
 

OPTIMAL COORDINATE SENSOR PLACEMENTS FOR ESTIMATING 

MEAN AND VARIANCE COMPONENTS OF VARIATION SOURCES  

 
 
 

A Thesis  
 

by 
 

QINYAN LIU 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

MASTER OF SCIENCE  
 
 
 
 
 
 
 

May 2004 
 
 
 
 
 
 

Major Subject:  Industrial Engineering 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Texas A&amp;M Repository

https://core.ac.uk/display/4269369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


OPTIMAL COORDINATE SENSOR PLACEMENTS FOR ESTIMATING 

MEAN AND VARIANCE COMPONENTS OF VARIATION SOURCES  

 

A Thesis 

by 

QINYAN LIU 

 

Submitted to Texas A&M University 
in partial fulfillment of the requirements 

for the degree of 
 

MASTER OF SCIENCE  
 
 
Approved as to style and content by: 
 
 
 

Yu Ding 
(Chair of Committee) 

 
 

 

Amarnath Banerjee 
(Member) 

 

 

Jyhwen Wang 
(Member) 

 Mark Spearman 
(Head of Department) 

 
May 2004 

 
 

Major Subject:   Industrial Engineering 



 iii

ABSTRACT 
 
 

Optimal Coordinate Sensor Placements for Estimating  

Mean and Variance Components of Variation Sources.  

(May 2004) 

Qinyan Liu, B.S., Tsinghua University; 

M.S., Tsinghua University 

Chair of Advisory Committee: Dr. Yu Ding 

 

In-process Optical Coordinate Measuring Machine (OCMM) offers the potential 

of diagnosing in a timely manner variation sources that are responsible for product 

quality defects.  Such a sensor system can help manufacturers improve product quality 

and reduce process downtime. Effective use of sensory data in diagnosing variation 

sources depends on the optimal design of a sensor system, which is often known as the 

problem of sensor placements.  This thesis addresses coordinate sensor placement in 

diagnosing dimensional variation sources in assembly processes. Sensitivity indices of 

detecting process mean and variance components are defined as the design criteria and 

are derived in terms of process layout and sensor deployment information.  Exchange 

algorithms, originally developed in the research of optimal experiment deign, are 

employed and revised to maximize the detection sensitivity. A sort-and-cut procedure 

is used, which remarkably improve the algorithm efficiency of the current exchange 

routine. The resulting optimal sensor layouts and its implications are illustrated in the 

specific context of a panel assembly process.  
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CHAPTER I 
 

INTRODUCTION 
 

 

Dimensional integrity is a major quality concern in many discrete-part 

manufacturing processes. In the automotive and aviation industries, for instance, 

dimensional problems contribute to about two-thirds of the total quality problems 

during a new product launch (Shalon et al. 1992, Ceglarek and Shi 1995).   

Coordinate Measuring Machine (CMM) is widely used in discrete-part industries 

to ensure the dimensional quality of a manufactured product. The mechanism of a 

CMM is illustrated in Fig 1(a). A CMM usually consists of a spatial frame that 

provides the coordinate reference (not shown in the figure), a mechanical arm that can 

move along guided tracks, and a probe that retrieves the coordinate information when 

its tip touches the surface of a manufactured work piece. A CMM has the limitation of 

being low throughput. A CMM with a single mechanical arm and touch probe has to 

perform the measurement job sequentially; it will then take hours to finish all 

measurements on a complicated product.  For instance, CMM can measure only 6-8 

automotive bodies per day in an automotive body shop with a daily throughput of 

1,000 units. Meanwhile, high manufacturing cost of a CMM prohibits using multiple 

CMMs to perform measurement jobs in parallel.  

Recent advancement in sensor technology introduces the optical CMM (known as 

OCMM). An OCMM replaces the mechanical arm and the touch probe in a CMM 

______________ 
This thesis follows the style of IIE Transactions. 
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with an optical sensor unit (Fig 1(b)), which consists of a laser source and two CCD 

(Charged-Couple Device) image sensors. The laser source will shed a beam on the 

surface of a work piece and the CCD sensors will detect the reflective laser beam.  

