
1. INTRODUCTION
The concentration of carbon dioxide in the atmos-
phere has fluctuated around 280 ppm over the last
10,000 years [1]. However, since the second half of the
19th century, a significant increase in the concentration
of carbon dioxide in the atmosphere has been
observed. Currently, the average global concentration
of carbon dioxide in the atmosphere is approximately
410 ppm [2]. Analysis carried out by the
Intergovernmental Panel on Climate Change suggest,
inter alia, that human activity significantly contributes
to the increase of CO2 concentration in the atmos-
phere, which may affect climate change [3–5]. In order
to counteract this, it is necessary to implement low-
emission technologies with high efficiency. The “clean
coal technologies” should enable the combustion of

fossil fuels with a limited emission of greenhouse gases
to the atmosphere.
There is a huge number of technologies in the indus-
try that are suitable for the separation of CO2 from
fossil fuel combustion processes, such as: physical and
chemical absorption, adsorption, membrane process-
es, cryogenic processes or the chemical loop [3],
[6–12]. Of these, chemical absorption is the most
developed and most commonly used method for
removing CO2 from large gas streams. The main tech-
nology of CO2 capture using the chemical absorption
method is amine absorption which is widely used in
the industry to remove acid components from various
types of gases [13]. The suitability of an amine
absorbent for use in CO2 removal from a given gas is
determined by many parameters, such as the CO2
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A b s t r a c t
In the ethanolamine (MEA) solution, during the absorption and desorption of CO2 undesired compounds are produced as
a result of degradation of an amine. Degradation not only reduces the absorption capacity of the solution but also leads to
many operational problems. Furthermore, measuring of the degradation products is of great importance in terms of envi-
ronmental issues. For the determination of MEA degradation products, mainly chromatographic techniques are used, some-
times coupled with other instrumental methods, e.g. GC-MS. As a part of this work, research was conducted to identify MEA
thermal and oxidative degradation products and to develop a method for quantitative analysis of the main thermal degra-
dation products such as OZD, HEIA and HEEDA and oxidative degradation products: HEA and HEI. Samples drawn from
a test bench for CO2 capture from synthetic flue gas with an increased content of carbon dioxide were tested. As a research
result, a method for the quantitative determination of the main degradation products was developed, the concentrations of
degradation products and the rate of their formation were determined, which allows to qualify the solution shelf life.
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absorption rate, absorption capacity [13], heat of
absorption, corrosiveness or susceptibility to degra-
dation [14, 15].
CO2 capture technologies and further use of the
released CO2 is one of the important tools to ensure
the achievement of the Green Deal goal of climate
neutrality in the EU in 2050. It is important to get to
know each of these process components to eliminate
possible operational problems. The solvent degrada-
tion in the CO2 capture process may cause various
problems as well as the costs of used solvents replac-
ing but also undesired degradation products emis-
sions to the environment.
The most frequently used amine absorbent (solvent)
in the CO2 removal process is monoethanolamine
(MEA) [16–18]. The CO2 removal basically consists
of two stages, i.e. absorption of CO2 in the solvent
and regeneration of rich solvent (i.e. loaded with
CO2) under the increased temperature and/or
reduced pressure [19, 20].
Undesirable compounds are formed in the MEA solu-
tion as a result of both CO2 absorption and desorption,
as a result of amine degradation. Degradation not only
reduces the absorption capacity of the solution, but
also leads to many operational problems such as:
foaming [21], corrosion [22, 23], increased solution vis-
cosity or solid formation [24]. All this reduces the
operating life of both individual components of the
CO2 capture plant and the absorbent itself. It is espe-
cially important in the case of the presence of oxygen
and high CO2 content in flue gases, as it is in the case
of many industrial flue gases (cement production, met-
allurgy), where it can significantly affect the durability
of the solutions used in the process of CO2 capture.

The degradation can be of two types (Fig. 1): thermal
or oxidative [25–27]. Oxidative degradation is the
chemical reaction of amines with oxygen that enters
the solution with the gas stream. This type of degra-
dation takes place mainly in the absorption column
vessel, on the column packing, in the pipelines leading
to the cross heat exchanger and in the exchanger
itself. Oxidative degradation breaks the carbon-nitro-
gen bond and forms a carbon-oxygen bond, resulting
in numerous degradation products. Degradation
products can react with each other and with free
amine molecules resulting in the formation of further
undesirable compounds. Typical products of MEA
oxidative degradation are ammonia, aldehydes,
ketones, amides and carboxylic acids [28]. Some of
these products are highly volatile, and therefore may

be emitted to the atmosphere, posing a risk to the
environment [29, 30]. These products can also react
with the construction materials of the plant, creating
heat stable salts (HSS) which accumulate in the sys-
tem, causing foaming, solid formation etc. [31, 32].
The high volatility of most of the oxidative degrada-
tion products results in that only some of these types
of degradation products can be quantified in solution
samples without high error. This applies to large-mol-
ecule degradation products such as HEA and HEI.

