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ABSTRACT 

 

Spring Phytoplankton Dynamics in a Shallow, Turbid Coastal Salt Marsh System  

Undergoing Extreme Salinity Variation, South Texas. (May 2004) 

Elizabeth Michele Hebert, B.S., University of Michigan 

Co-Chairs of Advisory Committee:  Dr. Daniel Roelke 
                                                                                      Dr. James Heilman 
 
 
 

The contribution of phytoplankton productivity to higher trophic levels in salt 

marshes is not well understood. My study furthers our understanding of possible 

mechanisms controlling phytoplankton productivity, abundance, and community 

composition in salt marshes. Across three consecutive springs (2001 to 2003), I sampled 

the upper Nueces Delta in south Texas, a shallow, turbid, salt marsh system stressed by 

low freshwater inflow and wide ranging salinity (<15 to >300 ppt). Water column 

productivity and respiration were estimated using a light-dark bottle technique, and 

phytoplankton biovolume and community composition were determined using inverted 

light microscopy. To determine their effect on the phytoplankton community, 

zooplankton and bacterioplankton abundance and several physical parameters were also 

assessed. Meaningful relationships among the numerous variables evaluated in this study 

were identified using principal component analysis (PCA). Despite high turbidity, 

phytoplankton productivity and biovolume were substantial. Resuspension appeared to 

play a major role in phytoplankton dynamics, as indicated by a positive relationship 

between ash weight and biovolume that explained up to 46% of the variation in the PCA. 

Negative relationships between zooplankton grazers and pennate diatoms of optimal  

sizes for these grazers suggested a functional grazing food chain in this system. Salinity 

also may have been important in phytoplankton dynamics, whereas nutrients appeared to 

play a minor role. Salinity increases may have been responsible for a decoupling 

observed between phytoplankton and grazers during late spring. Findings suggest 
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hypotheses for future studies focused on the role of phytoplankton in salt marshes, 

particularly those stressed by reduced freshwater inflow and high salinities. 
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INTRODUCTION 

 

Salt marshes are considered productive systems that export materials and 

organisms to adjacent estuaries (Teal 1962; Odum 1980; Dame and Allen 1996). Until 

the mid seventies, the prevailing paradigm in estuarine ecology was that organic detritus, 

derived mainly from vascular plants, was the major energy source for estuarine food 

webs. More recent studies using stable isotopes have shown that phytoplankton and 

benthic algae may have equivalent or greater importance than macrophytes for marsh 

consumers (Haines 1977; Peterson et al. 1986; Peterson and Howarth 1987; Sullivan and 

Moncreiff 1990; Deegan and Garritt 1997; Page 1997; Kurata et al. 2001; Moens et al. 

2002). 

Due to the turbid nature of salt marsh estuaries, early workers in these systems 

often assumed that phytoplankton production was relatively low compared to that of 

vascular plants (Haines 1977). These assumptions were largely based on a study by 

Ragotzkie (1959), that concluded respiration in the tidal Duplin River, Georgia, far 

exceeded phytoplankton production. This study, however, took place in particularly 

deep, turbid areas of the Duplin, and results may have been misleading. More recent 

studies have shown phytoplankton production to be high even in turbid conditions 

(MacIntyre and Cullen 1996; Pennock et al. 1999) and thus algal production in salt 

marshes should not be disregarded. Even in systems where algal production is lower 

than that of vascular plants, it may still contribute a disproportionate amount to the pool 

of utilizable carbon. Depending on the genera present, algal carbon is often more 

digestible than plant detritus (Tenore and Hanson 1980; Mann 1986) and can be 

assimilated more efficiently (Ryther 1969; Mallin and Paerl 1994).  

The contribution of phytoplankton to the pool of carbon utilizable by metazoans 

may also depend largely on the structure and function of the marsh. For example, 

estuaries with a low tidal range (Deegan and Garritt 1997) and/or high nutrients 

____________ 
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(Underwood and Kromkamp 1999) will likely have enhanced phytoplankton production. 

Similarly, reduced freshwater inflow can raise salinity, thereby reducing macrophyte 

productivity (Zedler 1980; Zedler 1982), as well as reducing the contribution of upland 

detritus (Peterson et al. 1986). Significance of algal production can also depend on the 

proportion of the marsh that has open water (Pomeroy et al. 1981) and on the dominant 

macrophytes present. For instance, in a hypersaline marsh where the dominant 

macrophyte was Salicornia virginica, phytoplankton contributed a greater proportion of 

detritus entering the foodweb compared to phytoplankton in marshes dominated by 

Spartina (Page 1997). Detritus from Salicornia spp. has been demonstrated to be a 

generally poor food source (Haines 1977; Williams 1981), and less desirable than 

Spartina detritus (Haines and Hanson 1979). 

 As the contribution of algae becomes more prominent in marsh and estuarine 

systems, the significance of algal grazers in food chains leading to higher consumers 

also increases. Microzooplankton such as copepods and rotifers can serve as a major link 

between phytoplankton and higher trophic levels such as mollusks and fishes (Day et al. 

1989). However, the significance of this link is, in part, a function of the phytoplankton 

community composition, i.e., the edibility of the algal community (Paerl 1988), which 

microzooplankton strongly influence through preferential grazing and consumer-driven 

nutrient recycling (Martin 1970; Ryther and Sanders 1980; Lynch and Shapiro 1981; 

Elser and Urabe 1999). Complicating this process is the microbial loop, where the 

activities of bacterioplankton and grazing by microflagellates and ciliates recycle much 

of the organic matter produced through primary production (Nielsen and Richardson 

1989, Legendre and Rassoulzadegan 1995, Mariottini and Pane 2003).  

As can be seen from this brief review of the literature, the role of algal 

productivity in salt marsh systems is not well understood. My goal is to further an 

understanding of plankton community dynamics and productivity in salt marshes. My 

study focuses on the upper reaches of the Nueces River Delta, a system stressed by 

reduced freshwater inflows, and characteristic of salinities ranging from <15 to >300 

ppt. 
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METHODS 

 

Study site and hydrologic characterization 

The upper Nueces Delta (27.85°N, 97.55°W) is a salt marsh within the Nueces 

Estuary in south Texas (Fig. 1). This semi-arid region is characterized by low annual 

rainfall (75 cm yr-1) that usually occurs during the fall (Lott and Ross 1997; Fig. 2a), 

high temperatures in summer along with prevailing southeasterly winds, high 

evaporation, and a low tidal range. The study site was in the upper reaches of the marsh, 

several miles from Nueces Bay, with only minimal connectivity through a series of 

narrow channels and ponds. During my study (2001 through 2003), ponds were <1 m 

deep. The ponds and channels were turbid; little to no submerged macrophytes were 

present to stabilize the soft sediments. Elevated areas of vegetation were dominated by 

Salicornia and Borrichia spp.  

Over the past decade, the upper Nueces Delta experienced reduced freshwater 

inflow due to the construction of dams within the watershed and the channelization of 

the Nueces River (Bureau of Reclamation 2000). Riverine inflow events were rare, and 

occurred only when the adjacent Nueces River overtopped its banks following heavy 

rains. The altered hydrology of the system has greatly changed the natural salinity 

regime in the marsh. The combination of reduced riverine inflow, low tidal range, and 

high evaporation in the summer has resulted in extreme hypersaline conditions in the 

upper reaches of the delta. The delta has been characterized as a reverse estuary during 

these times (Montagna et al. 2002). 
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Fig. 1.  The study area encompassed 8 stations within the upper Nueces Delta. (Scale is 
in kilometers). 
 

 

 

 

In fall 2002, however, the Nueces Delta experienced four distinct freshwater 

flooding events as a result of high precipitation within the watershed and a local 

hurricane (Fig. 2b). Following each flood event, the area was inundated with freshwater 

for several weeks. The area had not received flooding of this magnitude in more than a 

decade. 
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Fig. 2.  Hydrology of the Nueces Delta area.  A) Total monthly precipitation at Corpus 
Christi International Airport, about 16 km from the study site (from The Corpus Christi 
National Weather Service Office).  B) The mean daily streamflow of the Nueces River 
(from the United States Geological Survey). During minor inflow events, the Nueces 
River temporarily overtopped its bank, inundating the upper Nueces Delta with 
freshwater for a period of hours. During the flood events, the upper Nueces Delta was 
inundated for several weeks and completely flushed of saltwater. Water depths roughly 
tripled.   
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Overview of data collection 

Sampling focused on plankton response to changing physical factors documented 

approximately 2 weeks apart during the spring season. Three, eight, and nine trips were 

conducted in 2001, 2002, and 2003, respectively (Table 1). Eight stations, all of which 

were broadly connected and within 0.5 km of the others (Fig. 1) were sampled during 

each trip, unless part of the marsh was dry (Table 1).  

 

Water column productivity and respiration 

Gross phytoplankton primary productivity was measured using a traditional light-

dark bottle technique. The experiments used three 1 l bottles of borosilicate glass, two 

transparent bottles (light) and one opaque (dark). The dark bottle was wrapped in 

aluminum foil and two layers of electrical tape to prevent light penetration. The other 

two bottles were not manipulated and thus should allow full passage of light. Just prior 

to incubation, the bottles were filled with surface water from each of the sampling sites 

in a manner that minimized introduction of disturbed sediments. Bottles were capped 

after their dissolved oxygen concentrations came to equilibrium with the ambient water. 

Ambient dissolved oxygen was measured (nearest 0.1 mg l-1) at the water’s surface with 

a hand-held YSI Model 95 dissolved oxygen probe. The bottles were then incubated just 

under the water's surface for 2-4 hours, depending on conditions, but always spanning 

the noon hour. The dark bottle always faced north, to prevent shading of the light bottles. 
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TABLE 1.  Sampling dates, dry stations, and environmental observations.  

Date Dry stations Skies Winds Salt crust Cyanobacteria Crab die-
    present? mats present? off? 

May 30, 2001 none p/c moderate no no no 
June 6, 2001 none clear light yes no no 
June 13, 2001 7,8 p/c moderate - high yes no no 
February 22, 2002 none clear high no no no 
March 15, 2002 none p/c light no no no 
March 27, 2002 none p/c light - moderate no no no 
April 5, 2002 none overcast moderate no no no 
April 18, 2002 none p/c high no no no 
May 1, 2002 none clear high no no no 
May 15, 2002 none p/c mod no yes yes 
May 29, 2002 none p/c light no yes no 
March 10, 2003 none p/c light - moderate no no no 
March 21, 2003 none clear light - moderate no no no 
April 4, 2003 none p/c moderate - high no no no 
April 18, 2003 none p/c moderate - high no no no 
May 2, 2003 none overcast moderate no no no 
May 16, 2003 none p/c moderate - high no no no 
May 30, 2003 none clear light - moderate no no no 
June 13, 2003 3,7,8 p/c moderate - high no no no 
June 26, 2003 1,2,3,6,7,8 p/c light no no yes 

 

 

 

 

When salinity was greater than 80 ppt, dissolved oxygen concentrations 

measured using the probe were not reliable, but percent saturation was not affected. In 

this case, dissolved oxygen concentrations were calculated using equations in APHA 

(1989), which account for the percent oxygen saturation, temperature, and salinity.  

 As expected, the light bottles usually experienced an increase in oxygen (positive 

net primary productivity) and the dark bottles a decrease in oxygen (respiration). Gross 
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primary productivity in terms of dissolved oxygen was determined by adding the oxygen 

evolved in the light bottles to the oxygen consumed in the dark bottles. Assimilation of 

carbon was determined using previously reported relationships between O2 evolved 

during photosynthesis and incorporation of CO2 (Wetzel and Likens 1991), which gave 

values in units of g-C m3 hr-1. Daily productivity values in units of g-C m2 day-1 were 

estimated by multiplying by the depth and then multiplying by 12 hours. To compare 

productivity values among the different sampling dates, from which chlorophyll a 

concentrations varied, assimilation indices using gross productivity were calculated (mg-

C day-1 µg-chl a-1). 

 

Plankton abundance and community composition 

During a sampling trip, one water sample was collected from each station using a 

1 l Nalgene bottle. Immediately after collection, portions were removed from each bottle 

for later analysis. For phytoplankton enumeration, a 100 ml portion was preserved by 

adding 5 ml 25% gluteraldehyde. For bacterioplankton counts, a ~10 ml portion was 

preserved using paraformaldehyde and placed on ice. For chlorophyll a and nutrient 

samples, 10-50 ml portions were filtered through three 47 mm GF/F glass microfibre 

filters. Filters were wrapped in aluminum and placed on ice for chlorophyll a analysis, 

and the filtrate was saved and put on ice for nutrient analysis (see below). All samples 

placed on ice in the field were transported to a freezer with 12 hours after collection. 