The sensor unit is also installed within a spatial frame and will calculate the 

coordinate of the measured point relative to the frame reference using triangulation.   

The OCMM sensor unit is much less expensive than a touch probe. It is then 

much affordable to deploy multiple optical sensor units, performing parallel 

measurement jobs of multiple product characteristics. An OCMM station with 

multiple sensor units are capable of measuring as many as 150 product features on a 

car body within one minute (refer to Fig 1(c)).  The high throughput capability enables 

OCMM to be built into the production process and obtain 100% inspection of 

dimensional quality characteristics (Apley and Shi 2001). 

 

touch probe 

manufactured 
workpiece 

(a) 
arm 

laser 
source 

CCD image 
sensors 

optical lens 

manufactured 
workpiece 

(b) 

Automotive Body Assembly 

variation root 
cause diagnosis

(c) laser coordinate sensors

Figure 1. Mechanism of CMM and OCMM 

Deployment of OCMMs results in a shift in quality control philosophy. With 

CMMs, dimensional measurements are taken offline and sampled from a large product 

population.  In such a manner, CMMs are used to inspect the key dimensional product 
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features and ensure them to be statistically acceptable. Now the implementation of in-

process OCMMs leads to continuous dimensional measurements of every 

manufactured product and provides the potential of determining the underlying 

process variation sources that are responsible for product defects; this process is 

known as “root cause diagnosis.”  Root cause diagnosis is critical because the 

identification of variation sources will lead to corrective actions, restoring the 

manufacturing system to its normal condition in a timely manner.    

Recent research efforts have advanced the state of the art of root cause diagnosis 

in complicated manufacturing systems -- one focused application area is the 

automotive assembly process. Statistical methods employed there include the 

estimation methods (Apley and Shi 1998, Lawless et al. 1999, Carlson et al. 2000), 

pattern recognition using principal components (Hu and Wu 1992, Ceglarek and Shi 

1996, Ding et al. 2002a), and factor analysis (Apley and Shi 2001; Apley and Lee 

2003).   

Apparently, effective use of product measurements in root cause diagnosis 

depends to a great extent on the design of a sensor system.  A poorly designed sensor 

system may not be able to provide the desired diagnosability or sensitivity in 

identifying variation sources.  Design of a sensor system is realized through the design 

or determination of (i) an individual sensor unit; (ii) the number of sensors needed; 

(iii) sensor locations; and (iv) operation strategies such as how many and how often 

measurements will be taken.  In this thesis, we assume the use of the commercially 
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available optical sensor unit as described in Fig 1(b) and will not get into the physical 

details of how a sensor unit is designed.  Meanwhile, the high measurement 

throughput of the chosen optical sensor units makes their operations simple because 

in-process data are automatically collected from every product. Then, the sensor 

system design considered in this thesis boils down to the determination of the number 

and locations of coordinate sensors; it is usually called the problem of “sensor 

placement” in engineering practice. Please note that the “location of a sensor” in this 

thesis refers to the location of a product feature that a sensor measures instead of the 

place where a sensor is physically installed.  For this reason, coordinate sensor 

placement is equivalent to the selection (of the number and locations) of dimensional 

measurement features on a product.  

Relevant research on the selection of dimensional measurement features can be 

classified into two categories: inspection-oriented and diagnosis-oriented.  Inspection-

oriented feature selection is mainly based on the study of key product characteristics 

(KPCs) because the purpose of inspection is to make sure KPCs meet their designed 

tolerances. KPCs may be decided through an empirical analysis of the product/process 

flow (Ceglarek et al. 1994, Soderberg and Carlson 1999) or through a more 

quantitative sensitivity-based design evaluation (Whitney et al. 1994, Thornton 1999, 

Ding et al. 2002b).  

