclic thermomechanical loading. It should be kept in mind that the position of the

transformation strips in the phase diagram do evolve with cyclic repetition of thermo-
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mechanical loading paths, so if such effects are to be considered, it may be beneficial

to specify an explicit dependency of f±i on ξ1, ξ2 and ξ3. The evolution of SMA

material response however was outside the scope of this work.

3.4. Transformation surfaces and flow rules

It is assumed that a closed elastic domain is associated with each possible transfor-

mation, bounded by a transformation surface. The five surfaces are:

Φ+
1 (σ, T, ξ) = 0, whenever the A→M t tranformation takes place, (3.53)

Φ−
1 (σ, T, ξ) = 0, whenever the M t → A tranformation takes place, (3.54)

Φ+
2 (σ, T, ξ) = 0, whenever the A→Md tranformation takes place, (3.55)

Φ−
2 (σ, T, ξ) = 0, whenever the Md → A tranformation takes place, (3.56)

Φ3(σ, T, ξ) = 0, whenever the M t →Md deformation takes place, (3.57)

and the elastic domains in stress-temperature space, for given ξ, with respect to ξi

are defined implicitly by the inequalities:

{
(σ, T )|Φ+

i (σ, T, ξ) ≤ 0, ξ̇i > 0
}
, for i = 1, 2, (3.58){

(σ, T )|Φ−
i (σ, T, ξ) ≤ 0, ξ̇i < 0

}
, for i = 1, 2, (3.59){

(σ, T )|Φ3(σ, T, ξ) ≤ 0, ξ̇3 > 0
}
. (3.60)

The first two inequalities describe the elastic domains of the two forward transfor-

mations, the second two inequalities the elastic domains of the two reverse transfor-

mations. The last inequality describes the elastic domain for the M t →Md transfor-

mation. In contrast to conventional plasticity, the phase transformation terminates,

whenever the constraints (3.2) are violated. Therefore, the elastic domain associ-

ated with given phase transformation is assumed to be the entire space, when the



110

transformation is complete or there is no more material to transform.

Following Lagoudas and Shu (1999); Qidwai and Lagoudas (2000b), the following

form for of the transformation surfaces is suggested:

Φ+
1 (σ, T, ξ) = π1 − Y +

1 , (3.61)

Φ−
1 (σ, T, ξ) = −π1 − Y −

1 , (3.62)

Φ+
2 (σ, T, ξ) = π2 − Y +

2 , (3.63)

Φ−
2 (σ, T, ξ) = −π2 − Y −

2 , (3.64)

Φ3(σ, T, ξ) = π3 − Y3, (3.65)

where and Y ±
1 , Y ±

2 , Y3 are measures of internal dissipation of the respective transfor-

mations. In this work it is assumed that Y ±
i , i = 1, 2, 3 are constants, independent

of σ, T and ξ. This, due to the inequalities (3.58)-(3.60), implies that the appro-

priate conjugate forces πi remain constant during the transformation. It also implies

that the entropy production due to a phase transformation is proportional to ξ̇i, with

Y ±
i being the proportionality constant (cf. equation (3.31)). As will be seen later,

Y3 being constant implies that kd is zero (cf. Figure 27), that is, the temperature

dependence of the M t → Md surface will be ignored. This assumption was made

for the sake of simplicity only and the appropriate modification to include the small

temperature dependence of M t →Md are straightforward.

The functions fi defined by (3.39) appear in the definition of the transformation

function (3.61)-(3.65) through the constitutive relations (3.44)-(3.46). They are the

only terms in the transformation functions dependent on the internal variables ξ,

hence they are responsible for the transformation hardening.

In order to complete the model, the transformation tensors in the flow rules (3.9)
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and (3.10) should be specified. Let dev(σ) be the deviatoric stress:

dev(σ) = σ − 1

3
tr(σ)I

and ‖·‖ is the usual tensor norm:

‖v‖ =
√

v · v,

The detwinning flow tensor is taken to of the form

Λd =

√
3

2
H

dev(σ)

‖dev(σ)‖
. (3.66)

where Hd is the maximal uniaxial inelastic strain, assumed to be a material constant.

The flow rule used for the A↔ Md transformation is, following Lagoudas et al.

(1996); Qidwai and Lagoudas (2000a) taken to be

Λt =


√

3

2
H t dev(σ)

‖dev(σ)‖
for ξ̇2 > 0√

3

2
H t dev(εin)

‖dev(εin)‖
for ξ̇2 < 0

(3.67)

where H t is a material constant having the meaning of maximal uniaxial transfor-

mation induced strain. The reverse transformation tensor of the last equation is

discussed first.

The reason why two different transformation flow tensors are used for loading

and unloading is the need to account for reorientation in multiaxial loading path. In

general, if the direction of the stress state is changed, some martensitic variants will

reorient in the new direction, thus changing the direction of the inelastic strain. A

constitutive model with a single volume fraction for all detwinned variants of marten-

site cannot account for this process. If the same transformation tensor is used for

forward and reverse transformations it may happen that residual inelastic strain is
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present after unloading to austenite (e.g. c3 = 1 and the stress becomes zero) from a

non-proportional loading path. The unloading criterion used above is the ensures that

when c3 = 1, the inelastic strain becomes zero. It reduces to the same transformation

tensor used by (Qidwai and Lagoudas, 2000a) when ξ3 = 0.

The reader will recognize that the two flow rules, Λd, and Λt when ξ2 > 0 are

normal to a J2 based hyper-surface (which is not the actual transformation surface)

from classical plasticity, that is,

J2 = H t

√
3

2
‖dev(σ)‖ (3.68)

and

J2 = Hd

√
3

2
‖dev(σ)‖ . (3.69)

While the flow rules are not associative with respect to the actual surfaces (3.63) and

(3.64), respectively they are associative in the space of generalized thermodynamic

forces (Qidwai and Lagoudas, 2000b). In fact, the flow rules and transformation

surfaces are closely connected. Consider for a moment the A→ Md transformation.

A natural notion of maximal transformation dissipation can be introduced (Qidwai

and Lagoudas, 2000b; Rajagopal and Srinivasa, 1998), that is, of all possible processes,

the evolution of the transformation strain (3.9) is such that the work expended by

the thermodynamic force π2 attains a maximum. It can be shown that this notion of

maximal transformation dissipation implies a flow rule normal to the transformation

surface in the space of generalized thermodynamic forces. The reader is referred to

Qidwai and Lagoudas (2000b) for further details.

The motivation for selecting different transformation surfaces on the other hand,

is the observed tension-compression asymmetry of SMA materials as well as the devel-

opment of a small volumetric strain during phase transformations (Lexcellent et al.,
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2002; Qidwai and Lagoudas, 2000b). Together with the assumption of maximum

transformation dissipation, the selection of a surface also implies a flow rule. Due

to the large number of different SMA alloys the selection of an appropriate transfor-

mation surface can be a difficult task. Since the main goal of the current research is

the formulation of a consistent model capable of accounting for phase transformation

and detwinning, the specific choice of transformation functions was not addressed in

detail.

As a last remark, suppose that transformation function and the flow rule are

selected independently and the later is non-associative with respect to the selected

surface. In that case, one has to check that the second law is satisfied, as one no-

longer has πiξ̇i = Yiξ̇i > 0 during the transformation. For example, if the same J2

based surfaces is used for the pseudoelastic unloading, that is, Φ−
2 has the same form

as Φ+
2 , but the flow rule is retained, not only is it non-associative, but a loading path

can be constructed which violates the second law of thermodynamics. Since this is

against our religion, we cannot accept such a surface/flow rule.

4. Determination of material parameters

To summarize, the material parameters entering the model are:

Si,αi, ci, si
0, u

i
0, H

t, Hd, (3.70)

f±1 , f
±
2 , f3, Y

±
1 , Y

±
2 , Y3,∆

±
1 ,∆

±
2 ,∆3. (3.71)

where the index i takes the values A,M for austenite and martensite, respectively. A

polycrystalline SMA, unlike the single crystal SMAs, is an isotropic material. There-

fore the compliances SA, SM are determined if the Young’s modulus EA, EM and

Poisson’s ratio νA, νM of the two phases are available. These can be determined from
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standard uniaxial pseudoelastic test. The thermal expansion coefficient αA, αM for

an isotropic material are scalars and are determined from an isobaric test and the

specific heats cA, cM , the change in specific entropy ρ∆s0 between the two phases

and the change of specific internal energy ∆u0 can be determined from calorimetric

measurements (Bo and Lagoudas, 1999a,b). The maximum uniaxial transformation

strain H can be obtained from either an isothermal test or from an isobaric test (Bo

and Lagoudas, 1999a).

The remaining parameters are related to the position of the transformation strip-

s/surfaces in the uniaxial phase diagram in Figure 27. To this end, assume that the

critical temperatures Ms, Mf , A
t
s, A

t
f , A

d
s, A

d
f as well as the critical stresses σs and

σf are known. In the next section, a one-dimensional reduction of the model will be

presented and the material parameters (3.71) will be expressed in terms of the critical

transformation temperatures and stresses. Then, in Section 4.2 it will be shown that

this one-dimensional reduction conforms with the phase diagram of Figure 27.

4.1. Uniaxial reduction of the model

Having determined the phase diagram, the remaining material parameters are selected

so that the model conforms with the phase diagram. To do that it is necessary to

write the transformation surfaces explicitly in the uniaxial stress case. That is, a

stress state

σ11 = σ, σ12 = ... = σ33 = 0 (3.72)

is assumed. Since uniaxial loading is always proportional, any combination of de-

twinning M t →Md, forward A→Md or reverse Md → A by virtue of (3.66) and/or

(3.67) will result in a transformation strain:

εin
11 = H, εin

22 = εin
33 = −1

2
H, εin

12 = εin
13 = εin

23 = 0. (3.73)
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With this in mind, the inequalities (3.58)-(3.60) become:

π̂(σ, T )−∆+
1 f

+
1 (c1) ≤ Y +

1 (3.74)

−π̂(σ, T ) + ∆−
1 f

−
1 (c1) ≤ Y −

1 (3.75)

σH + π̂(σ, T )−∆+
2 f

+
2 (c2) ≤ Y +

2 (3.76)

−σH − π̂(σ, T ) + ∆−
2 f

−
2 (c2) ≤ Y −

2 (3.77)

σH −∆3f3(c2) ≤ Y3 (3.78)

where,

π̂(σ, T ) =∆Sσ2 + ∆ασ(T − T0)

− ρ∆c

[
(T − T0)− T ln

(
T

T0

)]
+ ρ∆s0T − ρ∆u0. (3.79)

Note that whenever one or more transformations are taking place (that is, ξ̇i 6= 0,

i = 1, 2, 3) the respective inequalities (3.74)-(3.78) turn into equalities.

The unknown quantities in the above equations are Y +
1 , Y −

1 , Y +
2 , Y −

2 , Y3, ∆+
1 ,

∆−
1 , ∆+

2 , ∆−
2 , ∆3 as well as the functional form of fi.

The phase diagram on the other hand is completely defined if the start and finish

detwinning stresses σs and σf are known, the transformation temperatures Ms, Mf ,

At
s, A

t
f , A

d
s, A

d
f and the initial slope k of the A ↔ Md transformation surfaces. All

these parameters can be determined after sufficient number of mechanical tests are

performed.

The model parameters are then established as follows. Consider a loading path

in which a purely twinned SMA (c1 = 1, c2 = c3 = 0 is loaded at temperature below

Mf . As the detwinning deformation progresses, ξ̇3 > 0, and the inequality (3.78)

becomes an equality:

σH −∆3f3(c2) = Y3, (3.80)
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Therefore, at the beginning of the detwinning deformation one has σ = σs, c2 = 0,

and the last equation, together with (3.52) implies:

Y3 = σsH.

Similarly, upon completion of the deformation, one has σ = σf , f3(1) = 1 and Φ3 = 0,

hence:

∆3 = H(σf − σs).

The function f3 itself is curve-fitted from a stress-strain relationship obtained in a

standard isothermal loading test at some fixed temperature below Mf .

The material parameters Y ±
1 , ∆±

1 for the A↔M t are determined with the help

of a zero stress cooling/heating cycle. During cooling, the forward transformation

surface (3.74) turns into equality:

π̂(σ, T )−∆+
1 f

+
1 (c1) = Y +

1 , (3.81)

which, in conjunction with (3.49) yields:

Y +
1 = π̂(0,Ms) =

− ρ∆u0 + ρ

(
Ms∆s0 −∆c

[
(Ms − T0)−Ms ln

(
Ms

T0

)])
, (3.82)

∆+
1 = π̂(0,Mf )− Y +

1 = π̂(0,Mf )− π̂(0,Ms)

= ρ

(
(Mf −Ms)∆s0 −∆c

[
Mf −Ms +Ms ln

(
Ms

T0

)
−Mf ln

(
Mf

T0

)])
.

(3.83)

Similarly, during the heating (3.75) becomes:

−π̂(σ, T ) + ∆−
1 f

−
1 (c1) = Y −

1 , (3.84)
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hence Y −
1 and ∆−

1 can be determined:

Y −
1 = −π̂(0, At

f )

= ρ∆u0 − ρ

(
At

f∆s0 −∆c

[
(At

f − T0)− At
f ln

(
At

f

T0

)])
, (3.85)

∆−
1 = π̂(0, At

s) + Y −
1 = π̂(0, At

s)− π̂(0, At
f )

= ρ

(
(At

s − At
f )∆s0 −∆c

[
At

s − At
f + At

f ln

(
At

f

T0

)
− At

s ln

(
At

s

T0

)])
. (3.86)

Determining the parameters for the stress-induced martensitic transformation is

done by considering two loading paths. First, assume a fully detwinned state at some

temperature below Ad
s and at zero stress (this can be obtained by loading isothermally

at T ≤ Mf until all the material has detwinned and then unloading until zero stress

us reached) and heat, while maintaining the material stress free. Then ξ̇2 < 0 and

(3.77) becomes an equality:

−σH − π̂(σ, T ) + ∆−
2 f

−
2 (c2) = Y −

2 . (3.87)

Noting that σ = 0 throughout the loading path, and with the help of (3.51), Y −
2 and

∆−
2 are found to be:

Y −
2 = −π̂(0, Ad

f )

= ρ∆u0 − ρ

(
Ad

f∆s0 −∆c

[
(Ad

f − T0)− Ad
f ln

(
Ad

f

T0

)])
, (3.88)

∆−
2 = π̂(0, Ad

s) + Y −
2 = π̂(0, Ad

s)− π̂(0, Ad
f )

= ρ

(
(Ad

s − Ad
f )∆s0 −∆c

[
Ad

s − Ad
f + Ad

f ln

(
Ad

f

T0

)
− Ad

s ln

(
Ad

s

T0

)])
. (3.89)

Finally, in order to determine Y +
2 and ∆+

2 , load the material in austenite to some

stress level, for example, σf and then cool the material. Let the critical temperatures

for the A→Md transformation at this stress level be Ts(σf ) for the start and Tf (σf )
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for the finish. Then the constraint (3.76) becomes:

σH + π̂(σ, T )−∆+
2 f

+
2 (c2) = Y +

2 (3.90)

which results in

Y +
2 = σfH + π̂(σf , Ts(σf )), (3.91)

∆+
2 = σfH + π̂(σf , Tf (σf ))− Y +

2 . (3.92)

Note that it is necessary to load to a stress equal or higher then σf , in order to avoid

development of twinned martensite.

With this last equation, all the material parameters, except for the functional

form of f±i are expressed from physically observable quantities. Through the rest of

this work, it will be assumed that the hardening functions are linear:

f±1 (c1) = c1, f±2 (c2) = c2, f3(c2) = c2.

In principle however, the model allows for arbitrary monotonous functions which can

be curve-fitted from experiments. The curve-fit for f±2 can be done from a single

uniaxial loading (Lagoudas et al., 1996, cf., e.g.,). A curve-fit for f±1 (c1) can be

obtained by using a DSC measurement in conjunction with the balance of energy.

These issues, however, will not be discussed further.

4.2. The uniaxial transformation strips and the phase diagram

The one dimensional reduction of the model resulted in the inequalities (3.74)-(3.78)

for the elastic domains of the respective transformations. It is clear from equation

(3.80) that the transformation strip in stress-temperature space for the M t → Md



119

deformation is the horizontal strip

σs ≤ σ ≤ σf ,

which is consistent with the assumptions of Section 2, see also the remarks after

equation (3.65).

Next, assume for a moment that the elastic modulii of the two phases, the thermal

modulii and the specific heats of the two phases are equal:

SA = SM , αA = αM , ca = cM .

In this case, equation (3.79) reduces to

π̂ = ρ∆s0T − ρ∆u0.

Then, equation (3.81) implies that the transformation strip for the A→M t is defined

by

Mf ≤ T ≤Ms

and from equation (3.84), the transformation strip for the M t → A is the vertical

region

At
s ≤ T ≤ At

f .

It can also be seen form equations (3.90) and (3.87) that, for any given c2, the

transformation line for both A→Md and Md → A transformation is linear and has

slope

k = −ρ∆s0

H
.

Therefore, the A → Md and Md → A strips have the shape shown in Figure 27,

and the slope k is given by the above formula. This last formula is frequently used

(for example, by Qidwai and Lagoudas, 2000a) to determine the difference in specific
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entropies ∆s0.

Now, when the modulii for the two phases are different, the transformation lines

for the A ↔ M t and A ↔ Md depart from the above linear relationships. However,

the terms ∆Sσ2, ∆ασ and ρ∆c
[
(T − T0)− T ln

(
T
T0

)]
which will now appear in (3.79)

are all an order of magnitude smaller than the leading term ρ∆s0T . The departure

from a linear shape is therefore visible for high stress (several hundred MPa) for

A↔ M t transformation and for both higher stresses and away from the equilibrium

temperature T0 for the A↔Md transformation. An example of the effect of different

material modulii on the transformation surfaces is shown in Figure 29. Note that the

M t → Md strip is not shown to improve the clarity of the figure. It is easy to show,

that in the general case of different elastic and thermal modulii, the meaning of the

slope k becomes now the tangent to the transformation surface at zero stress.

The derivation of the material parameters in the previous section assumed that

the critical temperatures Ms, Mf , A
t
s, A

t
f , A

d
s, A

d
f , and the critical stresses σs, σf are

known. We will conclude this section by discussing how these can be measured.

The transformation temperatures Ms, Mf , A
t
s, A

t
f can be easily determined from

a DSC test such as the one shown in Figure 25. Knowing the critical temperatures

at zero stress is sufficient to determine the A → M t and M t → A transformation

strips. The Ad
s, A

d
f temperatures on the other hand can be found by first loading a

specimen in detwinning conditions until the specimen has entirely detwinned. It is

then mechanically unloaded in a way which preserves the material state and then a

DSC test is performed as described in Section 1. To do the DSC test it is necessary to

perform the mechanical loading and the subsequent preparation of a DSC sample from

the loaded specimen at temperatures below Ad
s, which may not always be possible.

A more direct approach relies on several isothermal test above At
f , which will allow

to construct both the A → Md and Md → A strips and therefore, also the Ad
s, A

d
f
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Fig. 29. Transformation strips for the A↔M t and A↔Md as predicted by the SMA

model. Different material modulii are used (cf. Table IV). The deviation

form straight line for the A ↔ M t transformation becomes significant for

stresses above 200MPa. Considering that the σf rarely exceeds such values,

the effects will be negligible. The deviation for the A ↔ Md strips is not

visible until much higher temperatures and stresses, not shown on the figure.
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temperatures. Isothermal tests at temperatures below Mf can be used to determine

σs and σf and hence the M t →Md strip.

4.3. Limitations

It should also be noted that the current model does not assume any triple point as

often done in the literature Brinson (1993). As a result, the A → Md strip can

be translated according tho experimental measurements. Certain, restrictions, which

result from the assumed functional dependence of f1, f2 and f3 however are still valid.

To the best of the authors knowledge, two of these exist and will be mentioned briefly

here. Both of them occur for certain specific material parameters and it may happen

that such classes of SMA materials do not exist in practice.

First, the transformation strips M t → A, Md → A and M t → Md must have

a zero intersection. It is easy to show, that if they do, the three inequalities (3.75),

(3.77) and (3.78) cannot be satisfied simultaneously. In other words, a simultaneous

transformation M t → A, Md → A and M t → Md is not possible. In light of the

experimental results of Section 1, it seems unlikely that such a situation can occur.

Also, it is physically difficult to explain why some twinned martensite will transform

to austenite through an intermediate detwinned phase, while the rest of the twinned

martensite will transform directly to austenite. This limitation can be removed by

assuming a different functional dependence of f1, for example, on c3.

The second limitation of the theory is associated with a bifurcation in the stress

for some material parameters. Suppose that the finish line for the A → Md trans-

formation pases above the point (Ms, σf ) in stress temperature space. Than, one

can find thermomechanical which starts in austenite, which, under specific cooling

at some stress slightly higher than σf which will produce twinned martensite above

the critical stress σf . As this happens, if the constraint () is to be satisfied, a finite
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amount of detwinning must occur which will result in a discontinuous drop of the

stress. Whether such materials, for which the finish A → Md line passes above the

point (Ms, σf ), exist is an open question. Again, for such class of materials a different

functional dependence of f1 may provide a solution to the problem.

5. Uniaxial examples

The numerical examples in this section were selected so that complicated loading

path in stress-temperature phase space could be tested. Two uniaxial examples (Sec-

tion 5.1) of a constrained SMA rod are considered. One-dimensional setting allows

to carefully select thermomechanical loading path in the phase space (Figure 27) and

the relevant equations can be solved with symbolic software.

In the first of these examples (Section 5.1.1), an SMA rod is cooled from the

austenitic phase to low temperature while the strain is kept constrained. This prob-

lem allows to demonstrate the cut-off of the A → Md transformation in untrained

SMA materials and the predominant development of M t from A at low stress levels.

Secondly, an SMA rod is heated, again while constrained (Section 5.1.2). During

the heating, simultaneous M t → A and M t → Md transformations take place, thus

offering a nontrivial test for the model. The basic material parameters used in the

simulations are given in Table IV and represent a generic SMA properties Qidwai and

Lagoudas (2000a). The only exception is the loading path of Section 5.1.2, where the

critical stresses for detwinning are half the values given in the table. This selection

is made in order to illustrate the class of SMA materials form which M t → A and

M t →Md transformations can happen simultaneously.
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Table IV. Material parameters used in the three phase, 3-D SMA model.

Material constant Value Material constant Value

EA 70× 109 Pa Mf 275 ◦K

EM 30× 109 Pa Ms 291 ◦K

αA 22× 10−6/K At
s, A

d
s 295 ◦K

αM 10× 10−6/K At
f , A

d
f 315 ◦K

H 0.05 σs 100MPa

k 4.5× 106 Pa/(m3K) σf 200MPa

5.1. Constrained SMA rod

Consider a rod in uniaxial stress state (3.72), (3.73), which is loaded isothermally and

then its two ends are fixed. The stress in the rod is connected to the strain by

σ = E(c1 + c2)
(
ε− α(c1 + c2)(T − T0)− εin

)
(3.93)

Assume that the maximal detwinning and transformation strains are the same, e.g.

H t = Hd = H. In the uniaxial case, the inelastic strain is proportional to the volume

fraction of detwinned martensite c3:

εin = Hc2. (3.94)

The relevant transformation surfaces were solved using symbolic software (Mathe-

matica).

5.1.1. Constrained cooling of a rod

Suppose that a rod is initially loaded in the austenitic phase up to a stress σ0, which

is below the critical stress σMs (cf. Figures 3 and 4), required to initiate the forward,

A→Md phase transformation. Without loss of generality, let this be a tensile stress.
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Then the inelastic strain is identically zero:

εin = 0.

From equation (3.93), the rod has developed uniform elastic strain

ε0 = σ0/E
A.

At this point of the loading path, the strain is then fixed and the SMA is gradually

cooled. The state of the material is plotted in stress-temperature space in Figure 30.

At first, a thermoelastic contraction of the rod increases slightly the stress. When

the A → Md transformation surface is reached, transformation strain begins to de-

velop. Since, the maximal possible value of the transformation strain H is an order

of magnitude larger than the elastic strain ε0, very little transformation is required to

drastically reduce the stress. In this example the A→Md surface terminates at some

finite value of stress σs (which, as discussed before is material dependent). Slightly

before this point the A→M t transformation surface is also reached and the material

undergoes combined transformation.

As the stress decreases below the critical stress σs, only the A→M t transforma-

tion proceeds. In the process, no further transformation strain is produced, however

the stiffness changes. The stiffness of the martensite EM is less than the stiffness of

austenite EA, so the effective stiffness decreases (cf. equation (3.38)). On the other

hand, the total strain is fixed. Therefore, neglecting the thermal strains, and noting

that very small amount of A → Md has occurred, from equation (3.93) it follows

that the stress in the rod will decrease by a factor of EA/EM . This is clearly visible

in Figure 30. Upon completion of the transformation, the a material again exhibits

thermoelastic contraction, which causes small increase in stress.



126

250 260 270 280 290 300 310 320 330 340 350
0

20

40

60

80

100

120

140

160

180

200

220

240

Temperature, K

St
re

ss
, M

P
a

dA M→

t dM M→

tA M→

Starting
point

Strain is fixed,
begin cooling

Elastic
loading

Start of A→ Md

transformation

Start of A→ Mt

transformation

End of A→ Md

transformation

End of A→ Mt

transformation

Fig. 30. A constrained cooling path in stress-temperature space. The rod is loaded

in tension at the austenitic phase to a stress lower than required for phase

transformation. The strain is then fixed and the rod is cooled. The rapid

drop of the stress during the phase transformation is caused by the devel-

opment of inelastic strains. Since the total achievable inelastic strain is an

order of magnitude larger than the initial elastic strain, very little A → Md

transformation occurs. For clarity, only the A → Md, A → M t, M t → Md

and transformation strips are shown.
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5.1.2. Constrained cooling/heating of a rod

A more complicated example is given in Figure 31, where an SMA rod is constrained

at zero stress while in austenite. It is then cooled, leading to initial development of

thermal stresses, followed by the transformation of all austenite to twinned martensite.

The specimen is then loaded in tension to a stress level σ within the σs < σ < σf

range, which causes part of the twinned martensite to detwin. Then the strain is

again constrained and the specimen is then heated.

The interesting part of this loading path is the heating part. In the absence of

any transformations the stress has a tendency to decrease, due to thermal expansion

which relaxes the tensile stress. The M t → A causes the effective stiffness of the

material to increase. Similarly to the previous example, this in turn increases the

stress. This can have two possible consequences. First, the raise in the stress may

become sufficient to activate theM t →Md surface which will results in a simultaneous

M t → Md,M t → A transformations. Secondly, as the temperature increases, the

Md → A transformation surface will also activate. This may happen simultaneously

with the M t → A or after the later is completed. As discussed in Section 4, the

M t →Md and Md → A strips are assumed not to intersect, so this combination is not

possible. In the particular example shown on Figure 31, the M t → A and M t →Md

transitions happen sequentially over a short temperature range. Eventually, the M t is

depleted and only theMd → A transformation proceeds. , with the effect of producing

large recovery stress. The Md → A transformation reduces c2 and therefore, the

transformation strain (cf. equation (3.94)). Given that the total strain is fixed, the

later results in increase of the elastic strain. Consequently, large recovery stress are

observed (Figure 31).



128

302.5 305 307.5 310 312.5 315 317.5 320

60

70

80

90

100

Start of tM A→

Finish of dM A→

Start of dM A→

Temperature, K

Simultaneous

transformation

,t dM M A→

260 280 300 320 340

50

100

150

200

250

300

Starting point,

fixed strain

t dM M→

dM A→

tA M→

tM A→

Begin of
det winning

Mixture of 
Strain fixed, begin
heating

,t dM M

Start loadi ng
the SMA Temperature, K

S
tr

es
s,

 M
P

a

Fig. 31. Simulated loading path involving simultaneous reverse transformation. An

SMA rod is cooled from austenite to twinned martensite, while the strain

is fixed. It is then uniaxially loaded to obtain a mixture of twinned and

detwinned martensite, the strain is fixed again and the rod is subsequently

heated. Due to the mixture of the two phases, the transformation begins

inside the transformation strips. For clarity, the M t →Md strip is omitted.
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CHAPTER IV

NUMERICAL IMPLEMENTATION OF SMA CONSTITUTIVE MODEL

In this section the numerical implementation of thermomechanical constitutive equa-

tions is presented. The structure of the governing equations of an SMA constitutive

model are very similar to the structure of the equations describing classical rate-

independent plasticity. Therefore it is natural to utilize return-mapping algorithms

developed for rate-independent plasticity (cf., e.g., Ortiz and Popov, 1985; Ortiz and

Simo, 1986; Simo and Hughes, 1998) and apply them to SMAs.

Return mapping algorithms have been studied extensively over the years in the

context of elasto-plasticity for the integration of constitutive relations (Simo and

Hughes, 1998). They are also called elastic predictor-plastic corrector algorithms

where a purely (thermo) elastic trial loading is followed by a plastic corrector phase

(return mapping). The corrector part is only applied if the stress state after the

predictor step violates the plastic yield condition (transformation surface for the case

of SMAs). The corrector enforces continuity iteratively in a manner consistent with

the prescribed flow rule. Return mapping algorithms may differ on the basis of the

kind of discretization employed to numerically integrate the evolution differential

equations for the flow rule and the iterative procedure adopted to solve the resultant

set of non-linear algebraic equations in the corrector part. Some commonly used

return mapping algorithms proposed in the literature are the radial return (backward

Euler based) algorithm (Wilkins, 1964) and the mean normal (mid-point rule based)

algorithm (Rice and Tracey, 1973). A detailed review of the historical developments

of the return mapping algorithms can be found in (Simo and Hughes, 1998).

Ortiz and Popov (1985) have observed that most of the return mapping algo-

rithms employ integration rules that are particular cases of the trapezoidal and mid-
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point rules, suitably generalized to facilitate satisfaction of the plastic consistency

condition. The stability of these integration algorithms for inelasticity is studied by

Argyris et al. (1979); Simo and Govindjee (1991). The general conclusion is that

backward integration strategies provide good stability of the incremental solution.

Additional accuracy can be obtained by midpoint integration technique or by higher

order approximation of the inelastic flow rule, for example by Runge-Kutta methods.

There are several differences between standard plastic materials and SMAs.

SMAs have multiple transformation surfaces, e.g. forward and reverse stress-induced

phase transformation as well as detwinning, if the model includes it. The surfaces

are defined in both stress and temperature space. The reverse transformation sur-

face is typically non-convex, which presents certain uniqueness issues discussed in

Qidwai and Lagoudas (2000a). A typical flow rule such as the one for the forward

transformation in equation (3.67) is not associative in stress space but becomes as-

sociative in the space of generalized thermodynamic forces. In addition, the material

properties - compliance, thermal expansion coefficient, specific entropy and internal

energy involved in the constitutive relationship change during the transformation (cf.

equations (3.38)) which results in additional complications in the numerical imple-

mentation. Also, unlike plasticity, the phase transformation ends after which the

loading proceeds elastically. This imposes an additional constraint (see inequalities

(3.2)) which needs to be addressed as well.

Extensive research on return mapping algorithms for SMAs has only recently

been performed by Qidwai and Lagoudas (2000a) who have implemented return-

mapping algorithms for the family of SMAs models (Boyd and Lagoudas, 1994a,

1996a; Brinson, 1993; Liang and Rogers, 1990, 1992; Tanaka, 1986; Tanaka et al.,

1986, 1995). Two algorithms are developed - the closest point projection algorithm

Ortiz and Pinsky (1981) and convex cutting plane algorithm (Ortiz and Simo, 1986;
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Simo and Ortiz, 1985). The difference between the two algorithms is in the corrector

part. The application of the closest point projection algorithm results in a set of

non-linear algebraic equations solved using Newtons iteration method. The closest

point algorithm is unconditionally stable provided the yield surface is convex, and

it is first-order accurate (Ortiz and Pinsky, 1981). On the other hand, the convex

cutting plane method uses a Newton method only for the transformation surface

and is based an explicit integration of the transformation flow rule. As a result it

is computationally less demanding, however it is not unconditionally stable. While

the work of Qidwai and Lagoudas (2000a) is focused on a single volume fraction of

martensite, Govindjee and Miehe (2001) have focused on the numerical implemen-

tation by return mapping algorithms of models with multiple martensitic variants

and, correspondingly, internal variables. In order to satisfy a polytope constraint an

active set search strategy is proposed which determines the active variants and the

corresponding thermoelastic prediction. The transformation correction is performed

by the backward Euler method. The works considered above are all set up within the

framework of infinitesimal strains. Auricchio (2001); Auricchio et al. (1997) have fo-

cused on adapting SMA constitutive models to finite strains and the have proposed a

series of return-mapping algorithms based on the backward Euler integration scheme

for the transformation correction.

1. Closest point projection algorithm for multiple internal variables

The major steps of the numerical implementation of the SMA constitutive model are

presented next. The implementation can be viewed as an extension to the imple-

mentation of the earlier class of models described in Boyd and Lagoudas (1996a) for

which the reader is referred to Qidwai and Lagoudas (2000a).
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Equation (3.28) together with the definition of the free energy (3.34) imply that

the total strain ε is given by

ε = S(ξ) : σ +α(ξ)(T − T0) + εin. (4.1)

The evolution equations (3.9) and (3.10) and the decomposition (3.8) imply that the

total inelastic strain εin can be written as

ε̇in = Λtξ̇2 + Λdξ̇3, (4.2)

where Λt and Λd are defined by equations (3.67) and (3.66) respectively. It is also

convenient to write the consistency conditions imposed by the transformation surfaces

(3.58)–(3.65) for the evolution of the internal variables ξ in the following compact

form:

ξ̇1 ≥ 0, Φ+
1 ≤ 0, Φ+

1 ξ̇1 = 0, (4.3a)

ξ̇1 ≤ 0, Φ−
1 ≤ 0, Φ−

1 ξ̇1 = 0, (4.3b)

ξ̇2 ≥ 0, Φ+
2 ≤ 0, Φ+

2 ξ̇2 = 0, (4.3c)

ξ̇2 ≤ 0, Φ−
2 ≤ 0, Φ−

2 ξ̇2 = 0, (4.3d)

ξ̇3 ≥ 0, Φ3 ≤ 0, Φ3ξ̇3 = 0. (4.3e)

Thus the final system of nonlinear differential-algebraic equations consists of equa-

tions (4.1)–(4.2) along with the constraints (4.3).