Microzooplankton were sampled by filtering 3-5 l of water from each station through a 

63 µm mesh, and preserved with buffered formaldehyde (5% v/v).  

Phytoplankton and zooplankton were enumerated using inverted light 

microscopy (Utermöhl 1958). The volume settled, and thus the resolution of the counts, 

depended on the turbidity of the sample and the plankton abundance. The goal was to 

maximize the volume settled without interference from detritus, sediment, or other 

organisms.  

In the plankton enumeration using whole water, phytoplankton cells or units 

(filaments, colonies, etc.) between 5 and 25 µm were counted at 400x, and cells or units 
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greater than 25 µm were counted at 200x. At least 100 cells were counted at each 

magnification and thus more than 200 cells were counted per sample. Ciliates and 

rotifers smaller than 75 µm were counted along with the phytoplankton, using the whole 

water samples at 200x or 40x. Random fields of view were counted that were distributed 

fairly evenly across the settled area (pseudo-random). 

In the plankton enumeration using the concentrated water samples (objects larger 

than 63 µm), adult copepods and cladocerans were counted at 40x for the entire settled 

area. Other zooplankton greater than 75 µm were counted at 200x. At least 100 

individuals were counted at 200x per sample. In cases where large phytoplankton greater 

than 75 µm were not abundant and thus not seen in the whole water samples, these cells 

were enumerated along with the microzooplankton at 200x or 400x, using the 

concentrated water. When it was not practical to count the entire settled area, pseudo-

random fields of view were counted that were distributed across the settled area. 

Phytoplankton were identified to the lowest taxonomic level feasible using the 

inverted microscopy method. For analysis, data were then organized into five main 

groups: diatoms, cyanobacteria filaments, autotrophic flagellates, unknown flagellates 

(autotrophic or heterotrophic), and other algae. Components of these five groups that 

made up more than 5% of the total biovolume were further analyzed and displayed in 

graphs. In order to determine size-selective grazing, I focused on the pennate diatoms 

because they dominated the phytoplankton on most sampling dates and they are 

generally considered edible and palatable to grazers. Diatoms were divided into three 

size classes according to established optimal predator-prey size ratios (Hansen et al. 

1994). Small diatoms (2-20 µm) were considered the optimal size for grazing by rotifers, 

nauplii, and ciliates, and medium diatoms (21-75 µm) were considered optimal for 

grazing by copepods. The large diatoms (>75 µm) were considered too large to be 

grazed upon.  

Zooplankton were placed into the following groups: adult copepod, copepod 

nauplii, rotifers, polychaete larvae, ciliates, and nematodes, and rotifers were identified 

to genus level when possible. For analysis, the zooplankton were grouped together based 
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on size and ecology. The grazers (adult copepods, rotifers, copepod nauplii, and ciliates) 

were placed into two size categories, with copepods comprising the larger category. 

Many of the ciliates observed in this study were large bodied, i.e., 100 µm in length, and 

when prevalent they were considered to feed on the same size prey as rotifers. The 

detritivores were comprised of polychaete larvae, nematodes, and bacterioplankton, and 

were divided into two size categories.  

Bacterioplankton samples were stained with acridine orange, filtered through 0.2 

µm black filters (Poretics) and counted directly using epifluorescent microscopy. At 

least 200 cells were counted per sample, and the fields of view examined were evenly 

distributed throughout the settled area. 

As an analog to biomass, phytoplankton biovolume was determined using the 

microscopy methods of Wetzel and Likens (1991). Dimensions were determined for 

each cell counted, and the shape of each cell was compared to a familiar geometric shape 

for which the biovolume calculation is known. We also measured chlorophyll a 

concentrations as an indicator of biomass following the methods of the U. S. 

Environmental Protection Agency (EPA; 1992). As an indicator of grazing levels, 

phaeophytin concentrations were determined (EPA 1992). 

 

Physical parameters 

 To asses their impact on the plankton community, physical parameters including 

salinity, temperature, nutrients, total inorganic suspended solids, and water depth were 

determined. Water depth can generally be assumed to be independent of time of day due 

to minimum influence of daily tides in this upland area. Salinity was measured using a 

standard refractometer. When salinities exceeded 100 ppt, triplicate 1:9 dilutions of 

marsh water to deionized water were conducted. The frozen filtrate was thawed and 

analyzed for nitrate (NO3), nitrite (NO2), ammonium (NH4), urea, soluble reactive 

phosphorus (SRP), and silicate (SiO3) using an autoanalyzer (Grasshoff et al. 1983). For 

total phosphorous, an unfiltered water sample was used. Concentrations were determined 

using a persulfate oxidizing digestion technique (Wetzel and Likens 1991). Total 
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inorganic suspended solids were determined through the measurement of ash weight of 

whole water samples preserved in gluteraldehyde, following the techniques of the 

American Public Health Association (APHA; 1989). In addition to measured physical 

parameters, observational data of environmental conditions were also recorded, such as 

wind speed, weather, and the presence of benthic cyanobacterial mats. 

 To determine if nutrient concentrations were constraining phytoplankton growth, 

relative growth rates (µrel) according to varying concentrations of DIN, SRP, and silica 

were calculated for diatoms, flagellates and cyanobacteria for each sampling date. 

Relative growth rates were determined using the Monod equation, and thus µrel was 

calculated as  

 

µ rel =
S

Kµ + S
 

 

where S was the nutrient concentration and Kµ was the half saturation constant for 

growth. Typical values for half saturation growth constants (Kµ) for diatoms, flagellates 

and cyanobacteria were obtained from Eppley and Thomas (1969), Jorgensen (1979), 

Tilman et al. (1982), Sommer (1986), and Matsuda et al. (1999). 

 

Statistics 

 To identify meaningful relationships among the numerous variables evaluated in 

this study, a principal component analysis (PCA) was applied using programming and 

packaged matrix functions (The Math Works, Inc. 1992). Most, but not all, of the 

parameters discussed in the text were included in the PCA (Appendix A).  
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RESULTS 

 

When considering which years to include in the PCA analysis, two problems 

were identified when combining data from 2001 with data from 2002 and 2003. The first 

problem was that, due to later initiation of sampling in 2001 than other years, these 

shorter-term data (three samples) were more like a snapshot in time than a series, as 

compared to the longer-term data (eight and nine samples) in later years. A second 

problem was the extreme conditions that were unique to 2001, such that relationships 

established under more normal ambient conditions in later years might not have existed. 

 When comparing PCA results for 2002 and 2003 data only (PCA1) to results for 

all three years (PCA2) most of the relationships appeared qualitatively similar. 

Relationships that were different included those between grazers and phytoplankton size 

classes, and between plankton groups and salinity. Below, I focus mostly on results from 

PCA1. I discussed results from PCA1 and PCA2, however, when comparisons with and 

without extreme salinities were considered. 

 

Physical parameters and general observations 

 During the three periods of sampling, the upper Nueces Delta experienced a wide 

range of salinities, temperatures, and suspended sediment levels (Fig. 3a, b, and c). The 

range of recorded salinity values was quite extreme, varying from brackish conditions 

(11 ppt) in 2003 to near saturation levels (300 ppt) in 2001. During each sampling 

period, salinities ranged 110 ppt, 126 ppt, and 80 ppt in 2001, 2002, and 2003, 

respectively. Water temperature tended to correlate with the progression of spring and 

ranged from 17.6 °C in late winter, 2002, to 35.7 °C in late spring, 2001. Fluctuations in 

water column ash weight indicated numerous sediment resuspension events, with a 

particularly large event in 2003. Fluctuations in water depth (Fig. 3d) were indicative of 

evaporation and possibly yearly tidal influence. The daily tidal range at this elevated and 

nearly isolated site was at most 1 cm (Heilman, unpublished data), and thus had little 

effect on depth on a daily scale. 
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On most sampling days, winds were very dynamic, and changed frequently in 

speed (Table 1) and direction. Generally, winds would be calm in the early morning then 

would increase in intensity until mid-afternoon. High winds were prevalent throughout 

the months of sampling each year (Fig. 4). At the end of 2001, when salinities were very 

extreme, the bottom of the marsh ponds were covered with a hard crust layer most likely 

due to the precipitation of various elements (Table 1). At the end of 2002, when 

salinities were also quite high, thick cyanobacterial mats, composed mostly of Lyngbya 

sp., covered the bottom of the ponds.  

Throughout most of the 2002 and 2003 sampling, before salinities reached 

extreme levels, benthic organisms, fish, and wildlife within the study site were abundant 

and thriving. Blue crabs (Callinectes sapidus), many with body sizes greater than 13 cm, 

were numerous, as well as shrimp, other crustaceans, and small fish. Large (>25 cm) red 

drum (Sciaenops ocellatus) were observed on a few occasions in 2003, most likely 

taking advantage of the shallow, turbid waters to feed. Birds were numerous and diverse, 

and included the American avocet (Recurvirostra americana), roseate spoonbill (Ajaia 

ajaja), pelicans, and several others I did not identify. There was usually an abundance of 

bird guano along the shore. 
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Fig. 3.  Water column physical parameters. Bottom bars indicate the sampling periods. 
A) Salinity. The thin line indicates the salinity of seawater (35 ppt). B) Ash weight. This 
was used as an analog of suspended sediments. C) Temperature at the start of bottle 
incubations. D) Depth. Data are averages for all 8 stations except for salinity, which was 
only measured at station 2. 
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Fig. 4.  Average daily wind speeds at the Corpus Christi International Airport, about 16 
km from the study site (from The Corpus Christi National Weather Service Office). 
Bottom bars indicate the sampling periods.  
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Extreme salinities and temperatures appeared to have a negative effect on these 

animals, however. In 2001, a large fish kill occurred before the 6 June sampling, when 

thousands of small fish (~2.5 cm) lined the entire marsh shoreline. On 15 May 2002 and 

26 June, 2003, massive crab die-offs had recently occurred (Table 1), and there were 

several dead crabs per square meter in the water column, sediment, and along the 

shoreline. In general the air and water had a strong crab-like odor. Both crab die-offs 

occurred after the salinity had reached about 70 ppt. Birds were generally less abundant 

late in the spring, potentially indicating a dwindling food source. 

 

 Phytoplankton biovolume and community composition 

 Biovolume measurements of phytoplankton are not frequently reported in the 

literature, probably due to the high time requirements of microscopy. Some reports of 

phytoplankton biovolume from a coastal lagoon (Gilabert 2001) and a hypersaline 

coastal saltern system (Pedrós-Alió et al. 2000) ranged an order of magnitude from 108 

to 109 µm3 l-1. My values, which fluctuated greatly through time (Fig. 5a) and space (see 

Appendix C for standard deviations), only fell within this range 65% of the time. Seven 

of the twenty sampling occasions the mean biovolume was on the order of 1010 µm3 l-1, 

with our highest value (9.92x1010 µm3 l-1) occurring in 2003. Interestingly, this peak 

corresponded with the peak in ash weight (mentioned above). In addition, a strong 

relationship between biovolume and ash weight was indicated on the first principal 

component of PCA1 (which includes data from 2002 and 2003 only; Appendix A), 

which represented ~26% of the total variability, in which higher ash weights, mostly 

from the second year of sampling, corresponded to higher biovolumes.  
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Fig. 5.  Spring phytoplankton biovolume. Data are average values for all 8 stations. 
Bottom bars indicate the sampling periods. A) Phytoplankton biovolume categorized as 
five groups, which made up 100% of the phytoplankton biovolume. B) Water column 
chlorophyll a. 
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Fig. 6.  Spring phytoplankton biovolume. Represented taxa made up at least 5% of the 
biovolume during at least one sampling. Data are average values for all 8 stations. 
Bottom bars indicate the sampling periods. A) Diatoms. B) Unknown flagellates 
(autotrophic or heterotrophic flagellates). C) Cyanobacteria filaments. D) Autotrophic 
flagellates. E) Other phytoplankton. 
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Chlorophyll a concentrations, which ranged from <1 - 156 µg l-1 (Fig. 5b), were 

high, but comparable to previous concentrations reported from the Nueces Delta area 

(Bureau of Reclamation 2000). Changes in chlorophyll a were generally correlated with 

changes in biovolume (Fig. 5a and b), and this observation was supported in PCA1 

(Appendix A) along the first principal component. Chlorophyll a was lowest (<2 µg l-1) 

at the end of 2001 when the salinity was extremely high. Indeed, PCA1 showed a 

negative relationship (although weak) between chlorophyll a and salinity along the 

second principal component (~23% of the total variability). PCA2 (which includes data 

from all years) indicated a strong relationship along the first component (~26% of the 

total variability).  