Product inspection is to perform a statistical inference on measured product 

features alone. Root cause diagnosis, on the other hand, is to make inference on 
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process variation sources that are correlated to product measurements. For this reason, 

diagnosis-oriented measurement feature selection aims at choosing the features that 

could lead to certain optimal condition (e.g., maximum separation) for identifying 

variation sources. In so doing, certain criterion to characterize the distinction between 

variation sources should be defined and then an optimization routine will be employed 

to optimize the chosen criterion. Prior research for this objective includes the papers 

by Khan et al. (1998), Khan et al. (1999), Wang and Nagarkar (1999), and Khan and 

Ceglarek (2000).  The methods developed by Khan and his colleagues are to 

maximize the minimum distance between variation patterns that are computed as the 

eigenvectors of a measurement covariance matrix.  However, due to the fact that their 

diagnostic procedure assumes the occurring of a single variation source at a time, their 

sensor placement strategy only ensures each single variation source to be optimally 

distinguished from the others.  Another limitation is that their strategy is based on the 

specific way of how the variation patterns are defined and constructed.  Their results 

may no longer be optimal if a different type of variation pattern is defined and used.  

Wang and Nagarkar (1999) developed a sensor placement strategy for a more generic 

situation when multiple simultaneous variation sources may exist.  A D-optimal 

criterion is used, the same as that in the optimal experimental design (Fedorov 1972, 

Atkinson and Donev 1992), and Powell’s direct search (Powell 1992) is employed to 

find the optimal sensor placement.   

Different from Wang and Nagarkar (1999), this thesis will investigate the use of 

E-optimality instead of D-optimality as the design criterion for sensor placements. The 
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E-optimality characterizes the minimal sensitivity of a coordinate sensor system in 

detecting the mean and variance components of variation sources. Optimization of 

such a sensitivity criterion is equivalent to ensuring a maximum separation of 

variation sources. This thesis will develop an inequality relationship so that a unified 

criterion can be found for both mean-detection and variance-detection sensitivities. 

Exchange algorithms, initially developed for optimal experimental designs, were 

employed in optimizing the chosen sensitivity criterion.  Following an idea proposed 

by Lam et al. (2002) in a molecule selection application, we devise a sort-and-cut 

procedure to address specific problems relevant to sensor system design, which 

considerably improves the algorithm efficiency.  

This thesis is structured as follows.  In Chapter II, we use an automotive assembly 

process as a case in point to explain the procedure for root cause diagnosis and present 

the linear diagnostic model that links the product dimensional measurements to the 

process variation sources.  Design criterion, i.e., the mean and variance detection 

sensitivity and their relationship, is discussed in Chapter III. The optimization 

algorithm and the suggested revision are presented in Chapter IV.  We discuss the 

resulting optimal sensor layouts as well as a few practical issues in Chapter V.  Finally, 

we conclude the thesis in Chapter VI.   
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CHAPTER II 
 

FORMULATION FOR ROOT CAUSE DIAGNOSIS  
 

 

In this chapter, we consider the dimensional measurements taken in auto-body 

assembly processes with the presence of fixture-related process variation sources. 

Figure 2(a) shows the side panel assembly of the Sport Utility Vehicle (SUV) in 

Fig 1(c). This side panel assembly is made of four components: A-pillar panel, B-

pillar panel, rail roof side panel, and rear quarter panel. We simplify each panel 

component in the assembly as a 2-dimensional polygonal work piece (Fig 2(a)). In a 

2D panel assembly process, each work piece is usually held by a set of fixture during 

assembly operation, illustrated in Fig 2(b). A set of fixture constitutes a 4-way locator 

(P1) that controls motion in both x and z directions (δP1(x, z)), and a 2-way locator 

(P2) that controls motion only in z direction (δP2(z)).  The fixture location for the 

whole assembly is indicated in Fig 2(a) as P1 - P8.  Optic coordinate sensors are used 

to monitor the dimensional integrity of the eventual assembly. 

The work piece could have small positional perturbation if all locator-contacts 

function properly within their designed tolerances.  If there is damage on the pinholes 

or wear on the locators, the work piece will then undergo large random deviation from 

its nominal position and thus cause a mean shift or excessive dimensional variability 

on the final assembly.  In Fig 2(b), for instance, sensors M1 to M3 could detect a mean 

shift or excessive panel variability caused by a large z-direction deviation δP2(z). In 
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this case, the process variation source is the low locator positioning repeatability.  