1.1. The loading step

As mentioned above, the implementation of the SMA model is focused on a single

material point. Further, the history of all field and internal variables at this material

point is known. In particular, the values of εn, Tn, σn, εin
n , and ξn are known. The
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subscript n is used to denote a history/time parameter1. The new values of εn+1

and Tn+1 for the strain and temperature respectively are also given2. Since the steps

are discontinuous events, it is assumed that the continuous loading path which the

material follows between step n and n+ 1 is characterized by

εn+α = (1− α)εn + αεn+1, for ∀α ∈ [0, 1], (4.4)

and

Tn+α = (1− α)Tn + αTn+1, for ∀α ∈ [0, 1]. (4.5)

The Closest Point Projection Return Mapping Algorithm is a numerical method

which computes the values for σn+1, ε
in
n+1 and ξn+1 by solving equations (4.1)–(4.2)

along with the constraints (4.3).

1.2. Closest point projection return mapping algorithm for SMA constitutive

model

To solve this system, the evolution equation (4.2) for the transformation and detwin-

ning strains are discretized as follows:

εin
n+1 = εin

n + (ξ2n+1 − ξ2n)Λt(σn+1) + (ξ3n+1 − ξ3n)Λd(σn+1), (4.6)

This type of backward Euler discretization is referred to as the closest point pro-

jection return mapping algorithm (Qidwai and Lagoudas, 2000a). The stress-strain

1For a quasi-static problem, this would be the values at the n-th loading step, while
in a dynamic problem this would be the values of the field and internal variables at
some discrete instance of time tn.

2Alternatively, the increments ∆εn+1 = εn+1−εn and ∆Tn+1 = Tn+1−Tn may be
given, which, of course, is equivalent to knowing εn+1 and Tn+1.
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relation (4.1) is equivalent to:

σn+1 = S(ξn+1)
−1 :

(
εn+1 − εin

n+1 −α(ξn+1)(Tn+1 − T0)
)
, (4.7)

which is the discrete version of the generalized Hooke’s law (3.42). In order to solve

the discrete system (4.6), (4.7) subject to the constraints (4.3), first substitute εin
n+1

from equation (4.6) into (4.7), multiply both sides by S(ξn+1) and then rearrange the

terms to obtain:

S(ξn+1)σn+1 − εn+1 + α(ξn+1) (T − T0)

+εin
n + (ξ2n+1 − ξ2n)Λt(σn+1) + (ξ3n+1 − ξ3n)Λd(σn+1) = 0. (4.8)

Note that in the above equation, all members with subscript n as well as εn+1 and

Tn+1 have known values. It is convenient to introduce the residual F:

F(σ, ξ) =S(ξ)σ − εn+1 +α(ξ) (Tn+1 − T0)

+ εin
n + (ξ2 − ξ2n)Λt(σ) + (ξ3 − ξ3n)Λd(σ). (4.9)

Observe, that the system (4.6), (4.7) is now equivalent to

F(σn+1, ξn+1) = 0. (4.10)

The Closest Point Projection method, like most return mapping algorithms, first

performs a linear thermoelastic loading using equation (4.7), called thermoelastic

prediction. It then determines, using (4.3), if phase transformation occurs or not.

If it does not, then the solution is accepted. If it does, it determines which one and

performs a transformation correction. Without loss of generality, suppose that

during the loading step the forward stress-induced phase transformation occurs and

the rest of the phase transitions don’t. This implies ξ2n+1− ξ2n > 0 and (4.3) reduces
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to

Φ(σn+1, Tn+1, ξn+1) = 0. (4.11)

The Closest Point Projection method then does nothing else but to solve (4.10) and

(4.11) by Newton’s method in order to obtain a consistent material state. These two

steps are explained in details below.

Both the predictor and corrector steps can be viewed as part of an iterative

process which solves the nonlinear algebraic system of equations (4.10), subject to

the constraints (4.3), by constructing a converging sequence

σ
(k)
n+1 −→

k→∞
σn+1, ε

in(k)
n+1 −→

k→∞
εin

n+1, ξ
(k)
n+1 −→

k→∞
ξn+1. (4.12)

How this converging sequence is constructed is revealed next.

1.2.1. Thermoelastic prediction

As the first step, a thermoelastic prediction is performed during which, the inter-

nal variables do not change:

ε
in(0)
n+1 = εin

n , (4.13)

ξ
(0)
n+1 = ξn, (4.14)

σ
(0)
n+1 = S(ξn)−1 :

[
εn+1 − εin

n −α(ξn)(Tn+1 − T0)
]
. (4.15)

It should be noted, that this first step corresponds to purely thermoelastic loading

without any transformation (ξ̇ = 0), hence its name thermoelastic prediction. The

corresponding values of the five transformation functions are then evaluated:

Φ(0)
α = Φα(σ

(0)
n+1, Tn+1, ξ

(0)
n+1). (4.16)
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The subscript α is understood in the sense Φα ∈
{
Φ+

1 ,Φ
−
1 ,Φ

+
2 ,Φ

−
2 ,Φ3

}
. If the value

of all transformation functions satisfy Φ
(0)
α ≤ 0 then all equations and constraints are

satisfied and the iteration is terminated for k = 0.

1.2.2. Transformation correction

The predictor step assumed that ξn = ξn+1, hence (4.3) are satisfied iff all Φα ≤ 0.

Therefore, if at least one of the transformation function Φα > 0 then the corresponding

consistency condition is violated. Such surfaces will be referred to as inconsistent.

The existence of inconsistent surfaces implies that during the loading step, phase

transformation takes place and a transformation correction is needed. During

this step, the stress and the internal variables are modified in accordance with the

transformation flow rules so that the consistency conditions are satisfied.

The consistency condition(s) which correspond to the phase transformation(s)

taking place will be called active. The same term will be used for the respective

transformation surfaces. Following the assumption of the previous chapter, no more

than two surfaces can be active. The consistency conditions that the elastic predictor

violates are not necessarily the active ones, nor are they necessarily the only ones

active. An example can be found in the loading path of Figure 31 during heating

when both M t → A and Md → A occur. In this temperature region, the last state

n is such that Φ3(σn, Tn, ξn) = 0. Remember that in this particular loading path

the strain is fixed and only the temperature is increased. It is easy to check (see

(3.65) and (3.78)) that Φ3(σ
(0)
n , Tn+1, ξ

(0)
n+1) = 0 that is the thermoelastic predictor

will not violate (4.3e), however, the final state does, because the stress increases due

to the increase in stiffness caused by the M t → A transformation. Therefore the

inconsistent and active surfaces are not necessarily the same.

Assume, for a moment, that it is known which transformation(s) are active during
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the load step. Suppose first, that only one transformation is active, say Φα. This

implies that the corresponding volume fraction, denoted also by ξα, has nonzero rate3.

That is, ξ̇α 6= 0, and the corresponding consistency conditions (4.3) is satisfied, iff,

Φα(σn+1, Tn+1, ξn+1) = 0. (4.17)

Therefore, during the transformation correction, one has to solve (4.10) along with the

last equation. This is done by Newton’s method: For the given k-th iterate of σ
(k)
n+1,

ε
in(k)
n+1 and ξ

(k)
n+1, find the k + 1 iterates by linearizing F and Φα around

(
σ

(k)
n+1, ξ

(k)
n+1

)
and requiring that:

F(k) +
∂F(k)

∂σ
: ∆σ(k) +

∂F(k)

∂ξα
∆ξ(k)

α = 0, (4.18)

Φ(k)
α +

∂Φ
(k)
α

∂σ
: ∆σ(k) +

∂Φ
(k)
α

∂ξα
·∆ξ(k)

α = 0. (4.19)

The shortcut notation for F(k) = F
(
σ

(k)
n+1, ξ

(k)
n+1

)
, Φ

(k)
α = Φα

(
σ

(k)
n+1, Tn+1, ξ

(k)
n+1

)
and

all their derivatives is used. When the increments ∆σ(k) and ∆ξ
(k)
α are determined

from the above system of linear equations, the stress and the internal variable are

updated according to

σ
(k+1)
n+1 = σ

(k)
n+1 + ∆σ(k), ξα

(k+1)
n+1 = ξα

(k)
n+1 + ∆ξ(k)

α ,

and ε
in(k)
n+1 is updated according to equation (4.6).

If two of the transformations are active, say Φα and Φβ, then during the correc-

tion, equation (4.10) along with

Φα(σn+1, Tn+1, ξn+1) = 0, (4.20)

3If Φα ∈
{
Φ+

1 ,Φ
−
1

}
then the internal variable responsible is ξα = ξ1, if Φα ∈{

Φ+
2 ,Φ

−
2

}
then ξα = ξ2 and if Φα = Φ3 then ξα = ξ3
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Φβ(σn+1, Tn+1, ξn+1) = 0, (4.21)

is being solved, again by a Newton’s method: For the given k-th iterate of σ
(k)
n+1,

ε
in(k)
n+1 and ξ

(k)
n+1 find the k+1 iterates by linearizing F, Φα and Φβ around

(
σ

(k)
n+1, ξ

(k)
n+1

)
and requiring that:

F(k) +
∂F(k)

∂σ
: ∆σ(k) +

∂F(k)

∂ξα
∆ξ(k)

α +
∂F(k)

∂ξβ
∆ξ

(k)
β = 0, (4.22)

Φ(k)
α +

∂Φ
(k)
α

∂σ
: ∆σ(k) +

∂Φ
(k)
α

∂ξα
·∆ξ(k)

α +
∂Φ

(k)
α

∂ξβ
·∆ξ(k)

β = 0, (4.23)

Φ
(k)
β +

∂Φ
(k)
β

∂σ
: ∆σ(k) +

∂Φ
(k)
β

∂ξα
·∆ξ(k)

α +
∂Φ

(k)
β

∂ξβ
·∆ξ(k)

β = 0. (4.24)

When the increments ∆σ(k), ∆ξ
(k)
α and ∆ξ

(k)
β are determined from the above system

of linear equations, the stress and the internal variable are updated according to

σ
(k+1)
n+1 = σ

(k)
n+1 + ∆σ(k), ξα

(k+1)
n+1 = ξα

(k)
n+1 + ∆ξ(k)

α , ξβ
(k+1)
n+1 = ξβ

(k)
n+1 + ∆ξ

(k)
β ,

and ε
in(k)
n+1 is updated according to equation (4.6).

This completes the outline the return mapping algorithm. The details of solving

the linear system (4.18)-(4.19) or (4.22)-(4.24), including the functional form of the

derivatives involved will not be discussed.

It is important to note that when Φ±
2 is the only active surface, the iteration

(4.18),(4.19) reduces to the Closest Point Projection method of Qidwai and Lagoudas

(2000a). In the later work, the algorithm is formulated by defining a residual for the

flow rule (4.6), instead of (4.8). It is easy to show that the two lead to the same

algorithm. The current approach has the advantage that by taking the residual of

Hooke’s law the algorithm generalizes for the twinning transformation A ↔ M t in

which no transformation strain is generated.
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1.2.3. Active surfaces and other implementation details

Returning to the question, which transformation surfaces are active during the cor-

rection, observe, that at any time during the loading step, they can be separated into

two groups, F =
{
Φ+

1 ,Φ
+
2 ,Φ3

}
and B =

{
Φ−

1 ,Φ
−
2 ,Φ3

}
. If two phase transformation

are active, say Φα and Φβ, then either Φα,Φβ ∈ F or Φα,Φβ ∈ B. The inconsistent

surfaces from the predictor state need not follow the same rule. However, observe

that the elastic prediction is a continuous mapping of σn+1 with respect to Tn+1

and εn+1 and the loading step n+ 1 is part of a continuous loading path (4.4)-(4.5).

Then, for some sufficiently small loading parameter λ, the thermoelastic predictor for

the state n + λ will satisfy the above criterion. Since the thermoelastic prediction

is a computationally inexpensive process, if the current prediction cannot determine

wether the loading step belongs to F or B, the simplest practical approach is to take

λ = 1
2
, 1

4
, ... until this can be determined.

Once this is done, in order to find which transformation(s) are active, the natural

way is to attempt a correction of the ones which are violated first. It may happen

that after the correction, some other transformation surface becomes inconsistent, or

the increment of the corresponding volume fraction is inconsistent (the consistency

conditions also specify the sign of ξ̇, that is, if active surface is Φ−
1 , then ξ1n > ξ1n+1,

etc.). In such case the brute force approach of attempting all possible single and

double transformations from the active set is used.

The last important detail is how to terminate the transformations, that is how to

impose the constrains (3.2). Again, without loss of generality, suppose the correction

step was restoring consistency of Φ−
1 , and either

c3n+1 < 0,
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or

c1n+1 > 1.

Suppose c1n+1 > 1. The volume fraction can be treated as a continuous, monotonous

function of the loading parameter λ and, which is more, c1n < 1, therefore the equation

c1n+λ = 1

has a root λ in the interval λ ∈ [0, 1]. Given such precise information about the

location of the root and that the explicit form of c1n+λ as a function of λ does not seem

easy to determine, a modified secant’s method is used to determine a the root of the

above equation. Each evaluation of c1n+λ consists of performing the transformation

correction method.

1.3. Algorithmic tangent stiffness (Jacobian)

So far the return-mapping algorithm described in this section calculates the state vari-

ables at the current time step n+ 1 at a material point. Depending on the numerical

method used to solve a boundary value problem, the calculation of the state variables

at material points may not be sufficient. By far the most popular numerical method

for solving boundary value problems in quasi-static elasticity problems is the Finite

Element Method. When the material is nonlinear, as is the SMA, the discretization

generated by the FEM results in a system of nonlinear algebraic equations. If the

FEM method is displacement based and this system is solved via a gradient type of

method (such as Newton’s method), it becomes necessary to compute not only the

state variables, but also the derivatives of stress with respect to strain at a material

point. These derivatives are usually referred to as the algorithmic tangent stiffness

(cf., e.g., Simo and Hughes, 1998) and will be denoted by L. The reader is referred to
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Appendix B for short summary of a displacement based FEM, the resulting system of

algebraic equations and how this jacobian L appears when Newton’s method is used

to solve this nonlinear algebraic system.

The algorithmic tangent stiffness and thermal modulii will now be defined. Re-

call (Section 1.1), that the loading step is defined by specifying the strain εn+1 and

temperature Tn+1. All the remaining state variables σn+1, ξn+1, ξ̇n+1 and εin
n+1 are

determined using the system of equations and constraints (4.6), (4.7) and (4.3). Thus,

they can be treated as implicit functions of εn+1 and Tn+1, and in particular:

σn+1 = σ̃n+1 (εn+1, Tn+1) . (4.25)

The tangent stiffness and thermal tangent modulii are defined by:

L :=
∂σ̃n+1 (εn+1, Tn+1)

∂εn+1

(4.26)

and

M :=
∂σ̃n+1 (εn+1, Tn+1)

∂Tn+1

, (4.27)

respectively. The tangent stiffness is a fourth-order tensor while the thermal tangent

is a second-order tensor.

Our goal is to arrive at an analytical expression for L, given our inelastic SMA

constitutive theory and the selected return mapping algorithm. In general it depends

on which transformation surfaces are active. The subscript n+ 1 will be omitted for

the rest of the derivation, and all state variable without subscript will, by default, be

considered at time step n+1. The thermal tangent modulii are listed for completeness

only, since they are required when a coupled, thermo-mechanical problem is solved

and such problems are not considered in this work. The derivation of M follows the

same procedure that is used for L given below, so it is left to the reader.
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To derive L, first, it is useful to notice that if a volume fraction ξα is active

during the loading step, then its derivative with respect to strain can be evaluated.

Indeed, suppose first the only one transformation surface is active during the loading

step and ξα is the active variable. This implies that

Φα(σ, ξα) = 0,

so ξα is an implicit function of σ. The remaining variables which Φα is a function of

do not change during the loading step, so they are suppressed. In view of equation

(4.25) the last equation can be differentiated by ε to obtain:

∂Φα

∂σ
:
∂σ

∂ε
+
∂Φα

∂ξα

∂ξα
∂ε

= 0.

Therefore, if the 2-nd order tensor Ξα is defined as

Ξα = −∂Φα

∂σ

/
∂Φα

∂ξα
, (4.28)

then

∂ξα
∂ε

= Ξα :
∂σ

∂ε

is the derivative of ξα with respect to ε. Note that transformation surface and its

derivatives have a well defined functional form, so this quantity can be evaluated

directly for any values of σ, T and ξ.

If, on the other hand, two surfaces are active, say Φα and Φα, then the appropriate

derivatives are calculated in the same way, but this time a 2× 2 linear system has to

be solved:  Ξα

Ξβ

 := −


∂Φα

∂ξα

∂Φα

∂ξβ

∂Φβ

∂ξα

∂Φβ

∂ξβ


−1 

∂Φα

∂σ
∂Φβ

∂σ

 , (4.29)
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and

∂ξα
∂ε

= Ξα :
∂σ

∂ε
, (4.30)

∂ξβ
∂ε

= Ξβ :
∂σ

∂ε
. (4.31)

Finally, let

Ξα = 0, (4.32)

whenever Φα is not an active surface.

To summarize, Ξα is given by equation (4.28) if only one transformation is active,

by (4.29) if two are active and by (4.32) if Φα is not an active transformation surface.

With these definitions, the tangent stiffness L is given by the formula:

L =
[
(∆S : σ + ∆α(Tn+1 − T0))⊕ (Ξ1 + Ξ2) + S(ξ) + Λt ⊕Ξ2

+Λd ⊕Ξ3 + (ξ2 − ξ2n)
∂Λt

∂σ
+ (ξ3 − ξ3n)

∂Λd

∂σ

]−1

(4.33)

The formula will be proven only for the case when Φ1 and Φ2 are active. Checking

all other possibilities of active transformation surfaces is left to the reader. Note that

the above formula includes derivatives of the transformation flow tensors. Since both

Λt and Λd are J2 based, the reader is referred to the work of (Qidwai and Lagoudas,

2000a) for the functional form of these derivatives, as well as the derivation itself.

So, assume, that ξ1−ξ1n 6= 0, ξ2−ξ2n 6= 0 and ξ3 = ξ3n and differentiate equation

(4.8) with respect to ε. Note, that for fixed T , all the quantities in this equation are

either implicit functions of ε or enter as constants, e.g. independent of ε. By applying
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the product rule and, very carefully, the chain rule, the following result is obtained:

0 =
∂

∂εn+1

(S(ξ)σ)− I +
∂

∂εn+1

(α(ξ) (Tn+1 − T0)) +
∂

∂εn+1

(
(ξ2 − ξ2n)Λt(σ)

)
=
∂S(ξ)

∂εn+1

: σ+ : S(ξ) :
∂σ

∂εn+1

− I +
∂α(ξ)

∂εn+1

(Tn+1 − T0)

+

(
∂ξ2
∂εn+1

)
⊕Λt(σ) +

(
(ξ2 − ξ2n)

∂Λt(σ)

∂εn+1

)
=

(
∂S(ξ)

∂ξ
· ∂ξ

∂εn+1

)
: σ + (Tn+1 − T0)

∂α(ξ)

∂ξ
· ∂ξ

∂εn+1

+ S(ξ) :
∂σ

∂εn+1

− I

+

(
Ξ2 :

∂σ

∂εn+1

)
⊕Λt(σ) +

(
(ξ2 − ξ2n)

∂Λt(σ)

∂σ
:
∂σ

∂εn+1

)
, (4.34)

where I is the fourth-order identity tensor4. Now, using equation (3.38), (4.30) and

(4.31), observe that:(
∂S(ξ)

∂ξ
· ∂ξ

∂εn+1

)
: σ + (Tn+1 − T0)

∂α(ξ)

∂ξ
· ∂ξ

∂εn+1

=

(∆S : σ + (Tn+1 − T0) ∆α)⊕
(

∂ξ1
∂εn+1

+
∂ξ2
∂εn+1

)
=

[(∆S : σ + (Tn+1 − T0) ∆α)⊕ (Ξ1 + Ξ2)] :
∂σ

∂ε
. (4.35)

Therefore, by combining with (4.34), rearranging the terms, and factoring ∂σ/∂ε the

following, hopefully correct, identity is obtained:

I = [(∆S : σ + (Tn+1 − T0) ∆α)⊕ (Ξ1 + Ξ2) + S(ξ)

+Λt ⊕Ξ2 + (ξ2 − ξ2n)
∂Λt(σ)

∂σ

]
:
∂σ

∂ε
. (4.36)

4That is, I : v = v for any second order tensor v, or in indicial notation, I =
Iijkl = δikδjl.
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After inverting the fourth order tensor5, the final result is obtained:

∂σ

∂ε
= [(∆S : σ + (Tn+1 − T0) ∆α)⊕ (Ξ1 + Ξ2)

+S(ξ) + Λt ⊕Ξ2 + (ξ2 − ξ2n)
∂Λt(σ)

∂σ

]−1

. (4.37)

Remember that ξ3 = ξ3n, that is Φ3 is not an active surface and hence by the definition

(4.32), Ξ3, it is identically zero. Therefore, (4.33) reduces to (4.37) when Φ1 and Φ2

are the active surfaces.

As a final remark, observe that the discretized flow rule (4.6) enters in the ex-

pression for L and as a result the later includes a dependency ξin+1 − ξin, i = 2, 3,

as well as the derivative of the transformation flow tensors. A different discretiza-

tion of (4.2) would have resulted in a different flow rule, so L is algorithmic specific,

hence the name algorithmic tangent. As can be seen from Appendix B, this is the

precise derivative required when solving the nonlinear FEM equations. For a further

discussion, see Simo and Hughes (1998).

2. Numerical examples

The numerical examples considered in this section were all solved using a displacement

based Finite Element Method (FEM). A short summary of the method for nonlinear

5The author of this thesis has, in the early stages of the research, been puzzled by
the question ”what is the inverse of a fourth-order tensor?”. After all, second-order
tensors are, well, ”just matrices”, so one knows what is an inverse. The definition of
a fourth-order states that it is a linear mapping of the space of second order tensors,
so therefore, the inverse is the inverse mapping. To visualize this, index notation
helps. Say A = Aijkl is the fourth order tensor and the tensor v = vij is mapped by
contraction of the last two indices: Aijklvkl. Well, map uniquely the nine pairs (i, j)
to an index I = 1, 2, ..., 9 (for example, I = 3 ∗ (i − 1) + j ) and (k, l) to an index
J = 1, 2, ..., 9 and observe that A becomes the 9× 9 matrix AIJ , which we know how
to invert.
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problems6 and the integration of the closest point projection method of the previous

section is given in Appendix B. The SMA material subroutine7 implementing the

closest point projection algorithm was written in the C++ programming language and

is provided in Appendix C. All discretizations used triangular/tethrahedral meshes

and the finite element spaces used were the usual linear Lagrangian ones. The SMA

material properties used again represent the generic SMA material given in Table IV.

2.1. Constrained heating of a perforated square

In this section we consider constrained cooling of a perforated square cross-section

(Figure 32). The SMA material is initially in the self-accommodated phase, i.e.

c1 = 1 everywhere in the domain. The thermomechanical loading that the square is

subjected to is shown on Figure 33. The SMA is first loaded mechanically at isother-

mal temperature T = 260 ◦K as follows: the left side of the square is fixed against

horizontal displacement, but is allowed to move in the vertical direction; the right side

is pulled uniformly by the amount of 0.002m in the horizontal direction and the side

is again allowed to move in the vertical direction; the remaining part of the bound-

ary (including the hole) is stress free. The second loading step consists of keeping

the horizontal component of the displacement fixed and raising the temperature to

T = 350 ◦K.

6The FEM software used and all other related components (excluding mesh genera-
tion) such as numerical linear algebra subroutines and graphical post-processing tools
were developed by the author. They were implemented in the Object Pascal program-
ming language (except the material subroutine, which is written in C++) and com-
piled with Borlandr Delphi�, version 2.01. The Triangle, version 1.4, mesh generat-
ing software was used for meshing 2-D domains (Shewchuk, 2002) and the Netgen, ver-
sion 4.0, was used for meshing 3-D domains. Netgen is developed by Joachim Schöberl
and can be downloaded (as of March 2005) from http://www.hpfem.jku.at/netgen/.

7Historical note: subroutine is the keyword for a function in FORTRAN, an
archaic programming language.
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Fig. 32. Schematic of the mechanical boundary conditions applied for the perforated

square model problem.

Loading step

Displacement
Temperature

10 2

T0

∆u, T1

Fig. 33. Schematic of the loading path followed for the boundary conditions.
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The first loading step was used to determine a suitable mesh size for the entire

simulation. This was done by starting with a very coarse mesh (Figure 34) and con-

secutively refining it (Figures 35–38). Due to obvious symmetry consideration, only

one quarter of the domain was used in the calculations. The stresses are shown as is,

i.e. piecewise constant over each element. Since no error estimator was implemented

in 2D, the solution is judged to be accurate enough when the pictures become smooth

enough. That is, the relative difference between stresses in neighboring elements is

small in the eye-ball norm. While the solution shown on Figure 38 (110793 ele-

ments, 111994 DOF) is clearly the best, in complicated nonlinear problems the cost

of assembly and the memory requirements needed to save the material state at each

integration point make it desirable to keep the number of elements at a minimum. In

this respect, the second refinement (8964 elements, 9274 DOF) is acceptable enough

and was used in the rest of the simulations.

During the first loading step, stress concentrations developed near the top and

bottom edge of hole. The effective stress in these locations become sufficiently high

for the detwinning of small amounts of self-accommodated martensite as shown on

Figure 39.

When the second loading step begins, the material experiences initial linear ther-

moelastic expansion. Since the conditions are of plane strain, and the prescribed

displacements are fixed, this results in a nonhomogeneous change in the stress state.

As the critical temperature for the M t → A transformation is reached, the self-

accommodated martensite begins to transform to austenite. The stiffness of austenite

is approximately 2.3 times that of martensite (see Table IV) and due to the boundary

condition the stresses increase throughout the square. This causes further detwinning

of martensite in some areas of the square, resulting in a simultaneous M t → A,Md

transformation, mostly near the top and bottom parts of the hole (Figure 40). This is



149

(a) Mesh, h ∼ 0.04, 1286 DOF (b) σ11

(c) σ22 (d) c2

Fig. 34. Basic mesh used to perform the first loading step, T = 260.
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(a) Mesh, h ∼ 0.02, 3118 DOF (b) σ11

(c) σ22 (d) c2

Fig. 35. First refinement, T = 260, end of first loading step.



151

(a) Mesh, h ∼ 0.01, 9274 DOF (b) σ11

(c) σ22 (d) c2

Fig. 36. Second refinement, T = 260, end of first loading step. This mesh was selected

for the rest of the simulation.
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(a) Mesh, h ∼ 0.005, 31054 DOF (b) σ11

(c) σ22 (d) c2

Fig. 37. Third refinement, T = 260, end of first loading step.
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(a) Mesh, h ∼ 0.0025, 111994 DOF (b) σ11

(c) σ22 (d) c2

Fig. 38. Fourth refinement, T = 260, end of first loading step.
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(a) Von-Mises Stress at T = 260 ◦K (b) Von-Mises Stress at T = 280 ◦K

Fig. 39. Solution for square hole problem at T = 260 ◦K and T = 280 ◦K. Show is

the evolution of the effective Von-Mises stress at the beginning of the heating

loading step. The stress decreases due to thermal expansion of the material.

manifested in further increase in c2 in comparisons to the amount that was produced

during the first loading step. The effective stress and c2 after the completion of the

M t → A transformation are shown on Figure 41.

The areas, where detwinned martensite is present have generally higher effective

stress (above σs), compared to the rest of the domain. Hence, the reverse trans-

formation of detwinned martensite (Md → A) does not happen until much higher

temperature, due to the fact the corresponding transformation surfaces exhibit stress

dependence (see Figure 27). Around T = 335 ◦K, the Md → A transformation begins

in areas with lowest effective stress. During this phase, the inelastic strains decrease

according to the transformation rule (3.9),(3.67). Again, due to the constraint on

the displacements, imposed by the boundary conditions, the elastic portion of the

stress generally increases which leads to a corresponding (non-uniform) increase in

the stress during the reverse transformation (Figures 42-45).
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2.2. A 3-D structural member

In order to test the numerical implementation in 3-D, a structural member is consid-

ered. The geometry, part of a periodic planar arrangement, is shown in Figure 47.

This type of SMA structural members have various applications in active deformable

surfaces such as self-expanding medical stents and grafts (Jung et al., 2004), impact

absorbing meshes or filters with varying cross-section.

Two loading steps are considered, similar to the ones of the previous section.

In the first, the SMA structural member is compressed in the x direction until the

displacements at side B (see Figure 47) reach 0.2mm. This step corresponds to

the initial shrinkage of the stent. The second loading step consists of keeping the

displacements fixed and raising the temperature by 100 ◦K. The initial condition is

twinned martensite.

The two loading steps are of the same type as the previous example, so the same

type of behavior is observed as in the perforated square block. Initially, (see Figures 48

and 49) small amount of Md is produced from M t, reaching a maximum of about

12%. Heating causes first an increase of stiffness due to the M t → A transformation

and, due to the boundary conditions, this results in an increased stress. The later

causes some additional Md → A transformation, which, as in the previous example,

occurs simultaneously with theM t → A one. The maximum amount of the detwinned

volume fraction is achieved after the depletion of M t and is about 22% (Figure 50).

The reverse, Md → A transformation occurs at about 337 ◦K and leads to sharp

rise in the stress (Figures 51). By 360 ◦K (Figure 52) a substantial part of the

the detwinned martensite has transformed back to austenite. The evolution of the

maximal effective (Von-Mises) stress in the stent is shown on Figure 53.

This example demonstrates that the numerical implementation behaves in a ro-
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bust way in both two and three dimensions and under multiple simultaneous/consec-

utive transformations.
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(a) Von-Mises Stress (b) M t volume fraction (c1)

(c) Md volume fraction (c2) (d) Volume fraction of austenite (c3)

Fig. 40. Solution for square hole problem at T = 310 ◦K. As the material is slowly

heated, the reverse transformation M t → A occurs (c). Since the austenite

is considerably stiffer than martensite, and the material is constrained, the

stresses also increase. This results in a simultaneous M t → A,Md transfor-

mation, which is manifested in increase in the volume fraction of Md (a,b).
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(a) Von-Mises Stress (b) Md (c2) (c) A (c3)

Fig. 41. Solution for square hole problem at T = 320 ◦K. At this temperature, M t is

already depleted. The maximum effective stress is approximately 104MPa.

The volume fraction of Md (b) has reached approximately 8.8% and the rest

is in the A phase (c). Note, that Figures 41-46 are drawn to the same scale.)

(a) Von-Mises Stress (b) Md (c2) (c) A (c3)

Fig. 42. Solution for square hole problem at T = 330 ◦K. At T = 330 ◦K the heat-

ing has caused only thermal expansion of the material. Due to the plane

strain conditions, this results in non-proportional change of σ11 and σ22 in

comparisons to σ33. Subsequently, the Von-Mises stress has changed and its

maximum is now 97MPa.
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(a) Von-Mises Stress (b) Md (c2) (c) A (c3)

Fig. 43. Solution for square hole problem at T = 335 ◦K. Now the temperature has

risen just enough to activate the reverse, Md → A, transformation. The

maximum effective stress is approximately 96MPa and c2 has decreased to

8.2%.

(a) Von-Mises Stress (b) Md (c2) (c) A (c3)

Fig. 44. Solution for square hole problem at T = 340 ◦K. Further heating causes

further Md → A transformation and, therefore, a decrease in c2 (b). The

maximum value for c2 is now 5.6%. The inelastic strains (not shown) also

decrease (see equations (3.9 and (3.67))) and, due to the constrained displace-

ment the stresses (a) begin to increase compared to previous temperatures.

The maximum value for the Von-Mises stress (a) is now 115MPa.
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(a) Von-Mises Stress (b) Md (c2) (c) A (c3)

Fig. 45. Solution for square hole problem at T = 350 ◦K. By this temperature, the

Md → A is complete almost everywhere in the domain (c) with the maximum

for c2 being 0.7%. Note that the maximum value for the effective stress has

increased to approximately 166MPa (a), thanks to the boundary conditions

and decrease in the inelastic strains.

(a) Von-Mises Stress (b) Md (c2) (c) A (c3)

Fig. 46. Solution for square hole problem at T = 360 ◦K. The Md → A is now

complete everywhere and the maximin the domain (c). The maximum value

for the effective stress has increased to approximately 181MPa (a).
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Fig. 47. Schematic of the 3-D SMA structural member geometry. The member is cut

from a planar SMA sheet. The cutting pattern is shown on the top left part

of the figure. The unit cell geometry used for the model problem is shown in

2D projection. All dimensions are in generic. The out of plane thickness is

0.4. All displacements on side A are fixed, and side B is displaced by 0.2 and

allowed to slide in the y and z directions.



162

Fig. 48. Von-Mises stress in the 3-D SMA structural member at T = 260 ◦K.
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Fig. 49. Md volume fraction in the 3-D SMA structural member at T = 260 ◦K.
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Fig. 50. Md volume fraction in the 3-D SMA structural member at T = 330 ◦K.



165

Fig. 51. Von-Mises stress in the 3-D SMA structural member at T = 360 ◦K.
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Fig. 52. Md volume fraction in the 3-D SMA structural member at T = 360 ◦K.
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Fig. 53. Evolution of the effective (Von-Mises) stress during heating. Plotted is the

maximal value. The first region, where the stress increases is between 295 ◦K

and 315 ◦K and is caused by change in stiffness due to the M t → A transfor-

mation. The second region, where the stress increases happens at T ≥ 335 ◦K,

where the transformation strain decreases due to the Md → A transforma-

tion. Because of the fixed displacement boundary conditions, in both cases

the stress increases.
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CHAPTER V

FLUID-STRUCTURE INTERACTION PROBLEMS WITH APPLICATIONS TO

SMA BASED DEVICES

In this chapter the problem of fluid flow in deformable porous media is studied.

