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Abstract. Organisations have seen a rise in the volume of data corresponding to
business processes being recorded. Handling process data is a meaningful way
to extract relevant information from business processes with impact on the com-
pany’s values. Nonetheless, business processes are subject to changes during
their executions, adding complexity to their analysis. This paper aims at evalu-
ating currently available process mining tools and software that handle concept
drifts, i.e. changes over time of the statistical properties of the events occur-
ring in a process. We provide an in-depth analysis of these tools, comparing
their differences, advantages, and disadvantages by testing against a log taken
from a Process Control System. Thus, by highlighting the trade-off between the
software, the paper gives the stakeholders the best options regarding their case
use.

Keywords. Business Process Management, Process Mining, Concept Drift

1. Introduction
Concerned about their success, organisations are interested in having precise control over
their processes and rapidly reacting to relevant events recorded in their information sys-
tems during process execution. Data stream analysis may offer new opportunities for these
organisations but, at the same time, it may impose new challenges [Krawczyk et al. 2017].
Among them, concept drift (CD) detection is crucial, as it identifies if the patterns fol-
lowed by data are changing and, by consequence, if the models adopted to interpret them
stay valid or require an update [Gama et al. 2010].

Recently, process mining (PM) techniques have arisen as a valuable tool to in-
terpret business process data generated by organisations. PM uses process modelling
and analysis as well as notions from data mining (DM) and machine learning (ML)
[van der Aalst 2011]. In traditional PM techniques, one has access to data from event logs
recorded by systems controlling the execution of processes [Tavares et al. 2018]. Thus,
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models are constructed based on historical series. However, CD in PM may be as common
as in other areas, giving the fact that the entire historical series may not be appropriately
significant of a running execution [Seeliger et al. 2017]. Identifying a drift, i.e. a point in
time where there is a statistical difference between the process behaviour before and after
the said point, is then decisive to guide the update of models [Maaradji et al. 2015].

In recent years the implementation of CD techniques for PM has received atten-
tion. Particularly, two algorithms [Bose 2012, Ostovar et al. 2016] for concept drift de-
tection are widely available on popular PM software.

The first method was proposed by Bose et al. [Bose 2012] and a plugin, named
Concept Drift, implements it for the Process Mining Workbench (ProM) package man-
ager. The method consists in extracting and selecting the features of the event log, gen-
erating a set of control populations used for comparisons. Then, displaying an interactive
visualisation of the drifts detected. The second method, ProDrift, is proposed by Ostovar
et al. [Ostovar et al. 2016] and is provided for the Advanced Process Analytics Platform
(Apromore). The method uses two adjacent adaptive windows and performs statistical
tests over distributions of behavioural relationships between events.

Furthermore, there are other process drift detection methods proposed
in state-of-the-art [Accorsi and Stocker 2012, Maaradji et al. 2015, Zheng et al. 2017,
Seeliger et al. 2017, Liu et al. 2018, Barbon Junior et al. 2018, Tavares et al. 2019]. As
these methods are not embedded in PM software, it is noticeable that they usually do
not have a user interface, which decreases their spread among non-expert users. To
enhance the comparison proposed in this paper, we selected [Zheng et al. 2017] and
[Tavares et al. 2019] since they are available as open-source and can be used in this work.

Zheng et al. [Zheng et al. 2017] proposed a three-stage approach named as Ts-
inghua Process Concept Drift Detection (TPCDD). For this, each trace (i.e. a possible
instance of the process execution) is represented by multiple relations, which are then
partitioned. After this, all change points from the relations are combined to get the final
drift result.

Tavares et al. [Tavares et al. 2019] presented an online technique for detecting
drifts. The Concept Drift in Event Stream Framework (CDESF) joins different PM tasks
in an online environment. For that, trace distances are calculated by comparing them to
a global model that represents the current state of the process. Hence, these distances
are fed to a density-based clustering algorithm that distributes the instances in the feature
space. Finally, the discovery of new clusters represents the detection of new concepts in
the stream, i.e., concept drift.

The chosen techniques for this study have a common goal: detecting CD. How-
ever, each algorithm carries on particularities such as hyper parametrisation, visualisation
capabilities, and other specific functions. Selecting the most suitable solution is not an
easy task, as well as configuring the hyperparameters to support desirable CD detection.
This main hindrance is related to the different behaviour of each real-life process which
requires ad-hoc settings [Hompes et al. 2015]. In other words, the demand for a PM tool
capable of supporting accurate CD analysis with a straightforward setup process and of-
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fering human-friendly interpretations is increasing.

This work is an extension of Omori et al. [Omori et al. 2019]. The original work
aims at comparing two highly used methods for concept drift detection in business pro-
cesses, ProM’s Concept Drift plugin [Bose 2012] and ProDrift [Ostovar et al. 2016].
For that, the comparison follows several perspectives, such as performance, sensitivity
to drifts, hyperparameters impact, and software interface. The main characteristic of the
original approaches is that both have an easy-access interface, making them more suitable
for non-expert users.

The improvement over the original work proposes the addition of two upgrades:
the Process Control System event log was extended with one year worth of recordings,
and two more approaches were added to the comparison, TPCDD [Zheng et al. 2017]
and CDESF [Tavares et al. 2019]. The new approaches follow more academic standards,
which might leverage concept drift detection at the cost of not offering as much support
for non-expert users. Therefore, this work presents a more in-depth evaluation of the
approaches, considering a trade-off between performance and user interaction. Finally,
with the addition of more events in the dataset, more scenarios can be explored by the
algorithms.

The rest of this paper attends the following organisation: Section 2 revises the
main concepts about process mining. Section 3 presents an in-depth overview of the
Process Control System event log, the software used in the experiments and our evaluation
criteria. Section 4 discusses the obtained results and compares them over the dataset
experiment. Lastly, Section 5 concludes the paper, emphasising open avenues for future
work.

