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ABSTRACT

Nonlinear Bayesian Filtering with Applications to

Estimation and Navigation. (May 2005)

Deok-Jin Lee,

B.S., Chonbuk National University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Kyle T. Alfriend

In principle, general approaches to optimal nonlinear filtering can be described

in a unified way from the recursive Bayesian approach. The central idea to this recur-

sive Bayesian estimation is to determine the probability density function of the state

vector of the nonlinear systems conditioned on the available measurements. However,

the optimal exact solution to this Bayesian filtering problem is intractable since it

requires an infinite dimensional process. For practical nonlinear filtering applications

approximate solutions are required. Recently efficient and accurate approximate non-

linear filters as alternatives to the extended Kalman filter are proposed for recursive

nonlinear estimation of the states and parameters of dynamical systems. First, as

sampling-based nonlinear filters, the sigma point filters, the unscented Kalman fil-

ter and the divided difference filter are investigated. Secondly, a direct numerical

nonlinear filter is introduced where the state conditional probability density is calcu-

lated by applying fast numerical solvers to the Fokker-Planck equation in continuous-

discrete system models. As simulation-based nonlinear filters, a universally effective

algorithm, called the sequential Monte Carlo filter, that recursively utilizes a set of

weighted samples to approximate the distributions of the state variables or param-

eters, is investigated for dealing with nonlinear and non-Gaussian systems. Recent
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particle filtering algorithms, which are developed independently in various engineer-

ing fields, are investigated in a unified way. Furthermore, a new type of particle

filter is proposed by integrating the divided difference filter with a particle filtering

framework, leading to the divided difference particle filter. Sub-optimality of the ap-

proximate nonlinear filters due to unknown system uncertainties can be compensated

by using an adaptive filtering method that estimates both the state and system error

statistics. For accurate identification of the time-varying parameters of dynamic sys-

tems, new adaptive nonlinear filters that integrate the presented nonlinear filtering

algorithms with noise estimation algorithms are derived.

For qualitative and quantitative performance analysis among the proposed non-

linear filters, systematic methods for measuring the nonlinearities, biasness, and op-

timality of the proposed nonlinear filters are introduced. The proposed nonlinear

optimal and sub-optimal filtering algorithms with applications to spacecraft orbit es-

timation and autonomous navigation are investigated. Simulation results indicate

that the advantages of the proposed nonlinear filters make these attractive alterna-

tives to the extended Kalman filter.
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CHAPTER I

INTRODUCTION

1.1 Overview

The nonlinear filtering problem consists of estimating the states of a nonlinear stochas-

tic dynamical system. The class of systems considered is broad and includes or-

bit/attitude estimation, integrated navigation, and radar or sonar surveillance sys-

tems.1 Because most of these systems are nonlinear and/or non-Gaussian, a sig-

nificant challenge to engineers and scientists is to find efficient methods for on-line,

real-time estimation and prediction of the dynamical systems and error statistics from

the sequential observations. In a broad sense, general approaches to optimal nonlinear

filtering can be described by a unified way using the recursive Bayesian approach.2–4

The central idea of this recursive Bayesian estimation is to determine the probability

density function of the state vector of the nonlinear systems conditioned on the avail-

able measurements. This a posterior density function provides the most complete

description of an estimate of the systems. In linear systems with Gaussian process

and measurement noises, an optimal closed-form solution is the well-known Kalman

filter.2,5 In nonlinear systems the optimal exact solution to the recursive Bayesian

filtering problem is intractable since it requires infinite dimensional processes.6 There-

fore, approximate nonlinear filters have been proposed. These approximate nonlinear

filters can be categorized into five types: (1) analytical approximations, (2) direct nu-

merical approximations, (3) sampling-based approaches, (4) Gaussian mixture filters,

and (5) simulation-based filters. The most widely used approximate nonlinear filter is

the extended Kalman filter, which is the representative analytical approximate non-

The journal model is AIAA Journal of Guidance, Control and Dynamics.
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linear filter. However, it has the disadvantage that the covariance propagation and

update are analytically linearized up to the first-order in the Taylor series expansion,

and this suggests that the region of stability may be small since nonlinearities in the

system dynamics are not fully accounted for.7 Thus, the purpose of this research is

to investigate new and more sophisticated nonlinear estimation algorithms, develop

new nonlinear filters, and demonstrate their applications in accurate spacecraft orbit

estimation and navigation.

The work presented here involves the investigation of system identification and

nonlinear filtering algorithms that are compatible with the general goals of precise es-

timation and autonomous navigation. In this dissertation, efficient alternatives to the

extended Kalman filter (EKF) are suggested for the recursive nonlinear estimation

of the states and parameters of aerospace vehicles. First, approximate (subopti-

mal) nonlinear filtering algorithms, called sigma point filters (SPFs) that include the

unscented Kalman filter (UKF),8,9 and the divided difference filter (DDF),10–12 are

reviewed. The unscented Kalman filter, which belongs to a type of sampling-based

filters, is based on the nonlinear transformation called the unscented transformation

in which a set of sampled sigma points are used to parameterize the mean and co-

variance of a probability distribution efficiently. The divided difference filter, which

falls into the sampling-based polynomial filters, adopts an alternative linearization

method called a central difference approximation in which derivatives are replaced

by functional evaluations, leading to an easy expansion of the nonlinear functions

to higher-order terms. Secondly, a direct numerical nonlinear filter called the finite

difference filter (FDF) is introduced where the state conditional probability density

is calculated by applying fast numerical solvers to the Fokker-Planck equation in

continuous-discrete system models.13,14

However, most of the presented nonlinear filtering methods (EKF, UKF, and
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DDF), which are based on local linearization of the nonlinear system equations or

local approximation of the probability density of the state variables, have yet been

universally effective algorithms for dealing with both nonlinear and non-Gaussian

system. For these nonlinear and/or non-Gaussian filtering problems, the sequential

Monte Carlo method is investigated.15,16 The sequential Monte Carlo filter can be

loosely defined as a simulation-based method that uses a Monte Carlo simulation

scheme in order to solve on-line estimation and prediction problems.17 The sequen-

tial Monte Carlo approach is known as the bootstrap filtering,18 the condensation

algorithm,19 and the particle filtering.20 The flexible nature of the Monte Carlo sim-

ulations results in these methods often being more adaptive to some features of the

complex systems.21 There have been many recent modifications and improvements

on the particle filter.22 However, some of the problems, which are related to choice

of proposal distribution, optimal sampling from the distribution, and computational

complexity, still remain. This work investigates a number of improvements for particle

filters that are developed independently in various engineering fields. Furthermore, a

new type of particle filter is proposed by integrating the divided difference filter with

a particle filtering framework, leading to the divided difference particle filter.

The performance of the proposed nonlinear filters is degraded when the first and

second moment statistics of the observational and system noise are not correctly spec-

ified.23,24 Sub-optimality of the approximate nonlinear filters due to unknown system

uncertainties and/or noise statistics can be compensated by using an adaptive filter-

ing method that estimates both the state and system error statistics.25 For accurate

estimation of the time-varying parameters of dynamical systems, a new adaptive

nonlinear filter, called the adaptive sigma point filter (ASPF),26 that integrates the

presented nonlinear filtering algorithms with a noise estimation algorithm is derived.

For qualitative and quantitative performance analysis among the proposed non-
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linear filters, systematic methods for measuring the nonlinearities and optimality of

the proposed filters are introduced. The applications of the proposed nonlinear filters

to the spacecraft orbit estimation and autonomous navigation problems are consid-

ered.

1.2 Recursive Bayesian Estimation

The probabilistic Bayesian approach to estimation of the state xk with the set of all

measurements Yk = {y1, y2, . . . , yk} is to calculate the posterior distribution for xk

conditional on all the measurements Yk. Then, the Bayesian solution is to calculate

the density p (xk|Yk). This density will encapsulate all the information about the

state vector xk which is contained in the measurement Yk and the prior distribution

of xk−1. If the density p (xk|Yk) is known, then optimal estimates of the state can be

obtained. In other words, the estimate of xk with the measurements Yk is given by

the conditional expectation of xk with Yk

x̂k = E (xk|Yk) =

∫

xkp (xk|Yk)dxk (1.1)

This can be extended to estimating functions of the state instead of the state itself.

Therefore, calculating the conditional probability density function p (xk|Yk) plays an

important role in filtering theory.

The key to calculating the posterior density for the state is Bayes theorem,2 which

states that

p (x|y) ∝ p (x) p (y|x) (1.2)

In other words, the posterior density for x with given observations y is proportional

to the prior value of x multiplied by the likelihood of the observation.

One of the difficulties for obtaining p (xk|Yk) lies in the high-dimensional inte-
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gration, which means that the computational burden will also grow. This can be

avoided by using a sequential scheme. It can easily be seen that

p(x1, . . . ,xk|Yk) ∝ p(x1, . . . ,xk|Yk−1)p(yk|xk) (1.3)

Therefore, marginally integrating out x1, . . . ,xk−1 gives

p(xk|Yk) ∝ p(xk|Yk−1)p(yk|xk) (1.4)

Applying the Markov structure of the system equation leads to

p(xk,xk−1|Yk−1) = p(xk−1|Yk−1)p(xk|xk−1) (1.5)

where xk−1 can be integrated out to give an equation for p (xk|Yk−1) in terms of

p (xk−1|Yk−1). Therefore, the densities of interest can be updated recursively to either

take account of a new observation or to consider an estimate of a future state of the

system. The preceding argument yields the following equations. First, the probability

prediction equation4 or the Chapman-Kolmogorov (CK) equation is introduced

p(xk|Yk−1) =

∫

p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (1.6)

and the update equation4 is obtained by incorporating the latest noisy measurement

in terms of the observation likelihood

p(xk|Yk) = ckp(yk|xk)p(xk|Yk−1) (1.7)

where ck is the normalizing factor given by

ck =

(∫

p(yk|xk)p(xk|Yk−1)dxk

)−1

(1.8)

These prediction and correction equations formulate a recursive Bayesian estimation
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Bayes’ Update
Formula

( )|k kp x Y

Measurement
( )|k kp Y x

System  Dynamcis
(Transition Density)

Updated
Conditional pdf

( )1|k kp −x x

Prediction
(CK Equation)

( )1|k kp −x Y

1k k= +

( )1 1|k kp − −x Y
Prior Density

Fig. 1.1 Prediction and Update Stages for the Recursive Bayesian Estimation

algorithm for the filtering problem as illustrated in Fig. 1.1. Note that the update

equations (1.7) and (1.8) can be integrated into the following

p(xk|Yk) =
p(yk|xk)p(xk|Yk−1)

p(yk|Yk−1)
(1.9)

For intuitive illustration of the recursive Bayesian relations of the predictor-

corrector step, a one-dimensional example of the convolution of two non-Gaussian

probability densities is represented. The prediction shown in Fig. 1.2 is carried out

by making the convolution integral of the a prior density and the dynamic transition

density. In this step the mean is shifted by the state transition density and the co-

variance grows with the effect of the process noise. In the correction step in Fig. 1.3,

the update is obtained by combing the predicted and actual observations. As can be

seen from this example the conditional probability densities in the predicted and up-
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Fig. 1.2 Prediction Step for the Recursive Bayesian Estimation with Non-Gaussian

Probability Densities

dated processes become non-Gaussian, which makes the optimal recursive estimation

intractable in general.

The purpose of the optimal nonlinear filtering problem is to determine the a pos-

terior density function p(xk|Yk). This density function provides the most complete

description of the system information. However, the equations (1.6)∼(1.7) for recur-

sive filtering can only be solved exactly for a small class of problems such as linear and

Gaussian cases because general nonlinear and/or non-Gaussian problems as shown in

the above get involved in intractable infinite integrals. Therefore, the main emphasis

of this dissertation in recursive nonlinear filtering theory is on proposing efficient and

more accurate approximate nonlinear filters.
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Fig. 1.3 Measurement Update Step for the Recursive Bayesian Estimation with

Non-Gaussian Probability Densities

1.3 Review to Nonlinear Filtering

The recursive Bayesian relations were derived in the previous subsection. The solu-

tion to the recursive Bayesian estimation consists of a set of three integral equations,

which are required to be solved each time step. There are classes of problems for

which these equations are tractable. The most important of these classes is the set of

problems where the state and observation equations are linear, and the distributions

of the prior, and observation and system noise are Gaussian. In this case equa-

tions (1.6)∼(1.7) can be solved to produce the Kalman filter.1,5 For other models the

recursive relations are generally difficult to solve either in closed-form or numerically.

Thus, approximate filtering solutions need to be obtained.
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Historically the first of these approximate nonlinear filters was the extended

Kalman filter (EKF),1 which linearizes the system and observation equations about

a single sample point with the assumption that the a priori distribution is Gaus-

sian, and uses the Kalman filter to obtain estimates for the state and covariance of

these estimates. The single sample point is chosen as the best estimate, that is, the

approximation of the conditional mean.

There are two sources of inaccuracy in the EKF.27 The first comes from the

linearization of the nonlinear dynamic and/or measurement equations at each time

step. The second results from the fact that the Gaussian assumption of the priori or

posterior with the estimated mean and covariance will be false due to this lineariza-

tion. The nonlinearities in the system model will result in non-Gaussian posterior and

prior distributions at each time step, and the calculated mean and covariance matrix

will be approximations to the true quantities. These problems have been considered

and possible improvements were suggested by many scientists and engineers.28,29 In

the truncated second-order nonlinear filter1 the linearization errors can be reduced

by retaining up to the second-order terms in the expansion of the system equations,

whereas third and higher order central moments are neglected. Commonly, the as-

sumption is also made that the a posterior density is still Gaussian with the presence

of the second-order terms. A similar procedure is used to derive the modified Gaussian

second-order nonlinear filter,1,28 where nonlinearities are carried out up to fourth or-

der, whereas fifth and higher central moments are neglected by assuming the Gaussian

probability distribution (forth moment is considered). However, it was shown that

using van der Pol’s equation the truncated second-order filter for this second-order

system with linear observations turned out to be unstable. Henriksen30 rederived the

truncated second-order nonlinear filter and verified that the modified second-order

filter is the correct form of what has been termed the truncated second-order filter,
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provided a small correction is made in the discrete-time series.

Recently, there have been interesting developments in derivative-free nonlin-

ear state estimation techniques as efficient alternatives to the extended Kalman fil-

ter.8,11,12 These include the unscented Kalman Filter (UKF), the central difference

filter (CDF), and the divided difference filter (DDF). These are called sigma point

filters (SPFs) and belong to the simulation based nonlinear filters.31 The UKF8 works

on the principle that a set of discretely sampled sigma points can be used to param-

eterize the mean and covariance of the Gaussian random variables, and the posterior

mean and covariance are propagated through the true nonlinear function without the

linearization steps. The UKF has advantages over the EKF in that 1) it can lead to

a more accurate, stable estimate of both the state and covariance, 2) the new filter

can estimate with discontinuous functions, 3) no explicit derivation of the Jacobian

or Hessian matrix is necessary, and 4) the new filter is suitable for parallel process-

ing. The CDF11 and the DDF12 adopt an alternative linearization method called

a central difference approximation10 in which derivatives are replaced by functional

evaluations, and an easy expansion of the nonlinear functions to higher-order terms

is possible. This accommodates easy and efficient implementation of the filters in

nonlinear estimation applications.

A direct numerical approximation to the optimal nonlinear filter is to calculate

the state conditional probability density by applying fast solvers to the Kushner-

Stratonovich equation in the case of continuous-continuous system models32–34 or to

the Fokker-Planck equation in continuous-discrete system models.35–38 Then, quan-

tities of interest such as the minimum mean square error (MMSE), the covariance,

or the maximum likelihood state estimate can then be constructed from the approx-

imated posterior density. In continuous-discrete system models, the Fokker-Planck

equation can be solved accurately and efficiently using finite difference schemes.13,14
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For discrete time measurement updates Bayes’ formula can be applied recursively to

combine measurement likelihoods derived from physical sensor models with the target

state probability density.

To date, however, most of the presented nonlinear filtering methods (EKF, UKF,

and DDF), which are based on local linearization of the nonlinear system equations or

local approximation of the probability density of the state variables with the sampled

sigma points, have yet been universally effective algorithms for dealing with both

nonlinear and non-Gaussian system. As computing power increased, more computa-

tionally expensive filters were suggested. For nonlinear and/or non-Gaussian filtering

problem, the Gaussian sum filter (GSF) which approximates the a posterior density

function by a weighted sum of Gaussian densities was proposed.39,40 It is also an

extension of the EKF and copes with non-Gaussian noise in either or both of the

system and observation equations. The key idea of the Gaussian sum filter is based

on the principle that certain a posterior densities can be approximated by a linear

combination of Gaussian densities. This type of approach is quite reasonable when

the posterior functions are multimodal densities. This mixture distribution method,

however, suffers from the fact that for an accurate approximation of a non-Gaussian

density a large number of densities may be required, which leads to heavy computa-

tional load in general.41

Similarly, a second general approach to nonlinear and non-Gaussian filtering is

to evaluate the posterior density at a series of prescribed grid points in the sample

space. Bucy42 suggested to use the error covariance matrix to establish the region

and the grid. The grid point is centered at the mean value and the grid along each

principal axis was chosen to extend over a distance sufficient to insure that the true

state is contained in the grid region. The point masses that are the evaluated density

values at each grid point are used to approximate the posterior density. Alternatively,
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these grid points can be the basis for an approximation of the posterior by splines

43,44 or by step functions.45 The advantage of these approximations are that they

simplify the integration involved in the recursive Bayesian solution. However, the

number of grid points has to increase exponentially as the dimension increases, and

the calculations at each grid point are non-trivial.46

More recently, scientists and engineers have began to pay attention to a new class

of nonlinear/non-Gaussian filtering methods based on the sequential Monte Carlo ap-

proach since the appearance of the method, the bootstrap filter.15,16,22 The sequential

Monte Carlo can be loosely defined as a simulation-based method that uses the Monte

Carlo simulation method in order to solve on-line estimation and prediction problems.

The sequential Monte Carlo approach is known as the bootstrap filtering,15 the con-

densation algorithm,19 and the particle filtering.20 The flexible nature of the Monte

Carlo simulations results in these methods often being more adaptive to some fea-

tures of the target system.21 There have also been many recent modifications and

improvements on the method.47 This work investigates a number of improvements

for particle filters, which universally effective algorithms for dealing with nonlinear

and non-Gaussian system.

1.4 Contributions of the Dissertation

1. Unified Approaches to Nonlinear Filtering

• Various nonlinear filtering algorithms from the extended Kalman filter to

novel, accurate, and theoretically better motivated algorithms such as the

unscented filter, divided difference filter, finite difference filter, and parti-

cle filters are reviewed and interpreted in a unified way using the recursive

Bayesian estimation. The examined nonlinear and/or non-Gaussian filter-
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ing methods are applied to challenging engineering problems, and enhanced

performance benefits are demonstrated with the applications.

2. Local Linearized Particle Filtering

• A new local linearized particle filtering algorithm called the divided dif-

ference particle filter (DDPF) is formulated. This method mitigates the

sampling degeneracy phenomenon where most of particles have negligible

weights after a few iterations.

– Divided Difference Particle Filter

3. Adaptive Sigma Point Filters

• Practical new adaptive nonlinear filters for recursive estimation of the state

and parameters of nonlinear systems with unknown noise statistics are pre-

sented. The adaptive nonlinear filters combine adaptive estimation tech-

niques for system noise statistics with the nonlinear filters that include

the unscented Kalman filter and divided difference filter. The purpose of

the integrated filters is to not only compensate for the nonlinearity effects

neglected from linearization by utilizing nonlinear filters, but also to take

into account the system modeling errors by adaptively estimating the noise

statistics and unknown parameters.

– Adaptive Unscented Kalman Filter

– Adaptive Divided Difference Filter

4. Applications

• For qualitative and quantitative performance analysis among the proposed

nonlinear filters, systematic methods for measuring the nonlinearities and



14

optimality of the proposed filters are introduced. The proposed nonlinear

optimal and sub-optimal filtering algorithms with applications to space-

craft orbit estimation, autonomous GPS navigation, and robot navigation

are investigated.

1.5 Dissertation Outline

Chapter 2 reviews the current literature on linear filtering from the least-squares

method to the Kalman filter. The linear filters are interpreted by using the Bayesian

recursive structure.

Chapter 3 discusses the approximate nonlinear filters from the point of view

of the Bayesian relations. The approximate nonlinear filters include the extended

Kalman filter, the unscented Kalman filter, the divided difference filter, and the finite

difference filter. The advantages and drawbacks of each filter will be discussed.

In Chapter 4, first the particle filter, known as the SIR or bootstrap filter, is

introduced for nonlinear and/or non-Gaussian filtering problems. Many modifications

and improvements on the particle filter are also investigated. These include the locally

linearized particle filters and regularized particle filters that improve the performance

of the standard particle filter and mitigate the sample degeneracy phenomenon and

sample impoverishment, respectively.

In Chapter 5 the existing linear adaptive filters are reviewed, and new adap-

tive nonlinear filtering algorithms are derived by integrating the presented nonlinear

filtering with an innovation based adaptive process noise compensation.

In Chapter 6, the application of dynamic model compensation (DMC) is dis-

cussed as an adaptive filtering scheme. DMC improves the performance of the filter,

but it requires tuning in order to determine the optimal values for the parameters
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that determine the characteristics of the stochastic acceleration function.

Chapter 7 explains the procedures and mathematical algorithms for the orbit es-

timation and navigation applications. Guidelines for the construction of the discrete-

time process covariance matrix that is necessary for the numerical simulation of the

discrete-time system is derived.

In chapter 8, simulation results and future works are discussed. The proposed

nonlinear optimal and sub-optimal filtering algorithms with applications to spacecraft

orbit estimation, autonomous GPS navigation, and robot navigation are investigated.

A number of different nonlinear filtering approaches for each simulation example are

demonstrated.

Finally, chapter 9 presents some conclusions about the proposed nonlinear/adaptive

filters and directions for future research are indicated.
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CHAPTER II

OPTIMAL LINEAR FILTERING

This chapter presents the optimal linear estimation algorithms from the batch fil-

ter to the Kalman filter. Both batch least-squares and statistical Bayesian recursive

estimation methods are illustrated.

2.1 Batch Least-Squares Estimation

The least-squares (LS) is based on a set of linear measurements of unknown constant

parameters. The purpose of the LS is to estimate the state vector x modeled as an

unknown vector from the noisy observations

y = Hx + v (2.1)

where the measurement noise v ∈ ℜm×1 has zero-mean and covariance R ∈ ℜm×m,

and H ∈ ℜm×n is the linear mapping between the measurement y ∈ ℜm×1 and state

vector x ∈ ℜn×1.

When the measurement set contains redundant information, that is, there are

more independent equations than unknowns (m > n), according to the principle of

least-squares,7 the optimal estimate x̂ of the unknown parameter x is obtained by

minimizing the objective function J of the sum of the squares of the residual errors

e, which is the difference between the true y and estimated ŷ observations

J =
1

2

m
∑

j=1

e2
j (2.2)

The residual error ej is defined by

ej ≡ yj − ŷj = yj −
n

∑

i=1

hi(tj)x̂i (2.3)



17

The objective function J can be rewritten in a vector/matrix form

J =
1

2
eTe =

1

2
[y − Hx̂]T [y − Hx̂] (2.4)

The LS estimator that minimizes the cost function is obtained by setting its gradient

with respect to x̂ to zero

Necessary Condition

∇x̂J =
∂J

∂x̂
= HTHx̂ − HTy = 0 (2.5)

Sufficient Condition

∇2
x̂J ≡ ∂2J

∂x̂∂x̂T
= HTH > 0 (2.6)

where ∇x̂J is the Jacobian and ∇2
x̂J is the Hessian. From the necessary condition,

the normal equation is obtained

(HTH)x̂ = HTy (2.7)

If the required inverse of HTH exists, then the optimal estimate of the unknown

parameter is obtained by

x̂ = (HTH)−1HTy (2.8)

It is seen that if the Hessian of Eq. (2.6) is positive definite (p.d.) with respect

to x̂ the extremum of the optimal estimate is a minimum.

2.2 Weighted Least-Squares Estimation

The least-squares (LS) estimator in Eq. (2.8) places equal weight on each measure-

ment y. In real applications, however, each measurement has different precision, and

possibly, different units. In this situation a weighted least-squares (WLS) is appro-
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priate for the estimation of an unknown constant parameter. Now, the objective

function is represented in terms of a vector/matrix form7

J =
1

2
eTWe =

1

2
[y − Hx̂]TW[y − Hx̂] (2.9)

where the weight matrix W is selected to be the inverse of the covariance matrix of

the measurement noise R

W = R−1 (2.10)

and

R =













R1 · · · 0

...
. . .

...

0 · · · Rk













(2.11)

The extremum conditions are obtained by setting its gradient with respect to x̂

to zero

Necessary Condition

∇x̂J =
∂J

∂x̂
= HTWHx̂ − HTWy = 0 (2.12)

Sufficient Condition

∇2
x̂J ≡ ∂2J

∂x̂∂x̂T
= HTWH > 0 (2.13)

From the necessary condition, the optimal estimate is obtained by

x̂ = (HTWH)−1HTWy (2.14)

It is seen from Eq. (2.13) that the weight matrix W should be positive definite.
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2.2.1 Relationship to Maximum Likelihood Estimation

The least-squares (LS) estimator does not make any probabilistic interpretation, but it

is derived from a deterministic point of view. Consequently, the LS estimator may be

preferred to other estimators when there is no information for the probability density

functions of xk and yk. Alternatively, if the measurement errors vi are independent

Gaussian random variables with mean zero and covariance Rii, then minimizing the

LS criterion in Eq. (2.9) is equivalent to maximizing the likelihood (ML) function7,27

Λk(x̂) = p (yk|x̂) =
k

∏

i=1

p [yi|x̂] (2.15)

= c exp

{

−1

2

k
∑

i=1

[yi − hix̂]T R−1
i [yi − hix̂]

}

(2.16)

where c > 0 is a constant parameter, and yk is the stacked vector of measurement up

to the current time k

yk = [y1, y2, · · · , yk]
T (2.17)

In order to maximize the likelihood function p (yk|x̂), the component in the bracket of

the exponent should be minimized. This is equivalent to minimizing the cost function

in Eq. (2.9). Therefore, the least-squares and maximum likelihood estimators coincide

in this case where the ML estimator maximizes the likelihood function under the

Gaussian assumption with zero mean and covariance Ri of the measurement errors.

2.2.2 Relationship to Bayesian Estimation

When the statistical models for the probability density functions of x and y are

available, the Bayesian estimation can be another approach. Then, the estimation

problem is changed to seeking the a posteriori conditional density function p (x|y),

which contains all the statistical information for the mean and covariance values. The
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conditional density p (x|y) is evaluated by employing the Bayes’s theorem given in

Eq. (1.9)

p(x|y) =
p(y|x)p(x)

p(y)
(2.18)

where p(x) is the a priori probability density function of x, p(y) is the probability

density function of the measurements, and p(y|x) is the likelihood function.

The estimate x̂ can be computed from p(x|y), depending on the criteria of the

optimality. In other words, the Bayesian estimation is based on the minimization of

the risk function J which consists of a cost function J(∆x)27

J (x̂) =

∫ ∞

−∞

∫ ∞

−∞
J (∆x)p (x,y) dxdy (2.19)

where p (x,y) is the joint probability density function of the random variables x and

y, and the cost function J(∆x) is a function of the estimation error ∆x = x − x̂.

Different approaches for solving this problem depend on the choice of the cost function

J (∆x)

The minimum variance estimate minimizes the risk function with the cost func-

tion

J (∆x) = ∆xTW∆x (2.20)

where W is a positive, symmetric matrix. The minimum of the risk function J is

found for the value of x̂mv

x̂mv = E {x|y} (2.21)

Then, the conditional mean estimate x̂ is evaluated by

x̂ = E {x|y} =

∫

xp (x|y)dx (2.22)

Assuming the distributions for x and v are Gaussian, the conditional mean value x̂
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is evaluated by7

x̂ =
(

P−1
0 + HTR−1H

)−1
HTR−1y (2.23)

where P0 is the a priori covariance matrix of x.

Note that if there in no a priori information, the above equation reduces to the

weighted least-squares solution in Eq. (2.14). If all measurement errors are uncor-

related (i.e., R is a diagonal matrix) and they have equal variance (i.e, R = σ2I)

Eq. (2.23) becomes the LS solution in Eq. (2.8).7

2.2.3 Unbiased Estimator

If the measurement errors vi are uncorrelated, zero-mean random variables with co-

variance Ri, then the LS estimator is unbiased

E {x̂} =
[

HTR−1H
]−1

HTR−1E {Hx + v} = x (2.24)

The estimation error ∆x becomes

∆x = x − x̂ = −
[

HTR−1H
]−1

HTR−1 (v) (2.25)

The covariance matrix of the LS estimator is computed by

P ≡ E
{

[x̂ − x] [x̂ − x]T
}

= E
{

∆x∆xT
}

=
[

HTR−1H
]−1

HTR−1 (R)R−1H
[

HTR−1H
]−1

(2.26)

After manipulations of Eq. (2.26), the covariance matrix becomes

P =
[

HTR−1H
]−1

(2.27)
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2.3 Linear Sequential Estimation

In a batch least-squares (BLS) estimator the measurements are available in simul-

taneous processing. In this section, however, it is assumed that the measurements

are taken in a sequential way such that new estimates are computed by utilizing all

previous measurements including the current data.27

Consider two subsets of observations

y1 = H1x + v1 (2.28)

y2 = H2x + v2 (2.29)

where the measurement vectors are

y1 = [y11, y12, · · · , y1m1 ]
T ∈ ℜm1×1 (2.30)

y2 = [y21, y22, · · · , y2m2 ]
T ∈ ℜm2×1 (2.31)

and the linear mappings are H1 ∈ ℜm1×n and H2 ∈ ℜm2×n, respectively.

The least-squares estimates x̂ of the unknown parameter x based on the first

measurement subset is obtained by

x̂1 =
(

HT
1 W1H1

)−1
HT

1 W1y1 (2.32)

where W1 is an m1×m1 symmetric, positive definite matrix associated with measure-

ment noise v1. Now, consider both measurement subsets y1 and y2 simultaneously

in partitioned forms

y = Hx + v (2.33)

where

y =







y1

y2






, H =







H1

H2






, v =







v1

v2






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and the stacked weight matrix is given in block diagonal structure

W =







W1 0

0 W2







The optimal estimate based on the first two measurements subsets are obtained by

x̂2 =
(

HTWH
)−1

HTWy (2.34)

The optimal estimate in Eq. (2.34) can be expanded by using the block diagonal of

the weight matrix W

x̂2 =
[

HT
1 W1H1 + HT

2 W2H2

]−1 (

HT
1 W1y1 + HT

2 W2y2

)

(2.35)

For further compact formulation, the following variables are defined

P1 ≡
[

HT
1 W1H1

]−1
(2.36)

P2 ≡
[

HT
1 W1H1 + HT

2 W2H2

]−1
(2.37)

Then, the covariance P2 has the following relationship with P1

P−1
2 = P−1

1 +
[

HT
2 W2H2

]−1
(2.38)

Finally, after manipulation, the optimal estimate x̂2 based on the previous estimate

x̂1 is calculated by

x̂2 = x̂1 + K2(y2 − H2x̂1) (2.39)

where

K2 ≡ P2H
T
2 W2 (2.40)

Now, general recursive least-squares estimation that uses the kth estimate to
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determine the estimate at k + 1 leads to the sequential formula48

x̂k+1 = x̂k + Kk+1 (yk+1 − Hk+1x̂k) (2.41)

where

Kk+1 = Pk+1H
T
k+1Wk+1 (2.42)

P−1
k+1 = P−1

k +
[

HT
k+1Wk+1Hk+1

]−1
(2.43)

Eq. (2.41) updates the previous estimate x̂k by utilizing the current measurement

information yk+1, which is known as Kalman update process. The parameter value

Kk+1 is the Kalman gain matrix.

The inverse covariance matrix P−1
k+1 known as the Fisher information matrix can

be rewritten by using the matrix matrix inversion lemma

Pk+1 = Pk − PkH
T
k+1

[

Hk+1PkH
T
k+1 + W−1

k+1

]−1
Hk+1Pk (2.44)

The update equation can be also rearranged in alternative forms. First, the

Kalman gain equation can be rewritten by substituting Eq. (2.44)

Kk+1 = PkH
T
k+1

[

Hk+1PkH
T
k+1 + W−1

k+1

]−1
(2.45)

Now, the covariance update equation can be expressed in terms of the Kalman

gain matrix

Pk+1 = [I −Kk+1Hk+1]Pk (2.46)

Let’s denote the covariance of the residual as

Sk+1 ≡ Hk+1PkH
T
k+1 + W−1

k+1 (2.47)
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Table 2.1 Sequential Least-Squares (SLS) Algorithm

Initialization:
x̂k =

(

HT
1 W1H1

)−1
HT

1 W1y1

Pk =
[

HT
1 W1H1

]−1

Innovation Covariance:

Sk+1 = Hk+1PkH
T
k+1 + W−1

k+1

Update:

x̂k+1 = x̂k + Kk+1 (yk+1 − Hk+1x̂k)

Kk+1 = PkH
T
k+1S

−1
k+1

Pk+1 = [I −Kk+1Hk+1]Pk

where Kk+1 = Kalman gain matrix, Wk+1 = Measurement error matrix

which leads to the compact form of the Kalman gain equation

Kk+1 = PkH
T
k+1S

−1
k+1 (2.48)

Finally, the algorithms of the linear sequential estimation are summarized in

Table 2.1.

2.4 Kalman Filter

2.4.1 Introduction

The Kalman filter has been the subject of extensive research and application, partic-

ularly in the area of orbit determination and autonomous GPS navigation, since the
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publication of Kalman’s famous paper5 describing a recursive solution to the filtering

problem.

The Kalman filter is a set of mathematical equations that provides an efficient

recursive solution of the least-squares method. It provides estimates of the past,

present, and also future states, and it can do so when the precise nature of the

modeled system is unknown, for example, when the modeling errors of the system

model are not known well.

A major characteristic of the batch least-squares estimator that the estimated

state estimate and covariance matrix are based on processing a batch of data spread

over some time interval. A second characteristic is that the estimate is involved with a

particular epoch. Therefore, we expect the state vector and the covariance matrix to

be predicted from the epoch time to a new time. During this processing, one specific

problem is how to propagate the state and covariance matrix over the time interval

to provide statistical information at the new epoch.

The Kalman filter is a technique for computing the best estimate of the state of

a time varying process with imperfect observations and an uncertain dynamic model.

In other words, it provides the minimum variance estimate of the state based on

statistical information about the dynamic model and the observations. It differs from

the least-squares technique in three very important and essential approaches.7 First,

it continuously updates the epoch time, thus estimating the state at each epoch

successive observation time. Second, it carries all the information concerning past

measurements in its current state and covariance estimates, and, therefore, doesn’t

need to reprocess all of the past measurement information at each time step. Finally,

the Kalman filter can cope with more realistic noises, whereas usually least-squares

methods can not deal with noises that depend on the mathematical models of the

dynamic systems.
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In this section, the procedures for the Kalman filter algorithms are described in

terms of the recursive Bayesian approach.

2.4.2 Kalman Filtering Algorithm

The following linear discrete-time system equations are considered

xk+1 = Fxk + wk (2.49)

yk = Hxk + vk (2.50)

where F ∈ ℜn×n is a dynamic model, xk ∈ ℜn×1 is the state vector, H ∈ ℜm×n is a

measurement output model, and yk ∈ ℜm×1 is the observation vector. It is assumed

that the noise vectors are stationary, white Gaussian processes with the zero-mean

and covariance

E
[

wkwj
T
]

= δkjQk, E
[

vkvj
T
]

= δkjRk, E
[

vkwj
T
]

= 0, ∀ k, j (2.51)

The system and observational errors are assumed to be uncorrelated. The Kalman

filtering algorithm is represented by a two-step recursive process, prediction and up-

date.1

From the Bayesian approach in Eqs. (1.6)∼(1.7), the recursive structure is de-

scribed by the current state density as a function of the previous density and the most

recent measurements. The dynamic and measurement models play a role in determin-

ing the state transition probability p (xk+1|xk) and measurement likelihood function

p (yk|xk). Specifically, the state transition density is computed by the state space

model in Eq. (2.49), and the additive Gaussian process noise p (wk) = N (0,Qk).

Thus, the state transition probability p (xk+1|xk) is obtained by

p (xk+1|xk) = N (xk+1; x̂k+1,Qk) (2.52)
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Similarly, the likelihood function p (yk|xk) is determined by the observation model,

and the measurement noise density p (vk) = N (0,Rk)

p (yk|xk) = N (yk; ŷk,Rk) (2.53)

The recursive relationships in Eqs. (1.6)∼(1.7) are given by3

p (xk|Yk) = N (xk; x̂k,Pk) (2.54)

p (xk+1|Yk) = N
(

xk+1; x̂
−
k+1,P

−
k

)

(2.55)

p (xk+1|Yk+1) = N (xk+1; x̂k+1,Pk+1) (2.56)

where N (x; m,P ) denotes a Gaussian density with argument x, mean m, and co-

variance P expressed by

N (x; m,P ) ≡ |2πP |−1/2 exp

{

−1

2
(x − m) P−1 (x − m)T

}

(2.57)

If it is assumed that all densities remain Gaussian, then the Bayesian recursion

can be simplified in terms of only the conditional mean x̂k = E
{

xk|Yk
}

and co-

variance Pk = E
{

∆xk∆xT
k |Yk

}

. More details are found in Ref. 3. The optimal

components in the recursion estimation are given by

x̂−
k+1 = E

{

Fxk + wk|Yk
}

(2.58)

ŷ−
k+1 = E

{

Hx̂−
k+1 + vk+1|Yk

}

(2.59)

The state prediction in Eq. (2.58) can be represented by

x̂−
k+1 = Fx̂k (2.60)

where x̂−
k+1 is the model prediction and x̂ is the currently estimated state. The

estimate x̂+
k+1 of the true state xk+1 is obtained by combining the observations yk+1
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and the model predictions x̂−
k+1

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1 (2.61)

where υk+1 is the innovation vector, which is equal to the difference between the

actual and the predicted observations

υk+1 ≡ yk+1 − ŷ−
k+1 = yk+1 − Hx̂−

k+1 (2.62)

The predicted and updated equations for the state covariance matrix are computed

by

P−
k+1 = FPk FT + Qk (2.63)

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1KT

k+1 (2.64)

where the covariance of the innovation vector is given by

Pυυ
k+1 = HP−

k+1H
T + Rk+1 (2.65)

The Kalman gain Kk+1 is computed by

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1 (2.66)

where P
xy
k+1 is the predicted cross-correlation matrix between x̂−

k+1 and ŷ−
k+1

P
xy
k+1 = P−

k+1H
T (2.67)

The Bayesian relations of the predictor-corrector structure for the Kalman filtering

algorithm can be represented by the block diagram as shown in Fig. 2.1 and the spe-

cific algorithms are summarized in Table 2.2 with detail.
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Fig. 2.1 Diagram of Predictor-Corrector Form of the Kalman Filter
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Table 2.2 Kalman Filter (KF) Algorithm

Initialization:

x̂0 = E[x0]

P0 = E
[

(x0 − x̂0) (x0 − x̂0)
T
]

State Propagation:

x̂−
k+1 = Fkx̂k

P−
k+1 = Fk Pk FT

k + Qk

Observation Propagation:

ŷ−
k+1 = Hk+1x̂

−
k+1

Pυυ
k+1 = Hk+1P

−
k+1H

T
k+1 + Rk+1

P
xy
k+1 = P−

k+1H
T
k+1

Update:

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1KT

k+1

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1

where (-) denotes a “propagated” value, (+) denotes a “updated” value

Qk = System Model Error Matrix, Rk = Measurement Error Matrix
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CHAPTER III

SUBOPTIMAL NONLINEAR FILTERING

In linear systems an optimal, closed form solution exists,3,5 but when the systems

are nonlinear there are restrictions on the analytical forms of the optimal solu-

tions,7 i.e., multi-dimensional integration. Therefore, approximate nonlinear filters

have been proposed.1,4, 7 These approximate nonlinear filters can be categorized into

four broad types: (1) analytical approximations, (2) direct numerical approximations,

(3) sampling-based approaches, and (4) Gaussian sum filters (or multiple model fil-

ters). The most widely used analytical approximate nonlinear filter is the extended

Kalman filter. In this section, three types of approximate nonlinear filters, analytical,

sampling- based, and direct numerical approximate filters, are investigated along with

the nonlinear least-squares estimation.

3.1 Nonlinear Least-Squares Estimation

The purpose of the least-squares process is to minimize a cost function that depends

on the actual and computed observations that depend on the dynamic model and

the initial state. For this problem we assume a continuous system model with errors

modeled by white-Gaussian noise w(t), and discrete time measurements corrupted by

white-Gaussian noise vk. The continuous-discrete nonlinear equations are given by

ẋ(t) = f(x, t) + w(t) (3.1)

yk = h(xk, k) + vk (3.2)

where xk ∈ ℜn is the n × 1 state vector, yk ∈ ℜm is the m × 1 observation vector.

w(t) ∈ ℜq is the q×1 state noise process vector and vk ∈ ℜs is the s×1 additive mea-
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surement noise vector. It is assumed that the noise vectors are zero-mean Gaussian

processes

E
[

w(t)wT (s)
]

= δ(t − s)Q(t), E
[

vkv
T
j

]

= δkjRk (3.3)

The basic principle of the method of least-squares is that the best estimate of the

state is the estimate which minimizes the sum of the squares of the residuals. The

residual is defined as

υk = yk − h(xk, k) (3.4)

where yk are the actual observations or true observations. If the nominal trajectory

of the system is x̂k, then the measurement function h(xk, k) can be approximated by

using the Taylor-series expansion

h(xk) = h(x̂k) +
∂h

∂x

∣

∣

∣

∣

xk=x̂k

(xk − x̂k) + H.O.T (3.5)

where h(x̂k) is the estimated value of the observation at the value x̂k, and the gradient

matrix Hk, also known as the Jacobian matrix, is defined as

Hk ≡
[

∂h

∂x

∣

∣

∣

∣

x̂k

]

(3.6)

Assume that the current estimates of the state xc are denoted by

xc = [x1c, x2c, · · · , xnc]
T (3.7)

and they are related to the estimates x̂k by an unknown set of corrections ∆x

x̂k = xc + ∆x (3.8)

If the components of the corrections ∆x are sufficiently small, it may be possible

to solve for an approximation to the corrections and update xc with an improved

estimate of x̂k using Eq. (3.8). With this assumption, the function h(x̂k, k) can be
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linearized about xc

h(x̂k) ≈ h(xc) + H∆x (3.9)

The measurement residual after the correction can be linearly approximated by

∆y ≡ yk − h(x̂k) ≈ yk − h(xc) − H∆x (3.10)

where the differential correction is ∆x = x̂k−xc, and the residual before the correction

is defined by

∆yc ≡ yk − h(xc) (3.11)

The objective of the weighted Least-Squares estimation is to minimize the weighted

sum of the squares of the measurement residuals given by the cost function J48

J =
1

2
∆yTW∆y =

1

2
[yk − h(x̂k)]

T
W [yk − h(x̂k)] (3.12)

where W is an m × m symmetric weighting matrix used to weight the relative im-

portance of each measurement. The local strategy for determining the differential

corrections ∆x is to select the particular corrections that lead to the minimum sum

of squares of the linearly predicted residuals Jp. The measurement residual can be

approximated in terms of ∆yc by using Eq. (3.10), and the cost function is rewritten

by

Jp ≡
1

2
[∆yc − H∆x)]T W [∆yc − H∆x)] (3.13)

Note that the minimization of Jp in Eq. (3.13) is equivalent to the minimization of J

in Eq. (3.12). For the minimization of Jp, the following conditions should be satisfied

Necessary Condition

∇∆xJp =
∂Jp

∂∆x
= HTWH∆x − HTW∆yc = 0 (3.14)
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Sufficient Condition

∇2
∆xJp ≡

∂2Jp

∂∆xi∆xj

= HTWH > 0, (p. d.) (3.15)

From the necessary conditions, the normal equation can be obtained

HTWH∆x = HTW∆yc (3.16)

Finally, the solution for solving the weighted least-squares problem applies to solving

for ∆x and the explicit solution is computed by

∆x =
(

HTWH
)−1

HTW∆yc (3.17)

Note that because of the nonlinearities in the nonlinear function this process must be

iterated until the solution converges, i.e., ∆x approaches zero.

The complete nonlinear least-squares algorithm is summarized in Fig. 3.1. An

initial guess xc of the current estimates is required to begin the algorithm. A stopping

condition with an accuracy dependent tolerance for the minimization of J is given by

δJ ≡ |Ji − Ji−1|
Ji

<
ε

‖W‖ (3.18)

where i is the iteration number and ε is a prescribed small value. If the judgment

criterion in Eq. (3.18) is not satisfied, the update procedure is iterated with the new

estimate as the current estimate until the process converges.