After detecting a large mean shift and variability in product, we would like to identify 

the malfunctioning fixture locator responsible for the dimensional quality defect. 

 

P1 

A-Pillar 

B-Pillar 

Rail Roof 
Side Panel

P5 
P8 

P7 

Rear Quarter 
Panel

P2 P6 P3 

P4 

sensor2-way locator, positioning 
variability in one direction 

4-way locator, positioning 
 variability in two directionsδP1(x) 

δP1(z) δP2(z)

P1 

δP2(z)
P2 

M1 

M3 

M2 

(b) Variation Detection (a) The Assembly 

 x 

z 

 
Figure 2. Illustrative example: variation sources in panel assembly processes 

In order to perform root cause diagnosis, the first step is to establish a diagnostic 

model that links the product measurements to the process variance sources.  We here 

use the simple example in Fig 2(b) to get a flavor of how the model is developed.   

Denote by u the deviations at fixture points such as P1 and P2 and by y the 

deviations measured by coordinate sensors. In Fig 2(b), TzPzPxP ])()()([ 211 δδδ=u , 

where δ  is perturbation operator. When a coordinate sensor measures the position of a 

point, it generally returns three coordinate values of that point in space. In the 2D 

assembly process discussed above, only two of the three coordinates, i.e., those of x 

and z directions, are of interests to us, and thus, the product measurements are 

TzMxMzMxMzMxM ])()()()()()([ 332211 δδδδδδ=y . Meanwhile, whenever 
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one more sensor is installed, two more measurements will be augmented to the vector 

of y in the 2D assembly process.  

For dimensional control, the relationship between y and u can be obtained by a 

standard kinematics analysis (Paul 1981). In quality control, the deviations of 

product/process features are usually much smaller than nominal values.  Hence, a 

linear model structure or a linearization of originally nonlinear systems is often 

acceptable for discrete-part manufacturing processes. The linear diagnostic model can 

be generally expressed as 

vAuy += ,                                                                                                                 (1) 

where v  is the additive sensor noise. Matrix A constitutes multiple row blocks, i.e.,  

][ 1
T
s

TT AAA L=  with the ith block as 



















−
−

−
−

−
−

−
−

=

)()(
)()(

)()(
)()(0

)()(
)()(

)()(
)()(1

12

2

12

1

12

1

12

1

xPxP
xMxP

xPxP
xPxM

xPxP
zPzM

xPxP
zMzP

ii

ii

iA ,  i=1,…, s,                                              (2) 

where s is the number of sensor, P1(x), Mi(z) etc are the nominal coordinates of the 

locators and the sensors, respectively. The number of variation sources (i.e., the 

dimension of u) is denoted by p and the number of measurements (i.e., the dimension 

of y) is denoted by n. In this particular process p=3 and n=2s that is the product of the 

number of sensors and the measurements retrieved per sensor. For a real assembly in 

Fig 2(a), when more parts with complicated shapes and different orientations are 

involved, the A matrix will look a lot messier.  However, it still follows the same 
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spirit as we did for the simple case to develop a linear diagnostic model.  For a 

detailed derivation of relevant kinematic models, please refer to Jin and Shi (1999), 

Mantripragada and Whitney (1999), Ding et al. (2000) for assembly processes or 

Djurdjanovic and Ni (2000) and Zhou et al. (2003b) for machining processes. 

In root cause diagnosis, one will make inferences about u based on a sample of 

measurements of y. The following assumptions are usually made for this kind of 

problem: (A1) The p variation sources are independent so that u has a diagonal 

variance-covariance matrix; (A2) Sensor noise v is independent of u. It is of zero-

mean and has the variance-covariance matrix nvI2σ ,  where nI  is an n×n identity 

matrix and 2
vσ  is the variance of sensor noise.  The sensor system satisfying (A2) is 

known as a homogeneous sensor system.  A coordinate sensor system using sensor 

units from the same manufacturers and in the same stage of its service life qualifies as 

a homogeneous sensor system. On the other hand, a sensor system constituted by 

different types of sensors or the same type of sensors but with different accuracies is a 

heterogeneous sensor system.  In this thesis, we limit our discussion to the design of a 

homogenous sensor system. 