2. Process Mining
In the globalised world, new technologies emerge at high rates and the production of data
has been in a constant rise. A significant amount of the produced data regards business
processes executions recorded as event logs. To tie organisations needs and process data,
PM offers a set of techniques that retrieves information from event logs and gives com-
panies a better understanding of their processes, further supporting business decisions by
making clear how the processes are developing according to event log data.

This relatively new field merges knowledge from business process manage-
ment (BPM), which studies operational business processes from the information tech-
nology and management sciences standpoint, with data mining and machine learning,
which focus on data analysis [van der Aalst 2011]. PM main focus is to discover,
monitor and enhance business processes towards a clear understanding of the process
[van der Aalst 2004].

Traditional process discovery techniques aim at extracting an abstract represen-
tation of an event log, i.e. a process model, that best describes the recorded behaviour
[Buijs et al. 2012]. There are several notations which serve as models, and it is impor-
tant to notice that there is no perfect model representation, meaning that there is a wide
variety of algorithms (alpha-algorithm [van der Aalst et al. 2004], the inductive miner
[Leemans et al. 2014], the heuristic miner [Weijters and van der Aalst 2003], among oth-
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ers) for model extraction and the final model may be different within different discovery
techniques.

Monitoring processes is commonly referred to as conformance checking, which
aims at detecting inconsistencies amongst a process model and an event log corresponding
to the same process [Rozinat and van der Aalst 2008]. Moreover, conformance may pro-
vide the means for quantifying the deviations, posing as an essential tool for noise identi-
fication. Finally, process enhancement uses previous analysis as the basis for process im-
provement by changing or extending the original model [Aalst, van der et al. 2012]. An
enhancement technique may either repair the model by updating its relations or extend
the model by adding new information, such as timestamps [van der Aalst 2011].

Table 1 shows an example of an event log. Each row of the table represents one
event, which is an execution of an activity at a certain time. Moreover, each activity corre-
sponds to a specific case, where a case is an instance of process execution. Furthermore,
a trace is a sequence of activities from the same case, implying that different cases may
have the same trace. We can, then, infer that cases 3 and 5 are executions of the same
process even though they are distinct instances and may run differently. From Table 1, we
can conclude that cases 5 and 7 have the same trace and that the group of cases 1, 3, 5 and
7 is a set of recorded events generated by the same business process.

For event log processing, it is expected that the log is time ordered, respecting the
real sequence of events. Since an event is a recording of an activity belonging to a process
instance, the required attributes of an event are the case identification, an activity name,
and a timestamp, as seen in Table 1.

Table 1. Event log example
Case ID Activity Timestamp
Case 5 Solicitação 2018/02/09 11:00:00
Case 7 Solicitação 2018/02/09 11:45:20
Case 1 Solicitação 2018/02/09 11:55:47
Case 7 Autorização 2018/02/10 16:27:36
Case 5 Autorização 2018/02/10 16:27:45
Case 5 Distr. Diretoria 2018/02/10 17:13:27
Case 1 Distr. Setor 2018/02/10 17:13:56
Case 3 Distr. Diretoria 2018/02/13 12:00:50
Case 3 Em Execução 2018/02/17 09:10:20
Case 3 Cancelamento 2018/02/17 10:30:00
Case 7 Distr. Diretoria 2018/02/20 11:00:00
Case 1 Conclusão 2018/02/20 17:00:00

Definition 1 (Event, attribute, trace [van der Aalst 2011]). Let Σ be the event
universe, i.e., the set of all possible event identifiers. Events may have various attributes,
such as timestamp, activity, resource, associated cost, among others. Let AN be the set
of attribute names. For any event e ∈ Σ and name n ∈ AN, then #n(e) is the value
of attribute n for event e, if event e has an attribute n, else #n(e) is null. A trace is a
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non-empty sequence of events σ ∈ Σ∗ where each event appears only once and time is
non-decreasing, i.e., for 1 ≤ i < j ≤ |σ|: σ(i) 6= σ(j).

Definition 2 (Case, event log [van der Aalst et al. 2011b]). Let C be the case uni-
verse, that is, the set of all possible case identifiers. An event log is a set of cases L ⊆ C
where each event appears only once in the log, i.e., for any two different cases, the inter-
section of their set of events is empty.

In this work, Causal nets (C-net) are used as the process modelling notation as
they offer a human-readable representation of the process as well as they are often used
in PM works.

Definition 3 (Causal net [van der Aalst et al. 2011a]). A Causal Net is a tuple
C = (A, ai, ao, D, I, O) where A is a finite set of activities, ai is the start activity, ao
is the end activity, D ⊆ A × A is the dependency relation, AS = {X ⊆ P(A)|X =
{∅} ∨ ∅ /∈ X}, I ∈ A → AS defines the set of possible input bindings per activity and
O ∈ A→ AS defines the set of possible output bindings per activity.

2.1. Current Challenges in Process Mining

Previously, we have discussed traditional PM fundamentals and techniques which are
applied in scenarios where one has access to all event log data produced by a process that
has already run for some period. The consequences are that traditional algorithms deal
with an event log with complete cases, that is, cases that went through its final activity.

In real-life environments, though, organisations interests are focused on the in-
stant feedback of their processes since old event logs are mostly deprecated versions of
the current process and not capable of representing the current state. Moreover, tradi-
tional PM methods are not suitable solutions in environments where processing time is
limited, immediate responses to anomaly detection are required, and event logs are too
large. Thus, the need for on the fly analysis is rising, making event stream solutions more
relevant today [Barbon Junior et al. 2018].