Thermal degradation occurs due to elevated temper-
ature. Most often this occurs on the regenerator
packing, in the desorption column vessel and in the
pipes leading from the regenerator to the cross heat
exchanger. The main causes of thermal degradation
include degradation of carbamates (formed during
the absorption) due to the temperature of 100°C or
higher [33].
Amines such as MEA, diethanolamine (DEA) and
N-methyldiethanolamine (MDEA) have been used
for decades in the removal of acid components from
refinery gases and natural gas where, due to the lack
of oxygen, the phenomenon of thermal degradation
primarily occurs. Consequently, the thermal degrada-
tion products of these amines have been well charac-
terized. The main products of thermal degradation of
MEA include: oxazolidinone (OZD), N-(2-hydrox-
yethyl)-2-imidazolidinone (HEIA) and N-(2-hydrox-
yethyl)ethylenediamine (HEEDA) [28].
The largest group of analytical techniques used to
determine amine degradation products are chro-
matographic techniques, i.e. gas chromatography
(GC), liquid chromatography (HPLC), ion chro-

Figure 1.
Main points of degradation process occurrence in the amine
scrubbing systems
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matography (IC) and chromatographic techniques
coupled with other instrumental methods, e.g. gas
and liquid chromatography coupled with mass spec-
trometry (GC-MS, HPLC-MS), gas chromatography
coupled to Fourier transform infrared spectroscopy
(GC-FTIR) and gas chromatography coupled to
atomic emission spectroscopy (GC-AED). Among
the analytical techniques mentioned, the most fre-
quently used method is gas chromatography coupled
with mass spectrometry using electron ionization
(EI) and chemical ionization (CI).
Strazisar et al. [34] described the use of the GC-MS
method to study the degradation products of
monoethanolamine. Due to the large differences in
the polarity of the compounds to be determined, two
types of chromatographic columns were used to sep-
arate the degradation products. The first is a
60 meter capillary column with a diameter of
0.32 mm covered with 0.25 µm of
poly(cyanopropylphenyl)(14)methyl(86)siloxane
(DB-1701) film. The second is a 60-meter column
with a diameter of 0.25 mm filled with 0.25 µm thick
modified polyethylene glycol (NUKOL). The use of
columns of different polarity allowed for the separa-
tion and determination of various types of MEA
degradation products.
In another research paper [35], the method of gas
chromatography with a mass spectrometer as a detec-

tor was used to identify the degradation products.
GC-MS analysis was performed using electron ioniza-
tion (EI) and chemical ionization (Cl). A CPSIL8-
CB-Amines column, 30 meters long, 0.25 mm in
diameter and stationary phase thickness – 1.2 µm, was
used to separate the degradation products. The quan-
titative analysis of the identified degradation products
was carried out using a gas chromatograph with a
flame ionization detector (GC-FID) using two types
of columns, polar – CARBOWAX-AMINES 15 m
long, 0.53 mm in diameter and 1.0 µm film thickness
and non-polar – CPSIL8-CB-AMINES with a length
of 25 m, diameter 0.32 mm and a film thickness of
1.2 µm. The internal standard (IS) method was used
as the method of quantitative analysis.
The aim of this experimental studies was to quantify
the products of thermal and oxidative degradation of
MEA and to develop a quantitative analysis method for
their determination using chromatographic method.
The quantitative analysis of the degradation products
amount over time will allow to determine the useful life
of the absorption solution used for CO2 capture.

2. EXPERIMENTAL
This section describes the analytical method and used
apparatus. The investigated MEA degradation prod-
ucts has been shown in Table 1.