3.2 Extended Kalman Filter

The extended Kalman filter provides the minimum variance estimate of the state

based on statistical information about the dynamic model and observations. In this

section the EKF is reviewed from the concept of the Bayesian approach, and derived
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using an innovations concept49 for the discrete-time nonlinear equations given by

xk+1 = f(xk,wk, k) (3.19)

yk = h(xk, k) + vk (3.20)

where xk ∈ ℜn is the n×1 state vector, yk ∈ ℜm is the m×1 observation vector. wk ∈

ℜq is the q×1 state noise process vector and vk ∈ ℜs is the s×1 additive measurement

noise vector. It is assumed that the noise vectors are zero-mean Gaussian processes

and

E
[

wkwj
T
]

= δkjQk, E
[

vkvj
T
]

= δkjRk, E
[

vkwj
T
]

= 0, ∀ k, j (3.21)

Given a system model and initial state and covariance values, the extended

Kalman filter propagates the first two moments of the distribution of xk recursively.

Then, along with imperfect measurements, the EKF updates the estimates of the

state vector and the covariance. The update is accomplished through the Kalman

gain matrix, K, which comes from minimizing the weighted scalar sum of the diag-

onal elements of the covariance matrix. Thus, the EKF algorithm has a distinctive

predictor-corrector structure, which is equivalent to the recursive Bayesian relation-

ships in Eqs. (1.6)∼(1.7).

The EKF is based on the analytical Taylor series expansion of the nonlinear

systems and observation equations about the current estimated value x̂k. Thus, for

nonlinear models the predicted state estimate and covariance are approximated by3,27

x̂−
k+1 = f(x̂k, k) (3.22)

P−
k+1 = Fk Pk FT

k + Qk (3.23)

where Fk is the Jacobian matrix of f evaluated about x̂k. The update equations are
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written as

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1 (3.24)

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1KT

k+1 (3.25)

where υk+1 is the innovative vector, which is equal to the difference between the

actual and the predicted observations, and is given by

υk+1 = y − ŷ−
k+1 = y − h(x̂−

k+1, k + 1) (3.26)

The covariance of the innovation vector is obtained by

Pυυ
k+1 = P

yy
k+1 + Rk+1 (3.27)

where P
yy
k+1 is the output covariance. The Kalman gain Kk+1 is computed by

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1 (3.28)

where P
xy
k+1 is the predicted cross-correlation matrix between x̂−

k+1 and ŷ−
k+1.

The probability densities in the Bayesian recursion are related to the optimal

terms in the EKF algorithms by21

p (xk|Yk) = N (xk; x̂k,Pk) (3.29)

p (xk+1|Yk) = N
(

xk+1; x̂
−
k+1,P

−
k

)

(3.30)

≈ N
(

xk+1; f (x̂k) ,Fk Pk FT
k + Qk

)

(3.31)

p (xk+1|Yk+1) = N (xk+1; x̂k+1,Pk+1) (3.32)

≈ N
(

xk+1; x̂
−
k+1 + Kk+1υk+1,P

−
k+1 −Kk+1P

υυ
k+1KT

k+1

)

(3.33)

where N (x; m,P ) denotes a Gaussian density with argument x, mean m, and covari-

ance P . The recursive Bayesian relations of the predictor-corrector structure for the
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extended Kalman filter can be represented by the block diagram as shown in Fig. 3.2,

and the specific algorithm of the EKF is formulated in terms of the innovation vector

and covariance terms and summarized in Table 3.1.
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k k
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+
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k=1

−

−

x

P

Fig. 3.2 Diagram of Predictor-Corrector Form of the Extended Kalman Filter

Note that in the EKF algorithm the state distribution is approximated by a

Gaussian random variable, which is propagated through the first-order linearization

of the nonlinear functions. These approximations, however, can introduce large errors

in the true mean and covariance. In the next section, a new nonlinear transformation

for the mean and covariance will be introduced to handle the linearization issue.

3.3 Unscented Kalman Filter

The basic difference between the EKF and unscented Kalman filter results from the

manner in which the state distribution of the nonlinear model is approximated. The
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Table 3.1 Extended Kalman Filter (EKF) Algorithm

Initialization:

x̂0 = E[x0]

P0 = E
[

(x0 − x̂0) (x0 − x̂0)
T
]

State Propagation:

x̂−
k+1 = f(x̂k, k)

P−
k+1 = Fk Pk FT

k + Qk

Observation Propagation:

ŷ−
k+1 = h(x̂−

k+1, k + 1)

Pυυ
k+1 = Hk+1P

−
k+1H

T
k+1 + Rk+1

P
xy
k+1 = P−

k+1H
T
k+1

Update:

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1KT

k+1

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1

where (-) denotes a “propagated” value, (+) denotes a “updated” value

Qk = System Model Error Matrix, Rk = Measurement Error Matrix
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unscented Kalman filter introduced by Julier8 utilizes a nonlinear transformation,

called the unscented transformation, in which the state probability distribution is

represented by a minimal set of sampled sigma points, which are used to parameterize

the true mean and covariance of the state distribution. Thus, the unscented Kalman

filter belongs to the simulation-based local nonlinear filters and can be described as

a sigma point filter (SPF) in a unified way. When they are propagated through the

true nonlinear system, the posterior mean and covariance is obtained up to the 2nd

order for any nonlinearity. First, the unscented transformation is described.

3.3.1 Unscented Transformation

The unscented transformation (UT) utilizes a deterministic sampling approach to

calculate the mean and covariance, and works on the principle that it is easier to

approximate a probability distribution than an arbitrary nonlinear function.9 Con-

sider the propagation of a random variable x ∈ ℜn with mean x̄ and covariance Pxx

through a nonlinear function y = h(x). To calculate the statistics of y ∈ ℜm, a new

matrix X that consists of (2n + 1) weighted sigma vectors Xi is formed according to

the following

X0 = x̄ W0 = κ/(n + κ) i = 0

Xi = x̄ +
(

√

(n + λ)Pxx

)

i
Wi = 1/2(n + κ) i = 1, . . . , n

Xi = x̄ −
(

√

(n + λ)Pxx

)

i−n
Wi = 1/2(n + κ) i = n + 1, . . . , 2n

(3.34)

where κ ∈ ℜ is a scaling parameter that designates the scaling direction of sigma

points and
(

√

(n + κ)Pxx

)

i
is the ith row or column of the matrix square root. Wi

is the weight which is associated with the ith point. These sigma point vectors are
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propagated through the true nonlinear transformation without linearization by

Yi = h(Xi) i = 0, . . . , 2n (3.35)

Then, the estimated mean and covariance of y are approximated using a weighted

sample mean and covariance of the posterior sigma points respectively

ȳ =
2n
∑

i=0

WiYi (3.36)

Pyy =
2n
∑

i=0

Wi{Yi − ȳ}{Yi − ȳ}T (3.37)

These estimates of the mean and covariance are captured accurately up to the second

order (third order for Gaussian) of the Taylor series expansion for an arbitrary non-

linear function.50 A simple illustration of the approach is summarized in Fig. 3.3 for a

2-dimensional unscented transformation. The lower plot shows the mean and covari-

ance obtained from the sampled sigma-point approach through the unscented trans-

formation, whereas the upper plot depicts the results from a linearization approach

about a single point, the first moment of a Gaussian prior. The UT approach results

in third order accuracy for Gaussian inputs, which leads to estimates of the mean and

covariance closer to the truth. In contrast, the linearized method in the EKF results

in only first order accuracy and large errors. In the transformation κ provides an

extra degree of freedom to fine tune the higher order moments of the approximation.

If x is a Gaussian distribution, then κ = 3−n is used for multi-dimensional systems.50

The distance of the sigma point from x̄, |Xi − x̄| is proportional to
√

n + κ. When

κ = 0 the distance is proportional to
√

n, when κ > 0 the points are scaled further

from x̄, and when κ < 0 the points are scaled toward x̄. Although κ can be positive

or negative, a negative choice can result in the calculated covariance being negative

semi-definite. A scaled unscented transformation (SUT) was developed to handle this
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issue.51

3.3.2 Scaled Unscented Transformation

This section introduces a general framework for scaling sigma points to deal with

the non-positive covariance matrix.51 The scaled unscented transformation (SUT)

replaces the original set of sigma points with a transformed set that could obey the

conditions

X ′

i = Xi + α(Xi −X0) (3.38)

where α is the positive parameter that scales the spread of the sigma point and can

be set sufficiently small such that the higher order terms do not affect the filter. A
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sigma point set S = {W,X} that is obtained using equation (3.34) is transformed

into the scaled set S ′

= {W ′

,X ′} given by

W
′

i =











W0/α
2 + (1 − 1/α2) i = 0

Wi/α
2 i 6= 0

(3.39)

Then, the statistics of the estimated mean and covariance of y are formulated by

Yi
′

= h(Xi
′

) (3.40)

ȳ
′

=
2n
∑

i=0

W
′

iY
′

i (3.41)

P
′

yy =
2n
∑

i=0

W
′

i {Y
′

i − ȳ
′}{Y ′

i − ȳ
′}T + (1 + β − α2){Y ′

i − ȳ
′}{Y ′

i − ȳ
′}T (3.42)

where β is the third parameter that incorporates further higher order effects by adding

the weighting of the zeroth sigma point of the calculation of the covariance, and

β = 2 is optimal for Gaussian distributions. α controls the size of the sigma point

distribution and should be a small number (0 ≤ α ≤ 1).51,52 The sigma point selection

formula and scaling effect parameter α can be combined into a new single parameter

by setting

λ = α2(n + κ) − n (3.43)

Then, the selection of the scaled sigma points is reformulated in a simple form as

follows

X0 = x̄ i = 0

Xi = x̄ +
(

√

(n + λ)Pxx

)

i
i = 1, . . . , n

Xi = x̄ −
(

√

(n + λ)Pxx

)

i−n
i = n + 1, . . . , 2n

(3.44)
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W
(m)
i =











λ/n + λ i = 0

1/{2(n + λ)} i = 1, . . . , 2n
(3.45)

W
(c)
i =











λ/(n + λ) + (1 − α2 + β) i = 0

1/{2(n + λ)} i = 1, . . . , 2n
(3.46)

where W
(m)
i is the weight for the mean and W

(c)
i is the weight for the covariance.

Even though the scaled unscented transformation provides the same performance as

the truncated second order filter with the same order of calculations as an extended

Kalman filter, in real-time applications, however, it is critical that both the com-

putational costs and storage requirements should be minimized. Julier53 introduced

reduced sigma points, that can minimize the number of regression points from 2n+1

to n+1 for an n dimensional state space. The reduced sigma points are called simplex

sigma points, and result in a computationally more efficient solution. See Ref. 53 for

details.

3.3.3 Unscented Kalman Filter

In the previous section a series of transformation methods for parameterizing the mean

and covariance were introduced. In this section the scaled unscented transformation

is applied to the nonlinear filtering problem. The UKF is a straightforward extension

of the UT to the recursive estimation for both dynamic and measurement models.

The UKF is derived for discrete-time nonlinear equations presented in Eqs. (3.19)

and (3.20). Note that the process noise is not simply additive but the measurement

noise is assumed to be additive. Assume that xk ∈ ℜn is the n × 1 state vector and

yk ∈ ℜm is the m × 1 measurement vector at time k. wk ∈ ℜq is the q × 1 process

noise vector and vk ∈ ℜr is the r × 1 additive measurement noise vector, and they

are assumed to be zero-mean Gaussian noise processes with covariances given by Qk
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and Rk, respectively. The original state vector is redefined as an augmented state

vector along with process noise variables and an augmented covariance matrix on the

diagonal is reconstructed as

xa
k =







xk

wk






, Pa

k =







Pk Pxw
k

Pxw
k Qk






(3.47)

where Pxw
k is the correlation between the process noise and the error in the state

estimate. The set of {2(n+q)+1} sigma points of the augmented state is constructed

by implementing the nonlinear transformation in Eq. (3.44) to the augmented system

given by Eq. (3.47). The unscented Kalman filter can be formulated by taking the

predictor-corrector step made in the EKF algorithm in Table 3.1. As for the state

propagation, the predicted state vector x̂−
k+1 and its predicted covariance P−

k+1 are

computed by applying one of the proposed unscented transformations

Xi, k+1 = f(X a
i, k, k ) (3.48)

x̂−
k+1 =

2(n+q)
∑

i=0

W
(m)
i Xi, k+1 (3.49)

P−
k+1 =

2(n+q)
∑

i=0

W
(c)
i {Xi, k+1 − x̂−

k+1}{Xi, k+1 − x̂−
k+1}T (3.50)

Similarly, the predicted observation vector ŷ−
k+1 and its predicted covariance P

yy
k+1 are

also calculated as

Yi, k+1 = h(Xi, k+1, k + 1 ) (3.51)

ŷ−
k+1 =

2(n+q)
∑

i=0

W
(m)
i Yi, k+1 (3.52)

P
yy
k+1 =

2(n+q)
∑

i=0

W
(c)
i {Yi, k+1 − ŷ−

k+1}{Yi, k+1 − ŷ−
k+1}T (3.53)
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Fig. 3.4 Diagram of Predictor-Corrector Form of the Unscented Kalman Filter

Since the observation noise is additive and independent, the innovation covariance

Pυυ
k+1 is computed by

Pυυ
k+1 = P

yy
k+1 + Rk+1 (3.54)

and the cross correlation matrix is determined by using

P
xy
k+1 =

2(n+q)
∑

i=0

W
(c)
i {Xi, k+1 − x̂−

k+1}{Yi, k+1 − ŷ−
k+1}T (3.55)

The filter gain Kk+1 is computed by using Eq. (3.28) and the updated state

estimate x̂+
k+1 and covariance P+

k+1 can be obtained using Eqs. (3.24) and (3.25),

respectively. The recursive Bayesian relations of the predictor-corrector structure for

the unscented Kalman filter can be represented by the block diagram as shown in
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Table 3.2 Unscented Kalman Filter (UKF) Algorithm

Initialization:

x̂a
k = E[xa

k] = E[xT
k wT

k ]T ∈ ℜn+q

Pa
k = E

[

(xa
k − x̂a

k)(x
a
k − x̂a

k)
T
]

=







Pk Pxw
k

Pxw
k Qk







Sigma Points:

σa
k =

√

(n + q + λ)Pa
k

X a
i, k = ([ x̂a

k x̂a
k + σa

k x̂a
k − σa

k ])i

Propagation:

Xi, k+1 = f(X a
i, k, k)

x̂−
k+1 =

2(n+q)
∑

i=0

W
(m)
i Xi, k+1

P−
k+1 =

2(n+q)
∑

i=0

W
(c)
i {Xi, k+1 − x̂−

k+1}{Xi, k+1 − x̂−
k+1}T

Yi, k+1 = h(Xi, k+1, k + 1 )

ŷ−
k+1 =

2(n+q)
∑

i=0

W
(m)
i Yi, k+1

Pυυ
k+1 =

2(n+q)
∑

i=0

W
(c)
i {Yi, k+1 − ŷ−

k+1}{Yi, k+1 − ŷ−
k+1}T + Rk+1

P
xy
k+1 =

2(n+q)
∑

i=0

W
(c)
i {Xi, k+1 − x̂−

k+1}{Yi, k+1 − ŷ−
k+1}T

Update:

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1KT

k+1

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1



49

Fig. 3.4.

The UKF algorithm is summarized in Table 3.2. The formulation indicates that

correlated noise sources can be implemented efficiently without any modification of

the filter algorithms. For the special case in which both the process and measure-

ment noises are purely additive, the computational complexity of the UKF can be

reduced by adjusting the augmented state vector.52 In other words, the system state

need not be augmented with the random noise variables. If the observation noise

is introduced in a nonlinear fashion and is corrected with measurement noise, then

the augmented state vector is expanded to include the observational terms too. This

approach may more fully utilize the capacity of the unscented transformation, but it

will be more computationally expensive due to the extra calculations. Note that no

explicit calculation of the Jacobian and/or Hessian matrix is necessary to implement

this algorithm, and the formulation is ideally suited for parallel computation since

the propagations can be performed in parallel.

Several approaches have addressed the modifications of the EKF to enhance the

computational stability. The matrix square root can be implemented by using a

Cholesky factorization method and Joseph’s algorithm7 that would guarantee non-

negative covariance matrices. The square-root factorization method could be applied

to the unscented Kalman filter to increase the numerical stability as well, and the

algorithm is called the square-root UKF.52

3.4 Divided Difference Filter

In this section, the proposed algorithm, referred to as the divided difference filter

(DDF) proposed by Nørgaard,12 is an efficient extension of the Kalman Filter for

nonlinear systems. The DDF is described as a sigma point filter (SPF) in a unified



50

way where the filter linearizes the nonlinear dynamic and measurement functions

by using an interpolation formula through systematically chosen sigma points. The

linearization is based on polynomial approximations of the nonlinear transformations

that are obtained by Stirling’s interpolation formula, rather than the derivative-based

Taylor series approximation. Conceptually, the implementation principle resembles

that of the EKF, the implementation, however, is significantly simpler because it is

not necessary to formulate the Jacobian and/or Hessian matrices of partial derivatives

of the nonlinear dynamic and measurement equations. Thus, the new nonlinear state

filter, divided difference filter (DDF), can also replace the extended Kalman filter

(EKF) and its higher-order estimators in practical real-time applications that require

accurate estimation, but less computational cost.

Nørgaard developed the divided difference filters that works on general discrete-

time nonlinear models in which the noise sources are not assumed to be additive.

DDF1 is a divided difference filter derived by using the first-order approximation,

and DDF2 is a second-order divided difference filter. In this paper, however, we

further formulated the divided difference filters in terms of the innovation vector

approach and the additive process and measurement noise sources.

3.4.1 Linearization

First, an alternative linearization method called Sterling’s interpolation is presented

for the mean and covariance calculations. Consider a nonlinear function, y = h(x) ∈

ℜm with a random variable x ∈ ℜn with mean x̄ and covariance Pxx. If the function

h is analytic, then the multi-dimensional Taylor series expansion about the mean x̄

is described (notation by Julier50).

y ≃ h(x̄ + △x) = h(x) + D△xh +
1

2!
D2

△xh +
1

3!
D3

△xh + ... (3.56)
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where the operator Di
△xh evaluates the total derivative of h(x) and is described as

Di
△xh =

(

△x1
∂

∂x1

+ △x2
∂

∂x2

+ · · ·△xn
∂

∂xn

)i

h(x)

∣

∣

∣

∣

∣

x=x̄

(3.57)

The first and second order operators can be written as

D△xh =

(

n
∑

p=1

△xp
∂

∂xp

)

h(x)

∣

∣

∣

∣

∣

x=x̄

D2
△xh =

(

n
∑

p=1

n
∑

q=1

△xp△xq
∂

∂xp∂xq

)

h(x)

∣

∣

∣

∣

∣

x=x̄

(3.58)

The second order divided difference approximation of the function is formulated by

using the vector form of Stirling’s interpolation formula, which is similar to the ex-

tension of the Taylor series approximation12

y ≃ h(x) + D̃△xh +
1

2!
D̃2

△xh (3.59)

The divided difference operators D̃△x, D̃2
△x are given by

D̃△xh =
1

h

(

n
∑

p=1

△xpµpδp

)

h(x̄)

D̃2
△xh =

1

h2

(

n
∑

p=1

△x2
pδ

2
p +

n
∑

p=1

n
∑

q=1,p 6=q

△xp△xq(µpδp)(µqδq)

)

h(x̄)

(3.60)

where h is an interval of length, h =
√

3 is usually set for a Gaussian distribution,

and δp and µp denote the partial difference operator and the partial average operator

respectively

δph(x̄) = h

(

x̄ +
h

2
ep

)

− h

(

x̄ − h

2
ep

)

µph(x̄) =
1

2

{

h

(

x̄ +
h

2
ep

)

− h

(

x̄ − h

2
ep

)} (3.61)

and e is the pth unit vector along the coordinate axis in the space spanned by x.
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Eq. (3.59) is just a multi-dimensional interpolation formula. The following linear

transformation of x is introduced to illustrate how others can be derived

z = S−1
x x (3.62)

where Sx is the Cholesky factor of the covariance matrix Pxx. A new function h̃ is

defined by

h̃(z) ≡ h(Sxz) = h(x) (3.63)

The Taylor series approximation of h̃ is identical to that of h, while the interpolation

formula does not yield the same results for h̃ and h due to the following

2µpδph̃(z̄) = h̃(z̄ + hep) − h̃(z̄ − hep) = h(x̄ + sp) − h(x̄ − hsp) (3.64)

where sp denotes the pth column of Sx. Thus, D̃△xh̃ and D̃2
△xh̃ will be different

from D̃△zh̃ and D̃2
△zh̃. In the following section the calculations of the mean and

covariance, similar to the approach taken for the extended Kalman filter, are described

by applying the interpolation formula with the function h̃(z).

3.4.2 First-Order Approximation

The first-order approximation of the nonlinear system is obtained by using the divided

difference operator

y ≃ h̃(z̄) + D̃△zh̃

= h̃(z̄) +
1

h

(

n
∑

p=1

△zpµpδp

)

h̃(z̄)
(3.65)

It is assumed that △z is Gaussian with zero mean and the elements are uncorrelated.

This assumption leads to an expression for the expectation of h̃ given by the estimate

ȳ = E
{

h̃(z̄) + D̃△z̄h̃
}

= h̃(z̄) = h(x̄) (3.66)
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The covariance estimate is defined by

Pyy = E
{

(y − ȳ)(y − ȳ)T
}

(3.67)

and the covariance is written in terms of the divided difference operators as

Pyy = E

{

(

D̃△zh̃
) (

D̃△zh̃
)T

}

=
1

4h2

n
∑

p=1

[

h̃(z̄ + hep) − h̃(z̄ − hep)
] [

h̃(z̄ + hep) − h̃(z̄ − hep)
]T

(3.68)

It is assumed that the element of △z is independent with symmetric distribution and

the odd order moments are neglected. Applying Eq. (3.64) to Eq. (3.68) leads to the

covariance estimate12

Pyy =
1

4h2

n
∑

p=1

[h(x̄ + hsx,p) − h(x̄ − hsx,p)] [h(x̄ + hsx,p) − h(x̄ − hsx,p)]
T (3.69)

where sx,p is the pth column of the square Cholesky factor of the covariance matrix

Sx, and note that h̃ (z̄ ± hep) = h (x̄ ± hsx,p). Finally, the cross-covariance estimate,

Pyy can be derived in a similar way

Pxy = E
{

(x − x̄)(y − ȳ)T
}

=
1

2h

n
∑

p=1

sx,p

[

h̃(z̄ + hep) − h̃(z̄ − hep)
]T (3.70)

which also can be written by

Pxy =
1

2h

n
∑

p=1

sx,p [h (x̄ + hsx,p) − h(x̄ − hsx,p)]
T (3.71)

3.4.3 Second-Order Approximation

In a similar way the derivations of the mean and covariance can be obtained by

applying the second-order polynomial approximation of the nonlinear h̃ with the
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interpolation formula12

y ≃ h̃(z̄) + D̃△zh̃ +
1

2!
D̃2

△zh̃ (3.72)

and taking the expectation operator E {·} to Eq. (3.71) provides the following

ȳ =
h2 − n

h2
h̃(z̄) +

1

2h2

n
∑

p=1

[

h̃(z̄ + hep) + h̃(z̄ − hep)
]

(3.73)

and can be calculated as

ȳ =
h2 − n

h2
h(x̄) +

1

2h2

n
∑

p=1

[h(x̄ + hsx,p) + h(x̄ − hsx,p)] (3.74)

The covariance estimate is defined in Eq. (3.67), and after some manipulations the

derivation of the covariance estimate is obtained (see Ref. 12 for details)

Pyy = E

{

[

D̃△zh̃ +
1

2
D̃2

△zh̃

] [

D̃△zh̃ +
1

2
D̃2

△zh̃

]T
}

(3.75)

which leads to the following

Pyy =
1

4h2

n
∑

p=1

[h(x̄ + hsx,p) − h(x̄ − hsx,p)] [h(x̄ + hsx,p) − h(x̄ − hsx,p)]
T +

h2 − 1

4h2

n
∑

p=1

[h(x̄ + hsx,p) + h(x̄ − hsx,p) − 2h(x̄)] [h(x̄ + hsx,p) + h(x̄ − hsx,p) − 2h(x̄)]T

(3.76)

The cross-covariance estimate Pxy turns out to be the same as in the first-order

approximation since the higher-order moments are canceled out

Pxy = E

{

(Sx△z)

(

D̃△zh̃ +
1

2
D̃2

△zh̃

)T
}

= E

{

(Sx△z)
(

D̃△zh̃
)T

}

=
1

2h

n
∑

p=1

sx,p

[

h̃(z̄ + hep) − h̃(z̄ − hep)
]T

(3.77)
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which leads to the following

Pxy =
1

2h

n
∑

p=1

sx,p [h (x̄ + hsx,p) − h(x̄ − hsx,p)]
T (3.78)

After implementing the formulas for the mean and covariance estimates into the EKF

operation structure, the first-order and second-order filtering algorithms for the DDF1

and the DDF2 are derived respectively in terms of the innovation vector used in the

EKF and the UKF.

3.4.4 First-Order Divided Difference Filter

This subsection describes the divided difference filter algorithms based on the previ-

ously derived polynomial approximations for parameterizing the mean and covariance.

Nørgaard developed the divided difference filters based on general discrete-time non-

linear models in which there is no assumption of the additivity of the noise sources.12

In this paper, however, we further derive the divided difference filters with the addi-

tive process and measurement noises using the unified way of the innovation vector

approach.

The first-order divided difference filter (DDF1) is derived for general discrete-

time nonlinear equations

xk+1 = f(xk,wk, k)

yk = h(xk,vk, k)

(3.79)

where xk ∈ ℜn is the n × 1 state vector, yk ∈ ℜm is the m × 1 observation vector.

wk ∈ ℜq is the q× 1 state noise process vector and vk ∈ ℜr is the r× 1 measurement

noise vector. It is assumed that the noise vectors are uncorrelated white Gaussian
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processes with expected means and covariances

E {wk} = w̄, E
{

[wk − w̄k] [wj − w̄k]
T
}

= Qk

E {vk} = v̄, E
{

[vk − v̄k ] [vj − v̄k ]T
}

= Rk

(3.80)

The DDF1 is formulated by using the first-order approximation represented. Concep-

tually the filter takes the same predictor-corrector structure in the EKF. First, the

following square Cholesky factorizations are introduced

P0 = SxS
T
x , Q = SwST

w (3.81)

As for the state propagation step, the predicted state vector x̂−
k+1 is computed using

Eq. (3.22), which is the same as for the EKF as follows

x̂−
k+1 = f (x̂k, w̄, k) (3.82)

The predicted state covariance P−
k+1 is determined by the symmetric matrix product

P−
k+1 = S−

x (k + 1)
(

S−
x (k + 1)

)T
(3.83)

where S−
x (k + 1) =

[

S
(1)
xx̂ (k + 1) S

(1)
xw(k + 1)

]

and each term is given by

S
(1)
xx̂ (k + 1) =

1

2h
{fi (x̂k + hsx,j, w̄k) − fi (x̂k − hsx,j, w̄k)}

S(1)
xw(k + 1) =

1

2h
{fi (x̂k, w̄k + hsw,j) − fi (x̂k, w̄k − hsw,j)}

(3.84)

where sx,j is the column of Sx and sw,j is the column of Sw obtained from Eq. (3.81),

respectively. If the process noise vector is assumed to be simply additive, then the

computation of the state covariance reduces since the derivation of the linearization

matrix S
(1)
xx̂ (k + 1) about the process noise w is not required. Thus, the covariance
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P−
k+1 is computed as

P−
k+1 = S

(1)
xx̂ (k + 1)

(

S
(1)
xx̂ (k + 1)

)T

+ Qk+1 (3.85)

Next, the square Cholesky factorizations are performed

P−
k+1 = S−

xS−T
x , R = SvS

T
v (3.86)

The predicted observation vector ŷ−
k+1 and its predicted covariance are calculated in

a similar fashion

ŷ−
k+1 = h

(

x̂−
k+1, v̄k+1, k + 1

)

(3.87)

Pυυ
k+1 = Sυ(k + 1)ST

υ (k + 1) (3.88)

where

Sυ(k + 1) =
[

S
(1)
yx̂ (k + 1) S(1)

yv (k + 1)
]

(3.89)

S
(1)
yx̂ (k + 1) =

1

2h

{

hi

(

x̂k+1 + hs−x,j, v̄k+1

)

− hi

(

x̂−
k+1 − hs−x,j, v̄k+1

)}

S(1)
yv (k + 1) =

1

2h

{

hi

(

x̂−
k+1, v̄k+1 + hsv,j

)

− hi

(

x̂−
k+1, v̄k+1 − hsv,j

)}

(3.90)

where s−x,j is the column of S−
x and sv,j is the column of Sv. Note that if it is assumed

that the measurement noise vector is simply additive then the computation of the

innovation covariance becomes easier since the derivation of the linearization matrix

S
(1)
yv (k + 1) about the measurement noise v is not required. Thus, the innovation

covariance Pυυ
k+1 is computed as

Pυυ
k+1 = P

yy
k+1 + Rk+1 (3.91)

where

P
yy
k+1 = S

(1)
yx̂ (k + 1)

(

S
(1)
yx̂ (k + 1)

)T

(3.92)
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Fig. 3.5 Diagram of Predictor-Corrector Form of the Divided Difference Filter

Finally, the cross correlation matrix is determined by using

P
xy
k+1 = S−

x (k + 1)
(

S
(1)
yx̂ (k + 1)

)T

(3.93)

The recursive Bayesian relations of the predictor-corrector structure for the unscented

Kalman filter can be represented by the block diagram as shown in Fig. 3.5.

Note that the rectangular matrices S−
x (k + 1) and Sυ(k + 1) need to be trans-

formed into the square Cholesky factors. This can be achieved through House-holder

triangularization.54 Meanwhile, in the update process the filter gain Kk+1, the es-

timated state vector x̂+
k+1, and updated covariance P+

k+1 can be computed with the

same formulas used in the EKF (Table 3.1). The DDF1 algorithm is described in

Table 3.3.
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3.4.5 Second-Order Divided Difference Filter

The second-order divided difference filter (DDF2) is obtained by using the calculation

of the mean and covariance in the second-order polynomial approximation section.

First, the following additional matrices containing divided difference are defined

S
(2)
xx̂ (k + 1) =

√
γ − 1

2γ
{fi(x̂k + hsx,j, w̄k) + fi (x̂k − hsx,j, w̄k) − 2fi(x̂k, w̄k)}

S(2)
xw(k + 1) =

√
γ − 1

2γ
{fi (x̂k, w̄k + hsw,j) + fi (x̂k, w̄k − hsw,j) − 2fi(x̂k, w̄k)}

(3.94)

where sx,j is the jth column of Sx, sw,j is the jth column of Sw, and γ = h2 is a

constant parameter.

The predicted state equation is given by

x̂−
k+1 =

γ − (nx + nw)

γ
f (x̂k, w̄k)

+
1

2γ

nx
∑

p=1

{f(x̂k + hsx,p, w̄k) + f (x̂k − hsx,p, w̄k)}

+
1

2γ

nw
∑

p=1

{f (x̂k, w̄k + hsw,p) + f (x̂k, w̄k − hsw,p)}

(3.95)

where nx denotes the dimension of the state vector, and nw is the dimension of process

noise vector. It turned out that the prediction accuracy of the state estimate in the

DDF2 is identical to that of the UKF.12 A triangular Cholesky factor of the predicted

covariance is obtained by the House-holder transformation of the compound matrix

S−
x (k + 1) =

[

S
(1)
xx̂ (k + 1) S(1)

xw(k + 1) S
(2)
xx̂ (k + 1) S(2)

xw(k + 1)
]

(3.96)

The predicted covariance is computed

P−
k+1 = S−

x (k + 1)
(

S−
x (k + 1)

)T
(3.97)

Theoretically, it is proved that the accuracy of the covariance prediction in the DDF2
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Table 3.3 First-Order Divided Difference Filter (DDF) Algorithm

Initialization:

x̂k = E[xk], Pk = E
[

(xk − x̂k) (xk − x̂k)
T
]

Square Cholesky Factorizations:

Pk = SxS
T
x , Q = SwST

w, R = SvS
T
v

S
(1)
xx̂ (k + 1) =

1

2h
{fi (x̂k + hsx,j, w̄k) − fi (x̂k − hsx,j, w̄k)}

S(1)
xw(k + 1) =

1

2h
{fi (x̂k, w̄k + hsw,j) − fi (x̂k, w̄k − hsw,j)}

S−
x (k + 1) =

[

S
(1)
xx̂ (k + 1) S(1)

xw(k + 1)
]

State and Covariance Propagation:

x̂−
k+1 = f (x̂k, w̄, k)

P−
k+1 = S−

x (k + 1)
(

S−
x (k + 1)

)T

S
(1)
yx̂ (k + 1) =

1

2h

{

hi

(

x̂−
k+1 + hs−x,j, v̄k+1

)

− hi

(

x̂−
k+1 − hs−x,j, v̄k+1

)}

S(1)
yv (k + 1) =

1

2h

{

hi

(

x̂−
k+1, v̄k+1 + hsv,j

)

− hi

(

x̂−
k+1, v̄k+1 − hsv,j

)}

Sυ(k + 1) =
[

S
(1)
yx̂ (k + 1) S(1)

yv (k + 1)
]

Observation and Innovation Covariance Propagation:

ŷ−
k+1 = h

(

x̂−
k+1, v̄k+1, k + 1

)

Pυυ
k+1 = Sυ(k + 1)ST

υ (k + 1)

P
xy
k+1 = S−

x (k + 1)
(

S
(1)
yx̂ (k + 1)

)T

Update:
Kk+1 = P

xy
k+1(P

υυ
k+1)

−1

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1KT

k+1

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1
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is close to that of the UKF (see Ref. 12 for details).

Next, the predicted observation vector ŷ−
k+1 and its predicted covariance are

calculated in a similar fashion

ŷ−
k+1 =

γ − (nx + nv)

γ
h

(

x̂−
k+1, v̄k+1

)

+
1

2γ

nx
∑

p=1

{

h(x̂−
k+1 + hs−x,p, v̄k+1) + h

(

x̂−
k+1 − hs−x,p, v̄k+1

)}

+
1

2γ

nv
∑

p=1

{

h
(

x̂−
k+1, v̄k+1 + hsv,p

)

+ h
(

x̂−
k+1, v̄k+1 − hsv,p

)}

(3.98)

where nv is the dimension of the measurement noise vector, s−x,p is the pth column of

S−
x , and sv,p is the pth column of Sv. The innovation covariance matrix is given by

Pυυ
k+1 = Sυ(k + 1)ST

υ (k + 1) (3.99)

where Sυ(k + 1) is the compound matrix

Sυ(k + 1) =
[

S
(1)
xx̂ (k + 1) S(1)

xw(k + 1) S
(2)
xx̂ (k + 1) S(2)

xw(k + 1)
]

(3.100)

S
(2)
yx̂ (k + 1) =

√
γ − 1

2γ
{hi(x̂

−
k+1 + hs−x,j, v̄k+1) + hi

(

x̂−
k+1 − hs−x,j, v̄k+1

)

− 2hi(x̂
−
k+1, v̄k+1)}

S(2)
yv (k + 1) =

√
γ − 1

2γ
{hi

(

x̂−
k+1, v̄k+1 + hsv,j

)

+ hi

(

x̂−
k+1, v̄k+1 − hsv,j

)

− 2hi(x̂
−
k+1, v̄k+1)}

(3.101)

The cross correlation matrix is the same as for the DDF1

P
xy
k+1 = S−

x (k + 1)
(

S
(1)
yx̂ (k + 1)

)T

(3.102)

The DDF2 algorithm can also be described in the unified way used in Table 3.3 by

replacing the first-order prediction formulas for the state and covariance with the

second-order ones.
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3.5 Finite Difference Filter

It was noted previously that in principle an optimal nonlinear filtering (NF) algorithm

for the state estimation is achieved when the posterior conditional density function

is obtained from the recursive Bayesian relations, the predictor and the corrector

equations. For example, for discrete-discrete system dynamics and measurements,

the Chapman-Kolmogorov equation1 is used as a predictor for propagating the state

probability density between measurements, and the powerful Bayes’ formula as a cor-

rector calculates the posterior density from the prior density and new measurements.4

However, an optimal filtering algorithm is intractable because in general the state

probability density function (PDF) involves infinite dimensional integrations. Thus

approximations to the optimal nonlinear filter must be adopted. In this section, a

direct numerical approximation to the optimal nonlinear filter is investigated. A di-

rect numerical approximation to the optimal nonlinear filter is to calculate the state

conditional probability density by applying fast solvers to the Kushner-Stratonovich

(or Zakai) equation in the case of continuous-continuous system models32–34,55 or to

the Fokker-Planck equation in continuous-discrete system models.35–38 Then, quan-

tities of interest such as the minimum mean square error (MMSE), the covariance,

or the maximum likelihood state estimate can be constructed from the approximated

posterior density.

When system dynamics are governed by a stochastic differential equation, the

time evolution of the state probability density satisfies the Fokker-Planck equation,

which is discretized on a grid to model nonlinearities such as non-Gaussian and mul-

timodal behavior.37 To model this time evolution numerically, the density must be

truncated so that it can be modeled using a finite number of degrees of freedom. Con-

ceptually, there are many ways56,57 to do this, such as projecting the density onto a
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collection of functions with tractable time evolution, convolution methods, or wavelet

methods.

This chapter describes computationally efficient approximate finite dimensional

nonlinear filter for the state estimation of nonlinear systems with continuous-time

state dynamics and discrete-time measurements. The Fokker-Planck equation can

be solved accurately and efficiently using finite difference schemes.13,14 For discrete

time measurement updates Bayes’ formula can be applied recursively to combine

measurement likelihoods derived from physical sensor models with the target state

probability density. Measurements are used as soon as they become available to yield

a real-time algorithm.

Finite difference methods can be broadly categorized as so called explicit or

implicit schemes. One feature of explicit methods is that they can be easily solved

with computational complexity that is proportional to the size of the grid. Explicit

methods are simpler to implement than implicit schemes, but they suffer from the

drawbacks that they are less accurate and can have poor numerical stability.58 On

the other hand, implicit schemes can lead to fast and accurate solutions with no

greater effort than is required for an explicit solution scheme. In general, in implicit

methods the inversion step can be complicated, but the inversion problem encountered

in NF can be solved by using a type of alternative direction implicit scheme called

the Dyakonov method.58 To illustrate the broad applicability of this method, it is

applied to a target tracking problem.
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3.5.1 Exact Nonlinear Filter

3.5.1.1 Fokker-Planck Equation

The starting point for modeling time evolution in NLF is exactly the same as it is

for Kalman filtering. The system dynamic model is represented by the Ito stochastic

differential equation.1 The Ito equation characterizes how target states and their

probability densities evolve in time due to deterministic and random target motion

effects. For the time-dependent target state xt, the continuous-time Ito stochastic

equation is described by

dxt = f (xt, t) dt + G (xt, t) dβt, t ≥ t0 (3.103)

where xt ∈ ℜn×1 represents the state vector of the system, f ∈ ℜn×1 is a nonlinear

vector valued function, G ∈ ℜn×r is a real matrix, and dβt ∈ ℜr×1 is a vector

Brownian motion process with E
{

dβtdβT
t

}

= Q (t) dt. Note that in the Ito equation,

f characterizes the deterministic part of the dynamics while G represents the part of

the dynamics modeled as random. Suppose noisy measurements are taken from the

discrete-time nonlinear equation given by

yk = h (xtk ,vk, k) (3.104)

where vk ∈ ℜm×1 is a zero-mean white Gaussian noise with covariance matrix Rk. De-

fine the collection of measurements taken up to current time tk as Yk = {y1, y2, . . . , yk}

Because the probability density function (PDF) summarizes all the statistical

information about the state conditioned on the measurement Yk, NLF seeks the en-

tire probability density function. It turns out that under fairly general assumptions1

that the prior density for the system exists and is continuously differentiable with

respect to time tk and the state vector xtk , the time evolution of the conditional den-
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sity p (xtk |Yk−1) satisfies the Fokker-Planck (FP) equation or Kolmogorov’s forward

equation

∂

∂t
p (xtk |Yk−1) = L (p (xtk |Yk−1)) (3.105)

where L is the forward diffusion operator defined by

L (p) ≡ −
n

∑

i=1

∂ [ fip ]

∂xi

+
1

2

n
∑

i=1

n
∑

j=1

∂2
[

(

GQGT
)

ij
p
]

∂xi∂xj

(3.106)

and the initial condition is given by p
(

xtk−1
|Yk−1

)

. The first-order deterministic term

is called the drift or advective term and the second-order derivative term is called

diffusion. For this reason, FPEs are sometimes referred to as advective-diffusion

equations.1 Note that for discrete-time system dynamics and measurement equations

the Fokker-Planck equation is replaced with the Chapman-Kolmogorov equation ex-

plained in Eq. (1.6) to propagate the state probability density function in time. On

the other hand, for continuous-time system dynamics with continuous measurements

the time evolution of the probability density function associated with the state is

given by the solution to the Kushner-Stratonovich equation.33,34

The Ito stochastic differential equation and the FPE applied directly to densities

capture precisely the same information about the system motion, thus the solution to

the FPE is the tool used for NLF calculations. The Markov nature of the Ito equation

is reflected in the fact that the FPE is first order in time. Thus, all information about

the state xtk conditioned on the measurement Yk is completely described in terms of

the instantaneous conditional PDF p (xtk |Yk).

3.5.1.2 Measurement Update

The target probability density depends on measurements through the likelihood

p (yk|xtk). This is a physical model for the probability to obtain measurement yk
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given that the state is xtk . When the measurements are conditionally independent

and depend only on the instantaneous state of the target, then given a new observa-

tion yk, the measurement updated conditional density p (xtk |yk) is obtained from the

predicted density p (xtk |Yk−1) using Bayes’ formula1

p (xtk |Yk) =
p (yk|xtk) p (xtk |Yk−1)

∫

p (yk|xtk) p (xtk |Yk−1) dxtk

(3.107)

Equations (3.105) and (3.107) represent the predictor and corrector equations for

the exact optimal nonlinear filtering. The FPE in Eq. (3.105) is used to propagate

the density function, while the measurement update formula in Eq. (3.107) is used to

update the information about the state. Therefore, the exact optimal nonlinear filter-

ing algorithm consists of a partial differential equation (the Fokker-Planck equation)

that describes the time evolution of the conditional density between measurements,

and a difference equation (Bayes’ formula) that describes how the information of the

density is updated by new measurements.

3.5.2 Approximate Nonlinear Filter

General closed form solutions of the predictor-corrector relations to optimal nonlinear

filtering are intractable, thus approximate numerical methods must be adopted. Ap-

proximate nonlinear filtering methods have been proposed by many researchers14,37,38

to obtain the time evolution of the conditional density. In this section an efficient

finite difference method13,14 that is used to solve the Fokker-Planck equation whose

solution is the conditional density between measurements is investigated. For concep-

tual illustration a simple target tracking system model is considered to build intuition

about the finite difference filtering algorithm.

Consider vehicle motion in a plane with nearly coordinated turns (CT) for a
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higher dimensional model of FPE. The target state vector x ∈ ℜ5×1 is given by

x = [x, ẋ, y, ẏ, ω]T (3.108)

The Ito stochastic differential equation is described by
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where ω is the rotation rate about the vertical axis, and the covariance matrix Q(t)

from E
{

dβtdβT
t

}

= Q(t)dt is
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qẋ 0 0

0 qẏ 0
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The nonlinear system function f(x, t) from the Ito equation is written by
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and the random component G of the model is driven by a 3D Brownian process noise
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Then, the resulting FPE is expressed by

∂p

∂t
= −ẋ

∂p

∂x
− ẏ

∂p

∂y
+ ωẏ

∂p

∂ẋ
− ωẋ

∂p

∂ẏ
+

qẋ

2

∂2p

∂ẋ2
+

qẏ

2

∂2p

∂ẏ2
+

qω

2

∂2p

∂ω2
(3.113)

The first four terms are a collection of one-way wave equations propagating the density

down the x, y, ẋ, and ẏ axes with velocities ẋ, ẏ, −ωẏ, and ωẋ, respectively. The

remaining three terms generate diffusions along the ẋ, ẏ, and ω axes. There is no

diffusion along the x and y axes.

3.5.2.1 Prediction Equation

The following algorithm is based on the finite difference numerical method proposed

by Kastella.14 For a finite difference filtering (FDF) algorithm, the alternating di-

rection implicit (ADI) scheme58 is used to solve the Fokker-Planck equation (FPE).