One of the implications when dealing with data streams is that the stream is poten-
tially infinite, consequently limiting the usage of processing resources, such as memory
and time [Gama et al. 2010]. Moreover, the assumption of all training data being avail-
able to create a model is not valid; that is, different time periods may imply different
distributions of data, requiring the learning system adaptation. However, data stream
mining solutions cannot be directly applied in event streams since there is a mismatch at
the representation level. Stream analysis is usually set at the tuple level while PM is set
at the business case level, i.e., multiple recorded events compose a case, representing the
sequence of activities in a process instance.

Definition 4 (Stream [Krawczyk et al. 2017]). A stream S is defined in the format
S = {i1, i2, i3, ..., in, ...}, where i corresponds to a pair P (~x, y) when the ground truth for
that instance is known or simply ~x when it is not, with ~x being the feature vector of that
instance and y being its label, and n is possibly infinite.

Additionally, learning from data streams requires continuous adaptation
since data behaviour can change over time, producing different data distribu-
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tions [Krawczyk et al. 2017, Gama et al. 2010]. This phenomenon is known as concept
drift, and its occurrence is common in process environments where organisational changes
and hidden contexts influence the process execution, as underlined in the Process Mining
Manifesto [van der Aalst 2012]. The utmost consequence of drift is an outdated model,
incapacitating its capability of recognising the new behaviour.

Maaradji et al. [Maaradji et al. 2015] define process drift as a point in time where
there is a statistical difference between the process behaviour before and after the said
point. According to Seelinger et al. [Seeliger et al. 2017], a significant behavioural
change of the process execution over time is characterised as process drift, exemplify-
ing that almost all traces after a process change follow the new data distribution. Towards
adaptation, the model must use newly observed data to update its representation, always
balancing the influence of old and new data.

Definition 5 (Concept drift [Krawczyk et al. 2017, Gama et al. 2010]). Given the
sequence of streams 〈S1,S2, ...,Si, ...〉 where Si is a set of examples generated by some
distribution Di. Given P t(~x, y), at each timestamp t, the feature vector ~xt corresponds to
a class yt. Given two distinct points in time t and t+ ∆, given Dt 6= Dt+∆, if there is a ~x
that satisfies P t(~x, y) 6= P t+∆(~x, y), then a concept drift has happened.

Bose et al. [Bose et al. 2014] further distinguish two types of drift, online and
offline. The first refers to the real-time identification of drift while the later indicates
scenarios where drift is detected after a process has ended. This distinction is important
since online methods provide a real-time response to process behaviour. For instance,
anomalous executions can be detected as they happen, and new concepts can be learned
on the fly. This way, online process mining techniques provide better support for the
decision-making task in organisations, further saving resources and time.

2.2. Concept Drift Detection in Process Mining
In the following subsections, we present and explain each of the different methods used
for Concept Drift detection in this comparison.

2.2.1. ProM’s Concept Drift plugin

Bose et al. [Bose 2012] method, available in ProM’s Concept Drift plugin, is grounded on
the premise that the relationship between activities can characterise event logs. For that,
the dependencies are used in the feature extraction and selection part of the framework.
These dependencies can be explained as a follows (or precedes) relation, such as, for a pair
of activities a, b ∈ L can be determined if either a always, never or sometimes follows (or
precedes) b. This way, event log features can be drawn from these relationships. There are
four types of features proposed: Relation Type Count, Relation Entropy, Window Count
and J-measure. The first two are global, while the latter two are local features.

After that, the features are used to transform the event log in a data stream, which
in itself is used to define the sample populations that will be compared using the statistical
tests. The populations are generated using sliding windows, with the windows either
having fixed or adaptive size, overlapping or not, and being continuous or non-continuous
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(there can be a gap between populations). Then, the populations are compared using
one of the three available statistical tests: Kolmogorov-Smirnov test, Mann-Whitney test,
and the Hotelling T 2 test, each of those having different meanings for deciding if two
populations differ from each other. At this step, concept drift detection is performed,
and the next steps are done to provide an analyst with an intuitive visualisation of the
significance probabilities as a drift plot.

It is relevant to notice that the technique performs an offline analysis in the event
log. This happens because it depends on the complete log to form the traces for feature
extraction.

2.2.2. Apromore ProDrift plugin

Ostovar et al. [Ostovar et al. 2016] implementation, in Apromore, assumes that a busi-
ness process drift detection may identify a time point before and after which there is
a statistically significant difference between the observed process behaviour. Based on
this assumption, they propose to represent the process behaviour using the α+ relations
[Alves De Medeiros et al. 2004], which are a set of rules to represent different relations
between activities.

Thus, the technique uses two adaptive-sized sliding windows to create sub-
logs, from which the α+ relations and their frequencies are extracted, building a so-
called contingency matrix. When a new event arrives, the G-test of independence
[Harremoës and Tusnády 2012] is applied in the contingency matrices, and if the sig-
nificance probability is below a defined threshold, then the α+ relations in the windows
come from different distributions, meaning a process drift has occurred. This approach
consumes a stream of events, meaning that it performs online drift detection.

2.3. Concept Drift Event Stream Framework
Tavares et al. [Tavares et al. 2019] proposed an online framework to deal with concept
drifts, anomaly detection and process monitoring. The approach relies on a graph-based
representation of the business process, which is updated with new events from the stream.
The technique has the following steps: first, the trace is compared with the process model
to retrieve their distances. These distances have two perspectives, time and trace, that
are separately calculated by creating histograms with, respectively, the time difference
between a pair of activities to the mean time difference of that pair and the relative fre-
quency of each pair of activities from the trace to the relative frequency of the pair in the
process model. Then, these distances values are fed to a density-based stream clustering
algorithm, DenStream [Cao et al. 2006]. DenStream represents common and anomalous
behaviour based on the clusters densities. Finally, either the detection of new clusters or
fading of existing clusters represent concept drift. Following a time window, events are
released from memory, and the graph model is updated.