First, the stationary fluid-structure interaction (FSI) problem is formulated in terms

of incompressible Newtonian fluid and a linearized elastic solid. The flow is assumed

to be characterized by very low Reynolds number and is described by the Stokes

equations. The strains in the solid are assumed small, however, no restrictions are

applied on the magnitude of the displacements. Thus, even when linearized elasticity

is used to describe the solid, the resulting FSI problem is nonlinear. For most of

this chapter, the solid is assumed to be a linearized elastic one, but SMA materials

are also considered. The FSI problem is solved numerically by an iterative procedure

which solves sequentially fluid and solid subproblems. Each of the two subproblems is

discretized by the Finite Element Method (FEM) and the fluid-structure coupling is

reduced to an interface boundary condition. Several numerical examples are presented

that illustrate the behavior of the numerical method.

The FSI problem, in general, does not posses closed form solutions even for simple

geometries. This makes very difficult validating numerical schemes for its solution.

Asymptotic results however are available in the literature. Iliev et al. (2004) recently

derived an asymptotic solution to the FSI problem restricted to channel geometries

and isotropic linear elastic solids. The derivation is summarized in Appendix A. The

objectives of this chapter are twofold. First, a numerical computation is performed

which is used to verify the numerical solutions in comparisons with an asymptotic

solution to the FSI problem (Section 3.2). This increases the degree of confidence

with which such numerical methods can be used in the absence of solid mathematical
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understanding of their properties. Secondly, the numerical approach is then extended

to FSI problems involving SMA materials instead of linearized elastic solids. The

strong temperature dependence of the SMA allows to construct temperature sensitive

flow regulating devices with many practical applications. A simulation of a flow in

an channel with SMA segment at different temperatures is performed in the end of

this chapter (Section 4). The model developed in Chapter III is especially suited for

simulating such devices since it captures correctly the phenomena occurring in SMAs

over a wide temperature range.

1. The fluid-structure interaction (FSI) Problem

Before the fluid structure problem is presented, we begin with a brief summary of

the notation used, the formulation of the fluid, and solid problems alone. Consider

a continuum body, defined as an open subset Ω ⊂ R3. The reference configuration

representing the body before the deformation has begun is denoted by Ω0 and the

deformed configuration by Ω. Further, we are concerned with stationary processes so

the both the Lagrangian fields associated with the solid are time independent as are

the Eulerian ones for the fluid. The material coordinates are denoted by p and the

spatial ones by x.

1.1. Solid

Consider the solid first. It undergoes a continuous, invertible deformation

x = x(p),
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so the reference and deformed configurations are connected by Ω = x(Ω0, t). The

deformation gradient is denoted by F:

F(p) = ∇x(p), (5.1)

and the displacements u(p) are given by

u(p) = x(p)− p. (5.2)

The usual infinite small strain tensor is introduced:

E(p) =
1

2

(
∇u(p) +∇u(p)T

)
(5.3)

and the Cauchy stress is denoted by T(x). Note that, T(x) is a spatial field repre-

senting the stress in the deformed configuration. The field equations for elastic bodies

are best formulated in material description, so the first Piola-Kirchhoff stress tensor

S(p) will be used. It is related to T(x) by:

S(p) = det(F(p))T(x(p))F−T (p). (5.4)

For most of this chapter only linearized elastic solids will be considered. Fluid

structure problems involving SMAs materials will be solved numerically in Section 4

in the end of this chapter. To simplify the presentation, the formulation of the solid

problem will be in terms of a linearized elastic solid. The necessary changes to model

nonlinear hysteretic materials in a FSI problem will be discussed in Section 4.

Hyperelastic bodies in general are defined as materials for which S is the gradient

of a potential1, that is, there exists a scalar functionW (F), called energy-density, such

1Equivalently, hyperelastic materials can be defined as materials which produce
non-negative work on a closed cycle, (cf., e.g., Gurtin, 1981, pg. 184-191)
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that:

S(F) =
∂W (F)

∂F
. (5.5)

Then, given a body force b0 in the reference configuration, the boundary value prob-

lem for a solid is stated (in the reference configuration) as follows: Find u(p) such

that:

∇ · S + b0 = 0 in Ω0, (5.6)

with Dirichlet

u = û on ΓD
0 (5.7)

and/or Neumann

Sn0 = ŝ on ΓN
0 (5.8)

boundary data, with the usual conditions ΓD
0

⋂
ΓN

0 = ∅ and ΓD
0

⋃
ΓN

0 = Γ0. Under

the assumption that S(I) = T(I) = 0 and the assumption that ∇u is small one can

introduce the fourth-order, linearized elasticity tensor

C = DS(I) (5.9)

It is a simple calculation to show (see the proposition on pg. 194 in Gurtin (1981))

that:

C = DT(I) (5.10)

and

S = C : E + o(∇u). (5.11)

As a result, the balance of linear momentum (5.6) is linearized as

−∇ · (C : E) = b0. (5.12)

The relation (5.11) is known as Hooke’s law. Note that, for an isotropic material,



172

the elasticity tensor C is necessarily expressed in terms of the two Lame constants,

λs and µs (cf., eg., Gurtin, 1981; Malvern, 1969), so the stress tensor reduces:

S = λstr (E) I + 2µsE. (5.13)

1.2. Newtonian fluid at low Reynolds number

Newtonian fluids are best described using spatial fields. For stationary problems (the

spatial description of all involved quantities is time independent), one has a velocity

v(x) and correspondingly, the symmetric part of the velocity gradient, namely, the

stretching tensor D(x) given by:

D(x) =
1

2

(
∇v(x) +∇v(x)T

)
. (5.14)

By definition, a Newtonian fluid is one for which (cf., e.g., Gurtin, 1981; Malvern,

1969):

T = −pI + 2µD, (5.15)

where µ is the absolute viscosity of the fluid2. The fluid must satisfies the conservation

of mass, that is:

∇ · v = 0, (5.16)

and conservation of linear momentum

(v · ∇)v = −1

ρ
∇p+

µ

ρ
∆v +

1

ρ
b, (5.17)

where b is a distributed body force (per unit volume) acting on the fluid. With the

additional assumption that the term (v · ∇)v is small with respect to the rest of the

2To be precise, a Newtonian fluid is one for which the Cauchy stress T is a linear
function of the velocity gradient D. There is a beautiful theorem (cf., e.g., Gurtin,
1981, pg. 147-151) which states that invariance under change of observer implies that
the fluid is isotropic. In other words, µ is a single scalar.
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(a) Reference configuration (b) Deformed configuration

Fig. 54. Schematic of the fluid and solid domains of the FSI problem.

terms in (5.17) and can be disregarded, the balance of linear momentum takes the

form

−µ∆v +∇p = b. (5.18)

The system (5.16),(5.18) is known as the Stokes equations.

In order to simplify notation, it is convenient to introduce the symmetric part of

gradient operator:

e (w) =
1

2

(
∇w + (∇w)T

)
,

for some field w. Observe, that E = e (u) and D = e (v).

1.3. Statement of the coupled FSI problem

Consider now the stationary fluid-structure problem (Figure 54) in the deformed

configuration Ω = Ωf ∪ Ωs, where the fluid occupies Ωf , the solid occupies Ωs and

Ωf ∩ Ωs = ∅. The part of the boundary shared between the fluid and the solid is

denoted by ΓI = ∂Ωf∩∂Ωs. Further, in order to keep things simple (but not simpler!)

it is assumed that the deformation x(p) is such that contact problems, break-up of

the boundary, cavitation of the fluid and other bizarrities do not occur. There are two
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conditions on the interface. First kinematic compatibility between the deformations

in the solid and fluid must be satisfied, i.e. the deformation x(p) must be continuous

across the interface. Consider for a moment a time-dependent deformation which,

starting from fluid and solid at rest (x(p)|t=0 = 0 in Ω0), leads to some stationary,

deformed configuration. It is clear that a sufficient condition for compatibility is that

the velocity of the fluid on the interface should be equal to the velocity of the interface

itself throughout the deformation. This, for a stationary problem, implies that

v = 0 on ΓI . (5.19)

Further, continuity of tractions on the interface is also required, namely (cf., e.g., Lee

and Mei, 1997):

Tfn = Tsn on ΓI (5.20)

where n = ns and ns is the outward normal to the solid domain. The stress Tf in the

fluid is given by equation (5.15). Further, the Cauchy stress Ts can be expressed in

terms of the Piola-Kirchhoff stress using equation (5.4), which together with Hooke’s

law (5.11) imply:

−pn + 2µe (v)n = det(F)−1(C : e (u))FTn on ΓI . (5.21)

The FSI problem therefore consists of finding the interface between the two

domains, a velocity, pressure and displacements which solve the Stokes (5.16), (5.18),

and Navier’s equations (5.12) respectively, and also satisfy the interface conditions

(5.19) and (5.21). More formally, the FSI boundary-value problem is summarized

below in terms of the unknowns ΓI , v, p and u: Find ΓI , v, p and u such that:

ΓI =
{
p + u(p)|∀p ∈ ΓI

0

}
, (5.22)
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−µ∆v +∇p=b in Ωf ,

∇ · v=0 in Ωf ,

−∇ · (C : e (u))=b0 in Ωs
0,

(5.23)

det(∇u + I)(−pI + 2µe (v)) (∇u + I)−T n0 = (C : e (u))n0 on ΓI
0, (5.24)

v satisfies the kinematic interface condition (5.19) and in addition v, p and u should

also satisfy any boundary conditions that might be specified on ∂Ω\ΓI . Equation

(5.24) is the continuity of tractions (5.21) expressed on the reference position ΓI
0 by

inverting the deformation gradient on the interface. Note that this can always be done

because of the kinematic compatibility condition. Observe also that the position of

the interface is part of the boundary value problem, and the solid-fluid coupling term

(5.24) makes it a nonlinear one.

1.4. Weak form of the elasticity, Stokes and FSI problems

Consider a bounded Lipschitz domain Ω and let (·, ·)Ω be the usual inner product on

L2(Ω) and, as there is no chance of confusion, also the inner product on [L2(Ω)]
d
,

where d = 2, 3 is the size of the spatial dimension. Let Hs
0(Ω), −1 ≤ s ≤ 1 be

the Sobolev spaces and L2
0(Ω) be Hilbert space of functions in L2 having zero mean.

For complete development discussion on these subjects, including fractional Sobolev

spaces, see Lions and Magenes (1968). Suppose that both Ωs
0 and Ωf are Lipschitz

domains.

To formulate the elasticity problem, one introduces the bilinear form

aΩs
0
(u,w) =

∫
Ωs

0

(C : e (u)) : e (w)dp.

Let û0 ∈
[
H1/2(ΓD

0 )
]d

be the Dirichlet data given on ΓD
0 ⊂ ∂Ωs

0, ŝ be the Neumann

data given on ΓN
0 ⊂ ∂Ωs

0, and let b0 ∈
[
H−1(Ωf )

]d
be the distributed body force.
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The weak form of the linear elasticity problem is: Find u ∈ [H1(Ωs
0)]

d
such that:

aΩs
0
(u,w) = (b0,w)Ωs

0
+ (ŝ,w)ΓN

0
, ∀w ∈

[
H1

D(Ωs
0)
]d
, (5.25)

u = û0, on ΓD
0 . (5.26)

The first of the above equations is obtained by multiplying equation (5.12) by a

test function and integrating by parts. Note that the Neumann boundary condition

appears on the right hand side as the surface integral.

The stability of the weak elasticity problem follows from the classical Korn’s

inequality: There exists a positive constant C1 = C1(Ω
s
0) > 0 independent of u, such

that: ∫
Ωs

0

e (u) : e (u)dp ≥ C1||u||21,Ωs
0
∀u ∈

[
H1

D(Ωs
0)
]d
. (5.27)

The conditions for its validity and a proof of this nontrivial inequality can be found,

for example, in Girault and Raviart (1986); Nečas and Hlaváček (1981). It will be

assumed here that the elasticity tensor C and boundary conditions (5.7) and (5.8) are

such that (5.27) is satisfied. This is a standard subject which will not be discussed

further, the reader is instead referred to Nečas and Hlaváček (1981).

In the case of the Stokes problem assume, again for simplicity, that homogeneous

Dirichlet boundary data is given and let b ∈
[
H−1(Ωf )

]d
. The weak form of the Stokes

equation is: Find v ∈
[
H1

0 (Ωf )
]d

, p ∈ L2
0(Ω

f ) such that:

DΩf (v,w)− (p,∇ ·w)Ωf =(b,w)Ωf , ∀w∈
[
H1

0 (Ωf )
]d
,

−(∇ · v, q)Ωf =0, ∀q ∈L2
0.

(5.28)

Here DΩf (v,w) is the vector Dirichlet form

DΩf (v,w) =

∫
Ωf

µ∇v : ∇wdx.

The existence and uniqueness of solution to the Stokes problem follows from the clas-
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sical inf-sup condition3 (cf., e.g., Girault and Raviart, 1986): There exists a positive

constant C2 = C2(Ω
f ) > 0, independent of v and p, and such that:

inf
∀p∈L2

0(Ωf)
sup

∀v∈[H1
0 (Ωf )]

d

(p,∇ · v)2
Ωf

DΩf (v,v)||p||2
> C2. (5.29)

For a complete discussion of the weak problem (5.28) and condition (5.29) the reader

is referred to the book of Girault and Raviart (1986).

To write a weak form of the FSI problem, observe that the interface condition

(5.24) can be treated as a nonlinear Neumann boundary condition for the solid prob-

lem only. Accordingly, we introduce the nonlinear form:

gΓI
0
(v,u, p,w) =

∫
ΓI

0

{
det(∇u + I)(−pI + 2µe (v)) (∇u + I)−T n0

}
·wds. (5.30)

After integrating by parts the balance of linear momentum for the solid and fluid, it is

trivial to check that the boundary value problem (5.23)-(5.24) can be restated in the

following weak form: Find the interface ΓI , the deformed configuration of the fluid

domain Ωf , the displacements u ∈ [H1(Ωs
0)]

d
, velocity v ∈

[
H1

0 (Ωf )
]d

and pressure

p ∈ L2
0(Ω

f ) such that:

DΩf (v,w)− (p,∇ ·w)Ωf =(b,w)Ωf , ∀w∈
[
H1

0 (Ωf )
]d
,

−(∇ · v, q)Ωf =0, ∀q ∈L2
0,

aΩs
0
(u,w)=(b0,w)Ωs

0
+ gΓI

0
(v,u, p,w), ∀w∈[H1

D(Ωs
0)]

d
,

Γ={p + u(p)|∀p ∈ Γ0} .

(5.31)

In addition v, p and u should also satisfy the appropriate boundary conditions specified

on ∂Ω\ΓI .

3The inf-sup condition is also referred to by the name Ladyzenskaya-Babuska-
Brezzi (LBB) condition.
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2. Solution methods for the coupled FSI system

Upon introducing the finite-dimensional subspaces Uu, Uv and Up for the displace-

ments, velocity and pressure respectively, the first three equations in (5.31) lead to

the following nonlinear system of algebraic equations for v, p and u:
A(u) CT (u) 0

C(u) 0 0

0 0 K




v

p

u

 =


bf (u)

d

bs + g(u,v,p)

 , (5.32)

where the blocks A(u) and K correspond to the bilinear forms DΩf (·, ·) and aΩs
0
(·, ·),

while the blocks C(u) and C(u)T couple the velocity and pressure unknowns. Since

the position of ΓI and hence Ωf depends on u, both A and C are functions of the

displacement. The vector-columns bf (u) and bs correspond to the body force in the

fluid and solid respectively, modified by application of essential (Dirichlet, periodic,

etc.) boundary conditions. Note that the vector d appears in the right-hand side of

(5.32) when the essential boundary conditions are applied by matrix transformations.

If for example they are applied by a penalty method, then d ≡ 0.

It is important to observe that the coupling between the fluid and the struc-

ture (5.21) appears on the right hand side of (5.32) as the nonlinear vector-function

g(u,v,p) which corresponds to the form gΓI
0
(·, ·, ·, ·). Note that the fluid tractions on

acting on the solid are evaluated in the reference configuration, i.e. on ΓI
0.

2.1. Dirichlet-Neumann iterative scheme

One way to solve the system (5.31) is to use an iterative scheme which successively

solves separate problem on the two domains. Considering the following approach:

• Solve the Stokes equation in the fluid domain treating the solid as a rigid body;
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• Transfer the forces to the solid;

• Calculate the displacement field in the solid and then update the fluid domain.

The second step needs some further clarification. In order to solve an elasticity prob-

lem the boundary conditions should be specified on the reference configuration, while

the tractions computed from a fluid solution are given in the deformed configuration.

For given velocities and pressure, the interface condition (5.21) specifies the traction

on the solid domain in the deformed configuration, so we have to use the definition

(5.4) of the Piola-Kirchhoff stress tensor and convert the tractions to the reference

configuration. That is exactly what happens when g(· · · ) is evaluated. It is not dif-

ficult to check that the above algorithm corresponds to a fixed point iteration using

the following linearization of (5.32): Set u0 = 0, v0 = 0, p0 = 0; given (uk,vk, pk)
T ,

find (uk+1,vk+1, pk+1)
T such that:

A(uk) CT (uk) 0

C(uk) 0 0

0 0 K




vk+1

pk+1

uk+1

 =


bf (uk)

d

bs + g(uk,vk+1,pk+1)

 . (5.33)

Since the matrix on the left-hand side of the above equation is block-diagonal the

block corresponding to the fluid is solved first: vk+1

pk+1

 =

 A(uk) CT (uk)

C(uk) 0


−1 bf (uk)

d

 . (5.34)

Once vk+1 and pk+1 are available, the block corresponding to the solid, i.e.,

uk+1 = K−1 (bs + g(uk,vk+1,pk+1)) (5.35)

is solved. This iterative scheme can be expresses more explicitly in the following
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Algorithm 2.1.1. (Dirichlet-Neumann domain decomposition method for the FSI

problem) Set u0 = 0. For k = 0, 1, ... until convergence do:

1. Find vk, pk which satisfy the Stokes equations (5.16),(5.18) in Ωf
k with the no-

slip boundary condition on the interface ΓI
k and the appropriate boundary con-

ditions on ∂Ωf
k \ ΓI

k.

2. Compute the traction tk = Tnk on the interface ΓI
k using equation (5.21).

3. Based on tk compute the tractions sk in the reference configuration of the inter-

face, i.e. ΓI
0 using equation (5.4) and the current iterate for the displacements

uk.

4. Find uk+1 which satisfies the balance of linear momentum (5.12) in Ωs
k with

Sn0 = sk and the appropriate boundary data on ∂Ωs
0\ΓI

0.

5. Compute ΓI
k+1 =

{
p + uk+1(p)|∀p ∈ ΓI

0

}
and Ωf

k+1:

6. Check convergence: ||uk+1−uk||ΓI
k+1

< TOLERANCE∗||uk+1||ΓI
k+1

. The norm

is the discrete euclidian norm of the interface nodal values.

It is clear that if the interface converges to a fixed position then the velocity and

pressure field will satisfy the Stokes equation (5.16),(5.18), the displacement field will

satisfies the elasticity equations (5.12), and as a results of the converged interface,

the interface condition (5.21) will also be satisfied.

2.2. FEM approximation of the FSI problem

In this section the FEM approximation for the FSI problem will be introduced. Both

the solid and fluid problems are discretized using the FEM method. The elasticity

problem is solved by standard linear triangular elements. That is, given a triangula-
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tion T s
h of Ωs

0, the approximation space for the displacements is chosen to be:

Uu =
[{
u ∈ C0(Ωs

0)|u is linear on ∀τ ∈ T s
h

}]d ⊂ [H1(Ωs
0)
]d
. (5.36)

The Stokes problem is solved using the P2P1 (Taylor-Hood) element pair. Given a

triangulation T f
h of Ωf the approximation spaces for the velocity and pressure are

defined by

Uv =
[{
v ∈ C0(Ωf )|v is quadratic polynomial on ∀τ ∈ T f

h

}]d
⊂
[
H1(Ωf )

]d
(5.37)

Up =
{
p ∈ C0(Ωf )|p is linear on ∀τ ∈ Th

}
⊂ H1(Ωf ) ⊂ L2(Ωf ) (5.38)

respectively.

It follows from the inclusion Uu ⊂ [H1(Ωs
0)]

d
that Korn’s inequality is satisfied

(5.27) on the subspace Uu, therefore the discretized elasticity problem has a unique so-

lution. The selection of the approximation spaces for the Stokes problems is governed

by the fact that they must satisfy the discrete version of the inf-sup, that is,

inf
∀p∈Up

sup
∀v∈Uv

(p,∇ · v)2
Ωf

DΩf (v,v)||p||2
Ωf

> C2 (5.39)

in order to have a stable approximation. Such elements are said to be LBB stable.

While many other elements are known to be LBB stable (Gresho and Sani, 1998),

the Taylor-Hood element was chosen because it provides a balanced approximation

for both velocity and pressure (Axelsson and Neytcheva, 2003).

The two discretized domains have piecewise straight boundaries so the use of lin-

ear approximation for the displacement field simplifies things because ΓI
k will remain

piecewise straight and the two meshes will be point-wise conforming at all times.

The interface condition (5.19) however is enforced only weakly, because the stresses

in the solid are piecewise constants while the stresses in the fluid are piecewise lin-
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ear functions4. Note that both are discontinuous across elements. Investigation of

curvilinear interface boundaries and/or higher order approximation spaces for the

elasticity problem was outside the scope if this work.

2.3. Solution methods for the solid and fluid subproblems

In this section the methods used to solve the linear systems of algebraic equations

(5.33) arising in the discretization (5.31), (5.36) - (5.38) of the previous section are

discussed. Some other practical issues of the implementation of Algorithm 2.1.1 such

as mesh regeneration are also described.

In general, the block matrices appearing in (5.33) are large sparse matrices so

they can be stored efficiently in machine memory, however inverting them explicitly

is both computationally expensive and the resulting matrices are dense. Therefore,

at each iterations of Algorithm 2.1.1 instead of computing and applying directly the

inverse matrices in (5.34) and (5.35) one solves the equivalent linear systems by an

iterative method. Since these two systems have to be solved once per each iteration

of Algorithm 2.1.1, it is important that this is done so efficiently. The methodology

used to solve these two linear systems is described next.

2.3.1. Linearized elasticity problem

The linear system corresponding to equation (5.35) is

Kuk+1 = bs + g(uk,vk+1,pk+1). (5.40)

4Since the contributions to the stresses in the fluid come both from the pressure
and the velocity gradients things will not change if one uses other approximations for
the fluid, e.g. P2P0.
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The stiffness matrix K is symmetric, positive definite and sparse, making it ideal for

the application of the Conjugate Gradient (CG) method.

The CG method was first proposed in the classical works of Hesteness and Stiefel

(1952); Lanczos (1952) and is the method of choice when solving large, sparse, sym-

metric and positive definite linear systems. This standard method will not be de-

scribed in detail and the reader is referred for example to Golub and Van Loan

(1996); Saad (1996). It is sufficient to note that at each iteration of the conjugate

gradient, one has to apply the action of the matrix K on a vector w, that is the

operation Kw should be computationally inexpensive. Clearly this is the case with

the stiffness matrix K.

The number of iterations required by the CG method to reduce the discrete L2

norm of any initial guess by certain fixed amount is proportional to

ln(κ (K))
√
κ (K),

where κ (K) is the condition number of K (cf., e.g., Golub and Van Loan, 1996;

Saad, 1996). The larger the condition number, the more iterations it takes the CG to

converge. Hence, in order to improve the convergence rate of the CG, it is necessary

to precondition equation (5.40), i.e. instead of solving the original system, one solves

K̃−1K = K̃−1 (bs + g(uk,vk+1,pk+1)) ,

where K̃ is an approximation to K in a sense that K̃−1K is symmetric, positive

definite, it is better conditioned than K, i.e. κ
(
K̃−1K

)
< κ (K), and finally, the

action of K̃−1 is easily computable. If these three requirements are met, it is more

efficient to apply the CG to the latter system, instead of the original one. Finding

suitable preconditioner K̃ is not trivial.

The condition number of the stiffness matrix K depends on the mesh parameter
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h as (cf., e.g., Axelsson and Barker, 1984; Bramble and Zhang, 2000):

κ (K) = O
(
h−2
)
,

so the rate of convergence of the CG is proportional to
√
κ (K) = O (h−1). Taking

into account that the cost per iteration of the conjugate gradient is O
(
h−d
)
, the

total complexity of applying the unpreconditioned CG to (5.40) is O
(
h−(1+d)

)
=

O
(
N

1+ 1
d

u

)
, where Nu is the dimension of the displacement space Uu. Preconditioning

of (5.40) is therefore necessary.

The preconditioner used in this work is based upon a block diagonal factorization

of the stiffness matrix. Denote by φ
(j)
i , i = 1, ..., d, j = 1, ..., Nu, the nodal basis

functions for the displacement space Uu. If the nodal unknowns are ordered by

displacement component, i.e. the vector column u = (u
(1)
1 , u

(2)
1 , ..., u

(Nu)
1 , u

(1)
2 , ...)T

contains all the nodal unknowns of the first displacement component, followed by all

the unknowns for the second one, and so on, then the stiffness matrix K has the

following block structure:

K =


K11 · · · K1d

...
. . .

...

Kd1 · · · Kdd

 . (5.41)

This ordering allows for a robust preconditioning of the linear system. Consider the

matrix KSDC = diag(K11, . . . ,Kdd) which contains only the diagonal blocks of K. It

can be shown that KSDC is an optimal preconditioner for K (Blaheta, 1994), that is,

the condition number of the preconditioned matrix satisfies

κ
(
(KSDC)−1K

)
≤ d− 1

C1

1− ν

1− 2ν
. (5.42)

where C1 is the mesh independent constant, appearing in (5.27) and ν is Poisson
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ratio. For proof and improvements in the above estimate, see Blaheta (1994); Nečas

and Hlaváček (1981). In general the application of (KSDC)−1 at each CG iteration

for (5.40) can be done by multigrid in linear time, leading to an optimal method. A

different (and simpler) approach, selected here, is to use a MIC(0) factorization of

KSDC which results in condition number of order O (h−1). As a result, the CG finds

a solution in O
(
h−1/2

)
iterations and the overall algorithm complexity is O

(
N

1+ 1
2d

u

)
.

For detailed description of the MIC(0) preconditioner see Blaheta (1994). For the

problems under consideration this preconditioner proved to be adequate enough.

2.3.2. Stokes problem

Solving the linear system of algebraic equations for the Stokes problem is an active

area of research and there is no general agreement on what is the most efficient way

(Axelsson and Neytcheva, 2003; Bramble and Pasciak, 1997; Turek, 1999). In this

work, the fluid problem (5.34) is solved again by the CG method, but applied to the

Schur complement for the pressure variables. A comprehensive study of pressure Schur

complement methods can be found in (Turek, 1999). For notational simplicity, in this

section the implicit dependence on uk of the matrices A and C will be suppressed.

The Stokes system corresponding to equation (5.34) A CT

C 0


 v

p

 =

 bf

d

 (5.43)

is indefinite, which makes impossible direct application of the CG. While general-

ized Krylov subspace methods such as MINRES (Golub and Van Loan, 1996; Saad,

1996) can still be used, preconditioning is not an obvious task. Therefore the Schur

complement method for the pressure variable is used (Axelsson and Neytcheva, 2003;

Bramble and Pasciak, 1997). Observe that A is an invertible matrix, so one can
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eliminate the first row of (5.43) to obtain

Sp = CA−1bf − d. (5.44)

where S is the Schur complement matrix5:

S = CA−1CT .

The invertibility of S, which is also a symmetric matrix, follows from the inf-sup

condition. To see this, take an arbitrary element q ∈ Up of the discrete pressure

space and observe that:

(
CA−1CTq,q

)
= sup

w∈Uv

(q,Cw)2

(Aw,w)

It follows from (5.39) that the right-hand side of the last equation satisfies

sup
w∈Uv

(q,Cw)2

(Aw,w)
≥ C||w||2, ∀q ∈ Up,

therefore S is a positive definite matrix, and hence invertible. Secondly, since it is

symmetric, the CG method can be applied to the reduced system (5.44). Now, in

general, S is a dense matrix and it is expensive to evaluate it explicitly. However, the

CG algorithm only requires the computation of the action of S on a vector, and this

can be done, provided that one can solve linear systems with A efficiently.

To see how the last can be done, denote again by φ
(j)
i , i = 1, ..., d, j = 1, ..., Nv,

the nodal basis functions of the velocity space Uv and by ψ(j), j = 1...Np the nodal

basis of pressure space Up. Upon ordering the velocity unknowns by component, the

5The notation for the Schur complement is unique to this section alone, therefore
there is no chance of confusion with the Piola-Kirchhoff stress.
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block A has a block-diagonal structure:

A = diag (A1, ...,Ad) ,

where the components of each block Al are given by (no implicit summation by

repeated indices assumed!):

(Al)ij = µ

∫
Ωf

d∑
k=1

φ
(i)
l,kφ

(j)
l,kdx, l = 1, ..., d. (5.45)

Similarly, C = (C1, ...,Cd), where (no implicit summation):

(Cl)ij = −
∫

Ωf

φ
(i)
l,l ψ

(j)dx, l = 1, ..., d. (5.46)

Since A is block-diagonal, inverting it reduces to inverting each block. Observe, how-

ever, that each block Al corresponds to a Laplacian stiffness matrix, and these can

be inverted efficiently (in O (1) CG iterations with a multigrid preconditioner, for

example). That is, when the action of (Al)
−1 is required, one solves the correspond-

ing linear system for Al using the CG with an appropriate preconditioner. In the

current work, a threshold ILU factorization (Saad, 1996) proved to be sufficient for

the problems under consideration.

Returning back to the reduced linear system for the Schur complement (5.44), the

condition number of S is independent of the mesh parameter h, although it depends

on the geometry of the domain Ωf (Turek, 1999). It is nevertheless desirable to

precondition it. As a preconditioner for S one can use a mass matrix Mp on the

pressure space:

Mp
ij =

∫
Ωf

ψ(i)ψ(j)dx, (5.47)

which, as shown in Turek (1999), reduces the total number of iterations several times.

In the current work, Mp is the selected preconditioner for S and the blocks Al are
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preconditioned with a threshold ILU factorization (Saad, 1996). As a final remark,

Mp is a mass matrix, therefore the application of (Mp)−1 (by CG iteration) requires

O (1) CG iterations.

To summarize, the fluid problem is solved by applying the CG to the reduced

system (5.44). At each CG iteration, the application of A−1 in the matrix-vector

multiplication with S is performed by an internal CG iteration with an ILU pre-

conditioner for A. Also, the application of the preconditioner (Mp)−1 for the Schur

complement S is performed again by an internal CG iteration.

2.3.3. Fluid mesh regeneration

At the beginning of Algorithm 2.1.1 one has a conforming triangulation of both the

solid and fluid domains. At the end of each iteration (step 5) the fluid domain is

updated and as a result, the mesh has to also change. On the other hand, the

elasticity equation is always solved in the original configuration, so the elastic mesh

remains unchanged. Since only conforming meshed are considered, the modification

of the fluid mesh must be such that conformity is maintained on ΓI . That is, when

the interface is deformed using the computed displacement uk+1, solid vertices will

coincide with fluid vertices and solid segments (faces in 3D) should coincide with fluid

ones.

The easiest approach is to move the interface vertices at the end of step 5 of

Algorithm 2.1.1 which will affect only the elements which contain them. This will

work as long as the interface displacements are small compared to the local mesh size.

If the mesh size near the interface is comparable to the displacements of the interface

the mesh can loose quality or completely degenerate if a vertex is moved into another

element (Figures 55 and 56). As a result, given the domain and boundary condition,

the mesh size in the fluid domain cannot be too small. Such a restriction is clearly
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(a) Degenerated mesh (b) Regenerated mesh

Fig. 55. A 2D degenerate mesh. In this example an elastic obstacle deforms to the

left in response to flow in the channel. The solid lines indicate its initial

configuration. If only the boundary nodes of the fluid mesh are moved, it

degenerates (left). The second mesh (right) is obtained after remeshing the

fluid domain.
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(a) Flow external to a elastic skeleton (b) Degenerated mesh after first itera-
tion

Fig. 56. A 3D degenerate mesh. Another case when the mesh degenerates after a

new position of the interface is computed. Shown are the initial (transparent

shade) and final position (solid red) of the interface ΓI (a) and the degenerated

mesh after the first iteration (b). The domain is the unit cube and the solid

geometry is formed by the intersection of three perpendicular cylinders and a

central circle. The flow is from left to right, is exterior to the solid (the caps

on the cylinders are not shown) and the boundary conditions allow the caps

of the two cylinders perpendicular to the flow direction to slide on the side of

the unit cube. Unlike the 2D case, the regeneration of the mesh involves both

the interior and part of the surface mesh.
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unacceptable. It can be overcome by either globally modifying the existing mesh, for

example by solving an artificial elasticity problem in the fluid domain or by remeshing

it (locally or globally).

The global remeshing approach is selected here because of the ready availability

of mesh generators which could do that. At the conclusion of step 5, the elements

with vertices on the interface are modified and if the resulting mesh has poor quality

and/or it degenerates then the entire fluid domain is remeshed, retaining the same

boundary segments in 2D and the same interface faces in 3D. Note that in 3D, in

addition to the entire volume mesh, one also has to modify part of the surface mesh

as can be seen from figure Figure 56, while keeping the interface conforming. In prin-

ciple local regeneration of the mesh (after removing low quality/degenerate elements)

is an interesting possibility which can significantly speed up the process, however

developing the software necessary to utilize this strategy was outside of the scope of

this research.

3. Model problems with a linearized elastic solid

Three model problems were considered in order to test the Dirichlet-Neumann itera-

tive scheme of Section 2.1. The first two model problems involve flow in the elastic

channel geometry of the previous section, while the third one is for a channel with

elastic segment. The first model problem is used to demonstrate the convergence

properties of the iterative scheme with regard to various problem parameters. The

second problem is set up in the same type of geometry, but with slightly different

boundary conditions, so that a comparison can be made between the asymptotic so-

lution of the previous sections and numerical solutions. The last problem of flow in

a channel with an elastic segment demonstrates the highly nonlinear dependence of
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permeability on the pressure gradient across the channel.