Space and time are discretized on a uniform grid with time resolution ∆t and spatial

resolution ∆x = [∆x, ∆ẋ, ∆y, ∆ẏ, ∆ω]T . Then, the FPE can be expressed by

∂p

∂t
=

∑

i

Aip (3.114)
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where p(x, t) is a solution to the FPE subject to an appropriate boundary condition,

and the operators Ai are defined by

A1 = −ẋ
∂

∂x
(3.115)

A2 =
qẋ

2

∂2

∂ẋ2
+ ωẏ

∂

∂ẋ
(3.116)

A3 = −ẏ
∂

∂y
(3.117)

A4 =
qẏ

2

∂2

∂ẏ2
− ωẏ

∂

∂ẏ
(3.118)

A5 =
qω

2

∂2

∂ω2
(3.119)

Dyakonov Scheme: The Crank-Nicholson scheme58 is used to approximate the time

derivative for the FPE, which is obtained by using a Taylor series in time for p (x, tk + ∆t/2)

leading to

pk+1 − pk

∆t
=

1

2

∑

i

Aip
k+1 +

1

2

∑

i

Aip
k + O(∆t2) (3.120)

where O(∆t2) represents remainder terms from the truncation of the Taylor series

that are proportional to (∆t2). This can be rearranged to yield

(

1 − ∆t

2

∑

i

Ai

)

pk+1 =

(

1 +
∆t

2

∑

i

Ai

)

pk + O(∆t3) (3.121)

Direct inversion of this expression is computationally expensive, thus an equivalent

expression that is easy to invert is obtained by using the operator product identity

∏

i

(

1 ± ∆t

2
Ai

)

= 1 ± ∆t

2

∑

i

Ai +

(

∆t

2

)2
∑

i<j

AiAj + O(∆t3) (3.122)

and the fact pk+1 − pk = O(∆t) yields

∏

i

(

1 − ∆t

2
Ai

)

pk+1 =
∏

i

(

1 +
∆t

2
Ai

)

pk + O(∆t3) (3.123)
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which plays a key role in the finite difference method.14 It is much easier to solve

numerically, and no additional approximation error on the grid is incurred in this

factorization.

Now, consider space discretization Ai∆x of the operator Ai

∏

i

(

1 − ∆t

2
Ai∆x

)

pk+1 =
∏

i

(

1 +
∆t

2
Ai∆x

)

pk + O(∆t3) + O(∆x2∆t) (3.124)

If P denotes an approximation to the density p defined on the grid, it leads to

∏

i

(

1 − ∆t

2
Ai∆x

)

Pk+1 =
∏

i

(

1 +
∆t

2
Ai∆x

)

Pk (3.125)

To propagate the density the above equation is solved for Pk+1. Let NA denote the

number of operators Ai in the FPE (for example, NA = 5, for CT model). Then the

Dyakonov scheme is expressed by14

P̃k =
∏

i

(

1 +
∆t

2
Ai∆x

)

Pk (3.126)

(

1 − ∆t

2
Ai∆x

)

P̃k+i/NA = P̃k+(i−1)/NA (3.127)

Pk+1 = P̃k+1 (3.128)

where P̃k+i/NA is an intermediate result, and i = 1, . . . , NA. The key idea in the

Dyakonov scheme comes from the fact that each factor (1 − ∆t/2Ai∆x) is easily in-

verted separately, simplifying the calculation.

The operators Ai is discretized, and the following abbreviate is defined

P (k∆t, x ± ∆x, ẋ, y, ẏ, ω) ≡ Px±∆x (3.129)

Similar definitions for other terms Pẋ±∆ẋ, . . . ,Pω±∆ω are defined in the same way.
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Using central difference for the spatial derivatives in the CT model leads to

A1∆xP = − ẋ

2∆x
(Px+∆x − Px−∆x) (3.130)

A2∆xP = − qẋ

2∆ẋ2
(Pẋ+∆ẋ − 2P + Pẋ−∆ẋ) +

ωẏ

2∆ẋ
(Pẋ+∆ẋ − Pẋ−∆ẋ) (3.131)

A3∆xP = − ẏ

2∆y
(Py+∆y − Py−∆y) (3.132)

A4∆xP =
qẏ

2∆ẏ2
(Pẏ+∆ẏ − 2P + Pẏ−∆ẏ) −

ωẋ

2∆ẏ
(Pẏ+∆ẏ − Pẏ−∆ẏ) (3.133)

A5∆xP = − qω

2∆ω2
(Pω+∆ω − 2P + Pω−∆ω) (3.134)

Thomas Algorithm: All that remains to implement the Dyakonov method is to

solve the intermediate steps in Eq. (3.125) for P̃k+i/NA in terms of P̃k+(i−1)/NA . For

the operators in Eqs. (3.130)∼(3.134), each of the intermediate step in Eq. (3.125) is

a tridiagonal system which can be solved using Thomas’s algorithm.58 Each of the

intermediate step in Eq. (3.125) is a collection of 1-dimensional equations of the form

ajPj−1 + bjPj + cjPj+1 = dj, j = 1, . . . ,m − 1 (3.135)

where the Pj are unknowns, and aj, bj, cj, and dj are known, and boundary conditions

are P0 = β0, Pm = βm. The index j runs over one of x, ẋ, . . . , w for each value of i

in Eq. (3.125). For example, in the CV model with i = 1, the solution of Eq. (3.125)

involves Ai∆x on the left-hand side so i corresponds to the x-index. For i = 2 we

have Ai∆x and i corresponds to the ẋ-index. The correspondence is similar for the

CT model and Eq. (3.135) can be solve using

Pj = rj+1Pj+1 + sj, j = 0, . . . ,m − 1 (3.136)
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where

rj+1 = − (ajPj + bj)
−1 cj (3.137)

sj+1 = − (ajPj + bj)
−1 (dj − ajrj) (3.138)

which reduces to P0 = r1 + s1 and P0 = β0. These can be satisfied with r1 = 0 and

s1 = β0. With these initial values, Eq. (3.138) can be used to obtain the remaining rj

and sj, for j = 2, . . . ,m. Then Eq. (3.136) is used to find Pj, starting with Pm = βm.

The Dyakonov scheme with Thomas’s algorithm is utilized for solving the tridiagonal

system.

3.5.2.2 Measurement Update

The measurement update equation in Bayes’ relation in Eq. (3.107) is solved by

using both the predicted density p (xtk |Yk−1) and the measurement likelihood den-

sity p (yk|xtk). The predicted conditional density p (xtk |Yk−1) is the solution to the

Fokker-Planck equation, and in this chapter the ADI finite differece numerical scheme

is used to solve the partial differential equation. Suppose measurements are taken

from the discrete-time nonlinear equation given in Eq. (3.104), then the vector-valued

Gaussian measurement likelihood p (yk|xtk) ∈ ℜm×1 is expressed by

p (yk|xtk) =
1

(2π)m/2 |R|1/2
exp

{

−1

2
[yk − h (xtk , k)]T R−1 [yk − h (xtk , k)]

}

(3.139)

Note that Eqs. (3.105) and (3.107) form the recursive predictor and corrector relations

of the probability density evolution, respectively.
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3.5.2.3 Finite Difference Nonlinear Filter

The finite-difference nonlinear filtering algorithm explained above can be represented

in the block diagram form as shown in Fig. 3.6. In the diagram, the predicted density

Bayes’ Update
Formula

( )ˆ ,k kx P

( )|k kp x Y

Measurement
( )|k kp Y x

System
Dynamcis

Updated
Conditional pdf

( )1 1|k kp − −x Y

Fokker-Planck
Solver

( )1|k kp −x Y

1k k= +

Estimates

Fig. 3.6 Diagram of Finite-Difference Nonlinear Filtering

in the propagation step is obtained by using the ADI finite difference scheme, and the

posterior density is computed by applying the Bayes’ formula. After the conditional

probability p (xtk |Yk) is computed, the minimum mean square error state estimate

x̂tk is computed by taking the expected value of xtk

x̂tk =

∫

xtkp (xtk |Yk)dxtk (3.140)

while the covariance is computed by

Ptk =

∫

(xtk − x̂tk) (xtk − x̂tk)
T p (xtk |Yk)dxtk (3.141)
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CHAPTER IV

PARTICLE FILTERING

4.1 Introduction

For nonlinear dynamic systems, the approximated Gaussian filters introduced in the

previous chapters provide an efficient algorithm for on-line filtering. For example, the

Gaussian nonlinear filters include the extended Kalman filter,1,7 the iterated extended

Kalman filter (IEKF),7 the Gaussian mixture filter (GMF),3 the sigma point filters

(SPFs),8,11,12 and the finite difference filter.14 These methods are based on local

linearization of the nonlinear system equations.

Since most of dynamical systems in all fields of applications such as autonomous

navigation systems are nonlinear and non-Gaussian, a significant challenge to engi-

neers and scientists is to find efficient methods for on-line, real-time estimation and

prediction of the dynamical systems from the sequential observations. To date, how-

ever, there has not been a universally effective algorithm for dealing with nonlinear

and non-Gaussian system. Recently, researchers have begun to pay attention to a

new class of filtering methods based on the sequential Monte Carlo (SMC) approach,

which is a simulation-based filter.17 Sequential Monte Carlo can be loosely defined

as a set of methods that use a Monte Carlo simulation scheme in order to solve on-

line estimation and prediction problems. More precisely, the sequential Monte Carlo

technique achieves the filtering by recursively generating a set of weighted samples of

the state variables or parameters.

Basic sequential Monte Carlo methods had been introduced in the physics, statis-

tics, and automatic control literature.59 However, all the earlier SMC methods60–62

implemented in the literature is based on only plain sequential importance sampling
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(SIS) step, which forms the basis for most sequential Monte Carlo filters. The major

contribution to this class of algorithm was made to be practical use by implement-

ing a resampling stage.15 In treating dynamical systems, the sequential Monte Carlo

method utilizes discrete samples to represent a complicated probability distribution

and use importance sampling, and weighted resampling to complete the on-line filter-

ing.15 After the appearance of the sequential Monte Carlo method with the resam-

pling for nonlinear and non-Gaussian state-space models have caught attentions in

vary different research fields. The sequential Monte Carlo approach is known as the

bootstrap filtering,15 the condensation algorithm,19 and the particle filtering.20 The

flexible nature of the Monte Carlo simulations results in these methods often being

more adaptive to some features of the target system.21 There have also been many re-

cent modifications and improvements on the method.63–65 As efficient variants on the

particle filter, hybrid particle filters that combine the particle filter with the standard

nonlinear filters such as the EKF and the SPFs are presented.

In this dissertation, various particle filters are investigated within a unified frame-

work of the sequential importance sampling algorithm.

4.2 Optimal Recursive Bayesian Estimation

In many filtering applications the objective is to estimate the posterior probability

density for the states by making some observations. Consider the nonlinear state

space model

xk+1 = f (xk) + Γkwk (4.1)

yk = h (xk) + vk (4.2)
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where xk ∈ ℜn×1 is the state vector, yk ∈ ℜm×1 is the observation vector, wk ∈ ℜq×1

and vk ∈ ℜr×1 are the process and measurement noises respectively. Let Xk =

(x0, x1, . . . , xk) and Yk = (y0, y1, . . . , yk) be the stacked vectors of states and

observations up to time step k. Assume that wk and vk are both independent and

have known density distributions. In this case the state of the system is a Markov

process16

p(Xk) = p(x0)
k

∏

i=1

p(xi|xi−1) (4.3)

and the measurements Yk are conditionally independent given the states Xk

p (Yk|Xk) =
k

∏

i=0

p(yi|xi) (4.4)

Obviously the size of these expressions grows as time evolves if we were to calculate

everything from scratch. To be able to estimate the a posterior in real time, we need

a way to use the estimation that we have at time k to calculate the estimation at

time k + 1. The following recursive equations are used22

p(xk+1|Yk ) =

∫

p(xk+1|xk)p(xk|Yk)dxk (4.5)

p(xk+1|Yk+1) =
p(yk+1|xk+1)p(xk+1|Yk)

p(yk+1|Yk)
(4.6)

The initial a posterior density p (x0|y0) is obtained by

p(x0|y0) =
p(y0|x0)p(x0)

p(y0)
(4.7)

The first equation is called the time update equation (or prediction) and the second is

called the measurement update equation. The likelihood probability density p (yk|xk)

in Eq. (4.6) is computed by the a priori measurement noise density p (vk) and the

measurement equation. Similarly, the state transition density p (xk+1|xk) in Eq. (4.5)

is calculated by using the a priori process noise density p (wk) as well as the dynamic
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equation.

For most applications, closed-form solutions for p (xk|Yk) are intractable due

to the integration in Eq. (4.5). Depending on the characteristics of the system,

there exist different methods of estimating p (xk|Yk). In a broad sense there are

three different cases of filtering, namely linear Gaussian, nonlinear Gaussian, and

nonlinear/Non-Gaussian. First, for a linear-Gaussian case where the system dynamic

and measurement equations are linear, and the a priori initial state and the noise

sequences are Gaussian, the recursive Bayesian estimation in Eqs. (4.5) and (4.6)

leads to the Kalman filter. Second, if the system equations are nonlinear with the

assumption of Gaussian distributions, the Gaussian filters provide the sub-optimal

recursive algorithm. Finally, for nonlinear and non-Gaussian problems, the optimal

Bayesian equations are solved by sequential Monte-Carlo methods. For intuitive un-

derstanding, loosely defined concepts of the particle filter and other filters (EKF,

UKF, DDF) are illustrated in Fig. 4.1, where the sampling difference between the un-

scented filtering and the particle filtering is depicted. In a broad sense, the unscented

Kalman filter belongs to the particle filters in that it performs sequential estimation

based on a set of sampled particles drawn deterministically from probability densi-

ties. The difference is that the sigma point filters (UKF, DDF) make a Gaussian

assumption to simplify the recursive Bayesian estimation whereas the particle filter

performs estimation based on the form of general nonlinear models and non-Gaussian

distributions.

4.3 Particle Filtering

Sequential Monte Carlo techniques achieve the filtering by recursively generating a

set of weighted samples of the state variables. Each sampled particle has some kind
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Algorithms; EKF (Top), UKF (Middle), and PF (Bottom)
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of weight indicating how well its states agree to the measurements. The samples and

their corresponding weights are combined to form an estimate of the desired posterior

distributions. For every time step the samples are more and more likely to drift away

from the real state, meaning that most of the weights will tend to zero. To prevent

this from happening, the samples with smaller weights will die and those with larger

weights will multiply in some kind of evolution process. Therefore, the implemen-

tation of the particle filter consists of three important operations; 1) generation of

particles (sampling step), 2) computation of the particle weights (importance step),

and 3) resampling. The fist two steps form the sequential importance sampling (SIS)

algorithm. The SIS filter with the resampling is terms as the generic particle filter or

SIS-R algorithm.

The theory of particle filtering is represented in a very brief manner without

proofs. More details and an investigation of particle filters are available in Ref. 47.

4.3.1 Sequential Importance Sampling

Consider the discrete-time nonlinear model

xk+1 = f (xk, k) + wk (4.8)

yk = h (xk, k) + vk (4.9)

where the process and measurement noises are assumed independent with known

densities

wk ∼ pwk
(·) , vk ∼ pvk

(·) (4.10)
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For the case where the state of the system is a Markov process, any state distribution

functions can be expressed by

p (Xk) = p(x0)
k

∏

i=1

p(xi|xi−1) (4.11)

where the prior distribution of the state at time k = 0 is given by p(x0). The

observations are conditionally independent given the states

p (Yk|Xk) =
k

∏

i=0

p(yi|xi) (4.12)

Since the model is neither linear nor Gaussian, the posterior cannot be represented

in any other way than the total probability density function. Recursive Monte Carlo

simulations give an estimate of p (Xk|Yk). Let us consider the recursive equation

p(Xk|Yk) =
p(yk|Xk,Yk−1)p(xk|Xk−1,Yk−1)

p(yk|Yk−1)
p(Xk−1|Yk−1) (4.13)

=
p(yk|xk)p(xk|xk−1)

p(yk|Yk−1)
p(Xk−1|Yk−1) (4.14)

where the last equality follows from the fact that the system is a Markov process as

stated above.

The particle filter estimates the density function as a discretized version by uti-

lizing a large number of samples. Let {X(i)
k }N

i=1 be samples drawn from the posterior.

Then the expression for the estimate of the posterior is

p̂ (Xk|Yk) =
1

N

N
∑

i=1

δ
(

Xk − X
(i)
k

)

(4.15)

where δ (Xk) is the Dirac delta function. In this case all samples are equally correct as

samples from the posterior, since they are drawn from the posterior itself. Therefore,

their weights in the sum are equal and can be set to one. In order to satisfy the law

of total probability, the estimate has to be multiplied with 1/N .



81

This estimate can be used to calculate different moments of the posterior, for

example the expectation and covariance, according to

x̂ = E {x} =

∫

xp(x)dx

=

∫

1

N

N
∑

i=1

δ
(

x − x(i)
)

xdx

=
1

N

N
∑

i=1

x(i) (4.16)

P ≈
∫

1

N

N
∑

i=1

δ
(

x − x(i)
)

(x − x̂) (x − x̂)T dx

=
1

N

N
∑

i=1

(

x(i) − x̂
) (

x(i) − x̂
)T

(4.17)

Now, the samples cannot be drawn from the posterior since it is unknown. In-

stead they are drawn from a known probability density q (Xk|Yk). Bayes’s rule pro-

vides

q (Xk|Yk) = q (xk|Xk−1,Yk) q (Xk−1|Yk) (4.18)

= q (xk|Xk−1,Yk) q (Xk−1|Yk−1) (4.19)

where the last equality is the result from the restriction that the states at time k

and older are independent of the measurement at time k − 1. This means that we

can draw {x(i)
k }N

i=1 from q (xk|Xk−1,Yk) and form the set {X(i)
k = {X(i)

k−1,x
(i)
k }}N

i=1

without adjusting {X(i)
k−1}N

i=1.

To use these samples to estimate the posterior each sample is associated with

the so called importance weight

w
(i)
k =

p
(

X
(i)
k |Yk

)

q
(

X
(i)
k |Yk

) = ck

p
(

yk|x(i)
k

)

p
(

x
(i)
k |x(i)

k−1

)

q
(

x
(i)
k |X(i)

k−1,Yk

) w
(i)
k−1 (4.20)
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where ck = p (Yk−1) /p (Yk). Only the relative relationship between the weights is

important and ck can therefore be neglected. This gives the weight equation

w
(i)
k = w

(i)
k−1

p
(

yk|x(i)
k

)

p
(

x
(i)
k |x(i)

k−1

)

q
(

x
(i)
k |X(i)

k−1,Yk

) (4.21)

A simple but efficient choice is to draw from the state propagation density

q (xk|Xk−1,Yk) = q (xk|xk−1) (4.22)

Then, the corresponding weight update equation becomes

w
(i)
k = w

(i)
k−1 p

(

yk|x(i)
k

)

(4.23)

With the samples drawn from q (xk|Xk−1,Yk) along with the importance weights

the new estimate of the posterior p (Xk|Yk) is given by

p̂ (Xk|Yk) =
N

∑

i=1

w̄
(i)
k δ

(

Xk − X
(i)
k

)

(4.24)

where

w̄
(i)
k =

w
(i)
k

N
∑

j=1

w
(j)
k

(4.25)

Then, the estimated mean value x̂+
k and covariance P+

k are computed in terms of the

current state xk and the importance weights w̄
(i)
k

x̂+
k = E {xk} =

N
∑

i=1

w̄
(i)
k x

(i)
k (4.26)

P+
k = E

{

[xk − E {xk}] [xk − E {xk}]T
}

(4.27)

≈
N

∑

i=1

w̄
(i)
k

(

x
(i)
k − x̂+

k

) (

x
(i)
k − x̂+

k

)T

(4.28)
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4.3.2 Resampling

As time evolves the samples tend to spread and the weights will be almost zero

for most of the samples,20,22 which means that they do not contribute much to the

estimation of the posterior. It also means that the estimate in the interesting region is

crude, since there are not many samples contributing. This phenomenon is known as

the degeneracy problem in the SIS particle filter.21 In the next sections we investigates

methods to check when this is happening, and how to solve the problem.

4.3.2.1 Effective Sample Size

Effective sample size is a way to measure how well the samples are concentrated in the

interesting region.66 By comparing the covariance of a set of samples drawn from the

posterior and the covariance obtained through the use of importance sampling we will

get a measurement of the sampling efficiency. This in turn will give an expression for

the effective sample size. It is shown that the effective sample size can be estimated

by67,68

N̂eff ≈ 1
∑

i

(

w̄
(i)
k

)2 (4.29)

If all the weights are equal, the effective sample size will be N . One way to decide

when the samples have spread far enough is to use a lower threshold for the effective

sample size. Later Nth = 2N/3 will be used as the threshold.

When the samples move away from the real state their weights decrease, called

sample degeneracy.21 This in turn will decrease the effective sample size, which even-

tually will pass the threshold. When this happens we draw N new samples from

{X(i)
k } with replacement, where the probability of choosing X

(i)
k is w̄

(i)
k . The new set

of samples are drawn from the estimate of the posterior and all the weights should

therefore be set to 1/N . By doing this, the samples with high weights will be multi-
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plied, which is described in Fig. 4.2. In this way the cloud of samples is concentrated

in the interesting region.

There is a price to pay for this solution. In other words, the samples are no

longer independent because some of them will be copies of the same sample. As long

as we do not resample to often, this problem turns out to be of less importance. In

this thesis a minimum number of time steps between resampling is used.

4.3.2.2 Resampling Algorithms

One of the methods that can mitigate the effects of the sample degeneracy is to

use resampling whenever a significant degeneracy is observed.21 The basic idea of

resampling is to eliminate particles with small weights and to concentrate on particle

with large weights. In this section, three resampling algorithms are described briefly.

Simple Random Resampling A direct approach to implementing the resam-

pling would consist of generating N independent and identically distributed (i.i.d.)

random variables from the uniform distribution, sorting them in ascending order and
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comparing them with the cumulative sum of normalized weights.17,67 First, calculate

the thresholds by doing a cumulative sum of the normalized weights, in any order.

Then, for each index i

1. Draw a uniform random number ui between 0 and 1, ui = U [0, 1]

2. Use a search algorithm (binary search) to locate the position of ui within the

thresholds

3. Set the resampled index according to the index of the location of ui

Note that the idea of the random resampling algorithm is simple, but its im-

plementation is computationally inefficient. Below alternative algorithms that are

computationally inexpensive are introduced.

Residual Resampling This is a method described by Liu and Chen.67 The

procedure is

1. Retain si = [Nw̄
(i)
k ] copies of x

(i)
k , i = 1, . . . , n, where w̄

(i)
k is the renormalized

weight of w
(i)
k . Let Nr = N − ∑n

i=1 si

2. Obtain Nr i.i.d draws from x
(i)
1:k with probabilities proportional to Nw̄

(i)
k − si

i = 1, . . . , N

3. Let w̄(i) = 1/N for i, . . . , N , i.e., reset the weights to 1

The residual resampling is preferred over the random resampling in that it saves

computational load and provides reduced variation in the estimates.67,68

Systematic Resampling Another efficient resampling scheme that use a min-

imum variance method is described,69 in which the uniform distribution U [a, b] is

utilized on the interval [a, b]. This method proceeds in the same way as the di-

rect resampling algorithm where each value ui is independently drawn from U [0, 1].

However, ui in the systematic resampling algorithm is drawn by using the following
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Table 4.1 Systematic Resampling (SR) Algorithm

1. Initialization at time i = 1

– Set c1 = 0

2. For i = 2, · · · , N

– Construct ci = ci−1 + wi
k

3. Set i = 1

4. Draw a starting point

– u1 ∼ U [0, 1/N]

5. For j = 1, · · · , N

– Construct uj = u1 + (j − 1)/N

– While uj > ci

∗ i = i + 1

– Otherwise

∗ assign sample: x
j
k = xi

k

∗ assign weight: wj
k = 1/N

scheme

u1 ∼ U [0, 1/N] (4.30)

ui = u1 +
i

N
(4.31)

The systematic resampling algorithm is described in Table 4.1.



87

4.3.3 Generic Particle Filter Algorithm

The theory described in this chapter is only to be considered as a motivation of how

particle filters work. Algorithm illustrated in Table 4.2 is a summary of the particle

filter or the SIS with the resampling stage. In implementing this algorithm, the choice

of the proposal or importance distribution is the most critical design issue. It starts

by sampling samples from the prior distribution and calculates the first set of weights

from the first measurement. In each iteration the samples are drawn according to a

selected importance distribution. Then, the weights are updated by using the selected

proposal distribution and the drawn samples. The overall procedures for the generic

particle filtering algorithm is depicted in Fig. 4.3.

4.4 SIR Particle Filtering

As a special case of the SIS algorithm, the sampling important sampling (SIR) ap-

proach proposed by Gordon15 is illustrated in this section. The SIR filter is an MC

method that can be applied to recursive Bayesian filtering problems. The SIR algo-

rithm is rather straightforward and can be derived easily from the SIS algorithm by

an appropriate choice of the importance density and the resampling step. The opti-

mal proposal distribution which minimizes the variance on the importance weights is

give by17,67

q (xk|x1:k−1,y1:k) = p (xk|x1:k−1,y1:k) (4.32)

However, sampling from this proposal distribution is impractical for arbitrary densi-

ties. Thus, a simple and efficient choice of the importance density is the transition

prior density17

q (xk|x1:k−1,y1:k) = p (xk|xk−1) (4.33)
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Table 4.2 Generic Particle Filter (PF) Algorithm

• Initialization: at time k = 0

1. For i = 1, . . . , N ,

– Sampling from the prior x
(i)
0 ∼ p (x0)

2. For i = 1, . . . , N ,

– Calculate w
(i)
0 = p(y0|x(i)

0 )

– Calculate the total weight wT =
∑N

i w
(i)
0

– Normalize w
(i)
0 = w−1

T w
(i)
0

• Prediction and Update: For each time k ≥ 1

1. For i = 1, . . . , N ,

– Sample x
(i)
k ∼ q(xk|X(i)

k−1,Yk)

– Calculate the importance weights w
(i)
k = w

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |X(i)

k−1,Yk)

2. Calculate the total weight wT =
∑N

i w
(i)
k

3. For i = 1, . . . , N ,

– Normalize w
(i)
k = w−1

T w
(i)
k

4. If (Neff < Nth), then Choose either (a) or (b)

– (a) Apply resampling algorithm

∗ [{x(i)
k , w

(i)
k }N

i=1] = Resample(RR, SR)[{x(i)
k , w

(i)
k }N

i=1]

– (b) Apply resampling algorithm

∗ Set the weights, w
(i)
k = 1/N
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This proposal density has samples drawn in the form

x
(i)
k ∼ p

(

xk|x(i)
k−1

)

(4.34)

The practical procedures for generating a sample x
(i)
k is achieved by

1. First generating a process noise sample v
(i)
k−1 ∼ pv(vk−1) where pv is the pdf

of the noise vk−1

2. Then, substituting the samples x
(i)
k−1and v

(i)
k−1 into the dynamic system func-

tion, i.e., x
(i)
k = f

(

x
(i)
k−1,v

(i)
k−1

)

The generic update equation for the weights is given by

wk ∝ wk−1p (yk|xk)
p (xk|xk−1)

q (xk|x1:k−1,y1:k)
(4.35)

For this particular choice of the importance density in Eq. (4.33), the corresponding

weight update equation becomes

w
(i)
k ∝ w

(i)
k−1 p

(

yk|x(i)
k

)

(4.36)

It is noted that since resamping in the SIR algorithm is applied at every time step,

the prior weights are all equal to w
(i)
k−1 = 1/N . Thus, in this case the update weights

becomes

w
(i)
k ∝ p

(

yk|x(i)
k

)

(4.37)

The SIR particle filtering algorithm is illustrated in Table 4.3.

4.5 Improving Particle Filters

Many variant algorithms have been proposed by scientists and engineers to compen-

sate for the drawbacks of the particle degeneracy and sample impoverishment, and

improve the generic particle filtering algorithm. In a broad sense, the methods can
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Table 4.3 SIR Particle Filter Algorithm

• Initialization: at time k = 0

1. For i = 1, . . . , N ,

– Sampling x
(i)
0 ∼ p (x0)

2. For i = 1, . . . , N ,

– Calculate w
(i)
0 = p

(

y0|x(i)
0

)

– Calculate the total weight wT =
∑N

i w
(i)
0

– Normalize w
(i)
0 = w−1

T w
(i)
0

• Prediction and Update: For each time k ≥ 1

1. For i = 1, . . . , N ,

– Sample x
(i)
k ∼ p

(

xk|x(i)
k−1

)

– Calculate w
(i)
k = p

(

yk|x(i)
k

)

2. Calculate the total weight wT =
∑N

i w
(i)
k

3. For i = 1, . . . , N ,

– Normalize w
(i)
k = w−1

T w
(i)
k

4. Apply resampling algorithm

– [{x(i)
k , w

(i)
k }N

i=1] = Resample(RR, SR)[{x(i)
k , w

(i)
k }N

i=1]
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be divided into the following four categories:

(1) Choice of Proposal Distribution: A first method for choosing an optimal

importance density involves in maximizing the effective sample size N̂eff . In do-

ing this, the optimal density function minimizes the variance of the weights w̄
(i)
k .22

However, the calculation of the optimal important density requires to evaluate an

multi-dimensional integral, which is not be tractable in practical applications.

(2) Local Linearization: An optimal importance density can be approximated

by incorporating the most current measurement through a bank of the standard

nonlinear filters.22,65 The approximated density propagates the particles towards the

likelihood function and consequently the hybrid particle filter performs better than

the SIR filter.

(3) Regularization: The resampling reduces the effects of the degeneracy phe-

nomena, but it causes other practical problem called sample impoverishment.70,71 It

comes from the fact the sampled particles with high weights are selected many times

and thus contain many repeated points leading to a loss of diversity among the the

particles. A modified particle filtering algorithm in which the resampling process

is performed upon a kernel-based density estimation can be a potential solution to

handle the sample impoverish effect.72

(4) MCMC Move: Markov chain Monte Carlo (MCMC) methods provide a rel-

atively easy way of generating samples from any probability distribution. It can also

be a potential solution to the sample impoverishment in resampling step as well as

the regularization scheme.72,73

(5) Rao-Blackwellization: Some components of the model may have linear dy-

namics and can be well estimated using a conventional Kalman filter. The Kalman

filter is combined with a particle filter to reduce the number of particles needed to

obtain a given level of performance.74,75 This method can reduce the variance of the
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MC estimates as well as the number of samples.

Specific description about each method is made in the following sections.

4.6 Local Linearization Particle Filter

The sample degeneracy of the SIS algorithm results from the fact that the variance

of the importance weights increases over time. An optimal importance density can

be approximated by incorporating the most current measurement through a bank of

the standard nonlinear filters such as the extended Kalman filter, unscented Kalman

filters, or the divided difference filter22,65 This process is important if the likelihood

lies in one of the tails of the prior distribution or it is too much narrow due to

small measurement error. Fig. 4.4 describes the overall concept of how to include the

most current observation into the proposal distribution and move the samples to the

regions of high likelihood. The basic idea is to use a separate nonlinear filter, EKF(i),

UKF(i), or DDF(i), for each particle index i in order to generate and propagate a
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Gaussian importance distribution

q
(

x
(i)
k |x(i)

k−1,yk

)

= N
(

x̂
(i)
k , P̂

(i)
k

)

(4.38)

where x̂
(i)
k and P̂

(i)
k are estimates of the mean and covariance computed from EKF(i),

UKF(i) or DDF(i) at time k using measurement yk. The proposed particle filter is

referred to as the local linearization particle filter (LLPF) in a unified way, and also

called the extended Kalman particle filter (EKPF),22 unscented particle filter (UPF),65

and divided difference particle filter (DDPF), individually. A single cycle of this filter

is given by the algorithm in Table 4.4. This routine performs resampling at every

time step, and therefore the importance weights are not passed on from one cycle to

the next.

The local linearization method for approximation of the importance density prop-

agates the particles towards the likelihood function, and consequently the LLPF per-

forms better than the SIR filter. The additional computational cost of using such an

importance density is often more than offset by reduction in the number of samples

required to achieve a certain level of performance. Using UKF instead of the EKF in

the local linearization particle filter is reported to improve the performance.65 In this

dissertation, in addition, the divided difference filter based particle filter is derived,

which will be named as divided difference particle filter (DDPF). The UKPF and

DDPF can be called sigma point particle filters (SPPFs) in a unified way.

4.6.1 Extended Kalman Particle Filter

The optimal importance density can be approximated by incorporating the most

current measurement yk through a bank of the standard nonlinear filters such as

the extended Kalman filter.22 This is a popular method for devising proposal dis-

tributions that approximate the optimal importance distribution. It relies on the
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Table 4.4 Local Linearization Particle Filter (LLPF)

Initialization: At time k = 0

1. For i = 1, · · · , N , sample x
(i)
0 ∼ p (x0)

2. For each i = 1, · · · , N , calculate the weights w
(i)
0 = p

(

y0|x(i)
0

)

and normalize w̄
(i)
0 =

w
(i)
0

∑

j

w
(j)
0

Prediction and Update: For each time k ≥ 1

1. For each i = 1, · · · , N , run {EKF/UKF/DDF }
[

x̂
(i)
k−1, P̂

(i)
k−1

]

= EKF/UKF/DDF
(

x
(i)
k−1,P

(i)
k−1

)

2. For i = 1, · · · , N , draw a sample from importance density

x
(i)
k ∼ N

(

x
(i)
k ; x̂

(i)
k , P̂

(i)
k

)

3. For each i = 1, · · · , N , calculate w
(i)
k = p

(

yk|x(i)
k

)

w̄
(i)
k−1

and normalize the importance weights w̄
(i)
k =

w
(i)
k

∑

j

w
(j)
k

4. If resampling (Neff < Nth)

then, set the weights w̄
(i)
k−1 = 1

N
and resample with

{

x
(i)
k , w̄

(i)
k

}

Output: A set of samples is used to approximate the posterior distribution

1. p̂ (xk|Yk) =
N
∑

i=1

w̄
(i)
k δ

(

xk − x
(i)
k

)

2. x̂k =
N
∑

i=1

w̄
(i)
k x

(i)
k

3. P̂k =
N
∑

i=1

w̄
(i)
k

(

x̂k − x
(i)
k

) (

x̂k − x
(i)
k

)T
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first-order Taylor series expansions of the likelihood and transition distribution as

well as a Gaussian assumption on all the random variables. In the framework, the

EKF approximates the optimal minimum-mean square error estimator of the system

state by calculating the conditional mean of the state given all of the observations.

This is done in a recursive framework by propagating the Gaussian approximation of

the posterior distribution through time and combining it at each time step with the

new observation.

The proposed particle filter is referred to as the local linearization particle filter

(LLPF) in a unified way, and is also is called the extended Kalman particle filter

(EKPF), respectively.17 The algorithm of the extended Kalman particle filter is sum-

marized in Table. 4.5.

4.6.2 Unscented Particle Filter

The unscented Kalman filter (UKF) is able to more accurately propagate the mean

and covariance of the Gaussian approximation of the state distribution than the EKF.

In comparison to the EKF, the UKF tends to generate more accurate estimates of

the true covariance of the state. Distributions generated by the UKF generally have a

bigger support overlap with the true posterior distribution than the overlap achieved

by the EKF estimates. This is related to the fact that the UKF calculates the pos-

terior covariance accurately to the 3rd order, whereas the EKF relies on a first-order

approximation. This makes the UKF a better candidate for a more accurate proposal

distribution generation within the particle filter framework. The UKF also has the

ability to scale the approximation errors in the higher order moments of the poste-

rior distribution such as kurtosis, allowing for heavier tailed distributions. Because

the sigma point set used in the UKF is deterministically designed to capture certain

characteristics of the prior distribution, one can explicitly optimize the algorithm to
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Table 4.5 Extended Kalman Particle Filter (EKPF) Algorithm

Initialization: At time k = 0

1. For i = 1, · · · , N , sample x
(i)
0 ∼ p (x0)

2. For each i = 1, · · · , N , calculate the weights w
(i)
0 = p

(

y0|x(i)
0

)

and normalize w̄
(i)
0 =

w
(i)
0

∑

j

w
(j)
0

Prediction and Update: For each time k ≥ 1

1. For each i = 1, · · · , N , update the particles with the EKF

x̂
(i)
k|k−1 = f

(

x
(i)
k−1

)

P
(i)
k|k−1 = F

(i)
k P

(i)
k−1

(

F
(i)
k

)T

+ Qk

K(i)
k = P

(i)
k|k−1

(

H
(i)
k

)T
[

H
(i)
k P

(i)
k|k−1

(

H
(i)
k

)T

+ Rk

]−1

x̂
(i)
k = x̂

(i)
k|k−1 + K(i)

k

(

yk − h
(

x̂
(i)
k|k−1

))

P̂
(i)
k = P

(i)
k|k−1 −K(i)

k H
(i)
k P

(i)
k|k−1

2. For i = 1, · · · , N , draw a sample from importance density

x
(i)
k ∼ N

(

x
(i)
k ; x̂

(i)
k , P̂

(i)
k

)

3. For each i = 1, · · · , N , calculate w
(i)
k = p

(

yk|x(i)
k

)

w̄
(i)
k−1

and normalize the importance weights w̄
(i)
k =

w
(i)
k

∑

j

w
(j)
k

4. If resampling (Neff < Nth)

then, set the weights w̄
(i)
k−1 = 1

N
and resample with

{

x
(i)
k , w̄

(i)
k

}

Output: A set of samples that is used to approximate the posterior distribution

1. p̂ (xk|Yk) =
N
∑

i=1

w̄
(i)
k δ

(

xk − x
(i)
k

)

2. x̂k = E (xk|Yk) ≈
N
∑

i=1

w̄
(i)
k x

(i)
k
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work with distributions that have heavier tails than the Gaussian distribution, such

as the Cauchy or Student-t distributions. This characteristic makes the UKF very

attractive for the generation of proposal distributions.

The new filter that results from using the UKF for the generation of proposal

distributions within a particle filter framework is called the unscented particle filter

(UPF). The UPF algorithm is illustrated in Table 4.6.

4.6.3 Divided Difference Particle Filter

The DDF can be described as one of the sigma point Kalman filters (SPFs) in a unified

way where the filter linearizes the nonlinear dynamic and measurement functions

by using an interpolation formula through systematically chosen sigma points. The

linearization is based on polynomial approximations of the nonlinear transformations

that are obtained by Stirling’s interpolation formula, rather than the derivative-based

Taylor series approximation. Conceptually, the implementation principle resembles

that of the EKF, the implementation, however, is significantly simpler because it is

not necessary to formulate the Jacobian and/or Hessian matrices of partial derivatives

of the nonlinear dynamic and measurement equations. Thus, the new nonlinear state

filter, divided difference filter (DDF), can also replace the extended Kalman filter

(EKF) and its higher-order estimators in practical real-time applications that require

accurate estimation but less computational cost.

In this section, the DDF used for the generation of proposal distributions is

integrated with a particle filtering framework, leading to a divided difference particle

filter (DDPF). The DDPF algorithm is illustrated in Table 4.7.
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Table 4.6 Unscented Particle Filter (UPF) Algorithm

Initialization: At time k = 0

1. For i = 1, · · · , N , sample x
(i)
0 ∼ p (x0)

2. For each i = 1, · · · , N , calculate the weights w
(i)
0 = p

(

y0|x(i)
0

)

x̂
(i)
0 = E

{

x
(i)
0

}

, P
(i)
0 = E

{

(x
(i)
0 − x̂

(i)
0 )(x

(i)
0 − x̂

(i)
0 )T

}

x
a,(i)
0 =







x
(i)
0

w0






, P

a,(i)
0 =







P
(i)
0 0

0 Q0







Prediction and Update: For each time k ≥ 1

1. For each i = 1, · · · , N , update the particles with the UKF

• Draw sigma points:

X a,(i)
k =

[

x̂
a,(i)
k x̂

a,(i)
k +

√

(n + q + λ)P
a,(i)
k x̂

a,(i)
k −

√

(n + q + λ)P
a,(i)
k

]

• Prediction and update:

X x,(i)
k+1 = f

(

X a,(i)
k , k

)

, x̂
(i)
k+1|k =

2(n+q)
∑

j=0

W
(m)
j X x,(i)

j,k+1

P
(i)
k+1|k =

2(n+q)
∑

j=0

W
(c)
j

[

X x,(i)
j,k+1

− x̂
(i)
k+1|k

] [

X x,(i)
j,k+1

− x̂
(i)
k+1|k

]T

Y(i)
k+1 = h

(

X x,(i)
k+1 , k + 1

)

, ŷ
(i)
k+1|k =

2(n+q)
∑

j=0

W
(m)
j Y(i)

j,k+1

Pυυ
k+1 =

2(n+q)
∑

j=0

W
(c)
j

[

Y(i)
j,k+1 − ŷ

(i)
k+1|k

] [

Y(i)
j,k+1 − ŷ

(i)
k+1|k

]T

P
xy
k+1 =

2(n+q)
∑

j=0

W
(c)
j

[

X x,(i)
j,k+1 − x̂

(i)
k+1|k

] [

Y(i)
j,k+1 − ŷ

(i)
k+1|k

]T

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1

x̂
(i)
k+1 = x̂

(i)
k+1|k + Kk+1

(

yk − h
(

x̂
(i)
k+1|k

))

P̂
(i)
k+1 = P

(i)
k+1|k −Kk+1P

υυ
k+1 (Kk+1)

T

2. For i = 1, · · · , N , draw samples x
(i)
k ∼ N

(

x
(i)
k ; x̂

(i)
k , P̂

(i)
k

)

3. For each i = 1, · · · , N , calculate w
(i)
k = p

(

yk|x(i)
k

)

w̄
(i)
k−1 and w̄

(i)
k = w

(i)
k /

∑

j

w
(j)
k

4. If resampling (Neff < Nth), set w̄
(i)
k−1 = 1

N
and resample with

{

x
(i)
k , w̄

(i)
k

}

Output: p̂ (xk|Yk) =
N
∑

i=1

w̄
(i)
k δ

(

xk − x
(i)
k

)

, x̂k = E (xk|Yk) ≈
N
∑

i=1

w̄
(i)
k x

(i)
k
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Table 4.7 Divided Difference Particle Filter (DDPF) Algorithm

Initialization: At time k = 0

1. For i = 1, · · · , N , sample x
(i)
0 ∼ p (x0)

2. A priori information and factorization

x̂
(i)
0 = E

{

x
(i)
0

}

, P
(i)
0 = E

{

(x
(i)
0 − x̂

(i)
0 )(x

(i)
0 − x̂

(i)
0 )T

}

P
(i)
0 = S

(i)
x

(

S
(i)
x

)T

, Qk = SwST
w, Rk = SvS

T
v

Prediction and Update: For each time k ≥ 1

1. For each i = 1, · · · , N , update the particles with the DDF

• Prediction:

x̂
(i)
k+1|k = f

(

x̂
(i)
k , w̄k, k

)

, ŷ
(i)
k+1|k = h

(

x̂
(i)
k+1|k, v̄k+1, k + 1

)

S
(i)
xx̂(k + 1) = 1

2h

{

f
(

x̂
(i)
k + hs

(i)
x , w̄k

)

− f
(

x̂
(i)
k − hs

(i)
x , w̄k

)}

S
(i)
xw(k + 1) = 1

2h

{

f
(

x̂
(i)
k , w̄k + hsw,j

)

− f
(

x̂
(i)
k , w̄k − hsw,j

)}

P
(i)
k+1|k =

[

S
(i)
xx̂(k + 1) S

(i)
xw(k + 1)

] [

S
(i)
xx̂(k + 1) S

(i)
xw(k + 1)

]T

• Factorization: P
(i)
k+1|k = S

−,(i)
x

(

S
−,(i)
x

)T

• Update:

S
(i)
yx̂(k + 1) = 1

2h

{

h
(

x̂
(i)
k+1|k + hs

−,(i)
x , v̄k+1

)

− h
(

x̂
(i)
k+1|k − hs

−,(i)
x , v̄k+1

)}

S
(i)
yv (k + 1) = 1

2h

{

h
(

x̂
(i)
k+1|k, v̄k+1 + hsv

)

− h
(

x̂
(i)
k+1|k, v̄k+1 − hsv

)}

Pυυ
k+1 =

[

S
(i)
yx̂(k + 1) S

(i)
yv (k + 1)

] [

S
(i)
yx̂(k + 1) S

(i)
yv (k + 1)

]T

P
xy
k+1 =

[

S
(i)
xx̂(k + 1) S

(i)
xw(k + 1)

] (

S
(i)
yx̂(k + 1)

)T

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1

x̂
(i)
k+1 = x̂

(i)
k+1|k + Kk+1

(

yk − h
(

x̂
(i)
k+1|k

))

P̂
(i)
k+1 = P

(i)
k+1|k −Kk+1P

υυ
k+1 (Kk+1)

T

2. For i = 1, · · · , N , draw samples x
(i)
k ∼ N

(

x
(i)
k ; x̂

(i)
k , P̂

(i)
k

)

3. For each i = 1, · · · , N , calculate w
(i)
k = p

(

yk|x(i)
k

)

w̄
(i)
k−1 and w̄

(i)
k = w

(i)
k /

∑

j

w
(j)
k

4. If resampling (Neff < Nth), set w̄
(i)
k−1 = 1

N
and resample with

{

x
(i)
k , w̄

(i)
k

}

Output: p̂ (xk|Yk) =
N
∑

i=1

w̄
(i)
k δ

(

xk − x
(i)
k

)

, x̂k = E (xk|Yk) ≈
N
∑

i=1

w̄
(i)
k x

(i)
k
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4.7 Regularized Particle Filter

Note that the resampling methods explained in the previous section play a role of

reducing the degeneracy problem of the samples, which is a common problem of

the SIS particle filter. As a suitable means for measuring the sample degeneracy of

the algorithm the effective sample size was introduced.67 However, the resampling

reduces the effects of the degeneracy phenomena, it causes other practical problem

called sample impoverishment. It comes from the fact the sampled particles with high

weights are selected many times, and thus contain many repeated points leading to

a loss of diversity among the particles.70 Modified particle filtering algorithms70,72

have been suggested to handle the sample impoverish effect. In this section, the reg-

ularized particle filter (RPF)70 as a potential solution to the sample impoverishment

is illustrated. The RPF is nothing but a modified SIR particle filter in which the

resampling process is performed upon a density estimation. Before going into details

of the RPF algorithms, the problem of density estimation is briefly reviewed in the

following.