2.4. Tsinghua Process Concept Drift Detection
Zheng et al. [Zheng et al. 2017] technique considers that an event log can be modelled
using two types of order relations based on traces: Direct Success Relations and Weak
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Order Relations. The former indicates that an activity directly succeeds another activity,
while the latter indicates that an activity comes before another, but not necessarily directly
before. The technique transforms the event log into a set of order relations between each
pair of activities, named a relation matrix. Then it analyses the variations and trends for
each of the relations on the matrix and chooses candidate drift points by calculating the
frequency of a relation (i.e. if it always, sometimes or never happens) over a specified
time window. These candidate drift points are then used as input for DBSCAN, a density-
based clustering algorithm, that considers the densest clusters as being filled with real
drift points. This technique also performs an offline analysis as it depends on complete
traces for processing.

3. Materials and Methods

The following subsections give an overview of the materials used in this research, such as
the event log used for the testing, a review of the available process mining software and
how the comparison is defined. This is empirical research with the goal of comparing the
different available techniques for detecting concept drifts in a business process. The main
limitation of the study lies in the use of a single, not labeled event log, meaning that we
do not know where and how many drifts are in the event log, so it is not possible to check
for the accuracy of each technique.

3.1. Process Control System Event Log

Process Control System is concerned with monitoring the progress of an order, consisting
of the three applications: feedback control, in-process control and feed-forward control
[Braha 2013]. Process Control System often exhibits regular and predictable events, but
some dynamic changes for improving the quality of services delivered are required. In
this scenario, dealing with CD in Process Control System demands attention, mainly in
the detection of drift points to clarify some aspects such as novel procedures, security
politics and service portfolio expansion.

Motivated by these facts, as a case study to compare CD detection techniques, an
event log with recorded activities from the process control system of a software house was
extracted. The extracted business process comes from the Department of Information and
Communications Technology (DICT) from a public university, whose role is to support
the university providing software solutions and the infrastructure for them.

The DICT event log records the execution of inner processes as services are re-
quested. Those services may vary depending on the applicant’s goal, that is, an applicant
may ask for a software solution for their department or a correction of an internet node, for
instance. Independently of the requested service, the DICT has a set of activities which
are used to process the request. Figure 1 shows the resulting Causal net by applying the
Data-aware Heuristic Miner algorithm with standard parameters. The extracted event log
contains process instances from January 2014 through August 2019, and the Causal net
represents all the process behaviour in this period.

All traces in the event log start with activity SOLICITAÇÃO, which represents
the request of a service, i.e., the starting point of every process instance. Also, all traces
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Figure 1. Causal net that represents the event log

end in either CONCLUSÃO or CANCELAMENTO, which mean the service was concluded
or cancelled, respectively. Therefore, we can assume that all processes start with a request
which is later either responded or cancelled. In some particular cases, a process that is
concluded can be reactivated by the requester if the result was deemed inadequate, so the
process comes back to a stage of execution, marked by the activity ALT. SITUAÇÃO
P/ EM EXECUÇÃO.

Table 2 shows the number of appearances of each activity through the log. The
most evident pattern is a group of activities occurring over sixteen thousand times, thus
showing the most common flow of execution in DICT. First, a request is registered, then
authorised and distributed for production; after that, the request is executed and finally
concluded. This set of activities is connected in a standard flow inside the organisation.
However, a DICT business process might run into unforeseen scenarios, which results in
the cancelling of a request. This phenomenon is represented in the next group of activities
(e.g. CANCELAMENTO, DESAUTORIZAÇÃO, DEVOLUÇÃO), which is less common but
as relevant as the previous group. Ultimately, the most unusual activities are shown in
Table 2’s tail, representing rare cases where the process flow is odd.

As an extension of the previous analysis, we have selected the three most
common traces in the event log. The trace 〈SOLICITAÇÃO, AUTORIZAÇÃO,
DISTR. DIRETORIA, DISTR. SETOR, ALT. SITUAÇÃO P/ EM EXECUÇÃO,
CONCLUSÃO〉 occurs 14085 times, representing the regular execution flow of answered
requests. The second most occurring one is 〈SOLICITAÇÃO, AUTORIZAÇÃO, DISTR.
SETOR, ALT. SITUAÇÃO P/ EM EXECUÇAO, CONCLUSÃO〉, which occurs 331, is
a slight variation in the most frequent trace, without the activity DISTR. DIRETORIA.
And the third most ocurring, ocurring 294 times, is 〈SOLICITAÇÃO, AUTORIZAÇÃO,
DISTR. DIRETORIA, DISTR. SETOR, CANCELAMENTO 〉 representing cancelled
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Table 2. Occurrence count in DICT event log from January 2014 to August 2019
Activity Number of Occurrences

AUTORIZAÇÃO 17100
DISTR. SETOR 16964

DISTR. DIRETORIA 16901
SOLICITAÇÃO 16844

ALT. SITUAÇÃO P/ EM EXECUÇÃO 16046
CONCLUSÃO 16037

CANCELAMENTO 808
EVENTO 588

DEVOLUÇÃO 543
DESAUTORIZAÇÃO 524
REDISTR. ÓRGÃO 445

CRIAÇÃO DE SUB-SOLICITAÇÃO 114
ALT. PREV. DURAÇÃO 86

ALT. SITUAÇÃO P/ SUSPENSO 63
ALT. PRIORIDADE 53

ALT. SITUAÇÃO P/ AG. SOLICITANTE 34
ALT. SITUAÇÃO P/ AG. SUBSOLIC 8
ALT. SITUAÇÃO P/ AG. SERV. EXT 7
ALT. SITUAÇÃO P/ AG. MATERIAL 4
AGUARDANDO AVALIAÇÃO TÉCNICA 4

traces. It can be inducted that cancelled requests are a minority; moreover, the cancelling
pattern may vary more commonly than the concluded one, which shows that a cancelled
request is a representation of an unusual request.