 Throughout most of the sampling, the phytoplankton community composition 

was dominated by small- and medium-size pennate diatoms as well as the large (>75µm) 

diatoms Entomoneis sp. and Nitzschia closterium (Figs. 5a and 6; see Appendix B for a 

full list of observed taxa). PCA1 (Appendix A) indicated a strong positive relationship 

between percent of small diatoms and ash weight along the first principal component, 

which is consistent with the observation that small diatoms comprised a high percent of 

the total biovolume. The other phytoplankton categories showed either no relationship 

(cyanobacteria) or a negative relationship (all other categories) with ash weight along the 

first principal component. The correlation of small pennates with ash weight indicates 

that these diatoms are likely associated with the sediments. The large peak in biovolume 

on 13 June, 2003, which correlated highly with ash weight, was composed mostly of 

small pennates (~72%) and Entomoneis (~24%) (Fig. 6a), further supporting that the 

small pennates, as well as possibly Entomoneis, are associated with the sediments. 

Several genera of phytoplankton exhibited a remarkable halotolerance and 

euryhalinity during this study. Entomoneis was found in moderate concentrations (108 

µm3 l-1) at salinities ranging from 16 to 142 ppt (Fig. 6a). Nitzschia closterium reached 

an average abundance of 8.29x109 µm3 l-1 and was the dominant phytoplankter present at 

a salinity of 190 ppt at the beginning of 2001. The autotrophic flagellate Synura, which 

is actually considered a freshwater genus (Graham and Wilcox 2000), appeared to thrive 
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in salinities over 100 ppt, and was quite conspicuous in settled samples during the 2001 

and 2002. 

 Upon examination of all phytoplankton groups (Fig. 6), there appeared to be two 

types of communities present, one high biovolume community dominated by diatoms, 

and another relatively low biovolume community where dominance was shared by 

flagellates, coccoid green algae, cyanobacteria filaments, and diatoms. The low 

biovolume community appeared to correspond with high salinity, as in the end of 2001 

and 2002, but not always, as in the beginning of 2003. The first principal component of 

PCA1 (Appendix A) supported this observation and indicated that the biovolume 

percentages of flagellates and "other algae", which included coccoid green algae, were 

negatively related to ash weight and biovolume. With the inclusion of 2001 in the PCA 

analysis, this relationship is stronger and includes the cyanobacteria. There also was a 

strong negative relationship between these algal groups and salinity. 

 

Water column productivity and respiration 

 Like phytoplankton biovolume, mean water column gross and net productivity 

fluctuated greatly through time (Fig. 7a) and space (see Appendix C for standard 

deviations). Previous estimates of net phytoplankton primary production in estuarine 

systems range from <0 g-C m-2 day-1 to ~2.5 g-C m-2 day-1 (see Day et al. 1989). Our 

estimates in the upper Nueces Delta ranged from -0.11 to 2.4 g-C m-2 day-1, and thus fell 

within the range of previous reports. The first principal component of PCA1 (Appendix 

A) showed a positive relationship between productivity and phytoplankton biovolume, 

but higher productivity did not always coincide with higher biovolume. For example, the 

fourth principal component of PCA1 (~8% of total variation) showed a strong negative 

relationship between the two. A strong negative relationship between productivity and 

ash weight was also shown on the fourth principal component.  
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Fig. 7.  Spring phytoplankton productivity and respiration. Data are average values for 
all 8 stations. Bottom bars indicate the sampling periods. A) Phytoplankton gross and net 
productivity, and respiration. B) Phytoplankton assimilation index (gross productivity 
per unit of chlorophyll a). 
 

 

 

 

Plankton respiration values from coastal systems in the summer range in the 

literature from 6.42 to 286 µg-O2 l-1 hr-1 (Jensen et al. 1990; Sampou and Kemp 1994; 

Iriarte et al. 1996; Fourqurean et al. 1997). Several values, which ranged from 0.003 to 
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the first principal component indicated that respiration was positively related to 

unknown flagellates, productivity, phytoplankton biovolume, copepods, and 

polychaetes.  
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The assimilation indices, or the phytoplankton primary productivity normalized 

to chlorophyll a (Fig. 7b), were quite variable, indicating that factors other than 

phytoplankton abundance were affecting productivity. Peaks in the assimilation indices 

appear to correlate to troughs in biovolume in 2002 (Figs. 5a and 7a). This relationship 

was also supported in PCA1 (Appendix A), where the assimilation index was negatively 

related to biovolume on the first principal component. The assimilation index was also 

negatively related to ash weight on the first component, and negatively related to salinity 

on the second component.  

 

Nutrients 

In 2001, ammonium, SRP, and silica increased markedly over an only 2-week 

period of sampling (Fig. 8a, b, and c). When these nutrients peaked in 2001, DIN and 

SRP were at their highest concentrations for the entire three years of sampling. 

Phytoplankton biovolume, however, was at its lowest magnitude for the entire 3 years 

(Fig. 5a). Decreasing concentrations of urea, SRP, and silica were apparent at the end of 

2002, with a concurrent spike in ammonium on 15 May. Decreasing concentrations of 

nutrients in 2002 appeared to be correlated to a decrease in phytoplankton biovolume 

and a switch to a less diatom-dominated plankton community (Fig. 5a). The spike in 

ammonium was concurrent with a massive crab die-off that had recently occurred before 

sampling on 15 May (Table 1). At the end of 2003 we saw an increase in urea, which 

was also concurrent with a second crab die-off that occurred that year. 

Concentrations of TP (Fig. 8d) were quite large throughout sampling with a 2002 

peak of 47.6 µM and a peak in 2003 of 64.4 µM. Peaks in TP concentrations appeared to 

be correlated with peaks in ash weight in both years (Figs. 3b and 8d). PCA1 (Appendix 

A) supported this observation indicating a strong positive relationship among TP and ash 

weight on the first principal component. 

Throughout most of the sampling, the ratio of DIN:SRP was below 16, indicating 

potentially N-limiting conditions. Accordingly, nitrogen was usually the nutrient 

constraining growth (µrel < 0.8) for diatoms, flagellates, and cyanobacteria (Fig. 9a, b, 
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and c) but sometimes phosphorous was responsible for growth constraint as well, 

particularly in 2002, and silica constrained growth for diatoms at the end of 2002. 

Throughout all three years, the phytoplankton community was generally growth 

constrained by some nutrient. 

 

 

 

Fig. 8.  Water column inorganic nutrients. Data are average values for all 8 stations. 
Bottom bars indicate the sampling periods. A) Four species of nitrogen and dissolved 
inorganic nitrogen. B) Soluble reactive phosphorous. C) Silica. D) Total phosphorous. 
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Fig. 9.  Relative growth rates of the phytoplankton predicted only from the 
concentrations of dissolved inorganic nitrogen, soluble reactive phosphorous, and silica. 
Relative growth rates were calculated from the Monod equation and estimated half 
saturation growth constants given in the literature. The straight dotted lines indicate 0.8, 
below which growth rates were considered constrained. Data are average values for all 8 
stations for each sampling trip during the 2001, 2002, and 2003 sampling periods. 
Bottom bars indicate the sampling periods. A) Diatoms. B) Flagellates. C) 
Cyanobacteria. 
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(Fig. 5a). Furthermore, when the decrease in silica in 2002 lowered the relative growth 

rate for diatoms, the proportion of diatoms in the phytoplankton greatly decreased. There 

were also several indications, however, that community shifts were being controlled by 

factors other than nutrients. For example, in the beginning 2002, despite being 

unconstrained by nutrients and having the highest relative growth rates, cyanobacteria 

were not apparent in the phytoplankton (Fig. 5a). Furthermore, flagellates made up a 

high percentage of the biovolume in 2001 and the end of 2002 (Fig. 5d and e) despite 

having the lowest relative growth rates. 

 PCA1 (Appendix A) indicated a strong positive relationship between the 

assimilation index and silica, SRP, and nitrite on both principal components. This 

relationship was strongest at the beginning and middle of 2003. A positive relationship, 

though weak, was also present on the first principal component between the assimilation 

index and ammonium. Negative relationships existed on the first component between 

biovolume and all nutrients except for nitrate. These relationships may indicate that high 

concentrations of nutrients stimulate productivity for diatoms and the rest of the 

phytoplankton community. PCA1 also illuminated evidence of grazer contributions to 

nutrient cycling. Urea, for example, was positively correlated with copepod abundance 

on the first principal component. Urea is a primary form of nitrogen excretion for many 

invertebrates. 
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Grazers 

During 2001, concentrations of copepods, rotifers, and nauplii were very low 

(Fig. 10a and b). In 2002 for copepods, and in both 2002 and 2003 for rotifers and 

nauplii, concentrations started out very high and then decreased to very low numbers or 

to zero later in the sampling period. Copepod concentrations, which included mostly 

calanoid copepods and some harpacticoids, were within the range of previously reported 

values from coastal systems of <1 ind l-1 (Hirst et al. 1999) to >3000 ind l-1 (Gilabert 

2001). Concentrations of rotifers and nauplii also generally were within the range of 

reported literature values, i.e., from 0 - >2000 ind l-1 in coastal systems (Holst et al. 

1998, for rotifers; Dagg and Whitledge 1991; Gilabert 2001, for nauplii).  

Reports of ciliate concentrations from coastal systems were all on the order of 

104 ind l-1 (Holst et al. 1998; DeLorenzo et al. 2001; Gilabert 2001). Our values, which 

ranged from 0 to 105 ind l-1 (Fig. 10c), were thus reasonable. Ciliate concentrations, 

community composition, and size varied considerably throughout the sampling. Ciliate 

taxa included both tintinnids and nonloricate ciliates. Ciliate size was large, and usually 

ranged from 20 µm to 120 µm. One group of ciliates, however, the only group present in 

2002, was comprised of individuals as large as 168 µm.  
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Fig. 10.  Heterotrophic plankton. Data are average values for all 8 stations. Bottom bars 
indicate the sampling periods. A) Adult copepods. B) Rotifers and copepod nauplii. C) 
Ciliates. D) Bacterioplankton. E) Polychaete larvae and nematodes. 
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As mentioned earlier, due to their large size, the ciliates in this system were not 

likely to be feeding on bacterioplankton. Concurrent with this speculation, there was no 

relationship between ciliates and bacterioplankton on the first or second components of 

PCA1 (Appendix A). Rather, PCA1 indicated negative relationships between rotifers, 

nauplii and ciliates with small diatoms on the first principal component, suggesting 

selective grazing among these plankton groups. A negative relationship between 

copepods and medium pennate diatoms also occurred on the first component, giving 

further evidence for selective grazing. Multivariate statistics were needed to observe 

these associations, for correlations between small diatoms and rotifers (R2 = .02) or 

nauplii (R2 = .07) or ciliates (R2 = .13) as well as between medium diatoms and 

copepods (R2 = .01) were not apparent using linear regression. When including data 

from 2001 in the PCA analyses, the size dependent relationships between diatoms and 

copepods, rotifers or nauplii do not appear on any axis.  

Due to the decreasing concentrations of most grazers each year as spring 

progressed (Fig. 10a and b), PCA1 (Appendix A) indicated a negative relationship 

between nauplii and rotifers with salinity. The relationship between the grazers and 

salinity became more apparent when 2001 was included in the PCA analysis. PCA2 

indicated a stronger relationship among rotifers, nauplii, and salinity along the second 

principal component, as well as a strong negative relationship between copepods and 

salinity on the first principal component.  

 

Detritivores 

Previous reports of bacterioplankton concentrations ranged several orders of 

magnitude from 108 to 1010 cells l-1 in estuaries (Holst et al. 1998; DeLorenzo et al. 

2001) to as high as 1011 cells l-1 in a hypersaline coastal saltern (Pedrós-Alió et al. 2000). 

My values for bacterioplankton, which ranged in order of magnitude from 109 to 1010 

cells l-1 (Fig. 10d), fell within this range. Bacterioplankton concentrations were highest 

in the late spring. Accordingly, PCA1 (Appendix A) showed a strong positive 

relationship between bacteria and salinity along the second principal component, and 
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PCA2 showed a strong positive relationship between bacteria and salinity along both 

components. Interestingly, PCA1 showed a strong positive relationship between bacteria 

and unknown flagellates along the second principal component, as well as a positive 

relationship between bacteria and ammonium. 