4.7.1 Density Estimation

It has been shown that the resampling step is performed by generating a new set of

samples from an approximate discrete representation of p (xk|y1:k)

p (xk|y1:k) ≈
Ns
∑

i=1

wi
kδ

(

xk − xi
k

)

(4.39)

However, it is useful to perform the resampling from a functional distribution that

is obtained by estimating the underlying density function. In a broad sense density

estimation methods fall into the following two categories: parametric estimation and

non-parametric estimation methods. The parametric estimation approach assumes
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that the underlying density comes from a specific family of densities, the normal

distributions, to estimate the parameters of the mean and variance of the normal dis-

tribution. In contrast, the non-parametric density estimation methods are preferred

for the problems where the distribution family may not be known a priori, or may

not be reconstructed by parametric forms.76

The simplest method for obtaining a density estimate is to utilize a histogram

where samples are drawn over equally spaced bins and bars have a height equal to

the number of samples within the underlying bin. The histogram is limited in the

sense that it provides a piecewise constant estimate to a smooth density and depends

heavily on the number and center of the bins chosen.76

The general non-parametric density estimator for a scalar case is represented in

a form

p̂ (x) =
1

N

N
∑

i=1

w
(

x, xi
)

(4.40)

where w (x, xi) is a weight function or kernel and xi is the sample support value. The

weight function produces a probability associated with all x in the neighborhood of

the support value xi. The simplest weight function is a rectangular box

p̂ (x) =
1

Nh

N
∑

i=1

w

(

x − xi

h

)

(4.41)

and

w(X ) =











1/2 if ‖X‖ < 1

0 otherwise
(4.42)

where 2h is the rectangle width, which determines the amount of smoothing of the

data and become a loose means of measure of bandwidth. Note that in all forms of

kernel density estimation, there should be a trade-off between resolution and smooth-

ness, which is adjusted by changing the size or variance of the kernel.
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4.7.2 Kernel Methods

In this section a brief review of a scalar kernel method is illustrated. For a kernel

estimation, it is desirable to choose a smooth weight function. If the weight function

w (x, xi) is described in a closed functional form it is referred to as a kernel. A Gaus-

sian density is usually chosen as candidate kernel K(x) and has many advantageous

computational properties. Then, the kernel density is a symmetric probability density

function such that it satisfies70

∫

K (x) dx = 1,

∫

xK (x) dx = 0,

∫

‖x‖2K (x) dx < ∞ (4.43)

The Gaussian kernel density estimator is represented by

p̂ (x) =
1

Nσ

N
∑

i=1

KG

(

x − xi

σ

)

(4.44)

and

KG =
1√
2π

exp

{

−x2

2

}

(4.45)

where σ is the variance of a underlying Gaussian density function.

A question that now arises is that what is the best kernel for estimating a density

function. The best kernel is chosen to minimize the integrated mean-squared errors.

In this choice, the optimal kernel is to use the paraboloid or Epanechnikov kernel76

KE =











3
4
√

5

(

1 − x2

5

)

‖x‖ ≤
√

5

0 otherwise
(4.46)

The next question is how to decide a bandwidth σ that measures a level of smoothness

in the kernel estimation. Different values of bandwidth can produce different density

estimates. The common way of measuring performance is to choose a bandwidth

that reflects the mean-squared roughness in the underlying density. For the Gaussian
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kernel a good choice is

σopt ≈
1

N1/5

√
Σ (4.47)

where Σ is the variance in the sample data.

The density estimation by using the kernel method requires convolution calcu-

lations, which makes the method difficult and demands a reasonable approximation

technique. For the Gaussian kernel, computation can be minimized by using a fast

Fourier transform (FFT) implementation for the convolution. Another potential so-

lution to this problem is achieved by representing the data with a set of the data

support value {xi}N
i=1 and by defining a new set of support values {X j}M

j=1 for the un-

derlying density estimate. Then, the kernel is evaluated for all pair-wise combinations

of the data nd estimate support values

p̂
(

X j
)

=
1

N

N
∑

i=1

K
(

X j, xi
)

, j = 1, . . . ,M (4.48)

4.7.3 Regularized Particle Filter

The RPF resamples from a continuous approximation of the probability density

p (xk|y1:k), which is obtained by using the kernel density estimation method70

p (xk|y1:k) ≈ p̂ (xk|y1:k) =
Ns
∑

i=1

wi
kKh

(

xk − xi
k

)

(4.49)

and

Kh (x) =
1

hnx
K

(x

h

)

(4.50)

where Kh is the rescaled kernel density, h > 0 is the kernel bandwidth, nx is the

dimension of the state vector x, and wi
k is a normalized weight. The multivariate

Gaussian kernel is given by

K (x) =
1

(2π)nx/2
exp

{

−1

2
xTx

}

(4.51)
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The kernel density is a symmetric probability density function satisfying the following

∫

xK (x) dx = 0,

∫

‖x‖2 K (x) dx < ∞ (4.52)

The multivariate kernel K(·) and bandwidth h are chosen to minimize the mean inte-

grated square error (MISE) between the true posterior density and the corresponding

estimated density, which is defined by21

MISE = E

{∫

[p̂ (xk|y1:k) − p (xk|y1:k)]
2 dxk

}

(4.53)

For the special case where all the samples have the same weight, the optimal choice

of the Kernel is the Epanechnikov kernel70

KE (x) =











nx+2
Cnx

(

1 − xTx
)

, if xTx < 1

0, otherwise
(4.54)

where Cnx
is the volume of the unit nx-dimensional sphere. It is necessary to

prewhiten the data by transforming it to have unit variance before smoothing with a

symmetric Kernel, which is equal to utilizing a density estimate in the form

p̂ (x) =
1

Nhnx |S|−1/2

N
∑

i=1

(

[x − xi]
T
S−1 [x − xi]

h2

)

(4.55)

When the underlying density is the multivariate Gaussian Kernel, the optimal choice

for the bandwidth is

hopt =

[

4

N (2nx + 1)

]1/(nx+4)

(4.56)

The optimal window size for the multivariate Epanechnikov Kernel is given by76

hopt =

[

8nx (nx + 2) (nx + 4) (2
√

π)
nx

N (2nx + 1) cnx

]1/(nx+4)

(4.57)

Note that the RPF is different from the generic particle filter in that when

performing the resampling step the regularization step is placed additionally. From
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the practical point of view, the RPF performance is better than that of the SIR in

cases where sample impoverishment is severe due to the process small noise, but it

requires additional computational load. Details of the algorithm of the regularized

particle filter (RPF) is summarized as follow in Table 4.8.

4.8 Markov Chain Monte Carlo Method

Markov chain Monte Carlo (MCMC) methods provide a relatively easy way of gen-

erating samples from any probability distribution. It can also be a potential solution

to the sample impoverishment in resampling step as well as the regularization scheme

explained previously.

For illustration, consider a collection of random variables {x0,x1, . . . ,xk}, where

xk may be regarded as the state of a system at time k. A Markov chain is a process

with the property

p (xk|x0,x1, . . . ,xk−1) = p (xk|xk−1) (4.58)

where p (·|·) is the conditional transition Kernel. The property of the Markov chain

says that the probability distribution of any state is dependent only on the previous

state.

The stationary distribution of a Markov chain, π(x), is defined by

π (x) =

∫

y

π (x) p (x|y)dy (4.59)

where p (x|y) is the transition probability. It may be hard to choose a Markov chain

that satisfies the invariance condition in Eq. (4.59), thus a time reversibility condition

is placed.22 The transition probability p (y|x) is said to be reversible with respect to
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Table 4.8 Regularized Particle Filter (RPF) Algorithm

•Initialization: At time k = 0

1. For i = 1, · · · , N

– Draw samples x
(i)
0 ∼ p (x0)

2. For i = 1, · · · , N

– Calculate w
(i)
0 = p

(

y0|x(i)
0

)

– Calculate total weight wtotal =
N
∑

i=1

wi
0

– Normalize the weight w̄
(i)
0 = w−1

total w
(i)
0

•Prediction and Update: For each time k ≥ 1

1. Calculate the effective sample size Neff

2. If (Neff < Nth)

– Calculate the empirical covariance Sk of {xi
k, w

i
k}

N

i=1

– Compute Dk such that DkD
T
k = Sk

– Apply resampling algorithm

∗
[

{xi
k, w

i
k,−}N

i=1

]

= RESAMPLE
[

{xi
k, w

i
k}

N

i=1

]

– For i = 1, · · · , N

∗ Draw ǫi ∼ K from the Epanechnikov Kernel

∗ xi
k = xi

k + hoptDkǫ
i

3. Go back to k = k + 1
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π(x) if it satisfies the following relation

π (x) p (y|x) = π (x) p (x|y) (4.60)

which is called detailed balance.

More detailed theoretical foundations about the MCMC algorithms are found

in the references.77,78 In this section, implementation of the MCMC based on the

Metropolis-Hastings algorithm68 is illustrated by combining it with the importance

sampling.

4.8.1 Metropolis-Hastings Algorithm

Most algorithms for Markov Chain Monte Carlo estimation are based on the algo-

rithm of Hastings,79 which is a generalization of the algorithm of Metropolis.80 The

Metropolis-Hastings algorithm resembles the previously described SIR algorithms in

that a proposal distribution is used to generate the samples. However, the output of

the algorithm is a Markov chain so the proposal density may depend on the current

state of the chain.68

An MH step of invariant target distribution π(x) and proposal distribution

q(x∗|x) involves sampling a candidate value x∗ given the current value x accord-

ing to q(x∗|x). The Markov chain then moves towards x∗ with acceptance probability

α(x, x∗), otherwise it remains at x. The MH algorithm is simple, but it is subject to

the design of the proposal distribution q(x∗|x).

Suppose the ith iteration of the Markov chain is denoted by a bracketed super-

script x(i). The acceptance probability α(x∗, x(i−1)) is written by

α
(

x∗, x(i−1)
)

=











r
(

x∗|x(i−1)
)

if r
(

x∗|x(i−1)
)

≤ 1

1 if r
(

x∗|x(i−1)
)

> 1
(4.61)
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Table 4.9 Metropolis-Hastings Algorithm

1. Initialize by setting i = 0 and draw a starting point x(0)

2. For i = 1 to N

– Draw samples from proposal density x∗ ∼ q
(

x∗|x(i)
)

– Draw a uniformly distributed random number u between 0 and 1, u ∼ U(0, 1)

– Compute the acceptance probability α(x∗, x(i))

– If u < α(x∗, x(i))

∗ accept the move by setting x(i+1) = x∗

– Else

∗ set x(i+1) = x(i)

3. i = i + 1 and return to item 2

where the ratio r
(

x∗|x(i−1)
)

is

r
(

x∗|x(i−1)
)

=
π (x∗)

π (x(i−1))

q
(

x(i−1)|x∗)

q (x∗|x(i−1))
(4.62)

If the candidate is accepted the chain moves to the new position, while a rejection

of the candidate leaves the chain at the current position in the state space. The MH

pseudo algorithm is summarized in Table 4.9.

4.8.1.1 Proposal Choice

Even though the Metropolis-Hastings algorithm will be invariant for many choices

of q(x∗|x(i)) the choice of proposal distribution will determine the efficiency of the

algorithm.68 A simplistic way of choosing the proposal is to have it fixed, and inde-

pendent of the current state of the chain. The independence sampler81 with a proposal

distribution q(x∗|x(i)) = q(x∗) is a simple example of the MH algorithm, which yields
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an acceptance probability given by

α
(

x∗, x(i)
)

= min

(

1,
z (x∗)

z (x(i))

)

where z (x) =
π (x)

q (x)
(4.63)

From the Metropolis algorithm symmetric proposal distributions q
(

x(i)|x∗) = q
(

x∗|x(i)
)

are considered, then the acceptance probability reduces to81

α
(

x∗, x(i)
)

= min

(

1,
π (x∗)

π (x(i))

)

(4.64)

Note that the independent sampler and the Metropolis algorithm are two simple

examples of the MH algorithm.

Some properties of the MH algorithm are summarized. First, the normalizing

constant of the target distribution is not required. Second, although the pseudo MH

algorithm makes use of a single chain, it is easy to simulate several independent

chains in parallel. Finally, the success of failure of the algorithm often is dependent

of the choice of the proposal distribution. Different choices of the proposal standard

deviation σ lead to very different results.

4.8.2 Gibbs Sampler

The Gibbs sampling algorithm82 is the most commonly applied MCMC algorithm. The

Gibbs sampling algorithm can be seen as an extended Metropolis-Hastings procedure

where proposal samples are drawn directly from the full conditional distributions.

Suppose a state vector x is n-dimensional and the full conditional distribution is

expressed by

p (xj|x1, . . . , xj−1, xj+1, . . . , xn) (4.65)

Each component is updated separately

q
(

x
(i)
j

)

= p
(

xj|x(i−1)
1 , . . . , x

(i−1)
j−1 , x

(i−1)
j+1 , . . . , x(i−1)

n

)

(4.66)
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Table 4.10 Gibbs Sampling Algorithm

1. Initialize by setting i = 0 and choose a starting point x(0)

2. For i = 1 to N

– Draw samples from the full conditional distribution

∗ Sample x
(i)
1 ∼ p

(

x1|x(i−1)
2 , x

(i−1)
3 , . . . , x

(i−1)
n

)

∗ Sample x
(i)
2 ∼ p

(

x2|x(i−1)
1 , x

(i−1)
3 , . . . , x

(i−1)
n

)

∗ ...

∗ Sample x
(i)
n ∼ p

(

xn|x(i−1)
1 , x

(i−1)
2 , . . . , x

(i−1)
n−1

)

– Output x
(i)
j

3. Increase i = i + 1 and return to item 2

where x
(i)
j is the ith iterate in the Markov chain of the jth component of the state

vector. Since the Gibbs sampler can be viewed as a special case of the MH algorithm,

it is possible to introduce MH steps into the Gibbs sampler. For example, when the

full conditionals are available and belong to the family of standard distributions the

new samples directly drawn. Otherwise, samples are drawn with MH steps embedded

within the Gibbs algorithm.81 It is obvious that the acceptance probability is always

unity (substituting into Eq.(4.61)). Thus, all candidates are accepted and calculation

of the acceptance probability is not required.

The algorithm is summarized in Table 4.10, where the ith iterate deterministic

version of the Gibbs sampler is used.

4.9 Rao-Blackwellized Particle Filter

From the central limit theorem, it can be shown that the estimation error is indepen-

dent of the dimensionality of the problem. However, it turns out that the dimension
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has influence on the number of samples needed. Tests show that the same num-

ber of samples will yield a better accuracy for a problem of low dimension than for

one of high dimension. The higher the dimensionality, the more samples needed to

cover the state space efficiently is an intuitive explanation. In some problems, there

is a structure in the state space formulation. This may be used to split the prob-

lem into one part that can be estimated in closed form, and leave the other part

to simulation based methods. By using this structure, the accuracy increases while

using the same number of samples. The next section provides a description of the

Rao-Blackwellization algorithm in a way that is suitable for this dissertation. More

theory can be found in Refs. 74 and 75.

Consider the discrete-time state-space models

x
pf
k+1 = fpf

(

x
pf
k

)

+ F
pf
k

(

x
pf
k

)

x
kf
k + G

pf
k

(

x
pf
k

)

w
pf
k (4.67)

x
kf
k+1 = fkf

(

x
pf
k

)

+ F
kf
k

(

x
pf
k

)

x
kf
k + G

kf
k

(

x
pf
k

)

w
kf
k (4.68)

yk = h
(

x
pf
k

)

+ Hk

(

x
pf
k

)

x
kf
k + vk (4.69)

where xk =

[

(

x
pf
k

)T (

x
kf
k

)T
]T

. The superscript “pf” denotes that the state vector

will be estimated by using the particle filter, and the state vector with the “kf”

superscript can be estimated by using any filtering method such as the Kalman filter.

It is assumed that the process noise has Gaussian distribution

wk =







w
pf
k

w
kf
k






∼ N (0,Qk) , Qk =







Q
pf
k Mk

MT
k Q

kf
k






, Q

pf
k > 0 (4.70)

and the measurement noise has zero mean and Gaussian distribution

vk ∼ N (0,Rk) , Rk > 0 (4.71)
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The distribution of the initial state x
kf
0 is Gaussian

x
kf
0 ∼ N

(

0,Pkf
0

)

, P
kf
0 > 0 (4.72)

The purpose of the Rao-Blackwellized filter is also to get the recursive estimation

p(xk|Yk) = p
(

x
pf
k ,xkf

k |Yk

)

(4.73)

The direct approach is to apply the particle filter to the entire state vector as

described in the previous section. However, for the class of system in Eq. (4.67) there

exists a more efficient way. Consider the posterior density p
(

X
pf
k ,xkf

k |Yk

)

. Using

Bayes’s rule this density can be factorized into two parts

p(Xpf
k ,xkf

k |Yk) = p
(

x
kf
k |Xpf

k ,Yk

)

p
(

X
pf
k |Yk

)

(4.74)

where p
(

x
kf
k |Xpf

k ,Yk

)

= N
(

x̂
kf
k|k,P

kf
k|k

)

, the recursive mean and covariance are esti-

mated by the Kalman filter, and the particle filter is used to estimate p
(

X
pf
k |Yk

)

.

For the state-space model in Eq. (4.67), there are two state transition equations

where new samples x
pf
k+1 for the particle filter provide information for the state vector

x
kf
k+1. The Kalman filter equations are adjusted in order to take this information

into consideration when estimating x
kf
k+1. During the time update there is a second

measurement update that comes from the new particle filter samples. The new mea-

surement update is not the same as the first since the process noise is correlated

between x
pf
k+1 and x

kf
k+1

p
(

x
kf
k |Xpf

k ,Yk

)

= N
(

x̂
kf
k|k,P

kf
k|k

)

(4.75)

p
(

x
kf
k |Xpf

k ,Yk

)

= N
(

x̂
kf
k|k,P

kf
k|k

)

(4.76)
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Update:

x̂
kf
k|k = x̂

kf
k|k−1 + Kk

(

yk − h (xp
k) − Hkx̂

kf
k|k−1

)

(4.77)

P
kf
k = P

kf
k|k−1 −Kkf

k S
kf
k

(

Kkf
k

)T

(4.78)

Kkf
k = P

kf
k|k−1H

T
k

(

S
kf
k

)−1

(4.79)

S
kf
k = HkP

kf
k|k−1H

T
k + Rk (4.80)

Prediction:

x̂
kf
k+1|k =

(

F̄
kf
k −Kpf

k F
pf
k

)

x̂
kf
k|k +

(

Dk + Kpf
k

) (

x
pf
k+1 − fpf (xpf

k )
)

+ fpf (xpf
k ) (4.81)

P
kf
k+1|k = F̄

kf
k P

kf
k|k

(

F̄
kf
k

)T

+ G
kf
k Q̄

kf
k

(

G
kf
k

)T

−Kpf
k S

pf
k

(

Kpf
k

)T

(4.82)

Kpf
k = F̄

kf
k P

kf
k|k

(

F
pf
k

)T (

S
pf
k

)−1

(4.83)

S
pf
k = G

pf
k Q

pf
k

(

G
pf
k

)T

+ F
pf
k P

kf
k|k

(

F
pf
k

)T

(4.84)

where

Dk = G
kf
k MT

k

(

G
pf
k Q

pf
k

)−1

(4.85)

F̄
kf
k = F

kf
k − DkF

pf
k (4.86)

Q̄
kf
k = Q

kf
k − MT

k

(

Q
pf
k

)−1

Mk (4.87)

The second density on the right hand side in Eq. (4.74) can be expressed recur-

sively by using Bayes’s rule repeatedly

p
(

X
pf
k |Yk

)

=
p(yk|Xpf

k ,Yk−1)p(xpf
k |Xpf

k−1,Yk−1)

p(yk|Yk−1)
p(Xpf

k−1|Yk−1) (4.88)

Since the system and measurement equations for x
pf
k are nonlinear, the estima-

tion in Eq. (4.88) is achieved by using the particle filter.75 The distributions for
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p(yk|Xpf
k ,Yk−1) and p(xpf

k |Xpf
k−1,Yk−1) are given by

p
(

yk+1|Xpf
k ,Yk

)

= N
(

h(x̂pf
k+1) + Hk+1x̂

kf
k+1|k,Hk+1P

kf
k+1|kH

T
k+1 + Rk+1

)

(4.89)

p
(

x
pf
k |Xpf

k ,Yk

)

= N
(

fpf (xpf
k ) + F

pf
k x̂

kf
k+1|k,F

pf
k P

pf
k|k(F

pf
k )T + G

pf
k Q

pf
k (Gpf

k )T
)

(4.90)

For the particle filter algorithm, p(xpf
k |Xpf

k−1,Yk−1) is utilized as an importance

function

q
(

x
pf
k |Xpf

k−1,Yk

)

= p
(

x
pf
k |Xpf

k−1,Yk−1

)

(4.91)

Then, the importance weight is calculated

w
(

X
pf
k

)

=
p(yk|Xpf

k ,Yk−1)

ρ
(

X
pf
k−1

) w
(

X
pf
k−1

)

(4.92)

For the update procedure, the resampling weight ρ(Xpf
k−1) is chosen75

ρ
(

X
pf
k−1

)

= p
(

yk|
{

X
pf
k−1, x̂

pf
k|k−1

}

,Yk−1

)

w
(

X
pf
k−1

)

(4.93)

where x̂
pf
k|k−1 is a prediction based on X

pf
k−1 and is typically given by

x̂
pf
k|k−1 = fpf

(

x̂
pf
k−1

)

+ F
pf
k−1x̂

pf
k−1|k−1 (4.94)

For each X
pf, (i)
k−1 , the Kalman filter algorithms can be applied to estimates x̂

kf, (i)
k|k

and P
kf, (i)
k|k . Details of the algorithm of the Rao-Blackwellised particle filter are sum-

marized in Table 4.11.

As stated in the beginning of this section, the purpose of Rao-Blackwellization

is to reduce the number of particles for a given estimation precision. This approach

reduces the computational load, while the accuracy can be sustained.

An important special case is when the matrices F
pf
k , G

pf
k , F

kf
k , G

kf
k , and Hk are

independent of x
pf
k . In this case the estimates of x̂

pf
k , x

kf
k and P̂

pf
k are straightfor-
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Table 4.11 Rao-Blackwellized Particle Filter (RBPF) Algorithm

Initialization: At time k = 0

1. For i = 1, · · · , N , sample x
pf, (i)
0 ∼ p

(

x
pf
0

)

and set
{

x̂
kf, (i)
0 ,P

kf, (i)
0

}

=
{

0,Pkf
0

}

2. For each i = 1, · · · , N , calculate the weights w
(i)
0 = p

(

y0|xpf, (i)
0

)

and normalize w̄
(i)
0 =

w
(i)
0

∑

j

w
(j)
0

3. For each i = 1, · · · , N , compute
{

x̂
kf, (i)
0|0 ,P

kf, (i)
0|0

}

Prediction and Update: For each time k ≥ 1

1. For each i = 1, · · · , N , calculate ρ
(i)
k−1 = p

(

yk|
{

X
pf, (i)
k−1 , x̂

pf, (i)
k|k−1

}

,Yk−1

)

w̄
(i)
k−1 with

x̂
pf, (i)
k|k−1 = fpf

(

x̂
pf, (i)
k−1

)

+ F
pf
k−1x̂

pf, (i)
k−1|k−1

and normalize ρ̄
(i)
k−1 =

ρ
(i)
k−1

∑

j

ρ
(j)
k−1

2. If resampling (Neff < Nth), apply one of the resampling procedures described in

Section 3.2.2 on
{

ρ̄
(i)
k−1

}N

i=1

Otherwise ρ
(i)
k−1 = 1

N

3. For i = 1, · · · , N , sample x
pf, (i)
k ∼ p

(

x
pf
k |Xpf, (i)

k|k−1,Yk−1

)

4. For each i = 1, · · · , N , compute
{

x̂
kf, (i)
k|k−1,P

kf, (i)
k|k−1

}

5. For each i = 1, · · · , N , update w
(i)
k = p

(

yk|Xpf, (i)
k ,Yk−1

)

w̄
(i)
k−1

ρ̄
(i)
k−1

and normalize w̄
(i)
k =

w
(i)
k

∑

j

w
(j)
k

6. For each i = 1, · · · , N , compute
{

x̂
kf, (i)
k|k ,P

kf, (i)
k|k

}
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ward75

x̂
pf
k =

N
∑

i=1

w̄
(i)
k x

pf, (i)
k (4.95)

x̂
kf
k ≈

N
∑

i=1

w̄
(i)
k x̂

kf, (i)
k|k (4.96)

P
pf
k =

N
∑

i=1

w̄
(i)
k

(

x̂
pf, (i)
k − x̂

pf
k

) (

x̂
pf, (i)
k − x̂

pf
k

)T

(4.97)

Even though we are interested in the state estimates, we would like to have an estimate

of the covariance for the linear part. It can be shown that the covariance can be

estimated by

P
kf
k|k =

N
∑

i=1

w̄
(i)
k

[

P
kf, (i)
k|k +

(

x̂
kf, (i)
k|k − x̂

kf
k|k

) (

x̂
kf, (i)
k|k − x̂

kf
k|k

)T
]

(4.98)

4.10 Cramér-Rao Bounds for Nonlinear Filtering

For a general optimal nonlinear filtering problem, it was indicated in Chapter 1 that

the optimal recursive Bayesian estimator requires the calculation of the posterior

density of the state vector as a function of time. A closed form analytic solution to

this optimal filtering problem is not tractable in general, and in practical applica-

tions nonlinear filtering is represented by an approximated and suboptimal filtering

algorithm. Despite the absence of a closed form solution, the best achievable error

performance for nonlinear filtering can be assessed by considering lower bounds on

the mean squared error (MSE). Lower bounds give an indication of performance lim-

itations, and it can be used to determine whether imposed performance is realistic or

not.

A commonly used lower bound is the Cramér-Rao lower bound (CRLB), which

is defined to be the inverse of the Fisher information matrix and provides a lower
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bound on the performance of any unbiased estimator of an unknown parameter vec-

tor.47 This provides a powerful tool that has been used to assess the performance

of unbiased estimators of parameters for deterministic dynamical motion.68 In the

case of uncertain dynamical motion the posterior Cramér-Rao lower bound (PCRLB)

has been used to determine performance bounds for recursive Bayesian estimators of

the uncertain target state.83 Determining PCRLBs represents an even more challeng-

ing problem. The reason is that for calculating the Fisher information matrix, it is

necessary to consider both the effect of measurement uncertainty as well as uncer-

tainty in the random state. The key research work for the PCRLBs done in Ref. 83

provides a Riccati-like recursion formula that sequentially determines the PCRLBs

for state estimation for the nonlinear filtering problem. The approach is based on

the discrete-time nonlinear system with additive Gaussian process and measurement

noises. A more general derivation for determining PCRLBs has been proposed for the

discrete-time nonlinear filtering problem,84 where any additive Gaussian assumption

can be avoided.

This chapter starts by defining the CRLB and providing some related back-

ground information. The general recursive PCRLB formulation for nonlinear filtering

problem is described along with special cases (see Ref. 84 for details).

4.10.1 Cramér-Rao Lower Bounds

Let x̂ be an unbiased estimate of a parameter vector x, based on the measurement

vector y. Then the CRLB for the error covariance matrix is defined to be the inverse

of the Fisher information matrix J47

P
∆
= E

{

[x̂ − x] [x̂ − x]T
}

≥ J−1 (4.99)
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where the inequality means that the difference P − J−1 is a positive semi-definite

matrix. If x is an unknown and random parameter vector, the posterior Cramer-Rao

lower bound (PCRLB) is given by47

Jij = E

{

−∂2 log p (y,x)

∂xi∂xj

}

(4.100)

where p (y,x) is the joint probability density function, and the expectation E{·} is

with respect to both x and y. Let ∇ and ∆ be operators of the first and second-order

partial derivatives, respectively

∇X ≡
[

∂

∂X1

, . . . ,
∂

∂Xn

]T

(4.101)

∆Y
X ≡ ∇X∇T

Y (4.102)

Then, Eq. (4.100) can be rewritten by

J = E {−∆x
x log p (y,x)} (4.103)

Since p (y,x) = p (y|x) p (x), it can be easily shown that the information matrix J

can be decomposed into two additive parts84

J = JD + JP (4.104)

where JD represents the information obtained from the measurement data, and JP

represents the a priori information, respectively

JD = E {−∆x
x log p (y|x)} (4.105)

JP = E {−∆x
x log p (x)} (4.106)
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4.10.2 Posterior Cramér-Rao Lower Bounds

Consider the general discrete-time nonlinear system

xk+1 = fk (xk,wk) (4.107)

yk+1 = hk+1 (xk+1,vk+1) (4.108)

where x is the state vector, y is the measurement vector, fk and hk+1 are nonlinear

functions of xk, and wk and vk+1 are independent white noise processes. Suppose

measurements are available at discrete time epochs. The purpose is to calculate the

PCRLB for unbiased estimators x̂k of the state vector xk, given the available sensor

measurement set Yk = [y1,y2, . . . ,yk]

The sequence of the posterior Fisher information matrix for estimating state

vector xk obeys the Riccati-like recursion equation given by

Jk+1 = D22
k − D21

k

(

Jk + D11
k

)−1
D12

k (4.109)

where

D11
k = E

{

−∆xk
xk

log p (xk+1|xk)
}

(4.110)

D12
k = E

{

−∆xk+1
xk

log p (xk+1|xk)
}

=
(

D21
k

)T
(4.111)

D22
k = E

{

−∆xk+1
xk+1

log p (xk+1|xk)
}

+ E
{

−∆xk+1
xk+1

log p (yk+1|xk+1)
}

(4.112)

Note that the initial information matrix J0 can be calculated from the a priori prob-

ability density function p(x0)

J0 = E {−∆x
x log p (x0)} (4.113)
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4.10.3 Posterior Cramér-Rao Lower Bound for Gaussian Noise

In this section the special case where the process and measurement noises are additive

Gaussian is considered.

4.10.3.1 Nonlinear Gaussian Filtering Problem

Suppose that the nonlinear system has the from

xk+1 = fk (xk) + wk (4.114)

yk+1 = hk+1 (xk+1) + vk+1 (4.115)

where wk and vk+1 are independent white Gaussian noise processes with zero mean

and covariance matrices Qk and Rk+1, respectively. Based on these assumptions, it

follows that84

− log p (xk+1|xk) = c1 +
1

2
[xk+1 − fk (xk)]

T
Q−1

k [xk+1 − fk (xk)] (4.116)

− log p (yk+1|xk+1) = c2 +
1

2
[yk+1 − hk+1 (xk+1)]

T
R−1

k+1 [yk+1 − hk+1 (xk+1)] (4.117)

where c1 and c2 are constants. Then, each term in the recursive Fisher information

matrix equation is computed by

D11
k = E

{

[

∇xk
fT
k (xk)

]

Q−1
k

[

∇xk
fT
k (xk)

]T
}

(4.118)

D12
k = −E

{[

∇xk
fT
k (xk)

]

Q−1
k

}

=
(

D21
k

)T
(4.119)

D22
k = Q−1

k + E
{

[

∇xk+1
hT

k+1 (xk+1)
]

R−1
k+1

[

∇xk+1
hT

k+1 (xk+1)
]T

}

(4.120)

The most difficult task in practical application of the posterior CRLB is the calcu-

lation of the expectation operator E{·}. A Monte Carlo integration method can be

applied to implement the theoretical posterior CRLB formulation.
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4.10.3.2 Linear Gaussian Filtering Problem

Suppose that the linear system is given by

xk+1 = Fkxk + wk (4.121)

yk+1 = Hk+1xk+1 + vk+1 (4.122)

where wk and vk+1 are independent white Gaussian noise processes with zero mean

and covariance matrices Qkand Rk+1, respectively. Then the terms in the Fisher

information matrix equation are expressed by84

D11
k = FT

k Q−1
k Fk (4.123)

D12
k = −FT

k Q−1
k =

(

D21
k

)T
(4.124)

D22
k = Q−1

k + HT
k+1R

−1
k+1Hk+1 (4.125)

Substituting these into the recursive Fisher information Jk+1 in Eq. (8.1) yields

Jk+1 = Q−1
k + HT

k+1R
−1
k+1Hk+1 − Q−1

k Fk

(

Jk + FT
k Q−1

k Fk

)−1
FT

k Q−1
k (4.126)

Finally, the recursive Fisher information matrix equation Jk+1 is rewritten by applying

the Matrix inversion lemma84

Jk+1 =
(

Qk + FkJ
−1
k FT

k

)−1
+ HT

k+1R
−1
k+1Hk+1 (4.127)

Note that the PCRLB for the linear Gaussian filtering problem is equivalent to the

error covariance matrix of the Kalman filter.
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CHAPTER V

ADAPTIVE FILTERING

This chapter presents new practical adaptive nonlinear filters for recursive estimation

of the state and parameters of nonlinear systems with unknown noise statistics. The

adaptive nonlinear filters combine adaptive estimation techniques for system noise

statistics with the nonlinear filters that include the unscented Kalman filter and

divided difference filter. The purpose of the integrated filters is to not only compensate

for the nonlinearity effects neglected from linearization by utilizing nonlinear filters,

but also to take into account the system modeling errors by adaptively estimating

the noise statistics and unknown parameters.

5.1 Introduction

The optimality of the linear Kalman filtering depends on the assumptions that the

first and second moment statistics of the observational and system noise are correctly

specified, as well as the a priori information of the state values is properly selected.1

For nonlinear systems, however, it is difficult to obtain optimal filtering algorithms

for a finite dimensional system. The exact nonlinear equations are approximated

for suboptimal nonlinear estimation. Thus, nonlinearities neglected by approxima-

tions of the system equations and methods used for the approximation can affect the

performance of the nonlinear filters. There have been two approaches for approxi-

mated nonlinear filtering algorithms.28 Most nonlinear filters employ a Taylor-series

expansion or interpolation method in order to approximate the nonlinear system

and measurement equations to compute the conditional mean and covariance. An-

other approach is based on the determination of the exact equations satisfied by the

conditional density functions and conditional expectations.28 A recursive filtering
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algorithm can be derived by approximating the conditional density functions. How-

ever, the computational burden for approximating the conditional density functions

increases as the dimension of the state vector increases. The simplest and most widely

used approximate nonlinear filter is the extended Kalman filter (EKF), which works

on the principle that the state distribution is approximated by a Gaussian random

variable, and the state is then propagated through the first-order linearization of the

nonlinear equations. The series approximations can, however, introduce large errors

due to the neglected nonlinearities, which lead to degraded performance of the filters.

For example, the difficulty appears when the noise in the measurements is small or

of the same order compared to the nonlinearity in the measurement functions.85

Recently there have been researches about new efficient nonlinear filtering tech-

niques8,10,12 in which the nonlinear filters generalize elegantly to nonlinear systems

without the burdensome linearization steps. Thus, truncation errors due to lineariza-

tion can be compensated. These filters include the unscented Kalman filter (UKF),

the central difference filter (CDF) and the divided difference filter (DDF), and they

are also called Sigma Point Filters (SPFs) in a unified way.31 Lee and Alfriend31,86

have utilized the nonlinear filters for state and parameter estimation in orbit deter-

mination and prediction, and have shown that the state-of-art new nonlinear filters

lead to faster and accurate convergent solutions. Even though the SPFs can mitigate

the nonlinearity effects and produce accurate estimation of the state variables, the

nonlinear filters can contain errors in the estimation if the statistics of the system

and measurement noise are incorrectly specified due to inaccurate observations or

unmodeled accelerations in the system dynamic model.7

In order to avoid these problems when the filtering algorithms are implemented

process and measurement noise statistics must be selected properly. This procedure

is a process for tuning the filter, which is usually performed manually by a trial
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and error method, and is repeated until the best choice of the noise parameters is

determined. The process of selecting the appropriate values of the noise covariance

matrices is discussed in detail in Maybeck.87 For automated filter tuning, Powell88

has utilized a numerical optimization algorithm, the Downhill Simplex Method, where

the process covariance matrix is determined by minimizing the performance function,

that is simply the sum of the RMS state estimation errors. Even though the tuning

method can compensate for the model errors or uncertainties, it can result in limited

filtering performance because the tuning method provides constant noise variances.

However, in reality the model error characteristics have time-varying values.

To efficiently improve the description of model errors and robustly handle uncer-

tainties of the sensor and process noises, an adaptive filter can be applied such that

the values of the covariance matrices can be estimated so as to produce consistency

between the corresponding residuals and their statistics in the prediction evolution

equations.23 There have been many investigations of adaptive filtering of nonlin-

ear systems in various engineering researches. The method of maximum likelihood

estimation (MMLE) is a technique applied to Kalman Filters. This was originally

proposed by Mehra,23 and variants of the technique have been used in many filtering

applications. Sage and Husa24 presented the development of optimal adaptive Bayes

estimation algorithms for discrete linear filtering with unknown prior statistics. Most

of the adaptive filtering methods are applied to linear systems, but not to nonlinear

systems.

In this work the maximum likelihood estimator of Maybeck87 and the more intu-

itive approach of Myers and Tapley25 are considered as noise adaptation algorithms.

The basic premise of this method is to use the measurement and state residuals to

modify the parameter values for sensor and process noises. Since the methods are

derived based on linear systems a variant algorithm to the nonlinear systems has
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been employed to satisfactorily estimate the system error covariance.89 The modifi-

cation was made by introducing a window scale factor that is decided by a trial-error

method. In this paper, a new procedure is designed where the numerical optimization

technique introduced by Powell is utilized to automatically estimate the scale factor

for the system noise covariance adaptation. The new automated adaptive algorithms

are integrated into the UKF and DDF such that new efficient adaptive sigma point

filtering (ASPF) algorithms are developed. The proposed adaptive nonlinear filters

focus on taking into account the unknown time-varying noise statistics of dynamic

systems, as well as compensating the modeling errors due to the neglected nonlinear-

ity effects and unknown system parameters. For the state and parameter estimation

the joint state estimation method is used by combining the parameters and states

into a vector form.

5.2 Optimality Conditions of Kalman Filter

When the KF is optimal, the innovation sequence υk should be white with zero

mean.90 In other words, this means that if x̂+
k is an optimal estimate, there is no

information left in the innovation sequence to improve the prediction. The a priori

estimate error is defined by the difference between the true and predicted state vectors

ek = xk − x̂−
k (5.1)

Then, the innovation vector is written by

υk = Hek + vk (5.2)
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Substituting the Kalman filtering equations and the system model into Eq. (5.1)

provides

ek = F [I −Kk−1H] ek−1 + wk−1 − FKk−1vk−1 (5.3)

Taking the expectation E {·} of the error vector ek, we have

E {ek} = F [I −Kk−1H] E {ek−1} (5.4)

Thus, E {ek} eventually depends only on E {e0}, which is assumed to be zero. The

expectation of the innovation vector is given by

E {υk} = HE {ek} (5.5)

Thus, the innovation vector has zero mean. If restoring Eq. (5.3) recursively with

time lag j > 0, then the error at any epoch k can be expressed91

ek =

{

k−1
∏

i=k−j

F [I −KiH]

}

ek−j +
k−1
∑

i=k−j

{

k−1
∏

m=i+1

F [I −KmH]

}

wi

−
k−1
∑

i=k−j

{

k−1
∏

m=i+1

F [I −KmH]

}

FKivi

(5.6)

The first component of Eq. (5.6) will attenuate with time if the Kalman gain is

optimal. The second term shows the influence of input noise, and the last term

illustrates the process of measurement noise smoothing. The lag j covariance of the

innovation sequence is given by91

Sj = H

{

k−1
∏

i=k−j+1

F [I −KiH]

}

{

F [I −Kk−jH]P−
k−jH

T − FKk−jR
}

(5.7)

If the Kalman gain Kk−j is optimal, then the term Sj becomes zero, Sj = 0 for

j 6= 0. This means that the innovation sequence is white when the filter is optimal.

Therefore, a well-designed optimal filter will attenuate the initial state errors, smooth

the effects of system and measurement errors, and whiten the innovation sequence.
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5.3 Maybeck’s Estimator

Myers and Tapley25 derived an adaptive filter based on empirical estimators that can

estimate both the covariance matrix and the bias of system model errors. To obtain an

explicit maximum-likelihood estimator it is assumed that the system noise is slowly

varying, but remains stationary over N time steps. The process noise adaptation

algorithm is expressed as follows

Q̂k =
1

N

k
∑

i=k−N+1

{

KT
j υjυ

T
j KT

j −
[

FPi−1F
T − P+

i

]}

(5.8)

where υk is the innovation vector, and Q̂0 must be specified.

Maybeck used a maximum-likelihood estimator for designing an adaptive filter

that can estimate the system errors covariance matrix. He considered that the noise

was essentially stationary over N sample periods, but he considered only the case of

an unbiased system noise, which is the difference between the Maybeck and Myers

methods. It has been shown that they are identical under Maybeck’s assumptions

that the bias is known and equal to zero.91 In this case, the unbiased estimator of

MT becomes

Q̂k =
1

N

k
∑

i=k−N+1

{

qs,i q
T
s,i −

[

FPi−1F
T − P+

i

]}

(5.9)

where the term qs,i is given by

qs,i ≡ x̂+
i − x̂−

i = Ki

[

yi − Hx̂−
i

]

(5.10)

This can be written in terms of the innovation vector

qs,i = Kiυi (5.11)

which leads to the same equation of the process noise adaptive algorithms in Eq. (5.8).

Note that the adaptive Kalman filter algorithms are based on linear systems, but
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not nonlinear systems, thus it can’t be applied to the nonlinear systems directly.

Therefore, for nonlinear system application modification is necessary.

5.4 Automated Adaptive Nonlinear Estimator

Most of the adaptive Kalman filters23,25,87 have been derived based on linear dynamic

systems, but there are only a few publications about adaptive filtering for nonlinear

system.27,89 The routines presented in this thesis are nonlinear adaptive algorithms,

which are modified from the linear adaptive algorithm in order to integrate the sigma

point filters to nonlinear systems. A new procedure is introduced to estimate the sys-

tem error covariance with a numerical optimization method. In principle, an adaptive

filter can estimate both the system and the observational errors. However, adaptive

filtering algorithms that try to update both the observational noise and the system

noise are not robust, since it is not easy to distinguish between errors in Qk and

Rk.
91 Usually, the measurement noise statistics are relatively well known compared

to the system model error. In this paper, the adaptive estimation of the process noise

covariance Qk is considered.

5.4.1 Process Noise Covariance Estimation

The modified adaptive filtering algorithm by Busse89 is based on Maybeck’s adapta-

tion algorithm, and requires a proper selection of a window size that controls the level

of the variance update. In this section, the algorithms are briefly reviewed. From

Maybeck’s unbiased adaptation algorithm in Eq. (5.9), the observation of Qk was

rewritten as the difference between the state estimate before and after the measure-

ment update

Q∗ = ∆xk∆xT
k + P−

k − P+
k − Q̂−

k (5.12)
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where the term ∆xk ≡ x̂+
k − x̂−

k = qs,k is the state residual and represents the

difference between the state estimate before and after the measurement update. Q̂−
k

is the current expected process noise covariance. If the residual has a large value,

then it indicates that the future state prediction is not accurate enough. The first

term in the above equation is a measure of the state residual, and the next term is a

measure of the correction in the expected change of covariance. It is rewritten and

becomes obvious conceptually

Q∗ = ∆xk∆xT
k −

[

P+
k −

(

P−
k − Q̂−

k

)]

(5.13)

The equation shows that Q∗ is the residual minus the change in the a posteriori

covariances between two consecutive time steps.89 The measure of the process noise

Q∗ is then combined with the current estimate Q̂−
k in a moving average

Q̂+
k = Q̂−

k +
1

γ

(

Q∗ − Q̂−
k

)

(5.14)

where γ is the window size that controls the level of expected update change and needs

to be selected through a trial-error method. If γ is small, then each update is weighted

heavily, but if γ is large, then each update has a small effect. The performance of the

adaptive routine is very sensitive to the selection of γ, and thus should be selected for

each application. Now, the discrete formulation is then placed into continuous form.