The frequency of the transitions between a pair of activities can also provide valu-
able information about the process. The most common transitions are the ones that hap-
pen in the two most occurring traces, representing the regular behaviour and happening
over 15000 times each, the exception being AUTORIZAÇÃO-DISTR. SETOR, happen-
ing 405 times. Next, there are pairs DESAUTORIZAÇÃO-AUTORIZAÇÃO and DISTR.
SETOR-CANCELAMENTO, the former representing an evaluation about an execution that
was not authorized and the latter representing the cancelled traces, commonly happening
after an execution was distributed to a sector of the organisation. The pair of transitions
occurs 378 and 346 times, respectively.

Process statistics can be further examined for a complete view of the process; thus
Table 3 shows several metrics regarding case, trace and time characteristics. Upon ini-
tial inspection, the number of mean cases per day (30.34) manifests a busy process for
a medium-sized organisation (around forty people are involved in the process). Comple-
mentarily, the mean number of events is also affected by the high number of requests every
day. Regarding trace length, the mean is around 6 since the majority of cases have either
5, 6 or 7 activities for both concluded and cancelled requests. Finally, the mean duration
is around four weeks, which is reasonable in a university environment with different inner

iSys: Revista Brasileira de Sistemas de Informação (iSys: Brazilian Journal of Information Systems)
http://seer.unirio.br/index.php/isys/



111

organisations involved in the business process.

Table 3. Statistics from DICT event log
Statistics Value

Total cases 16840
Mean cases per day 30.34
Max cases per day 157

Total events 206346
Mean events per day 100.95
Max events per day 587
Mean trace length 6
Max trace length 24

Mean case duration (in days) 28.88

The selection of this dataset was made on behalf of changing the behaviour of
its execution. Regulated by laws that influence financial budget affecting the service
activities, and frequent new service politics owing to improve its quality (mainly in IT
perspectives) the DICT present several CD to be analysed.

3.2. Process Mining Softwares

Despite being a recent field of research, process mining has already shown a wide range
of techniques during recent years. However, access to these proposed techniques is not
always a simple task. Thus, a necessity arises for a framework that integrates various tech-
niques and methods practically. Inspired by that, Dongen et al. [van Dongen et al. 2005]
proposed ProM1, an open-source, extensible, process mining framework, to provide a set
of techniques for exploring event logs. ProM is widely used in the process mining com-
munity, as evidenced by several publications [Jans et al. 2011, Rojas et al. 2016], and the
support from the community on their site’s discussion forum. The various techniques
available in ProM are distributed in plugins, which are available at the ProM package
manager or in jar packages that can be installed manually.

One of these plugins is the Concept Drift plugin, used for detecting and identifying
points of Concept Drift in a business process by generating populations from the process
and applying statistical tests to compare two populations at a time and, if the populations
are significantly different, it is considered as a drift point.

Also inspired by the need of PM framework, Apromore2 was launched firstly as an
advanced process model repository [Rosa et al. 2011] but rapidly became an open-source
business process analytics platform that merges state-of-the-art process mining research
with the management of process model collections, serving both academic and enter-
prises needs. As well as ProM, Apromore offers a varied set of PM techniques ranging
from automated process discovery to process prediction and drift detection. The currently
employed process drift detection technique [Maaradji et al. 2015, Ostovar et al. 2016],

1http://www.promtools.org/
2http://apromore.org/
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known as ProDrift version 4.5, is also available as a standalone tool, facilitating the use
outside of Apromore’s interface. Apromore is licensed under LGPL version 3.0, and its
source code is available publicly3.

ProDrift provides the detection and characterisation of process drifts accepting as
input an event log in the XES or MXML format. Furthermore, ProDrift considers two
types of stream processing: event-based and trace-based. The first one handles the stream
consuming one event at a time, which is more relatable to real environments and is con-
sidered an online solution for drift detection. On the other hand, the trace-based solution
groups the cases before processing and creates a stream of traces, that is, performing an
offline drift detection since it only deals with complete event logs.

For drift detection, statistical tests are performed over the distributions of process
runs (when dealing with a stream of traces) or α+ relations (when dealing with a stream
of events). Both detection types are capable of handling sudden drifts, i.e., drifts where
the concept change is abrupt along the stream, consequently meaning that there is one
specific drift point. Moreover, the trace stream method also deals with gradual drifts, i.e.
drifts where a new concept appears rather slowly but becomes more frequent along the
stream while the initial concept fades away.

Beyond ProM and Apromore, there are other softwares that employ process min-
ing techniques, such as Disco4, Minit5 and QPR6, all of those being commercial solutions.
In this research, only ProM and Apromore were used, as the concept drift detection ca-
pabilities are not present on the other software. Moreover, when searching the strings
“ProM process mining” and “Apromore” in the Google Scholar database, 67.600 and 419
results are retrieved, respectively, showing the high relevance of those PM frameworks in
the community.

3.3. Comparison

Both drifting detection methods provide a diverse set of parameters, and varying those
configurations may impact directly in the drifting results. Regarding ProDrift, we have
conducted experiments considering the event-based method since it offers an online so-
lution by handling a stream of events, approximating itself to real scenarios where each
event is recorded at a time. The following parameters and values assumed for testing
were:

• Drift detection mechanism: events;
• Window size: an integer representing the window size, i.e. how many events are

selected for a population. We have used 58, 263, 1135 and 2270 events for the
size. The reason behind is that we computed the mean number of DICT events per
day, week, month and bimester, representing cycles within the organisation. Thus,
the method can provide feedback on the process depending on the stakeholder’s
needs;

3https://github.com/apromore/ApromoreCode
4https://fluxicon.com/disco/
5https://www.minit.io/
6https://www.qpr.com/solutions/process-mining
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• Fixed window mode: controls if the window size can or cannot change throughout
the stream. For each window size according to the previous parameter, a mode
with fixed window size was also applied;
• Noise filter threshold: specifies the noise threshold to filter noisy α+ relations and

ranges from 0 to 1. ProDrift’s documentation recommends 0 for artificial datasets
and 1 for real ones. For our experiments, the noise threshold was set to 0.0, 0.1,
0.2 and 0.3;
• Drift detection sensitivity: specifies how sensible the algorithm is to drift. Since

the main focus of this research is to experiment with drift, we have used all pos-
sible configurations in this parameter, which are verylow, low, medium, high and
veryhigh.