Polychaete larvae were generally present at high concentrations (Fig. 10e), 

though they were not present at all during the 2001 sampling or at the end of 2002. A 

weak negative relationship existed between polychaetes and bacteria on the second 

component of PCA1 (Appendix A). Nematodes were also present in the plankton (Fig. 

10e), though in relatively low numbers. The highest concentrations of nematodes were 

observed in 2001. 
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DISCUSSION 

 

Importance of phytoplankton production in the upper Nueces Delta 

 The abundance of wildlife and benthic invertebrates in the upper Nueces Delta 

during spring of 2002 and 2003 indicated that the marsh was highly productive. Data and 

general observations produced from this study imply that the phytoplankton were 

important contributors of labile organic carbon to the system in the spring, and thus may 

have been supporting higher trophic levels. 

Despite high turbidity, net phytoplankton production was at least moderate in the 

marsh. Our daily net productivity estimates, which averaged 0.48 g-C m-2 day-1, were 

comparable to spring and summer values for several estuaries reviewed by Day et al. 

(1989), including some deeper, less turbid estuaries such as the St. Lawrence, Canada, 

and Chesapeake Bay. Supporting these productivity values were high phytoplankton 

biovolume and chlorophyll a concentrations, several of which were higher than those 

found in many estuarine and coastal systems (Pedrós-Alió et al. 2000; Gilabert 2001, for 

biovolume; Day et al. 1989, for chlorophyll a). It is possible that the very shallow nature 

of the marsh increased the time that phytoplankton spent in the photic zone relative to 

deeper estuaries, thus allowing comparable productivity despite high turbidity. Cole et 

al. (1992) suggested that in turbid systems, shallow depths may offset respiration and 

result in net production. MacIntyre and Cullen (1996) observed high water column 

productivity in a shallow, turbid Texas estuary, and concluded that it was due to a high 

photosynthetic capacity of the suspended microalgae. 

The dominant vascular plants in the system during sampling were Borrichia sp. 

in 2001 and Salicornia sp. in 2002 and 2003. Antlfinger and Dunn (1979) determined 

summer productivity values of Salicornia virginica and Borrichia frutescens in a 

Georgia salt marsh to be 1.5 and 2.2 g-C m-2 day-1, respectively. Although values from 

the higher range of our daily productivity estimates were comparable to these rates, the 

average of all values for the spring was only 32% and 22% of this estimated plant 
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production. This implies, theoretically, that contribution of fixed carbon from 

phytoplankton may not be as important as the contribution from plants. 

It is important to note that, due to potential errors in my methodology, 

approximations of daily productivity may include both underestimates and 

overestimates. For example, in turbid conditions, Madden and Day (1992) discussed 

potential problems of measuring productivity from bottle incubations when particles are 

allowed to settle in the bottles. They found that at high ambient light levels productivity 

actually decreased in the bottles relative to the water column due to artificially increased 

light penetration and resultant photoinhibition. MacIntyre and Cullen (1996) also 

suggested that the reduction of turbidity in high light environments could reduce 

photosynthetic capacity.  

Other sources of potential error involved extrapolating total daily productivity 

from one incubation that spanned a few hours in the afternoon. The clear conditions in 

2001 and the end of 2002 probably allowed for a more accurate measurement of 

productivity compared to turbid conditions. But during midday, water column 

phytoplankton were probably photoinhibited, which would affect estimates of daily 

productivity. Under turbid conditions, phytoplankton were not likely to be 

photoinhibited, but due to high irradiance during midday, daily rates of productivity may 

have been overestimated. 110 successful incubations were conducted during or around 

spring during the 3 years of sampling. By averaging all values, for the purposes of 

comparison with other systems, I hoped to rule out much of this uncertainty. 

Assuming that phytoplankton production was low compared to the marsh plants, 

the contribution of phytoplankton to the pool of utilizable carbon was still likely to be 

relatively important. This is due to the types of plants present and spring-time conditions 

in the marsh. As mentioned earlier, detritus produced by Salicornia has been 

demonstrated to be a poor food resource (Haines 1977; Williams 1981). Accordingly, in 

a marsh dominated by Salicornia virginica, Page (1997) showed that the isotopic 

composition of macroinvertebrates indicated the incorporation of algal carbon more so 

than carbon from Salicornia. In addition, without substantial rainfall and freshwater 
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inflow, detritus from vascular plants will not be transported as easily from the elevated 

areas into the ponds to be incorporated into the food web. 

 Other characteristics of the Nueces Delta may have increased the relative 

importance of phytoplankton. Reduced freshwater inflow will decrease the amounts of 

allochthonous organic material into the system, thus reducing the relative contribution to 

the pool of labile carbon. The low tidal range and freshwater inflow also reduces 

flushing and allows the accumulation of phytoplankton. In addition, ponds and tidal 

creeks are extensive. Though the proportion of open water has not been measured, aerial 

surveys suggest that it is comparable to upland areas, which would also increase the total 

contribution of phytoplankton carbon in the marsh.  

 This study emphasized the importance of phytoplankton in the spring. One could 

speculate that plant production may be more important than phytoplankton production at 

other times of the year, particularly autumn and winter. The marsh is likely to stay turbid 

all year, and phytoplankton production probably decreases largely with reduced total 

irradiance. Salicornia, an annual, would die off in the fall, producing a pulse of detritus. 

Increased rainfall and freshwater inflow would facilitate the transport of plant detritus, 

introduce allochthonous organic matter, and flush out the phytoplankton.  

 Spring, however, is a time when many species, several of which are 

economically important, are dependent on estuaries (Day et al. 1989). In the Gulf of 

Mexico, species such as menhaden (Brevoortia spp.), three species of shrimp [brown 

(Penaeus aztecus), white (Penaeus setiferus), and pink (Penaeus duoraram)], and blue 

crabs spawn in coastal waters, then move into the estuaries during late winter or early 

spring to seek food and shelter. Over the next few months they grow to be adults, then 

from mid-summer to early winter they migrate back out to coastal waters.  

 Several factors shaping phytoplankton productivity, abundance, and community 

composition were examined in this study. For the purposes of discussion each parameter 

was divided into sections, though there was considerable overlap because all factors 

were interconnected and directly or indirectly affected the phytoplankton community.  
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Resuspension and turbidity 

Sediment resuspension and turbidity were important factors shaping the 

phytoplankton community. The strong positive relationship between ash weight and 

biovolume indicated that benthic microphytobenthos were being entrained along with 

sediments into the water column and thus contributed to total phytoplankton biovolume. 

Several studies have observed resuspension of microphytobenthos and its subsequent 

contribution to water column chlorophyll a by tidal currents (Roman and Tenore 1978; 

Baillie and Welsh 1980) and wind waves (Demers et al. 1987). Dejonge and 

Vanbeusekom (1992) observed that microphytobenthos in the upper reaches of the Ems 

Estuary, Netherlands, was approximately 60% of total phytoplankton, and Shaffer and 

Sullivan (1988) maintained that 74% of water column diatoms in a shallow estuary were 

represented by benthic diatom taxa.  

 The positive relationship between biovolume and productivity indicates that the 

suspended benthic algae were viable and contributed to water column productivity. This 

has been observed in several studies (Roman and Tenore 1978; Shaffer and Sullivan 

1988). Resuspended particles, however, may have also been inhibiting productivity by 

increasing light attenuation in the water column. This was indicated by the negative 

relationship between biovolume and the assimilation index on the first principal 

component of PCA1, and the strong negative relationship between productivity and 

biovolume on the 4th principal component (Appendix A). Demers et al. (1987) observed 

an increase in water column chlorophyll due to resuspended microphytobenthos, but 

because of the increased turbidity, there was no net change in water column productivity. 

 Phytoplankton community composition appeared to be greatly altered by 

resuspension events, largely by the displacement of benthic taxa. Small diatoms, the 

large diatom Entomoneis, and cyanobacteria, the latter being mostly filamentous, may 

have been normally associated with the sediments and resuspended during windy times. 

The negative relationship between the flagellates and medium diatoms with ash weight 

indicates that these groups were normally associated with the plankton. 
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Throughout the beginning of 2002 and most of 2003, diatoms dominated the 

phytoplankton despite having lower or similar predicted relative growth rates compared 

to cyanobacteria. This could simply be due to the possibility that diatoms are 

resuspended more easily than cyanobacteria. It is also possible that high turbidity and 

turbulence were having an effect on competition between diatoms and cyanobacteria that 

overruled the effects of nutrients. Light regime has been observed to affect the outcome 

of succession, whereby sustained periods of low light favored both diatoms and 

cyanobacteria (Flöder et al. 2002). Rehbehn et al. (1993), however, showed that the 

diatom Actinocyclus sp. was well adapted to rapidly changing light conditions, and thus 

was adapted to estuaries with high vertical mixing. Diatoms may also be biophysically 

stimulated by motion from turbulence (Schöne 1970), giving a competitive advantage 

under these conditions. 

Ash weight was lowest in 2001, the end of spring 2002, and the beginning of 

spring 2003. In 2001 and 2002, this was most likely due to formation of benthic algal 

mats and salt crusts, which stabilized sediments, and also due to the flocculation of 

sediments as a result of high salinity. During these times, the phytoplankton community 

was co-dominated by flagellates, cyanobacteria, coccoid green algae, and diatoms. It is 

important to note that the flagellates did not just increase in relative abundance due to 

the settling of diatoms, but actually increased in concentration during these times. The 

cyanobacteria, however, appeared to be a baseline community that increased in 

proportion when the diatoms were out of suspension. An exception is the last trip in 

2002, when cyanobacterial abundance more than doubled, probably due to some 

resuspension of mat filaments.  

The flagellates increased during less turbid times despite predictions of low 

relative growth rates. Turbulence is known to negatively affect dinoflagellates through 

physical damage, physiological impairment, and behavioral modifications (Smayda 

1997). The decreased sediment suspension, however, was not likely due to decreased 

turbulence, because winds remained strong throughout the sampling (Fig. 4). Rather, it is 

possible that the flagellates were better competitors under conditions of increased 
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irradiance. Smayda (1997) asserted that dinoflagellates and flagellates tend to thrive 

under conditions of high irradiance, long daylength, and reduced water column turbidity, 

conditions present at the times when their density was high. Compared to diatoms, 

dinoflagellates also may be better able to adapt to increased light intensities after periods 

of low irradiance (Smayda 1997).  

 

Salinity 

Hypersaline environments, such as the Nueces Delta in the late spring, are often 

not permanently hypersaline, but rather fluctuate on a seasonal scale due to flooding and 

evaporation (Ridd and Stieglitz 2002; Newton and Mudge 2003). Laboratory studies 

have shown that some diatom species from hypersaline environments were able to 

survive and remain productive over extremely broad salinity ranges (Admiraal 1977, 

Clavero et al. 2000), which is most likely an adaptation to changing environments 

(Carpelan 1978). In general, during the three years of sampling in this study, diatoms 

dominated the phytoplankton community up to salinities of 100 ppt. As mentioned 

earlier, specific genera of diatoms were present at moderate concentrations throughout 

very broad salinity ranges, including Entomoneis and Nitzschia closterium. If diatoms 

are adapted to changing salinities, they may have had a competitive advantage in the 

Nueces Delta.  

At salinities greater than 100 ppt, the community switched from domination by 

diatoms to co-domination by diatoms and flagellates. In descriptive studies of 

phytoplankton in extremely hypersaline environments, the common groups present were 

diatoms, cyanobacteria, and the green algal flagellate Dunaliella (Davis 1978; Montoya 

and Olivera 1993; Pedrós-Alió et al. 2000). Dinoflagellates and cryptomonads were 

rarely seen above 100 ppt, and Synura apparently has never been reported from these 

environments. Thus, an increase in these flagellates at extremely high salinities should 

not result from salinity alone. 

Most likely, salinity affected community composition at extreme salinities 

through multiple indirect mechanisms. After the first sampling trip in 2001, salinity 
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promoted the flocculation of sediments as well as the formation of a benthic salt crust, 

both of which stabilized sediments and increased light penetration in the water column. 

As mentioned earlier, the resulting high irradiance in this shallow system may have 

allowed a flagellate community to gain a competitive advantage. The planktonic diatom 

Nitzschia closterium still comprised most of the biovolume at the beginning of 2001, 

however. This diatom has been observed previously in hypersaline environments 

(Gilabert 2001). 