The Triangle, version 1.4, mesh generating software was used for meshing 2-D

domains (Shewchuk, 2002) and the Netgen6, version 4.0, was used for meshing 3-D

domains. The FEM software used for the solid and fluid subproblems, the FSI iter-

ative Algorithm 2.1.1, and all other related components (excluding mesh generation)

such as numerical linear algebra subroutines and graphical post-processing tools were

developed by the author. They were implemented in the Object Pascal programming

language and compiled with Borlandr Delphi�, version 2.01.

3.1. Flow through an elastic channel

The first model problem to be considered is one for a flow through an elastic channel.

The geometry is shown on Figure 57. The channel has length 5 and thickness 1. The

thickness of each of the elastic slabs is 0.2. The material parameters used for the

solid are E = 1.44 and ν = 0.2 while the fluid has viscosity µ = 0.1 and density

ρ = 1. The velocity distribution at the inlet is that of a developed Poiseuille flow:

vx = 4∗Vmaxy(1−y), where the constant Vmax is the maximal inflow velocity (achieved

at y = 0.5). First the numerical algorithm is tested for Vmax = 1/4 and a (triangular)

mesh with h ∼ 16 ∗ 10−2 in the fluid domain and h ∼ 4 ∗ 10−2 in the solid domain.

No triangle had internal angles less than 30 degrees. The mesh is chosen coarser in

the fluid domain because of the 2-nd order accuracy for the velocity (and 1-st order

for the pressure/stress) compared to the 1-st order approximation in the solid region.

The computed pressure and velocity profiles are displayed on Figures 58(a) and 58(b).

Next, the problem is solved for several values of Vmax and three different mesh

6Netgen is developed by Joachim Schöberl and can be downloaded (as of March
2005) from http://www.hpfem.jku.at/netgen/.
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Fig. 57. Geometry and boundary conditions for flow in channel with elastic walls.

Table V. Convergence of the Dirichlet-Neumann iterative scheme for the elastic chan-

nel FSI problem.

Vmax h h/2 h/4

Iterations maxuy Iterations maxuy Iterations maxuy

1/4 9 0.0894687 9 0.0894628 9 0.0894809

1/8 7 0.0504095 7 0.0505136 7 0.0505101

1/16 6 0.0271444 6 0.0271742 6 0.0271846

1/32 5 0.0141473 5 0.0141589 5 0.0141654

1/64 5 0.0072323 5 0.0072312 5 0.0072402

sizes. This is done in order to get a preliminary idea of convergence rate sensitivity of

the iterative scheme of Algorithm 2.1.1 to the inflow velocity and mesh size. The num-

ber of iterations it took to reach relative precision 10−6 is reported in Table V. Also

given in the table is the maximum vertical displacement in the solid. Even though

a proper non-dimensional analysis is not done it is felt that for this problem varying

input velocity Vmax is the same as varying the elastic stiffness E or fluid viscosity µ.

It can be concluded from this table that the iteration numbers depend on the inlet



194

(a) Pressure profile

(b) Horizontal velocity profile

Fig. 58. Solution of the FSI problem for Vmax = 1/4. Shown are the velocity and

pressure in the deformed configuration of the fluid domain Ωf .
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velocity which in turn directly affects the magnitude of the interface displacement.

In general, numerical experiments suggest that the important parameter is the mag-

nitude of the interface displacements. On the other hand the iteration convergence

rate seem not to depend on the mesh parameters. Finally, since the maximum dis-

placement of the interface for each case of inlet velocity stabilizes as h decreases one

can infer that the algorithm is convergent 7.

3.2. Permeability of a long elastic channel

While the figures presented in the previous numerical example look reasonable from

a physical stand point, in the absence of exact analytical solutions it is difficult to

verify the quality of the numerical solution. It may happen that the continuous

problem (5.31) is not well posed. It may also happen that the selected numerical

approximation (5.36)-(5.38) is not a stable one, that is, the stationary FSI problem

(5.31) does have a unique solution but the FEM subspaces (5.36)-(5.38) do not lead

to a convergent method.

The asymptotic solution developed in Appendix A for a long elastic channel

can however be compared with a numerical one. The asymptotic formulae (A.44)

and (A.47) are derived based on several assumptions (see Appendix A) and without

analysis of the rate of convergence with respect to the small parameter ε. However if

both the asymptotic solution and the numerical one converge to the actual one, then

we should also observe convergence between the two of them. In this section we use

the numerical method described in Section 2.1 in order to validate the asymptotic

formulae (A.44) and (A.47) and vice-versa.

To do this, the elastic channel of Figure 67 (on page 230) is discretized for

7Of course this can only be verified with a known analytical solution.
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l = δ = 0.5. In this way, a y-periodic arrangement of this geometry will have solid

and fluid regions of equal unit width. The boundary conditions are also modified,

compared to the previous model problem. Instead of fixing both displacements at

x = 0 and x = L we only constrain u1, i.e. the end of the channel is now free to move

in the vertical direction. Note that this does not represent a y-periodic boundary

value problem in, because u1 = 0 at y = ±(l + δ). Also, the boundary condition

for the fluid at the inlet x = 0 is a prescribed pressure, i.e, p(0, y) = P 0. As in

Appendix A the half-width of the channel in the deformed configuration is denoted

by γ(x).

The asymptotic expansion in the appendix depends on two parameters - P 0

and ε = l/L. Several numerical results comparing the computed values for γh, Kh

with the analytical ones γ, K are given in Tables VI and VII. The first shows the

L2 norm of the error and the second one - the error at a fixed point x = 0.2 ∗ L.

The numerical solutions used were consequently refined, until the discretization error

did not influence the first two digits of the results. It can be seen from Table VI

Table VI. Comparisons of analytical and asymptotic results for a long elastic channel

in the L2 norm.

P 0 ε = 10 (l = 0.5, L = 5) ε = 20 (l = 0.5, L = 10)

||γh−γ||L2

||γ||L2

|Kh−K|
K

||γh−γ||L2

||γ||L2

|Kh−K|
K

0.32 2.41× 10−3 6.63× 10−3 8.47× 10−4 1.82× 10−3

0.16 1.19× 10−3 3.33× 10−3 4.21× 10−4 1.06× 10−3

0.08 5.96× 10−4 1.65× 10−3 2.10× 10−4 5.34× 10−4

0.04 2.98× 10−4 8.19× 10−4 1.05× 10−4 2.68× 10−4

that formulae (A.44) and (A.47) are in very good agreement with the numerically

computed solution to the FSI problem. This indicates that as ε→ 0 and h→ 0 both
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Table VII. Point-wise comparisons of analytical and asymptotic results of a long elastic

channel.

P 0 ε = 10 (l = 0.5, L = 5) ε = 20 (l = 0.5, L = 10)

|γh(1)−γ(1)|
|γ(1)|

|Kh(1)−K(1)|
|K(1)|

|γh(2)−γ(2)|
|γ(2)|

|Kh(2)−K(2)|
|K(2)|

0.32 2.59× 10−4 6.02× 10−4 8.97× 10−5 2.57× 10−4

0.16 4.58× 10−5 1.71× 10−5 2.49× 10−5 8.15× 10−5

0.08 5.02× 10−6 5.79× 10−5 5.85× 10−6 6.56× 10−6

0.04 1.06× 10−5 4.38× 10−5 4.76× 10−7 1.00× 10−6

the asymptotic and numerical solution to the FSI problem converge to the actual one.

3.3. Flow through a channel with elastic segment

In this problem a channel with a deformable segment (Figure 59) is considered. The

channel has height H = 1 and length L = 14 and an elastic segment is located in

the middle of the top channel wall. The segment has of length 10, thickness 0.1 and

elastic properties E = 12 ∗ 106 and ν = 0.2. The fluid viscosity and density are again

µ = ρ = 1. The segment is built into the rest of the wall at its two ends. The ap-

propriate boundary conditions at the ends of the segment are therefore homogeneous

Dirichlet boundary conditions for both displacements. Natural boundary conditions

(zero tractions) are imposed on the top side of the segment. The lower side is the

fluid-structure interface ΓI
0. The input flow velocity is again a developed Poiseuille

flow: vx = 6
14
Qy(1− y), with

Q =

∫
Ω

vxdx

being the total volumetric flow rate. The right end of the channel has an outflow

boundary condition (Tf = 0). The purpose of this problem is to investigate the

permeability of the channel at various values for Q. In the case of an entirely rigid
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Fig. 59. Geometry of a channel with an elastic segment (Figure not drawn to scale).

channel the pressure drop ∆p/L is proportional to the mass flux Q. Since the cou-

pled problem is nonlinear it is expected that for sufficiently large deformations of

the interface the resulting mass flow for a given pressure drop will depart from the

linear relationship of the Darcy law. The fluid structure problem is solved for sev-

eral different values of Q and the resulting pressure, pressure gradients in the fluid

and displacements in the solid are computed. Two measures for permeability are

considered. One is the ratio of the average velocity and average pressure gradient:

K̄ =
Q∫

Ω
∂p
∂x
dx

which is similar to the standard homogenization results for flow through rigid skeleton.

Since the geometry allows only nonzero net flow in the x direction it also makes sense

to consider the pressure drop as an alternative the average pressure gradient:

K̂ =
Q

∆p/L
.

While the pressure gradient can be readily calculated from the flow solution, it is

not immediately clear how to evaluate the pressure drop across the channel. However,

thanks to the selection of material parameters and geometry dimensions the inlet is

sufficiently away from the segment so the change in the flow downstream does not
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(a) Pressure profile (Figure not drawn to scale).

(b) Profile of the horizontal velocity component (Figure not drawn to scale).

Fig. 60. Final configuration of the fluid domain Ωf for Q = 15.

Table VIII. Permeability of a channel with elastic segment as function of the flow rate.

Q
∫

Ω
∂p
∂x
dx p|inlet Q/

∫
Ω

∂p
∂x
dx Q

∆p/L
maxuy

14.0000 -106.0853266 -93.8605 0.13196 0.14916 1.161

7.0000 -60.3754287 -53.9478 0.11594 0.12975 0.651

3.5000 -33.6888175 -30.8411 0.10389 0.11348 0.373

1.7500 -18.3178061 -17.2482 0.09553 0.10146 0.209

0.8750 -9.7023494 -9.35044 0.09018 0.09358 0.113

0.4375 -5.0280238 -4.923492 0.08701 0.08889
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Fig. 61. Permeability of a channel with elastic segment.

affect much the inlet pressure distribution, which is essentially constant along the y

direction. Similarly, the outlet is sufficiently separated from the end of the elastic

segment and the flow has time to redevelop to the parabolic Poiseuille distribution as

can be seen on Figures 60(a) and 60(b). The results are summarized on Table VIII

and it is clear that both permeability measures behave nonlinearly as Q is varied.

This can also be seen on Figure 61 which shows K̄ and K̂ as functions of Q. As

Q → 0 both of them tend to the permeability of a straight, rigid channel which can

be calculated directly from the Poiseuille solution and in this case is equal to 1/12.

4. Modelling of flow regulating SMA device

In this section a built-in SMA beam within a rigid channel is studied as the first

step in design a temperature actuated flow-regulating device. The device considered
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here is an SMA segment built-in into a 2D rigid channel. The initial geometry of the

channel can be seen on Figure 62. The dimensions of the channel are 0.5cm × 5cm

and the SMA occupies length of 3cm. The shape of the SMA was selected so that

the thickness near the middles of the channel is half of its usual one. The lower

part of the SMA segment (i.e. the interface ΓI
0) is the graph of the function 1 −

0.5 exp(−2 ∗ (x − 1.5)2) + 0.5 exp(−2 ∗ (1.5)2), x ∈ [0, 3]. The vertical thickness of

the segment is 0.1cm. The boundary conditions applied are analogous to that of the

previous section, with the exception that the pressure (p0 = 3.5MPa) is specified at

the channel inlet, instead of velocity and the fluid has unit viscosity. The properties

of the SMAs are the same as used in Chapter IV and are listed in Table IV.

0x yv v= =

0x yv v= = 0x yv v= =

s f=T n T n

0x yu u= = 0x yu u= =

s =T n 0

f =T n 00p p=

0 ,   sSMA solid Ω

0,   fFluid Ω

Fig. 62. Geometry of SMA flow regulating device. Shown are the boundary conditions

and reference configuration of both domains.

The motivation for this geometry is driven by the need to have a device with

higher permeability at lower temperatures compared to its permeability at high tem-

perature. The simulation is performed in the following way. First the stationary

solution of the FSI problem is sought at a temperature T = 320 ◦K, which is above

the austenitic finish temperature of the SMA. The reference configuration of the SMA

is therefore stress free and in the austenitic phase. Once the solution is found the

temperature of the fluid is decreased, while the pressure differential acting at the
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ends of the channel is kept fixed. It is assumed that the heat conduction between the

fluid and the solid is instantaneous, so that the temperature of the fluid becomes the

temperature of the SMA. As it is decreased, the SMA undergoes the A→Md phase

transformation, associated with inelastic strain and change in material properties. As

it becomes more compliant and develops inelastic strains, therefore it is expected that

the same pressure, which was in equilibrium with the SMA at higher temperature will

opens up the channel, leading to increase in the flow rate.

Solving a FSI problem with a nonlinear solid is not fundamentally different from

a linear one. The coupling between the solid and the fluid comes through interface

conditions on the interface and are not related to the type of nonlinearities involved

in the field equations for either of the solid of fluid domain. The main characteristic

of the iterative method of Algorithm (2.1.1) is finding balance of momentum on the

interface Γ0 and the nature of the solid solver is not important. Using a nonlinear solid

instead of a linearized one involves replacing the linear solver of step 4 of (2.1.1) with

a nonlinear one (see Appendix B for a short summary of a nonlinear, displacement

based FEM). When more than one load steps are involved, care has to be taken

that the correct initial state of the material is used every time algorithm (2.1.1) is

started. The reference configuration of the domain however does not need to be

changed between different loading step as is the case here, when the FSI problem is

solved for consecutively decreasing temperatures.

The main result of the simulation was in agreement with the expectations (Fig-

ure 63). At the initial temperature of 320 a small region near the left built-in edge of

the beam transformed partially, and small phase transformation was observed in the

region left of the segments lowest point (Figure 64(a)). Most of the displacement was

observed in the left part of the segment and is due to factors: the higher pressure in

that part of the channel (Figure 64(c)) and the bending moment which comes form
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Fig. 63. Geometry of the initial (green) and deformed configuration (black) of the

channel while cooling. Shown are the positions at three different temperatures.
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the pressure acting on the section between the left end and the SMA’s lowest point.

Cooling of the channel resulted in further stress-induced phase transformation and

resulting softening of the segment and its movement upwards as seen from Figure 65.

Most of the upward displacement occurs near in the region prior to the segment’s

lowest point and is generally in direction normal to the interface ΓI . The displace-

ment of the lowest point of the segment however is not as big as was desired - about

0.6mm at 300 ◦K, or approximately 2.5% opening of the channels at its narrowest

point.

The main motivation for this numerical simulation was to asses the ability of

SMAs to change the permeability of the channel. The mass flow rate Q, as a function

of temperature is shown on Figure 66. At the beginning of the cooling process (T =

320 ◦K), the flow rate is approximately 0.274m3/s and when the temperature has

reached T = 295 ◦K it has increased up to 0.317m3/s. The increase is about 15%,

which is probably related to the displacement of the lowest point of the SMA, where

the channel has smallest cross-section.

The demonstrated change in mass flux should be viewed as a first approximation

to a real flow-regulating device. The main reason for the little change is the fact

that most of the deformation in the SMA beam happens near the left built-in end.

A broader study is therefore necessary to find an optimal design. The center region

influences the permeability of the channel most and therefore a beam which is thinner

in that region may lead to higher change in permeability as temperature changes. The

effects of boundary condition is also important and needs to be taken into account.

As a final remark, the channel geometry used here is of the simplest possible type and

probably does not reflect a practical design. Therefore, continued work in building

an temperature actuated SMA flow-regulator should start from a realistic 3-D valve

designs.
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(a) Detwinned volume fraction (c2) plotted at the reference configuration. Showed
is also the deformed interface position

(b) Pressure profile in Ωf . The initial solid geometry (∂Ωs
0) is also shown.

(c) Horizontal velocity component. The initial solid geometry (∂Ωs
0) is also shown.

Fig. 64. FSI Solution at T = 320 ◦K.
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(a) Detwinned volume fraction (c2) plotted at the reference configuration. Showed
is also the deformed interface position

(b) Pressure profile in Ωf . The initial solid geometry (∂Ωs
0) is also shown.

(c) Horizontal velocity component. The initial solid geometry (∂Ωs
0) is also shown.

Fig. 65. FSI Solution at T = 300 ◦K.
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Fig. 66. Dependence of the flow rate in the channel as a function of temperature during

cooling.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

A new 3-D constitutive model for polycrystalline SMAs based on thermodynamic

potentials is presented. The model can account for both development of stress induced

martensite directly from austenite (pseudoelasticity) as well as detwinning of twinned

martensite. This is accomplished by describing the material state as a mixture of three

phases - twinned martensite, detwinned martensite and austenite and by using the

three possible ”reactions” between these phases as internal variables.

The model is made consistent with a modified phase diagram in stress-temperature

space. A key new experimental finding is the existence of separate reverse transforma-

tion temperatures for detwinned and twinned martensite. This is obtained through

a series of calorimetric measurements and is incorporated in the model. The phase

diagram also incorporates a single transformation strip for the M t →Md inelastic de-

formation over the temperature range T ≤ At
f . It also assumed the same temperature

independent transformation regions for the A → M t and M t → A phase transfor-

mations. These modifications allow for a robust model that can simulate complex

thermomechanical loading paths, such as cyclic paths involving a mixture of all the

three phases.

The constitutive model was numerically implemented using return mapping al-

gorithms. The implementation was integrated into an numerical implementation and

tested for several model problems. Presented in this work are two cooleing/heating

loading paths of a rod in uniaxial stress state. They demonstrate the ability of the

model to handle the development of simultaneous transformation, the cut-off stress

for the forward detwinning deformation and the behavior of mixtures of the three

phases in cyclic paths. In order to demonstrate the 3-D capabilities of the model a
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complex loading path for a perforated square under conditions of plane strain was

also presented.

An FEM based Fluid-Structure solver is also presented. The solver successfully

utilized a Dirichlet-Neumann iterative a scheme for solving the FSI problem. A nu-

merical computation is performed which are used to verify the numerical solutions in

comparisons with an asymptotic solution to the FSI problem for a channel geometry.

This increases the degree of confidence with which such numerical methods can be

used in the absence of solid mathematical understanding of their properties. The

numerical approach was also extended to FSI problems involving SMA materials.

The strong temperature dependence of the SMA was used to simulate a precursor

temperature sensitive flow regulating devices. The 3-D SMA model developed in this

work was especially suited for simulating such devices since it captures correctly the

phenomena occurring in SMAs over a wide temperature range.

There are several areas for future work on this types of models. First, the selec-

tion made for the independent variables of the hardening functions are not the only

possible ones. The current selection imposes certain constraints on the arrangement

of the transformation regions in the phase diagram. Other choices, for example a

dependence of the A ↔ M t hardening function on the total amount of austenite,

rather than twinned martensite is possible and should be explored. Further, there

are class of SMA materials for which the critical critical temperatures Ms, Mf , A
t
s,

At
f define overlapping regions. The current model should be tested in such cases and

modified, if necessary.

Also, the phase diagram itself evolves as the material is cycled through a certain

thermomechanical loading path. The evolution is fairly well understood in the special

case of pseudoelastic loading paths. More general cases however are not explored

either from a modeling or an experimental point of view. It should me noted that
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translational movements of the transformation strips of the phase diagram can be

accomplished by using ξi instead of ci as the independent variables for the hardening

functions.

It should be noted that no rigorous mathematical analysis has been performed

on the return-mapping algorithms used for the implementation of the SMA model in

this work. Such work, while time-consuming, will be tremendously useful researchers

interested in further developing the field of SMA models.

Work on FSI problems can also progress in multiple directions. Among this

one should point out the detailed engineering analysis of SMA based flow regulating

devices, the incorporation of heat transfer in the simulations and the analysis and

development of homogenization methods for coupled fluid and porous SMA problem.

A definite plus, would also be a mathematical analysis of the numerical algorithms

used for the FSI problem.
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et résultats expérimentaux. Revue Européennes des éléments finis 3 (4), 491–514.
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APPENDIX A

AN ASYMPTOTIC SOLUTION OF THE FSI SYSTEM FOR AN ELASTIC

CHANNEL

This appendix summarizes the derivation in (Iliev et al., 2004). Consider the steady

state laminar flow of incompressible Newtonian fluid through a 2-D channel with

elastic walls. The reference geometry of the channel is shown on Figure 67. Denote

x

y

l

δ

l

δ

L

( )xγ
fΩ

sΩ

sΩ

Fig. 67. Schematic of a section of length L a long elastic channel. The fluid is driven

by the pressure gradient.

by L the length of the channel, by l the half of the channel width in the undeformed

state, by δ the thickness of the walls in undeformed state. We assume that the channel

is long, compared to its height, that is, the parameter ε:

ε =
l

L
. (A.1)
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is small. Further we assume that l ∼ δ. The fluid is driven by a pressure gradient,

and the outer wall of the channel are fixed. We will first normalize the FSI system

(5.22)-(5.24) for this particular geometry and then we will use a formal expansion of

the field variables (pressure, velocity and displacements) with respect to eps in order

to obtain an asymptotic solution of (5.22)-(5.24).

Due to symmetry, we can only consider half of the fluid domain Ωf and in the

undeformed configuration they the fluid and solid occupy

Ωf
0 = {(x, y), 0 < x < L, 0 < y < l} , (A.2)

Ωs
0 = {(x, y), 0 < x < L, l < y < l + δ} , (A.3)

respectively. Let us denote the height of the unknown boundary of the fluid-solid

interface by γ(x).

1. Dimensionless form

Consider the dimensionless variables:

x = Lx̃, y = lỹ, p(x, y) = P̄ p̃(x̃, ỹ), (A.4)

v1(x, y) = V̄1ṽ1(x̃, ỹ), v2(x, y) = V̄2ṽ2(x̃, ỹ), (A.5)

u1(x, y) = Ū1ũ1(x̃, ỹ), u2(x, y) = Ū2ũ2(x̃, ỹ). (A.6)

In these notations the fluid and solid domain are given by

Ωf = {(x̃, ỹ) : 0 < x̃ < 1, 0 < ỹ < γ̃(x̃))} ,

Ωs =

{
(x̃, ỹ) : 0 < x̃ < 1, γ̃(x̃) < ỹ < 1 +

δ

l
)

}
,

where

γ̃(x̃) =
γ(x)

l
(A.7)
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and, we also have (i = 1, 2):

∂p

∂x
=
P̄

L

∂p̃

∂x̃
,

∂p

∂y
=
P̄

l

∂p̃

∂x̃
, (A.8)

∂vi

∂x
=
V̄i

L

∂ṽi

∂x̃
,

∂vi

∂y
=
V̄i

l

∂ṽi

∂x̃
, (A.9)

∂ui

∂x
=
Ūi

L

∂ũi

∂x̃
,

∂ui

∂y
=
Ūi

l

∂ũi

∂x̃
. (A.10)

It is clear that the scaling parameters can not be chosen independently. Below we

will discuss the relations between different scaling parameters.

1.1. Dimensionless Stokes equations

We first rewrite the Stokes system with respect to dimensionless variables. With the

help of equations (A.8) and (A.9) we get:

−ε2∂
2ṽ1

∂x̃2
− ∂2ṽ1

∂ỹ2
+ ε2 P̄L

µV̄1

∂p̃

∂x̃
= 0 (A.11)

−
(
ε2∂

2ṽ2

∂x̃2
+
∂2ṽ2

∂ỹ2

)
+ ε

P̄L

µV̄2

∂p̃

∂ỹ
= 0 (A.12)

∂ṽ1

∂x̃
+

V̄2

εV̄1

∂ṽ2

∂ỹ
= 0. (A.13)

In general, velocity components and pressure can not be scaled independently.

We choose V̄1 in accordance with maximal velocity of Poiseuille flow in a rigid channel:

V̄1 = 4V1,maxl
2. (A.14)

The other two scales, V̄2 and P̄ we express by V̄1. In our case, the x− derivative of

the pressure is the driving force for the flow, therefore we want to keep it of unit size.

Thus, without loss of generality,

P̄L

µV̄1

ε2 = 1,



233

that is,

P̄ =
µV̄1

Lε2
=
µ4V1,maxl

2L

l2
= 4µV1,maxL. (A.15)

Further, we want to have strong conservation of mass. Therefore we require

V̄2

εV̄1

= 1,

which gives us

V̄2 = εV̄1 (A.16)

The Stokes system now can be rewritten as

−ε2∂
2ṽ1

∂x̃2
− ∂2ṽ1

∂ỹ2
+
∂p̃

∂x̃
= 0 (A.17)

−ε2∂
2ṽ2

∂x̃2
− ∂2ṽ2

∂ỹ2
+ ε−2∂p̃

∂ỹ
= 0

∂ṽ1

∂x̃
+
∂ṽ2

∂ỹ
= 0.

Here we have used the fact that under the above assumptions we have

P̄L

µV̄2

ε
∂p̃

∂ỹ
=
µV̄1

ε2L

L

µV̄2

ε
∂p̃

∂ỹ
=

V̄1

ε2εV̄1

ε
∂p̃

∂ỹ
= ε−2∂p̃

∂ỹ

Finally, we also need to express the stress tensor Tf given by (5.15) in the fluid

domain in terms of the non-dimensional variables:

Tf =
µV̄1L

l2

 2ε2 ∂ṽ1

∂x̃
− p̃ ε

(
∂ṽ1

∂ỹ
+ ε2 ∂ṽ2

∂x̃

)
ε
(

∂ṽ1

∂ỹ
+ ε3 ∂ṽ2

∂x̃

)
2ε2 ∂ṽ2

∂ỹ
− p̃


1.2. Dimensionless elasticity problem

Let us now consider the elastic domain. With the help of (A.10), the Piola-Kirchoff

stress tensor Ss for a linear isotropic material (5.13), can be expressed in terms of the
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non-dimensional variables (A.6) as

Ss =

 (λs + 2µs)
Ū1

L
∂ũ1

∂x̃
+ λs

Ū2

l
∂ũ2

∂ỹ
µs

(
Ū1

l
∂ũ1

∂ỹ
+ Ū2

L
∂ũ2

∂x̃

)
µs

(
Ū1

l
∂ũ1

∂ỹ
+ Ū2

L
∂ũ2

∂x̃

)
(λs + 2µs)

Ū2

l
∂ũ2

∂ỹ
+ λs

Ū1

L
∂ũ1

∂x̃


Set

Ū2 = δ, Ū1 = ε0Ū2 = δ.

Using this scaling for the displacements, the stress in the solid become

Ss =
δ

l

 (λs + 2µs)ε
∂ũ1

∂x̃
+ λs

∂ũ2

∂ỹ
µs

∂ũ1

∂ỹ
+ µsε

∂ũ2

∂x̃

µs
∂ũ1

∂ỹ
+ µsε

∂ũ2

∂x̃
(λs + 2µs)

∂ũ2

∂ỹ
+ λsε

∂ũ1

∂x̃

 . (A.18)

Further, it is also necessary to write the system of elasticity equations (5.12) in

non-dimensional form. For an isotropic solid, and in the absence of a body force, it

is easy to see, the equation (5.12) reduces to

ε2δ(λs + 2µs)
∂2ũ1

∂x̃2
+ εδ(λs + µs)

∂2ũ2

∂x̃∂ỹ
+ δµs

∂2ũ1

∂ỹ2
= 0, (A.19)

ε2δµs
∂2ũ2

∂x̃2
+ εδ(µs + λs)

∂2ũ1

∂x̃∂ỹ
+ δ(λs + 2µs)

∂2ũ2

∂ỹ2
= 0. (A.20)

2. Asymptotic expansion

Consider now, an asymptotic expansions of the field variables with respect to the

small parameter ε:

ṽi = v0
i + εṽ1

i + ε2ṽ2
i + ... (A.21)

p̃ = p̃0 + εp̃1 + ε2p̃2 + ...

ũi = ũ0
i + εũ1

i + ε2ũ2
i + ... (A.22)
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2.1. Asymptotic expansion for the Stokes system

Substituting these expansions in Stokes system (A.17), and collecting terms corre-

sponding to different powers of ε, we get:

ε−2 :

∂p̃0

∂ỹ
= 0. (A.23)

ε−1 :

∂p̃1

∂ỹ
= 0. (A.24)

ε0 :

−∂
2ṽ0

1

∂ỹ2
+
∂2p̃0

∂x̃2
= 0 (A.25)

−∂
2ṽ0

2

∂ỹ2
+
∂2p̃2

∂ỹ2
= 0

∂ṽ0
1

∂x̃
+
∂ṽ0

2

∂ỹ
= 0.

From (A.23) and (A.24) we have

p̃0 = p̃0(x), p̃1 = p̃1(x). (A.26)

Further, we integrate the first equation from (A.25) with respect to ỹ. The

integration limits are from 0 (symmetry line) to ỹ. Using the symmetry condition we

get

−∂ṽ
0
1

∂ỹ
= −ỹ ∂p̃

0

∂x̃

Integrating the last equation with respect to ỹ from ỹ to γ(Lx̃), we get

−ṽ0
1(x̃, γ(Lx̃)) + v0

1(x̃, ỹ) = −1

2

(
γ2(Lx̃)− ỹ2

) ∂p̃0

∂x̃
(A.27)
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Using the no-slip boundary condition ṽ0
1(x̃, γ(Lx̃)) = 0, we obtain:

ṽ0
1(x̃, ỹ) = −γ

2(Lx̃)− ỹ2

2

∂p̃0

∂x̃
(A.28)

We will need further the x̃− derivative of ṽ0
1:

∂ṽ0
1

∂x̃
= −γ

2(Lx̃)− ỹ2

2

∂2p̃0

∂x̃2
− Lγ(Lx̃)

∂γ(Lx̃)

∂x̃

∂p̃0

∂x̃
(A.29)

Integrating the continuity equation from 0 to γ and using the boundary condi-

tions v0
1(x̃, 0) = v0

1(γ) = 0, we get

0 = −
∫ γ

0

∂ṽ0
1(x̃, s)

∂x̃
ds =− 1

2

∂2p̃0

∂x̃2

(
γ3 − γ3

3

)
− Lγ2(Lx̃)

∂γ(Lx̃)

∂x̃

∂p̃0

∂x̃
=

− ∂2p̃0

∂x̃2

γ3

3
− 1

3

∂γ3(Lx̃)

∂x̃

∂p̃0

∂x̃
= −1

3

∂

∂x̃

(
γ3(Lx̃)

∂p̃0

∂x̃

)
.

That is, we have obtained an equation with respect to p0(x) :

∂

∂x̃

(
γ3(Lx̃)

∂p̃0

∂x̃

)
= 0. (A.30)

2.2. Expansion for the solid-fluid interface

So, we obtained equations for v0
1, v

0
2, p

0, which depend on the unknown free boundary

γ(Lx̃). To get an equation for the free boundary we will use the interface condition

for the continuity of the normal component of the stress tensor. So, we need to

calculate this normal component. Substituting expansions for velocity and pressure

from (A.21), we obtain

Tf =
µV̄1L

l2

 2ε2 ∂ṽ0
1

∂x̃
− p0 − εp1 − εp2 +O(ε3) ε

(
∂ṽ0

1

∂ỹ
+ ε

∂ṽ0
1

∂ỹ
+ ε2 ∂ṽ0

2

∂ỹ

)
+O(ε3)

ε
(

∂ṽ0
1

∂ỹ
+ ε

∂ṽ0
1

∂ỹ
+ ε2 ∂v0

2

∂ỹ

)
+O(ε3) 2ε2 ∂ṽ0

2

∂x̃
− p0 − εp1 − εp2 +O(ε3)


From this we obtain the zeroth order approximation:
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ε0 :

σF,0 =
µV̄1L

l2

 −p̃0 0

0 −p̃0

 (A.31)

The normal vector to the curve γ(x) is given by

n =
e2 − lLγ′(Lx̃)e1

Cσ

, where Cσ =
1√

1 + L2γ′(Lx̃)l2
. (A.32)

Using this, we calculate the normal component of the zeroth order term for the

stress tensor:

Tf,0n =
1

Cσ

µV̄1L

l2
{(
p̃0lLγ′(Lx̃)

)
e1 +−p̃0e2

}
. (A.33)

2.3. Asymptotic expansion for elasticity system

Now we substitute the asymptotic expansion for u1, u2 in the elasticity system

(A.19),(A.20). From the first elasticity equation (A.19), at order ε0, we obtain

µs
∂2ũ0

1

∂ỹ2
= 0.

Integrating with respect to ỹ we get

µs
∂ũ0

1

∂ỹ
= c1(x̃). (A.34)

Integrating from ỹ to (1 + δ
l
), and using the fact that ũ0

1 = 0 at the upper boundary,

we get

ũ0
1(x̃, ỹ) = −

(
1 + δ

l
− ỹ
)

µs

c1(x̃) (A.35)

The second equation (A.20) from the elasticity system gives, at order ε0,

(λs + 2µs)
∂ũ0

2

∂ỹ
= 0.
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Integrating with respect to ỹ we get

∂ũ0
2

∂ỹ
=

1

λs + 2µs

c2(x̃) (A.36)

Integrating this equation from ỹ to (1+ δ
l
), and using the fact that ũ0

2 = 0 at the

upper boundary, we get

ũ0
2(x̃, ỹ) = −

(
1 + δ

l
− ỹ
)

λs + 2µs

c2(x̃) (A.37)

Next, we can substitute the asymptotic expansion (A.22) for ũ1, ũ2 into (A.18)

and obtain the stresses in the solid at order ε0:

Ss,0 =
δ

l

 λs
∂ũ0

2

∂ỹ
µs

∂ũ0
1

∂ỹ

µs
∂ũ0

1

∂ỹ
(λs + 2µs)

∂ũ0
2

∂ỹ


Finally, we can substitute ũ0

1, ũ
0
2 as given by (A.35) and (A.37) respectively into the

last equation and obtain:

Ss,0 =
δ

l

 λs

λs+2µs
c2(x̃) c1(x̃)

c1(x̃) c2(x̃)

 .
Using this, we calculate the normal component of the zeroth order term for the

stress tensor:

Ss,0n =
δ

lCσ

{(
− λs

λs + 2µs

c2(x̃)lLγ
′(Lx̃) + c1(x̃)

)
e1+ (A.38)

(−c1(x̃)lLγ′(Lx̃) + c2(x̃)) e2} .