The parameters values described previously were applied in a grid methodology,
i.e. all possible arrangements between said parameters were tested, resulting in 160 differ-
ent tests. Thus, by extensively exploring the method, we can later infer which parameters
influence in the results.

Regarding ProM’s Concept Drift plugin, there is a variety of parameters that mod-
ify the behaviour of the drift detection. Only the local features were used, as the options
using the global features did not work properly, i.e. crashed. Therefore, the parameters
and values used for testing were as follows:

• Log Configuration Step: defines if the log will be split or not. We ran without
splitting and with a split every 100 instances;
• Feature Scope: selects the scope of global and local features. Only the local

features were used, with all the activities selected;
• Feature Type: chooses if the features will be based on follows, precedes or both

relations. All three options were used;
• Relations Counts: There is only one option, Numeric Value;
• Metric Type: the choice of the two local features, Window Count and J-Measure,

is available. Both types of metrics were used;
• Drift Detection Method: Three methods for drift detection are available (Gamma

Test is shown, but it cannot be selected). Tests were run with Kolmogorov-
Smirnov and Mann-Whittney options;
• Population Options: generates the populations that will be compared. There are

three pairs of options, Fixed-Window or ADWIN (Adaptive Windows), Sudden or
Gradual drift search and Trace Amount or Time Periods. The first pair defines if
the window will be of fixed or adaptive size. The second pair defines if the type
of drift detected will be a Sudden Drift or a Gradual Drift. The last pair defines
the way that the window size will be calculated, in regards to the amount of traces
or in regards to a time period. There are options of pairs that are invalid, and all
valid options were used.

The same grid methodology was used, resulting in 108 different tests, as some
pairs of options are invalid, i.e. Fixed-Sized populations cannot be selected along with
the time period option.
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On CDESF, many parameters modify the behaviour of the stream and drift detec-
tion. The parameters are explained in the documentation provided with the tool. However,
there are no suggested values for each parameter, with the default values plugged directly
in the code. On the tests, the following values were used:

• TH: sets a time horizon window (in seconds) that controls the ocurrence of the
checkpoints. The values 43200, 86400, 432000 and 1296000, respectively 3, 6,
30 and 90 days, were used;
• Epsilon: sets the maximum distance in which an instance is part of a cluster. The

values 0.05, 0.1 and 0.15 were used;
• Lambda: determines the importance of the historical data for the current clusters.

The values 0.1, 0.15 and 0.2 were used;
• Beta: threshold that, based on the weight of a micro-cluster, defines if it is an

outlier or potential micro-cluster. The values 0.2, 0.3 and 0.4 were used;
• Mu: is the minimum weight for a neighborhood to be considered a core object.

The values 2, 3 and 4 were used;
• Stream Speed: is the number of objects that are considered per time unit. The

values 500, 1000 and 1500 were used;

Except for TH, the other parameters regulate the DenStream clustering algorithm.
As in other tests, a grid methodology was used, resulting in 972 different configurations.

For TPCDD’s approach, the software provides only two parameters that can be
changed in the execution, and there are no suggestions on how these parameters should
be set beyond the default values. Therefore, the grid methodology was used for testing
and the available parameters, and the values used on the tests were:

• Minimum Window Size: Sets the minimum amount of traces needed for the de-
tection of the features. The default value is 100 and the tests were run using 10,
25, 50, 75, 100, 150, 200, 250 and 300 for the minimum size;
• DBSCAN Radius: It is a parameter that sets the eps parameter for the DBSCAN

algorithm. The eps sets the maximum radius of the DBSCAN cluster. The default
value is 10 and the values 3, 5, 8, 10, 15, 20, 25 and 30 were used for the tests.

As there are only two parameters, more different values could be used on the tests
for each option, resulting in 72 different tests.

There is a need for measuring the drifts found by the algorithms. Thus, in order
to check if the drift points are real, we applied a process discovery algorithm (discover
graph) both before and after the drift point. This way, we can compare graphs of the
process and check if its behaviour is affected by a drift. When the process graphs before
and after the drift are equal, then a drift has not occurred, and the method indicated a false
drift point.

Moreover, to add on the evaluation, the number of detected drifts and unique drifts
are tracked. Thus, the precision of the methods can be measured, and their sensitivity
compared. Furthermore, their interface is evaluated, showing their usability. Finally, a
table is presented summarising both methods and highlighting their differences.
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4. Results and Discussion

4.1. Concept Drift Sensitivity

For the 160 different tests submitted to ProDrift, a total of 8680 drift points were found,
being 1209 of them unique. Considering that the event log contains 206346 events and
16840 cases, the number of unique drift points is reasonable. Moreover, many of the
tested configurations are very sensible, thus, the high number of found drifts. However,
27 tests found no drift points in the event log, showing that the parameters configuration
directly affects the results of the algorithm.

The most common drift point, found in 35 different tests, was the event 17581,
which happened on December 3, 2014. To verify this drift’s veracity, we divided the
event log before and after said point, starting and ending at the preceding and succeeding
drift points, and submitted to a traditional process discovery algorithm, the Interactive
Data-aware Heuristic Miner, which is available as a plugin in ProM. The output of this
discovery algorithm is in the form of a Causal net. Figures 2 and 3 show the Causal nets
before and after the found drift point. It is clear that the Causal net from Figure 3 is more
complex than the one in Figure 2, presenting more arcs and connections within activities.
One example is that both CANCELAMENTO and DEVOLUÇÃO activities are not present in
the first Causal net but are present in the latter. From a PM perspective, we can interpret
both models as different processes since they are composed of a different set of activities
and arcs. Thus, Figures 3 and 2 show a drift point since the behaviour observed before
and after the point is different, meaning the process has changed during its execution.