At the end of 2002, high salinities again encouraged the flocculation of 

sediments, as well as the formation of benthic microbial mats. Benthic mats are common 

in shallow, hypersaline environments all over the world (Zedler 1980; Pinckney et al. 

1995; Ehrlich and Dor 1985). Just as in 2001, sediments were stabilized and the water 

was clear, possibly favoring flagellates. Upon examination, mats were composed mostly 

of diatoms and filamentous cyanobacteria. Occasionally, these groups continued to be 

resuspended, and thus were still represented to some extent in the water column as well.  

Concerning algal processes at high salinities, productivity and respiration have 

been found to decrease with increasing salinities because more resources are devoted 

towards osmoregulation (Kirst 1989). In laboratory studies of several diatom genera, a 

large number of strains ceased to grow above salinities of 75 ppt, and no strains showed 

net growth above 150 ppt (Clavero et al. 2000). Using a mesocosm approach in a saline 

lake, Herbst and Blinn (1998) showed that productivity of benthic diatoms was reduced 

at salinities over 75 ppt. When algae are adapted to hypersaline conditions, effects of 

osmotic stress may not become apparent until establishment of fairly high salinities (~75 

ppt). In this study, PCA1 and PCA2 (Appendix A) showed negative relationships 

between assimilation indices and salinity, indicating that salinity may have had a 

negative effect on productivity. This relationship was strongest in 2001 and at the end of 

2002, when salinities were greater than 75 ppt. It can not be concluded, however, that 

this relationship was a direct effect of salinity. Other factors at these times may have 

affected productivity, such as the change in phytoplankton community composition 

and/or photoinhibition.  
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The first principal component of PCA2 (Appendix A) also indicated a strong 

negative relationship between biovolume and salinity. As with productivity, biovolume 

was at its lowest when salinities were most extreme. Some studies have shown decreased 

chlorophyll a concentrations at very high salinities (Pedrós-Alió et al. 2000), likely due 

to salt stress. But again, due to additional changes in resuspension, irradiance, and 

grazing in the Nueces Delta at extreme salinities, it is difficult to conclude whether the 

decrease in phytoplankton biovolume was directly related to salinity stress, or a 

combination of many additional factors. Late in spring 2002, the bulk of the algal 

biovolume seemed to switch from the water column to the benthos. 

 

Grazers 

This study provided some indication of a functional grazing food chain within 

this shallow salt marsh system at lower salinities. First, the dominant algal group was 

small pennate diatoms, which were an optimal size for grazing and lacked surface 

features than could deter grazing (Sterner 1989). Second, all grazer groups were in 

moderate to high abundance compared to previously reported values of these groups 

from coastal systems. Third, the first principal component of PCA1 (Appendix A) 

showed a negative relationship between each grazer group and pennate diatoms of their 

optimal size range for feeding. This indicated that the zooplankton might be controlling 

the size distribution of the phytoplankton through selective grazing, which has often 

been reported in the literature (Martin 1970; Ryther and Sanders 1980).  

Relationships indicating selective grazing were strongest near the beginning of 

2002 and 2003 when salinities were lower, and appeared to be weak at the end of 2002. 

In addition, the relationships were not present at all when including 2001 in the PCA 

analysis (Appendix A). During 2001 and the end of 2002 and 2003, factors other than 

grazing, such as salinity and increased irradiance, were likely having the greatest effect 

on the phytoplankton community. Consequently, at these times both grazers and pennate 

diatoms were reduced in concentration relative to other times, which reduced the 
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strength of the negative relationship between these two functional units in the PCA 

results. 

 It is important to note that zooplankton feeding efficiency may be reduced in 

these extremely turbid conditions, wherein most particles in the water were probably 

non-living. Although filter feeders, calanoid copepods have been shown to engage in 

selective feeding (DeMott 1988; Tackx et al. 2003), in which phytoplankton particles are 

assimilated in disproportion to their numerical abundance. Asplanchna sp., the dominant 

rotifer throughout most of the sampling, are carnivorous feeders and also selective 

(Pennak 1989). Some studies have indicated that SPM loads near 1 g l-1 may hinder 

selective feeding (Gasparini et al. 1999; Tackx et al. 2003). Several times during the 

study, however, inorganic particles in the water column were close to or higher than 1 g 

l-1. It is possible that selective feeding of copepods by the small fish in the marsh may 

also have been affected.  

Most of the grazers, including the copepods, rotifers and nauplii, either 

disappeared or decreased to very low numbers as salinity increased. This could have 

been due to a few factors, including reduced phytoplankton biovolume, and a reduction 

in edibility of the phytoplankton community at the highest salinities. The edibility theory 

is unlikely, however, as two of the main algal groups present at the highest salinities, 

small pennate diatoms and cryptomonads, should be edible for zooplankton (Sterner 

1989). The third group, dinoflagellates, are potentially highly edible (Burkill et al. 1987), 

but some genera are not and could actually be harmful (Smayda and Shimizu 1993).  

Because the decreases seen were so dramatic and similar in both 2002 and 2003, 

they were most likely due to the extreme salinities and the osmotic stress placed on the 

animals. It has been shown in saline lakes that zooplankton may be sensitive to salinity 

changes. Full mortality of copepods occurred above 60 ppt in Lake Fletcher, Antarctica 

(Eslake et al. 1991), and rotifers disappeared above salinities of 80 ppt in Mono Lake, 

California (Jellison et al. 2001). In laboratory cultures, increases in salinity can 

negatively affect copepod (Dexter 1993) and rotifer (Bosque et al. 2001) reproduction. 

Most studies of the plankton of extreme hypersaline environments (>100 ppt) report 
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copepods, rotifers, and nauplii in very low numbers (Davis 1978) or not at all (Pedrós-

Alió et al. 2000). 

Unlike other grazers, ciliates were still present in moderate concentrations on 6 

June, 2001 and at the end of 2002. A strong negative relationship between ciliates and 

small diatoms was shown on the first principal component of PCA1 (Appendix A). 

Despite ciliates being well represented at high salinities, this relationship was still 

strongest at the beginning of 2002 and 2003, and when adding 2001 to the analysis, the 

relationship was still present, but weaker. Again, factors other than grazing may be more 

important in controlling the phytoplankton community at highest salinities, masking or 

decoupling relationships between ciliates and phytoplankton seen at lower salinities. 

Depletion of grazers, reduction in phytoplankton biovolume, and the breakdown of 

relationships between grazers and their optimal feeding size classes could indicate a 

collapse of the grazing food chain at higher salinities. 

 

Microbial loop 

Bacteria did not appear to contribute much to community respiration in the water 

column. The PCA1 results (Appendix A) did not indicate a positive relationship between 

respiration and bacteria, ciliates, or flagellates. There was a positive relationship 

between copepods and respiration, but merozooplankton, despite their size, generally 

contribute a small portion to community respiration (Williams 1981). There was, 

however, a strong positive relationship between productivity, phytoplankton biovolume, 

and respiration on the first principal component of PCA1. Fourqurean et al. (1997) found 

similar results in Tomales Bay, California, and concluded that water column respiration 

was most likely due to the phytoplankton. 

 Bacterial production did not seem to be directly dependent on phytoplankton 

carbon, even though this has been frequently observed in past studies (Sampou and 

Kemp 1994; Iriarte et al. 1996). PCA1 results (Appendix A) did not indicate a positive 

relationship between bacteria and phytoplankton biovolume or productivity, and thus 

bacteria may not have been utilizing phytoplankton exudates. Bacterial numbers were 
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high throughout the sampling period, so if production was not dependent on 

phytoplankton carbon, there must have been another source. It is likely that bacterial 

biomass was being largely supported by additions of organic material to the system from 

birds, which were abundant. During 2001 and the end of 2002, bacteria numbers greatly 

increased while phytoplankton biovolume decreased. It is possible that, during these 

times, bacteria were utilizing a pulse from dying phytoplankton, as well as dying fish 

and crustaceans.  

 Bacteria numbers were high during 2001 and the end of 2002 and 2003, so it is 

odd that community respiration was not higher. Pedrós-Alió et al. (2000) found that, at 

very high salinities in saltern ponds, bacterial biomass was high but activity 

(incorporation of leucine) was low. The authors postulated that the bacterial community 

was near its carrying capacity due to low bacterivory in this extreme environment. 

During this study, unknown flagellates, which included dinoflagellates, cryptomonads, 

and microflagellates, were the most likely bacterivores in the system. In 2001 and the 

end of 2002, however, concentrations of these flagellates also were high. It is possible 

that these flagellates were not particulate feeding, or that their numbers were not high 

enough to limit bacterial biomass, allowing the bacteria to reach carrying capacity and 

slowing down bacterial activity. 

 

Nutrients 

Salt ponds of the upper Nueces Delta were probably reliant on nutrient recycling, 

because both tidal influence and freshwater inflow were low. Accordingly, most of the 

nitrogen was in the form of ammonium, the regenerated form of nitrogen, and nitrate 

concentrations were relatively low. The system was not completely closed as birds likely 

contributed substantial amounts of organic matter. The sediments, which were often 

suspended in high amounts, may have been a source of regenerated nutrients. In 

particular, total phosphorous was highly correlated to water column ash weight, and 

silica was loosely correlated in 2002 (R2 = 0.49). 
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 Because the system was essentially closed, we can conclude that nutrient 

dynamics were a function of changes within the system rather than allochthonous inputs. 

For example, the dramatic increase in nutrients in 2001 was most likely due to a pulse of 

DOM from dying phytoplankton, rather than a local precipitation or inflow event. The 

decrease in silica at the end of 2002 was likely due to uptake by diatoms, and spikes of 

DIN at the end of 2002 and 2003 may have been due to crab die-offs that occurred 

around this time. Fluctuations in silica in this shallow system were probably due to algal 

uptake and silica dissolution.  

 As discussed earlier, the phytoplankton community did not appear to be 

controlled by nutrients throughout most of the sampling. This was despite the fact that 

nutrient concentrations were probably growth constraining. Nutrient concentrations may 

have influenced phytoplankton production, as evidenced by positive relationships 

between nutrients and the phytoplankton assimilation index on the first and second 

components of PCA1 (Appendix A). In addition, nutrients may have occasionally had an 

effect on phytoplankton community composition. At the end of 2002, for example, the 

decrease in silica may have played a role in the reduction of diatoms.  
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CONCLUSIONS AND DIRECTION OF FUTURE RESEARCH 

 

Results for the upper Nueces Delta indicate that phytoplankton are important 

contributors to productivity in the spring, as evidenced by substantial water column 

productivity and phytoplankton biovolume despite high turbidity. Negative relationships 

between grazers and optimal-size pennate diatoms indicated a functional grazer-driven 

food chain. Resuspension of sediments appeared to play a major role in phytoplankton 

productivity, abundance, and community composition, as indicated by a positive 

relationship between ash weight and biovolume that explained up to 46% of the 

variability in the data. Salinity may have also been important, while nutrients appeared 

to have played a minor role. Salinity increases may have been responsible for an 

apparent decoupling of phytoplankton and their grazers late in spring. 

Most parameters appeared to have both direct and indirect relationships with the 

phytoplankton community, and several factors probably masked or confounded the 

effects of others. Thus, in many cases, observed relationships were uncertain. In 

addition, the first two components of the PCA analysis explained less than 50% of the 

variability in the data, indicating that additional factors, not included in this study, may 

also have influenced the phytoplankton community. Additional data need to be collected 

as a supplement, to test postulated relationships, and account for the extra variability.  

Few studies have been conducted in succulent-dominated, hypersaline salt 

marshes similar to that of the Nueces Delta, despite their importance in supporting taxa 

at higher trophic levels, and their economic importance. Future studies in this salt marsh 

estuary and similar systems, focusing particularly on the phytoplankton, will be very 

valuable in understanding the mechanisms that drive lower food web dynamics and their 

importance to higher trophic levels.  

To better understand the importance of phytoplankton as a food source in the 

Nueces Delta and similar systems, multiple stable isotope analyses may be quite useful, 

as well as measurements of macrophyte productivity. Additional experiments, such as 

nutrient bioassays, multiple daily productivity measurements, determination of bacterial 
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activity, and measurements of surface irradiance could aid in our understanding of 

phytoplankton dynamics. A thorough examination of benthic microphytobenthos should 

be conducted along with each sampling event. Seasonal sampling should be conducted to 

document changing food sources with varying freshwater inflow, precipitation, 

irradiance, and salinity. Sampling should also occur along a larger longitudinal transect 

of the estuary. 
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APPENDIX A 
 
 
 

RESULTS FROM THE PCA ANALYSES 
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The following appendix contains results from the PCA analyses on the first four 
principal components for PCA1 (2002 and 2003 only) and PCA2 (2001, 2002, and 
2003). The significance of the first four components temporally and spatially is also 
shown. Parameters included in the analyses and their designations are shown below. 
 