That is, if

Q̂+
k =







Qxx Qxẋ

Qẋx Qẋẋ






(5.15)

then, diagonalization of the process noise covariance of the velocity part can be made

qẋẋ = diag(Qẋẋ)
1

∆t
(5.16)
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Now redefine the estimated process noise covariance matrix

Q̂ =







0 0

0 qẋẋ






(5.17)

This updated estimate Q̂ is used for the state propagation between time-step k and

k + 1. Note that the proposed adaptive algorithms highly depend on the selection

of the weight factor γ. In order to provide the consistent, optimal performance of

the proposed adaptive filter, we suggest an efficient calibration method in the next

section.

5.4.2 Automated Calculation of Scale Factor

Now the question that comes to mind is how the scaling factor can be determined.

The easiest way for deciding the scale factor is a manual trial-error process that is

continued until the filter produces sub-optimal or near-optimal estimation results.

However, this method costs too much in time and effort. An alternative is to use

existing the numerical optimization algorithms that are well documented in several

programming languages (See Ref. 92 for details).92 In this thesis, a derivative-free

numerical optimization technique is utilized for the automated calibration of the

weight scale factor. Powell88 has used the numerical optimization method called the

Downhill Simplex algorithm in order to tune the parameters of the process noise

covariance. However, the method introduced here to decide the scale factor for the

nonlinear adaptive estimator requires only function evaluations, and does not require

derivatives such as the Jacobian or Hessian matrix. The advantage of the numerical

method over the manual tuning is that it is an automated tool and designed to save

time and effort for filter designers.

In order to apply the numerical optimization algorithm to the filter tuning, the
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Fig. 5.1 Downhill Simplex Algorithm for Automated Parameter Tuning

tuning problem must be expressed as a numerical optimization or function minimiza-

tion problem. Powell used the objective function in terms of the RMS of the state

estimation errors that is the difference between the true and estimated values. The

performance index Jk is used for the Monte Carlo performance simulation for each

kth Monte Carlo samples. Then, the overall performance index J is obtained by
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calculating the RMS of the Jk values.

Jk(q11, . . . , qnn) =

[

1

N

N
∑

i=1

{

(x̂1,i − x1,i)
2 + · · · + (x̂n,i − xn,i)

2}

]1/2

(5.18)

where (q11, q22, . . . , qnn) are the parameters for representing the process covariance

matrix, N is the total number of observation data points, and n is the dimension of

the state vector.

The Downhill Simplex method algorithm is robust, but is best suited for a prob-

lem whose computational burden is small.92 In this thesis, however, the numerical

Downhill Simplex method automatically calculates only a scalar weight factor, there-

fore the load of numerical computation can be reduced. The objective function is

constructed by the innovation vector concept instead of the estimate error, which is

not practical in a real application due to the absence of the true state information.

Jk(γ) =

[

1

N

N
∑

i=1

{

υ2
1,i + υ2

2,i + · · · + υ2
m,i

}

]1/2

(5.19)

where γ is the weight factor, and m is the dimension of the observation vector. Note

that the transient estimation result of the filtering algorithms contains large state

estimation errors or the innovation errors, then the cost function can omit the first

part of the transient estimation. Fig. 5.1 summarizes the procedures of the Simplex

algorithms.

5.5 Adaptive Unscented Kalman Filter

This section illustrates the integration of the proposed adaptive filtering algorithms

with the sigma point filters (SPFs) such as the UKF and DDF for more enhanced

nonlinear filtering algorithms. Thus, the adaptive sigma point filters (ASPFs) lead to

the adaptive unscented Kalman filter (AUKF) and the adaptive divided difference filter
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(ADDF). The objective of the integrated adaptive nonlinear filters focus is to take into

account the incorrect time-varying noise statistics of dynamical systems, as well as to

compensate the nonlinearity effects neglected by linearization. In Fig. 5.2 the overall

concept of the adaptive sigma point filter is depicted for intuitive understanding.

5.5.1 Unscented Kalman Filter Algorithms

The unscented Kalman filter algorithms are developed for discrete-time nonlinear

equations

xk+1 = f(xk,wk, k)

yk = h(xk,vk, k)

(5.20)

where xk ∈ ℜn×1 is the n × 1 state vector, yk ∈ ℜm×1 is the m × 1 observation

vector. wk ∈ ℜq×1 is the q × 1 state noise process vector and vk ∈ ℜr×1 is the r × 1

measurement noise vector. It is assumed that the noise vectors are uncorrelated white

Gaussian processes with expected means and covariance processes with unknown

covariances given by Qk and Rk, respectively. The original state vector is redefined

as an augmented state vector along with noise variables and an augmented covariance
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matrix on the diagonal is reconstructed

xa
k =







xk

wk






,Pa

k =







Pk Pxw
k

Pxw
k Qk






(5.21)

where Pxw
k is the correlation between the process noise and the error in the state

estimate. Then, the set of {2(n+q)+1} sigma points X a
k ∈ ℜ{2(n+q)+1} is constructed

X a
k =

[

x̂a
k x̂a

k +
√

(n + q + λ)Pa
k x̂a

k −
√

(n + q + λ)Pa
k

]

(5.22)

where λ = α2(n + κ) − n includes scaling parameters. α controls the size of the

sigma point distribution, should be a small number (0 ≤ α ≤ 1), and provides an

extra degree of freedom to fine tune the higher order moments κ = 3− n. As for the

state propagation step, the predicted state vector x̂−
k+1 and its predicted covariance

P−
k+1 are computed using the propagated sigma point vectors.

X x
i, k+1 = f(X x

i, k, Xw
i, k, k ) (5.23)

x̂−
k+1 =

2(n+q)
∑

i=0

W
(m)
i X x

i, k+1 (5.24)

P−
k+1 =

2(n+q)
∑

i=0

W
(c)
i {X x

i, k+1 − x̂−
k+1}{X x

i, k+1 − x̂−
k+1}T (5.25)

where X x
i, k is a sigma point vector of the first n elements of X a

i, k, and Xw
i, k is a sigma

point vector of the next q elements of X a
i, k, respectively.

Similarly, the predicted observation vector ŷ−
k+1 and its predicted covariance P

yy
k+1

are also calculated as

Yi, k+1 = h(X x
i, k+1, k + 1 ) (5.26)

ŷ−
k+1 =

2(n+q)
∑

i=0

W
(m)
i Yi, k+1 (5.27)
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P
yy
k+1 =

2(n+q)
∑

i=0

W
(c)
i {Yi, k+1 − ŷ−

k+1}{Yi, k+1 − ŷ−
k+1}T (5.28)

where W
(m)
i is the weight for the mean and W

(c)
i is the weight for the covariance,

respectively

W
(m)
i =











λ/n + λ i = 0

1/{2(n + λ)} i = 1, . . . , 2n
(5.29)

W
(c)
i =











λ/(n + λ) + (1 − α2 + β) i = 0

1/{2(n + λ)} i = 1, . . . , 2n
(5.30)

β is a third parameter that makes further higher order effects to be incorporated by

adding the weighting of the zeroth sigma point of the calculation of the covariance,

and β = 2 is the optimal for Gaussian distributions. The filter gain Kk+1 is computed

by

Kk+1 = P
xy
k+1(P

υυ
k+1)

−1 (5.31)

and the cross correlation matrix is determined

P
xy
k+1 =

2(n+q)
∑

i=0

W
(c)
i {X x

i,k+1 − x̂−
k+1}{Yi, k+1 − ŷ−

k+1}T (5.32)

The estimated state vector x̂+
k+1 and updated covariance P+

k+1 are given by

P+
k+1 = P−

k+1 −Kk+1P
υυ
k+1KT

k+1 (5.33)

x̂+
k+1 = x̂−

k+1 + Kk+1υk+1 (5.34)
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5.5.2 Adaptive Unscented Kalman Filtering

Note that for implementing the proposed adaptation algorithm into the sigma point

filters the expression for the process noise covariance matrix in the predicted covari-

ance equation should be explicit. However, the process noise covariance term in the

UKF algorithm is implicitly expressed in the predicted covariance equation. Thus,

the noise adaptive estimator can’t be directly implemented.

There are two approaches that can integrate the proposed adaptive algorithm into

the unscented Kalman filtering. The first method is to make the assumption that for

the special case both the process and measurement noises are purely additive. Then,

the sigma point vector Xw
k for the process noise is not necessary, and the sigma point

vector reduces to X a
k = X x

k ≡ Xk. Thus, the process noise covariance can be expressed

explicitly in the predicted covariance equation as

P−
k+1 =

2n
∑

i=0

W
(c)
i

[

X
i,k+1

− x̂−
k+1

] [

X
i,k+1

− x̂−
k+1

]T

+ Q̂k (5.35)

Now, the noise adaptation estimator can be directly applied to formulate the adaptive

unscented Kalman filter algorithms. The second method is an implicit one where the

sigma point sampling procedure is utilized. If the process noise is estimated from

the noise adaptation algorithm in Eq. (5.17), the augmented covariance matrix is

reconstructed at each update, and thus a new sigma point vector is generated, the

resampling of the sigma points. Finally, the newly resampled sigma point vector

is provided for the prediction and update processes at each measurement update.

The overall procedure of the implicit adaptive unscented Kalman filter algorithm is

depicted in Fig. 5.3.
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5.6 Adaptive Divided Difference Filter

In this section, the proposed noise estimator algorithm is combined with the divided

difference filter (DDF)12 such that the integrated filtering algorithm leads to the

adaptive divided difference filter (ADDF).

5.6.1 Divided Difference Filter Algorithms

The first-order divided difference filter (DDF1) is illustrated for general discrete-

time nonlinear equations in Eq.(5.20) with the assumption that the noise vectors are

uncorrelated white Gaussian process with unknown expected means and covariances

E {wk} = w̄k, E
{

[wk − w̄k] [wk − w̄k]
T
}

= Qk

E {vk} = v̄k, E
{

[vk − v̄k ] [vk − v̄k ]T
}

= Rk

(5.36)

First, the square Cholesky factorizations are introduced

P0 = SxS
T
x , Qk = SwST

w (5.37)

The predicted state vector x̂−
k+1 and predicted state covariance P−

k+1 are determined

by

x̂−
k+1 = f (x̂k, w̄k, k) (5.38)

P−
k+1 = S−

x (k + 1)
(

S−
x (k + 1)

)T
(5.39)

where S−
x (k + 1) =

[

S
(1)
xx̂ (k + 1) S

(1)
xw(k + 1)

]

and each term is given by

S
(1)
xx̂ (k + 1) =

1

2h
{fi (x̂k + hsx,j, w̄k) − fi (x̂k − hsx,j, w̄k)}

S(1)
xw(k + 1) =

1

2h
{fi (x̂k, w̄k + hsw,j) − fi (x̂k, w̄k − hsw,j)}

(5.40)
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where sx,j is the jth column of Sx and sw,j is the jth column of Sw obtained from

Eq.(5.37), respectively.

Next, the square Cholesky factorizations are performed again

P−
k+1 = S−

xS−T
x , R = SvS

T
v (5.41)

The predicted observation vector ŷ−
k+1 and its predicted covariance are calculated in

a similar fashion

ŷ−
k+1 = h

(

x̂−
k+1, v̄k+1, k + 1

)

(5.42)

Pυυ
k+1 = Sυ(k + 1)ST

υ (k + 1) (5.43)

where Sυ(k + 1) =
[

S
(1)
yx̂ (k + 1) S

(1)
yv (k + 1)

]

and each term is given by

S
(1)
yx̂ (k + 1) =

1

2h
{hi(x̂

−
k+1 + hs−x,j, v̄k+1) − hi(x̂

−
k+1 − hs−x,j, v̄k+1)}

S(1)
yv (k + 1) =

1

2h
{hi(x̂

−
k+1, v̄k+1 + hsv,j ) − hi(x̂

−
k+1, v̄k+1 − hsv,j)}

(5.44)

where s−x,j is the jth column of S−
x and sv,j is the jth column of Sv. If the measurement

noise vector is simply additive, then the innovation covariance is computed as

Pυυ
k+1 = S

(1)
yx̂ (k + 1)

(

S
(1)
yx̂ (k + 1)

)T

+ Rk+1 (5.45)

Finally, the cross correlation matrix is determined by

P
xy
k+1 = S−

x (k + 1)
(

S
(1)
yx̂ (k + 1)

)T

(5.46)

Meanwhile, in the update process the filter gain Kk+1, the updated estimate state vec-

tor x̂+
k+1, and updated covariance P+

k+1 can be computed by using the same formulas

used in the UKF.
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5.6.2 Adaptive Divided Difference Filtering

For an adaptive divided difference filter formulation, the method used to combine

the proposed noise estimator with the DDF is to just perform the square Cholesky

factorization sequentially at each time when the estimated covariance is updated from

the noise adaptation. If the estimated covariance matrix is factorized at each time

Q̂k = Sk,wST
k,w (5.47)

then, the factorized value is delivered back to the DDF algorithm leading to an

adaptive filtering structure. The overall procedure for the adaptive divided difference

filter algorithm is depicted in Figure 5.4.
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CHAPTER VI

ADAPTIVE MODEL COMPENSATION

In the previous section, the adaptive filtering methods which compensate for the ef-

fects of nonlinearities and modeling errors in the dynamical model were illustrated. In

this section as alternative adaptive estimation algorithms, two system model compen-

sation techniques are introduced; one is the dynamic model compensation (DMC)93

and the other is the reduced dynamic compensation (RDC).94 Both of these adaptive

model compensation methods are investigated in the following sections.

6.1 Dynamic Model Compensation

The method known as dynamic model compensation (DMC) was introduced by In-

gram and Myers in the early 1970’s.93,95 DMC assumes that the spacecraft is subject

to accelerations that are not included in the filter’s dynamic model, but possess a

random element. These are often referred to as “fictitious” accelerations,94 but in

general, the satellite will be subjected to unmodeled accelerations since any realiz-

able dynamic model must necessarily be a finite approximation of the real dynamic

process, and the values of the parameters used in the model are never perfectly known.

The development of the DMC algorithm in the next section follows the derivations

in Refs. 94 and 95.

6.1.1 Stochastic Acceleration

Assume that the unknown accelerations can be modeled as a first-order, stationary,

Gauss-Markov process

ẇ + βw = u(t) (6.1)
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where w ∈ ℜ3×1 is the vector of accelerations and u(t) ∈ ℜ3×1 is a white, Gaussian

process with a mean of zero and a variance of

qu =













σ2
u,x 0 0

0 σ2
u,y 0

0 0 σ2
u,z













(6.2)

and by virtue of the stationary assumption, β is a constant matrix

β =













βx 0 0

0 βy 0

0 0 βz













=













1
τx

0 0

0 1
τy

0

0 0 1
τz













(6.3)

where τi is the correlation time for a given axis. Eq. (6.1) for a scalar case (one axis)

is a first-order linear differential equation, and its solution is

w(t) = w0e
−β(t−t0) + e−βt

∫ t

t0
eβT u(T )dT

= w0e
−β(t−t0) +

∫ t

t0
e−β(t−T )u(T )dT

= w0e
−β(t−t0) + L(t)

(6.4)

The stochastic integral L(t) can’t be solved by usual methods, but it can be evaluated

statistically. The mean of L(t) is zero since the mean of u(t) is zero and its variance

is obtained by

E
{

L2(t)
}

= E

{∫ t

t0

∫ T

t0

e−β(2t−T−s)u(T )u(s)dTds

}

(6.5)

Expectation and integration are commutative linear operators,93 so the expectation

can be taken inside the integrals

E
{

L2(t)
}

=

∫ t

t0

∫ T

t0

e−β(2t−T−s)E {u(T )u(s)} dTds (6.6)
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Since u(t) is uncorrelated in time

E {u(T )u(s)} = σ2
u δ(T − s) (6.7)

where σ2
u is the variance of u(t), and δ(T − s) is the Dirac delta function where

δ(T − s) = 0 everywhere except at T = s. Thus, the integral of Eq. (6.6) is non-zero

only at T = s, and it reduces to

E
{

L2(t)
}

=

∫ t

t0

e−2β(t−T )σ2
udT (6.8)

If u(t) is stationary over the interval, σu is constant and the result becomes

E {L2(t)} = σ2
u

2β

(

1 − e−2β(t−t0)
)

= τσ2
u

2

(

1 − e−2(t−t0)/τ
)

(6.9)

where τ is the correlation time.

L(t) is assumed to be a Gaussian process. The probability density function of

a Gaussian process is completely defined by its mean and variance. Therefore, if a

process can be found with the same mean and variance as L(t), it will be an equivalent

process. A discrete process, applicable to the discrete state estimation filter, is given

by95

L(t) ≈ Lk = uk

√

τσ2
u

2
(1 − e−2(t−t0)/τ ) (6.10)

where uk is a discrete, Gaussian random sequence with mean and variance. The mean

and variance are given by

E {uk} = 0, E {ukuj} = δk,j (6.11)

where δk,j is the Kronecker delta function. If the time interval ∆t = t − t0 is short

enough such that u(t) can reasonably be assumed constant over the interval, Lk will

serve as a good approximation of L(t). Finally, the stochastic acceleration including
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both deterministic and purely random parts is given by

w(t) = w0e
−(t−t0)/τ + uk

√

τσ2
u

2
(1 − e−2(t−t0)/τ ) (6.12)

The parameters σu and τ determine the characteristics of the acceleration function.

As τ → ∞, w(t) becomes a constant, whereas if τ → 0, w(t) becomes a purely random

process (white noise).

6.1.2 Filtering Model

6.1.2.1 State Transition Matrix

Assume that the true real-world filter dynamic model has the following form

ṙ = v

v̇ = ap(r,v, t) + w(t)

ẇ = −βw + u(t)

(6.13)

where r = [x, y, z]T and v = [ẋ, ẏ, ż]T are the position and velocity vectors, re-

spectively, and ap is an acceleration function due to the two-body attraction, drag

perturbation, and harmonic geopotential perturbing acceleration up to J2. w(t) =

[wx, wy, wz]
T represents three unknown stochastic acceleration terms. u(t) is a white,

Gaussian process noise which presents the effects of model errors with the properties

E {u(t)} = 0, E
{

u(t)uT (s)
}

= Qu(t)δ(t − s) (6.14)

Then, the vector/matrix equation in terms of the force vector f , which is the

time derivative of the state vector, can be written as

ẋ = f (x, t) + u(t) (6.15)
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where x is the basic state vector for the filtering algorithm defined by

x = [x, y, z, ẋ, ẏ, ż, wx, wy, wz]
T ∈ ℜ9×1 (6.16)

Now, the nominal or filter dynamic model in a vector/matrix form is represented

by

˙̂x = f (x̂, t) (6.17)

The expression for the state sensitivity matrix F, defined as the partial derivative

of the force vector f with respect to the nominal state vector x̂, is calculated from

F =

[

∂f

∂x

]

x=x̂

=





















































∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂z

∂ẋ
∂ẋ

∂ẋ
∂ẏ

∂ẋ
∂ż

∂ẋ
∂wx

∂ẋ
∂wy

∂ẋ
∂wz

∂ẏ
∂x

· · ·
∂ż
∂x

· · ·
∂ẍ
∂x

· · ·
∂ÿ
∂x

· · ·
∂z̈
∂

· · ·
∂ẇx

∂x
· · ·

∂ẇy

∂x
· · ·

∂ẇz

∂x
∂ẇz

∂y
∂ẇz

∂z
∂ẇz

∂ẋ
∂ẇz

∂ẏ
∂ẇz

∂ż
∂ẇz

∂wx

∂ẇz

∂wy

∂ẇz

∂wz





















































x=x̂

(6.18)

where the partial derivative components with respect to the position and velocity

components are listed in Appendix A. The state transition matrix Φ is obtained by

integrating the following matrix differential equation

Φ̇(tk) = F(tk, t0)Φ(t0) (6.19)

with the initial condition, Φ(t0) = I. The system of coupled, linear differential

equations represented by Eq. (6.19) is integrated by a fourth-order matrix Runge-

Kutta method.
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The deterministic parts of the stochastic accelerations w(t) contribute terms to

the dynamic expressions for position and velocity. Taking the x-axis as an example,

the velocity component is obtained by integrating the deterministic part of Eq. (6.12)

and the acceleration terms in the filter dynamic model

ẋ(t) = ẋfilter(t) + τwx0

(

1 − e−(t−t0)/τ
)

(6.20)

Integrating the above results produces the position solution

x(t) = xfilter(t) + τ 2wx0

(

e−(t−t0)/τ − 1
)

+ τwx0(t − t0) (6.21)

where the subscript “filter” denotes the position and velocity obtained by integrating

the dynamic acceleration model such as gravity plus drag.

The general definition of a state transition matrix is defined as

Φ(tk, t0) ≡
∂x(tk)

∂x(t0)
(6.22)

Then, the state transition matrix Φ(tk, t0) ∈ ℜ9×9 with respect to the augmented

state vector x̂ takes the form

Φ (tk, t0) =







[Φfilter]6×6 [Φw]6×3

[0]3×6 [M]3×3






(6.23)

where [Φfilter]6×6 is the state transition matrix associated with the 6 states without

the DMC, [Φw]6×3 is the transition matrix of the 6 basic states with respect to the

stochastic accelerations, and [M]3×3 is the state transition matrix of the stochas-

tic acceleration with respect to themselves. Then, each matrix element of Φw and

M can be found analytically by taking the partial derivatives with respect to the
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corresponding state elements

Φw =

































φwp 0 0

0 φwp 0

0 0 φwp

φwv 0 0

0 φwv 0

0 0 φwv

































(6.24)

M =













e−(t−t0)/τ 0 0

0 e−(t−t0)/τ 0

0 0 e−(t−t0)/τ













(6.25)

where

φwp = τ 2
(

e−(t−t0)/τ − 1
)

+ τ (t − t0) (6.26)

φwv = τ
(

1 − e−(t−t0)/τ
)

(6.27)

Now, suppose that the augmented state vector x includes the time correlation

term τ such that

x = [x, y, z, ẋ, ẏ, ż, wx, wy, wz, τ ]T ∈ ℜ10×1 (6.28)

Then, the state transition matrix Φ(tk, t0) ∈ ℜ10×10 has the following expression

Φ (tk, t0) =













[Φfilter]6×6 [Φw]6×3 [Φτ ]6×1

[0]3×6 [M]3×3 [N]3×1

[0]1×6 [0]1×3 11×1













(6.29)

where [Φτ ]6×1 is the transition matrix of the 6 basic states with respect to the corre-

lation time, and [N]3×1 is the transition matrix of the stochastic accelerations with
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respect to the correlation time. Then, each matrix element of Φτ and M can be found

analytically

Φτ =

































2τwx0

(

e−(t−t0)/τ − 1
)

+ wx0(t − t0)
(

e−(t−t0)/τ + 1
)

2τwy0

(

e−(t−t0)/τ − 1
)

+ wy0(t − t0)
(

e−(t−t0)/τ + 1
)

2τwz0

(

e−(t−t0)/τ − 1
)

+ wz0(t − t0)
(

e−(t−t0)/τ + 1
)

wx0

(

e−(t−t0)/τ − 1
)

− wx0

τ
(t − t0)e

−(t−t0)/τ

wy0

(

e−(t−t0)/τ − 1
)

− wy0

τ
(t − t0)e

−(t−t0)/τ

wz0

(

e−(t−t0)/τ − 1
)

− wz0

τ
(t − t0)e

−(t−t0)/τ

































(6.30)

N =













wx0

τ2 (t − t0)e
−(t−t0)/τ

wy0

τ2 (t − t0)e
−(t−t0)/τ

wz0

τ2 (t − t0)e
−(t−t0)/τ













(6.31)

6.1.2.2 Process Noise Matrix

(1) Position, Velocity, and Acceleration Terms

Now assume that a reference deterministic trajectory x̂−(tk) is obtained from the

propagated state estimate in the filtering propagation procedure and the deviation

from the reference is defined by

δx(tk) = x(tk) − x̂−(tk) (6.32)

where x(tk) is the true state at time tk. Then, the stochastic discrete-time linear

dynamics from a linear error theory forced by process noise η(tk) can be written by

δx(tk) = Φ(tk, t0)δx(t0) + η(tk) (6.33)

where

δx(t0) = x(t0) − x̂+(t0) (6.34)
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x(t0) is the true state at time t0, and x̂+(t0) is the estimate of the true state at time

t0, conditioned on observations through t0.

The definition of the propagated covariance matrix P(tk) at the current time tk

conditioned on observations through t0 is defined by

P(tk)
∆
= E

{

[

x(tk) − x̂−(tk)
] [

x(tk) − x̂−(tk)
]T

}

= E
{

δx(tk) (δx(tk))
T
}

(6.35)

Substituting Eq. (6.33) into Eq. (6.35) and expanding the products results in

P(tk) = Φ(tk, t0)E
{

δx(t0)δx
T (t0)

}

ΦT (tk, t0) + E
{

η(tk)η
T (tk)

}

+

Φ(tk, t0)E
{

δx(t0)η
T (tk)

}

+ E
{

η(tk)δx
T (t0)

}

ΦT (tk, t0)
(6.36)

Since the δx(tk) and η(tk) are assumed to be uncorrelated

E
{

δx(t0)η
T (tk)

}

= E
{

η(tk)δx
T (t0)

}

= 0 (6.37)

Finally, the covariance equation becomes

P(tk) = Φ(tk, t0)P(t0)Φ
T (tk, t0) + Q(tk) (6.38)

where

P (t0) ≡ E
{

δx(t0)δx
T (t0)

}

, Q(tk) ≡ E
{

η(tk)η
T (tk)

}

(6.39)

Note that the component of η(tk) due to the stochastic acceleration function has

already been determined in Eq. (6.10). Translating this into vector form gives

Lk =













ux,k

√

τσ2
u,x

2
(1 − e−2(t−t0)/τ )

uy,k

√

τσ2
u,y

2
(1 − e−2(t−t0)/τ )

uz,k

√

τσ2
u,z

2
(1 − e−2(t−t0)/τ )













(6.40)

The position and velocity components of η(tk) can be found by using the integral



152

expressions for position and velocity95

r(t) = r(t0) + v(t0)(t − t0) +

t
∫

t0

a(T ) (t − T ) dT (6.41)

v(t) = v(t0) +

t
∫

t0

a(T )dT (6.42)

The stochastic acceleration function w(t) consists of a deterministic component which

is modeled in the filter, and a random component Lk which is not modeled in the

filter but contributes to η(tk). The total acceleration can be expressed by

a(t) = am(t) + Lk(t) (6.43)

where am are the accelerations in the filter model consisting of the perturbing ac-

celeration ap and the deterministic part of the stochastic acceleration solution w(t).

Substituting this into the integral position and velocity equations gives

r(t) = r(t0) + v(t0)(t − t0) +

t
∫

t0

am(T ) (t − T ) dT +

t
∫

t0

Lk(T ) (t − T ) dT (6.44)

v(t) = v(t0) +

t
∫

t0

am(T )dT +

t
∫

t0

Lk(T )dT (6.45)

The position and velocity components of η(tk) are identified as the stochastic integral

terms in these two equations. The total expression for η(tk) is obtained by

η(tk) =

















t
∫

t0

Lk(T )(t − T )dT

t
∫

t0

Lk(T )dT

Lk(T )

















(6.46)

Note that each of the components in these expression is a 3×1 vector, so the dimension

of η(tk) is 9×1. If Lk is constant over the integral ∆t = t−t0, the position component
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becomes

t
∫

t0

Lk(T )(t − T )dT = Lk

[

tT − T 2

2

]t

t0

= Lk

[(

t2 − t2

2

)

−
(

tt0 −
t20
2

)]

(6.47)

= Lk

[

t2

2
− tt0 +

t20
2

]

= Lk

[

(t − t0)
2

2

]

(6.48)

= Lk
∆t2

2
(6.49)

Thus, the expression of η(tk) is approximated by

η(tk) =













∆t2/2Lk

∆tLk

Lk













(6.50)

Note that the variance of any particular component of Lk is given by Eq. (6.9)

and the mean of Lk is zero. Assuming that the components of u(t) are uncorrelated

and all have equal statistics, the variance of Lk is defined as E
{

LkL
T
k

} ∆
= [Λ] and

can be written as

[Λ] =













τσ2
u

2

(

1 − e−2(t−t0)/τ
)

0 0

0 τσ2
u

2

(

1 − e−2(t−t0)/τ
)

0

0 0 τσ2
u

2

(

1 − e−2(t−t0)/τ
)













(6.51)

Finally, the discrete-time process noise covariance matrix Qk for position, velocity,

and stochastic acceleration can be constructed

Qk = E
{

η(tk)η(tk)
T
}

=













[

∆t4

4
Λ

] [

∆t3

2
Λ

] [

∆t2

2
Λ

]

[

∆t3

2
Λ

]

[∆t2Λ] [∆tΛ]
[

∆t2

2
Λ

]

[∆tΛ] [Λ]













(6.52)

The presence of the correlation time τ , which is estimated in the state vector, plays

a role of adaptation in dynamic model compensation. Thus, the dynamic model
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compensation is interpreted as an adaptive filtering method.

(2) Correlation Time Term

The correlation time is modeled as a constant plus a random walk term so that

its time derivative is simply equal to a random noise process

τ̇ = uτ (t) (6.53)

where uτ (t) is a zero mean, uncorrelated, stationary, Gaussian process with variance

σ2
τ . The solution is given by

τ(t) = τ0 +

t
∫

t0

uτ (T )dT (6.54)

The stochastic integral is defined

M(t) ≡
t

∫

t0

uτ (T )dT (6.55)

where M(t) has a zero mean since uτ (t) is zero mean, and its variance is computed

by

E {M2(t)} = E{
t
∫

t0

t
∫

t0

uτ (T )uτ (s)dTds}

=
t
∫

t0

t
∫

t0

E {uτ (T )uτ (s)} dTds

(6.56)

Since uτ (t) is uncorrelated

E {uτ (T )uτ (s)} = σ2
τδ(T − s) (6.57)

where δ(T − s) is the Dirac delta function. The integral reduces to

E
{

M2(t)
}

=

t
∫

t0

σ2
τdT (6.58)
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Since uτ (t) is a stationary process, στ is constant, and thus the integral becomes

E
{

M2(t)
}

= σ2
τ (t − t0) (6.59)

A discrete process with the same mean and variance is given by

Mk = uτ, kστ

√

(t − t0) (6.60)

where uτ, k is a discrete Gaussian sequence with

E {uτ, k} = 0, E {uτ, kuτ, j} = δk, j (6.61)

δk, j is the Kronecker delta function. The value of uτ, k is assumed constant over the

interval ∆t = t − t0, which is short enough for this to be a reasonable assumption,

Mk will be a good approximation of M(t). The stochastic model of the correlation

time is calculated by

τ(t) = τ0 + uτ, kστ

√

(t − t0) (6.62)

The contribution to the process noise matrix is given by the variance

qτ = E
{

M2
k

}

= σ2
τ (t − t0) (6.63)

(3) Complete Form of the Process Noise Matrix

The discrete-time process noise covariance matrix Qk ∈ ℜ10×10 for the process

noise terms due to position, velocity, stochastic acceleration, and correlation time is
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constructed by

Qk =





















[

∆t4

4
Λ

]

3×3

[

∆t3

2
Λ

]

3×3

[

∆t2

2
Λ

]

3×3
[0]3×1

[

∆t3

2
Λ

]

3×3
[∆t2Λ]3×3 [∆tΛ]3×3 [0]3×1

[

∆t2

2
Λ

]

3×3
[∆tΛ]3×3 [Λ]3×3 [0]3×1

[0]1×3 [0]1×3 [0]1×3 [qτ ]1×1





















(6.64)

where ∆t = t − t0

6.2 Reduced Dynamic Tracking

Several works have employed the model compensation method known as reduced

dynamic tracking (RDT), which is similar to that of the DMC method.94,96 Unfortu-

nately, only a summary of the RDT method is provided, and no specific explanation

and derivation steps are provided. Thus, in this section, we first derive the RDT

formulation and compare with the DMC method for the computational analysis in

detail.

6.2.1 Modified Stochastic Acceleration

Suppose that the unknown accelerations can be modeled as a modified, first-order,

stationary, Gauss-Markov process

ẇ + βw =
√

2β u(t) (6.65)
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where w ∈ ℜ3×1 is the vector of accelerations and u(t) ∈ ℜ3×1 is a white, Gaussian

process with a mean of zero and a variance of

qu =













σ2
u,x 0 0

0 σ2
u,y 0

0 0 σ2
u,z













(6.66)

and β is assumed to have a constant matrix

β =













βx 0 0

0 βy 0

0 0 βz













=













1
τx

0 0

0 1
τy

0

0 0 1
τz













(6.67)

where τi is the correlation time for a given axis. For a scalar case (one axis), a

first-order linear differential equation and its solution is calculated by

w(t) = w0e
−β(t−t0) + e−βt

∫ t

t0
eβT

√
2βu(T )dT

= w0e
−β(t−t0) +

∫ t

t0
e−β(t−T )

√
2βu(T )dT

= w0e
−β(t−t0) + L(t)

(6.68)

The statistical mean of L(t) is zero since the mean of u(t) is zero and its variance is

obtained by

E
{

L2(t)
}

= E

{∫ t

t0

∫ T

t0

e−β(2t−T−s) 2β u(T )u(s)dTds

}

(6.69)

The expectation can be taken inside the integrals and becomes

E
{

L2(t)
}

=

∫ t

t0

∫ T

t0

e−β(2t−T−s) 2β E {u(T )u(s)} dTds (6.70)

Since u(t) is uncorrelated in time

E {u(T )u(s)} = σ2
uδ(T − s) (6.71)
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where σ2
u is the variance of u(t), and δ(T − s) is the Dirac delta function where

δ(T − s) = 0 everywhere except at T = s. Thus, the integral of Eq. (6.70) is non-zero

only at T = s, and it reduces to

E
{

L2(t)
}

=

∫ t

t0

e−2β(t−T ) 2β σ2
udT (6.72)

If u(t) is stationary over the interval, σu is constant and the result becomes

E {L2(t)} = σ2
u

(

1 − e−2β(t−t0)
)

= σ2
u

(

1 − e−2(t−t0)/τ
)

(6.73)

where τ is the correlation time.

If L(t) is assumed to be a Gaussian process, then the process can be approximated

in terms of the same mean and variance as L(t) leading to a discrete process Lk

expressed by

L(t) ≈ Lk = uk

√

σ2
u (1 − e−2(t−t0)/τ ) (6.74)

where uk is a discrete, Gaussian random sequence with mean and variance. The mean

and variance are given by

E {uk} = 0, E {ukuj} = δk,j (6.75)

where δk,j is the Kronecker delta function. If the time interval ∆t = t − t0 is short

enough such that u(t) can reasonably be assumed constant over the interval, Lk will

be a good approximation of L(t). Finally, the stochastic acceleration w(t) including

both deterministic and purely random parts is given by

w(t) = w0e
−(t−t0)/τ + uk

√

σ2
u (1 − e−2(t−t0)/τ ) (6.76)

The parameters σu and τ determine the characteristics of the acceleration function.

Note that RDT can be characterized as a subset of DMC with a simplified,
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modified process noise matrix. The significant difference between the DMC and RDT

lies in the factor τ . First, consider the discrete-time process noise Lk in RDT case, as

τ → ∞ for a finite σi and ∆t, Lk becomes zero, whereas if τ → 0 for a finite σi and ∆t,

Lk reduces to ukσi which is a purely random process. For the DMC case, as τ → ∞

for a finite σi and ∆t, Lk goes to uk

√

σ2
i ∆t. As τ increases and Lk approaches this

limiting value, w(t) loses its dependence on τ . Meanwhile, the deterministic parts of

the acceleration functions are the same for both the DMC and RDT methods. Hence,

in the DMC case, as the correlation time become infinite, the acceleration takes a

random walk characteristic.

6.2.2 Filtering Model

6.2.2.1 State Transition Matrix

In this RDC method, it is assumed that the true real-world filter dynamic model

takes the following form

ṙ = v

v̇ = ap(r,v, t)

ẇ = −βw +
√

2β u(t)

(6.77)

where r = [x, y, z]T and v = [ẋ, ẏ, ż]T are the position and velocity vectors, re-

spectively, and ap is an acceleration function due to the two-body attraction, drag

perturbation, and harmonic geopotential perturbing acceleration up to J2. w(t) =

[wx, wy, wz]
T represents three unknown stochastic acceleration terms. u(t) represents

the effects of the model errors and is a white, Gaussian process noise with the prop-

erties

E {u(t)} = 0, E
{

u(t)uT (s)
}

= Qu(t)δ(t − s) (6.78)

Then, the vector/matrix equation in terms of the acceleration vector f , which is
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the time derivative of the state vector, can be expressed by

ẋ = f (x, t) + η(t) (6.79)

where the process noise η(t) is equal to
√

2β u(t), and x is the basic state vector for

the filtering algorithm defined by

x = [x, y, z, ẋ, ẏ, ż, wx, wy, wz]
T ∈ ℜ9×1 (6.80)

The nominal or filter dynamic model in a vector/matrix form is represented by

˙̂x = f (x̂, t) (6.81)

The state transition matrix is calculated by integrating the matrix differential equa-

tion

Φ̇(tk) = F(tk, t0)Φ(t0), Φ(t0) = I (6.82)

where the state sensitivity matrix, F, was obtained in Eq. (6.18).

According to the general definition of a state transition matrix defined in Eq. (6.22),

the state transition matrix Φ(tk, t0) ∈ ℜ9×9 has the form

Φ (tk, t0) =







[Φfilter]6×6 [Φwp]6×3

[0]3×6 [M]3×3






(6.83)

where [Φfilter]6×6 is the state transition matrix associated with the 6 states without

the DMC, [Φwp]6×3 is the transition matrix of the six basic states with respect to the

stochastic accelerations, and [M]3×3 is the state transition matrix of the stochastic

acceleration with respect to themselves and its diagonal matrix component with the

ith element is given by

mi = e−(t−t0)/τi , i = 1, 2, 3 (6.84)
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Note that the state transition matrix given by Eq. (6.83) is analogous to that in

Eq. (6.29) except for the exclusion of the terms associated with the correlation time

τ in the state vector.

6.2.2.2 Process Noise Matrix

(1) Position, Velocity, and Acceleration Terms

The stochastic discrete-time linear dynamics from a linear error theory forced by

process noise η(tk) can be written by

δx(tk) = Φ(tk, t0)δx(t0) + η(tk) (6.85)

and the covariance equation bcomes

P(tk) = Φ(tk, t0)P(t0)Φ
T (tk, t0) + Q(tk) (6.86)

where

P (t0) ≡ E
{

δx(t0)δx
T (t0)

}

, Q(tk) ≡ E
{

η(tk)η
T (tk)

}

(6.87)

The component of η(tk) due to the stochastic acceleration function has already been

determined in Eq. (6.74). Formulating this into vector form leads to

Lk =













ux,k

√

σ2
u,x (1 − e−2(t−t0)/τ )

uy,k

√

σ2
u,y (1 − e−2(t−t0)/τ )

uz,k

√

σ2
u,z (1 − e−2(t−t0)/τ )













(6.88)

where the approximate discrete-time process Lk is a 3 × 1 vector, so the dimension

of η(tk) is 9 × 1. It is noted from the true dynamic model in Eq. (6.77) that in the

RDC algorithm the random part of the stochastic acceleration in Eq. (6.76) does not

affect the position and velocity components. Therefore, the expression of η(tk) in the
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RDC is approximated by

η(tk) =













0

0

Lk













(6.89)

The mean of Lk is zero, and the variance of Lk is given by Eq. (6.73). Assuming

that the components of u(t) are uncorrelated and all have equal statistics, the variance

of Lk is defined as E
{

LkL
T
k

} ∆
= [Λ] computed by

[Λ] =













σ2
u

(

1 − e−2(t−t0)/τ
)

0 0

0 σ2
u

(

1 − e−2(t−t0)/τ
)

0

0 0 σ2
u

(

1 − e−2(t−t0)/τ
)













(6.90)

Finally, the discrete-time process noise covariance matrix Qk for position, velocity,

and stochastic acceleration can be constructed

Qk = E
{

η(tk)η
T (tk)

}

=













[0]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 [0]3×3

[0]3×3 [0]3×3 [Λ] 3×3













(6.91)

RDC can be characterized as a subset of DMC with a simplified process noise

matrix. It can be seen that RDC only provides variance terms for the stochastic

acceleration components in the process noise matrix of Qk. There are no position, and

velocity covariance terms. In some cases, with a sufficiently large σu, this simplified

process noise matrix can play the similar role of the DMC approach in the sense of

adaptive model compensation.97
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CHAPTER VII

APPLICATIONS TO AEROSPACE SYSTEMS

The purpose of this section is to apply the proposed adaptive/nonlinear filtering

methods to the aerospace system problems, real-time satellite orbit estimation and

autonomous navigation. In the real-time satellite orbit estimation, a ground-based

sensor that provides the range, azimuth, and elevation observations is utilized for the

measurements with designated sensor accuracies. In the GPS navigation application,

both static and dynamic solutions are represented by using the GPS pseudorange and

range-rate observations.

7.1 Orbit and Parameter Estimation

7.1.1 Introduction

The evolution of orbit determination began hundreds of years ago with Kepler (c.1610)

and Legendre (c.1750).98 Gauss (c.1810) gave it a firm analytical and computational

basis. During the mid 1800s, Gauss made significant contributions in many areas

of mathematics, including statistics, probability theory and estimation of dynamical

systems. He invented the technique of deterministic least-squares and applied it

to a preliminary orbit determination problem with telescope measurements. Gauss’s

least-squares method is a corner stone for the current computational method for orbit

estimation used by Air Force Space Command (AFSPC).99 Many improvements and

innovations took place between the original foundations and current theories, but the

fundamental principles are the same.

Orbit determination generally consists of two major parts: first, the initial or

preliminary orbit determination from a minimum set of observations, and, secondly,
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performing estimation to improve the orbit using many observations. Initial orbit

determination is defined as the process of determining an initial orbit for a satellite.

The estimation process of taking observations and forming an updated state vector

and covariance matrix is called differential correction. Propagation between tracks is

accomplished by either integrating numerically the differential equations of motion of

the space object, or by applying an analytic solution. In some applications the state

of the earth-orbiting satellite is represented in a compressed, higher-order polynomial

form as alternative to the numerical and analytical techniques.100 The process of pre-

dicting the state of a vehicle is referred to as generating an ephemeris. An ephemeris

for a space object consists of the position and velocity components for the spacecraft

as a function of time. If forces acting on the spacecraft are known and uncertainties

of the forces can be neglected, the motion of the satellite is determined by six pa-

rameters. These six can be the position and velocity or a set of six orbit elements at

some epoch. However, the deterministic models that assume the system’s dynamics

is exact can not describe the motion correctly for highly accurate missions. In fact

any quantity like uncertainty due to the unknown accelerations in drag and/or solar

radiation pressure affects the motion of the spacecraft.101 The unknown acceleration

is modeled as a first-order, stationary Gauss Markov stochastic process. In reality the

orbit determination (OD) with a filtering procedure may be used to obtain precise

estimates of the state of the spacecraft along with calibration of the station clocks,

radar biases and geophysical constants.

In this section, we will provide an illustration of the algorithms of the orbit

estimation process. The underlying approach is stochastic because observations for

orbit determinations include measurement noise in the real world environment. First,

the motion of a spacecraft under perturbing accelerations is investigated and modeled

by a system of differential equations. The state vector is frequently referred to as the
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solution of this system. To predict the state vector of the system in the future we need

to provide the initial conditions for the state vector. For accurate orbit prediction,

the best estimated initial state and covariance values are essential.102,103 For the best

initial estimates the nonlinear least-squares differential correction (NLSDC) method

can be utilized for the first step of the orbit estimation process. However, it requires a

batch of observations from sensors and an a priori state in order to produce best initial

estimates. Instead of the batch least-squares method, a simple and efficient method

that requires only three position vectors, such as Herrick-Gibbs (HG) initial orbit

determination algorithm,104 can be employed to determine the initial orbit. In this

dissertation, an extended HG algorithm is proposed to generate not only the position

and velocity information but also the state covariance matrix. After obtaining the best

estimated state vector and/or covariance matrix, these quantities will be propagated

through numerical integration and linear error propagation method over a desired

time span, respectively. On the other hand, nonlinear sequential estimation methods,

such as the extended Kalman filter, are used for real-time estimation of the spacecraft

orbit. In the next section, we show some practical examples for better appreciation

of these procedures.

7.1.2 Equations of Orbital Motion

In this section, we present the equations of satellite motion subject to perturbations.