Figure 2. Process model before
drift point on December 3

Figure 3. CANCELAMENTO,
DEVOLUÇÃO did not occur before
the drift point

As of ProM’s Concept Drift plugin, we used the same testing method and, for
the 109 tested configurations, 1860 drift points were found, a mean of 17.22 drift points
per configuration. Of the total 1860 points, 413 points are unique (22% of the total),
indicating consistency in the points that are detected as drifts. As for the most common
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drift point, happening in February 19, 2015, had a subtler difference in models compared
to ProDrift’s result. In the Figures 4 and 5 the difference is found in sequences of activities
that are present in the process before the drift point and are not in the process after the drift
point, as well as the activity ALT. SITUAÇÃO P/ SUSPENSO not happening after the
drift point. It can also be noted that ProM’s most common drift point occurs in a similar
period to ProDrift’s, nearing the end of the year 2014 and the start of 2015, indicating a
real drift in the process.

Figure 4. Process model before
drift point on February 19

Figure 5. The model is changed
to a simpler version

CDESF was, by far, the technique that had the largest number of different combi-
nations for the available parameters, with 972 tested configurations that detected, in total,
9594 drifts, resulting in a mean 9.87 drifts per configuration. The configuration that de-
tected the largest amount of drift points detected 85 drifts, a number that is lower than
all of the other techniques. There were 301 configurations in which there were no drifts
found, 30% of the tested configurations. The amount of unique drift points is 1183, 12%
of the total number of drifts, meaning that the technique, most of the time, finds the same
drift points, leaving an easier analysis for the decision-maker. The most common drift
point occurs at February 19, 2014, this date being exactly same the time of ProM’s most
common drift, and being in the same time period of ProDrift’s most common drift. This
further indicates the occurrence of a real drift at the time, and the Figures 6 and 7 shows
the drift point as it was found by CDESF.

TPCDD’s approach yields a higher quantity of detected drift points, with 11098
drifts across 73 parameter configurations, resulting in a mean of 154.13 drift points. The
maximum amount of drifts in a single configuration is 987 drifts. Considering the time
between the first and the last event recorded on the log, 2044 days, the technique detects
a drift every 2 days in average. Hence, the method sensitivity is very high, something
further reinforced by the fact that there were no test cases in which no drifts were found.
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Figure 6. Process model before
drift point on February 19

Figure 7. Difference in arcs and
ALT. SITUAÇÃO P/ SUSPENSO
did not happen after the point

There are 3960 unique drifts, around 35% of the total, but this number could be inflated
because of the high sensitivity and the variations in the Minimum Window Size parameter,
causing slight offsets in the exact location of the drift point. The most common drift point
for this technique happened in October 22, 2018 and, as its shown in the Figures 8 and 9,
there is a big difference in the complexity of the process after the drift point.

The results are summarized in the Table 4, indicating the number of configura-
tions, the mean number of found drifts, the minimum and maximum in a single configu-
ration and the number of unique drifts.

Table 4. Statistics from DICT event log
ProDrift ProM CDESF TPCDD

Number of Tested Configurations 160 109 972 73
Mean Drift Points 54.25 17.22 9.87 154.3

Maximum Drift Points 335 167 85 987
Minimum Drift Points 0 0 0 26

Unique Drift Points 1209 413 1183 3960

4.2. Hyperparameters dependence
Table 5 presents the hyperparameters related to each tool used. By comparing the ap-
proaches, ProM contains more hyperparameters and options within them. Having more
parameters enables numerous configurations of setups to explore the event log more in-
depth. However, a high number of parameters makes the approach more complex, de-
creasing its usability. Thus, this contrasts with methods with fewer parameters, which are
more user-friendly and easier for non-experts to use.
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Figure 8. Process model before
drift point on October 22

Figure 9. Difference complexity
is notable after the drift point

In regards to ProM’s hyperparameters, the drift detection method strongly affects
the drift detection sensitivity, as tests using the Kolmogorov-Smirnov drift detect an aver-
age of 1.22 drift points per configuration while tests with Mann-Whittney drift detection
algorithm average 33.22 drifts per configuration. Other hyperparameters, such as choos-
ing between Window Count or J-Measure, did not affect the number of drifts but affected
the location of such drifts slightly.

For ProDrift, the most influential hyperparameter is window size. Setting up a
small window highly increases the number of detected drift points since the sub log size
is too small and any new deviation results in a detected drift. Larger window sizes make
the detection less sensitive, once the populations are larger and more new behaviour must
be observed to trigger a drift alert.

Furthermore, selecting the fixed window size hyperparameter plaster the algorithm
since it disables its adaptation manoeuvre. The noise filter threshold depends on the
characteristics of the event log since it filters away less frequent traces. It is recommended
that for real event logs the noise should be set to 0.1 or 0.2 while for artificial event
logs, the ideal value for noise is 0. The same goes for the drift detection sensitivity,
lower sensitivities find more drifts and are recommended for real-life logs, and higher
sensitivities trigger fewer drifts and are advised for artificial logs.

On CDESF, the Epsilon and the Stream Speed were the most influential hyperpa-
rameters, while the TH and the Beta hyperparameters had less effect on the number of
drifts detected. Epsilon sets the radius of the clustering algorithm, with a higher value de-
tecting fewer drifts, as they are considered part of the same cluster. Stream Speed works
similarly to a selection of window size, with smaller values detecting more drifts. Even if
the TH and Beta were the least influential hyperparameters, they still affected drift results,
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indicating that every single parameter matters regarding the sensitivity.