Table 1.
Degradation products of MEA determined in this work

Abbr. Name Formula Molar mass
g/mol CAS

HEI 1-(2-hydroxyethyl)imidazole 112 1615-14-1

HEIA N-(2-hydroxyethyl)-2-imidazolidinone 130 3699-54-5

HEEDA N-(2-hydroxyethyl)ethylenediamine 104 111-4-1

HEA N-(2-hydroxyethyl)acetamide 103 142-26-7

OZD 2-oxazolidinone 87 497-25-6

e
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2.1. CO2 capture test bench

The samples for the analysis were drawn from the
laboratory CO2 capture test bench. This plant is char-
acterized by continuous operation in the absorption-
desorption system. The plant has capacity of 5 m3/h
of treated gas. The basic elements of the test bench
are an absorption a desorption (regenerator)
columns and the cross heat exchanger. The absorp-
tion and desorption columns contain glass Raschig
rings packing. In the middle of the stand there is a
heat exchanger that preheat the rich solvent stream
flowing to the top of the regeneration column. The
heat needed for the solvent regeneration is supplied
to the system by an electric heater with a power sup-
ply controller. The regenerated solvent leaves the
regenerator and flowing through the cooler is back to
the absorber.
The inlet gas containing 30% vol. CO2 is homoge-
nized in the mixing chamber to which it is supplied
with air from a blower. More details about the labo-
ratory stand can be found elsewhere [36].

2.2. Chemicals and analysis
The Focus GC gas chromatograph by Thermo
Scientific, equipped with a split/splitless dispenser
coupled with the DSQ II mass spectrometer
(GC-MS) by Thermo Scientific, operating in both
SCAN and SIM modes and allowing for electron ion-
ization (EI) was used to test the MEA thermal degra-
dation products. A ZB-5MSi capillary column
(30m x 0.25mm x 1mm) was used to separate the ana-
lytes. The NIST spectrum library was used to identify
degradation products. The following
reagents/standards were used for calibration:
2-Oxazolidinone, 98%, Sigma Aldrich; 1-(2-hydrox-
yethyl)imidazole, 97%, Sigma Aldrich; N-(2-hydrox-
yethyl)acetamide, 96%, Acros Organics;
N-(2-hydroxyethyl)-2-imidazolidinone, 75% aqueous
solution, Sigma Aldrich; N-(2-hydrox-
yethyl)ethylenediamine, 99%, Sigma Aldrich.
For the analysis, the rich solvent samples (loaded
with CO2) were drawn from the absorber and the
lean ones (unloaded with CO2) were collected from
the regenerator, downstream of the cooler.

2.3. Analysis parameters
The conditions for the chromatographic analysis and
the operating conditions of the mass spectrometer
are shown in the Table 2.

The mass spectra obtained as a result of the analysis
and compared with the library of spectra, (which is
part of the GC-MS system software) were used to
identify compounds that are products of thermal
degradation of MEA. Table 3 summarizes the reten-
tion times for the individual compounds.
The internal standard method (IS) was used for
quantification. Relative response factors for individ-
ual compounds were determined according to the
equation:

where: RFc is relative response factor for each com-
pound, Ac is peak area read for a given compound,
Ais is peak area read for the internal standard, Mc is
the content of the analyte in the reference mixture,
Mis is the content of the internal standard in the ref-
erence mixture.
The average calculated RFc values are presented in
Table 3.

Table 3.
Average retention time and average response factor for mea-
sured compounds

Determined
compound

Mean retention
time for 10

repetitions, min

Mean response
factor for 5
repetitions

OZD 17.25 0.505

HEDDA 14.10 0.627

HEIA 24.84 0.728

HEA 16.56 0.569

HEI 19.96 0.496

Table 2.
The parameters of chromatographic analysis

Parameter Value

Dispenser temperature 250°C

Initial oven temperature 40°C

Final oven temperature 250°C

Oven temperature increase 6°C/min

Carrier gas flow rate 1.0 ml/min

Split ratio 10

Transfer line temperature 250°C

MSD working mode SIM/FULL SCAN

Ionization Type Electron (EI)

(1)
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The content (Mc) of a given component in the sample
(i.e. 1 ml) was calculated by converting equation (1)
to MC.