The governing equations of motion for a near-earth satellite perturbed by the aspher-

ical earth perturbations and atmospheric drag uncertainty take the following form

with position r and velocity v with their corresponding initial conditions r(to) and

v(to)

ṙ = v

v̇ = − µ
r3r + ag + ad

(7.1)
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Fig. 7.1 Description of the Geometry of Ground-Based Sensor

where ag and ad denote the perturbative acceleration terms due to non-spherical earth

perturbations and atmospheric drag respectively. r and µ stand for the magnitude of

the instantaneous position vector and the product of the gravitational constant and

the mass of the earth, respectively. ECI rectangular coordinates are chosen as the

reference inertial frame for illustration of the equations of motion. In the rectangular

coordinate system in Fig. 7.1, the inertial x axis is the direction of the vernal equinox,

the z axis is the normal to the equatorial plane and positive toward north, and the y

axis completes a right-handed system. It is convenient to introduce a six-dimensional

state vector x defined by

x =







r

v






(7.2)
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then, the equation of motion in Eq. (7.1)can be expressed in the form

ẋ = f (x, t) (7.3)

The solution of the first-order differential equations in Eq. (7.3) involves six constants,

which could be the epoch state x(to).

7.1.2.1 Gravitational Perturbation

If the gravitational potential is modeled as a sixth-order aspherical potential func-

tion,105 then it is expressed by

U =
µ

r

[

1 − J2

2

(re

r

)2
(

3 sin2 δ − 1
)

− J3

2

(re

r

)3
(

5 sin3 δ − 3 sin δ
)

− J4

8

(re

r

)4
(

35 sin4 δ − 30 sin2 δ + 3
)

(7.4)

− J5

8

(re

r

)5
(

63 sin5 δ − 70 sin3 δ + 15 sin δ
)

− J6

16

(re

r

)6
(

231 sin6 δ − 315 sin4 δ + 105 sin2 δ − 5
)

]

where Ji is ith harmonic coefficient, µ is the earth’s gravitational parameter, r is

the satellite’s orbital radius, re is the earth’s equatorial radius, δ is the geocentric

latitude. The acceleration due to gravity is derived by the gradient of this potential

function

ag = ∇U =













∂U
∂x

∂U
∂y

∂U
∂z













(7.5)

If only the second spherical harmonic J2 is adopted from Eq. (7.4), the perturba-

tion acceleration ag = agxî + agyĵ + agzk̂ along a set of inertial rectangular coordi-

nates about the mass center of the earth with the position vector r = xî + yĵ + zk̂
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is given by

agx = −3

2
J2

( µ

r2

) (re

r

)2
{

1 − 5
(z

r

)2
}

(x

r

)

(7.6)

agy = −3

2
J2

( µ

r2

) (re

r

)2
{

1 − 5
(z

r

)2
}

(y

r

)

(7.7)

agz = −3

2
J2

( µ

r2

) (re

r

)2
{

3 − 5
(z

r

)2
}

(z

r

)

(7.8)

where re = 6378.165km, J2 = 0.001082616.

Note that in this thesis the perturbing accelerations due to the earth’s oblatenss

J2 in Eqs. (7.6) ∼ (7.8) are used for the filter dynamic model, and the aspherical

perturbing accelerations up to J6 are used to generate the true trajectory of a user

satellite in GPS navigation application.

7.1.2.2 Drag Perturbation

Atmospheric drag causes a significant perturbation on low-earth- orbit (LEO) satel-

lites, and errors in the drag model can lead to significant errors in the orbit determi-

nation and prediction of the satellite motion.104 The instantaneous drag acceleration

due to the atmospheric density is assumed to be opposed to the direction of motion

and proportional to the atmospheric density ρ and the velocity squared

ad = − 1

2B∗ ρ ‖vrel‖ vrel (7.9)

B∗ =
ms

CdAs

(7.10)

where B∗ is the ballistic drag coefficient, Cd is the aerodynamic drag coefficient, ms

is the mass of the satellite, and As is the cross sectional area of the satellite in a plane

normal to the relative velocity vector vrel, which is formulated in a set of inertial
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rectangular coordinates by

vrel =













ẋ + ωey

ẏ − ωex

ż













(7.11)

For the precise calculation of drag accelerations knowledge of the atmospheric

density as a function of position and time is required. Numerous density models

have been developed over the past few decades including the Harris-Priester (HP)

model, the Jacchia-Roberts (JR) model, the Mass Spectrometer/Incoherent Scatter

(MSIS) model, and a simple exponential model (EM).106 The MSIS formulation in-

cludes density perturbations including solar particle flux heating, annual variations,

semi-annual variations, diurnal variations, semi-diurnal variations, and so on. Time-

varying models like the Jacciha-Roberts and MSIS models provide accurate data, but

they demand high computational power. On the other hand, the simplest model is the

exponential model that requires lower computational load. It is used in this disser-

tation to demonstrate the performance of the proposed nonlinear filtering methods.

The same methods can be used with the more complex methods in the real world

applications.

For a reference atmospheric density the simple exponential function can be em-

ployed, and it is assumed to rotate at the same angular rate of the earth ωe, which

leads to

ρ(r) = ρ0 exp

{− (r − r0)

H

}

(7.12)

where ρ0 is the reference density and H is the scale height at the reference radius r0.

Note that the standard exponential density model can be modified to include

perturbing variations. For example, the atmospheric density with the diurnal bulge
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variation is given by106

ρ = ρ0 exp

{− (r − r0)

H

}(

1 + cos4 φ

2

)

(7.13)

where φ is the geocentric angle between the satellite and the apex of the diurnal

bulge.

7.1.2.3 Stochastic Drag Model

There are non-gravitational forces to be taken into consideration for precise orbit de-

termination. The primary one is the atmospheric drag and ignoring this perturbation

for a low-earth orbit will result in significant errors. The uncertainties in the drag

acceleration can be attributed to three separate effects: (a)errors in the atmospheric

density model, (b) errors in the ballistic coefficient or drag coefficient, and (c) errors in

the satellite relative velocity.107 There are methods taking into account the measure-

ment uncertainty expressed by the standard deviation estimate of the orbital element,

and the uncertainty of the force model arising due to density model errors.106,108 For

example, if the atmospheric drag coefficient Cd or ballistic coefficient β∗ is estimated

with the satellite state vector, the errors due to the atmospheric scaling factor can be

compensated.109

In this section, the standard deterministic drag model for an orbiting object

is replaced by a stochastic drag model that has a deterministic part of the drag

acceleration due to the standard exponential form of atmosphere plus a stochastic

acceleration part based on three first-order stationary Gauss-Markov processes.86

The instantaneous acceleration due to drag is assumed to be opposed to the

direction of motion and proportional to the air density ρ and velocity squared, which

is explained in Eq. (7.1). Assume that the unknown accelerations in the drag model
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can be modeled as a first-order, stationary, Gauss-Markov process

ẇ + βw = u(t) (7.14)

where w(t) ∈ ℜ3×1 is the vector of accelerations and u(t) ∈ ℜ3×1 is a zero-mean

white, Gaussian noise vector with the covariance matrix

qu =













σ2
u,1 0 0

0 σ2
u,2 0

0 0 σ2
u,3













(7.15)

By virtue of the stationary assumption, β is a constant matrix

β =













β1 0 0

0 β2 0

0 0 β3













=













1
τ1

0 0

0 1
τ2

0

0 0 1
τ3


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




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where τi is the correlation time. The purpose of the three Gauss-Markov parame-

ters (wi, i = 1, 2, 3) is to represent density perturbations due to orbit period, half

daily, daily, and monthly or seasonal density variations, that are associated with the

selection of the time correlation (τi, i = 1, 2, 3).

The stochastic exponential density ρ(r) is assumed to be modeled as

ρ(r) = ρp exp{−k(r − rp)} +
3

∑

i=1

wi (7.17)

where ρp and rp are the nominal density and distance at perigee, and 1/k is the density

scale height H. The exponential term in the above equation is the deterministic term

of the drag acceleration, whereas the wi are stochastic variables which are the solution

obtain from the ith first-order stationary Gauss-Markov processes. The solution of

the stochastic Gauss-Markov differential equation is composed of the deterministic
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and random parts and is shown in Eq. (6.4). For a scalar case the covariance is

computed by

E{w(t)w(t)T} = σ2
w(t) = w2

oe
−2(t−to)/τ +

τσ2
u

2
[1 − 2e−2(t−to)/τ ] (7.18)

If we choose w2
o = τσ2

u, then

σ2
w(t) = E{w2(t)} =

τσ2
u

2
= constant,∀t ≥ to (7.19)

As τ approaches zero, then w(t) becomes a pure Gaussian random process (white

noise), whereas if τ goes to infinite, w(t) becomes a constant.

7.1.3 Observation and Tracking Model

Orbit estimation of an artificial satellite or space object requires measurements that

are related to the satellite’s position and velocity. These observations are provided

from various sensor systems that measure the properties of some scalar quantity,

such as electromagnetic wave propagation between the transmitter and the receiver.

Modern space-based systems, such as the Global Positioning System (GPS), provide

the position of a GPS receiver. This section illustrates commonly used tracking

systems, which are incorporated into the spacecraft orbit estimation and prediction.110

7.1.3.1 Radar Tracking

To update any existing information of the state vector of a satellite, observations

must be collected. North American Air Defense Command (NORAD), which has

the responsibility for tracking all man-made objects in earth orbit, uses the Space

Surveillance Network (SSN) to collect these observations.98 This network is com-

prised of radar sensors for near-earth tracking (below around 6,000 km altitude) and

optical sensors for deep-space objects (above 6,000 km altitude). These sensors are
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geographically distributed around the world to provide global coverage. Typical ob-

servations from a radar site might include azimuth, elevation, range, and range rate,

while optical sensors usually provide angles only, such as azimuth and elevation or

right ascension and declination. In this study, a radar site (PPE Cape Code NE)

located in Cape Code is used for the observations. Data coming from the sensor site

(a radar site) used in this work for the orbit determination includes range, azimuth,

and elevation.

The general process is to find the sensor site’s position and velocity vectors,

find the satellite’s state vectors relative to the site (ENU), which is referred to the

Topocentric-Horizon coordinates, and then transform the position and velocity vec-

tors into the inertial frame. With Fig. 7.1, we establish the basic equations for simu-

lation of the measurements consisting of object range, elevation, and azimuth relative

to the earth fixed system, the Topocentric-Horizon frame. The basic equations that

govern earth-based tracking are the relationships between the satellite position state,

the sensor position, and the observer-to-satellite range vector. This relationship is

evident from the geometry of the observation of Fig. 7.1.

The inertial position vector r is expressed by

r = R + ρ (7.20)

where ρ is the range vector and R is the radar site vector. The equations relating

the observations to the states are relatively straight forward, but highly non-linear.

The first step is to consider the site’s position described by, for example, declination,

φ, longitude, λ, and radius. Once we know the site’s location, the satellite’s position

and velocity vector in the topocentric coordinate system is easily obtained by the
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following relationship
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where R = ‖R‖, and θ(t) is the local sidereal time (LST) of the observer location

(see Appendix C for details).

From elementary vector algebra, the range is given by

ρ(t) =
√

ρx(t)2 + ρy(t)2 + ρz(t)2 (7.23)

=
√

[x(t) − R cos φ cos θ(t)]2 + [y(t) − R cos φ sin θ(t)]2 + [z(t) − R sin φ]2

ρ̇(t) =
√

ρ̇x(t)2 + ρ̇y(t)2 + ρ̇z(t)2 (7.24)

Now, the “up”, “east”, and “north” components of the range vector, ρ, are

expressed by

ρ = ρuû + ρeê + ρnn̂ (7.25)

Conversion from the Inertial to the “up”, “east”, and “north” components is made

by performing the transformation
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where the transformation matrix C is

[C ] =




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0 1 0
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Then, the relationship between the range vector in the Topocentric coordinate and

the ECI is obtained by
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
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
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Each component of the range vector in the radar site is expressed by

ρu = cos φ cos θ[ρx] + cos φ sin θ[ρy] + sin φ[ρz]

ρe = − sin θ[ρx] + cos θ[ρy]

ρn = − sin φ cos θ[ρx] − sin φ sin θ[ρy] + cos φ[ρz]

(7.29)

Thus, the range is calculated by

ρ =
√

ρ2
u + ρ2

e + ρ2
n (7.30)

Now, the range-rate equation is calculated by utilizing the range measurement

equation in Eq. (7.28) by taking the time derivative

dρ

dt
=

∂ρ

∂ρu

ρ̇u +
∂ρ

∂ρe

ρ̇e +
∂ρ

∂ρn

ρ̇n (7.31)

After manipulation, the range-rate equation reduces to

dρ

dt
=

{ρuρ̇u + ρeρ̇e + ρnρ̇n}
ρ

(7.32)

The next step is to define elevation, (el), and azimuth, (az). We measure eleva-
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Fig. 7.2 Description of Radar Site for Satellite Observation

tion from the horizon of the site to the satellite and azimuth clockwise from north,

that is, azimuth varies from 0 to 360◦, whereas elevation varies between -90◦ and 90◦,

which is illustrated in Fig. 7.2. This convention is also valid for space-based sensors.

From the geometry of the topocentric radar site in Fig. 7.2, the unique determi-

nation of the elevation is obtained by

az = tan−1

(

ρe

ρn

)

(7.33)

and the elevation is computed by

el = tan−1

(

ρu
√

ρ2
e + ρ2

n

)

(7.34)

The relationship between the observation vector y (range, azimuth, and eleva-

tion) and the state vector x of the dynamic system can be represented in a vec-
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tor/matrix form

y = h(x, t) (7.35)

where x =
[

rT vT
]T

is the six-dimensional state vector.

7.1.3.2 Laser Tracking

Satellite laser ranging (SLR) is a technique for precisely measuring the range between

a laser station and a satellite that is equipped with retro-reflectors.110 SLR systems

provides highly accurate range measurements by determining the turn-around light

time of laser pulses transmitted to a satellite and returned by a retro-reflector. De-

pending on the distance and the resulting strength of the returned signal (along with

the attitude and location of the retro reflector on the satellite), accuracies of several

centimeters may be achieved.

Modern laser transmitters use a solid-state pulsed laser that applies neodyminum

as a lasing impurity in a lattice of yttrium aluminum garnet. This allows the genera-

tion of green laser light with a wavelength of 532 nm and ultra-short pulses of 30-200

ps width that are repeated at a rate of 5-10 Hz.110 When a laser pulse is transmitted

by a telescope, a discriminator starts a time interval counter for initialization of a

range measurement. The laser pulse then propagates through the atmosphere until it

is reflected by a retro-reflector array onboard a satellite. When the pulse is received at

the telescope, a high-speed photodetector stops the time interval counter with a time

granularity of less than 20 ps, equivalent to a one-way range precision of better than

3 mm. The half difference of the counter stop and start time multiplied by the ve-

locity of light hence gives an unambiguous average one-way range. The measurement

is time-tagged with an accuracy of better than a microsecond, when a rubidium or

cesium atomic clock is applied that is regularly synchronized by a GPS time receiver.
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The precision of modern SLR systems is usually given as the root-mean-square

of the single-shot accuracy over a single pass and is in the order of 5-50 mm. To

further reduce the data scatter, normal points are formed at the laser stations by

averaging individual range measurements over a several-minute data interval. Due

to the high accuracy of SLR data, geodetic applications in the fields of gravity field

determination, and Earth rotation parameter estimation are the major applications of

SLR. In addition, the development of precise satellite force models, and the calibration

of other tracking devices significantly benefit from SLR.

It is noted that laser tracking, in contrast to radar tracking, does not allow

autonomous tracking of satellites, but depends on the availability of high-precision

a priori orbit elements for laser pointing. Furthermore, the use of SLR for regular

tracking is restricted due to its dependence on the weather at the laser stations and

to the denser operations schedule of the ground segments.

7.1.4 Initial Orbit Determination

The motion of an object is governed by a system of differential equations. The

state vector is referred to as the solution of this system. Since the initial conditions

determine the solution to the differential conditions we need to determine the precise

initial conditions that best approximate the motion of the satellite.

The first-time development of the six orbital elements or state of an earth or-

biting satellite by using a set of tracking measurements is commonly referred to as

initial or preliminary orbit determination (IOD), which is different from batch filters

such as the nonlinear differential correction (NDC), in that the IOD doesn’t require

the a priori state information that is needed for batch filters to start the batch initial-

ization.111 Both methods, IOD and NDC, however, can be used to provide an initial

state estimate for the recursive filters.
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There are several methods for determining the orbital elements from observa-

tions.98 In this section, the Herrick-Gibbs method, which uses three position vectors

for the initial orbit determination, is described.

7.1.4.1 Herrick-Gibbs Method

A typical sensor site’s observation of a pass by a satellite usually results in many

observations. The Herrick-Gibbs method uses three of these observations (position

vectors) to obtain an initial estimate of the orbital elements from a single pass of

a satellite through a radar site. It uses the 1st and 3rd position vectors to provide

an estimate of the velocity at the time of the 2nd (middle) vector, which yields the

position and velocity at the time of the 2nd vector. This position and velocity is then

used as the a priori estimate for the differential correction process. The second vector

is generally at the mid-point of the pass.98 The following derivations are based on

Ref. 98.

The angle separation between the position vectors is of interest because this

method depends on geometry. Let z23 be the normal vector from the second and

third position vector.

z23 = r2 × r3 (7.36)

The coplanar condition is defined from the given initial vectors (r1, r2, r3). The

vectors are coplanar if z23 is perpendicular to r1

z23 ◦ r1 = 0 (7.37)

The coplanar angle is given by

α = 90◦ − cos

{

z23 ◦ r1

|z23| |r1|

}

(7.38)
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If the vectors are coplanar, α will take on a value of zero. Typical values for real

world data from a sensor site yield results that may vary by as much as 2◦ or 3◦.

To begin the procedure for calculating the middle velocity, expand the position

vector as a Taylor series about the middle time, t2. Then, the form of the Taylor

series becomes

r(t) = r2 + ṙ2(t − t2) +
1

2
r̈2(t − t2)

2 +
1

3!
r

(3)
2 (t − t2)

3 +
1

4!
r

(iv)
2 (t − t2)

4 + · · · (7.39)

where r
(i)
2 is the ith-order derivative of the position vector r2. Let’s define a notation

for the time difference as

∆tij = ti − tj (7.40)

Ignoring terms higher than fourth order gives

r1 = r2 + ṙ2∆t12 +
1

2
r̈2∆t212 +

1

3!
r

(3)
2 ∆t312 +

1

4!
r

(iv)
2 ∆t412 (7.41)

r3 = r2 + ṙ2∆t32 +
1

2
r̈2∆t232 +

1

3!
r

(3)
2 ∆t332 +

1

4!
r

(iv)
2 ∆t432 (7.42)

The goal is to find the middle velocity vector. First, eliminate the second order

derivative by multiplying the first equation with −∆t232 and add it to the second order

equation multiplied by −∆t212

r3∆t212 − r1∆t232 = r2(∆t212 − ∆t232) + ṙ2(∆t212∆t32 − ∆t232∆t12)+

r
(3)
2

6
(∆t212∆t432 − ∆t232∆t312)+

r
(iv)
2

24
(∆t212∆t432 − ∆t232∆t412) (7.43)
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Now,

∆t212∆t32 − ∆t232∆t12 = ∆t12∆t32(∆t12 − ∆t32) = ∆t12∆t32∆t13 (7.44)

∆t212∆t332 − ∆t232∆t312 = ∆t212∆t232(∆t12 − ∆t32) = ∆t212∆t232∆t31 (7.45)

∆t212∆t432 − ∆t232∆t412 = ∆t212∆t232(∆t232 − ∆t212) = ∆t212∆t232{∆t232 − ∆t212} (7.46)

After some manipulation, the velocity is obtained98

v2 = −d1r1 + d2r2 + d3r3 (7.47)

where the coefficient di is given by

di = τi +
γi

r3
i

, i = 1, 2, 3 (7.48)

and

τ1 =
∆t23

∆t12∆t13
, τ3 =

∆t12
∆t23∆t13

, τ2 = τ1 − τ3 (7.49)

γ1 =
µ

12
∆t23, γ3 =

µ

12
∆t12, γ2 = γ1 − γ3 (7.50)

Note that the Herrick-Gibbs algorithm can be utilized in order to calculate the a

priori information of an initial state covariance as well as the position and velocity

information. The outputs from this algorithm are inputs to the differential correction

(DC) and/or the sequential estimation. Therefore, the Herrick-Gibbs algorithm can

play the role of a batch filter for the refined orbit estimation. The systematic diagram

for the calculation of an initial state covariance is illustrated in Fig. 7.3.

7.1.5 Orbit and Parameter Estimation

In this section, to obtain the best estimate of the state vector of an object that

contains error sources, such as process noise and measurement noise, two different
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estimation methods are described: (1) Gauss least-squares differential correction,

and (2) suboptimal nonlinear filtering.

7.1.5.1 Satellite Visibility Analysis

Consider the orbit estimation of a near-earth satellite using radar observations that

consist of range, elevation and azimuth with a known ground station. For simulation

study it is necessary to set a criterion for the availability of observations from a radar

at the known ground station before applying specific estimation schemes. For the

satellite visibility check, a minimum allowable elevation cut-off angle is established.

The overall procedures are described in Fig. 7.4.

First, the given orbital parameters of a satellite at some specified time are trans-

formed into the corresponding state vector and the elevation (EL) of the satellite is

computed. Assumed that 10 degrees is set as the minimum allowable or threshold

value. If EL is less than 10 (deg), the prediction equations are used in order to carry

out pure predictions until EL exceeds 10 (deg). Once EL crosses 10 (deg), estimation

begins and this mode is continued until EL again becomes less than 10 (deg). Then,

the problem enters the realm of prediction.

7.1.5.2 Gauss Least-Squares Differential Correction

The nonlinear least-squares (NLS) method is utilized as a batch filter to estimate

the state of a satellite and ballistic coefficient based on noisy observations of range,

azimuth, and elevation relative to a radar site.99 The NLS algorithm was explained in

Fig. 3.1, thus this section focuses on developing specific orbit estimation algorithms

based on a designated filter dynamic model.

The objective of the initial orbit determination is to provide for the initial state

estimates of the position and velocity, or some unknown parameters from the obser-
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Fig. 7.4 Diagram for Satellite Visibility Check
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vations. We include the ballistic coefficient in the state vector since it is generally not

known and it is very difficult to model. The filter dynamic model includes the two-

body equations of motion plus perturbations due to the earth’s oblateness, J2, and

atmospheric drag, and each acceleration equation was illustrated in Eqs. (7.6)∼ (7.8)

and Eq. (7.9), respectively

ṙ = v

v̇ = am(r,v,p, t)

ṗ = 0

(7.51)

where r and v are the position and velocity vectors, respectively, and am is an accel-

eration function due to the two-body attraction, drag perturbation, and the harmonic

geopotential perturbing acceleration up to J2. p includes the system parameters such

as the drag coefficient, and gravitational constant.

The first-order system equations can be expressed for simplicity as a vector/matrix

equation

ẋ = f(x,p, t) (7.52)

where the state vector x = [rT vT ]T includes the position and velocity components.

Since the equations of the satellite motion and observations are nonlinear, the

GLSDC orbit estimation starts with linearizing the system and measurement equa-

tions.

Linearization of System Model

The system solution for state propagation can be obtained by integrating

x(t) = x(t0) +

t
∫

t0

f(x,p, t) dt (7.53)
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Differentiating x(t) with respect to x(t0) leads to

[

∂x(t)

∂x(t0)

]

= I +

t
∫

t0

{[

∂f

∂x(t)

] [

∂x(t)

∂x(t0)

]

+

[

∂f

∂p

] [

∂p

∂x(t0)

]}

dt (7.54)

Since the partial of the parameter p with respect to the initial state x(t0) is equal to

zero
[

∂p

∂x(t0)

]

= 0 (7.55)

it reduces to
[

∂x(t)

∂x(t0)

]

= I +

t
∫

t0

{[

∂f

∂x(t)

] [

∂x(t)

∂x(t0)

]}

dt (7.56)

Now, differentiating the above equation with respect to time t provides

d

dt

{[

∂x(t)

∂x(t0)

]}

=

[

∂f

∂x(t)

] [

∂x(t)

∂x(t0)

]

(7.57)

which becomes the differential state transition matrix equation in the form

Φ̇(t, t0) = FΦ(t, t0), Φ(t0, t0) = I (7.58)

where Φ(t, t0) is the state transition matrix defined by

Φ(t, t0) =

[

∂x(t)

∂x(t0)

]

(7.59)

and the Jacobian matrix F is

F =

[

∂f

∂x

]

(7.60)

Now, differentiating x(t) with respect to p gives

[

∂x(t)

∂p

]

=

[

∂x(t0)

∂p

]

+

t
∫

t0

{[

∂f

∂x(t)

] [

∂x(t)

∂p

]

+

[

∂f

∂p

]}

dt (7.61)
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where
[

∂x(t0)

∂p

]

= 0 (7.62)

Then, the partial derivative becomes

[

∂x(t)

∂p

]

=

t
∫

t0

{[

∂f

∂x(t)

] [

∂x(t)

∂p

]

+

[

∂f

∂p

]}

dt (7.63)

Differentiation of the above equation with respect to time t leads to

d

dt

[

∂x(t)

∂p

]

=

[

∂f

∂x(t)

] [

∂x(t)

∂p

]

+

[

∂f

∂p

]

(7.64)

which can be further defined by

Ψ̇(t, t0) = FΨ(t, t0) + B (7.65)

where Ψ(t) is the sensitivity matrix defined by

Ψ(t) =

[

∂x

∂p

]

(7.66)

and the term B is the Jacobian matrix employed by

B =

[

∂f

∂p

]

(7.67)

Linearization of Measurement Model

Assume that range (ρ), azimuth (az), and elevation (el) are available as mea-

surements from a sensor. Then, the measurement model is expressed by

ỹ = h(x,p,k, t) + v(t) (7.68)

where the elements of k are the other parameters such as biases, and v(t) is mea-

surement noise, which is assumed to be white Gaussian with zero mean and known
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covariance matrix

E {v(t)} = 0

E
{

v(t)v(s)T
}

= R(t)δ(t − s)
(7.69)

where R(t) = R(t)T ≥ 0 is positive semi-definite. The partial derivative of the

measurement equation is obtained by

H =

[

∂h(t)

∂{x0,p,k}

]

=

[

∂h(t)

∂x(t)

∂x(t)

∂x(t0)

...
∂h(t)

∂x(t)

∂x

∂p

...
∂h(t)

∂x(t)

∂x

∂k

]

(7.70)

and it can be further expressed by using the definition of the state transition

H =

[

∂h(t)

∂x(t)
Φ(t, t0)

...
∂h(t)

∂x(t)
Ψ(t)

...
∂h(t)

∂k

]

(7.71)

The components of the Jacobian matrix H are formulated by

[

∂h

∂x(t0)

]

=

[

∂h

∂x(t)

] [

∂x

∂x(t0)

]

= G(t)Φ(t, t0) (7.72)

where

G =

[

∂h

∂x(t)

]

(7.73)

Finally, the GLSDC orbit estimation algorithm is summarized in Fig. 7.5.

7.1.5.3 Nonlinear Filtering Algorithm

In this subsection, the dynamic state solution of the satellite orbit estimation is

based on the utilization of nonlinear filters due to the nonlinearity in the system and

measurement equations. The basic state vector for the filtering algorithm in the orbit

estimation is defined by

x = [x, y, z, ẋ, ẏ, ż, Cd]
T ∈ ℜ7×1 (7.74)

where Cd is included to allow adjustment of the dynamic model uncertainty, and to

compensate for the dynamic modeling errors. The true real-world dynamical equa-
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tions of motion are assumed to be

ṙ = v

v̇ = am(r,v,p, t) + w(t)

ṗ = 0

(7.75)

where r and v are the position and velocity vectors, respectively, and am is an accel-

eration function due to the two-body attraction, drag perturbation, and the harmonic

geopotential perturbing acceleration up to J2. The constant parameter p consists of

the drag coefficient. w(t) is a white, Gaussian process noise which represents the

effects of model errors with the properties

E {w(t)} = 0, E
{

w(t)wT (s)
}

= Q(t)δ(t − s) (7.76)

Then, the vector/matrix equation in terms of the force vector f , which is the time

derivative of the state vector, can be written as

ẋ = f (x, t) + w(t) (7.77)

where the state vector x is the augmented state vector expressed in Eq. (7.74), and

w(t) has the state noise covariance matrix Q(t) given by

Q(t) = σ2
w [I3×3] (7.78)

Now, consider the nominal or filter dynamic model in a vector/matrix form

represented by

˙̂x = f (x̂, t) (7.79)

The expression for the state sensitivity matrix F, defined as the partial derivative
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of the force vector f with respect to the nominal state vector x̂, is calculated from

F =
























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


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∂ẋ
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∂ẋ
∂ż
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· · ·
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· · ·
∂ẍ
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· · ·
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· · ·
∂Ċd
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∂Ċd
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∂Ċd
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∂Ċd

∂ẏ
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∂Cd







































(7.80)

where the non-zero terms of this matrix are listed in Appendix A. The state transition

matrix Φ is obtained by integrating the following matrix differential equation

Φ̇(tk) = F(tk, t0)Φ(t0), Φ(t0) = I (7.81)

The integration for the state transition matrix is made by using the Runge-Kutta

numerical method.

Suppose that a reference trajectory x̂−(tk) is obtained from the propagated state

estimate in the filtering propagation procedure. Then, the stochastic discrete-time

linear dynamics from the linear error theory forced by process noise η(tk) can be

written by

δx(tk) = Φ(tk, t0)δx(t0) + η(tk) (7.82)

where

δx(t0) = x(t0) − x̂+(t0) (7.83)

x(t0) is the true state at time t0, and x(t0) is the estimate of the true state at time t0,

conditioned on observations through t0. Then, from the definition of the propagated

covariance matrix P(tk) at the current time tk conditioned on observations through
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t0 in Eq. (6.35), the covariance equation becomes

P(tk) = Φ(tk, t0)P(t0)Φ
T (tk, t0) + Q(tk) (7.84)

where

P (t0) ≡ E
{

δx(t0)δx
T (t0)

}

, Q(tk) ≡ E
{

η(tk)η
T (tk)

}

(7.85)

The discrete-time process noise covariance matrix for the position, velocity, and

drag coefficient can be constructed by

Q(tk) =













∆t3σ2
w

3
[I3×3]

∆t2σ2
w

2
[I3×3] 01×1

∆t2σ2
w

2
[I3×3] ∆tσ2

w [I3×3] 01×1

01×1 01×1 01×1













(7.86)

7.1.6 Error Sources and Compensation

If the dynamic model and measurements were perfect, then the orbit determination

would be easily accomplished without complex estimation procedures. However, the

real world is not perfect since errors arise from numerous sources. In the next section,

error sources in the application of the orbit estimation are investigated.

7.1.6.1 Measurement Error

All observations obtained from various ground-based or on-board sensors are easily

influenced by errors which come from many sources;98 for example, receiver noise

and sensor calibration. To solve the limitations of the sensor coverage, sensors are

located throughout the world to provide more frequent measurements. Measurement

errors can be quantified by using the error covariance matrix, R, which indicates

the variation in the observations about their true value. Measurement errors can be

divided into two main categories: noise and biases. Bias is a slowly varying constant
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offset from the true value, whereas noise is a statistical indication of the random

variation which is scattered about the observed mean value. If we know the feature

of the biases, they can be subtracted from each observation. The measurement noise

can also be incorporated into the estimation process, provided its statistics are known.

When it comes to the time-varying errors due to inaccuracy of time, all clocks

suffer from white noise in their frequency so that tracking systems which rely on a

transmitting and receiving clock are subject to this error.

7.1.6.2 Mathematical Models

The next main error source comes from the mathematical dynamic model. Even if

the dynamic model is precise with complex atmosphere (Jacchia density model) and

gravitational models, it is not perfect. The process noise v(t) is used to represent the

error in the mathematical modeling of the system dynamics. Process noise accounts

for each of these errors. After assuming that these are white noises we can interpret

the characteristics of process noises using a statistical method. However, in the real

world, they are correlated with time, that is, not white noises, but colored noises

or non-Gaussian noises. One of the advantages of the particle filtering methods is

the ability of handling non-Gaussian noises. In this work, only Gaussian noises are

discussed and incorporated into systems and measurements.

7.2 Autonomous GPS Navigation

The basic principle of GPS positioning and navigation is to obtain the distance be-

tween the user vehicle and each visible GPS satellite by measuring the time that a

signal travels from the satellite to the user.112 The user’s three unknown position

parameters can thus be estimated from four such distances, accounting for an ad-
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ditional unknown that is the receiver’s clock offset ∆t from the GPS system time.

This is illustrated for the pseudorange positioning, where the signal traveling time is

determined by the time shift required for a match between the received code from

the satellite and the receiver replica using the start time information. Each satellite

also broadcasts its clock offset, ∆t in the figure relative to the GPS system time so

that only four unknowns need to be determined. It is clear that at least four satellites

have to be in sight. If more satellites are visible, the positioning errors due to the

measurement errors can be reduced. For example, even though four satellites are

only needed for an instantaneous fix, one can provide a fix over a period of time and

any GPS measurements can be used to provide an orbit update. In this section, GPS

navigation solutions are presented in terms of point positioning and dynamic filtering.

7.2.1 GPS Navigation Systems

GPS is the abbreviation for Navigation Satellite Timing and Ranging/Global Posi-

tioning System-NAVSTAR/GPS. It is a satellite based navigation system with world-

wide coverage that allows a user access to accurate positioning and timing informa-

tion. GPS has been described as the most significant development for safe and efficient

navigation and surveillance of air and spacecraft since the introduction of radio nav-

igation 50 years ago. It has had a widespread impact, which continues to grow due

to its high accuracy, global availability, and low cost.113

7.2.1.1 GPS Systems

The GPS system consists of three subsystems27 (i) Space Segment (Satellite System):

Broadcast position and time signals as well as other messages (ii) User Segment (GPS

Receivers): Receive signal to determine position, time and so on. (iii) Ground Control

Segment: Update information disseminated by each satellite, monitor satellite health,
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Fig. 7.6 Diagram for the GPS Segments

control satellites. The master station is located at Colorado Springs and there exist

several updating stations and monitor stations.114 These concepts are illustrated in

Fig. 7.6. For more details on the GPS system see Refs. 113 and 114.

7.2.1.2 GPS Satellite Constellation

The current constellation consists of 24 satellites in six 12-hour orbit planes (4 in each)

inclined at 55◦ to the equatorial plane at a nominal altitude of 20,200 km. With this

constellation, a user anywhere on the globe at any time of the day will receive signals

from at least four, at most eleven, and most often six to eight satellites. The GPS

constellation is illustrated in Fig. 7.7.
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Fig. 7.7 The GPS Satellite Constellation

7.2.1.3 GPS Measurement Models

(1) GPS Signals

The signal broadcast by each satellite consists of three elements; a carrier, a

unique spread-spectrum code of pseudorandom numbers, and a binary data message.

It includes the satellite’s current position, the time when the signal is sent, and

satellite’s health information, etc. Each satellite broadcasts signals on two carriers:

the major carrier L1 with frequency f1 = 1575.42 MHz, and the secondary carrier

L2 with frequency f2 = 1227.60 MHz. Two pseudorandom noise (PRN) codes are

modulated on the two base carriers. The first code is the coarse acquisition code

(C/A code) which is available for civilian use with the Standard Positioning Service

(SPS). The second code is the precision code (P code or Y code) for military use and

designated as the Precision Positioning Service (PPS). The P-code is modulated on

both carriers L1 and L2, whereas the C/A code is modulated upon only L1.

In addition to the PRN codes, a data message on each GPS satellite is modulated
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on the carriers consisting of status information, satellite clock bias, and satellite

ephemeris. A detailed signal description is found in Ref. 113.

The three types of measurements can be obtained from GPS receivers based on

the GPS signals.

• Pseudorange Measurements: These are derived from the PRN codes

• Carrier Phase Measurements: These are obtained by measuring the phase of the

incoming carrier (L1 and/or L2), and the range to a satellite can be computed

by measuring an ambiguous number of cycles

• Doppler Measurements: The derivative of the carrier phase measurement is the

Doppler shift due to the relative motion between the receiver and the GPS

satellite

(2) Pseudorange Measurement

The basic equation for GPS Positioning is the following pseudorange equation for

n visible satellites

ρi = ri + c∆t + wi = ψi + wi, i = 1, 2, . . . , n (7.87)

where ρi is the pseudorange between the user and satellite i, ψi = ri + c∆t noiseless

pseudorange to satellite i, wi is the measurement error for satellite i, c is the speed

of light 3 × 108 m/s, ∆t is the timing error (receiver clock offset from GPS time). ri

is the true range to satellite i and is expressed by

ri =
√

(Xi − x)2 + (Yi − y)2 + (Zi − z)2 (7.88)

where (Xi, Yi, Zi) are the coordinates of GPS satellite i, and (x, y, z) are coordinates

of user.
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The pseudorange measurement error wi includes errors due to selective availabil-

ity (SA), ionospheric and tropospheric refraction, multipath effect, satellites position

errors, and receiver noise, etc.

The policy of the selective availability (SA) intentionally introduces two types

of errors into the C/A code for signal degradation so as to prevent unauthorized use

such as precision guidance of weapons: erroneous or imprecise values of the satellite

ephemeris parameters, which are often referred to as orbit SA, and an erroneous drift

of the GPS satellite time, known as dither SA. They affect primarily the pseudorange

and delta range measurements, respectively. The SA policy has been discontinued

since May 1, 2000. The prevention of the hostile use of GPS is accomplished through

other measures, such as selective and local denial of GPS signals.115

The pseudorange measurements are based on determining the time shift (or phase

difference) of the C/A and P codes. Measurements can also be made based on the

phase and/or frequency shift between the receiver-replicated and the actually received

carriers, leading to the delta range, integrated Doppler and/or carrier phase measure-

ments.

(3) Doppler Measurement

The range rate between the GPS satellite and the user vehicle can be derived from

the Doppler shifted GPS carrier signal. The GPS Doppler measurements measure the

Doppler shift in carrier frequency due to the relative motion of the GPS satellite and

the user, as well as the frequency error or drift of the satellite and user clocks. The

Doppler shift caused by satellite and user motion is the projection of the relative

velocity along the line-of-sight direction scaled by the transmitted frequency L1 =

1575.42Mhz divided by the speed of light. The user’s receiver contains an oscillator

which produces the reference carrier frequency, and this signal is used to produce

the best frequency with the received, Doppler shifted signal. This best frequency
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measured in the receiver can be expressed as

Di = −
(

vi − vu

c
◦ ri − ru

‖ri − ru‖

)

L1 (7.89)

Now, the Doppler can be converted into a pseudorange rate measurement and can be

written by

ρ̇i = (vi − vu) ◦
ri − ru

‖ri − ru‖
+ f + vρ̇i

(7.90)

where f is the receiver clock drift in m/s, and vρ̇i
is the range rage observation error.

The range rate observed by the user is called pseudorange rate.

A measurement of the range rate may be made by counting the number of

Doppler cycles over a short period, which is known as the delta range measure-

ment. Alternatively, if the Doppler count is kept running, then a so-called inte-

grated Doppler, accumulated delta range, or continuous carrier phase measurement

is formed. Since frequency is the variation rate of phase, both of these measurements

actually amount to measuring the carrier phase.

(4) Carrier Phase Measurement

The noisy carrier phase measurement of each satellite is

φ =
ψ

λ
+ nφ + ωφ (7.91)

where nφ is the integer ambiguity and ωφ is the carrier phase measurement error.

The integer ambiguity nφ appears because it is impossible to distinguish two carriers

that differ only in phase with an integer cycle and thus only factional-cycle phase

difference is measurable. Its determination is the crux to the utilization of the carrier

phase measurements. The measurement error ωφ is made up of time-correlated errors

and white measurement noise. It includes errors caused by atmospheric refraction,

satellite ephemeris error, and the receiver measurement noise.
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Note that the pseudorange and carrier-phase measurements in the absence of in-

teger ambiguity obey two equations of basically the same form. Since the carrier fre-

quency is much higher than that of the codes, the carrier-phase measurements would

be much more accurate than the pseudorange measurements if the integer ambiguity

could be completely removed, which is unfortunately impossible. Also, continuous

tracking of the carrier is required in the carrier-phase measurements. Interruption

may occur in reality due to receiver failure or external disturbance, resulting in what

is known as a cycle slip. Note, however, that this ambiguity does not affect the

delta-range and range rate measurements.115

7.2.1.4 GPS Positioning Accuracy

(1) Dilution of Precision

Dilution of Precision (DOP) is the phenomenon that occurs when an object is

localized based on distance measurements along lines of sight (LOS) from the object

to reference points, when these LOS have small angles between them. In such a case,

due to the ill-conditioning of the estimation problem, the uncertainty in a direction

perpendicular to the LOS is significantly larger than along the LOS.

The current GPS satellite constellation guarantees that four to eleven satellites

are visible for a user anywhere on the globe. In general, there are more equations

than unknowns. Thus the least-squares solution of the equations are found.

Linearizing the pseudorange equation yields

z1 = H1x + v1

...

zn = Hnx + vn

(7.92)
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In vector and matrix form, it is can be written as

z = Hx + v (7.93)

If the measurement error vector v has the covariance R, then the LS estimator yields

x̂ =
[

HTR−1H
]−1

HTR−1z (7.94)

Px =
[

HTR−1H
]−1

(7.95)

If the measurement errors are uncorrelated and have approximately equal variance

σ2, then R = Iσ2 and

x̂ =
[

HTH
]−1

HTz (7.96)

Px =
[

HTH
]−1

σ2 (7.97)

where H depends only on the relative geometry of the satellites and the user.

The geometric DOP (GDOP) matrix is defined by116

[

HTH
]−1 ∆

=




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DOP
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V 2
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T 2
DOP



















(7.98)

where the off-diagonal terms are omitted, and

E2
DOP = east DOP

N2
DOP = north DOP

V 2
DOP = vertical DOP

T 2
DOP = time DOP

(7.99)
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The scalar position DOP value is given by116

Position DOP =
√

tr
[

(H−1
3 H3)−1

]

(7.100)

where H3 consists of the position part of H. The position DOP is an instantaneous

measure of the observability condition and a scaling factor that relates the actual

positioning accuracy and the measurement error in one direction.

(2) GPS Positioning Accuracy

The current nominal 1σ magnitudes and decorrelation time constants of the ma-

jor components contribute to the GPS measurement errors. The time constants are

the parameters corresponding to the correlation time of an autocorrelated (colored)

random process. The most commonly used measures of accuracy for vertical, hori-

zontal, and 3-D positioning are the 2σ errors116

2σVDOP = two times σ×vertical DOP

2σHDOP = 2σ
√

E2
DOP + N2

DOP

2σPDOP = 2σ
√

E2
DOP + N2

DOP + V 2
DOP

(7.101)

where HDOP = horizontal DOP , PDOP = positional DOP . However, the common

term 2drms stands for twice distance rsm, rather than two-dimensional rms, although

the distance is measured in a 2-D space, the horizontal plane.

Note that 2drms is not equivalent to a 95% error for a 2-D distribution. It

actually corresponds to a 98% error for a circular Gaussian distribution.

The GPS satellite constellation was designed to minimize GDOP. The upper

limit for PDOP was 10. The worldwide daylong median values are PDOP = 2.0 and

HDOP = 1.2. For a normal situation HDOP ≤ 4.

Note that there are no published specifications for velocity estimates. They are

obtained internally by the GPS receiver by filtering the measurements.
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7.2.1.5 Coordinate Transformation

The satellite position signals are in the World Geodetic Systems of 1984 (WGS-84)

coordinate system. Usually, it is necessary to express the positioning solution in the

navigation reference frame, and thus a transformation is needed. By performing a

series of linear translational and rotational transformations, a linear transformation

from the WGS-84 system to the navigation reference coordinate system (east, north,

up) can be obtained by27
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(7.102)

where

CN
WGS =


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(7.103)
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(7.104)

and (φ, λ) are the local reference latitude and longitude, respectively. (x0, y0, z0) are

the coordinates of the origin of the navigation reference coordinate system in the

WGS-84 system.

7.2.2 Navigation Solution

There are two basic solution strategies for deriving user state estimates from the

pseudorange and range rate measurements. One is the static or kinematic solution and

the other is the dynamic solution. If four simultaneous measurements from distinct
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GPS satellites are available, the user’s state can be determined. Four simultaneous

pseudorange measurements are required to solve for the four components of user

position and clock bias. With these position and bias solutions, four range rate

measurements produce a solution of the user velocity and clock drift components.