 
Parameters included in the PCA analyses and their designations. 
Parameter Name 

salinity sal 

ash weight ash 

total phytoplankton biovolume pbiov 

chlorophyll a chl 

gross productivity prod 

respiration resp 

assimilation index nprod 

small pennate diatoms (% biovolume) psmdt 

medium pennate diatoms (% biovolume) pmddt 

large pennate diatoms (% biovolume) plgdt 

cyanobacteria (% biovlume) pcyan 

autotrophic flagellates (% biovolume) pflag 

unknown flagellates (% biovolume) uflag 

other phytoplankton (% biovolume) pothr 

adult copepods zcope 

copepod nauplii znaup 

rotifers zrot 

ciliates zcil 

bacterioplankton bact 

polychaetes zpoly 

NH4 NH4 

NO3 NO3 

NO2 NO2 

urea urea 

SRP PO4 

total phosphorous TP 

SiO3 Si 
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Parameter representation on the first four principal components for PCA1. 
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The significance of the first and second principal components of PCA1 at the time and 
location of each sampling event. Time and location are represented by three numbers. 
The first number, ranging from 1 to 3, designates the year of sampling (2001 to 2003, 
respectively). The second number, ranging from 1 to 8, designates the sampling trip for 
that year (the first trip to the eighth trip, respectively). The third number, ranging from 1 
to 8, designates the station number. 



 

 

59

The significance of the third and fourth principal components of PCA1 at the time and 
location of each sampling event. Time and location are represented by three numbers. 
The first number, ranging from 1 to 3, designates the year of sampling (2001 to 2003, 
respectively). The second number, ranging from 1 to 8, designates the sampling trip for 
that year (the first trip to the eighth trip, respectively). The third number, ranging from 1 
to 8, designates the station number. 
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Parameter representation on the first four principal components for PCA2. 
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The significance of the first and second principal components of PCA2 at the time and 
location of each sampling event. Time and location are represented by three numbers. 
The first number, ranging from 1 to 3, designates the year of sampling (2001 to 2003, 
respectively). The second number, ranging from 1 to 8, designates the sampling trip for 
that year (the first trip to the eighth trip, respectively). The third number, ranging from 1 
to 8, designates the station number. 
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The significance of the third and fourth principal components of PCA2 at the time and 
location of each sampling event. Time and location are represented by three numbers. 
The first number, ranging from 1 to 3, designates the year of sampling (2001 to 2003, 
respectively). The second number, ranging from 1 to 8, designates the sampling trip for 
that year (the first trip to the eighth trip, respectively). The third number, ranging from 1 
to 8, designates the station number. 
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APPENDIX B 

 
 
 

IDENTIFIED TAXA AND AVERAGE DATA FOR ALL MEASURED  

PARAMETERS IN 2001, 2002, AND 2003 
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Biovolume averages for all phytoplankton taxa in 2001.     

Taxa Sampling date  Taxa Sampling date 

 5/30/01 6/6/01 6/13/01  5/30/01 6/6/01 6/13/01 

cyanobacteria (µm3 l-1) green algae (µm3 l-1)    

Anabaena sp. bd bd bd  coccoid sp. 6.89x107 2.46x107 bd 

Chroococcus sp. bd bd bd  filament sp. bd 9.51x105 bd 

filament sp. 3.95x108 2.61x107 2.28x107  prasinophycean sp. bd bd bd 

Lyngbya sp. bd bd bd  others (µm3 l-1) 
Oscillatoria sp. bd 1.92x107 7.83x106  cryptomonad - like bd bd 2.99x105 

diatoms (µm3 l-1)     dinoflagellate sp. 2.45x109 1.52x108 bd 

Campylodiscus sp. 1.10x105 2.55x105 2.59x105  Euglena sp. bd bd bd 

centric diatom sp. bd 3.98x105 8.89x104  microflagellate sp. 8.02x107 2.64x107 2.78x107 

Entomoneis sp. 1.36x106 5.27x106 7.84x105  Synura sp. bd 1.74x108 5.49x107 

Gyrosigma sp. 1.21x104 bd 1.52x104  total biovolume (µm3 l-1) 8.29x109 7.46x108 1.69x108 

Melosira sp. bd bd bd   

Nitzschia closterium 5.28x109 1.97x108 5.82x106   

small pennate sp. 2.21x106 6.70x106 1.87x107   

medium pennate sp. 9.70x106 1.13x108 1.28x107   

large pennate sp. 6.24x104 2.08x104 1.68x107   

Surirella sp. bd bd 2.32x105   

Synedra sp. bd bd bd  

Tabellaria sp. bd bd bd  

bd = below detection 
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Biovolume averages for all phytoplankton taxa in 2002.  

Taxa Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

cyanobacteria (µm3 l-1)         

Anabaena sp. bd bd bd bd bd 2.11x108 1.14x108 9.47x106 

Chroococcus sp. bd bd bd bd bd 1.53x107 bd bd 

filament sp. 3.02x107 1.21x107 6.34x106 bd 1.47x107 6.48x105 1.11x107 1.12x109 

Lyngbya sp. 3.51x108 7.27x106 8.74x107 2.63x108 1.05x108 3.59x108 bd bd 

Oscillatoria sp. bd bd bd bd bd bd bd bd 

diatoms (µm3 l-1)         

Campylodiscus sp. 6.75x107 5.70x107 5.74x107 4.59x108 1.79x108 2.01x107 bd bd 

centric diatom sp. bd bd bd bd bd bd bd bd 

Entomoneis sp. 4.60x108 5.01x108 6.28x108 6.94x108 5.90x108 4.47x109 2.69x108 bd 

Gyrosigma sp. 1.41x107 1.08x106 bd bd bd bd bd bd 

Melosira sp. bd bd bd bd bd 2.12x107 bd bd 

Nitzschia closterium bd bd bd bd bd bd 6.37x105 4.19x107 

small pennate sp. 1.53x1010 9.20x109 1.12x1010 2.03x1010 1.22x1010 5.29x109 5.43x108 5.34x105 

medium pennate sp. 9.71x109 6.01x108 7.57x108 1.96x109 1.48x109 3.52x109 1.01x108 1.84x106 

large pennate sp. bd 1.30x107 1.13x108 2.86x108 1.31x104 bd bd 1.07x107 

Surirella sp. bd 7.40x105 1.48x108 1.95x107 bd bd bd bd 

Synedra sp. bd 2.22x105 3.04x105 1.16x106 5.74x104 bd bd bd 

Tabellaria sp. bd bd bd bd bd bd bd bd 

bd = below detection  
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Biovolume averages for all phytoplankton taxa in 2002. Continued.      

Taxa Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

green algae (µm3 l-1)         

coccoid sp. bd bd bd bd bd bd bd bd 

filament sp. bd bd bd bd bd bd bd bd 

prasinophycean sp. bd bd bd bd bd bd bd 1.54x108 

others (µm3 l-1)         

cryptomonad - like bd bd bd bd bd bd 3.27x108 1.37x109 

dinoflagellate sp. bd bd bd bd bd bd 4.97x107 1.98x109 

Euglena sp. bd bd bd bd bd bd bd bd 

microflagellate sp. bd bd bd bd bd bd 9.79x106 1.46x108 

Synura sp. bd bd bd bd bd bd 6.38x108 bd 

total biovolume (µm3 l-1) 2.59x1010 1.04x1010 1.30x1010 2.40x1010 1.45x1010 1.39x1010 2.06x109 4.84x109 

bd = below detection  
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Biovolume averages for all phytoplankton taxa in 2003.  

Taxa Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

cyanobacteria (µm3 l-1)         

Anabaena sp. bd bd 1.03x107 1.40x106 bd bd bd bd bd 

Chroococcus sp. bd bd bd bd bd bd bd bd 1.12x107 

filament sp. bd bd bd bd bd bd bd bd bd 

Lyngbya sp. bd bd bd bd bd bd bd bd bd 

Oscillatoria sp. bd bd bd bd bd bd bd bd bd 

diatoms (µm3 l-1)  

Campylodiscus sp. 5.13x107 1.88x107 1.16x108 2.18x107 5.16x106 bd bd bd bd 

centric diatom sp. bd bd bd bd bd bd bd bd bd 

Entomoneis sp. 1.81x105 6.68x106 9.09x108 2.96x108 1.76x109 8.25x107 7.18x108 3.12x1010 7.19x108 

Gyrosigma sp. bd bd bd bd bd bd bd bd bd 

Melosira sp. 1.03x107 4.90x106 7.48x107 1.27x108 5.13x107 2.25x107 bd bd bd 

Nitzschia closterium 1.19x106 1.87x105 1.58x107 1.95x109 8.12x107 8.60x106 bd bd bd 

small pennate sp. 8.00x107 3.66x107 1.85x108 1.28x109 6.08x108 1.64x109 2.86x109 6.481010 8.51x109 

medium pennate sp. 1.95x108 3.01x108 4.37x109 8.25x108 5.97x108 2.86x108 3.05x108 2.46x109 1.33x108 

large pennate sp. 7.29x107 2.96x107 8.24x107 6.98x107 1.39x108 2.44x106 5.34x106 4.71x108 bd 

Surirella sp. 1.03x108 3.25x107 4.71x107 7.07x106 3.50x107 bd 8.08x106 2.97x108 bd 

Synedra sp. 2.26x107 3.66x106 2.20x107 1.27x107 6.98x106 bd bd 2.44x107 bd 

Tabellaria sp. 1.06x105 6.90x105 7.01x105 bd bd bd bd bd bd 

bd = below detection  
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Biovolume averages for all phytoplankton taxa in 2003. Continued.       

Taxa Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

green algae (µm3 l-1)  

coccoid sp. 1.11x107 9.62x107 3.94x107 bd bd bd bd bd bd 

filament sp. bd bd bd bd bd bd bd bd bd 

prasinophycean sp. bd bd bd bd bd bd bd bd bd 

others (µm3 l-1)          

cryptomonad - like 3.16x106 7.91x106 6.73x106 bd bd bd bd bd bd 

dinoflagellate sp. 9.58x107 5.53x108 2.33x107 bd bd bd 5.77x107 bd bd 

Euglena sp. bd 2.76x107 bd 2.06x106 bd bd bd bd bd 

microflagellate sp. 1.73x106 1.22x107 bd bd bd bd 1.16x107 bd bd 

Synura sp. bd bd bd bd bd bd bd bd bd 

total biovolume (µm3 l-1) 6.48x108 1.13x109 5.90x109 4.59x109 3.28x109 2.04x109 3.97x109 9.92x1010 9.37x109 

bd = below detection  
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Average concentrations for all zooplankton and 
bacterioplankton taxa in 2001. 
Taxa Sampling date 

 5/30/01 6/6/01 6/13/01 

bacterioplankton (cells l-1) 1.88x1010 2.30x1010 3.19x1010 

Bosmina sp. (ind l-1) 1.72x10-1 bd bd 

ciliates (cells l-1) 4.70x102 1.26x104 6.39x101 

copepod adults (ind l-1) 1.60x100 2.21x100 5.58x100 

copepod nauplii (ind l-1) 1.03x100 9.28x10-1 1.38x100 

nematodes (ind l-1) 1.66x101 8.14x100 4.48x101 

polychaete larvae (ind l-1) bd bd bd 

rotifers (ind l-1) 
Asplanchna sp. bd bd bd 

Brachionus sp. bd bd bd 

Keratella sp. 3.44x10-1 bd bd 

rotifer sp. 1.44x100 6.56x10-1 bd 

bd = below detection 
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Average concentrations for all zooplankton and bacterioplankton taxa in 2002. 
Taxa Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

bacterioplankton (cells l-1) 1.06x1010 8.23x109 7.11x109 9.97x109 8.42x109 1.30x1010 1.42x1010 2.22x1010 

Bosmina sp. (ind l-1) bd bd bd bd bd bd bd bd 

ciliates (cells l-1) bd bd bd bd 5.78x100 6.54x103 2.42x104 2.00x104 

copepod adults (ind l-1) 1.50x103 9.77x102 1.49x102 1.55x102 8.09x101 2.37x101 bd 3.44x10-1 

copepod nauplii (ind l-1) 2.46x103 9.48x102 2.38x102 3.46x102 3.50x102 6.38x101 bd bd 

nematodes (ind l-1) bd bd bd bd 7.23x10-1 bd 2.75x10-1 bd 

polychaete larvae (ind l-1) 8.80x102 2.32x103 2.65x103 1.03x103 4.91x101 1.72x103 bd bd 

rotifers (ind l-1)  

Asplanchna sp. 2.71x103 5.02x102 1.49x103 1.38x103 bd bd bd bd 

Brachionus sp. 1.10x102 6.60x101 1.28x102 5.97x101 bd bd bd bd 

Keratella sp. bd bd bd bd bd bd bd bd 

rotifer sp. 1.10x102 6.02x100 6.16x101 3.61x100 bd bd bd bd 

bd = below detection  
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Average concentrations for all zooplankton and bacterioplankton taxa in 2003.  