The statistical evaluation of the results included the
determination of the following parameters: selectivity,
calibration and linearity determination, repeatability,
intermediate precision, resistance. The selectivity of
the method is guaranteed by the use of a mass spec-
trometer as a detector, which works in the mode of
monitoring selected ions (selective detector).
Calibration using an internal standard was performed
based on the analysis of calibration solutions. For
individual compounds, calibration curves were deter-
mined based on the following formula:

where: cw is the analyte content in the standard, sw is
peak area read for a given analyte, sis is peak area
read for the internal standard.
In order to determine the linearity of the method, the
values of the obtained relative response factors RFc

were compared as a function of the content of a given
analyte. The obtained dependence should be a linear
function in which the slope is insignificantly different
from zero and the value of the intercept does not dif-
fer from the mean value of the relative response factor
RFc in a statistically significant manner. The t-Student
test was used to assess the linearity of the method.
The repeatability of the method was determined
based on the calculated values of standard deviations
for six series of samples. Each series consisted of 7
independently performed analysis. Using the propa-
gation law, the repeatability of the method was deter-
mined. Intermediate precision was calculated as the
relative standard deviation of all results for which a
repeatability value was calculated (shown in Table 4).

The resistance of the method was verified based on
the calculated values of repeatability and intermedi-
ate precision. For this purpose, the value of the
Fmax–Hartley test statistic was calculated and com-
pared with the critical value Fkr.

where: CVprc.por is variation coefficient for intermedi-
ate precision, CVpowt is repeatability variation coeffi-
cient.
The method is resistant when the assumptions that
Fmax<Fkr are met. Based on the calculated values of
the Fmax–Hartley test statistics for each compound,
no statistically significant difference was found
between the calculated repeatability and the interme-
diate precision. So the method is resistant.

3. RESULTS AND DISCUSSION
The results of the determined degradation products
were shown in Table 5 (A3.x is rich solution A4.x
stand for lean solution).

Table 5.
The results of analyzed samples

Table 4.
Repeatability and precision for all determined compounds,
expressed as the variation coefficient

Determined
compound

Repeatability
[%]

Intermediate
precision [%]

OZD 4.99 5.76

HEDDA 3.78 4.15

HEIA 4.20 5.06

HEA 5.49 6.45

HEI 6.79 7.24

No. sample
OZD HEEDA HEIA HEA HEI

mol/dm3

A3.1 0.008 0.002 0.010 0.025 0.045
A4.1 0.015 0.012 0.021 0.018 0.021
A3.2 0.012 0.008 0.018 0.033 0.068
A4.2 0.021 0.011 0.029 0.024 0.037
A3.3 0.026 0.016 0.033 0.041 0.087
A4.3 0.048 0.024 0.048 0.028 0.074
A3.4 0.035 0.021 0.040 0.087 0.099
A4.4 0.052 0.048 0.064 0.034 0.076
A3.5 0.037 0.029 0.054 0.067 0.084
A4.5 0.058 0.048 0.073 0.052 0.070

(2)

(3)

e



A . W i l k , T . S p i e t z , L . W i ę c ł a w - S o l n y , A . K r ó t k i , J . T a r n o w s k a

120 A R C H I T E C T U R E C I V I L E N G I N E E R I N G E N V I R O N M E N T 1/2021

The samples were collected periodically during the
CO2 capture process. From table 5 it can be seen that
rich solvent samples contain more HEA and HEI
than the lean ones. Similarly, the lean solvent sam-
ples contain more OZD, HEDDA and HEIA than
the rich ones. Thus, it can be clearly stated that OZD,
HEIA and HEEDA are products of thermal degra-
dation (TDP) and HEA and HEI are products of
oxidative degradation (ODP).
As shown in Figure 2, the amount of TDP is several
dozen percent higher in lean solvent than in the rich
one. It is believed that the reason for this is a partial
decomposition of TDP or their reaction to other
compounds in the oxidizing environment of the
absorption column. It is also visible that TDP are

formed from the very beginning of the process (first
samples were taken 24 hours after the installation
was started).
The obtained results show that HEEDA is the most
susceptible product of thermal degradation to reac-
tions in the oxidizing environment. HEEDA content
varies significantly between the rich and lean solvent
samples. In contrast, OZD and HEIA concentrations
change less. It may result from the structure of the
tested degradation products. HEEDA is an aliphatic
amine while both OZD and HEIA are cyclic amines
that are more resistant to oxidizing reactions.
Among ODP, less volatile compounds, i.e.
ethanolamine derivatives such as HEA and HEI,
were identified. Typical products of oxidative degra-

Figure 2.
Major degradation products of MEA formed in absorption and desorption columns