The GPS nonlinear measurement equations can be solved by employing either

closed form solutions117,118 or iterative techniques114 based on linearization for static

solutions. The general problem of the existence and uniqueness of the position and

bias in terms of a closed form solution is addressed in Ref. 118. This work provides the

basis for the geometric algebraic solution used in this work. When properly formulated

and implemented, the geometric solution is stable and fast, but its accuracy is limited

by considering geometry and measurement noise.96 Note that as alternative point

solution the least-squares differential correction method can be utilized to produce

the user positioning solutions. The geometric algebraic solution does not utilize a

dynamic model to describe the evolution of the state and hence does not produce any

covariance information or permit the propagation of the state estimate beyond the

current observation time. However, the solutions from the geometric method can be

used for the initial a priori estimates of user position, velocity, clock bias, and clock

drift to the dynamic state solution process.

Any existing nonlinear filter such as EKF could be used for the dynamic solution.

The use of a dynamic model in order to propagate the state and covariance estimates

makes the dynamic solution more tolerant to poor viewing geometry than the geo-

metric solution technique.96 However, the weakness of the dynamic state estimation

is stability in that it is susceptible to saturation and the subsequent divergence of

the state estimate. As the number of observations increases, the magnitude of the

covariance of the state estimate tends to decrease. Saturation occurs when the state

covariance matrix becomes so small or nearly singular that the filter essentially ig-
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nores observational data and simply generates state solutions based on its dynamic

model.

7.2.3 Kinematic Navigation Solutions

7.2.3.1 Geometric State Solution

The geometric algorithm used is based on a study of the existence and uniqueness of

GPS geometric solution.118,119

(1) Position and Clock Bias Solution

Assume n GPS satellites located in m-space at the position xi, i = 1, 2, . . . , n, in

our system (n=4, m=3). The coordinate system is chosen so that the origin coincides

with the position of one of the GPS satellites, so that x1 = 0. The location of the

user is xu. The distance between the user to the origin is

ru = ‖xu‖ (7.105)

The distance between the ith GPS satellite and user is expressed by

Di = ‖Di‖ = ‖xi − xu‖ (7.106)

The vector of pseudorange measurement to the n GPS satellite is given by

p = D − Ibc (7.107)

where I = n × 1 column vector, b is the user’s clock bias with respect to the GPS

time scale, and c is the speed of light. The vector of range differences is formed by

subtracting the first pseudorange from the others

d = [z]p (7.108)
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where [z] = [−I], and each component has the dimension, d ∈ ℜn−1, [z] ∈ ℜ(n−1)×n.

The ith range difference can be obtained by

di = Di − D1 (7.109)

With the definitions in the following

Γ =













xT
2

...

xT
n













, and γ =













d2
2 − r2

2

...

d2
n − r2

n













(7.110)

where ri = ‖xi‖, ru = ‖xu‖. The user position solution can be obtained for a non-

singular Γ (More details in Ref. 119)

xu = −Γ−1
(γ

2
+ dru

)

(7.111)

where the value of ru is computed from

r±u =

(

dTΓ−TΓ−1γ
)

±
[

(

dTΓ−TΓ−1γ
)2

+
(

γ TΓ−TΓ−1γ
) (

1 − dTΓ−TΓ−1d
)

]1/2

2 (1 − dTΓ−TΓ−1d)

(7.112)

If dTΓ−TΓ−1d = 1, then

ru =
−γ TΓ−TΓ−1γ

4dTΓ−TΓ−1γ
(7.113)

Substitution of Eq. (7.112) back into Eq. (7.111) gives the two user positions, x+
u

and x−
u . One, both, or neither of these potential user positions may be real and yield

a positive ru. Once the user position is known, the clock bias can be obtained from

Eq. (7.107). The conditions for existence and uniqueness of the user solution with

the condition are discussed in Ref. 119. However, it is pointed out that for users in

low Earth orbits, the user position solution is typically unique, yielding one positive

real root in Eq. (7.112).
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To eliminate the ambiguity problem in the solution ru, a redundant pseudorange

measurement is used in determining the user’s position. Since n is now five, n = m+2,

the resulting Γ matrix is now 4× 3, and the generalized inverse Γ∗ is used in place of

Γ−1 in Eqs. (7.112) and (7.111)

Γ∗ =
(

ΓTΓ
)−1

ΓT (7.114)

(2) Velocity and Clock Drift Solution

In order to complete the description of the user vehicle’s state, velocity and clock

drift must also be determined, but the solution given in Ref. 119 only considered user

position and clock bias. Referring to Refs. 119 and 120, the user velocity and clock

drift solutions are described in the following. Assuming that the user satellite’s GPS

receiver measures the beat frequency from the incoming Doppler shifted signal as

well as pseudorange, a solution for velocity and clock drift can be derived. The

pseudorange to the ith GPS satellite can be written

pi =

√

(xs,i − xu)
2 + (ys,i − yu)

2 + (zs,i − zu)
2 − bc (7.115)

where the subscript “s” denotes the coordinates of the GPS satellite, and the subscript

“u” denotes the coordinates of the user satellite. Taking the time derivative yields

ṗi =
1

ρi

[(xs,i − xu) (ẋs,i − ẋu) + (ys,i − yu) (ẏs,i − ẏu) + (zs,i − zu) (żs,i − żu)] − ḃc

(7.116)

Rearranging results in

∆xiẋs,i + ∆yiẏs,i + ∆ziżs,i − ρiṗi = ∆xiẋu + ∆yiẏu + ∆ziżu + ρiḃc (7.117)

where ∆xi = (xs,i − xu), ∆yi = (ys,i − yu), and ∆zi = (zs,i − zu). Then, the n
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equations can be rewritten in form of matrix and matrix



















∆x1 ∆y1 ∆z1 ρ1c

∆x2 ∆y2 ∆z2 ρ2c

...
...

...
...

∆xn ∆yn ∆zn ρnc





































ẋu

ẏu

żu

ḃ



















=



















∆x1ẋs,1 + ∆y1ẏs,1 + ∆z1żs,1 − ρ1ṗ1

∆x2ẋs,2 + ∆y2ẏs,2 + ∆z2żs,2 − ρ2ṗ2

...

∆xnẋs,n + ∆ynẏs,n + ∆znżs,n − ρnṗn


















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The positions and velocities of the GPS satellites are known from their ephemeris

message, the position of the user is known from the geometric solution given by

Eqs. (7.112) and (7.111). If the range rates from the GPS satellites are known from

the beat frequency measurements, the vector/matrix equation above can be solved

for the unknown user velocity and clock drift vector. If n > 4, the system is over

determined, the generalized inverse is used to obtain the best least-squares solution.

7.2.3.2 Least-Squares Solution

In this section, the navigation solution based on the least-squares method is illustrated

by using the GPS pseudorange and range range rate measurements at a single time.

For each satellite tracked by the receiver, the measurement equations should be

linearized around the prediction x̂k|k−1, then the vector/matrix equation is formed

∆ρ = H∆x + v (7.119)

If n satellites are visible and x = [x, y, z, bc,]T , then

H =



















−hx
1 −hy

1 −hz
1 1

−hx
2 −hy

2 −hz
2 1

...
...

...
...

−hx
n −hy

n −hz
n 1



















(7.120)
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∆ρ =
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













∆ρ1

∆ρ2

...

∆ρn



















, v =



















vρ1

vρ2

...

vρn


















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where [−hx
i ,−hy

i ,−hz
i ] is the user-to-satellite-i LOS vector, and v is the pseudorange

measurement noise.

If the measurement error vector v has zero mean and covariance R, then the

weighted least-squares (WLS) estimator yields

∆x̂ =
[

HTR−1H
]−1

HTR−1∆ρ (7.122)

where the covariance of the user state is calculated by

Px =
[

HTR−1H
]−1

(7.123)

Note that the estimate correction ∆x̂ is usually iterated until the change in the

estimate is sufficiently smaller than a specified threshold value, and it requires more

computational time than the algebraic geometric solution. The advantage of the

solution from the LS estimator is that since the geometric matrix H depends on the

line-of-sight unit vector it is not very sensitive to errors in the observation position.

Moreover, the covariance information is available in the LS estimator solution.

7.2.4 Dynamic Navigation Solution

Although the geometric state solution offers certain advantages, its performance is

limited due to the effects of viewing geometry and measurement noise. Furthermore, it

requires a minimum of four pseudorange and range rate measurements at each solution

time since each solution is computed independently from the previous one. The
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dynamic solution, on the other hand, propagates the estimated state forward from one

measurement update time to the next by means of a system dynamic model. It does

not necessarily require measurements from four GPS satellites, and can compute a

state update with even a single measurement. However, estimation accuracy generally

improves when more measurements are used per update. Hence, the dynamic solution

is less affected by poor viewing geometry than the geometric solution.120

7.2.4.1 State Noise Compensation Method

The dynamic state solution of the GPS navigation is based on the utilization of the

extended Kalman filter due to the nonlinearity in the measurement equation. The

basic state vector for the filtering algorithm in the GPS orbit navigation is defined

by

x =
[

x, y, z, ẋ, ẏ, ż, µ, J2, Cd, bc, ḃc
]T

∈ ℜ11×1 (7.124)

where c is the speed of light, b is the user clock bias. The dynamic parameters, µ,

J2, and Cd are included to allow adjustment of the dynamic model uncertainty and

compensate for dynamic modeling errors. The true real-world dynamical equations

of motion are assumed to have the following form

ṙ = v

v̇ = am(r,v,p, t) + w(t)

ṗ = 0

ḋ = 0

(7.125)

where r and v are the position and velocity vectors, respectively, and am is an ac-

celeration function due to the two-body attraction, drag perturbation, and harmonic

geopotential perturbing acceleration. The constant parameter p is composed of three

dynamic parameters, and d represents the clock bias and clock drift. w(t) is a white,
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Gaussian process noise which presents the effects of model errors with the properties

E {w(t)} = 0, E
{

w(t)wT (s)
}

= Q(t)δ(t − s) (7.126)

Then, the vector/matrix equation in terms of the force vector f can be written as

ẋ = f (x, t) + w(t) (7.127)

where w(t) has the 3 × 3 state noise covariance matrix Q(t) given by

Q(t) = σ2
w [I3×3] (7.128)

(1) State Transition Matrix

The nominal or filter dynamic model in a vector/matrix form is represented by

˙̂x = f (x̂, t) (7.129)

The expression for the state sensitivity matrix F, defined as the partial derivative of

the force vector f with respect to the nominal state vector x̂, is represented by
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∂ḃc

∂ÿ
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∂ż

∂b̈c
∂µ

∂b̈c
∂J2

∂b̈c
∂Cd

∂b̈c
∂bc

∂b̈c
∂ḃc
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where the non-zero terms of this matrix are listed in Appendix A. The state transition

matrix Φ is obtained by integrating the following matrix differential equation

Φ̇(tk) = F(tk, t0)Φ(t0), Φ(t0) = I (7.131)

The covariance equation is obtained from the definition of the propagated covari-

ance matrix P(tk) at the current time tk conditioned on observations through t0 in

Eq. (6.35)

P(tk) = Φ(tk, t0)P(t0)Φ
T (tk, t0) + Q(tk) (7.132)

where P (t0) = E
{

δx(t0)δx
T (t0)

}

, and Q(tk) is computed in the following.

(2) Process Noise Covariance Matrix

The discrete-time process noise covariance matrix for position, velocity, and pa-
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rameters can be constructed

Qw(tk) =













∆t3σ2
w

3
I3×3

∆t2σ2
w

2
I3×3 03×3

∆t2σ2
w

2
I3×3 ∆tσ2

wI3×3 03×3

03×3 03×3 03×3













(7.133)

Now, suppose that the user clock drift is modeled as a constant term plus a

random walk. The time derivative is given by

b̈(t) = ud(t) (7.134)

where ud(t) is a zero mean, uncorrelated, stationary, Gaussian process with variance

σ2
u. Then, the solution is obtained by

ḃ(t) = ḃ0 +

t
∫

t0

ud(T )dT (7.135)

The stochastic integral is defined by

D(t) ≡
t

∫

t0

ud(T )dT (7.136)

Then, an approximate, discrete solution to the stochastic integral is given by

Dk = ud,kσd

√

(t − t0) (7.137)

where ud,k is a discrete Gaussian sequence with a zero mean and unity variance. Then,

the stochastic model of the clock drift is calculated by

ḃ(t) = ḃ0 + ud,kσd

√

(t − t0) (7.138)

The contribution to the process noise matrix is given by the variance

qd = E
{

D2
k

}

= σ2
d(t − t0) (7.139)
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The time derivative of the user clock bias is modeled as a constant, deterministic

drift plus a zero mean, uncorrelated, stationary, Gaussian noise component

ḃb = ḃdet + ub(t) (7.140)

where ub(t) is a zero mean, uncorrelated, stationary, Gaussian process with variance

σ2
d. Then, an approximate, discrete solution to the corresponding stochastic integral

is given by

Ck = ub,kσb

√

(t − t0) (7.141)

where ub,k is a discrete Gaussian sequence with a zero mean and unity variance. The

resulting clock bias stochastic model is obtained by

b(t) = b0 + ḃdet(t − t0) + ub,kσb

√

(t − t0) (7.142)

The contribution to the process noise matrix is given by the variance

qb = E
{

C2
k

}

= σ2
b (t − t0) (7.143)

Finally, the discrete-time process noise covariance matrix Q(tk) due to position, ve-

locity, three parameters, clock bias, and clock drift is expressed by

Q(tk) =






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


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






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∆t3σ2
w

3
I3×3

∆t2σ2
w

2
I3×3 03×3 0 0

∆t2σ2
w

2
I3×3 ∆tσ2

wI3×3 03×3 0 0

03×3 03×3 03×3 0 0

0 0 0 qb 0

0 0 0 0 qd
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




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where ∆t = t − t0.

(3) Linearized Measurement Equation

The state estimation filter can use both pseudorange and range rate measure-



215

ments. The observation and state relationships for these are given by

yp = ρ − bc (7.145)

yd =
1

ρ
[(xs − xu) (ẋs − ẋu) + (ys − yu) (ẏs − ẏu) + (zs − zu) (żs − żu)] − ḃc (7.146)

where the p subscript denotes pseudorange, d denotes range rate (Doppler), s denotes

the GPS satellite, u denotes the user satellite, and ρ is the range between the GPS

and user satellites. The corresponding partial derivatives of the observation equation

with respect to the state are expressed by

Hp =
∂yp

∂x
= [h1,p, h2,p, h3,p, 0, 0, 0, 0, 0, 0, −1, 0] (7.147)

Hd =
∂yd

∂x
= [h1,d, h2,d, h3,d, h4,d, h5,d, h6,d, 0, 0, 0, 0, −1] (7.148)

where each component is given by

h1,p = −(xs−xu)
ρ

h2,p = −(ys−yu)
ρ

h3,p = −(zs−zu)
ρ

(7.149)

h1,d = (xs−xu)2(ẋs−ẋu)
ρ3 + (xs−xu)(ys−yu)(ẏs−ẏu)

ρ3 + (xs−xu)(zs−zu)(żs−żu)
ρ3 − (ẋs−ẋu)

ρ

h2,d = (ys−yu)2(ẏs−ẏu)
ρ3 + (ys−yu)(xs−xu)(ẋs−ẋu)

ρ3 + (ys−yu)(zs−zu)(żs−żu)
ρ3 − (ẏs−ẏu)

ρ

h3,d = (zs−zu)2(żs−żu)
ρ3 + (zs−zu)(xs−xu)(ẋs−ẋu)

ρ3 + (zs−zu)(ys−yu)(ẏs−ẏu)
ρ3 − (żs−żu)

ρ

h4,d = h1,p

h5,d = h2,p

h6,d = h3,p

(7.150)

Note that in the case of multiple measurements at each update time, the rows of

the total sensitive partial matrix H consist of the appropriate Hp and/or Hd row

matrices. If m visible satellites are available, and n state vectors are estimated, then
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the total sensitive partial matrix is formulated by

H =

























Hp,1

Hd,1

...

Hp,m

Hd,m

























= ℜ2m×n (7.151)

Usually, using pseudorange and range rate measurements together provides bet-

ter performance than using pseudorange measurements alone.

7.2.4.2 Dynamic Model Compensation Method

The deterministic parameter of the stochastic acceleration can be added to the state

vector and estimated in the conventional way to provide some measure of compensa-

tion for accelerations that are unknown and unmodeled in the dynamic model. Since

the parameter τ is a deterministic constant value in the acceleration function, it can

be added to the state vector and estimated for an optimal value. Assuming that τ is

the same for all three axes, the augmented state vector contains 15 parameters

x =

[

x y z ẋ ẏ ż µ J2 Cd bc ḃc wx wy wz τ

]T

∈ ℜ15×1 (7.152)

The deterministic parts of the stochastic accelerations contribute terms to the dy-

namic expressions for position and velocity.

(1) State Transition Matrix

The state transition matrix Φ(tk, t0) and process noise matrix Qk for the DMC

formulation are obtained in Eq. (6.29) and Eq. (6.64), respectively. Since the aug-

mented state vector x includes the system parameters, user clock bias, and drift

terms, then the complete state transition matrix Φ(tk, t0) ∈ ℜ15×15 has the following
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expression

Φ (tk, t0) =




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
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[Φfilter]11×11 [Φw]11×3 [Φτ ]11×1

03×11 [M]3×3 [N]3×1

01×11 01×3 1
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









(7.153)

where [Φfilter] is the state transition matrix associated with the 11 states without

the DMC which include the position, velocity, system parameters, user clock bias,

and clock drift, [Φw] is the transition matrix of the 11 basic states with respect

to the stochastic accelerations, [Φτ ] is the transition matrix of the 11 basic states

with respect to the correlation time τ . [M] is the transition matrix of the stochastic

accelerations with respect to themselves, which is computed in Eq. (6.25), and [N] is

the transition matrix of the stochastic accelerations with respect to the correlation

time given in Eq. (6.31), respectively

M =













e−(t−t0)/τ 0 0

0 e−(t−t0)/τ 0

0 0 e−(t−t0)/τ
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







(7.154)

N =




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


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wx0

τ2 (t − t0)e
−(t−t0)/τ

wy0

τ2 (t − t0)e
−(t−t0)/τ

wz0

τ2 (t − t0)e
−(t−t0)/τ
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







(7.155)

The elements of Φw, and Φτ , can be found analytically by
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Φw =
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where

φwp = τ 2
(

e−(t−t0)/τ − 1
)

+ τ (t − t0) (7.158)
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φwv = τ
(

1 − e−(t−t0)/τ
)

(7.159)

(2) Process Noise Matrix

The process noise covariance matrix for the DMC was expressed by Eq. (6.64)

in the previous chapter, which is associated with the covariance elements due to the

position, velocity, and three stochastic accelerations, and correlation time terms. The

discrete-time process noise covariance terms due to the system parameters, user clock

bias, and clock drift were given in Eq. (7.144) from the previous SNC section. Thus,

the complete process noise covariance terms due to position, velocity, three system

parameters, clock bias, clock drift, three stochastic accelerations, and correlation time

can be constructed by

Qk =


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where ∆t = t − t0.

(iii) Linearized Measurement Equation

Using both pseudorange and range rate measurements, the corresponding partial

derivatives of the observation equation with respect to the augmented state x ∈ ℜ15×1

are expressed by

Hp = [h1,p, h2,p, h3,p, 0, 0, 0, 0, 0, 0, −1, 0, 0, 0, 0, 0]

Hd = [h1,d, h2,d, h3,d, h4,d, h5,d, h6,d, 0, 0, 0, 0, −1, 0, 0, 0, 0]
(7.161)
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where each component of hi,p and hi,d can be found in Eq. (7.149) and Eq. (7.150),

respectively. For the case of multiple measurements at each update time, the rows

of the total sensitive partial matrix H consist of the appropriate Hp and/or Hd row

matrices. If m visible satellites are available, and n state vector are estimated, then

the total sensitive partial matrix is formulated by

H =

























Hp,1

Hd,1

...

Hp,m

Hd,m
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= ℜ2m×n (7.162)
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CHAPTER VIII

SIMULATION RESULTS

8.1 Performance Criteria

The criteria for judging the performance of the proposed nonlinear/adaptive filters are

the magnitude of the residuals and their statistics. If the measurement residuals or the

state estimation errors are sufficiently small and consistent with their statistics, then

the filter is trusted to be operating consistently. In other words, the most common

way for testing the consistency of the filtering results is to depict the estimated state

errors with the 3-sigma bound given by ±3
√

P+
k . If the errors lie within the bound,

the estimation result is believed to be consistent and reliable. Instead of the state

estimation errors, the measurement innovation vector can also be used for the filter

performance analysis. If the measurement residuals lie within the 2-sigma bound,

±2
√

Pυυ
k+1, it indicates the 95% confidence of the estimation results.

In this study, the average root mean square (RMS) value is also used for the quan-

titative performance comparison of the proposed filters. The RMS error is defined

by

εi(k) =

√

√

√

√

1

N

N
∑

j =1

[xi, j(k) − x̂i, j(k)]2

where N is the number of Monte-Carlo runs, j denotes the jth simulation run, and i

represents the ith component of the state vector x(k) and its current estimate vector

x̂(k).

However, it is not enough to strictly judge the optimality of the filtering algo-

rithms. Thus, three additional methods for a quantitative analysis of the filtering

optimality are proposed. Two methods are based on the mean-square error (MSE)

concept and the third is the innovation-based whiteness.
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8.1.1 Posterior Cramér-Rao Lower Bound

A closed form analytic solution to this optimal filtering problem is not tractable in

general, and in practical applications nonlinear filtering is represented by an approx-

imated and suboptimal filtering algorithm. Despite the absence of a closed form

solution, the best achievable error performance for nonlinear filtering can be assessed

by considering lower bounds on the mean squared error (MSE). Lower bounds give

an indication of performance limitations, and it can be used to determine whether

imposed performance is realistic or not.

As explained in Chapter 4, a commonly used lower bound is the Cramér-Rao

lower bound (CRLB), which is defined to be the inverse of the Fisher information

matrix and provides a lower bound on the performance of any unbiased estimator

of an unknown parameter vector. This provides a powerful tool that has been used

to assess the performance of unbiased estimators of parameters for deterministic dy-

namical motion. In the case of uncertain dynamical motion the posterior Cramér-Rao

lower bound (PCRLB) has been used to determine performance bounds for recursive

Bayesian estimators of the uncertain target state.68 Determining PCRLBs represents

an even more challenging problem. The reason is that for calculating the Fisher infor-

mation matrix, it is necessary to consider both the effect of measurement uncertainty

as well as uncertainty in the random state.

The general PCRLB formulation for the nonlinear Gaussian filtering problem is

given by taking the inverse of the posterior Fisher information matrix equation (see

Ref. 84 for details). The Riccati-like recursive Fisher information matrix equation is

expressed by

Jk+1 = D22
k − D21

k

(

Jk + D11
k

)−1
D12

k (8.1)
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where

D11
k = E

{

[

∇xk
fT
k (xk)

]

Q−1
k

[

∇xk
fT
k (xk)

]T
}

(8.2)

D12
k = −E

{[

∇xk
fT
k (xk)

]

Q−1
k

}

=
(

D21
k

)T
(8.3)

D22
k = Q−1

k + E
{

[

∇xk+1
hT

k+1 (xk+1)
]

R−1
k+1

[

∇xk+1
hT

k+1 (xk+1)
]T

}

(8.4)

8.1.2 Optimality Analysis

The EKF assumes that the deviations of the model state trajectory from the actual

trajectory are small. However, errors due to the truncated terms in the linearization

of the dynamic and observation models can lead to bias estimation and instability.

Many methods have been developed to mitigate the nonlinearity effects. One of

the methods that directly estimates the bias term by augmenting it into the extended

state vector is simply a joint estimation through the extended Kalman filter.121 In this

paper, however, we focus on measuring consistency and/or biasness indirectly instead

of directly estimating biases. For this analysis a simple, but efficient, methodology is

introduced.

Optimality of the nonlinear filtering guarantees that the state estimation er-

rors from the actual trajectory are small and the model estimates are unbiased.122

However, truncated errors due to the neglected terms in the approximation of the

nonlinear models cause biased estimation leading to non-Gaussian a posterior den-

sities. Thus, measuring the nonlinearity can be an alternative way for checking the

filtering optimality.

First, the mean square error (MSE) of the estimate x̂k, is defined as

MSE {ek} ≡ E
{

[ek − E {ek}] [ek − E {ek}]T
}

(8.5)

where the error vector ek ∈ ℜn×1 is given by the difference between the true and
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estimated (or predicted) state vectors

ek = xk − x̂k (8.6)

If the estimate is biased, then the mean square error is written by27

MSE {ek} = Pk + bkb
T
k (8.7)

where bk is the bias obtained by taking the expected value of the estimate error,

given by

bk ≡ E {ek} (8.8)

When the estimate x̂k is not biased, the expected value of the estimate errors is

determined from the covariance

E
{

eke
T
k

}

= Pk (8.9)

Note that for unbiased estimate cases the MSE is reduced to the consistency analysis

test.121 Now, with the unbiased estimate assumption, the expectation of the quadratic

value is introduced by

E
{

eT
k Aek

}

= tr
[

AE
{

eke
T
k

}]

= tr
[

E
{

eke
T
k

}

A
]

(8.10)

If the matrix A is the inverse state covariance matrix P−1
k , then the expected value

reduces to

E
{

eT
k Aek

}

= tr
[

P−1
k Pk

]

= tr [In] = n (8.11)

which means that the expected normalized error squared should be equal to the

dimension of the state error vector n. This fact can be utilized to check a degree of

nonlinearity in the prediction and update of the state and covariance used in various
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filters and estimators. The optimality index τk is defined by

τk ≡ 1√
n

{

[xk − x̂k]
T
P−1

k [xk − x̂k]
}1/2

(8.12)

where P−1
k is the updated covariance matrix and x̂k is the updated state vector. If

the value of the optimality index τk is much greater than unity (τk ≫ 1) then the

effect of nonlinearity is believed to be severe, but in contrast if τk is close to unity, it is

trusted that the nonlinearity is small and ignorable. Simultaneously, those conditions

can tell the optimality of the performance of the nonlinear filters. If nonlinear filters

produce unbiased estimates with consistent covariances, then the estimated results

should make the optimality index close to unity (τk ≃ 1).

Note that when τk becomes much larger than unity, the process noise matrix Qk

is increased so that the optimality index can reduced to a reasonable value close to

unity. Therefore, this method has the combined feature of optimality analysis and

adaptive model compensation. This method is utilized for the development of the

adaptive filtering approach proposed by Jazwinski.90

8.1.3 Whiteness Test

An innovation-based consistency test is based on the fact that the quantities available

for judging filter performance are the magnitude of the residuals (innovation vector)

and their expected statistics (zero-mean and whiteness).1,90 Therefore, the statistical

consistency of the measurement innovation vector is vital for verifying filter optimal-

ity. The whiteness test of the measurement innovation υk, which are j steps apart,

from a single run is derived by computing the time-averaged autocorrelation27

ρ̄l(j) =
1√
m

N
∑

k=1

υl(k)υl(k + j)

[

N
∑

k=1

υl(k)2

N
∑

k=1

υl(k + j)2

]−1/2

for l = 1, . . . ,m

(8.13)
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where m is the dimension of the innovation vector, and N is the number of the obser-

vation data points. If the innovations are zero-mean and white, then ρ̄l(j) becomes

zero mean with variance 1/N for N large enough.

8.2 Orbit and Parameter Estimation

Two simulation examples are illustrated; The first example is the estimation of the

spacecraft in a low Earth orbit with application of the presented nonlinear filtering

methods, but there is no adaptive filtering or model compensation approaches in the

first one. The other example shows the advantages of the adaptive process noise

compensation, and the performance of the non-adaptive nonlinear filters and the

adaptive nonlinear filters are compared. The true trajectory, observations, and filter

dynamic model are all the same in the two examples, but the applied estimation

methods are different.

8.2.1 Generation of True Trajectory

The satellite under consideration has the following orbit parameters in Table 8.1

at epoch, defined to be simulation time zero. The perturbing acceleration function

Table 8.1 Classical Orbital Elements

Orbital Elements Values

a 6778.136 (km)

e 1.0 × 10−5

i 51.6 (deg)

Ω 25.0 (deg)

ω 30.0 (deg)

M 0.0 (deg)

consists of a gravitational component due to the J2 zonal perturbation, and a drag
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component that is described by the exponential density function. The unmodeled or

neglected accelerations are compensated by adding process noises into the determinis-

tic system equation such that the true system model has the following form expressed

by first order differential state forms

ṙ = v (8.14)

v̇ = − µ

r3
r + ag + ad + w(t) (8.15)

where r and v are the position and velocity vectors, respectively, and ag is an ac-

celeration function due to the J2 zonal harmonics, and ad is the drag perturbation.

w(t) ∈ ℜ3×1 is a white, Gaussian process noise which presents the effects of model

errors with the properties

E {w(t)} = 0, E
{

w(t)wT (s)
}

= Q(t)δ(t − s) (8.16)

The simulated true orbit for the user satellite is generated by numerical integration

of the acceleration function by means of a fourth-order Runge-Kutta method.

8.2.2 Generation of Observations

A ground-based radar tracking station was used to take observations and the location

of the sensor was selected to be Eglin Air Force Base whose location is at 30.2316◦

latitude and 86.2347◦ longitude. An observation consists of range, azimuth, and

elevation angles and the measurement errors were considered to be Gaussian random

processes with zero means and variances

σrange = 25.0 m, σazimuth = 0.015◦, σelevation = 0.015◦

The observation track length is 120 seconds with observations every five seconds,

and each observation consists of a range, azimuth, and elevation measurement. For
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the generation of the observations, Eq. (7.30), Eq. (7.33), and Eq. (7.34) were used,

respectively.

In order to determine the satellite visibility tracking capability analysis, an ele-

vation cut-off angle is set with the threshold value 15◦. The overall procedures were

already described in Fig. 7.4. Tracks available for observations are separated by 12,

and 24 hour time gaps, thus estimated outputs from the first track are propagated up

to the next available measurements. Herein, real-time OD is defined as completing

the calculations required to perform the OD measurement update prior to acquiring

the next measurement.

8.2.3 Filter Dynamic Model

Based on the true system model in Eq. (8.14), the nominal or filter dynamic model

in a vector/matrix form is represented by

˙̂x = f (x̂, t) (8.17)

where x̂ ∈ ℜ7×1 consists of the estimated position, velocity, and drag coefficient com-

ponents, respectively, This ephemeris generation is referred to as reference trajectory

generation.

Once, the state transition matrix Φ is obtained by integrating the matrix dif-

ferential equation in Eq. (7.84), the propagation of the state covariance matrix is

calculated from the discrete-time covariance equation in Eq. (7.86). The discrete-

time process noise covariance matrix for position, velocity, and drag coefficient is

constructed by

Q(tk) =













∆t3σ2
w

3
I3×3

∆t2σ2
w

2
I3×3 01×1

∆t2σ2
w

2
I3×3 ∆tσ2

wI3×3 01×1

01×1 01×1 01×1













(8.18)
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where the variance of the process noise σ2
w is obtained by selecting the variance of the

process noise w(t). In continuous systems, propagation of the covariance matrix is

computed by integrating the differential Lyapunov equation with an initial estimated

covariance matrix.

8.2.4 Simulation Results and Performance Analysis

Two simulation examples are illustrated; one is the orbit estimation with the presented

nonlinear filtering methods in the absence of adaptive filtering or model compensation

methods. The other scenario utilizes the adaptive nonlinear filters, and the adaptive

filters are compared with the standard nonlinear filters.

8.2.4.1 Nonlinear Estimation

In this section, the performance of the proposed nonlinear filters, the EKF, UKF,

and DDF is demonstrated through simulation examples using the realistic system

and observation models. Fig. 8.1 illustrates the orbit estimation strategy used in this

study. For establishing accurate estimate conditions a few measurements are used to

perform an initial guess of the state of the satellite. In this study, the Herrick-Gibbs

algorithm,104 which was explained in Eq. (7.47), is adopted to obtain the initial orbit

estimate.

The solve-for state vector x ∈ ℜ6×1 consists of the position, and velocity. The

state vector for the UKF is augmented with the process noise terms, xa = [rT vT wT ]
T ∈

ℜ6+3. The parameters used in the UKF are the scaling factors associated with the

scaled unscented transformation. β = 2 is set to capture the higher order (fourth)

terms in the Taylor series expansion, κ provides an extra degree of freedom to fine

tune the higher order moments of the approximation. If x is a Gaussian distribution,

then κ = 3 − n is used for multi-dimensional systems, and α = 1/
√

n is chosen to
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Fig. 8.1 Diagram for Orbit Estimation Strategy

make the sample distance independent of the state size. The interval length h =
√

3

is set for a Gaussian distribution in the DDF.

The initial covariance P0 ∈ ℜ6×6 used for the filters is assumed to be diagonal

such that the position variances are 1 km2, the velocity variances are 5 × 10−3 km2/s2.

P0 = diag
([

1 1 1 5 × 10−3 5 × 10−3 5 × 10−3
])

The process noise for the dynamic model errors needs to be added to the acceleration

terms so that it can adjust the convergence properties. In this study, however, the

value for Q(t) is set rather than adjusted in order to model the realistic environ-

ment as close as possible. For instance, the acceleration due to J2 is approximately

10−5km/sec2, and the truncated or ignored perturbing accelerations are roughly of

order J2
2 . Therefore, in the orbit scenario model, the process noise matrix takes the
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values

Q(t) = diag
([

0 0 0 10−16 10−16 10−16
])

Note that since the process noise covariance Q(t) comes from a continuous-time dy-

namical system model, it needs to be converted into the discrete-time form of the

covariance Qk through an approximate numerical integration scheme.27 In this work,

the discrete-time process noise matrix introduced in Eq. (8.18) can be used such that

the variance of the velocity variance component σ2
w = 10−16 in the continuous-time

system is substituted for the discrete-time one

Qk =







∆t3

3
10−16 [I3×3]

∆t2

2
10−16 [I3×3]

∆t2

2
10−16 [I3×3] ∆t10−16 [I3×3]






(8.19)

The simulation result in Fig. 8.2 shows the average magnitude of the position and

velocity estimate errors generated by each filter through a Monte-Carlo simulation

consisting of 30 runs. As can be seen, the advantage of the SPKFs over the EKF in

this case is not obvious, which indicates that the effect of nonlinearity on the filters is

negligible with the small initial state errors along with the small process noises over the

short track length. This is the expected result because nonlinearity is negligible over

the short arc, and setting Q(t) to zero in the filters should obtain theoretically similar

results with the sequential least-squares estimation of the state and covariance. To

verify the above results optimality or consistency is investigated by using the index τk

in Figures 8.3 and 8.4. Fig. 8.3 shows the state estimation performance of the filters in

terms of the value τk, where the error ek is the state estimation error between the true

xk and estimated x̂+
k and P−1

k is the inverse of the updated state covariance matrix

P+
k . As expected the values of the optimality index τk vary around the value 1.0

in Fig. 8.3, which means that the proposed filters provided accurate estimate values

with small bias error during the first observation span. Fig. 8.4 is the consistency



232

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Time (sec) 

 P
os

iti
on

 E
rr

or
s 

(k
m

) 

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

 Time (sec) 

 V
el

oc
ity

 E
rr

or
s 

(k
m

/s
) 

UKF
EKF
DDF1
DDF2

UKF
EKF
DDF1
DDF2

Fig. 8.2 Averaged Position and Velocity Errors with Small Initial Errors

measure taken in the state and covariance propagation part where the error ek is the

difference between the true xk and predicted state x̂−
k , and P−1

k is the inverse of the

predicted state covariance P−
k . In the result the UKF shows the most consistent and

accurate prediction performance among the filters. As expected the EKF and DDF1

have similar performance in the prediction accuracy and the DDF2 has a performance

between the UKF and the EKF. It indicates that the neglected higher-order terms

in the series expansion are not ignorable and could affect the prediction accuracy

of the filters with a long time span. Thus, the estimation accuracy with long time

separations between tracks will be highly subject to the prediction accuracy of the

filters.

In the next simulation, the values of the state and process noise covariance matri-

ces are increased to check the robustness to modeling errors and the sensitivity analy-

sis of the filters to initial errors by multiplying the scale factors, kP = 101, kQ = 102 for
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Fig. 8.5 Averaged Position and Velocity Errors for Large Initial Errors

P0 = kpP0 and Q = kQQ(t) and by setting large initial errors, x̂(t0) = 0.99×xtrue(t0).

The simulation results in Fig. 8.5 illustrate a possible realistic scenario in orbit esti-

mation due to large initial errors. The position estimate error in the EKF and the

DDF1 is reducing, but converges with some biased error. However, the UKF and

the DDF2 converge continuously and fast with small bias error, which indicates also

that they are performing in a near optimal fashion. The performance in the velocity

estimation also shows that the UKF and the DDF2 provide a more accurate esti-

mate than the first-order filters (the EKF and the DDF1). The UKF and the DDF2

exhibit similar performance in the velocity estimation accuracy, but the UKF has

smaller RMS position errors than the DDF2.

Now, we consider the estimation with multiple tracks that have a large time

separation between themselves. The orbit estimation is performed in the second

track separated by 12 hours from the first track. First, the estimated states and
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updated covariance matrix obtained from the first track estimation are propagated

by using each propagation method until the next available track. For the covariance

propagation the differential Lyapunov equation or the state transition matrix is used

for the EKF, the scaled unscented transformation (SUT) is applied for the UKF, and

the compound matrices containing divided differences are utilized in the DDF1 and

the DDF2. Each propagation method gives a different level of the prediction accuracy.

The first-order filters, the EKF and the DDF1, have almost the same approximation

accuracy up to the first-order Taylor series expansion. The UKF and the DDF2 have

the identical state propagation accuracy, but they have slightly different propagation

accuracy for the covariance. Both the UKF and the DDF2 filters, however, result in

approximations accurate up to the third order of the Taylor series expansion for a

Gaussian distribution. Therefore, the inputs to the orbit determination in the second

track are the state estimate and covariance matrix propagated from the end of the

first track. As the separation time between tracks increases the prediction errors

increase due to the neglected nonlinear terms and also the secular terms that arise

from an error in the predicted semi-major axis, which affects the estimation in the

second track. From the experience in the previous simulation examples, it is expected

that superior performance results of the UKF and the DDF2 should be obtained over

the first-order filters.

Fig. 8.6 depicts the estimation of the states in the second track with a 3-min

observation length separated from the first track by 12 hours. In the results, the

qualitative observation is made that the UKF and the DDF2 show far better per-

formance in the state estimation over the EKF when the tracks are separated for

multiple orbits with sparse measurement data. It can also be observed how quickly

the UKF and the DDF2 converge to the true state of the system. The degradation of

the EKF performance is related to the fact that the state and covariance prediction
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Fig. 8.6 Averaged Position and Velocity Errors After 12-Hour Propagation
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executed for a long time interval leads to large prediction errors due to the effects of

the neglected nonlinear terms, especially, for the first order filters.

In Fig. 8.7, the second track is separated by 24 hours from the first track, which

results in the large initial state and covariance errors to the nonlinear filters. The state

estimation errors of the EKF and the DDF1 do not converge well, and result in large

bias errors by the end of the second track, whereas the UKF and the DDF2 still show

quick convergence performance for both position and velocity estimates. Even more

encouraging, the UKF shows the best performance among the filters. This agrees

well with our expectations and indicates that the higher-order terms are necessary

to adequately capture the large initial condition errors, and they play a role in the

accurate estimation of the state and covariance in space catalog maintenance.

Conclusion and Summary

In this paper new nonlinear filtering algorithms, called Sigma Point Filters (SPFs)

that include the unscented Kalman filter (UKF) and the Divided Difference Filters

(DDF1, DDF2), are utilized in order to obtain accurate and efficient orbit estimation

for space catalog maintenance. In addition to the filter consistency performance test

with the 3-σ bound, an efficient method is introduced in order to measure the dy-

namic and measurement nonlinearities of the proposed filters along with the whiteness

criteria for estimation optimality analysis. Simulation results indicate that the per-

formances of the UKF and the DDF2 are similar, but superior to both the standard

Extended Kalman filter and the first-order Divided Difference Filter in terms of the

estimate accuracy and sensitivity to large initial errors. In particular, the robustness

of the UKF to the initial covariance matrices makes it easy to tune the filter, and the

SPFs provide the flexibility of implementation without the derivation of the Jacobian

and/or Hessian matrix. The advantages of the proposed algorithms make it suitable
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for the efficient real-time satellite orbit estimation for establishing the initial orbits

of space objects so that they can be entered into the space object catalog.

8.2.4.2 Adaptive Nonlinear Filtering

In this section, the performance of the proposed adaptive nonlinear filters, the AEKF,

AUKF, and ADDF is demonstrated through simulation examples along with esti-

mation optimality analysis. The satellite under consideration has the same orbit

parameters used in Table 8.1.

Note that estimating the drag coefficient with the position and velocity compen-

sates for errors in the density. The solve-for state vector x consists of the position,

velocity, and drag coefficient, x = [x, y, z, ẋ, ẏ, ż, Cd]
T ∈ ℜ7×1. The true initial values

of the state variables were

x0 = 4011.571km, y0 = 4702.649km,z0 = 3238.358km

ẋ0 = −5.653km/s, ẏ0 = 1.540km/s, ż0 = 4.776km/s

and the drag coefficient Cd was 2.0. For the nominal reference trajectory, the following

initial estimates were used

x̂0 = 4011.578km, ŷ0 = 4702.657km, ẑ0 = 3238.355km

˙̂x0 = −5.654km/s, ˙̂y0 = 1.537km/s, ˙̂z0 = 4.772km/s

and the initial estimate of the drag coefficient was Ĉd = 3.0. The initial covariance

P0 ∈ ℜ7×7 used for the filters had diagonal elements

P0 = diag([102 102 102 5 × 10−2 5 × 10−2 5 × 10−2 5 × 10−1])

and the process noise matrix Q(t) takes the values

Q(t) = diag([0 0 0 10−16 10−16 10−16 5 × 10−4])
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Fig. 8.8 Absolute Position Estimation Errors in First Track

Note that since the process noise covariance Q(t) comes from a continuous-time dy-

namic system model, the discrete-time form of the covariance Qk can be obtained by

using Eq. (8.18).

For establishing accurate estimation conditions a few measurements were utilized

to produce an initial orbit determination of the state of the satellite. The initial

state estimation was executed by employing the Herrick-Gibbs algorithm,98 and the

output of the state estimate becomes the input to the recursive nonlinear filters. In

the first track the performance of the three nonlinear filters (EKF, UKF, and DDF)

are compared without integration of the adaptive process noise estimator.

The absolute magnitude values of the position, velocity and drag coefficient es-

timation errors for three nonlinear filters are shown in Figures 8.8, 8.9, and 8.10,

respectively. As can be seen, the advantage of the SPFs over the EKF in the position
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Fig. 8.9 Absolute Velocity Estimation Errors in First Track

Fig. 8.10 Drag Coefficient Estimation Error Ratio in First Track
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and velocity estimation errors is not obvious, but the SPFs are slightly better, which

indicates that the effect of nonlinearity on the filters is not severe with the small

initial state errors along with the small process noises over the short track length.

In Fig. 8.9 the absolute values of the average of the drag coefficient estimate error

for the proposed nonlinear filters are presented. All the filters produce converging

estimates. The UKF demonstrates accurate performance in the drag parameter esti-

mation, but still the estimate error is not fully converged. This is because the short

track does not allow the filters to extract enough information to get the parameter

estimate converged. Note that usually long arcs of several months are employed in

order to estimate or calibrate the ballistic or drag coefficient in order to obtain a good

estimate of the ballistic coefficient.

The results represented in the above can be verified by employing the optimality

index τk. Fig. 8.11 shows the optimality measure taken in the state and parameter es-

timation. The results from the SPFs and EKF exhibit similar consistent performance

with the value close to unity, which indicates that the neglected higher-order terms

in the series expansion are not severe, and all the filters are producing accurate esti-

mates with small biased errors. Fig. 8.12 shows the measurement innovation errors

that lie inside the 2-sigma bound without any deviations. Even though each filter

produces slightly different innovation errors, they all fall inside the boundary with

close optimal performance. According to the RMS errors, the optimality index, and

the innovation error criteria it is seen that the performance of the nonlinear filters is

near-optimal when the process and measurement noise are correctly selected but the

SPFs are slightly better than the conventional EKF.

Now, the orbit estimation is performed in the second track which is separated

from the end of the first track by 24 hours. Due to the long time span between

the tracks large uncertainties exist at the beginning of the second track. During the
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Fig. 8.11 Consistency Test with Optimality Index

Fig. 8.12 Measurement Innovation Errors with 2-sigma Bound
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prediction period between the first and second tracks, the discrete-time covariance

propagation equation given in Eq. (7.84) was used in order to propagate the estimated

covariance matrix. The estimated state was propagated by numerically integrating

the filter dynamic model. Thus, the inputs to the orbit determination in the second

track are the a priori state estimate and covariance matrix propagated from the end of

the first track. The filter prediction equations used consist of the two-body motion,

J2 zonal perturbation and standard exponential drag perturbation, but no process

noise was added to it.