Now using the interface condition for continuity of the normal component of the

tensors we get two equations with c1(x̃) and c2(x̃) as unknowns:
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δ

lCσ

(
c1(x̃)−

λs

λs + 2µs

c2(x̃)lLγ
′(Lx̃)

)
= −µV̄1L

l2Cσ

p̃0(x̃)lLγ′(Lx̃),

− δ

lCσ

(c1(x̃)lLγ
′(Lx̃)− c2(x̃)) =

µV̄1L

l2Cσ

p̃0(x̃)

Denoting Q1 = µV̄1L
l2

= P̄ , Q2 = lLγ′(Lx̃) and rearranging terms we obtain:

c1(x̃)−
λs

λs + 2µs

c2(x̃)Q2 = Q1Q2p̃
0(x̃),

−Q2c1(x̃) + c2(x̃) = −Q1p̃
0(x̃)

From here we obtain

c1(x̃) =
Q2

(
−1 + λs

λs+2µs

)
Q1

1− λs

λs+2µs
Q2

2

p̃0(x̃) (A.39)

c2(x̃) =
Q1 −Q1Q

2
2

1− λs

λs+2µs
Q2

2

p̃0(x̃) (A.40)

Further, we use the fact that in our case γ′ = O(ε) and neglect terms with Q2
2.

Substituting in (A.35) and (A.37) we get

ũ0
1(x̃, ỹ) = −

1 + δ
l
− ỹ

µs

Q2

(
−1 +

λs

λs + 2µs

)
Q1p̃

0(x̃) (A.41)

ũ0
2(x̃, ỹ) = −

1 + δ
l
− ỹ

λs + 2µs

Q1p̃
0(x̃) (A.42)

Now recall that

γ̃(x̃) =
γ(Lx̃)

l
= 1 + ũ2(x̃, 1),

which, together with equation (A.42), implies

γ̃(x) = 1 +
δ

l

1

λs + 2µs

P̄ p̃0(x̃). (A.43)
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Equivalently, in dimensional variables,

γ(x) = l +
δ

λs + 2µs

p0(x̃). (A.44)

Now we can return to the expression for the x− component of the velocity vector

(A.28). For fixed x̃ (equivalently, x) and a generic function φ̃(x̃, ỹ) (= φ(x, y)), let us

introduce the y-average operator 〈·〉:

〈φ̃(x̃, ỹ)〉 :=
1

2γ̃(x̃)

∫ γ(x̃)

−γ(x̃)

φ̃(x̃, ỹ))dy =
1

2γ(x)

∫ γ(x)

−γ(x)

φ(x, y))dy =: 〈φ(x, y)〉. (A.45)

The factor of 2 in the denominator is because we have symmetry of the all field

variables with respect of the x− axis and the interval 0 to γ is half of the channel.

By averaging equation (A.28) we get:

〈ṽ1(x̃)〉 = −1

3
γ3(Lx̃)〈∂p̃

0

∂x̃
〉

Substituting here the expression for γ from (A.44), we obtain

〈ṽ1(x̃)〉 = −1

3

(
l +

δ

λs + 2µs

P̄ p̃0(x̃)

)3

〈∂p̃
0(x̃)

∂x̃
〉.

Now we can consider the ratio of the mass flux and the pressure gradient which, in

the rigid case, gives the permeability K:

K := K(p̃0(x̃), x̃) = −〈ṽ1(x̃)〉
〈∂p̃0(x̃)

∂x̃
〉

=
1

3

(
l +

δ

λs + 2µs

P̄ p̃0(x̃)

)3

(A.46)

Observe, that for a deformable channel, permeability is not a constant, even for fixed

fluid and solid materials. We can view it as a function of axial position and aver-

aged pressure. Rewriting the last equation (A.46) by returning back to dimensional

variables, we get:

K(p0(x), x) =
1

3

(
l +

δ

λs + 2µs

p0(x)

)3

. (A.47)
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APPENDIX B

INTEGRATION OF A RETURN MAPPING ALGORITHM IN A

DISPLACEMENT BASED FINITE ELEMENT METHOD

This appendix is intended as a brief summary of a displacement based FEM for a

problem with material nonlinearity.

The notation follows that from Chapter V. Since there is not a chance of con-

fusion the reference configuration of the solid is denoted by Ω instead of Ωs
0. The

loading of the body is assumed to have taken place at discrete instances 1, 2, ..., n

with some given boundary conditions ûi and ŝi, i = 1, ..., n, and the material state

has already been determined at this instances. For the current loading step, ûn+1

and ŝn+1 are given and the field variables εn+1,Sn+1, ... have to be computed. For

simplicity, the superscript n+ 1 will be dropped in the following discussion.

The nonlinear analog to the weak form (5.25),(5.26) reads:

(S (e (u)) , e (w))Ω = (b,w)Ω + (ŝ,w)ΓN , ∀w ∈
[
H1

D(Ω)
]d
, (B.1)

u = û, on ΓD. (B.2)

For convenience and without loss of generality, the path dependence of the stress is

also omitted. A more precise notation for S, which is also much more cumbersome,

is

S = S
(
e (u); εin, ξ, ξ̇

)
, (B.3)

see the remarks after equation (2.28).

Upon introducing a discrete space for the displacement Uu, the discrete weak
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form is obtained directly from (B.1),(B.2):

(S
(
e
(
uh
))
, e
(
wh
)
)Ω = (b,wh)Ω + (ŝ,wh)ΓN , ∀wh ∈ Uu, (B.4)

uh = û, on ΓD. (B.5)

where uh is the discrete displacement. Let the number of degrees of freedom be N

and the nodal basis functions be denoted by ψ(i), i = 1, .., N . Also, for convenience,

let the column vector of all the basis functions be denoted by Ψ =
(
ψ(1), ...,ψ(N)

)
.

In this notation,

uh =
N∑

i=1

ψ(i)(x)Ui = U ·Ψ,

where U = (U1, ..., UN)T is the column vector of the nodal values of the displacements.

To solve the nonlinear equation (B.1) Newton’s method is applied to the residual

function

Fh(U) = (S (e (U)) ,w)Ω − (b,w)Ω − (ŝ,w)ΓN , (B.6)

that is, an iterative solution is sought:

U = lim
k→∞

U(k),

where the k + 1 iterate is defined by the recursive formula

Fh(U(k)) +
∂Fh(U(k))

∂U
(U(k+1) −U(k)) = 0. (B.7)

Denoting by L the Jacobian in the above equation:

L(U) :=
∂Fh(U)

∂U
, (B.8)

the recursive relation (B.7) can be written as

U(k+1) = U(k) + L−1(U(k))Fh(U(k)). (B.9)
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Given some displacements U(k), the stress S(e
(
uh
)
) can be computed at an arbitrary

location x by evaluating the discrete strain at that point e
(
uh(x)

)
and then using

the return mapping algorithm of Chapter IV, Section 1 to get all the state variables

at this point. Evaluating the residual function is done by numerical integration of

the integrals in (B.4), therefore the stress S is required only at discrete integration

points (cf., e.g., Ciarlet, 2002; Reddy, 1993).

Evaluating the Jacobian matrix L requires some manipulations. Observe that:

∂Fh(U)

∂U
=

∫
Ω

∂S
(
e
(
uh
))

∂U
: e
(
wh
)
dp

=

∫
Ω

(
∂S
(
e
(
uh
))

∂e (uh)
:
∂e
(
uh
)

∂U

)
: e
(
wh
)
dp

=

∫
Ω

(
L(uh) :

∂e
(
uh
)

∂U

)
: e
(
wh
)
dp. (B.10)

The last row in the above equation was obtained by defining L(uh) to be the deriva-

tive:

L(uh) :=
∂S
(
e
(
uh
))

∂e (uh)
. (B.11)

Now, in light of the suppressed path dependence (B.3) of the Piola-Kirchhoff stress,

it is clear that L(uh) gives the variation of S around the point εh and with respect

to the previous material state (εh
n, ε

inh
n, ...). Therefore, the last definition (B.11) is

nothing else but the algorithmic tangent stiffness defined in (4.26). This explains why

it was necessary to derive equation (4.33). The reader is referred to Simo and Hughes

(1998) for further reading on this topic.

Coming back to the Jacobian matrix, a further simple calculation shows that

∂e
(
uh
)

∂U
=

∂

∂U
(e (U ·Ψ(p))) =

∂

∂U
(U · e (Ψ(p))) = e (Ψ(p)), (B.12)

where e (Ψ(p)) is the vector-column
(
e
(
Ψ(1)(p)

)
, ...e

(
Ψ(N)(p)

))T

consisting of the
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strains for each degree of freedom as its components. Combining equations (B.10)

and (B.12), the components of the Jacobian matrix (B.8) are found to be:

Lij =

∫
Ω

e
(
Ψ(i)(p)

)
: L(U ·Ψ(p)) : e

(
Ψ(j)(p)

)
dp.

Now, the Jacobian (B.8) required in (B.7) is completely defined in terms of the selected

FEM basis functions Ψ and the algorithmic tangent stiffness L.



245

APPENDIX C

SMA SUBROUTINE SOURCE CODE LISTING

Listing VI.1 SMA numerical implementation header file
1 #ifndef __SMA2004_H
2 #define __SMA2004_H
3
4 #include <math.h>
5 #include "tensors.h"
6 #include "inelasticity.h"
7
8 #define PT_NONE 0
9 #define PT_SIM_FORWARD 1

10 #define PT_SIM_REVERSE 2
11 #define PT_SA_FORWARD 3
12 #define PT_SA_REVERSE 4
13 #define PT_REORIENT 5
14
15 #define XI_SA 1
16 #define XI_SIM 2
17 #define XI_REORIENT 3
18
19
20 class ESMAError{
21 private:
22 char *fMsg;
23 public:
24 ESMAError(char* AMsg);
25 };
26
27 class TSMAMaterial : public TInelasticMaterial{
28 public:
29 double rho , EM , EA , nuM , nuA , aM, aA , cM , cA , As , Af , Ms, Mf, H,
30 stress_s , stress_f , T0, delta_s0 , delta_c , c01 , c02 , c03;
31
32 int f3deg;
33 double *f3;
34
35 double Y1, Y2, Y3 , b1M , b2M , b1A , b2A , b3, delta_u1 , delta_u2;
36
37 int poly3deg;
38 double *poly3; // polynomial hardening for detwinning
39
40 tensor4 CM , CA , dC; // Elastic modulii
41 tensor4 SM , SA , dS; // Compliance
42 tensor AlphaM , AlphaA , dAlpha;
43
44 TSMAMaterial () {};
45 TSMAMaterial(const char * str);
46 virtual char* __cdecl Name() { return "SMA"; }
47 virtual char* __cdecl AsString ();
48 virtual int __cdecl InternalVarCount () { return 6; };
49 virtual bool __cdecl ParamByName(double &res , char* name);
50
51 void Update ();
52 };
53
54 class TSMAState : public TInelasticState{
55 private:
56 void init() ;
57 public:
58 tensor strain; // total strain
59 double T;
60 tensor stress; // stress
61 tensor4* dstress_dstrain; // derivatives with respect to strain. If null ,
62 // the FEM solver cannot use Newton ’s method.
63
64 tensor strain_in;
65 double xi1 , xi2 , xi3; // internal state variables ;
66 double dbl_tag;
67
68 TSMAState (){ init(); };
69 TSMAState(TSMAMaterial* amtrl) { SetMaterial(amtrl); init(); };
70 ~TSMAState (){ if (dstress_dstrain != NULL) delete dstress_dstrain; }
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71
72 virtual char* __cdecl GetAsString(char *res);
73 virtual void __cdecl Assign(TInelasticState *src);
74 virtual tensor* __cdecl Strain () { return &strain; };
75 virtual tensor* __cdecl Stress () { return &stress; };
76 virtual double* __cdecl Temperature () { return &T; };
77 virtual double* __cdecl InternalVar(int i);
78 // this function , if implemented , can provide with a way of splitting the
79 // stress tensor when used in a direct iteration method.
80 virtual tensor* __cdecl InelasticStrain(tensor *res , int i);
81 virtual tensor4* __cdecl EffctvC(tensor4* res);
82 virtual tensor4* __cdecl EffctvS(tensor4* res);
83 virtual tensor* __cdecl EffctvA(tensor* res);
84 virtual tensor4* __cdecl DStressDStrain ();
85
86 virtual void __cdecl SetMaterial(PInelasticMaterial amtrl);
87 virtual void __cdecl SetAsString(const char* str);
88 virtual tensor4* __cdecl DStressDStrain_Alg(tensor4 *res , TInelasticState *old_state);
89 virtual tensor4* __cdecl DStressDStrain_Alg2(tensor4 *res , TInelasticState *old_state);
90
91 tensor* __cdecl InelasticPrediction(tensor* res , int pt_indx);
92 tensor* __cdecl HookeResidual(tensor* res);
93 tensor* __cdecl dHookeResidual_dPT(tensor* res , int pt_indx);
94 tensor4* __cdecl dHookeResidual_dstress(tensor4* res , int pt_indx , TSMAState *old_state);
95 tensor4* __cdecl dHookeResidual_dstress2(tensor4* res , int pt_indx1 , int pt_indx2 , TSMAState *old_state);
96
97 // Generic flow rules
98 tensor* J2FlowRule(tensor *res);
99 tensor4* dJ2_dstress(tensor4Ptr res);

100 double* get_h(double *res) { return &(* res = 1.0); };
101 double* get_h2(double *res) { return get_h(res); };
102 // Flow rules for the forward and backward M^t->M^d transformation , i.e. \Lambda_3
103 double* get_h3(double *res) { return get_h(res); };
104
105 // Tranformation surfaces
106 double Phi(int pt_indx);
107 tensor* dPhi_dstress(tensor* res , int pt_indx);
108 double dPhi_dxi(int pt_indx , int xi_indx);
109 tensor* Lambda(tensor* res , int pt_indx);
110 tensor4* dLambda_dstress(tensor4 *res , int pt_indx);
111 tensor* dxi_dstress(tensor* res , int pt_indx);
112
113 // Transformation surface , flow rule and derivatives for A->M^t transformation ,
114 double Phi1_forward ();
115 tensor* dPhi1_forward_dstress(tensor* res);
116 double dPhi1_forward_dxi1 ();
117 double dPhi1_forward_dxi2 ();
118 double dPhi1_forward_dxi3 ();
119 tensor* Lambda1_forward(tensor *res) { zero_tensor(res); return res; };
120 tensor4* dLambda1_forward_dstress(tensor4 *res) { zero_tensor4(res); return res; };
121
122 // Transformation surface , flow rule and derivatives for M^t->A transformation ,
123 double Phi1_reverse ();
124 tensor* dPhi1_reverse_dstress(tensor* res);
125 double dPhi1_reverse_dxi1 ();
126 double dPhi1_reverse_dxi2 ();
127 double dPhi1_reverse_dxi3 ();
128 tensor* Lambda1_reverse(tensor *res) { zero_tensor(res); return res; };
129 tensor4* dLambda1_reverse_dstress(tensor4 *res) { zero_tensor4(res); return res; };
130
131 // Transformation surface , flow rule and derivatives for A->M^d transformation ,
132 double Phi2_forward ();
133 tensor* dPhi2_forward_dstress(tensor* res);
134 double dPhi2_forward_dxi1 ();
135 double dPhi2_forward_dxi2 ();
136 double dPhi2_forward_dxi3 ();
137 tensor* Lambda2_forward(tensor *res) { return J2FlowRule(res); }; // \Lambda_2
138 tensor4* dLambda2_forward_dstress(tensor4 *res) { return dJ2_dstress(res); };
139
140 // Transformation surface , flow rule and derivatives for M^d->A transformation ,
141 double Phi2_reverse ();
142 tensor* dPhi2_reverse_dstress(tensor* res);
143 double dPhi2_reverse_dxi1 ();
144 double dPhi2_reverse_dxi2 ();
145 double dPhi2_reverse_dxi3 ();
146 tensor* Lambda2_reverse(tensor *res);
147 tensor4* dLambda2_reverse_dstress(tensor4 *res) { zero_tensor4(res); return res; };
148
149 // Transformation surface , flow rule and derivatives for M^t->M^d transformation ,
150 double Phi3();
151 tensor* dPhi3_dstress(tensorPtr res);
152 double dPhi3_dxi1 ();
153 double dPhi3_dxi2 ();
154 double dPhi3_dxi3 ();
155 tensor* Lambda3(tensor *res) { return J2FlowRule(res); };
156 tensor4* dLambda3_dstress(tensor4 *res) { return dJ2_dstress(res); };
157
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158 // Transfrormation surfaces derivatives
159 // A->M^d
160 double dPhi2_forward_q ();
161 // double dPhi2_reverse_q ();
162
163 // A->M^t
164 double dPhi3_q () { return dPhi3_dxi3 (); };
165 // Support functions
166 void restore_phi3 ();
167
168 double c1(){ return (( TSMAMaterial *) fmtrl)->c01 + xi1 - xi3; };
169 double c2(){ return (( TSMAMaterial *) fmtrl)->c02 + xi2 + xi3; };
170 double c3(){ return (( TSMAMaterial *) fmtrl)->c03 - xi1 - xi2; };
171
172 double min_xi1 ();
173 double min_xi2 ();
174 double min_xi3 ();
175
176 double max_xi1 ();
177 double max_xi2 ();
178 double max_xi3 ();
179
180 bool is_A2Mt_possible ();
181 bool is_A2Md_possible ();
182 bool is_Md2A_possible ();
183 bool is_Mt2A_possible ();
184 bool is_Mt2Md_possible ();
185
186 bool check_consistency(TSMAState *ostate);
187 };
188
189 typedef double (TInelasticState ::* TYieldSurfaceProc)();
190 typedef tensorPtr (TInelasticState ::* TStrainFlowProc)(tensor *res);
191 typedef double* (TInelasticState ::* TIntVarFlowProc)(double *res);
192 typedef tensorPtr (TInelasticState ::* TDPhiDStressProc)(tensor *res);
193 typedef double (TInelasticState ::* TDPhiDqProc)();
194
195 class TSMASolver: public TInelasticSolver{
196 protected:
197 double falpha;
198 TInelasticState *LinearLoad(TInelasticState *res , tensor* new_strain ,
199 double new_T , TInelasticState *old_state);
200
201 // Generic , one variable Closest point projection method
202 TInelasticState *SimoCPP(TSMAState *res , tensor* new_strain ,
203 double new_T , TSMAState* old_state , int pt_indx);
204 // Generic , two variable Closest point projection method
205 TInelasticState *SimoCPP2(TSMAState *res , tensor* new_strain ,
206 double new_T , TSMAState* old_state , int pt_indx1 , int pt_indx2);
207 // Optimized
208 TInelasticState *SimoCPP_forward(TSMAState *res , tensor* new_strain ,
209 double new_T , TSMAState* old_state);
210 TInelasticState *SimoCPP_reverse(TSMAState *res , tensor* new_strain ,
211 double new_T , TSMAState* old_state);
212
213 TInelasticState *OrtizPopov85(TInelasticState *res , tensor* new_strain ,
214 double new_T , TInelasticState* old_state ,
215 TYieldSurfaceProc YieldSurface , TStrainFlowProc GetR , TIntVarFlowProc GetH ,
216 TDPhiDStressProc GetDPhiDStress , TDPhiDqProc GetDPhiDq , int q_num);
217
218 TSMAState *Detwin(TSMAState *res , tensor* new_strain , double new_T , TSMAState* old_state);
219 TSMAState *SIM(TSMAState *res , tensor* new_strain , double new_T , TSMAState* old_state);
220 TSMAState *SI_reverse(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState* ostate);
221 TSMAState *SelfAccom_forward(TSMAState *res , tensor* new_strain , double new_T , TSMAState* old_state);
222 TSMAState *SelfAccom_reverse(TSMAState *res , tensor* new_strain , double new_T , TSMAState* old_state);
223 TSMAState *M2A(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState* ostate);
224 TSMAState *A2M(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState* ostate);
225 TSMAState *Mt2Md_and_Mt2A(TSMAState *res , tensor* new_strain , double new_T , TSMAState* ostate);
226
227 bool RestoreConsistency_Md2A(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState *ostate);
228 bool RestoreConsistency_M2A(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState *ostate , bool

type);
229 void RestoreConsistency_xi3(TSMAState *res , tensor* new_strain , double new_T , TSMAState *ostate);
230 bool RestoreConsistency_A2Mt(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState *ostate);
231 void RestoreConsistency_A2Md(TSMAState *res , tensor* new_strain , double new_T , TSMAState *ostate);
232 bool RestoreConsistency_A2Md_xxx(TSMAState *res , tensor* new_strain , double new_T , TSMAState *ostate);
233 void RestoreConsistency_A2M(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState *ostate);
234 void RestoreConsistency_Mt2A_Mt2Md(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState *ostate)

;
235 void Complete_Mt2A(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState *ostate);
236 public:
237 TSMASolver () { falpha = 1.0; };
238
239 virtual PInelasticState __cdecl Load(PInelasticState res , tensor* new_strain ,
240 double new_T , PInelasticState old_state);
241 virtual tensor4Ptr __cdecl NumericalJacobian(tensor4 L, TSMAState *nstate , TSMAState *ostate);
242 };
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243
244 double phi1f(TSMAMaterial* smat , tensor* stress , double T, double c1);
245 double phi1r(TSMAMaterial* smat , tensor* stress , double T, double c2);
246 double phi2f(TSMAMaterial* smat , tensor* stress , double T, tensor* Lambda , double c2);
247 double phi2r(TSMAMaterial* smat , tensor* stress , double T, tensor* Lambda , double c2);
248
249
250 int PT2xi(int pt_indx);
251
252 #endif /* __SMA2004_H */

Listing VI.2 SMA numerical implementation source file
1 #include <stdlib.h>
2 #include <string.h>
3 #include <math.h>
4 #include <iostream.h>
5 #include <assert.h>
6 #include <fstream.h>
7 #include <cstring.h>
8 //#include <system.hpp >
9

10 #include "SMA2004.h"
11 #include "support.h"
12
13 #define LN(x) log(x)
14 #define SQR(x) (x*x)
15 #define TOL 1.0e-12
16 #define PHI_EPS 1.0e-6
17 #define EPS 1.0e-14
18 #define MAX_ITER_COUNT 16
19 #define SMAT(x) (( TSMAMaterial *)x)
20 #define SMASTATE(x) (( TSMAState *)x)
21
22 bool cnflag = true;// false;
23 int e_cnt = 899;
24 int e_indx = 1;
25 int allocated_mem;
26
27 ESMAError :: ESMAError(char* AMsg) {
28 ofstream fout;
29
30 // fout.open (" err.txt", ios :: app);
31 // fout << AMsg << "\n\n";
32 // fout.close ();
33
34 };
35
36
37 TSMAMaterial :: TSMAMaterial(const char *str){
38 char* tmp = new char[strlen(str) + 1];
39
40 tmp = strcpy(tmp , str);
41
42 f3 = ReadDoubleArr(tmp , "f3", f3deg);
43 f3deg --;
44
45 rho = ReadDouble(tmp , "Density", ’;’, 6450.0);
46 EM = ReadDouble(tmp , "EM", ’;’, 30.0e9);
47 EA = ReadDouble(tmp , "EA", ’;’, 70.0e9);
48 nuM = ReadDouble(tmp , "PoissonM", ’;’, 0.3);
49 nuA = ReadDouble(tmp , "PoissonA", ’;’, 0.3);
50 aM = ReadDouble(tmp , "AlphaM", ’;’, 11.0e-6);
51 aA = ReadDouble(tmp , "AlphaA", ’;’, 6.6e-6);
52 cM = ReadDouble(tmp , "cM", ’;’, 2.12e6);
53 cA = ReadDouble(tmp , "cA", ’;’, 2.12e6);
54 As = ReadDouble(tmp , "As", ’;’, 295.0);
55 Af = ReadDouble(tmp , "Af", ’;’, 315.0);
56 Ms = ReadDouble(tmp , "Ms", ’;’, 291.0);
57 Mf = ReadDouble(tmp , "Mf", ’;’, 271.0);
58 H = ReadDouble(tmp , "H", ’;’, 0.05);
59 stress_s = ReadDouble(tmp , "stress_s", ’;’, 50.0e6);
60 stress_f = ReadDouble(tmp , "stress_f", ’;’, 100.0e6);
61 T0 = ReadDouble(tmp , "T0", ’;’, 271.0);
62 delta_s0 = ReadDouble(tmp , "ds0", ’;’, -7.0e6*H/rho);
63 c01 = ReadDouble(tmp , "c01", ’;’, 1.0);
64 c02 = ReadDouble(tmp , "c02", ’;’, 0.0);
65 c03 = ReadDouble(tmp , "c03", ’;’, 0.0);
66 if (fabs(c01+c02+c03 - 1.0) > EPS){
67 throw ESMAError("Iintial mass fractions have inconsistent sum.");
68 }
69 poly3 = NULL;
70 // Y1 , Y2 , Y3 , b1 , b2 , b12 , m1 , m2
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71
72 delta_c = cM - cA;
73
74 IsotropicStiffness (&CM , EM , nuM);
75
76
77 IsotropicCompliance (&SM , EM , nuM);
78 IsotropicStiffness (&CA , EA , nuA);
79 IsotropicCompliance (&SA , EA , nuA);
80 init_diag2 (&AlphaM , aM);
81 init_diag2 (&AlphaA , aA);
82
83 sub4(&dC , &CM, &CA);
84 sub4(&dS , &SM, &SA);
85 sub(&dAlpha , &AlphaM , &AlphaA);
86
87 Update ();
88
89 delete [] tmp;
90 };
91
92 void TSMAMaterial :: Update (){
93 double delta_S = 1.0/EM -1.0/ EA;
94 double delta_a = aM -aA;
95 double tmp = 0.25* stress_s *(2.0*(H+(Ms -T0)*delta_a)+delta_S*stress_s);
96
97 tensor stress , lambda;
98
99 // Computing parameters related to Phi1