Taxa Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

bacterioplankton (cells l-1) 3.81x109 8.37x109 3.71x109 5.09x109 8.45x109 9.82x109 1.94x1010 6.52x109 2.47x1010 

Bosmina sp. (ind l-1) 5.50x10-1 bd bd bd bd bd bd bd bd 

ciliates (cells l-1) 1.08x105 1.04x105 5.02x104 3.02x103 8.93x104 2.14x104 1.35x104 bd 9.01x104 

copepod adults (ind l-1) 3.44x101 2.56x101 3.71x101 2.47x102 1.78x102 8.25x101 4.50x101 bd 6.11x100 

copepod nauplii (ind l-1) 2.05x103 1.44x103 6.70x102 4.90x102 1.16x103 3.33x102 2.20x102 2.29x101 bd 

nematodes (ind l-1) bd bd bd bd bd bd bd 2.29x101 bd 

polychaete larvae (ind l-1) 8.58x101 1.97x102 4.41x102 6.82x102 1.28x103 4.67x102 1.25x103 3.59x103 8.56x101 

rotifers (ind l-1)  

Asplanchna sp. 5.61x102 1.75x103 5.86x102 7.37x101 4.82x102 4.82x100 2.48x101 bd bd 

Brachionus sp. 1.02x102 1.29x102 4.76x101 1.20x100 1.07x101 bd bd bd bd 

Keratella sp. 1.66x102 1.28x101 bd 1.81x100 bd bd bd bd bd 

rotifer sp. 2.18x103 1.09x103 1.50x102 1.81x100 2.14x101 1.83x100 6.33x101 3.83x102 5.19x102 

bd = below detection  
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Averages of remaining data in 2001. 
Parameter Sampling date 

 5/30/01 6/6/01 6/13/01 

ash weight (g l-1) 0.103 0.179 0.249 

chlorophyll a (µg l-1) 15.291 1.230 0.961 

gross productivity     

     (mg-C m-3 hr-1) 122.900 0.469 0.000 

net productivity     

     (mg-C m-3 hr-1) 18.350 -37.689 -14.852 

nutrients (µM)    

NO2 0.036 0.150 0.346 

NO3 0.890 1.068 1.380 

NH4 0.294 0.340 8.901 

Urea 1.025 1.225 2.580 

SRP 0.151 1.825 6.460 

total phosphorous 6.077 3.359 2.700 

HSiO3 23.329 117.299 145.720 

phaeophytin a (µg l-1) 0.231 0.492 1.034 

respiration (mg-C m-3 hr-1) 125.460 34.157 3.090 

salinity (ppt) 190.000 220.000 300.000 

water depth (cm) 12.500 6.313 5.143 

water temperature (0C) 35.675 33.550 32.367 
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Averages of remaining data in 2002.  

Parameter Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

ash weight (g l-1) 1.750 0.712 0.892 1.383 2.075 1.333 0.379 0.385 

chlorophyll a (µg l-1) 74.466 92.936 58.155 72.643 35.102 21.904 5.953 10.323 

gross productivity          

     (mg-C m-3 hr-1) 18.190 1265.322 441.247 74.202 187.777 222.263 15.227 57.002 

net productivity          

     (mg-C m-3 hr-1) -35.632 1227.705 171.509 -56.320 165.646 * -4.320 -10.916 

nutrients (µM)         

NO2 0.188 0.117 0.146 0.133 0.122 0.075 0.086 0.023 

NO3 0.319 0.525 1.080 0.823 1.096 0.497 0.507 0.623 

NH4 1.160 1.005 1.494 0.815 0.989 0.123 4.342 3.268 

Urea 2.670 3.885 3.169 3.147 3.046 1.276 0.813 0.529 

SRP 0.440 0.329 0.379 0.412 0.675 0.500 0.386 0.105 

total phosphorous 19.793 19.002 18.986 33.555 47.574 19.274 7.941 6.269 

HSiO3 104.396 50.780 22.184 55.659 86.581 11.828 6.944 3.299 

phaeophytin a (µg l-1) 30.293 2.342 3.991 18.110 12.825 0.938 0.126 0.242 

respiration (mg-C m-3 hr-1) 69.894 68.101 323.303 149.309 45.544 * 39.570 74.245 

salinity (ppt) 16.000 18.000 21.000 24.000 41.000 69.000 142.000 125.000 

water depth (cm) 19.750 17.750 17.563 15.625 22.188 24.188 24.438 28.663 

water temperature (0C) 14.400 21.100 17.600 17.750 25.625 * 24.633 27.100 

* = instrumentation problem, data lost  
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Averages of remaining data in 2003.  

Parameter Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

ash weight (g l-1) 0.125 0.095 0.268 0.293 0.484 0.594 0.883 3.533 2.575 

chlorophyll a (µg l-1) 7.906 7.057 33.028 25.197 34.599 24.873 26.669 155.890 102.000 

gross productivity           

     (mg-C m-3 hr-1) 105.784 86.421 356.029 260.085 315.567 549.220 687.057 225.586 ~ 

net productivity           

     (mg-C m-3 hr-1) 79.329 55.506 313.352 126.052 233.331 445.417 505.279 47.852 ~ 

nutrients (µM)          

NO2 0.217 0.150 0.151 0.108 0.188 0.112 0.132 0.270 0.238 

NO3 0.089 0.089 0.089 0.139 0.111 0.089 0.089 0.178 0.178 

NH4 0.815 1.394 0.471 0.489 0.684 0.323 0.379 0.844 0.667 

Urea 0.302 0.354 0.982 0.917 1.193 0.967 0.884 1.551 3.442 

SRP 0.587 1.046 0.873 0.508 1.248 1.046 1.411 1.082 1.745 

total phosphorous 3.573 3.511 7.690 6.711 13.259 9.759 12.547 64.420 35.226 

HSiO3 83.679 95.237 142.504 155.039 200.435 141.292 181.617 135.027 182.788 

phaeophytin a (µg l-1) 4.495 1.742 1.680 2.351 8.323 4.889 8.091 44.323 36.832 

respiration (mg-C m-3 hr-1) 64.318 44.266 51.212 113.417 98.683 124.564 218.133 213.281 ~ 

salinity (ppt) 11.000 14.000 15.000 17.000 16.000 29.000 46.000 67.000 91.000 

water depth (cm) 31.250 23.750 24.375 17.859 19.857 25.162 12.361 5.154 4.445 

water temperature (0C) 21.625 20.181 23.080 24.154 26.326 27.177 28.363 30.350 ~ 

~ = too shallow to collect data  
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APPENDIX C 

 
 
 

STANDARD DEVIATIONS FOR ALL AVERAGE  

DATA IN 2001, 2002, AND 2003
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Standard deviations of average phytoplankton biovolume in 2001.    

Taxa Sampling date  Taxa Sampling date 

 5/30/01 6/6/01 6/13/01  5/30/01 6/6/01 6/13/01 

cyanobacteria (µm3 l-1) green algae (µm3 l-1)    

Anabaena sp. - - -  coccoid sp. 1.14x108 4.36x107 - 

Chroococcus sp. - - -  filament sp. - 2.69x106 - 

filament sp. 3.11x108 1.87x107 1.09x107  prasinophycean sp. - - - 

Lyngbya sp. - - -  others (µm3 l-1) 
Oscillatoria sp. - 3.70x107 1.92x107  cryptomonad - like - - 7.32x105 

diatoms (µm3 l-1)     dinoflagellate sp. 8.07x108 1.74x108 - 

Campylodiscus sp. 1.92x105 6.78x105 4.71x105  Euglena sp. - - - 

centric diatom sp. - 1.13x106 2.18x105  microflagellate sp. 2.68x107 2.68x107 3.85x107 

Entomoneis sp. 2.57x106 1.44x107 1.03x106  Synura sp. - 9.32x107 6.41x107 

Gyrosigma sp. 3.42x104 - 2.91x104  total biovolume (µm3 l-1) 1.85x109 5.29x108 1.12x108 

Melosira sp. - - -  

Nitzschia closterium 1.89x109 1.73x108 8.74x106   

small pennate sp. 6.26x106 1.18x107 2.93x107   

medium pennate sp. 1.81x107 1.69x108 1.77x107   

large pennate sp. 1.74x105 4.97x104 4.09x107   

Surirella sp. - - 5.69x105   

Synedra sp. - - -  

Tabellaria sp. - - -  

- = no standard deviation 
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Standard deviations of average phytoplankton biovolume in 2002.  

Taxa Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

cyanobacteria (µm3 l-1)         

Anabaena sp. - - - - - 4.02x108 1.57x108 2.68x107 

Chroococcus sp. - - - - - 4.34x107 - - 

filament sp. 6.03x107 2.18x107 7.70x106 - 2.17x107 1.35x106 1.71x107 3.38x108 

Lyngbya sp. 1.29x108 1.25x107 1.40x108 3.90x108 1.29x108 5.61x108 - - 

Oscillatoria sp. - - - - - - - - 

diatoms (µm3 l-1)         

Campylodiscus sp. 1.35x108 4.85x107 4.65x107 3.60x108 2.66x108 3.99x107 - - 

centric diatom sp. - - - - - - - - 

Entomoneis sp. 9.21x108 6.58x108 5.11x108 8.11x108 6.23x108 4.03x109 4.83x108 - 

Gyrosigma sp. 2.81x107 3.06x106 - - - - - - 

Melosira sp. - - - - - 5.99x107 - - 

Nitzschia closterium - - - - - - 1.19x106 3.52x107 

small pennate sp. 4.62x109 4.72x109 6.44x109 7.44x109 5.98x109 2.13x109 4.59x108 1.51x106 

medium pennate sp. 1.41x109 2.37x108 3.14x108 1.41x109 9.57x108 2.99x109 1.03x108 5.21x106 

large pennate sp. - 2.94x107 1.20x108 3.42x108 3.72x104 - - 3.04x107 

Surirella sp. - 1.45x106 2.19x108 5.45x107 - - - - 

Synedra sp. - 3.75x105 4.42x105 8.65x105 8.10x104 - - - 

Tabellaria sp. - - - - - - - - 

- = no standard deviation  
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Standard deviations of average phytoplankton biovolume in 2002. Continued.     

Taxa Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

green algae (µm3 l-1)         

coccoid sp. - - - - - - - - 

filament sp. - - - - - - - - 

prasinophycean sp. - - - - - - - 1.18x108 

others (µm3 l-1)         

cryptomonad - like - - - - - - 1.13x108 9.53x108 

dinoflagellate sp. - - - - - - 4.69x107 1.50x109 

Euglena sp. - - - - - - - - 

microflagellate sp. - - - - - - 7.69x106 7.88x107 

Synura sp. - - - - - - 4.25x108 - 

total biovolume (µm3 l-1) 4.55x109 4.56x109 7.10x109 9.51x109 6.49x109 7.86x109 6.41x108 2.37x109 

- = no standard deviation  
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Standard deviations of average phytoplankton biovolume in 2003.  