Figure 3.
Comparison of high molecular oxidative degradation products of MEA formed in absorption and desorption columns
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dation, e.g. ammonia or carboxylic acids, are largely
removed from the system in the regenerator due to
their high volatility. Therefore, analysis of this prod-
uct in the amine solution would be burdened with
high error.
Fig. 3 presents the concentrations of ODP in the rich
and lean solvent samples. As can be seen, despite the
higher initial concentrations of ODP than TDP, the
growth of ODP was lower than other degradation
products. Thus, it can be concluded that the rich sol-
vent shows clearly less susceptibility to oxidative than
to thermal degradation. It can be assumed that the
decrease in the concentration of oxidative degrada-
tion products in the desorber is caused by the con-

version to TDP or the formation of other high-mole-
cular compounds.
Based on the change in the concentration of degra-
dation products over time, the loss of MEA in the
solution was estimated. The MEA losses resulting
from the formation of individual degradation prod-
ucts are shown in Fig. 4 and Fig. 5. It has been
assumed that in the formation of OZD and HEA one
amine molecule is involved and in the formation of
HEEDA, HEIA and HEI two amine molecules. The
initial amine concentration was 4.91 mol/dm3.
There are few publications presenting research on
amine degradation based on samples collected from
the CO2 capture plant, both at lab and pilot

Figure 4.
The calculated loss of MEA in the lean solvent (in the desorber)

Figure 5.
The calculated loss of MEA in the rich solvent (in the absorber)

e
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scale [37–41]. The data available in the paper [37]
(based on pilot studies using 30% MEA) shows that
the estimated loss of MEA in the solvent is approx.
1.4 kg/ton of captured CO2 (tCO2), of which 60% is
due to thermal degradation and 30% to oxidative
degradation. In presented case, the calculated total
amine loss was 1.39–1.56 kg MEA/tCO2, of which
39–54% was due to oxidative degradation and
46–61% due to thermal degradation.
Additionally, the data from the publications [40, 42]
refer to the amine losses due to oxidative degrada-
tion, which amount to 0.29–0.73 kg MEA/tCO2. The
results of this paper have shown that the consump-
tion of MEA due to the formation of HEI and HEA
(oxidative degradation) was 0.61–0.74 kg MEA/tCO2.

Although the degradation of MEA to ammonia, car-
boxylic acids, etc. was not taken into account to some
extent, the data obtained showed that in the case of
CO2 capture from gases containing both oxygen and
elevated carbon dioxide content, degradation is a seri-
ous problem. The values of the degree of degradation
are so high that it is necessary to use additives that
inhibit the degradation process, or to use sorbents
alternative to MEA, characterized by increased resis-
tance to degradation processes, to prevent a decrease
in the efficiency of CO2 capture resulting from the
reduced amine concentration in the solution.

4. CONCLUSIONS
During these studies, major thermal and oxidative
amine degradation products in the amine solvent
have been determined by means of gas chromatogra-
phy. The samples of amine were collected from the
laboratory stand used for CO2 capture from synthet-
ic flue gas containing 30 vol.% of CO2 (and air).
A 30% wt. aqueous solution of MEA was used as a
solvent.
The lean amine samples contained more OZD,
HEDDA and HEIA than rich amine samples. The
rich ones, in turn, included more HEA and HEI.
Thus, it has been confirmed that OZD, HEEDA and
HEIA are formed due to thermal degradation. By
contrast, HEA and HEI are formed by oxidative
degradation. Considering the differences in the con-
tent of degradation products between rich and lean
amine samples it is believed that thermal degradation
products undergo reaction to other compounds.
Degradation products were detected after only 24
hours of installation operation and increased over
time. Nevertheless, the growth of oxidative degrada-

tion products was lower than thermal ones.
Therefore, it can be concluded that rich amine is less
susceptible to oxidative degradation than the thermal
degradation.
After 216 hours the total content of degradation
products was in the range of 0.029–0.084 mol/dm3.
Taking into account the obtained results, it has been
calculated that the loss of MEA (due to the degrada-
tion) was in the range 1.4–1.6 kg MEA/t CO2, of
which thermal degradation was responsible for up to
61% weight loss. This data is comparable with the lit-
erature (about 1.4 kg MEA/t CO2).

Obtained results have shown that in the case of CO2

capture from gases containing both oxygen and high
CO2 concentration, degradation is a serious problem
[44]. Determining the concentration of the degrada-
tion products and the rate of their formation is
important for evaluating the viability of the solution.
Furthermore, it can be helpful in respecting environ-
mental standards.
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