100 b1M = -(Mf -Ms)*( delta_c - delta_s0)+delta_c *(Mf*LN(Mf/T0)-Ms*LN(Ms/T0));
101 b1A = (Af -As)*(delta_c -delta_s0)+delta_c *(As*LN(As/T0)-Af*LN(Af/T0));
102 Y1 = 0.5* rho *((Af -Ms)*(delta_c -delta_s0)+delta_c *(Ms*LN(Ms/T0)-Af*LN(Af/T0)));
103 delta_u1 =
104 0.5*((2.0*T0-Af -Ms)*delta_c +(Af+Ms)*delta_s0+delta_c *(Ms*LN(Ms/T0)+Af*LN(Af/T0)));
105
106 // checking Phi1
107 zero_tensor (& stress);
108 assert(fabs(phi1f(this , &stress , Ms, 0.0)) <1e-7);
109 assert(fabs(phi1f(this , &stress , Mf, 1.0)) <1e-7);
110 assert(fabs(phi1r(this , &stress , As, 1.0)) <1e-7);
111 assert(fabs(phi1r(this , &stress , Af, 0.0)) <1e-7);
112
113 // Computing parameters related to Phi2
114 /* ***********
115 b2M = (stress_f -stress_s)*(2*(H+(Ms -T0)*delta_a)+delta_S *( stress_f+stress_s))/(2.0* rho);
116 *********** */
117 b2M = b1M + (Mf-Ms)*delta_a*stress_s/rho;
118 b2A = b1A;
119 Y2 = Y1 + tmp;
120 delta_u2 = delta_u1 + tmp/rho;
121
122 // Checking Phi2
123 stress [0][0] = stress_s;
124 zero_tensor (& lambda);
125 lambda [0][0] = H;
126 assert(fabs(phi2f(this , &stress , Ms, &lambda , 0.0)) <1e-6);
127 /* ***********
128 stress [0][0] = stress_f;
129 assert(fabs(phi2f(this , &stress , Ms , &lambda , 1.0)) <1e -7);
130 *********** */
131 stress [0][0] = stress_s;
132 assert(fabs(phi2f(this , &stress , Mf, &lambda , 1.0)) <1e-7);
133
134 zero_tensor (& stress);
135 zero_tensor (& lambda);
136 assert(fabs(phi2r(this , &stress , As, &lambda , 1.0)) <1e-7);
137 assert(fabs(phi2r(this , &stress , Af, &lambda , 0.0)) <1e-6);
138
139 // Computing parameters for Phi3
140 Y3 = H*stress_s;
141 b3 = (stress_f -stress_s)*H/rho;
142
143
144 // A = rho*b1M*c01 - rho*b2M*c02 - Y3;
145 // B = -rho *( b1M+b2M+b3);
146
147 delete [] poly3;
148
149 poly3deg = max(2, f3deg +1) - 1;
150 poly3 = new double[poly3deg + 1];
151 poly3 [0] = 0.0;
152 poly3 [1] = 0.0;
153 for (int i = 0; i <= f3deg; i++) poly3[i] -= f3[i];
154
155 assert(fabs(stress_s*H-Y3)<1e-7);
156 assert(fabs(stress_f*H-rho*b3 -Y3) <1e-7);
157 }
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158
159 /*
160 void TSMAMaterial :: Update (){
161 double deltaS = 1.0/EM -1.0/ EA;
162 double deltaA = aM -aA;
163 double A, B;
164
165 b1A = -delta_s0 *(Af -As);
166 b1M = -delta_s0 *(Ms -Mf);
167 // b2M = -delta_s0 *(Ms -Mf) + (H + 0.5* deltaS *( stress_f+stress_s))*( stress_f -stress_s)/rho;
168 b2M = (H + 0.5* deltaS *( stress_f+stress_s))*( stress_f -stress_s)/rho;
169 b2A = -delta_s0 *(Af -As);
170 m1 = 0.25*( b1A -b1M);
171 m2 = 0.25*( b2A -b2M);
172 Y1 = -0.25* rho*delta_s0 *( Af + As - Ms - Mf );
173 Y2 = Y1 + 0.25*( stress_s + stress_f)*H + 0.125* deltaS *( SQR(stress_s) + SQR(stress_f));
174 Y3 = stress_s*H + rho*b1M + rho *(m1 -m2);
175 delta_u10 = 0.5* delta_s0 *(Ms+Af);
176 delta_u20 = delta_u10 + (0.5* stress_s*H + 0.25* deltaS*stress_s*stress_s)/rho;
177
178 b3 = (stress_f*H+rho*(-b2M +(m1 -m2))-Y3)/rho;
179
180 A = rho*b1M*c01 - rho*b2M*c02 + rho *(m1 -m2) - Y3;
181 B = -rho *( b1M+b2M+b3);
182
183 delete [] poly3;
184
185 poly3deg = max(2, f3deg +1) - 1;
186 poly3 = new double[poly3deg + 1];
187 poly3 [0] = A;
188 poly3 [1] = B;
189 for (int i = 0; i <= f3deg; i++) poly3[i] -= f3[i];
190
191 // assert(fabs(stress_s*H+0.5* deltaS*SQR(stress_s)+rho*delta_s0*Ms -rho*m2 -rho*delta_u20 -Y2) <1e -7);
192 // assert(fabs(stress_f*H+0.5* deltaS*SQR(stress_f)+rho*delta_s0*Mf -rho*b2M -rho*m2 -rho*delta_u20 -Y2) <1e -7);
193 // check consistency of A->Md
194 // assert(fabs(deltaA *(Ms -T0)+rho*delta_s0*Ms -rho*m1 -rho*delta_u10 -Y1) <1e -7);
195 // assert(fabs(deltaA *(Mf -T0)+rho*delta_s0*Mf -rho*b1M -rho*m1 -rho*delta_u10 -Y1) <1e -7);
196 // assert(fabs(rho*delta_s0*Af +rho*m2 -rho*delta_u20+Y2) <1e -7);
197 // assert(fabs(rho*delta_s0*As -rho*b2A+rho*m2 -rho*delta_u20 +Y2) <1e -7);
198
199 // assert(fabs(rho*delta_s0*Ms -rho*m1 -rho*delta_u10 -Y1) <1e -7);
200 }
201 */
202 char* __cdecl TSMAMaterial :: AsString (){
203 char buf [20];
204 char *res , *tmp;
205
206 tmp = res = StrCat("EA = ", gcvt(EA , 7, buf));
207 res = StrCat(res , ";\nEM = "); delete [] tmp;
208 tmp = res; res = StrCat(res , gcvt(EM, 7, buf)); delete [] tmp;
209
210 tmp = res; res = StrCat(res , ";\nnuA = "); delete [] tmp;
211 tmp = res; res = StrCat(res , gcvt(nuA , 7, buf)); delete [] tmp;
212
213 tmp = res; res = StrCat(res , ";\nnuM = "); delete [] tmp;
214 tmp = res; res = StrCat(res , gcvt(nuM , 7, buf)); delete [] tmp;
215
216 tmp = res; res = StrCat(res , ";\ nAlphaM = "); delete [] tmp;
217 tmp = res; res = StrCat(res , gcvt(aM, 7, buf)); delete [] tmp;
218
219 tmp = res; res = StrCat(res , ";\ nAlphaA = "); delete [] tmp;
220 tmp = res; res = StrCat(res , gcvt(aA, 7, buf)); delete [] tmp;
221
222 tmp = res; res = StrCat(res , ";\nnuA = "); delete [] tmp;
223 tmp = res; res = StrCat(res , gcvt(nuA , 7, buf)); delete [] tmp;
224
225 tmp = res; res = StrCat(res , ";\ncM = "); delete [] tmp;
226 tmp = res; res = StrCat(res , gcvt(cM, 7, buf)); delete [] tmp;
227
228 tmp = res; res = StrCat(res , ";\ncA = "); delete [] tmp;
229 tmp = res; res = StrCat(res , gcvt(cA, 7, buf)); delete [] tmp;
230
231 tmp = res; res = StrCat(res , ";\nAs = "); delete [] tmp;
232 tmp = res; res = StrCat(res , gcvt(As, 7, buf)); delete [] tmp;
233
234 tmp = res; res = StrCat(res , ";\nAf = "); delete [] tmp;
235 tmp = res; res = StrCat(res , gcvt(Af, 7, buf)); delete [] tmp;
236
237 tmp = res; res = StrCat(res , ";\nMs = "); delete [] tmp;
238 tmp = res; res = StrCat(res , gcvt(Ms, 7, buf)); delete [] tmp;
239
240 tmp = res; res = StrCat(res , ";\nMf = "); delete [] tmp;
241 tmp = res; res = StrCat(res , gcvt(Mf, 7, buf)); delete [] tmp;
242
243 tmp = res; res = StrCat(res , ";\nH = "); delete [] tmp;
244 tmp = res; res = StrCat(res , gcvt(H, 7, buf)); delete [] tmp;
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245
246 tmp = res; res = StrCat(res , ";\nds0 = "); delete [] tmp;
247 tmp = res; res = StrCat(res , gcvt(delta_s0 , 7, buf)); delete [] tmp;
248
249 return res;
250 }
251
252 bool TSMAMaterial :: ParamByName(double &res , char* name){
253 if (strcmp(name , "T0") == 0){
254 res = T0;
255 return res;
256 }
257 else{
258 return false;
259 }
260 }
261
262 double J2(tensorPtr stress)
263 {
264 tensor s;
265
266 dev(&s, stress);
267 return norm(&s);
268 }
269
270
271 double P(TSMAMaterial* smat , tensor* stress , double T)
272 {
273 tensor tmp;
274 double res;
275
276 res = 0.5* contract(contract42 (&tmp , &(smat ->dS), stress), stress);
277 res += contract (&smat ->dAlpha , stress)*(T-smat ->T0);
278 res -= smat ->rho*smat ->delta_c *(T-smat ->T0-T*LN(T/smat ->T0));
279 res += smat ->rho*smat ->delta_s0*T;
280 return res;
281
282 }
283
284 tensor* dPdstress(TSMAMaterial* smat , tensor* res , tensor* stress , double T)
285 {
286 contract42(res , &(smat ->dS), stress);
287 return add_smul(res , *res , smat ->dAlpha , T-smat ->T0);
288 }
289
290 double phi1P(TSMAMaterial* smat , tensor* stress , double T, double c1 , double b)
291 {
292 double res;
293
294 res = (P(smat , stress , T) - smat ->rho*(smat ->delta_u1 + b*c1));
295 return res;
296 }
297
298 double phi1f(TSMAMaterial* smat , tensor* stress , double T, double c1)
299 {
300 return phi1P(smat , stress , T, c1 , smat ->b1M) - smat ->Y1;
301 }
302
303 double phi1r(TSMAMaterial* smat , tensor* stress , double T, double c1)
304 {
305 return -phi1P(smat , stress , T, c1 , smat ->b1A) - smat ->Y1;;
306 }
307
308 double phi2P(TSMAMaterial* smat , tensor* stress , double T, tensor* Lambda , double c2, double b)
309 {
310 tensor tmp;
311 double res;
312
313 res = contract(stress , Lambda) + P(smat , stress , T);
314 res -= smat ->rho*(smat ->delta_u2 + b*c2);
315 return res;
316 }
317
318 double phi2f(TSMAMaterial* smat , tensor* stress , double T, tensor* Lambda , double c2)
319 {
320 return phi2P(smat , stress , T, Lambda , c2, smat ->b2M) - smat ->Y2;
321 }
322
323 double phi2r(TSMAMaterial* smat , tensor* stress , double T, tensor* Lambda , double c2)
324 {
325 return -phi2P(smat , stress , T, Lambda , c2, smat ->b2A) - smat ->Y2;
326 }
327
328
329 void TSMAState ::init(){
330 zero_tensor (& strain);
331 zero_tensor (& stress);
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332 zero_tensor (& strain_in);
333 dstress_dstrain = NULL;
334 xi1 = xi2 = xi3 = 0.0;
335 if (fmtrl) T = SMAT(fmtrl)->T0;
336 };
337
338 void TSMAState :: SetMaterial(PInelasticMaterial amtrl){
339 TInelasticState :: SetMaterial(amtrl);
340 if (fmtrl) T = SMAT(fmtrl)->T0;
341 };
342
343
344 void write_tnsr(string *s, tensor t, char *name){
345 char buf [30];
346
347 s->append("\n");
348 s->append(name);
349 s->append(" =\n");
350 for (int i = 0; i < 3; i++){
351 for (int j = 0; j < 3; j++){
352 s->append(gcvt(t[i][j], 14, buf));
353 s->append(" ");
354 }
355 s->append("\n");
356 }
357
358
359 }
360
361 char* TSMAState :: GetAsString(char *res){
362 string s;
363 char buf [30];
364
365 s.append("xi1 = ");
366 s.append(gcvt(xi1 , 14, buf));
367 s.append("\nxi2 = ");
368 s.append(gcvt(xi2 , 14, buf));
369 s.append("\nxi3 = ");
370 s.append(gcvt(xi3 , 14, buf));
371
372 write_tnsr (&s, strain , "strain");
373 s.append("\nT = ");
374 s.append(gcvt(T, 14, buf));
375
376 write_tnsr (&s, stress , "stress");
377 write_tnsr (&s, strain_in , "strain_in");
378
379 if (res != NULL){
380 if (strlen(res) < s.length ()){
381 res = new char[s.length () + 1];
382 }
383 }
384 else
385 res = new char[s.length () + 1];
386 stpcpy(res , s.c_str ());
387 return res;
388 }
389
390 void TSMAState :: SetAsString(const char *str){
391 char* tmp = new char[strlen(str) + 1];
392
393 tmp = strcpy(tmp , str);
394
395 xi1 = ReadDouble(tmp , "xi1", ’\n’, 0.0);
396 xi2 = ReadDouble(tmp , "xi2", ’\n’, 0.0);
397 xi3 = ReadDouble(tmp , "xi3", ’\n’, 0.0);
398
399 T = ReadDouble(tmp , "T", ’\n’, 0.0);
400 ReadTensor2(strain , tmp , "strain");
401 ReadTensor2(stress , tmp , "stress");
402 ReadTensor2(strain_in , tmp , "strain_in");
403 }
404
405
406
407 void TSMAState :: Assign(TInelasticState* src){
408 TSMAState *sma_src;
409
410 if (this == src){
411 return;
412 }
413
414 TInelasticState :: Assign(src);
415
416 T = *src ->Temperature ();
417 assign_tensor (&strain , src ->Strain ());
418 assign_tensor (&stress , src ->Stress ());
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419 /*
420 if (src -> DStressDStrain ()){
421 if (! dstress_dstrain ) dstress_dstrain = new tensor4 [1];
422 assign_tensor4 (dstress_dstrain , src -> DStressDStrain ());
423 }
424 else{
425 if (! dstress_dstrain ) delete dstress_dstrain ;
426 dstress_dstrain = NULL;
427 }
428 */
429 sma_src = (dynamic_cast <TSMAState *>(src));
430 assign_tensor (&strain_in , &sma_src ->strain_in);
431
432 xi1 = sma_src ->xi1;
433 xi2 = sma_src ->xi2;
434 xi3 = sma_src ->xi3;
435 }
436
437 tensor4* TSMAState :: EffctvC(tensor4* res){
438 TSMAMaterial *smat = (TSMAMaterial *) GetMaterial ();
439
440 double xi = c1() + c2();
441 double EffE = 1.0/( xi/smat ->EM + (1.0-xi)/smat ->EA);
442 double EffNu = xi*smat ->nuM + (1.0-xi)*smat ->nuA;
443
444 if (xi <= 0.0){
445 assign_tensor4(res , &smat ->CA);
446 }
447 else if (xi >= 1.0){
448 assign_tensor4(res , &smat ->CM);
449 }
450 else{
451 IsotropicStiffness(res , EffE , EffNu);
452 }
453
454 return res;
455 }
456
457 tensor4* TSMAState :: EffctvS(tensor4* res){
458 TSMAMaterial *smat = (TSMAMaterial *) GetMaterial ();
459
460 double xi = c1() + c2();
461 double EffE = 1.0/( xi/smat ->EM + (1.0-xi)/smat ->EA);
462 double EffNu = xi*smat ->nuM + (1.0-xi)*smat ->nuA;
463
464 if (xi <= 0.0){
465 assign_tensor4(res , &smat ->SA);
466 }
467 else if (xi >= 1.0){
468 assign_tensor4(res , &smat ->SM);
469 }
470 else{
471 IsotropicCompliance(res , EffE , EffNu);
472 }
473
474 return res;
475 }
476
477
478 tensor* TSMAState :: EffctvA(tensor* res){
479 TSMAMaterial *smat = (TSMAMaterial *) GetMaterial ();
480
481 double xi = c1() + c2();
482
483 if (xi <= 0.0){
484 assign_tensor(res , &smat ->AlphaA);
485 }
486 else if (xi >= 1.0){
487 assign_tensor(res , &smat ->AlphaM);
488 }
489 else{
490 interpolate(res , &smat ->AlphaA , &smat ->AlphaM , xi);
491 }
492 return res;
493 }
494
495
496 tensor4* TSMAState :: DStressDStrain (){
497 if (dstress_dstrain){
498 return dstress_dstrain;
499 }
500 else{
501 dstress_dstrain = new tensor4 [1];
502 EffctvC(dstress_dstrain);
503 return (dstress_dstrain);
504 }
505 };
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506
507 tensor* TSMAState :: InelasticStrain(tensor* res , int i){
508
509 if (res){
510 assign_tensor(res , &strain_in);
511 return res;
512 }
513 else return &strain_in;
514 }
515
516 double* TSMAState :: InternalVar(int i){
517 switch (i){
518 case 1: return &xi1;
519 case 2: return &xi2;
520 case 3: return &xi3;
521 case 4:{
522 dbl_tag = c1();
523 return &dbl_tag;
524 }
525 case 5:{
526 dbl_tag = c2();
527 return &dbl_tag;
528 }
529 case 6:{
530 dbl_tag = c3();
531 return &dbl_tag;
532 }
533 default: cerr << "TSMAState :: InternalVar - This method expects int i in [1..3]";
534 return NULL;
535 }
536 }
537
538 tensorPtr TSMAState :: J2FlowRule(tensorPtr res){
539 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
540
541 if (!res) {
542 res = new tensor [1];
543 zero_tensor(res);
544 }
545
546 if (norm(& stress) > 1e-16){
547 dev(res , &stress);
548 return scalar_mul(res , res , sqrt (3.0/2.0)*smat ->H/norm(res));
549 }
550 {
551 zero_tensor(res);
552 return res;
553 }
554
555 }
556
557 tensor4* TSMAState :: dJ2_dstress(tensor4Ptr res){
558
559 tensor s, tmp;
560 tensor4 tmp2;
561 double n_s;
562
563 identity4 (*res);
564
565 identity2(tmp);
566 prod22 (&tmp2 , &tmp , &tmp);
567 add_smul4(res , *res , tmp2 , -1.0/3.0);
568
569 dev(&s, &stress);
570 prod22 (&tmp2 , &s, &s);
571 n_s = norm(&s);
572 add_smul4(res , *res , tmp2 , -1.0/SQR(n_s));
573 scalar_mul4(res , *res , sqrt (3.0/2.0)*SMAT(fmtrl)->H/n_s);
574
575 // Symmetrize22 (* res);
576 return res;
577
578 }
579
580 tensor* TSMAState :: Lambda2_reverse(tensor *res){
581 if (!res) {
582 res = new tensor [1];
583 zero_tensor(res);
584 }
585
586 zero_tensor(res);
587 if (norm(& strain_in) > 1e-16){
588 assign_tensor(res , &strain_in);// dev(res , & strain_in);
589 scalar_mul(res , res , sqrt (3.0/2.0)*SMAT(fmtrl)->H/norm(res));
590 if (c2() < 0.0)
591 negate_tensor(res);
592 }
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593 else{
594 return Lambda2_forward(res);
595 }
596 return res;
597 }
598
599 /*
600 double TSMAState :: dPhi2_reverse_q (){
601 return SMAT(fmtrl)->rho*SMAT(fmtrl)->bA;
602 };*/
603
604 /* **************************************************************************** */
605 /* */
606 /* Indexed transformation surface and derivatives . */
607 /* */
608 /* **************************************************************************** */
609
610 int PT2xi(int pt_indx){
611 switch (pt_indx){
612 case PT_SA_FORWARD: return XI_SA;
613 case PT_SA_REVERSE: return XI_SA;
614 case PT_SIM_FORWARD: return XI_SIM;
615 case PT_SIM_REVERSE: return XI_SIM;
616 case PT_REORIENT: return XI_REORIENT;
617 default: cerr << "PT2xi: Inappropriate index";
618 return 0;
619 }
620 }
621
622 double TSMAState ::Phi(int pt_indx){
623 switch (pt_indx){
624 case PT_SIM_FORWARD: return Phi2_forward ();
625 case PT_SIM_REVERSE: return Phi2_reverse ();
626 case PT_SA_FORWARD: return Phi1_forward ();
627 case PT_SA_REVERSE: return Phi1_reverse ();
628 case PT_REORIENT: return Phi3();
629 default: cerr << "TSMAState ::Phi - Inappropriate index";
630 return 0.0;
631 }
632 }
633
634 tensor* TSMAState :: dPhi_dstress(tensor* res , int pt_indx){
635 switch (pt_indx){
636 case PT_SIM_FORWARD: return dPhi2_forward_dstress(res);
637 case PT_SIM_REVERSE: return dPhi2_reverse_dstress(res);
638 case PT_SA_FORWARD: return dPhi1_forward_dstress(res);
639 case PT_SA_REVERSE: return dPhi1_reverse_dstress(res);
640 case PT_REORIENT: return dPhi3_dstress(res);
641 default: cerr << "TSMAState :: dPhi_dstress - Inappropriate index";
642 return NULL;
643 }
644 }
645
646 double TSMAState :: dPhi_dxi(int pt_indx , int xi_indx)
647 {
648 switch (pt_indx){
649 case PT_SIM_FORWARD:
650 switch (xi_indx){
651 case 1: return dPhi2_forward_dxi1 ();
652 case 2: return dPhi2_forward_dxi2 ();
653 case 3: return dPhi2_forward_dxi3 ();
654 }
655 case PT_SIM_REVERSE:
656 switch (xi_indx){
657 case 1: return dPhi2_reverse_dxi1 ();
658 case 2: return dPhi2_reverse_dxi2 ();
659 case 3: return dPhi2_reverse_dxi3 ();
660 }
661 case PT_SA_FORWARD:
662 switch (xi_indx){
663 case 1: return dPhi1_forward_dxi1 ();
664 case 2: return dPhi1_forward_dxi2 ();
665 case 3: return dPhi1_forward_dxi3 ();
666 }
667 case PT_SA_REVERSE :;
668 switch (xi_indx){
669 case 1: return dPhi1_reverse_dxi1 ();
670 case 2: return dPhi1_reverse_dxi2 ();
671 case 3: return dPhi1_reverse_dxi3 ();
672 }
673 case PT_REORIENT: ;
674 switch (xi_indx){
675 case 1: return dPhi3_dxi1 ();
676 case 2: return dPhi3_dxi2 ();
677 case 3: return dPhi3_dxi3 ();
678 }
679 default: cerr << "TSMAState :: dPhi_dxi - Inappropriate index";
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680 return NULL;
681 }
682 }
683
684 tensor* TSMAState :: Lambda(tensor *res , int pt_indx){
685 switch (pt_indx){
686 case PT_SA_FORWARD: return Lambda1_forward(res);
687 case PT_SA_REVERSE: return Lambda1_reverse(res);
688 case PT_SIM_FORWARD: return Lambda2_forward(res);
689 case PT_SIM_REVERSE: return Lambda2_reverse(res);
690 case PT_REORIENT: return Lambda3(res);
691 default: cerr << "TSMAState :: Lambda - Inappropriate index";
692 return NULL;
693 }
694 }
695
696 tensor4* TSMAState :: dLambda_dstress(tensor4 *res , int pt_indx){
697 switch (pt_indx){
698 case PT_SA_FORWARD: return dLambda1_forward_dstress(res);
699 case PT_SA_REVERSE: return dLambda1_reverse_dstress(res);
700 case PT_SIM_FORWARD: return dLambda2_forward_dstress(res);
701 case PT_SIM_REVERSE: return dLambda2_reverse_dstress(res);
702 case PT_REORIENT: return dLambda3_dstress(res);
703 default: cerr << "TSMAState :: dLambda_dstress - Inappropriate index";
704 return NULL;
705 }
706 }
707
708 tensor* TSMAState :: dxi_dstress(tensor* res , int pt_indx){
709
710 dPhi_dstress(res , pt_indx);
711 return scalar_mul(res , res ,
712 -1.0/ dPhi_dxi(pt_indx , PT2xi(pt_indx)));
713
714 }
715
716 tensor4* TSMAState :: DStressDStrain_Alg(tensor4* res , TInelasticState *old_state){
717
718 tensor X, L, tmp2;
719 tensor4 tmp4;
720 int xi_indx , pt_indx;
721 TSMAState *ostate = (dynamic_cast <TSMAState *>( old_state));
722 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
723
724 pt_indx = PT_NONE;
725
726 if (xi1 > ostate ->xi1 + EPS){
727 pt_indx = PT_SA_FORWARD;
728 } else
729 if (xi1 < ostate ->xi1 - EPS){
730 pt_indx = PT_SA_REVERSE;
731 }
732
733 if (xi2 > ostate ->xi2 + EPS){
734 pt_indx = PT_SIM_FORWARD;
735 } else
736 if (xi2 < ostate ->xi2 - EPS){
737 pt_indx = PT_SIM_REVERSE;
738 }
739
740 if (xi3 > ostate ->xi3 + EPS){
741 pt_indx = PT_REORIENT;
742 }
743 xi_indx = PT2xi(pt_indx);
744
745 if (xi_indx != XI_REORIENT){
746 contract42 (&tmp2 , &smat ->dS, &stress);
747 add_smul (&tmp2 , tmp2 , smat ->dAlpha , T-smat ->T0);
748 }
749 else
750 zero_tensor (&tmp2);
751 Lambda (&L, pt_indx);
752 add(&tmp2 , &tmp2 , &L);
753 dxi_dstress (&X, pt_indx);
754 prod22 (( tensor4Ptr)res , &tmp2 , &X);
755 EffctvS (&tmp4);
756 add4(res[0], res[0], tmp4);
757 dLambda_dstress (&tmp4 , pt_indx);
758 add_smul4(res , res[0], tmp4 ,
759 GetInternalVar(xi_indx) - ostate ->GetInternalVar(xi_indx));
760 invert4(res);
761 return res;
762 }
763
764 tensor4* TSMAState :: DStressDStrain_Alg2(tensor4* res , TInelasticState *old_state){
765
766 tensor X1, X2, L, tmp1 , tmp2;
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767 tensor4 tmp4;
768 int xi1_indx , pt1_indx;
769 int xi2_indx , pt2_indx;
770 TSMAState *ostate = (dynamic_cast <TSMAState *>( old_state));
771 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
772
773 pt1_indx = PT_NONE;
774 pt2_indx = PT_NONE;
775
776 if (xi1 > ostate ->xi1 + EPS){
777 pt1_indx = PT_SA_FORWARD;
778 } else
779 if (xi1 < ostate ->xi1 - EPS){
780 pt1_indx = PT_SA_REVERSE;
781 }
782
783 if (xi2 > ostate ->xi2 + EPS){
784 pt2_indx = PT_SIM_FORWARD;
785 } else
786 if (xi2 < ostate ->xi2 - EPS){
787 pt2_indx = PT_SIM_REVERSE;
788 }
789 if (pt1_indx == PT_NONE){
790 pt1_indx = pt2_indx;
791 pt2_indx = PT_NONE;
792 }
793
794 if (fabs(xi3 - ostate ->xi3) > EPS){
795 pt2_indx = PT_REORIENT;
796 }
797 if (pt1_indx == PT_NONE){
798 pt1_indx = pt2_indx;
799 pt2_indx = PT_NONE;
800 }
801
802 xi1_indx = PT2xi(pt1_indx);
803 xi2_indx = PT2xi(pt2_indx);
804
805 if (( xi1_indx != XI_REORIENT) || (xi2_indx != XI_REORIENT)){
806 contract42 (&tmp1 , &smat ->dS, &stress);
807 add_smul (&tmp1 , tmp1 , smat ->dAlpha , T-smat ->T0);
808 }
809 else
810 zero_tensor (&tmp1);
811 if (xi2_indx != XI_REORIENT){
812 Lambda (&L, pt2_indx);
813 add(&tmp2 , &tmp1 , &L);
814 }
815 else
816 Lambda (&tmp2 , pt2_indx);
817
818 if (xi1_indx != XI_REORIENT){
819 Lambda (&L, pt1_indx);
820 add(&tmp1 , &tmp1 , &L);
821 }
822 else
823 Lambda (&tmp1 , pt1_indx);
824 dxi_dstress (&X1 , pt1_indx);
825 dxi_dstress (&X2 , pt2_indx);
826 prod22(res , &tmp1 , &X1);
827 prod22 (&tmp4 , &tmp2 , &X2);
828 add4(res[0], res[0], tmp4);
829 EffctvS (&tmp4);
830 add4(res[0], res[0], tmp4);
831
832 dLambda_dstress (&tmp4 , pt1_indx);
833 add_smul4(res , res[0], tmp4 ,
834 GetInternalVar(xi1_indx) - ostate ->GetInternalVar(xi1_indx));
835 dLambda_dstress (&tmp4 , pt2_indx);
836 add_smul4(res , res[0], tmp4 ,
837 GetInternalVar(xi2_indx) - ostate ->GetInternalVar(xi2_indx));
838
839 invert4(res);
840 return res;
841 }
842
843
844 /* **************************************************************************** */
845 /* */
846 /* A->M^t transformation surface and derivatives . */
847 /* */
848 /* **************************************************************************** */
849
850 double TSMAState :: Phi1_forward ()
851 {
852 return phi1f(SMAT(fmtrl), &stress , T, c1());
853 };
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854
855 // Derivatives
856 tensor* TSMAState :: dPhi1_forward_dstress(tensor* res)
857 {
858 return dPdstress(SMAT(fmtrl), res , &stress , T);
859 // TSMAMaterial * smat = ( TSMAMaterial *) fmtrl;
860 //
861 // contract42 (res , &(smat ->dS), &stress);
862 // return add_smul(res , *res , smat ->dAlpha , T-smat ->T0);
863
864 };
865
866 double TSMAState :: dPhi1_forward_dxi1 ()
867 {
868 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
869 return -smat ->rho*smat ->b1M;
870 };
871
872 double TSMAState :: dPhi1_forward_dxi2 ()
873 {
874 return 0.0;
875 };
876
877
878 double TSMAState :: dPhi1_forward_dxi3 ()
879 {
880 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
881 return smat ->rho*smat ->b1M;
882 };
883
884 /* **************************************************************************** */
885 /* */
886 /* M^t->A transformation surface and derivatives . */
887 /* */
888 /* **************************************************************************** */
889
890 double TSMAState :: Phi1_reverse ()
891 {
892 return phi1r(SMAT(fmtrl), &stress , T, c1());
893 };
894
895 tensor* TSMAState :: dPhi1_reverse_dstress(tensor* res)
896 {
897 dPdstress(SMAT(fmtrl), res , &stress , T);
898 negate_tensor(res);
899 return res;
900 };
901
902 double TSMAState :: dPhi1_reverse_dxi1 ()
903 {
904 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
905 return smat ->rho*smat ->b1A;
906 };
907
908 double TSMAState :: dPhi1_reverse_dxi2 ()
909 {
910 return 0.0;
911 };
912
913
914 double TSMAState :: dPhi1_reverse_dxi3 ()
915 {
916 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
917 return -smat ->rho*smat ->b1A;
918 };
919
920
921 /* **************************************************************************** */
922 /* */
923 /* A->M^d transformation surface and derivatives . */
924 /* */
925 /* **************************************************************************** */
926
927 double TSMAState :: Phi2_forward (){
928 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
929 double res , phi_3;
930 tensor Lambda , tmp;
931
932 res = phi2f(SMAT(fmtrl), &stress , T, Lambda2_forward (& Lambda), c2());
933
934 /*
935 if (res > 0.0){
936 // phi_3 = sqrt (3.0/2.0) *smat ->H*J2(& stress) +
937 // SMAT(fmtrl)->rho *( SMAT(fmtrl)->b1M)-SMAT(fmtrl)->Y3;
938 phi_3 = sqrt (3.0/2.0)*smat ->H*J2(& stress) -SMAT(fmtrl)->Y3;
939 if (phi_3 < 0.0){
940 cout < " XXXXXXXXXX ";
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941 return phi_3;
942 }
943 }
944 */
945 return res;
946 }
947
948
949 tensorPtr TSMAState :: dPhi2_forward_dstress(tensorPtr res){
950 tensor tmp;
951
952 Lambda2_forward(res);
953 // add(res , res , contract42 (&tmp , &SMAT(fmtrl)->dS , &stress));
954 // add_smul(res , *res , SMAT(fmtrl)->dAlpha , T - SMAT(fmtrl)->T0);
955 add(res , res , dPdstress(SMAT(fmtrl), &tmp , &stress , T));
956 return res;
957 }
958
959
960 double TSMAState :: dPhi2_forward_dxi1 ()
961 {
962 return 0.0;
963 };
964
965 double TSMAState :: dPhi2_forward_dxi2 ()
966 {
967 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
968
969 return -smat ->rho*smat ->b2M;
970 };
971
972 double TSMAState :: dPhi2_forward_dxi3 ()
973 {
974 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
975
976 return -smat ->rho*smat ->b2M;
977 };
978
979 /*
980 tensorPtr TSMAState :: dPhi2_forward_dstress (tensorPtr res){
981 tensor tmp;
982
983 Lambda2_forward (res);
984 add(res , res , contract42 (&tmp , &SMAT(fmtrl)->dS , &stress));
985 add_smul(res , *res , SMAT(fmtrl)->dAlpha , T - SMAT(fmtrl)->T0);
986 return res;
987 }
988 */
989
990 /* **************************************************************************** */
991 /* */
992 /* M^d->A transformation surface and derivatives . */
993 /* */
994 /* **************************************************************************** */
995
996 double TSMAState :: Phi2_reverse (){
997 tensor Lambda;
998 return phi2r(SMAT(fmtrl), &stress , T, Lambda2_reverse (& Lambda), c2());
999 }