As for the TPCDD, in a similar fashion to ProDrift, the window size is a very
influential hyperparameter regarding the sensitivity to drifts, since a small window makes
the algorithm to consider any small deviation as a drift point. In the same way, the DB-
SCAN radius parameter is also very influential on the sensitivity, affecting directly the
threshold of the drift detection, as with a big radius more traces are grouped in a sin-
gle cluster, shrinking the number of clusters and detecting fewer drifts, with the opposite
phenomenon happening when a small radius is set.

4.3. Software Interface

ProM’s Concept Drift plugin is integrated into the ProM framework. As such, its entire
operation is done through the ProM framework’s graphical user interface. It uses an XLog
as the input, which is pretty convenient, as ProM can import a variety of types of files,
such as CSV, XML, XES, and convert them to an XLog. There are 4 windows of options
that are used for setting the parameters for the plugin. Then, after running, the output
is shown in Figure 10. The red dots in the graph indicates a drift point, and there is a
list of drift points in the right side of the image. Although the drift points are shown
in this screen, the dates in which the drift points have happened are outputted only on
the system’s standard output. Thus, the program must be run from the command line to
retrieve the drift points. Though some ProM plugins can be used on the command line
without interaction with the graphical user interface, the Concept Drift cannot. This way,
it is not possible to run multiple tests in batches.

Figure 10. ProM’s Concept Drift graphical interface

Though being integrated into the Apromore framework, ProDrift is also available
as a standalone tool that can be run from the command line. The Apromore framework is
a web server that provides access to all of its tools, and to use it, one can deploy the server
locally or access a remote server7. To use the ProDrift plugin, the event log has to be
imported to the server in the following formats: CSV, XML, MXML or XES. There is only

7http://apromore.org/platform/cloud
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one page of configurations to be chosen, making the software more straightforward. The
output is then displayed as a graph that shows the p-values of the population comparisons
and, below that, a list of drifts points found, as shown in Figure 11. Despite having a
command-line version, it is still difficult to automate the tests, as every test outputs to
the system’s standard output and a window have to be manually closed every time. That
being said, both tools provide a accessible and easy use of the graphical interface.

Figure 11. ProDrift output graphical interface

As for CDESF, the software must be downloaded from the source repository8 and
run from the command line. The code is written in Python, so it can be run in any platform,
given that Python itself and the necessary libraries are installed. Alongside the code, there
is a file containing the documentation with information about the functions as well as their
dependencies. As the input, the event log must be in a specific CSV format, specified in
the main file of the program. The usability is limited for non-expert users, as one need
to open the source code to change the default parameters. The output is saved within
folders named after the used parameters, and these folders contain the plots of the models
generated for each checkpoint. The identification of drift points is not straightforward, as
there is only a file that must be run after the main program is finished. However, if the
drift points are available, it is easy to check the difference by just comparing the plots of
the checkpoints. Although it is not simple to run the program, it is easy to modify it for
automatic testing with varying parameters.

Similarly to CDESF, TPCDD must also be downloaded from the source repos-
itory9 and run from the command line. It is multi-platform, given that Python and its
dependencies are installed on the system. In the guideline, there is a brief explanation of

8https://github.com/gbrltv/CDESF2
9https://github.com/THUBPM/process-drift-detection
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how to set the two parameters and their default values. If there are any drift points, they
are printed to the standard output in the form of a list. The output presents a list of indexes
of the traces in the event log, in ascending time order. In some cases, these indexes could
be useful, such as when the cases start in 0 and are incremented sequentially, but that is
not always the case, so a list of Case IDs could be useful for further analysis in the drift
points. It was by far the easiest to automate, as there are only two parameters, which can
be set as arguments to the program, minimising manual work.

Regarding the ease of use, ProM and Prodrift provide a graphical user interface
while CDESF and TPCDD must be run from the command line. It is important to note
that ProDrift can also be run from the command line. While having a graphical interface
can simplify the use and make the tool more accessible (apart from being included in a
framework), the relative ease of testing multiple options automatically is a strong point
for the command line tools. As there is a need for finding fitting parameters for the tools,
there is a trade-off between the ease of use and the ease of testing different parameters.
Moreover, academic tools are focused on researches who want to study the proposed
technique while software solutions provide support for non-experts and stakeholders.

4.4. Threats to Validity
This work suffers from a set of threats to its validity. First, some of the techniques had
as parameters numeric values without standardization on its ranges and, apart from the
default values, there were little to no suggestions on documentation regarding the values
for each parameter. Second, the real number of drift points in the Process Control System
log is unknown, so a limitation of this work is the inability of comparing the precision of
the drifts found by the techniques.

5. Conclusion
The amount of data that organisations have to handle nowadays is steadily growing. In
addition to this growth, data is also continually changing, which means the organisation’s
processes have to keep changing themselves to adapt to the new requirements created by
those changes.

This paper discusses and analyses the available tools that can help one detect and
react to an unexpected change of behaviour in a particular process by applying those tools
in a real-life environment. For that, a Process Control System of a real organisation was
used as an event log source. The findings show that there is a clear trade-off between
usability, access and testing. Some tools provide better support for less experienced users
but at the same time add several steps of configuration. Moreover, software tools do not
necessarily deliver clear drift points, usually hiding timestamps. When selecting which
tool to use for process drift detection, the user must take into account the solutions’ out-
puts and the level of knowledge required for managing it, such as ProDrift and ProM
are better choices for users who want an easy to use albeit not customizable tool, while
CDESF and TPCDD are better choices if you have the know-how to be able to execute
and customize it to your needs.

By summarizing the Concept Drift detection methods, this work provides a base-
line for the proposal of new techniques that may solve the flaws shown on the methods,
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such as delivering clear drift points to the end user.
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