Taxa Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

cyanobacteria (µm3 l-1)         

Anabaena sp. - - 6.58x106 3.22x106 - - - - - 

Chroococcus sp. - - - - - - - - 1.59x107 

filament sp. - - - - - - - - - 

Lyngbya sp. - - - - - - - - - 

Oscillatoria sp. - - - - - - - - - 

diatoms (µm3 l-1)  

Campylodiscus sp. 4.09x107 1.40x107 9.43x107 2.09x107 1.46x107 - - - - 

centric diatom sp. - - - - - - - - - 

Entomoneis sp. 5.12x105 1.89x107 1.28x109 2.63x108 4.93x108 1.12x108 4.28x108 4.11x1010 3.21x108 

Gyrosigma sp. - - - - - - - - - 

Melosira sp. 2.43x107 4.05x106 5.26x107 8.04x107 8.31x107 3.55x107 - - - 

Nitzschia closterium 3.38x106 3.46x105 6.39x106 4.55x108 4.07x107 6.29x106 - - - 

small pennate sp. 2.65x107 1.52x107 6.61x107 3.98x108 2.18x108 3.31x108 7.54x108 3.84x1010 4.04x107 

medium pennate sp. 1.42x108 8.79x107 2.02x109 3.39x108 2.74x108 1.64x108 2.15x108 2.07x109 2.45x107 

large pennate sp. 1.13x108 5.11x107 9.50x107 9.99x107 1.61x108 6.91x106 1.41x107 5.00x108 - 

Surirella sp. 1.05x108 8.12x107 3.34x107 2.00x107 5.17x107 - 2.14x107 6.65x108 - 

Synedra sp. 1.14x107 3.16x106 1.57x107 9.19x106 9.07x106 - - 3.35x107 - 

Tabellaria sp. 2.99x105 1.95x106 7.29x105 - - - - - - 

- = no standard deviation  
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Standard deviations of average phytoplankton biovolume in 2003. Continued.      

Taxa Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

green algae (µm3 l-1)  

coccoid sp. 1.37x107 4.71x107 4.11x107 - - - - - - 

filament sp. - - - - - - - - - 

prasinophycean sp. - - - - - - - - - 

others (µm3 l-1)          

cryptomonad - like 7.13x106 8.50x106 1.32x107 - - - - - - 

dinoflagellate sp. 7.35x107 2.88x108 2.52x107 - - - 7.30x107 - - 

Euglena sp. - 3.14x107 - 3.91x106 - - - - - 

microflagellate sp. 4.89x106 1.36x107 - - - - 1.55x107 - - 

Synura sp. - - - - - - - - - 

total biovolume (µm3 l-1) 3.20x108 3.91x108 2.02x109 5.64x108 6.66x108 3.75x108 7.85x108 7.80x1010 2.72x108 

- = no standard deviation  
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Standard deviations for zooplankton and bacterioplankton 
concentrations in 2001. 
Taxa Sampling date 

 5/30/01 6/6/01 6/13/01 

bacterioplankton (cells l-1) 4.04x109 4.96x109 5.82x109 

Bosmina sp. (ind l-1) 4.86x10-1 - - 

ciliates (cells l-1) 3.98x102 8.55x103 8.76x101 

copepod adults (ind l-1) 2.38x100 2.83x100 7.21x100 

copepod nauplii (ind l-1) 2.41x100 1.35x100 2.30x100 

nematodes (ind l-1) 1.61x101 8.54x100 2.89x101 

polychaete larvae (ind l-1) - - - 

rotifers (ind l-1) 
Asplanchna sp. - - - 

Brachionus sp. - - - 

Keratella sp. 9.72x10-1 - - 

rotifer sp. 3.02x100 1.86x100 - 

- = no standard deviation 
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Standard deviations for zooplankton and bacterioplankton concentrations in 2002. 
Taxa Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

bacterioplankton (cells l-1) 1.78x109 9.82x108 9.82x108 9.85x108 1.11x109 4.21x109 3.02x109 1.63x109 

Bosmina sp. (ind l-1) - - - - - - - - 

ciliates (cells l-1) - - - - 7.57x100 2.60x103 5.78x103 1.42x104 

copepod adults (ind l-1) - 3.65x102 1.55x102 8.63x101 2.75x101 2.21x101 - 9.72x10-1 

copepod nauplii (ind l-1) - 3.19x102 1.33x102 1.38x102 8.28x101 6.00x101 - - 

nematodes (ind l-1) - - - - 2.04x100 - 7.78x10-1 - 

polychaete larvae (ind l-1) - 9.89x102 1.37x103 8.08x102 3.01x101 7.31x102 - - 

rotifers (ind l-1)  

Asplanchna sp. - 2.55x102 8.63x102 4.84x102 - - - - 

Brachionus sp. - 9.10x101 8.97x101 4.53x101 - - - - 

Keratella sp. - - - - - - - - 

rotifer sp. - 1.70x101 3.80x101 1.02x101 - - - - 

- = no standard deviation  
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Standard deviations for zooplankton and bacterioplankton concentrations in 2003. 
Taxa Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

bacterioplankton (cells l-1) 1.01x109 1.22x109 8.79x108 2.05x109 1.22x109 1.90x109 6.30x109 4.57x108 4.58x108 

Bosmina sp. (ind l-1) 1.02x100 - - - - - - - - 

ciliates (cells l-1) 5.78x104 1.65x105 1.73x104 8.76x102 2.53x104 8.17x103 1.42x104 - 3.90x104 

copepod adults (ind l-1) 1.52x101 2.22x101 1.90x101 1.12x102 7.56x101 5.00x101 3.37x101 - 8.64x100 

copepod nauplii (ind l-1) 9.72x102 3.27x102 2.39x102 2.07x102 3.60x102 1.55x102 6.28x101 3.24x101 - 

nematodes (ind l-1) - - - - - - - 3.24x101 - 

polychaete larvae (ind l-1) 8.73x101 6.16x101 2.19x102 2.46x102 2.85x102 2.64x102 4.40x102 9.23x102 3.46x101 

rotifers (ind l-1)  

Asplanchna sp. 4.21x102 1.24x103 2.10x102 5.00x101 2.52x102 8.92x100 4.27x101 - - 

Brachionus sp. 1.21x102 8.36x101 1.91x101 3.41x100 2.62x101 - - - - 

Keratella sp. 1.52x102 1.94x101 - 5.11x100 - - - - - 

rotifer sp. 1.72x103 4.16x102 2.34x102 5.11x100 2.62x101 3.39x100 6.26x101 4.12x102 3.37x102 

- = no standard deviation  
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Standard deviations for remaining data in 2001. 
Parameter Sampling date 

 5/30/01 6/6/01 6/13/01 

ash weight (g l-1) 0.067 0.087 0.166 

chlorophyll a (µg l-1) 2.089 0.516 0.829 

gross productivity     

     (mg-C m-3 hr-1) 47.650 1.149 0.000 

net productivity     

     (mg-C m-3 hr-1) 43.527 23.758 8.811 

nutrients (µM)    

NO2 0.013 0.032 0.101 

NO3 0.000 0.000 0.216 

NH4 0.097 0.155 6.732 

Urea 0.000 0.317 1.574 

HPO4 0.000 1.518 3.716 

total phosphorous 1.522 3.073 1.208 

HSiO3 3.349 29.049 15.043 

phaeophytin a (µg l-1) 0.480 0.388 0.378 

respiration (mg-C m-3 hr-1) 54.109 22.707 2.687 

salinity (ppt) - - - 

water depth (cm) 2.563 2.329 2.738 

water temperature (0C) 0.806 1.923 0.451 

- = no standard deviation 
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Standard deviations for remaining data in 2002.  

Parameter Sampling date 

 2/22/02 3/15/02 3/27/02 4/5/02 4/18/02 5/1/02 5/15/02 5/29/02 

ash weight (g l-1) 0.234 0.114 0.154 0.471 0.315 0.267 0.387 0.442 

chlorophyll a (µg l-1) 10.685 14.962 11.672 4.531 3.332 6.723 1.774 1.790 

gross productivity          

     (mg-C m-3 hr-1) 18.852 409.850 81.399 65.235 38.967 55.379 13.399 20.279 

net productivity          

     (mg-C m-3 hr-1) 46.410 451.625 57.693 64.981 84.843 - 40.822 36.601 

nutrients (µM)         

NO2 0.146 0.036 0.033 0.029 0.072 0.016 0.034 0.009 

NO3 0.165 0.062 0.331 0.092 0.697 0.087 0.159 0.000 

NH4 0.185 0.184 0.719 0.067 0.955 0.079 3.573 1.806 

Urea 0.280 0.622 0.367 0.143 1.459 0.183 0.020 0.312 

HPO4 0.030 0.046 0.052 0.015 0.149 0.049 0.058 0.000 

total phosphorous 3.630 4.744 8.603 13.939 16.934 4.160 1.754 0.893 

HSiO3 16.428 12.256 1.937 3.186 5.740 1.936 3.019 2.810 

phaeophytin a (µg l-1) 4.797 3.399 3.911 3.879 6.059 1.128 0.196 0.396 

respiration (mg-C m-3 hr-1) 33.732 49.439 63.015 44.893 37.322 - 39.007 27.239 

salinity (ppt)         

water depth (cm) 2.500 5.175 4.982 4.868 4.869 5.707 5.741 7.202 

water temperature (0C) 0.770 0.183 0.535 0.311 0.320 - 0.493 0.294 

- = no standard deviation  
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Standard deviations for remaining data in 2003.  

Parameter Sampling date 

 3/10/03 3/21/03 4/4/03 4/18/03 5/2/03 5/16/03 5/30/03 6/13/03 6/26/03 

ash weight (g l-1) 0.024 0.009 0.035 0.057 0.075 0.036 0.073 0.560 0.130 

chlorophyll a (µg l-1) 1.217 1.033 7.614 2.238 7.580 3.216 2.412 32.701 5.770 

gross productivity           

     (mg-C m-3 hr-1) 65.285 36.109 66.394 64.180 114.560 52.215 133.252 - - 

net productivity           

     (mg-C m-3 hr-1) 31.752 41.720 53.631 73.830 117.556 34.259 234.754 - - 

nutrients (µM)          

NO2 0.117 0.015 0.019 0.021 0.059 0.047 0.014 0.097 0.081 

NO3 0.000 0.000 0.000 0.056 0.038 0.000 0.000 0.000 0.000 

NH4 0.528 0.771 0.317 0.092 0.374 0.192 0.069 0.415 - 

Urea 0.124 0.084 0.221 0.115 0.191 0.315 0.102 0.316 1.765 

HPO4 0.071 0.065 0.071 0.064 0.114 0.157 0.491 0.275 0.179 

total phosphorous 0.668 0.365 1.496 0.935 2.425 1.746 3.317 13.057 6.227 

HSiO3 8.389 1.495 9.990 8.542 8.024 18.189 30.437 7.087 0.884 

phaeophytin a (µg l-1) 4.863 0.293 1.347 2.037 1.901 0.775 1.008 6.821 2.395 

respiration (mg-C m-3 hr-1) 52.126 73.826 42.952 61.966 22.208 58.553 146.163 - - 

salinity (ppt)          

water depth (cm) 6.453 5.120 6.116 5.561 6.694 7.079 5.790 3.334 0.898 

water temperature (0C) 1.164 1.079 0.592 0.505 0.473 0.381 0.471 0.212 - 

- = no standard deviation  



 

 

87

VITA 
 

Elizabeth Michele Hebert 
Department of Wildlife and Fisheries Sciences 

Texas A&M University 
College Station, TX 77843-2258 

Phone: (979) 847-9328                  FAX: (979) 845-4096       email: fejesem@yahoo.com 
 
Education 
2004 M.S. Wildlife and Fisheries Sciences, Texas A&M University, 
 College Station 
2000 B.S. Biology, University of Michigan, Ann Arbor 
1999 University of Michigan Biological Station, Pellston, Michigan 
 
Professional Experience 
2000-present Graduate Assistant-Research at Texas A&M University 
2000-2003 Graduate Assistant-Teaching at Texas A&M University, Department 
 of Wildlife and Fisheries Sciences 
2000 Laboratory technician at the University of Michigan, Department of 
 Biology 
 
Honors and Awards 
2000 Phi Beta Kappa, James B. Angell Scholar 
1999 Golden Key and Delta Epsilon Phi National Honor Societies 
 
Publication 
Fejes, E. M., J. Birnbaum, F. Gelwick, and D. L. Roelke. 2003. Vertical distribution of 
herbivorous zooplankton in a well-mixed lake system in which the main predator is a 
non-selective filter-feeding fish. The Journal of Freshwater Ecology 18:333-336. 
 
Selected Scientific Talk (1 of 7) 
Fejes, E. M., Y. Buyukates, J. N. Murdock, J. L. Heilman, K. J. McInnes, and D.L. 
Roelke. 2002. The effects of hypersaline conditions on phytoplankton primary 
productivity, biomass, and community composition in a Texas semi-tropical coastal 
wetland. Ocean Sciences Meeting, ASLO. Honolulu, Hawaii, USA. February 11-15. 