1000
1001 tensorPtr TSMAState :: dPhi2_reverse_dstress(tensorPtr res){
1002 tensor tmp;
1003
1004 Lambda2_reverse(res);
1005 add(res , res , dPdstress(SMAT(fmtrl), &tmp , &stress , T));
1006 // add(res , res , contract42 (&tmp , &SMAT(fmtrl)->dS , &stress));
1007 // add_smul(res , *res , SMAT(fmtrl)->dAlpha , T - SMAT(fmtrl)->T0);
1008 negate_tensor(res);
1009 return res;
1010 }
1011
1012 double TSMAState :: dPhi2_reverse_dxi1 (){
1013 return 0.0;
1014 };
1015
1016 double TSMAState :: dPhi2_reverse_dxi2 (){
1017 return SMAT(fmtrl)->rho*SMAT(fmtrl)->b2A;
1018 };
1019
1020 double TSMAState :: dPhi2_reverse_dxi3 (){
1021 return SMAT(fmtrl)->rho*SMAT(fmtrl)->b2A;
1022 }
1023
1024 /* **************************************************************************** */
1025 /* */
1026 /* M^t->M^d transformation surface and derivatives . */
1027 /* */
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1028 /* **************************************************************************** */
1029
1030 double TSMAState ::Phi3()
1031 {
1032 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
1033 tensor tmp;
1034 double hard = 0;
1035
1036 hard += (contract(Lambda3 (&tmp), &stress) - smat ->Y3);
1037 hard -= smat ->rho*smat ->b3*c2();
1038 return hard;
1039 };
1040
1041 tensorPtr TSMAState :: dPhi3_dstress(tensorPtr res){
1042 return Lambda3(res);
1043 };
1044
1045 double TSMAState :: dPhi3_dxi1 ()
1046 {
1047 return 0.0;
1048 };
1049
1050 double TSMAState :: dPhi3_dxi2 ()
1051 {
1052 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
1053
1054 return -smat ->rho*smat ->b3;
1055 };
1056
1057 double TSMAState :: dPhi3_dxi3 ()
1058 {
1059 TSMAMaterial* smat = (TSMAMaterial *)fmtrl;
1060 return -smat ->rho*smat ->b3;
1061 };
1062
1063
1064 /* **************************************************************************** */
1065 /* */
1066 /* General purpose routines */
1067 /* */
1068 /* **************************************************************************** */
1069
1070
1071 double TSMAState :: min_xi1 (){
1072 TSMAMaterial *smat = (TSMAMaterial *) fmtrl;
1073
1074 return max(xi3 - smat ->c01 , smat ->c03 - xi2 - 1.0);
1075 };
1076
1077
1078 double TSMAState :: min_xi2 (){
1079 TSMAMaterial *smat = (TSMAMaterial *) fmtrl;
1080
1081 return max(-xi3 - smat ->c02 , smat ->c03 - xi1 - 1.0);
1082 };
1083
1084 double TSMAState :: min_xi3 (){
1085 TSMAMaterial *smat = (TSMAMaterial *) fmtrl;
1086
1087 return max(-xi2 - smat ->c02 , smat ->c01 + xi1 - 1.0);
1088 };
1089
1090
1091 double TSMAState :: max_xi1 (){
1092 TSMAMaterial *smat = (TSMAMaterial *) fmtrl;
1093
1094 return min(smat ->c03 - xi2 , 1.0 - smat ->c01 + xi3);
1095 };
1096
1097 double TSMAState :: max_xi2 (){
1098 TSMAMaterial *smat = (TSMAMaterial *) fmtrl;
1099
1100 return min(smat ->c03 - xi1 , 1.0 - smat ->c02 - xi3);
1101 };
1102
1103 double TSMAState :: max_xi3 (){
1104 TSMAMaterial *smat = (TSMAMaterial *) fmtrl;
1105
1106 return min(smat ->c01 + xi1 , 1.0 - smat ->c02 - xi2);
1107 };
1108
1109 TInelasticState *TSMASolver :: LinearLoad(TInelasticState *res , tensor* new_strain ,
1110 double new_T , TInelasticState *old_state){
1111
1112 TSMAMaterial* mtrl = (TSMAMaterial *)old_state ->GetMaterial ();
1113 tensor e_strain , thrml_strain;
1114 tensor4 C;
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1115
1116 res ->Assign(old_state);
1117
1118 assign_tensor(res ->Strain (), new_strain);
1119 *(res ->Temperature ()) = new_T;
1120
1121 contract42(res ->Stress (), res ->EffctvC (&C), res ->ElasticStrain (& e_strain));
1122
1123 if (SMASTATE(res)->dstress_dstrain != NULL){
1124 res ->EffctvC(SMASTATE(res)->dstress_dstrain);
1125 }
1126
1127 return res;
1128 }
1129
1130 /*
1131 int TSMASolver :: LoadDirection2 (tensor* new_strain , double new_T , TSMAState * old_state){
1132 TSMAState trial;
1133 double phi_new , phi_old;
1134 int res1 = 0, res2 = 0;
1135
1136 trial.Assign( old_state );
1137 LinearLoad (&trial , new_strain , new_T , old_state);
1138
1139 if (old_state -> is_A2Md_possible ()) {
1140 phi_new = trial. Phi2_forward ();
1141 phi_old = old_state -> Phi2_forward ();
1142
1143 if (phi_new > phi_old + EPS){
1144 if (phi_new <= 0.0) res1 = 0;
1145 else res1 = 1;
1146 }
1147 }
1148
1149 if (old_state -> is_Md2A_possible () ) {
1150 phi_new = trial. Phi2_reverse ();
1151 phi_old = old_state -> Phi2_reverse ();
1152
1153 if (phi_new > phi_old + EPS){
1154 if (phi_new <= 0.0) res2 = 0;
1155 else res2 = -1;
1156 }
1157 }
1158
1159 assert (!(( res1 == 1) && (res2 == -1)));
1160
1161 if (res1) return res1;
1162 if (res2) return res2;
1163 return 0;
1164
1165 };*/
1166
1167 TInelasticState *TSMASolver :: SimoCPP(TSMAState *res , tensor* new_strain ,
1168 double new_T , TSMAState* old_state , int pt_indx){
1169
1170 TSMAMaterial *smat = SMAT(old_state ->GetMaterial ());
1171
1172 double phi_0 , phi_k , dxi_k , M22 , xi_n , xi_new;
1173 tensor M12 , M21 , dstress , F_k , tmp;
1174 tensor4 M11inv;
1175 int i_cnt = 0;
1176 int xi_indx = PT2xi(pt_indx);
1177
1178 bool flag;
1179
1180 flag = res == old_state;
1181 if (flag){
1182 old_state = new TSMAState;
1183 old_state ->Assign(res);
1184 }
1185
1186 assign_tensor (&res ->strain , new_strain);
1187 res ->T = new_T;
1188
1189 // Check the yield surface.
1190 phi_0 = phi_k = res ->Phi(pt_indx);
1191 if (phi_k > PHI_EPS)
1192 {
1193 zero_tensor (&F_k);
1194 xi_n = old_state ->GetInternalVar(xi_indx);
1195 // while ( (( fabs(phi_k/phi_0) > TOL) || (fabs(phi_k) > PHI_EPS)) || (norm (& F_k) > TOL))
1196 while ( (fabs(phi_k) > PHI_EPS) || (norm(&F_k) > TOL))
1197 {
1198 negate_tensor(res ->HookeResidual (&F_k));
1199 phi_k = -phi_k;
1200
1201
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1202 res ->dHookeResidual_dstress (&M11inv , pt_indx , old_state);
1203 invert4 (& M11inv);
1204 res ->dHookeResidual_dPT (&M12 , pt_indx);
1205 res ->dPhi_dstress (&M21 , pt_indx);
1206 M22 = res ->dPhi_dxi(pt_indx , xi_indx);
1207
1208 dxi_k = (phi_k - contract (&M21 , contract42 (&tmp , &M11inv , &F_k)))/
1209 (M22 - contract (&M21 , contract42 (&tmp , &M11inv , &M12)));
1210 add_smul (&tmp , F_k , M12 , -dxi_k);
1211 contract42 (&dstress , &M11inv , &tmp);
1212
1213 add(res ->Stress (), res ->Stress (), &dstress);
1214 xi_new = res ->GetInternalVar(xi_indx) + dxi_k;
1215 add_smul (&res ->strain_in , old_state ->strain_in ,
1216 *(res ->Lambda (&tmp , pt_indx)), xi_new - xi_n);
1217 res ->SetInternalVar(xi_indx , xi_new);
1218 i_cnt ++;
1219 phi_k = res ->Phi(pt_indx);
1220
1221 if (i_cnt > MAX_ITER_COUNT){
1222 double T_int;
1223 TSMAState intrm = TSMAState ();
1224 interpolate (&tmp , old_state ->Strain (), new_strain , 0.5);
1225 T_int = (new_T + *(old_state ->Temperature ()))/2.0;
1226 LinearLoad (&intrm , &tmp , T_int , old_state);
1227 if (intrm.Phi(pt_indx) > PHI_EPS){
1228 SimoCPP (&intrm , &tmp , T_int , old_state , pt_indx);
1229 if (( pt_indx == PT_SIM_REVERSE) && (intrm.xi2 < intrm.min_xi2 ())){
1230 RestoreConsistency_Md2A (&intrm , new_strain , new_T , old_state);
1231 if (flag) delete old_state;
1232 return res;
1233 }
1234 }
1235 LinearLoad(res , new_strain , new_T , &intrm);
1236 SimoCPP(res , new_strain , new_T , &intrm , pt_indx);
1237 break;
1238 }
1239 }
1240 }
1241 if (res ->dstress_dstrain){
1242 res ->DStressDStrain_Alg(res ->dstress_dstrain , old_state);
1243 }
1244 if (flag) delete old_state;
1245 return res;
1246 }
1247
1248 TInelasticState *TSMASolver :: SimoCPP2(TSMAState *res , tensor* new_strain ,
1249 double new_T , TSMAState* old_state , int pt_indx1 , int pt_indx2){
1250
1251 TSMAMaterial *smat = SMAT(old_state ->GetMaterial ());
1252
1253 double phi1 , phi2 , dxi1 , dxi2 , xi1_n , xi2_n , xi1_new , xi2_new;
1254 double M22 , M23 , M32 , M33 , detM;
1255 double phi10 , phi20 , F0;
1256 tensor M12 , M13 , M21 , M31;
1257 tensor dstress , F, tmp , tmp2 , tmp3;
1258 tensor4 M11inv;
1259
1260 int i_cnt = 0;
1261 int xi1_indx , xi2_indx;
1262
1263 xi1_indx = PT2xi(pt_indx1);
1264 xi2_indx = PT2xi(pt_indx2);
1265
1266 bool flag;
1267
1268 flag = res == old_state;
1269 if (flag){
1270 old_state = new TSMAState;
1271 old_state ->Assign(res);
1272 }
1273
1274 assign_tensor (&res ->strain , new_strain);
1275 res ->T = new_T;
1276
1277 phi10 = phi1 = res ->Phi(pt_indx1);
1278 phi20 = phi2 = res ->Phi(pt_indx2);
1279 if ((phi10 > PHI_EPS) || (phi20 > PHI_EPS)){
1280 if (fabs(phi10) <= PHI_EPS){
1281 phi10 = 1.0;
1282 }
1283 if (fabs(phi20) <= PHI_EPS){
1284 phi20 = 1.0;
1285 }
1286 zero_tensor (&F);
1287 xi1_n = old_state ->GetInternalVar(xi1_indx);
1288 xi2_n = old_state ->GetInternalVar(xi2_indx);
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1289 // while ( (fabs(phi1/phi10) > TOL) || (fabs(phi2/phi20) > TOL) || (norm (&F) > TOL))
1290 while ( (fabs(phi1) > PHI_EPS) || (fabs(phi2) > PHI_EPS) || (norm(&F) > TOL))
1291 {
1292 // right hand side. Don ’t optimize for clarity.
1293 negate_tensor(res ->HookeResidual (&F));
1294 phi1 = -phi1;
1295 phi2 = -phi2;
1296
1297 // F derivatives
1298 res ->dHookeResidual_dstress2 (&M11inv , pt_indx1 , pt_indx2 , old_state);
1299 invert4 (& M11inv);
1300 res ->dHookeResidual_dPT (&M12 , pt_indx1);
1301 res ->dHookeResidual_dPT (&M13 , pt_indx2);
1302 // Phi1 derivatives
1303 res ->dPhi_dstress (&M21 , pt_indx1);
1304 M22 = res ->dPhi_dxi(pt_indx1 , xi1_indx);
1305 M23 = res ->dPhi_dxi(pt_indx1 , xi2_indx);
1306 // Phi2 derivatives
1307 res ->dPhi_dstress (&M31 , pt_indx2);
1308 M32 = res ->dPhi_dxi(pt_indx2 , xi1_indx);
1309 M33 = res ->dPhi_dxi(pt_indx2 , xi2_indx);
1310
1311 // Elliminating the dstress from the equations form the matrix
1312 contract42 (&tmp2 , &M11inv , &M12);
1313 contract42 (&tmp3 , &M11inv , &M13);
1314 M22 -= contract (&M21 , &tmp2);
1315 M32 -= contract (&M31 , &tmp2);
1316 M23 -= contract (&M21 , &tmp3);
1317 M33 -= contract (&M31 , &tmp3);
1318 // ... and right -hand side
1319 contract42 (&tmp , &M11inv , &F);
1320 phi1 -= contract (&M21 , &tmp);
1321 phi2 -= contract (&M31 , &tmp);
1322
1323 // Solving the reduced system for dxi1 and dxi2
1324 detM = M22*M33 -M32*M23;
1325 dxi1 = (phi1*M33 -phi2*M23)/detM;
1326 dxi2 = (phi2*M22 -phi1*M32)/detM;
1327 // Back - substituting to find the stress
1328 add_smul (&tmp , F, M12 , -dxi1);
1329 add_smul (&tmp , tmp , M13 , -dxi2);
1330 contract42 (&dstress , &M11inv , &tmp);
1331
1332 // Updating the state variables
1333 add(res ->Stress (), res ->Stress (), &dstress);
1334 xi1_new = res ->GetInternalVar(xi1_indx) + dxi1;
1335 xi2_new = res ->GetInternalVar(xi2_indx) + dxi2;
1336 add_smul (&res ->strain_in , old_state ->strain_in ,
1337 *(res ->Lambda (&tmp , pt_indx1)), xi1_new - xi1_n);
1338 add_smul (&res ->strain_in , res ->strain_in ,
1339 *(res ->Lambda (&tmp , pt_indx2)), xi2_new - xi2_n);
1340 res ->SetInternalVar(xi1_indx , xi1_new);
1341 res ->SetInternalVar(xi2_indx , xi2_new);
1342 i_cnt ++;
1343
1344 phi1 = res ->Phi(pt_indx1);
1345 phi2 = res ->Phi(pt_indx2);
1346
1347 if (i_cnt > MAX_ITER_COUNT){
1348 double T_int;
1349 TSMAState intrm = TSMAState ();
1350
1351 interpolate (&tmp , old_state ->Strain (), new_strain , 0.5);
1352 T_int = (new_T + *(old_state ->Temperature ()))/2.0;
1353 LinearLoad (&intrm , &tmp , T_int , old_state);
1354 if (( intrm.Phi(pt_indx1) > PHI_EPS) || (intrm.Phi(pt_indx2) > PHI_EPS)){
1355 SimoCPP2 (&intrm , &tmp , T_int , old_state , pt_indx1 , pt_indx2);
1356 }
1357 if (intrm.c3() < 0.0)
1358 {
1359 res ->Assign (& intrm);
1360 }
1361 else
1362 {
1363 LinearLoad(res , new_strain , new_T , &intrm);
1364 SimoCPP2(res , new_strain , new_T , &intrm , pt_indx1 , pt_indx2);
1365 }
1366 break;
1367 }
1368
1369 }
1370 }
1371 if (res ->dstress_dstrain){
1372 res ->DStressDStrain_Alg2(res ->dstress_dstrain , old_state);
1373 }
1374 if (flag) delete old_state;
1375 return res;
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1376 }
1377
1378
1379 TInelasticState *TSMASolver :: SimoCPP_forward(TSMAState *res , tensor* new_strain ,
1380 double new_T , TSMAState* old_state){
1381
1382 TSMAMaterial *smat = SMAT(old_state ->GetMaterial ());
1383
1384 double phi_0 , phi_k , dxi_k , T_int , c;
1385 tensor R, r, v, tmp1 , tmp2 , dStress , dStrainT , e_strain;
1386 tensor4 tmp , *E;
1387 int i_cnt = 0;
1388 bool flag;
1389
1390 flag = res == old_state;
1391 if (flag){
1392 old_state = new TSMAState;
1393 old_state ->Assign(res);
1394 LinearLoad(res , new_strain , new_T , old_state);
1395 }
1396
1397 // Elastic prediction .
1398 // Check the yield surface.
1399 phi_0 = phi_k = res ->Phi2_forward ();
1400 E = res ->EffctvC(res ->DStressDStrain ());
1401 if (phi_k >= 0.0)
1402 {
1403 zero_tensor (&R);
1404 // while ( (fabs(phi_k/phi_0) > TOL) || (norm (&R) > TOL))
1405 while ( (fabs(phi_k) > PHI_EPS) || (norm(&R) > TOL))
1406 {
1407 res ->Lambda2_forward (&r);
1408 res ->dPhi2_forward_dstress (&v);
1409
1410 sub(&R, &(old_state ->strain_in), &(res ->strain_in));
1411 add_smul (&R, R, r, res ->xi2 - old_state ->xi2);
1412
1413 add_smul4(E,
1414 *(res ->EffctvS (&tmp)), *(res ->dLambda2_forward_dstress(E)), res ->xi2 - old_state ->xi2);
1415 invert4(E);
1416
1417 // Compute delta xi
1418 c = contract (&v, contract42 (&tmp2 , E, &v)) - res ->dPhi2_forward_dxi2 ();
1419 dxi_k = (phi_k - contract (&v, contract42 (&tmp1 , E, &R)))/c;
1420 // Compute delta stress
1421 add_smul (&dStress , tmp1 , tmp2 , dxi_k);
1422 negate_tensor (& dStress);
1423
1424 contract42 (&tmp1 , &(smat ->dS), &res ->stress);
1425 add_smul (&tmp1 , tmp1 , smat ->dAlpha , new_T - smat ->T0);
1426 // Compute delta e^t. Note that tmp still holds EffectiveS
1427 contract42 (&dStrainT , &tmp , &dStress);
1428 add_smul (&dStrainT , dStrainT , tmp1 , dxi_k);
1429 negate_tensor (& dStrainT);
1430 // Updating xi2
1431 res ->xi2 += dxi_k;
1432 // Updating e^t
1433 add(&res ->strain_in , &res ->strain_in , &dStrainT);
1434 // add (&res ->stress , &res ->stress , &dStress);
1435
1436 contract42 (&(res ->stress), res ->EffctvC (&tmp), res ->ElasticStrain (& e_strain));
1437 phi_k = res ->Phi2_forward ();
1438
1439 if (++ i_cnt > MAX_ITER_COUNT){
1440 interpolate (&tmp1 , old_state ->Strain (), new_strain , 0.5);
1441 T_int = (new_T + *(old_state ->Temperature ()))/2.0;
1442 LinearLoad(res , &tmp1 , T_int , old_state);
1443 SimoCPP_forward(res , &tmp1 , T_int , old_state);
1444 return SimoCPP_forward(res , new_strain , new_T , res);
1445 }
1446 }
1447 // Tangent
1448 add_smul4(E,
1449 *(res ->EffctvS (&tmp)), *(res ->dLambda2_forward_dstress(E)), res ->xi2 -old_state ->xi2);
1450 invert4(E);
1451 res ->dPhi2_forward_dstress (&v);
1452 contract42 (&tmp1 , E, &v);
1453 prod22 (&tmp , &tmp1 , &tmp1);
1454 c = contract (&v, contract42 (&tmp2 , E, &v)) - res ->dPhi2_forward_dxi2 ();
1455 add_smul4(E, *E, tmp , -1.0/c);
1456
1457 // tensor4 E1;
1458 // res -> DStressDStrain_Alg (&E1 , old_state);
1459 res ->DStressDStrain_Alg(E, old_state);
1460 // sub4 (&E1 , &E1 , E);
1461
1462 if (! cnflag){
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1463 cnflag = true;
1464 NumericalJacobian (*E, res , old_state);
1465 cnflag = false;
1466 }
1467 }
1468 if (flag) delete old_state;
1469 return res;
1470 }
1471
1472
1473 TInelasticState *TSMASolver :: SimoCPP_reverse(TSMAState *res , tensor* new_strain ,
1474 double new_T , TSMAState* old_state){
1475
1476 TSMAMaterial *smat = SMAT(old_state ->GetMaterial ());
1477
1478 double phi_0 , phi_k , dxi_k;
1479 tensor R, r, v, tmp1 , tmp2 , dStress , dStrainT , e_strain;
1480 tensor4 tmp , Tangent;
1481 int i_cnt = 0;
1482 bool flag;
1483
1484 flag = res == old_state;
1485 if (flag){
1486 old_state = new TSMAState;
1487 old_state ->Assign(res);
1488 }
1489
1490 // Elastic prediction .
1491 // Check the yield surface.
1492 phi_0 = phi_k = res ->Phi2_reverse ();
1493 // Tangent = res ->EffctvC(res -> DStressDStrain ());
1494 phi_0 = 1.0;
1495 if (phi_k > 0.0)
1496 {
1497 zero_tensor (&R);
1498 while ( (fabs(phi_k/phi_0) > PHI_EPS) || (norm(&R) > TOL))
1499 {
1500 res ->Lambda2_reverse (&r);
1501 res ->dPhi2_reverse_dstress (&v);
1502
1503 sub(&R, &old_state ->strain_in , &res ->strain_in);
1504 add_smul (&R, R, r, res ->xi2 - old_state ->xi2);
1505
1506 res ->EffctvC (& Tangent);
1507
1508 // delta xi
1509 dxi_k = (phi_k - contract (&v, contract42 (&tmp1 , &Tangent , &R)))/
1510 (-contract (&v, contract42 (&tmp2 , &Tangent , &v)) - res ->dPhi2_reverse_dxi2 ());
1511 // delta stress
1512 add_smul (&dStress , tmp1 , tmp2 , -dxi_k);
1513 negate_tensor (& dStress);
1514
1515 contract42 (&tmp1 , &(smat ->dS), &res ->stress);
1516 add_smul (&tmp1 , tmp1 , smat ->dAlpha , new_T - smat ->T0);
1517 contract42 (&dStrainT , res ->EffctvS (&tmp), &dStress);
1518 add_smul (&dStrainT , dStrainT , tmp1 , dxi_k);
1519 negate_tensor (& dStrainT);
1520
1521 res ->xi2 += dxi_k;
1522 add(&res ->strain_in , &res ->strain_in , &dStrainT);
1523 add(&res ->stress , &res ->stress , &dStress);
1524 contract42(res ->Stress (), res ->EffctvC (&tmp), res ->ElasticStrain (& e_strain));
1525
1526 phi_k = res ->Phi2_reverse ();
1527
1528 if (++ i_cnt > MAX_ITER_COUNT){
1529 interpolate (&tmp1 , old_state ->Strain (), new_strain , 0.5);
1530 SimoCPP_reverse(res , &tmp1 , (new_T + *(old_state ->Temperature ()))/2.0, old_state);
1531 return SimoCPP_reverse(res , new_strain , new_T , res);
1532 }
1533 }
1534 }
1535 if (flag) delete old_state;
1536 return res;
1537 }
1538
1539
1540 bool TSMAState :: is_A2Mt_possible (){
1541 return !(( fabs(c1() - 1.0) < TOL) || (fabs(c3()) < TOL));
1542 }
1543
1544 bool TSMAState :: is_A2Md_possible (){
1545 return !(( fabs(c2() - 1.0) < TOL) || (fabs(c3()) < TOL));
1546 }
1547
1548 bool TSMAState :: is_Md2A_possible (){
1549 return !(( fabs(c3() - 1.0) < TOL) || (fabs(c2()) < TOL));
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1550 }
1551
1552 bool TSMAState :: is_Mt2A_possible (){
1553 return !(( fabs(c3() - 1.0) < TOL) || (fabs(c1()) < TOL));
1554 }
1555
1556 bool TSMAState :: is_Mt2Md_possible (){
1557 return !(( fabs(c2() - 1.0) < TOL) || (fabs(c1()) < TOL));
1558 }
1559
1560 bool does_A2Md_happen(TSMAState* old_state , TSMAState* trial){
1561 double phi_new , phi_old;
1562 bool res = false;
1563
1564 if (old_state ->is_A2Md_possible ()) {
1565 phi_new = trial ->Phi2_forward ();
1566 phi_old = old_state ->Phi2_forward ();
1567
1568 res = (( phi_new > phi_old + PHI_EPS) && (phi_new > PHI_EPS));
1569 }
1570
1571 return res;
1572 }
1573
1574
1575 bool does_Md2A_happen(TSMAState* old_state , TSMAState* trial){
1576 double phi_new , phi_old;
1577 bool res = false;
1578
1579 if (old_state ->is_Md2A_possible () ) {
1580 phi_new = trial ->Phi2_reverse ();
1581 phi_old = old_state ->Phi2_reverse ();
1582
1583 res = (( phi_new > phi_old + PHI_EPS) && (phi_new > PHI_EPS));
1584 }
1585
1586 return res;
1587 }
1588
1589 bool does_Mt2Md_happen(TSMAState* old_state , TSMAState* trial){
1590
1591 return old_state ->is_Mt2Md_possible () && (trial ->Phi3() > PHI_EPS);
1592
1593 }
1594
1595 bool does_A2Mt_happen(TSMAState* old_state , TSMAState* trial){
1596
1597 if (old_state ->T > trial ->T){
1598 return (old_state ->is_A2Mt_possible ()) && (trial ->Phi1_forward () > PHI_EPS);
1599 }
1600 else return false;
1601 }
1602
1603
1604 /*
1605 bool does_Mt2A_happen ( TSMAState* old_state , TSMAState* trial){
1606
1607 if (old_state ->T < trial ->T){
1608 return (old_state -> is_Mt2A_possible ()) && (trial -> Phi1_reverse () > PHI_EPS);
1609 }
1610 else return false;
1611 } */
1612
1613 bool does_Mt2A_happen(TSMAState* old_state , TSMAState* trial){
1614 double phi_new , phi_old;
1615 bool res = false;
1616
1617 if (old_state ->is_Mt2A_possible ()) {
1618 phi_new = trial ->Phi1_reverse ();
1619 phi_old = old_state ->Phi1_reverse ();
1620
1621 res = (( phi_new > phi_old + PHI_EPS) && (phi_new > PHI_EPS));
1622 }
1623
1624 return res;
1625 }
1626
1627
1628 TInelasticState *TSMASolver :: OrtizPopov85(TInelasticState *res , tensor* new_strain ,
1629 double new_T ,
1630 TInelasticState* old_state ,
1631 TYieldSurfaceProc YieldSurface , TStrainFlowProc GetR , TIntVarFlowProc GetH ,
1632 TDPhiDStressProc GetDPhiDStress , TDPhiDqProc GetDPhiDq , int q_num){
1633
1634 tensor e_strain , tmp1 , tmp2 , v, r, old_r;
1635 tensor4 tgnt , C;
1636 double gamma , ksi , phi_0 , curr_phi , h, old_h , tmp_h;
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1637 int i_cnt = 0;
1638 bool flag;
1639
1640 flag = res == old_state;
1641 if (flag){
1642 old_state = new TSMAState;
1643 old_state ->Assign(res);
1644 }
1645
1646 // Elastic prediction .
1647 // LinearLoad (res , new_strain , new_T , old_state);
1648
1649 if (res ->DStressDStrain ())
1650 res ->EffctvC(res ->DStressDStrain ());
1651
1652 // Check the yield surface.
1653 phi_0 = curr_phi = (res ->* YieldSurface)();
1654 if (curr_phi > TOL){
1655 gamma = 0.0;
1656 (old_state ->*GetR)(& old_r);
1657 (old_state ->*GetH)(& old_h);
1658 contract42 (&tmp1 , old_state ->EffctvC (&C), &old_r);
1659 while (fabs(curr_phi/phi_0) > TOL)
1660 {
1661 (res ->*GetR)(&r);
1662 (res ->*GetH)(&h);
1663
1664 interpolate (&r, &old_r , &r, falpha);
1665 h = (1.0 - falpha)*old_h + falpha*h;
1666
1667 assign_tensor (&tmp2 , &tmp1);
1668 tmp_h = h;
1669
1670 (res ->* GetDPhiDStress)(&v);
1671 ksi = (res ->* GetDPhiDq)();
1672
1673 contract42 (&tmp1 , res ->EffctvC (&C), &r);
1674 gamma = (gamma *(ksi*tmp_h - contract (&v, &tmp2))-curr_phi)/(ksi*h-contract (&v, &tmp1));
1675 // gamma = gamma -curr_phi /( ksi*h-contract (&v, &tmp1));
1676 add_smul ((res ->InelasticStrain(NULL , q_num)),
1677 *(old_state ->InelasticStrain(NULL , q_num)), r, gamma);
1678 *(res ->InternalVar(q_num)) = *(old_state ->InternalVar(q_num)) + gamma*h;
1679 res ->ElasticStrain (& e_strain);
1680 contract42(res ->Stress (), res ->EffctvC (&C), &e_strain);
1681
1682 curr_phi = (res ->* YieldSurface)();
1683 if (++ i_cnt > MAX_ITER_COUNT){
1684 // cerr << " TSMASolver :: OrtizPopov85 : diverging , giving up .";
1685 interpolate (&tmp1 , old_state ->Strain (), new_strain , 0.5);
1686 OrtizPopov85(res , &tmp1 , (new_T + *(old_state ->Temperature ()))/2.0, old_state , YieldSurface , GetR ,

GetH , GetDPhiDStress , GetDPhiDq , q_num);
1687 return OrtizPopov85(res , new_strain , new_T , res , YieldSurface , GetR , GetH , GetDPhiDStress , GetDPhiDq ,

q_num);
1688 }
1689 }
1690 if (res ->DStressDStrain ()){
1691 res ->EffctvC (&C);
1692 contract42 (&tmp1 , &C, (res ->*GetR)(&r));
1693 contract42 (&tmp2 , &C, (res ->* GetDPhiDStress)(&r));
1694 ksi = contract (&r, &tmp1) - h*(res ->*GetDPhiDq)();
1695 scalar_mul (&tmp2 , &tmp2 , 1.0/ ksi);
1696 prod22 (&tgnt , &tmp1 , &tmp2);
1697 sub4(res ->DStressDStrain (), res ->DStressDStrain (), &tgnt);
1698 }
1699 }
1700 if (flag) delete old_state;
1701 return res;
1702
1703 }
1704
1705 void TSMAState :: restore_phi3 (){
1706 TSMAMaterial *smat = (TSMAMaterial *) GetMaterial ();
1707 double new_c1 , A, sH;
1708 tensor tmp;
1709
1710 Lambda3 (&tmp);
1711 sH = contract (&tmp , &stress);
1712 A = smat ->Y3 -sH+smat ->rho*smat ->b3*xi3;
1713 new_c1 = -c2()*(A+smat ->rho*smat ->b2M)/(A-smat ->rho*smat ->b1M);
1714 if (new_c1 < EPS) new_c1 = 0.0;
1715 if (new_c1 > 1.0) new_c1 = 1.0;
1716 xi1 = new_c1 + xi3 - smat ->c01;
1717 }
1718
1719 TSMAState *TSMASolver :: SelfAccom_forward(TSMAState *res , tensor* new_strain ,
1720 double new_T , TSMAState* old_state){
1721
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1722 TSMAMaterial* smat = (TSMAMaterial *)res ->GetMaterial ();
1723 int i_cnt = 0;
1724 double phi_0 , phi_k;
1725
1726 SimoCPP(res , new_strain , new_T , old_state , PT_SA_FORWARD);
1727 /* phi_0 = phi_k = res -> Phi1_forward ();
1728 if (phi_0 > PHI_EPS){
1729 trial.Assign( old_state );
1730 do{
1731 res ->xi1 = res ->xi1 - phi_k/res -> dPhi1_forward_dxi1 ();
1732 trial.xi1 = res ->xi1;
1733 LinearLoad (res , new_strain , new_T , &trial);
1734 i_cnt ++;
1735 if (i_cnt > MAX_ITER_COUNT )
1736 throw ESMAError (" SelfAccom_forward : failed to converge ");
1737 phi_k = res -> Phi1_forward ();
1738 } while (fabs(phi_k/phi_0) > TOL);
1739 }
1740 */
1741 if ((res ->c1() > 1.0) || (res ->c3() < 0.0)){
1742 res ->xi1 = min(res ->xi1 , min (1.0 + res ->xi3 - smat ->c01 , smat ->c03 - res ->xi2));
1743 // trial.xi1 = res ->xi1;
1744 // LinearLoad (res , new_strain , new_T , &trial);
1745 LinearLoad(res , new_strain , new_T , res);
1746 }
1747 if (res ->xi1 < old_state ->xi1){
1748 throw ESMAError("SelfAccom_forward: incorrect solution found - xi1 decreased");
1749 }
1750 return res;
1751 }
1752
1753 TSMAState *TSMASolver :: SelfAccom_reverse(TSMAState *nstate , tensor* new_strain ,
1754 double new_T , TSMAState* ostate){
1755 int i_cnt = 0;
1756 double tmp , phi_0 , phi_k;
1757 TSMAMaterial* smat = (TSMAMaterial *)nstate ->GetMaterial ();
1758
1759 SimoCPP(nstate , new_strain , new_T , ostate , PT_SA_REVERSE);
1760 if (nstate ->xi1 > ostate ->xi1){
1761 throw ESMAError("SelfAccom_reverse: incorrect solution found - xi1 increased");
1762 }
1763 if (nstate ->xi1 < nstate ->min_xi1 ()){
1764 Complete_Mt2A(nstate , new_strain , new_T , ostate);
1765 // nstate ->xi1 = nstate ->min_xi1 ();
1766 if (nstate ->Phi3() > PHI_EPS){
1767 // Along the path we must have detwinned as well
1768 LinearLoad(nstate , new_strain , new_T , ostate);
1769 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_REVERSE , PT_REORIENT);
1770 RestoreConsistency_Mt2A_Mt2Md(nstate , new_strain , new_T , ostate);
1771 }
1772 else
1773 LinearLoad(nstate , new_strain , new_T , nstate);
1774 }
1775 else if (does_Mt2Md_happen(ostate , nstate)){
1776 // Along the path we must have detwinned as well
1777 LinearLoad(nstate , new_strain , new_T , ostate);
1778 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_REVERSE , PT_REORIENT);
1779 if (nstate ->xi1 > ostate ->xi1){
1780 throw ESMAError("SelfAccom_reverse: incorrect solution found - xi1 increased");
1781 }
1782 if (nstate ->xi3 < ostate ->xi3){
1783 throw ESMAError("SelfAccom_reverse: incorrect solution found - xi3 decreased");
1784 }
1785 RestoreConsistency_Mt2A_Mt2Md(nstate , new_strain , new_T , ostate);
1786 }
1787 if (nstate ->xi1 > ostate ->xi1){
1788 throw ESMAError("SelfAccom_reverse: incorrect solution found - xi1 increased");
1789 }
1790 return nstate;
1791 }
1792
1793
1794 tensor* TSMAState :: HookeResidual(tensor* res){
1795 tensor tmp;
1796 tensor4 S;
1797
1798 return sub(res , contract42(res , EffctvS (&S), Stress ()), ElasticStrain (&tmp));
1799 }
1800
1801 tensor* TSMAState :: dHookeResidual_dPT(tensor* res , int pt_indx){
1802 TSMAMaterial *smat = (TSMAMaterial *) GetMaterial ();
1803 tensor tmp;
1804
1805
1806 if (pt_indx != PT_REORIENT){
1807 contract42(res , &smat ->dS, Stress ());
1808 add_smul(res , *res , smat ->dAlpha , *Temperature ()-smat ->T0);



269

1809 }
1810 else{
1811 zero_tensor(res);
1812 }
1813
1814 // add(res , res , Lambda (&tmp , pt_indx));
1815 // This would be an optimization :
1816 switch (pt_indx){
1817 case PT_SA_FORWARD: return res;
1818 case PT_SA_REVERSE: return res;
1819 case PT_SIM_FORWARD: return add(res , res , Lambda2_forward (&tmp));
1820 case PT_SIM_REVERSE: return add(res , res , Lambda2_reverse (&tmp));
1821 case PT_REORIENT: return add(res , res , Lambda3 (&tmp));
1822 default: cerr << "TSMAState :: dHookeResidual_dxi - Inappropriate index";
1823 return NULL;
1824 }
1825 }
1826
1827
1828 tensor4* TSMAState :: dHookeResidual_dstress(tensor4* res , int pt_indx , TSMAState *old_state){
1829 tensor4 tmp;
1830
1831 EffctvS(res);
1832
1833 if (( pt_indx == PT_SIM_FORWARD)){
1834 add_smul4(res , *res , *( dLambda2_forward_dstress (&tmp)), xi2 - old_state ->xi2);
1835 }
1836 if (( pt_indx == PT_SIM_REVERSE)){
1837 add_smul4(res , *res , *( dLambda2_reverse_dstress (&tmp)), xi2 - old_state ->xi2);
1838 }
1839 if (( pt_indx == PT_REORIENT)){
1840 add_smul4(res , *res , *( dLambda3_dstress (&tmp)), xi3 - old_state ->xi3);
1841 }
1842 // return add_smul4 (res , *res , *( dLambda_dstress (&tmp , pt_indx)), c2() - old_state ->c2());
1843 return res;
1844 }
1845
1846 tensor4* TSMAState :: dHookeResidual_dstress2(tensor4* res , int pt_indx1 , int pt_indx2 , TSMAState *old_state){
1847 tensor4 tmp;
1848
1849 EffctvS(res);
1850
1851 if (( pt_indx1 == PT_SIM_FORWARD) || (pt_indx2 == PT_SIM_FORWARD)){
1852 add_smul4(res , *res , *( dLambda2_forward_dstress (&tmp)), xi2 - old_state ->xi2);
1853 }
1854 if (( pt_indx1 == PT_SIM_REVERSE) || (pt_indx2 == PT_SIM_REVERSE)){
1855 add_smul4(res , *res , *( dLambda2_reverse_dstress (&tmp)), xi2 - old_state ->xi2);
1856 }
1857 if (( pt_indx1 == PT_REORIENT) || (pt_indx2 == PT_REORIENT)){
1858 add_smul4(res , *res , *( dLambda3_dstress (&tmp)), xi3 - old_state ->xi3);
1859 }
1860 return res;
1861 }
1862
1863 TSMAState *TSMASolver ::SIM(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState* ostate){
1864
1865 /* return ( TSMAState *) OrtizPopov85 (res , new_strain , new_T , old_state ,
1866 ( TYieldSurfaceProc ) TSMAState :: Phi2_forward ,
1867 ( TStrainFlowProc )TSMAState :: Lambda2_forward ,
1868 ( TIntVarFlowProc )TSMAState :: get_h2 ,
1869 ( TDPhiDStressProc )TSMAState :: dPhi2_forward_stress ,
1870 ( TDPhiDqProc )TSMAState :: dPhi2_forward_dxi2 , 2);
1871 */
1872 (TSMAState *) SimoCPP_forward(nstate , new_strain , new_T , ostate);
1873 // ( TSMAState *) SimoCPP(res , new_strain , new_T , old_state , PT_SIM_FORWARD );
1874 if (nstate ->xi2 < ostate ->xi2){
1875 throw ESMAError("TSMASolver :: SI_forward failed: xi2 decreased.");
1876 }
1877 return nstate;
1878 }
1879
1880 TSMAState *TSMASolver :: SI_reverse(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState* ostate){
1881
1882 // ( TSMAState *) SimoCPP_reverse (nstate , new_strain , new_T , ostate);
1883 (TSMAState *) SimoCPP(nstate , new_strain , new_T , ostate , PT_SIM_REVERSE);
1884 if (nstate ->xi2 > ostate ->xi2){
1885 throw ESMAError("TSMASolver :: SI_reverse failed: xi2 increased.");
1886 }
1887 return nstate;
1888 }
1889
1890 TSMAState *TSMASolver ::M2A(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState* ostate)
1891 {
1892 TSMAMaterial* smat = SMAT(ostate ->GetMaterial ());
1893
1894 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_REVERSE , PT_SIM_REVERSE);
1895 if (nstate ->xi1 > ostate ->xi1){