As the separation time between tracks increases the prediction errors increase

due to the neglected nonlinear terms in the prediction process and errors in the

estimated state, which affects the estimation in the second track. The uncertainties

or neglected modeling errors in the second track, however, can be compensated by

utilizing the proposed adaptive nonlinear filtering techniques that adaptively estimate

the process noise covariance matrix. Thus, the purpose of the orbit estimation in the

second-track is to compare the performance of the proposed adaptive nonlinear filters,

AEKF, AUKF and ADDF with the standard nonlinear filters.

The true initial values of the state variables for the second track estimation were

x0 = 5064.297km, y0 = 4058.090km,z0 = 2563.877km

ẋ0 = −4.769km/s, ẏ0 = 2.647km/s, ż0 = 5.236km/s

and the drag coefficient was set Cd = 2.0. For the nominal reference trajectory, the

initial estimates for the second track estimation were used

x̂0 = 4916.498km, ŷ0 = 4136.048km, ẑ0 = 2721.477km

˙̂x0 = −4.946km/s, ˙̂y0 = 2.501km/s, ˙̂z0 = 5.142km/s

and the initial estimate of the drag coefficient was Ĉd = 3.0. The initial covariance
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P0 ∈ ℜ7×7 was obtained (only diagonal terms were represented)

P0 = diag([6447.7081 1539.250 6727.063 0.000008 0.00610 0.00275 5.3125])

The process noise covariance matrix was taken based on the value in the first track, but

the variance value of the drag coefficient was increased in order to consider uncertainty

effects due to the propagation.

Q(t) = diag([0 0 0 10−16 10−16 10−16 5 × 10−3])

The adaptive nonlinear filters used for the state and parameter estimation are based

on the identification of the process noise Q(t). Since each adaptive filter produces

a different value of the objective cost function J that is the sum of the innovation

errors, the scales factors calibrated from the Downhill Simplex88 optimization method

are different. The weight factor or wind size γ obtained from the adaptive noise

estimator was 4.5 × 105 for the AEKF, the values for the AUKF and ADDF were

close with γ = 1.65 × 102.

Figures 8.13 and 8.14 are the plots of the performance comparison of the adaptive

filters and nonlinear filters with respect to the position and velocity estimation errors

in the second track, respectively, which illustrate a possible realistic scenario in orbit

determination. From the previous simulation results in the first track, it is expected

that superior performance results of the UKF should be obtained over the EKF.

However, the UKF results of the averaged magnitudes of the position and velocity

estimation errors are very close to those of the EKF with the biased estimation errors.

The degradation of the EKF and UKF performance is related to the fact that the state

and covariance prediction executed for a long-time interval leads to large prediction

errors due to the effects of the neglected nonlinear terms, and also the parameter

uncertainties such as the drag coefficient. Thus, the filters start estimating the states
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Fig. 8.13 Absolute Position Estimation Errors in Second Track

Fig. 8.14 Absolute Velocity Estimation Errors in Second Track
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Fig. 8.15 Drag Coefficient Estimation Error Ratio in Second Track

with large initial state errors and large covariance matrices with unknown statistical

information of the uncertainties or noise. Under the incorrect noise information, even

the UKF or more higher-order nonlinear filters can’t produce optimal estimates due to

the violation of the optimality conditions. On the other hand, all the adaptive filters

(AUKF, ADDF and AEKF) converge continuously and fast with small bias error,

which indicates they are performing in a near optimal fashion. The performance

in the velocity estimation also shows that the adaptive nonlinear filters provide a

more accurate estimate than that of the standard nonlinear filters (the EKF and the

UKF). This agrees well with our expectations and indicates that the correct noise

information is necessary for the filters to perform optimally.

In Fig. 8.15 the absolute values of the drag coefficient error ratio with respect

to the proposed adaptive filters are shown during the second track, where the error

ratio is the ratio between the true and estimated drag coefficient. As expected the
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Fig. 8.16 Adaptive Covariance Estimation with Q Adaptation

Fig. 8.17 Consistency Test with Optimality Index
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Fig. 8.18 Range Innovation Errors with 2-Sigma Bound

Fig. 8.19 Azimuth Innovation Errors with 2-Sigma Bound
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Fig. 8.20 Elevation Innovation Errors with 2-Sigma Bound

parameter estimation with the adaptive filters also successfully generated converged

solutions with fast and accurate estimates. The EKF and UKF also converge, but

with large bias errors. In the drag coefficient estimation, the AUKF and ADDF show

better performance over the AEKF.

Fig. 8.16 illustrates the adaptation of the process noise variance generated from

the adaptive nonlinear filters as a function of time. It is seen that while the manually-

tuned covariance is constant with time, the estimated covariance has time-varying

values by continuously estimating and adapting the noise statistics for an optimal

performance. From the results it is seen that the increased process noise variances

at the initial estimation make the prediction covariance and the Kalman gain larger,

therefore the observations have much influence on the filters. In contrast, as the

variances decrease with time, the Kalman gain become small, thus the observations

are not incorporated into the filters. For optimal performance of the filters the process

noise variance is required to increase from the initial variances.
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Now, the results obtained above can be verified by evaluating the nonlinearity

index, τk, in Eq. (8.12) and the whiteness of the innovation vector, ρ̄l, in Eq. (8.13),

respectively. Fig. 8.17 shows the nonlinearity measure in the estimation of the satellite

state and parameter from the proposed filters. The nonlinear index obtained by the

adaptive nonlinear filters varied around unity, but the index from the EKF remained

over the value with large deviations. This indicates that the ASPFs and AEKF exhibit

similar optimal performance, and successfully compensate for the neglected higher-

order terms in the series expansion and unknown uncertainties. Figures 8.18 ∼ 8.20

depict the innovation errors with the 2-sigma bound. The innovation errors from the

adaptive filters vary inside the sigma bound, but the innovations from the EKF and

UKF are outside the bound. According to these results, we can also judge that the

adaptive filters achieved the near-optimal performance.

According to the RMS errors, the nonlinearity index, and the innovation error

criteria presented so far, it is seen that the performance of the adaptive nonlinear

filters is optimal in the sense that they compensate for the neglected modeling errors,

as well as the unknown uncertainties.

Conclusion and Summary

In this paper new adaptive nonlinear filtering algorithms called the adaptive

unscented Kalman filter (AUKF) and the adaptive divided difference filter (ADDF)

were derived by integrating the sigma point filters (UKF and DDF) with a new adap-

tive estimator formulated by a numerical optimization. The purpose of the proposed

adaptive nonlinear filters was to not only compensate for the nonlinearity effects ne-

glected from linearization, but also to take into account the system modeling errors by

adaptively estimating the noise statistics and unknown parameters. The performance

of the AUKF and the ADDF was superior to the standard nonlinear filters (EKF and
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UKF) in terms of the fast convergence and estimation accuracy. The advantages of

the proposed adaptive nonlinear filtering algorithms make these attractive alterna-

tives to the standard nonlinear filters for efficient state and parameter estimation not

only in satellite orbit determination but also in other application areas.

8.3 Autonomous GPS Navigation

In this section, the performance of the proposed nonlinear filters with integration of

the dynamic model compensation (DMC) method is illustrated with application to

autonomous navigation applications.

When the spacecraft has the potential for significant accelerations, it is usually

necessary to measure and account for the changes in velocity, which leads to the

integrated GPS/INS navigation system. However, in this formulation it is assumed

that the Inertial Measurement Unit (IMU) including gyroscopes and accelerometers is

not integrated with the GPS. This chapter focuses on how the GPS observations are

utilized to provide a navigation solution. Therefore, the stand-alone GPS navigation

system estimates the vehicle state and parameters. Literature for the integrated

GPS/INS navigation system is found in Refs. 113, 115, and 123.

8.3.1 Generation of User True Trajectories

The simulated user satellite has the following orbital elements at epoch defined to be

simulation time zero.

The simulated true orbit for the user satellite is generated by numerical integra-

tion of the acceleration function by means of a fourth-order Runge-Kutta method.

The acceleration function consists of a gravitational component and a drag compo-

nent. The gravitational potential is modeled as a sixth-order aspherical potential
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Table 8.2 User Satellite Orbital Elements

Orbital Elements Values

a 7678160.0 (m)

e 0.0

i 1.0996 (rad)

Ω 1.5708 (rad)

ω 0.0 (rad)

M 0.0 (rad)

function in Eq. (7.4), and the acceleration due to gravity is derived by taking the

gradient of this potential function in Eq. (7.5), respectively.

8.3.2 Generating of GPS Satellite Trajectories

To simulate a GPS scenario a description of typical GPS satellite orbit trajectories

is needed. The GPS satellite information is usually given by a GPS almanac such

as the Yumma almanac, which provides orbital elements including semi-major axis,

eccentricity, inclination, right ascension, argument of perigee, and mean anomaly.

These parameters are used to provide an initial position and velocity in the ECI

coordinate system. The orbital elements at simulation epoch for the GPS satellites

are listed in in the following Table 8.3.

The description of the orbital elements is illustrated in Fig 8.21 and each specific
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Table 8.3 GPS Constellation Elements

Satellites a (m) e i (deg) Ω0 (deg) f0 (deg)

1 26559800 0.0 55.0 325.7 72.1

2 26559800 0.0 55.0 25.7 343.9

3 26559800 0.0 55.0 85.7 214.9

4 26559800 0.0 55.0 145.7 211.9

5 26559800 0.0 55.0 205.7 93.9

6 26559800 0.0 55.0 265.7 27.9

equations and values are given by

f(t) = f0 +

√

µ

a3
× (t − t0) (8.20)

Ω(t) = Ω0 − ωe(t − t0) (8.21)

i = 55◦ (8.22)

R = 26560 km (8.23)

The secular variation of Ω is due to the rotation of the Earth, we is the rate of rotation

of the Earth and µ is the gravitational constant

ωe = 7.29212 × 10−5 rad/s (8.24)

µ = 398600.44 km3/s2 (8.25)

The GPS simulated true orbits are propagated by a two-body Keplerian proce-

dure. More detailed descriptions are available in Ref. 120.

8.3.3 Filter Dynamic Model and Error Sources

The dynamic state solution requires a dynamic model for the propagation of the

state vector and covariance matrix. The perturbing acceleration terms for the filter
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Fig. 8.21 Description of the Geometry of GPS Satellite Orbit

dynamic model consist of the gravitational acceleration term and the atmospheric

drag. The gravitational potential for the filter dynamic model includes only the J2

harmonic term

Up =
µ

r

[

1 − J2

2

(re

r

)2
(

3 sin2 δ − 1
)

]

(8.26)

The gradient of this provides the components of the gravitational acceleration for the

filter dynamic model.

The errors used for dynamic model parameters, GPS ephemeris data, and mea-

surements are listed in Table 8.4 where the subscript “p” denotes the user perceived

value and the values given in the table are the true simulation values.

The initial estimates of position, velocity, clock bias, and clock drift are calculated

by means of the geometric state solution, and these initial estimates become the a

priori values to start the dynamic state solution process. The assembling pseudorange
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Table 8.4 Simulation Error Sources

Error Sources Values

GPS Position Mean = 0.0 m

GPS Velocity Mean = 0.0 m

Pseudorange Measurement Mean = 0.0 m

Pseudorange Rate Measurement Mean = 0.0 m

User Clock Bias 0.12 (sec) (At epoch)

User Clock Bias 1.0 × 10−9 sec / sec

and range rate measurements for the measurement update process, the user satellite

searches for visible GPS satellites. The availability of a particular GPS satellite at a

given user location is investigated by checking the vertical elevation angle. The user

satellite can access all visible GPS satellites which are above the 10 degree elevation

angle.

8.3.4 Simulation Results and Performance Analysis

The time span for the filter dynamic simulation has a 1500 (sec) interval. A geometric

solution at the initial epoch time t0 = 0 provides the a priori state estimate to start

the dynamic filtering process, and the interval for the GPS observation is updated at

each 5 (sec).

Note that both the geometric solution and the least-squares point solution do

not provide any state covariance data, thus the initial a priori covariance matrix P0

is assumed to be chosen with diagonal elements. The initial variances for the position

and velocity components are given by

σ2
x = σ2

y = σ2
z = 1.0 × 105 (m)2 (8.27)

σ2
ẋ = σ2

ẏ = σ2
ż = 1.0 × 103 (m/s)2 (8.28)
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and the initial variances for the system parameters µ, J2, Cd, bc, ḃc, and τ are

1.0 × 1020, 1.0 × 102, 1.0 × 1010, 10, 10, 1.0 × 104, respectively. The variances of the

three DMC acceleration components have the same input value of σ2
u used for the

process noise matrix for a particular run. Therefore, the a priori covariance matrix

P0 has the following elements

P0 =


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(8.29)

The standard deviation of the process noise for clock bias clock drift, and corre-

lation time is set

σb =
√

qb = 0.4472, σd =
√

qd = 0.1414, στ =
√

qτ = 0.0 (8.30)
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Fig. 8.22 Position Errors for Geometric Solution

In order to make the simulation simple, an optimal value of τ is decided by

observing the time history of its value over the time span from the filtering process.

Once a near optimum for τ has been determined, the value of σu can be decided.

In this simulation work, the estimated values of the time correlation and associated

standard deviation of the process noise in the DMC are set as

τ = 4000, σu = 0.1 (8.31)

Figs. 8.22, 8.23, and 8.24 show the position, velocity, and clock bias errors of the

user satellite generated from the geometric solution as a function of time. It is seen

that the position, velocity, and clock bias error histories have large variation since

the geometric solution is dependent on the GPS satellite geometry. One of the disad-

vantage of the geometric solution lies in the fact that it does not propagate the state
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Fig. 8.23 Velocity Errors for Geometric Solution

Table 8.5 RMS Errors from Geometric Solution (Static Solution)

RMS εr(m) εv(m/s) εbias(sec)

User RMS Errors 14.21 0.189 7.25e-09

information from one measurement to the next and each solution is computed inde-

pendently. However, this independent characteristic provides a stable, non-divergent

solution that the dynamic estimation solution may face.

The RMS values for the position, velocity, and the user clock bias errors from

the geometric solution are summarized in Table 8.5.

In the following simulations the dynamic model compensation technique is ap-

plied. The dynamic model compensation estimation is also called adaptive filtering

in that it compensates for the unknown perturbing acceleration errors in the system
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Fig. 8.24 Clock Bias Errors for Geometric Solution

model through the first-order Gauss Markov process.

Figs. 8.25 and 8.26 show the position, velocity, and clock bias errors of the

user satellite generated from the dynamic model compensation estimation solution

as a function of time. Figs. 8.27 and 8.28 exhibit the user clock bias and clock

drift errors generated from the dynamic model compensation estimation solution as a

function of time. In these results, the EKF algorithm is used to formulate the DMC

estimation for the autonomous GPS navigation. As can be seen, the EKF based

DMC adaptive estimation achieves considerably better estimation accuracy than the

geometric solution. The dynamic filtering approach produces a small error in the user

clock bias, but the clock error from the geometric solution is nearly unbiased. The

consistent clock drift error was obtained shown in Fig. 8.28.

The RMS values for the position, velocity, and the user clock bias errors generated
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Fig. 8.25 Position Errors for DMC Solution

Fig. 8.26 Velocity Errors for DMC Solution
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Fig. 8.27 Clock Bias Errors for DMC Solution

Fig. 8.28 Clock Drift Errors for DMC Solution
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from the adaptive model compensation estimation are summarized in Table 8.6. It is

Table 8.6 RMS Errors from Dynamic Model Compensation Estimation

RMS εr(m) εv(m/s) εbias(sec)

User RMS Errors 7.92 0.098 3.92e-09

seen that the RMS errors from the DMC estimation results in smaller errors compared

with the geometric point estimation. The DMC navigation solution can substantially

improve the definitive and predictive accuracy of GPS receiver point solution fixes,

achieving accuracies on the order of 10 meters and 0.09 m/sec. However, the DMC

method is dependent on the tuning parameters of the time correlation time τ and

the variance of the process noise σ2
u in order to produce sub-optimal or near-optimal

estimation results. The question that arises is how the tuning parameters can be

optimally estimated or selected. One solution to the question is to utilize fuzzy

logic or a genetic algorithm to optimize the tuning parameters. The adaptive model

compensation using the genetic algorithm had been investigated in Ref. 97.

8.3.5 Conclusion

The geometric solution offers the simple and fast calculation and is not subject to

dynamic modeling errors. However, the series of the geometric solution exhibits large

variations. The performance of the geometric approach is dependent on measurement

accuracy and viewing geometry of the GPS satellites. When an a priori state infor-

mation is not available, this geometric solution can play a role of a batch filter to

provide an initial state for a dynamic estimation filter. The integrated adaptive EKF

dynamic algorithm provides better accurate estimation results. The DMC estimation

play a role of an adaptive filtering in that it compensates unknown perturbing ac-
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celeration errors in the system model. However, the adaptive capability of the DMC

estimation is limited since it is subject to optimizing the tuning parameters, the time

correlation and the variances of the process noise.

8.4 Autonomous Robot Navigation

Mobile robots are typically equipped with sensors such as GPS, IMU, video cameras,

ultrasonic or infrared range, acoustic, and contact sensors.124 The unknown state

processes are robots’ position and/or velocity. In this study, an autonomous robot

shown in Fig. 8.29 attempts to determine its position using the measurements from

a minimum set of sensors. One sensor measures the range or distance between the

center of the robot and a particular point on a wall using ultrasound, and the other

sensor measures the robot’s speed. The robot also has proximity sensors to avoid

collisions with objects and the wall. In general, for the precise local robot navigation,

an additional set of sensors that measure its heading angle and angle rate is required.

Without rate sensors, the performance of the standard nonlinear filters such as the

EKF in the robot navigation could be degraded.124

In this section, efficient cutting-edge nonlinear filtering algorithms for robot navi-

gation with a minimum set of sensors are investigated. The purpose of this application

is to test how the state-of-art filtering algorithms work with a minimum number of

sensors. The nonlinear filters range from the sigma point filters (DDF, UKF), the

generic SIR particle filter to the newly proposed sigma-point based particle filter,125

and their performances are compared in terms of the RMS estimation error and com-

putational load.
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Fig. 8.29 Diagram for Autonomous Robot Navigation System

8.4.1 Robot Dynamic System

The robot dynamics are described in terms of the following scenario. There are several

constraints on the robot motion; 1) the robot’s speed can not be negative, 2) there is

a maximum value for the robot’s speed smax, 3) there is no slippage of the tracks of

the robot, and 4) if the proximity sensor indicates that the robot is about to hit the

wall (its x position is about to become negative), then it stops and turns around (its

speed is set to zero and its orientation is preserved).

Now the kinematic model for the robot motion is described along with incorpo-

rating these constraints. The components of the robot state xk are defined by

xk =



















x(k)

y(k)

s(k)

θ(k)



















(8.32)
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where x(k) is the robot’s position, y(k) is the robot’s position, s(k) is the robot’s

speed, and θ(k) is the robot’s heading angle, respectively.

To develop the discrete-time nonlinear dynamics equations, the following defini-

tions are made

x′(k + 1) = x(k) + s(k)∆t cos θ(k) + wx(k)

s′(k + 1) = s(k) + ws(k)
(8.33)

where ∆t is the time between observations. With these definitions, the discrete-time

dynamics model for robot’s motion is described by

x(k + 1) = max(0, x′(k + 1))

y(k + 1) = y(k) + s(k)∆t sin θ(k) + wy(k)

s(k + 1) =























0, x′(k + 1) ≤ 0 or s′(k + 1) ≤ 0

smax, s′(k + 1) ≥ smax

s′(k + 1), otherwise

θ(k + 1) =











θ(k)+π+wθ(k), x′(k + 1) ≤ 0

θ(k)+wθ(k), x′(k + 1) ≥ 0

(8.34)

where wk = [wx, wy, ws, wθ]
T is a zero-mean white Gaussian process noise vector

whose covariance matrix is E
{

wk(k)wT
j (k)

}

= Q(k)δkj.

8.4.2 Sensor Measurements

One of the most important tasks of an autonomous robot is to acquire its environ-

ments, position and velocity, by taking measurements from various sensors such as

GPS, heading-angle sensors, speed sensors and so on.126 In this work, an autonomous

mobile robot attempts to determine its position by using the measurements from two

sensors. One sensor measures the distance between the robot and a particular point

on a wall using ultrasound, and the other sensor measures the robot’s speed. The
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robot also has proximity sensors to avoid collisions with objects and the wall.

8.4.2.1 Range Measurement

A range sensor provides a distance measurement of the robot’s relative to a known

location, the origin (x0, y0). If the planar location (x, y) is given, then the distance

d(k) of the robot from the origin is decided by

d(k) =

√

(x(k) − x0)
2 + (y(k) − y0)

2 (8.35)

The linear mapping Hrange of the range observation is

Hrange =
∂hrange

∂x
=

∂d(k)

∂x
=

[

x − x0

d
,
y − y0

d
, 0, 0

]T

(8.36)

8.4.2.2 Speed Measurement

Some sensors measure directly the relative motion between the robot and its envi-

ronment. Since an object is moving relative to the robot’s reference frame, sensors

detect relative motion and its speed is estimated. Speed sensors are based on the

Doppler effect which utilizes the change of an electromagnetic or sound wave known

as the Doppler shift.127 The robot’s speed s(k) is assumed to be measured by a speed

sensor relative to the reference frame.

8.4.2.3 Measurement Equations

The autonomous mobile robot determines its position by using the measurements

from the range and speed sensors, but heading angle sensors are not utilized. Then

the measurement equation with an additive Gaussian noise vector is expressed by

yk = h (xk, k) + vk =







d(k)

s(k)






+ vk (8.37)
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where vk has a covariance matrix Rk.

8.4.3 Simulation and Performance Analysis

In this section, the performance of the proposed nonlinear filtering algorithms are

demonstrated through a robot navigation problem. A robot attempts to determine

its position by utilizing a minimum set of sensors, range and speed sensors.

Fig. 8.30 Initial Position Particles at k = 0

The parameters values for the robot navigation simulation are given by

smax = 3 m/ sec, dt = 1.0 sec (8.38)

An initial true state x0 for simulation study is set such that x0 = [10, 5, 3, 0]T . The

number of samples used is N = 400, and initial particles at time k = 0 shown

in Fig. 8.30 are drawn from the true distribution of p(x0). The initial covariance
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P0 ∈ ℜ4×4 used for the filters is assumed to be diagonal such that the position,

speed, and heading-angle variances are given by

P0 =



















10 0 0 0

0 10 0 0

0 0 1.0 0

0 0 0 1.0



















(8.39)

The discrete-time form of the covariance Qk is assumed to be

Qk =



















0.12 0 0 0

0 0.12 0 0

0 0 0.52 0

0 0 0
(

π
18

)2



















(8.40)

where the units are meter (m) and radian (rad). The measurement noise covariance

matrix Rk is given by

Rk =







0.5 0

0 0.01






(8.41)

All of the following numerical simulations have an execution time of 30 seconds.

The true paths of the planar robot is depicted in Fig. 8.31 for simulation study.

Fig. 8.32 is a plot of the estimated position errors of the robot as a function of

time k. As can be seen, the UKF and DDF have degraded convergence performance,

because the measurements of the heading angle θ is not updated. The particle filters,

the generic PF and PF-MCMC, generated accurate, converged estimates of the planar

motion without the heading angle information. Specially, the particle filter with the

MCMC modification show the best performance in the state estimation results.

The estimated speed and heading-angle errors are depicted in Fig. 8.33 and

Fig. 8.34. The particle filters leads to accurate estimation performance with small
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Fig. 8.31 True Paths of Planar Robot Motion

biased errors, whereas the UKF and DDF have degraded estimation results.

The initial particles are updated and resampled during the robot operation time,

and the updated particles for the position states at time k = 30 is shown in Fig. 8.36

where the true position is located around the updated particles.

The evolution of the probability distributions of the estimated states in the planar

motion are shown in Figs. 8.37 and 8.38. In the robot navigation without the heading

angle information, the standard minimum mean square estimators, the UKF and

DDF, can be misleading because they do not provide enough information about the

shape of the distribution. Note that one of the sequential Monte-Carlo estimators is

that they provide a complete description of the posterior distribution.
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Fig. 8.32 Planar Position Estimation Errors

8.4.4 Conclusion

In this chapter, the performance of the deterministic sigma point filters and statis-

tical particle filters are compared in terms of accuracy and robustness by using the

autonomous robot navigation with limited sensor information. The simulation results

showed that the sequential Monte-Carlo filters can be efficient alternatives to other

nonlinear filtering algorithms when the measurement information is not enough due

to limited sensor operation. Specially, the MCMC technique in the particle filtering

yields improvements over the sigma point filters (UKF, DDF).
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Fig. 8.33 Speed Estimation Errors

Fig. 8.34 Heading-Angle Estimation Errors
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Fig. 8.35 Distance Estimation Errors

Fig. 8.36 Final Updated Position Particles
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Fig. 8.37 Evolution of Probability Density Function for x State

Fig. 8.38 Evolution of Probability Density Function for y State
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CHAPTER IX

CONCLUSION AND SUMMARY

Over the past 20 years the extended Kalman filter has become a standard technique

in the areas of all engineering fields that need estimation algorithms and related

applications. However, recently, the novel and more accurate nonlinear filters have

been proposed as more accurate alternatives to the extended Kalman filter within

the framework of state and parameter estimation. Like most new algorithms, the

new filtering methods were not widely known or understood and their application

has been limited. In this work, the state-of-art nonlinear filtering algorithms from

the sigma point filters to the particle filters are investigated. We have attempted to

unify these differently motivated and derived efficient algorithms under the recursive

Bayesian filtering framework.

First, analytical approximate nonlinear filtering algorithms called the sigma point

filters (SPFs), that include the unscented Kalman filter (UKF), and the divided

difference filter (DDF), were reviewed. The unscented Kalman filter, which belongs

to a type of sampling-based filters, is based on the nonlinear transformation called

the unscented transformation in which a set of sampled sigma points are used to

parameterize the mean and covariance of a probability distribution efficiently. The

divided difference filter, which falls into the sampling-based polynomial filters, adopts

an alternative linearization method called a central difference approximation in which

derivatives are replaced by functional evaluations, leading to an easy expansion of the

nonlinear functions to higher-order terms. Secondly, a direct numerical nonlinear filter

called the finite difference filter (FDF) was introduced where the state conditional

probability density is calculated by applying fast numerical solvers to the Fokker-

Planck equation (FPE) in continuous-discrete system models.
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For general nonlinear and/or non-Gaussian filtering problems, the sequential

Monte Carlo method is investigated. The sequential Monte Carlo can be loosely

defined as a simulation-based method that use a Monte Carlo simulation scheme in

order to solve on-line estimation and prediction problems. The flexible nature of the

Monte Carlo simulations results in these methods often being more adaptive to some

features of the complex systems. We investigate recent particle filtering algorithms

in a unified way developed independently in various engineering fields.

We have also extended the theoretical understanding of the sigma point filter

based techniques and developed new novel algorithms, the adaptive sigma point filters

and the divided difference particle filter. The adaptive nonlinear filtering algorithms

called the adaptive unscented Kalman filter and the adaptive divided difference filter

were derived by integrating the sigma point filters with a new adaptive noise estima-

tor formulated by a numerical optimization. The purpose of the proposed adaptive

nonlinear filters and the divided difference particle filters was not only to compensate

for the nonlinearity effects neglected from linearization, but also to take into account

the system modeling errors by adaptively estimating the noise statistics and unknown

parameters. In addition, the local linearized particle filtering algorithm with the com-

bination of the divided difference filter was formulated in order to compensate for the

sample degeneracy phenomenon.

For qualitative and quantitative performance analysis among the proposed non-

linear filters, systematic methods for measuring the nonlinearities and optimality of

the proposed filters are introduced. For the simulation study, the proposed nonlin-

ear optimal and sub-optimal filtering algorithms with applications to spacecraft orbit

estimation and autonomous navigation are investigated.

In the orbit estimation scenario, the performance of the new adaptive nonlinear

filters was superior to the standard nonlinear filter, such as the extended Kalman
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filter, in terms of the fast convergence and estimation accuracy. In GPS navigation

applications, the integrated adaptive dynamic model compensation algorithm pro-

vides better accurate estimation results than the geometric solution. The dynamic

model compensation estimation plays a role of an adaptive filtering in that it compen-

sates for unknown perturbing acceleration errors in the system model with a limited

adaptive capability. In the robot navigation application, the versatility and improved

performance of the particle filters over the conventional Gaussian filters, the UKF

and DDF was demonstrated.

The advantages of the proposed Bayesian nonlinear filters as well as the adaptive

nonlinear filters make these attractive alternatives to the standard extended Kalman

filter for efficient state and parameter estimation, not only in satellite orbit determi-

nation and navigation, but also other applications.
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University, Linköping, Sweden, 1999.

69 Kitagawa, G., “Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear

State Space Models,” Journal of Computational and Graphical Statistics , Vol. 5,

N0. 1, 1996, pp. 1–25.

70 Musso, C., Oudjane, N., and LeGland, F., “Improving Regularised Particle

Filters,” in Sequential Monte Carlo Methods in Practice, edited by Doucet, A.,

de Freitas, N, and Gordon, N., Springer, New York, 2001, Chap. 12.

71 de Freitas, J. F. G, Niranjan, M., and Gee, A. H., “Hierachical Bayesian-Kalman

Models for Regularisation and ARD in Sequential Learning,” Technical Report

CUED/FINFENG/TR 307 , Cambridge University Engineering Department,

University of Cambridge, Cambridge, UK, 1998.

72 Carlin, B. P., and Polson, N. G.,and Stoffer, D. S., “A Monte Carlo Approach

to Nonnormal and Nonlinear State-Space Modeling,” Journal of the American

Statistical Association, Vol. 87, No. 418, 1992, pp. 493–500.

73 de Freitas, J. F. G, Bayesian Methods for Neural Networks, Ph.D. Disserta-

tion, Cambridge University Engineering Department, University of Cambridge,



286

Cambridge, UK, 1999.

74 Murphy, K., and Russell, S., “Rao-Blackwellised Particle Filtering for Dynamic

Bayesian Networks,” in Sequential Monte Carlo Methods in Practice, edited

by Doucet, A., de Freitas, N, and Gordon, N. J., Springer, New York, 2001,

Chap. 24.

75 Nordlund, P.-J., Sequential Monte Carlo Filters and Integrated Navigation, The-

sis, Department of Electrical Engineering, Linköpings University, Linköpings,

Sweden, 2002.

76 Silverman, B. W., Density Estimation for Statistics and Data Analysis, Chap-

man and Hall, Bristol, UK, 1986.

77 MacEachern, S. N., Clyde, M., and Liu, J. S., “Sequential Importance Sampling

for Nonparametric Bayes Models: The Next Generation,” Canadian Journal of

Statistics , Vol. 27, 1999, pp. 251–267.

78 Berzuini, C., Best, N. G., Gilks, W. R., and Larissz, C., “Dynamic Conditional

Independence Models and Markov Chain Monte Carlo Methods,” Journal of

the American Statistics , Vol. 92, 1997, pp. 1403–1412.

79 Hastings, W. K., “Monte Carlo Simulation Methods using Markov Chain and

their Applications,” Biometrica, Vol. 57, No. 1, 1970, pp. 97–109.

80 Metropolis, N., Rosenblutt, N., Rosenblutt, A. W., Teller, M. N., and Teller, E.,

“Equations of State Calculations by Fast Computing Machines,” The Journal

of Chemical Physics , Vol. 21, No. 6, 1953, pp. 1087–1092.

81 Andrieu, C., de Freitas, N., Doucet, A., and Jordan, M. I., “An Introduction

to MCMC for Machine Learning,” Machine Learning , Vol. 50, 2003, pp. 5–43.



287

82 Geman, S., and Geman, D., “Stochastic Relaxation, Gibbs Distributions and

the Bayesian Restoration of Images” IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 6, 1984, pp. 731–741.

83 Doerschuk, P. C., “Cramer-Rao Bounds for Discrete-Time Nonlinear Filtering

Problems,” IEEE Transactions on Automatic Control , Vol. 40, No. 8, August

1995, pp.1465-1469.

84 Tichavsky, P., and Muravchik, C. H., “Posterior Cramer-Rao Bounds for

Discrete-Time Nonlinear Filtering,” IEEE Transactions on Signal Processing ,

Vol. 46, No. 5, May 1998, pp.1386-1396.

85 Denham, W. F., and Pines, S., “Sequential Estimation When Measurement

Function Nonlinearity is Comparable to Measurement Error,” AIAA Journal ,

Vol. 4, No. 6, June 1966, pp. 1071–1076.

86 Lee, D.-J., and Alfriend, K. T., “Precise Real-Time Orbit Estimation Using

the Unscented Kalman Filter,” AAS/AIAA Space Flight Mechanics Meeting,

Ponce, Puerto Rico, Feb. 9-13, 2003.

87 Maybeck, P., Stochastic Models, Estimation, and Control , Vol. 2, Academic

Press, New York, 1972.

88 Powell, T. D., “Automated Tuning of an Extended Kalman Filter Using the

Downhill Simplex Algorithm,” AAS/AIAA Astrodynamics Specialist Confer-

ence, Girdwood, AK, August 16-19, 1999, pp. 1029–1039.

89 Busse, F. D., and How, J. P., “Demonstration of Adaptive Extended Kalman

Filter for Low Earth Orbit Estimation Using DGPS,” Institute of Navigation

GPS Meeting , September 2002.



288

90 Jazwinski, A. H., “Adaptive Filtering,” Automatica, Vol. 5, No. 4, 1969,

pp. 475–485.

91 Blanchet, I., Frankignoul, C., and Cane, M., “A Comparison of Adaptive

Kalman Filters for a Tropical Pacific Ocean Model,” Monthly Weather Review ,

Vol. 125, 1997, pp. 40–58.

92 Press, W. H., Vetterling, W. H., Teukolsky, S. A., and Flannery B. P.,Numerical

Recipes in C , Cambridge University Press, New York, 1992, pp. 408–412.

93 Ingram, D. S., Orbit Determination in the Presence of Unmodeled Accelerations ,

Ph.D. Dissertation, The University of Texas, Austin, TX, August 1970.

94 Wu, S. C., Yunck, T. P., and Thornton, C. L., “Reduced Dynamic Technique

for Precise Orbit Determination of Low Earth Satellite,” AIAA Paper 87-410,

AAS/AIAA Astrodynamics Specialist Conference, Kalispell, MT, August 10-13

1987, pp. 101-113.

95 Myers, K. A., Filtering Theory Methods and Applications to the Orbit Determi-

nation Problem for Near Earth Satellites, Ph.D. Dissertation, The University

of Texas, Austin, TX, January 1974.

96 Yunck, T. P., Wu, S. C., Wu, J. T., and Thornton, C. L., “Precise Track-

ing of Remote Sensing Satellites with the Global Positioning System,” IEEE

Transactions on Geoscience and Remote Sensing , Vol. 28, No. 1, January 1990,

pp. 108-116.

97 Cruickshank, D. R., Genetic Model Compensation: Theory and Applications ,

Ph.D. Dissertation, Department of Aerospace Engineering Sciences, University

of Colorado, Boulder, CO, December 1998.



289

98 Vallado, D. A., Fundamentals of Astrodynamics and Applications, McGraw-Hill,

New York, 1997.

99 Sorenson, H. W., “Least-Squares Estimation: From Gauss to Kalman,” IEEE

Spectrum, July 1970, pp. 63–68.

100 Lee, D.-J. No, T. S., Choi, S.-W., Lee, S.-R., Kim, H.-J., and Alfriend, K. T,

“Precise Onboard Ephemeris Propagation Method using CW Frame and Mul-

tiple Compressions,” Journal of Guidance, Control and Dynamics , Vol. 26, No.

5, 2004, pp. 781–785.

101 Junkins, J. L., Akella, M. R., and Alfriend, K. T., “Non-Gaussian Error Prop-

agation in Orbital Mechanics,” the Journal of the Astronautical Sciences, Vol.

44, No. 4, 1996, pp. 541-563.

102 Alfriend, K. T., “A Dynamic Algorithm for the Processing of UCTs,”

AAS/AIAA Astrodynamics Specialist Conference, Sun Valley, ID, Aug. 4-7,

1997, pp. 123–131.

103 Alfriend, K. T., Akella, M. R., Lee, D.-J., Wilkins, M. P., Frisbee J., and Foster

J. L., “Probability of Collision Error Analysis,” Paper No. 98-4279, AIAA/AAS

Astrodynamics Specialist Conference, Boston, MA, Aug. 10-12, 1998.

104 Vallado, D. A., “Accurate Orbit Determination from Short-Arc Dense Oberva-

tional Data,” The Journal of the Astronautical Sciences, Vol. 46, No. 2, April-

June 1998, pp. 195–213.

105 Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics ,

Dover, New York, 1971.



290

106 Shanklin Jr., R. E., Lee, T., Mallick, M. K., and Cappelari Jr., J. O., “Com-

parative Studies of Atmospheric Density Models Used for Earth Satellite Or-

bit Estimation,” Journal of Guidance, Control, and Dynamics , Vol. 7, No. 2,

March–April 1984, pp. 235–237.

107 Dowd, D. L., and Tapley, B. D., “Density Models for the Upper Atmosphere,”

Celestial Mechanics , Vol. 20, 1979, pp. 271–295.

108 Barker, W. N., “Space Station Debris Avoidance Study, Final Report,”

KSPACE 97-47, Kaman Sciences, Colorado Springs, CO, January 31, 1997.

109 Rauch, H., “Optimum Estimation of Satellite Trajectories Including Random

Fluctuations in Drag,” AIAA Journal, Vol. 3, 1965, pp. 717-722.

110 Montenbruck, O., and Gill, E., Satellite Orbits , Springer, New York, 2000.

111 Hough, M. E., “Improved Performance of Recursive Tracking Filters Using

Batch Initialization and Process Noise Adaptation,” Journal of Guidance, Con-

trol, and Dynamics , Vol. 22, No. 5, September–October 1999, pp. 675–681.

112 Tapley, B. D., Schutz, B. E., and Born, G. H., Statistical Orbit Determination,

Elsevier Academic Press, Burlington, MA, 2004.

113 Grewal, M. S., Weill, L. R. and Andrews, A. P., Global Positioning Systems,

Inertial Navigation, and Integration, John Wiley & Sons, New York, 2001.

114 Kaplan, E. D., Understanding GPS: Principles and Applications , Artech House,

Boston, 1996.

115 Brown, R. G., and Hwang, P. Y. C., Introduction to Random Signals and Applied

Kalman Filtering , John Wiley & Sons, New York, 1997.



291

116 Parkinson, B. W., and Spiker Jr., J. J., Global Positioning System: Theory and

Applications , Vols 1 and 2, American Institute of Aeronautics and Astronautics,

Inc., Washington, DC, 1996.

117 Bancroft, S., “An Algebraic Solution of the GPS Equations,” IEEE Transac-

tions on Aerosapce and Electronic Systems , Vol. 21, No. 7, Jan. 1985, pp. 56-59.

118 Krause, L. O., “A Direct Solution to GPS Type Navigation Equations,” IEEE

Transactions on Aerospace and Electronic Systems, Vol. 23, No. 2, March 1987,

pp. 225-232.

119 Abel, J. S., and Chaffee, J. W., “Existence and Uniqueness of GPS Solu-

tions,” IEEE Transactions on Aerospace and Electronic Systems , Vol. 27, No. 6,

November 1991, pp. 952-956.

120 Cruickshank, D. R., Algorithms for Autonomous Satellite Navigation Using

GPS Measurement , M.S. Thesis, Department of Aerospace Engineering Sci-

ences, University of Colorado, Boulder, CO, April 1994.

121 Mendel, J. M., “Extension of Friedland’s Bias Filtering Technique to a Class of

Nonlinear Systems, IEEE Transactions on Automatic Control,” Vol. 21, No. 2,

April 1976, pp. 296–298.

122 Bryson, A. E., and Ho, Y. C., Applied Optimal Control , Taylor & Francis,

London, England, 1975.

123 Carvalho, H., Del Moral, P., Monin, A., and Salut, G., “Optimal Nonlinear

Filtering in GPS/INS Integration,” IEEE Transactions on Aerospace and Elec-

tronic Systems , Vol. 33, No. 3, July 1997, pp. 835–850.



292

124 Siegwart, R., and Nourbakhsh, I. R., Introduction to Autonomous Mobile

Robots , The MIT Press, Cambridge, MA, 2004.

125 Kwok, C. T., Robust Real-Time Perception for Mobile Robots , Ph.D. Disserta-

tion, Department of Computer Science and Engineering, University of Wash-

ington, Seattle, WA, December 2004.

126 Leonard, J. E., and Durrant-Whyte, H. F., Directed Sonar Sensing for Mobile

Robot Navigation, Kluwer Academic Publishers, Norwood, MA, 1992.

127 Borenstein, J., Everett, H.R., and Feng, L., “Where am I? Sensors and Methods

for Mobile Robot Positioning,” Technical Report , University of Michigan, Ann

Arbor, MI, March 1996.



293

APPENDIX A

PARTIAL DERIVATIVE

The filter acceleration model consists of a gravity term and a drag term. The system

sensitivity matrix F is obtained by taking the partial derivative of the above acceler-

ation functions with respect to the state vector x. The non-zero terms of F are listed

below in terms of Fi,j
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ż (ẋ + ωey)

vrel

(A.7)

F4,7 =
∂ẍ
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vrelz (ẏ − ωex)

Hr
(A.13)

F5,4 =
∂ÿ
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ρ (ẏ − ωex)

ż
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Now, the partial derivatives H of the measurement equation h with respect to

the state vector x is represented with the observations made from a ground-based

radar sensor system. First, Range is defined by
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and, it becomes
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In a similar way, the followings are obtained
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Azimuth is defined by
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Then, it reduces to
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Elevation is defined by
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and becomes
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where ∂ρ/∂x, ∂ρ/∂y, and ∂ρ/∂z are obtained in the range partials.
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APPENDIX B

REFERENCE COORDINATE SYSTEMS

Transformation between ECEF and Geodetic Coordinate Systems

The relation between ECEF Cartesian coordinates and ECEF geodetic coordi-

nates is given by












x

y

z













=













(N + h) cos φgd cos λ

(N + h) cos φgd sin λ

(N(1 − e2) + h) sin φgd













(B.1)

where N is the radius of curvature of the ellipsoid and e is the eccentricity of the

Earth, and they are given by respectively

N =
a

√

1 − e2 sin2 φgd

(B.2)

e2 = 2f − f 2 (B.3)

The quantity a is the length of semi-major axis of the Earth, which is the mean

equatorial radius of the Earth, and f is the flattening parameter given by

a = 6378.13649km (B.4)

f =
(a − b)

a
=

1

298.257222101
= 0.003352813178 (B.5)

where b is the semi-minor axis of the Earth, also called the polar axis

b = 6356.7516005km (B.6)
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APPENDIX C

TIME SYSTEM

The purpose of this appendix illustrates the computation of the local sidereal time

θ(t) = θLST (t) given by

θLST (t) = θGST (t) + λ (C.1)

where λ is the longitude of the observer location, and θGST (t) is the Greenwich sidereal

time (GST)

θGST (t) = θGST0 + ω⊕UT1 (C.2)

where ω⊕ is the Earth’s mean angular velocity

ω⊕ = 7.292115 × 10−5 ± 1.5 × 10−12 (rad/s)

= 0.250684477337◦ (deg / min)
(C.3)

and UT1 is the universal time in solar seconds. θGST0 is the Greenwich mean sidereal

time at midnight, (0 hour, 0 min, 0 sec) in UT1. The calculation of θGST0 at a desired

time is obtained by using the epoch of J2000 as a basis (Astronomical Almanac, 1984,

S15)

θGST0 =100.4606184◦ + 36000.77005361TUT1

+ 0.00038793T 2
UT1

− 2.6 × 10−8T 3
UT1

(deg) (C.4)

θGST0 =1.753368560 + 628.3319706889TUT1 + 6.7707 × 10−6T 2
UT1

− 4.5 × 10−10T 3
UT1

(rad) (C.5)

where TUT1 is the number of Julian centuries elapsed from the epoch J2000, and is

calculated by

TUT1 =
JD0 − 2451545.0

36525
(C.6)
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JD0 is the Julian day numbers for the date of interest for the epoch J2000 and is

simply the integer part of the Julian date, (JD), i.e., the JD at 0 h 0 min 0 s of the

day. It is computed by

JD0 =367 × (year) − INT

{

7
{

yr + INT
(

month+9
12

)}

4

}

+ INT

(

275 × month

9

)

+ day + 1721013.5 (C.7)

where the year must be four digits and the INT denotes real truncation. If θGST (tref ) =

θGST0, then, the local sidereal time, θLST , can be written by

θLST (t) = θGST (tref ) + ω⊕(t − tref ) + λ (C.8)

Julian date (JD) is the continuous amount of time measured in days from the

epoch January 1, 4713 B.C., 1200, and can be computed by

JD =367 × (year) − INT

{

7{year + INT
(

month+9
12

)

}
4

}

+

INT

(

275 × month

9

)

+ day + 1721013.5 +

{
(sec/60

)

60
+ hour

}

24
(C.9)
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