270

1896 throw ESMAError("M2A: incorrect solution - xi1 has increased");
1897 }
1898 if (nstate ->xi2 > ostate ->xi2){
1899 nstate ->Assign(ostate);
1900 LinearLoad(nstate , new_strain , new_T , ostate);
1901 SimoCPP(nstate , new_strain , new_T , ostate , PT_SA_REVERSE);
1902 // throw ESMAError (" M2A: incorrect solution - xi2 has increased ");
1903 }
1904 if ((nstate ->c1() < 0.0) || (nstate ->c3() > 1.0)){
1905 nstate ->xi1 = nstate ->min_xi1 ();
1906 nstate ->xi2 = ostate ->xi2;
1907 SimoCPP(nstate , new_strain , new_T , ostate , PT_SIM_REVERSE);
1908 if (nstate ->xi2 > ostate ->xi2){
1909 throw ESMAError("M2A: incorrect solution - xi1 set to minimum , xi2 has increased");
1910 }
1911 }
1912 return nstate;
1913 }
1914
1915 TSMAState *TSMASolver ::A2M(TSMAState *nstate , tensor* new_strain , double new_T , TSMAState* ostate)
1916 {
1917 TSMAMaterial* smat = SMAT(ostate ->GetMaterial ());
1918
1919 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_FORWARD , PT_SIM_FORWARD);
1920 if ((nstate ->xi1 < ostate ->xi1) && (nstate ->xi2 < ostate ->xi2)){
1921 throw ESMAError("TSMASolver ::A2M - Algorithmic failure");
1922 }
1923 if (nstate ->xi1 < ostate ->xi1){
1924 TSMAState prev;
1925 bool flag;
1926
1927 prev.Assign(ostate);
1928 LinearLoad(nstate , new_strain , new_T , &prev);
1929 SimoCPP(nstate , new_strain , new_T , &prev , PT_SIM_FORWARD);
1930 flag = RestoreConsistency_A2Md_xxx(nstate , new_strain , new_T , &prev);
1931 if (flag){
1932 prev.xi2 = nstate ->max_xi2 ();
1933 }
1934 if (nstate ->Phi1_forward () > PHI_EPS)
1935 throw ESMAError("TSMASolver ::A2M - Phi1_forrward is inconsistent");
1936 //if (( nstate ->c1() > EPS) && (nstate ->Phi3 () > PHI_EPS))
1937 // throw ESMAError (" Error type 2.");
1938 if (flag) LinearLoad(nstate , new_strain , new_T , &prev);
1939 if ((nstate ->c3() > 0.0) && (nstate ->Phi1_forward () > PHI_EPS))
1940 throw ESMAError("TSMASolver ::A2M - Phi1_forrward is inconsistent");
1941 if ((nstate ->c1() > EPS) && (nstate ->Phi3() > PHI_EPS))
1942 {
1943 Detwin(nstate , new_strain , new_T , &prev);
1944 RestoreConsistency_xi3(nstate , new_strain , new_T , &prev);
1945 };
1946
1947 }
1948 if (nstate ->xi2 < ostate ->xi2){
1949 TSMAState prev;
1950 bool flag;
1951
1952 prev.Assign(ostate);
1953 LinearLoad(nstate , new_strain , new_T , &prev);
1954 SimoCPP(nstate , new_strain , new_T , &prev , PT_SA_FORWARD);
1955 if (flag = RestoreConsistency_A2Mt(nstate , new_strain , new_T , &prev)){
1956 prev.xi1 = nstate ->max_xi1 ();
1957 };
1958 if (nstate ->Phi2_forward () > PHI_EPS)
1959 throw ESMAError("TSMASolver ::A2M - Phi2_forrward is inconsistent");
1960 //if (( nstate ->c1() > TOL) && (nstate ->Phi3 () > PHI_EPS))
1961 // throw ESMAError (" Error type 2.");
1962 if (flag) LinearLoad(nstate , new_strain , new_T , &prev);
1963 if ((nstate ->c3() > 0.0) && (nstate ->Phi2_forward () > PHI_EPS))
1964 throw ESMAError("TSMASolver ::A2M - Phi2_forrward is inconsistent");
1965 if ((nstate ->c1() > EPS) && (nstate ->Phi3() > PHI_EPS))
1966 {
1967 cout << "XXX";
1968 // Detwin(nstate , new_strain , new_T , &prev);
1969 // RestoreConsistency_xi3 (nstate , new_strain , new_T , &prev);
1970 };
1971 }
1972 if ((nstate ->xi1 > nstate ->max_xi1 ()) || (nstate ->xi2 > nstate ->max_xi2 ())){
1973 RestoreConsistency_A2M(nstate , new_strain , new_T , ostate);
1974 }
1975 if (nstate ->xi1 < ostate ->xi1){
1976 throw ESMAError("M2A: incorrect solution - xi1 has dereased");
1977 }
1978 if (nstate ->xi2 < ostate ->xi2){
1979 throw ESMAError("M2A: incorrect solution - xi2 has dereased");
1980 }
1981 return nstate;
1982 }
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1983
1984
1985 TSMAState *TSMASolver :: Mt2Md_and_Mt2A(TSMAState *res , tensor* new_strain , double new_T , TSMAState* ostate)
1986 {
1987 TSMAMaterial* smat = SMAT(ostate ->GetMaterial ());
1988 double lambda , intrpl_t;
1989 tensor inter_strain;
1990
1991 SimoCPP2(res , new_strain , new_T , ostate , PT_SA_REVERSE , PT_REORIENT);
1992 if (res ->xi1 > ostate ->xi1){
1993 throw ESMAError("Mt2Md_and_Mt2A: incorrect solution - xi1 has increased");
1994 }
1995 if (res ->xi3 < ostate ->xi3){
1996 throw ESMAError("Mt2Md_and_Mt2A: incorrect solution - xi3 has decreased");
1997 }
1998 // if ((res ->c1() < 0.0) || (res ->c3() > 1.0)){
1999 if (res ->xi1 < res ->min_xi1 ()){
2000 TSMAState* inter = new TSMAState ();
2001
2002 inter ->Assign(ostate);
2003 while (fabs(res ->xi1 - res ->min_xi1 ()) > TOL){
2004 lambda = (res ->min_xi1 () - inter ->xi1)/(res ->xi1 -inter ->xi1);
2005 interpolate (& inter_strain , &inter ->strain , &res ->strain , lambda);
2006 intrpl_t = inter ->T*(1.0- lambda) + res ->T*( lambda);
2007 LinearLoad(res , &inter_strain , intrpl_t , inter);
2008 SimoCPP2(res , &inter_strain , intrpl_t , inter , PT_SA_REVERSE , PT_REORIENT);
2009 }
2010 res ->xi1 = res ->min_xi1 ();
2011 inter ->Assign(res);
2012 LinearLoad(res , new_strain , new_T , inter);
2013 if (does_Mt2Md_happen(inter , res)){
2014 SimoCPP(res , new_strain , new_T , inter , PT_REORIENT);
2015 if (res ->xi3 < ostate ->xi3){
2016 throw ESMAError("Mt2Md_and_Mt2A: incorrect solution - xi1 set to minimum , xi3 has decreased");
2017 }
2018 }
2019 delete inter;
2020 }
2021
2022 // }
2023 return res;
2024 }
2025
2026
2027 TSMAState *TSMASolver :: Detwin(TSMAState *res , tensor* new_strain , double new_T , TSMAState* old_state){
2028 TSMAMaterial* mtrl;
2029
2030 if (!old_state ->is_Mt2Md_possible () ){
2031 return (TSMAState *) LinearLoad(res , new_strain , new_T , old_state);
2032 }
2033 else{
2034 // return ( TSMAState *) OrtizPopov85 (res , new_strain , new_T , old_state ,
2035 // ( TYieldSurfaceProc ) TSMAState ::Phi3 ,
2036 // ( TStrainFlowProc ) TSMAState :: Lambda3 ,
2037 // ( TIntVarFlowProc ) TSMAState :: get_h3 ,
2038 // ( TDPhiDStressProc )TSMAState :: dPhi3_dstress ,
2039 // ( TDPhiDqProc )TSMAState :: dPhi3_q , 3);
2040 return (TSMAState *) SimoCPP(res , new_strain , new_T , old_state , PT_REORIENT);
2041 }
2042 }
2043
2044 void print_tnsr2s(ostream *strm , char *name , tensor tnsr){
2045 (*strm) << name << ": \n";
2046 for (int i = 0; i < 3; i++){
2047 for (int j = 0; j < 3; j++) (*strm) << tnsr[i][j] << " ";
2048 (*strm) << "\n";
2049 }
2050 strm ->flush();
2051
2052 }
2053
2054 PInelasticState __cdecl TSMASolver ::Load(PInelasticState res , tensor* new_strain ,
2055 double new_T , PInelasticState old_state){
2056
2057 TSMAMaterial* smat = SMAT(old_state ->GetMaterial ());
2058 TSMAState *nstate , *ostate;
2059 tensor tmp , estress;
2060 double intrpl_t , lambda;
2061 bool A2Md , Md2A , A2Mt , Mt2A , Mt2Md;
2062
2063 nstate = (TSMAState *)res;
2064 ostate = new TSMAState ();
2065 ostate ->Assign(old_state);
2066
2067 if (! nstate) {
2068 nstate = new TSMAState(smat);
2069 }
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2070 else
2071 nstate ->SetMaterial(smat);
2072
2073 LinearLoad(nstate , new_strain , new_T , ostate);
2074
2075 A2Mt = does_A2Mt_happen(ostate , nstate);
2076 A2Md = does_A2Md_happen(ostate , nstate);
2077 Md2A = does_Md2A_happen(ostate , nstate);
2078 Mt2A = does_Mt2A_happen(ostate , nstate);
2079 Mt2Md = does_Mt2Md_happen(ostate , nstate);
2080
2081 if (A2Mt && A2Md){
2082 {
2083 A2M(nstate , new_strain , new_T , ostate);
2084 A2Mt = false;
2085 A2Md = false;
2086 Mt2Md = (nstate ->c1() > EPS) && (nstate ->Phi3() > PHI_EPS);
2087 if (Mt2Md)
2088 {
2089 LinearLoad(nstate , new_strain , new_T , ostate);
2090 SIM(nstate , new_strain , new_T , ostate);
2091 RestoreConsistency_A2Md_xxx(nstate , new_strain , new_T , ostate);
2092 if ((nstate ->c1() > EPS) && (nstate ->Phi3() > PHI_EPS)){
2093 LinearLoad(nstate , new_strain , new_T , ostate);
2094 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_FORWARD , PT_REORIENT);
2095 }
2096
2097 if (nstate ->Phi1_forward () > PHI_EPS){
2098 LinearLoad(nstate , new_strain , new_T , ostate);
2099 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_FORWARD , PT_REORIENT);
2100 }
2101
2102 LinearLoad(nstate , new_strain , new_T , nstate);
2103 Mt2Md = false;
2104 }
2105 }
2106 }
2107
2108
2109 if (Mt2A && Md2A){
2110 M2A(nstate , new_strain , new_T , ostate);
2111 Mt2A = false;
2112 Md2A = false;
2113 }
2114
2115 if (Mt2A && Mt2Md){ // Since detwinning depltes c1() it also moves phi1 away. It may happen that after

detwinning the stress state no longer violates phi1_reverse
2116 Detwin(nstate , new_strain , new_T , ostate);
2117 if (does_Mt2A_happen(ostate , nstate)){
2118 LinearLoad(nstate , new_strain , new_T , ostate);
2119 Mt2Md_and_Mt2A(nstate , new_strain , new_T , ostate);
2120 } // else RestoreConsistency_xi3 (nstate , new_strain , new_T , ostate);
2121 Mt2A = false;
2122 Mt2Md = false;
2123 }
2124
2125
2126 if (A2Mt){
2127 SelfAccom_forward(nstate , new_strain , new_T , ostate);
2128 }
2129
2130 if (Mt2A){
2131 SelfAccom_reverse(nstate , new_strain , new_T , ostate);
2132 //if ( does_Mt2Md_happen (ostate , nstate)){
2133 // LinearLoad (nstate , new_strain , new_T , ostate);
2134 // Mt2Md_and_Mt2A (nstate , new_strain , new_T , ostate);
2135 //}
2136 }
2137
2138 if (A2Md){
2139 if (!SIM(nstate , new_strain , new_T , ostate)) return NULL;
2140 RestoreConsistency_A2Md(nstate , new_strain , new_T , ostate);
2141 }
2142
2143
2144 if (Md2A){
2145 SI_reverse(nstate , new_strain , new_T , ostate);
2146 RestoreConsistency_Md2A(nstate , new_strain , new_T , ostate);
2147 }
2148
2149 if (Mt2Md) {
2150 Detwin(nstate , new_strain , new_T , ostate);
2151 if (does_Mt2A_happen(ostate , nstate)){
2152 Mt2Md_and_Mt2A(nstate , new_strain , new_T , ostate);
2153 }
2154 RestoreConsistency_xi3(nstate , new_strain , new_T , ostate);
2155 }
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2156
2157
2158 if (!nstate ->check_consistency(ostate)){
2159 // throw ESMAError (" Inconsistent state. Look at err.txt file .");
2160 ofstream fout;
2161 char buf [400];
2162 fout.open("err.txt", ios::app);
2163 fout << "Inconsistent state: \n\n" << ostate ->GetAsString(buf) << "\n\n";
2164 fout << "Error while trying to load with strain:";
2165 print_tnsr2s (&fout , "new_strain", *new_strain);
2166 fout << "\n\n and T = " << new_T;
2167 fout.close();
2168 }
2169 delete ostate;
2170
2171 // allocated_mem = TotalAllocated ();
2172
2173 return nstate;
2174 }
2175
2176
2177 bool TSMASolver :: RestoreConsistency_Md2A(TSMAState *nstate , tensor* new_strain ,
2178 double new_T , TSMAState *ostate){
2179
2180 if (nstate ->xi2 < nstate ->min_xi2 ()) {
2181 nstate ->Assign(ostate);
2182 nstate ->xi2 = nstate ->min_xi2 ();
2183 zero_tensor (&nstate ->strain_in);
2184 LinearLoad(nstate , new_strain , new_T , nstate);
2185 return true;
2186 }
2187 else
2188 return false;
2189 }
2190
2191 void TSMASolver :: RestoreConsistency_xi3(TSMAState *res , tensor* new_strain ,
2192 double new_T , TSMAState *ostate){
2193
2194 tensor tmp;
2195 double intrpl_t , lambda;
2196 TSMAState *prev;
2197
2198 if (res ->xi3 > res ->max_xi3 ()){
2199 prev = new TSMAState ();
2200 prev ->Assign(ostate);
2201 prev ->xi1 = res ->xi1;
2202 prev ->xi2 = res ->xi2;
2203 while (fabs(res ->xi3 - res ->max_xi3 ()) > TOL){
2204 lambda = (res ->max_xi3 () - prev ->xi3)/(res ->xi3 -prev ->xi3);
2205 interpolate (&tmp , &prev ->strain , &res ->strain , lambda);
2206 intrpl_t = prev ->T*(1.0 - lambda) + res ->T*( lambda);
2207 LinearLoad(res , &tmp , intrpl_t , prev);
2208 SimoCPP(res , &tmp , intrpl_t , prev , PT_REORIENT);
2209 // Detwin(res , &tmp , intrpl_t , prev);
2210 }
2211 res ->xi3 = res ->max_xi3 ();
2212 prev ->Assign(res);
2213 LinearLoad(res , new_strain , new_T , prev);
2214 delete prev;
2215 }
2216 }
2217
2218
2219 bool TSMASolver :: RestoreConsistency_A2Mt(TSMAState *nstate , tensor* new_strain ,
2220 double new_T , TSMAState *ostate){
2221
2222 bool flag = nstate ->xi1 > nstate ->max_xi1 ();
2223
2224 if (flag)
2225 {
2226 double lambda , intrpl_t;
2227 tensor tmp;
2228 TSMAState prev;
2229
2230 prev.Assign(ostate);
2231 prev.xi2 = nstate ->xi2;
2232 prev.xi3 = nstate ->xi3;
2233
2234 while (fabs(nstate ->xi1 - nstate ->max_xi1 ()) > TOL){
2235 lambda = (nstate ->max_xi1 () - prev.xi1)/(nstate ->xi1 -prev.xi1);
2236 interpolate (&tmp , &prev.strain , &nstate ->strain , lambda);
2237 intrpl_t = prev.T*(1.0- lambda) + nstate ->T*( lambda);
2238 LinearLoad(nstate , &tmp , intrpl_t , &prev);
2239 SimoCPP(nstate , &tmp , intrpl_t , ostate , PT_SA_FORWARD);
2240 }
2241 }
2242 return flag;
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2243
2244 /*
2245 TSMAMaterial *smat = ( TSMAMaterial *) nstate -> GetMaterial ();
2246 if (nstate ->xi1 > nstate ->max_xi1 ()){
2247 nstate ->xi1 = min(
2248 nstate ->xi1 , min(
2249 1.0 + nstate ->xi3 - smat ->c01 ,
2250 smat ->c03 - nstate ->xi2));
2251 LinearLoad (nstate , new_strain , new_T , nstate);
2252 }
2253 */
2254 }
2255
2256 bool TSMASolver :: RestoreConsistency_A2Md_xxx(TSMAState *res , tensor* new_strain ,
2257 double new_T , TSMAState *ostate){
2258
2259 bool flag = res ->xi2 > res ->max_xi2 ();
2260
2261 if (flag){
2262 tensor tmp;
2263 double intrpl_t , lambda;
2264 TSMAState *prev;
2265
2266 prev = new TSMAState ();
2267 prev ->Assign(ostate);
2268 prev ->xi1 = res ->xi1;
2269 prev ->xi3 = res ->xi3;
2270
2271 while (fabs(res ->xi2 - res ->max_xi2 ()) > TOL){
2272 lambda = (res ->max_xi2 () - prev ->xi2)/(res ->xi2 -prev ->xi2);
2273 interpolate (&tmp , &prev ->strain , &res ->strain , lambda);
2274 intrpl_t = prev ->T*(1.0 - lambda) + res ->T*( lambda);
2275 LinearLoad(res , &tmp , intrpl_t , prev);
2276 SIM(res , &tmp , intrpl_t , prev);
2277 }
2278 res ->xi2 = res ->max_xi2 ();
2279 delete prev;
2280 }
2281
2282 return flag;
2283 }
2284
2285 void TSMASolver :: RestoreConsistency_A2Md(TSMAState *res , tensor* new_strain ,
2286 double new_T , TSMAState *ostate){
2287
2288 tensor tmp;
2289 double intrpl_t , lambda;
2290 TSMAState *prev;
2291
2292 if (res ->xi2 > res ->max_xi2 ()){
2293 prev = new TSMAState ();
2294 prev ->Assign(ostate);
2295 prev ->xi1 = res ->xi1;
2296 prev ->xi3 = res ->xi3;
2297
2298 while (fabs(res ->xi2 - res ->max_xi2 ()) > TOL){
2299 lambda = (res ->max_xi2 () - prev ->xi2)/(res ->xi2 -prev ->xi2);
2300 interpolate (&tmp , &prev ->strain , &res ->strain , lambda);
2301 intrpl_t = prev ->T*(1.0 - lambda) + res ->T*( lambda);
2302 LinearLoad(res , &tmp , intrpl_t , prev);
2303 SIM(res , &tmp , intrpl_t , prev);
2304 }
2305 res ->xi2 = res ->max_xi2 ();
2306 prev ->Assign(res);
2307 LinearLoad(res , new_strain , new_T , prev);
2308 delete prev;
2309 }
2310 }
2311
2312 void TSMASolver :: RestoreConsistency_A2M(TSMAState *nstate , tensor* new_strain ,
2313 double new_T , TSMAState *ostate){
2314
2315 tensor tmp , intl;
2316 double intrpl_t , lambda , l_min , l_max , err;
2317
2318 if ((nstate ->xi1 > nstate ->max_xi1 ()) || (nstate ->xi2 > nstate ->max_xi2 ())){
2319
2320 TSMAState prev;
2321 double fin_T;
2322 tensor fin_strain;
2323
2324 prev.Assign(ostate);
2325 prev.xi3 = nstate ->xi3;
2326
2327 lambda = 1.0;
2328 l_min = 0.0;
2329 l_max = 1.0;
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2330
2331 fin_T = nstate ->T;
2332 assign_tensor (& fin_strain , &(nstate ->strain));
2333
2334 if (nstate ->c3() < 0.0){
2335 while (fabs(nstate ->c3()) > TOL){
2336 lambda = lambda*(-prev.c3())/(nstate ->c3()-prev.c3());
2337 if (( lambda > l_max) || (lambda < l_min)) {
2338 lambda = 0.5*( l_min + l_max);
2339 }
2340 interpolate (&tmp , &prev.strain , &fin_strain , lambda);
2341 intrpl_t = prev.T*(1.0- lambda) + fin_T*( lambda);
2342 LinearLoad(nstate , &tmp , intrpl_t , &prev);
2343 SimoCPP2(nstate , &tmp , intrpl_t , ostate , PT_SA_FORWARD , PT_SIM_FORWARD);
2344 if (nstate ->c3() < 0.0)
2345 l_max = lambda;
2346 else
2347 l_min = lambda;
2348 }
2349
2350 if (nstate ->xi1 < prev.xi1){
2351 bool flag;
2352 nstate ->Assign (&prev);
2353 LinearLoad(nstate , new_strain , new_T , &prev);
2354 SimoCPP(nstate , new_strain , new_T , &prev , PT_SIM_FORWARD);
2355 flag = RestoreConsistency_A2Md_xxx(nstate , new_strain , new_T , &prev);
2356 if (nstate ->Phi1_forward () > PHI_EPS)
2357 throw ESMAError("TSMASolver ::A2M - Phi1_forrward is inconsistent");
2358 if (flag){
2359 prev.Assign(nstate);
2360 lambda = nstate ->c3();
2361 prev.xi2 = nstate ->max_xi2 ();
2362 LinearLoad(nstate , new_strain , new_T , &prev);
2363 }
2364 if (nstate ->xi1 > nstate ->max_xi1 () + TOL){
2365 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2366 }
2367 if (nstate ->xi2 > nstate ->max_xi2 () + TOL){
2368 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2369 }
2370 return;
2371 }
2372
2373 if (nstate ->xi2 < prev.xi2){
2374 bool flag;
2375 nstate ->Assign (&prev);
2376 LinearLoad(nstate , new_strain , new_T , &prev);
2377 SimoCPP(nstate , new_strain , new_T , &prev , PT_SA_FORWARD);
2378 flag = RestoreConsistency_A2Mt(nstate , new_strain , new_T , &prev);
2379 if (nstate ->Phi2_forward () > PHI_EPS)
2380 throw ESMAError("TSMASolver ::A2M - Phi2_forrward is inconsistent");
2381 if (flag){
2382 prev.Assign(nstate);
2383 prev.xi1 = nstate ->max_xi1 ();
2384 LinearLoad(nstate , new_strain , new_T , &prev);
2385 }
2386
2387 if (nstate ->xi1 > nstate ->max_xi1 () + TOL){
2388 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2389 }
2390 if (nstate ->xi2 > nstate ->max_xi2 () + TOL){
2391 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2392 }
2393 return;
2394 }
2395
2396 if (nstate ->xi1 > nstate ->max_xi1 () + TOL){
2397 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2398 }
2399 if (nstate ->xi2 > nstate ->max_xi2 () + TOL){
2400 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2401 }
2402
2403
2404 // At this point there is no more austenite .
2405 prev.Assign(nstate);
2406 lambda = nstate ->c3();
2407 prev.xi1 = nstate ->xi1 + 0.5* lambda;
2408 prev.xi2 = nstate ->xi2 + 0.5* lambda;
2409
2410 if ((nstate ->c1() > EPS) && (nstate ->Phi3() > PHI_EPS))
2411 throw ESMAError("Error type 23");
2412
2413 LinearLoad(nstate , new_strain , new_T , &prev);
2414
2415 if ((nstate ->c1() > EPS) && (nstate ->Phi3() > PHI_EPS))
2416 {
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2417 Detwin(nstate , new_strain , new_T , &prev);
2418 RestoreConsistency_xi3(nstate , new_strain , new_T , &prev);
2419 }
2420 }
2421 if (nstate ->xi1 > nstate ->max_xi1 () + TOL){
2422 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2423 }
2424 if (nstate ->xi2 > nstate ->max_xi2 () + TOL){
2425 throw ESMAError("TSMASolver :: RestoreConsistency_A2M: Feature not yet implemented.");
2426 }
2427 return;
2428
2429
2430 // First try to restore consistency by changing xi1
2431 while (fabs(nstate ->xi1 - nstate ->max_xi1 ()) > TOL){
2432 lambda = (nstate ->max_xi1 () - prev.xi1)/(nstate ->xi1 -prev.xi1);
2433 interpolate (&tmp , &prev.strain , &nstate ->strain , lambda);
2434 intrpl_t = prev.T*(1.0- lambda) + nstate ->T*( lambda);
2435 LinearLoad(nstate , &tmp , intrpl_t , &prev);
2436 SimoCPP2(nstate , &tmp , intrpl_t , ostate , PT_SA_FORWARD , PT_SIM_FORWARD);
2437 }
2438 if (nstate ->xi2 > nstate ->max_xi2 () + TOL){
2439 // Repeat the exercise for xi2
2440 throw ESMAError("Featire not yet debugged.");
2441 LinearLoad(nstate , new_strain , new_T , ostate);
2442 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_FORWARD , PT_SIM_FORWARD);
2443 prev.Assign(ostate);
2444 prev.xi3 = nstate ->xi3;
2445 while (fabs(nstate ->xi2 - nstate ->max_xi2 ()) > TOL){
2446 lambda = (nstate ->max_xi2 () - prev.xi2)/(nstate ->xi2 -prev.xi2);
2447 interpolate (&tmp , &prev.strain , &nstate ->strain , lambda);
2448 intrpl_t = prev.T*(1.0- lambda) + nstate ->T*( lambda);
2449 LinearLoad(nstate , &tmp , intrpl_t , &prev);
2450 SimoCPP2(nstate , &tmp , intrpl_t , ostate , PT_SA_FORWARD , PT_SIM_FORWARD);
2451 }
2452 if (nstate ->xi1 > nstate ->max_xi1 () + TOL)
2453 throw ESMAError("TSMASolver :: RestoreConsistency_A2M_xi1: Failed to restore consistency.");
2454 nstate ->xi2 = nstate ->max_xi2 ();
2455 prev.Assign(nstate);
2456 LinearLoad(nstate , new_strain , new_T , &prev);
2457 SimoCPP(nstate , new_strain , new_T , &prev , PT_SA_FORWARD);
2458 RestoreConsistency_A2Mt(nstate , new_strain , new_T , &prev);
2459 }
2460 else{
2461 nstate ->xi1 = nstate ->max_xi1 ();
2462 prev.Assign(nstate);
2463 LinearLoad(nstate , new_strain , new_T , &prev);
2464 SimoCPP(nstate , new_strain , new_T , &prev , PT_SIM_FORWARD);
2465 RestoreConsistency_A2Md(nstate , new_strain , new_T , &prev);
2466 }
2467 }
2468 }
2469
2470 void TSMASolver :: Complete_Mt2A(TSMAState *nstate , tensor* new_strain ,
2471 double new_T , TSMAState *ostate){
2472
2473 tensor tmp;
2474 double intrpl_t , lambda;
2475
2476 if (nstate ->xi1 < nstate ->min_xi1 ()){
2477 TSMAState prev = TSMAState ();
2478 TSMAState test = TSMAState ();
2479 test.Assign(nstate);
2480 test.xi1 = test.min_xi1 ();
2481 prev.Assign(ostate);
2482 prev.xi2 = nstate ->xi2;
2483 prev.xi3 = nstate ->xi3;
2484
2485 while (fabs(nstate ->xi1 - nstate ->min_xi1 ()) > TOL){
2486 lambda = (nstate ->min_xi1 () - prev.xi1)/(nstate ->xi1 -prev.xi1);
2487 interpolate (&tmp , &prev.strain , &nstate ->strain , lambda);
2488 intrpl_t = prev.T*(1.0- lambda) + nstate ->T*( lambda);
2489 LinearLoad(nstate , &tmp , intrpl_t , &prev);
2490 SimoCPP(nstate , &tmp , intrpl_t , ostate , PT_SA_REVERSE);
2491 }
2492 nstate ->xi1 = nstate ->min_xi1 ();
2493 // if (test.Phi3 () * nstate ->Phi3 () < 0.0){
2494 // cout << test.Phi3 () << nstate ->Phi3 ();
2495 // }
2496 }
2497 }
2498
2499 void TSMASolver :: RestoreConsistency_Mt2A_Mt2Md(TSMAState *nstate , tensor* new_strain ,
2500 double new_T , TSMAState *ostate){
2501
2502 tensor tmp;
2503 double intrpl_t , lambda , err;
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2504 TSMAState *prev;
2505
2506 if ((nstate ->xi1 < nstate ->min_xi1 ()) || (nstate ->xi3 > nstate ->max_xi3 ())){
2507 prev = new TSMAState ();
2508 prev ->Assign(ostate);
2509 prev ->xi2 = nstate ->xi2;
2510
2511 // First try to restore consistency by changing xi1
2512 while (fabs(nstate ->xi1 - nstate ->min_xi1 ()) > TOL){
2513 lambda = (nstate ->min_xi1 () - prev ->xi1)/(nstate ->xi1 -prev ->xi1);
2514 if (lambda < 0){
2515 lambda = 0.5;
2516 }
2517 interpolate (&tmp , &prev ->strain , &nstate ->strain , lambda);
2518 intrpl_t = prev ->T*(1.0 - lambda) + nstate ->T*( lambda);
2519 LinearLoad(nstate , &tmp , intrpl_t , prev);
2520 SimoCPP2(nstate , &tmp , intrpl_t , ostate , PT_SA_REVERSE , PT_REORIENT);
2521 }
2522 if (nstate ->xi3 > nstate ->max_xi3 () + TOL){
2523 // Repeat the exercise for xi3
2524 throw ESMAError("Feature not yet debugged.");
2525 LinearLoad(nstate , new_strain , new_T , ostate);
2526 SimoCPP2(nstate , new_strain , new_T , ostate , PT_SA_REVERSE , PT_REORIENT);
2527 prev ->Assign(ostate);
2528 prev ->xi2 = nstate ->xi2;
2529 while (fabs(nstate ->xi3 - nstate ->max_xi3 ()) > TOL){
2530 lambda = (nstate ->max_xi3 () - prev ->xi3)/(nstate ->xi3 -prev ->xi3);
2531 interpolate (&tmp , &prev ->strain , &nstate ->strain , lambda);
2532 intrpl_t = prev ->T*(1.0 - lambda) + nstate ->T*( lambda);
2533 LinearLoad(nstate , &tmp , intrpl_t , prev);
2534 SimoCPP2(nstate , &tmp , intrpl_t , ostate , PT_SA_REVERSE , PT_REORIENT);
2535 }
2536 if (nstate ->xi1 < nstate ->min_xi1 () - TOL)
2537 throw ESMAError("TSMASolver :: RestoreConsistency_Mt2A_Mt2Md: Failed to restore consistency.");
2538 nstate ->xi3 = nstate ->max_xi3 ();
2539 prev ->Assign(nstate);
2540 LinearLoad(nstate , new_strain , new_T , prev);
2541 if (does_Mt2A_happen(prev , nstate)){
2542 SimoCPP(nstate , new_strain , new_T , prev , PT_SA_REVERSE);
2543 RestoreConsistency_xi3(nstate , new_strain , new_T , prev);
2544 }
2545 }
2546 else{
2547 nstate ->xi1 = nstate ->min_xi1 ();
2548 prev ->Assign(nstate);
2549 LinearLoad(nstate , new_strain , new_T , prev);
2550 if (does_Mt2Md_happen(prev , nstate)){
2551 SimoCPP(nstate , new_strain , new_T , prev , PT_REORIENT);
2552 RestoreConsistency_A2Md(nstate , new_strain , new_T , prev);
2553 }
2554 }
2555 delete prev;
2556 }
2557 }
2558
2559
2560 bool TSMAState :: check_consistency(TSMAState *ostate){
2561 bool res;
2562 tensor tmp , e_strain;
2563 tensor4 C;
2564
2565 res = (-EPS < c1()) && (c1() < 1.0 + EPS)
2566 && (-EPS < c2()) && (c2() < 1.0 + EPS)
2567 && (-EPS < c3()) && (c3() < 1.0 + EPS);
2568
2569 res = res && (fabs(c1() + c2() + c3() - 1.0) < EPS);
2570
2571 if (!res) return res;
2572
2573 if (is_A2Mt_possible () && does_A2Mt_happen(ostate , this)){
2574 throw ESMAError("Inconsistent state. A2Mt violated");
2575 };
2576 if (is_A2Md_possible () && does_A2Md_happen(ostate , this)){
2577 throw ESMAError("Inconsistent state. A2Md violated");
2578 };
2579 if (is_Md2A_possible () && does_Md2A_happen(ostate , this)){
2580 throw ESMAError("Inconsistent state. Md2A violated");
2581 };
2582 if (is_Mt2A_possible () && does_Mt2A_happen(ostate , this)){
2583 throw ESMAError("Inconsistent state. Mt2A violated");
2584 };
2585 if (is_Mt2Md_possible () && does_Mt2Md_happen(ostate , this)){
2586 does_Mt2Md_happen(ostate , this);
2587 cout << "Inconsistent state. Mt2Md violated";
2588 throw ESMAError("Inconsistent state. Mt2Md violated");
2589 };
2590
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2591
2592 contract42 (&tmp , EffctvC (&C), ElasticStrain (& e_strain));
2593 sub(&tmp , &tmp , &stress);
2594 return (norm(&tmp) < 1.0e-3);
2595
2596 }
2597
2598 tensor4Ptr TSMASolver :: NumericalJacobian(tensor4 L, TSMAState *nstate , TSMAState *ostate)
2599 {
2600 TSMAState eps_state;
2601 double dstrain = 1.0e-8;
2602 tensor strain;
2603
2604 for (int k = 0; k < 3; k++)
2605 for (int l = 0; l < 3; l++){
2606 eps_state.Assign(ostate);
2607 assign_tensor (&strain , nstate ->Strain ());
2608 strain[k][l] += dstrain;
2609 //if (k != l) strain[l][k] += dstrain;
2610 Load(&eps_state , &strain , nstate ->T, ostate);
2611 for (int i = 0; i < 3; i++)
2612 for (int j = 0; j < 3; j++)
2613 {
2614 L[i][j][k][l] = (eps_state.stress[i][j] - nstate ->stress[i][j])/dstrain;
2615 }
2616 }
2617 return (tensor4Ptr)&L;
2618 }
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