Model (1) appears to be similar to a linear regression model, e.g., εXβy += . The 

differences are as follows. In regression, X is a data matrix containing measurements 

of predictors, oftentimes determined through a designed experiment. In model (1), A 

is not a data matrix of predictors. Instead it is determined by system design parameters 

such as locator and sensor locations.  The design determining A is not to design an 
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experiment but an engineering system. The A matrix is called system matrix in 

engineering system designs. Meanwhile, u is not the vector of parameters but a vector 

of unknown random inputs. By contrast, β  in the above regression model is often a 

constant unknown vector equivalent to the fixed effect in statistical inference. In fact, 

our model (1) fits better to a mixed linear model with both fixed effect and random 

effect (please refer to McCulloch and Searle 2000 for mixed linear models).  If we 

write model (1) as 

vuAAµy ++= ~ , (3) 

where µ  is the mean vector of u and u~  is its zero-mean random part, then µ  

corresponds to the fixed effects and u~  corresponds to the random effects. For root 

cause diagnosis, one needs to detect the mean components of T
p ][ 1 µµ≡ Lµ  and 

the variance components of u~   T
p ][ 22

2
2
1 σσσ≡ Lθ . Please note that we will 

assume in this thesis that the knowledge about sensor noise variance, 2
vσ , is available 

from the sensor vendor’s calibration and specification. 
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CHAPTER III 
 

DESIGN CRITERIA FOR ROOT CAUSE DIAGNOSIS 
 

 

III.1 Diagnosability and Sensitivity Indices   

In the theory of mixed linear models, Rao and Kleffe (1988) defined parameter 

identifiability as to verify whether or not the differences between input parameters 

lead to differences of the corresponding distributions of the observations y. Following 

this concept and also noting that the distribution of y is usually specified up to the first 

and second order moments in many engineering applications, Zhou et al. (2003a) 

defined the diagnosability for mean and variance components as: a linear parametric 

function µpT  is said to be mean-diagnosable if   

21
||21 µµµµ mmµpµp == ≠⇒≠ yy

TT , ∀ 21, µµ ,                                                             (4) 

and a linear parametric function θf T  is said to be variance-diagnosable if  

21
|)(vec|)(vec21 θθθθ ΣΣθfθf == ≠⇒≠ yy

TT , ∀ 21, θθ ,                                               (5) 

where ym  and yΣ  are the mean vector and covariance matrix of y, respectively; 

vec(⋅) is an operator to stack the columns of a matrix on top of one another, e.g., 

)(vec Σ = [ ]T22122111 σσσσ  for a 2×2 Σ. 

The above definition characterizes whether or not the sensor system provides 

enough information to ensure that the mean and variance components of variation 
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sources can be separated. We can view it as -- if a variation source is diagnosable, no 

matter how small a change it undergoes, we can theoretically find an algorithm to 

estimate it provided that we have large enough amount of samples. If a sensor system 

does not ensure the diagnosability, no matter how large a variation source changes, we 

cannot uniquely pinpoint which variation source undergoes the change. 

Diagnosability can be used as a design criterion for sensor system design. In fact, a 

sensor placement strategy leading to a full diagnosability was studied by Ding et al. 

(2003).  On the other hand, however, the diagnosability condition does not make any 

distinction among diagnosable systems even though some sensor systems may have a 

superior performance than the others in the sense that it could easily detect a small 

change in the variation sources.  This difference of detection capability is 

characterized by the concept of “sensitivity,” which may be interpreted as follows: a 

sensor system that has a zero sensitivity to any one of the variation sources provides 

no diagnosability, whereas a sensor system with a non-zero sensitivity to all variation 

sources possesses certain level of diagnosability.  It is desirable that a sensor system 

not only has a full diagnosability but also is sensitive to the underlying changes of 

variation sources. This thesis will go beyond diagnosability, aiming to achieve a 

maximum separation of variation sources via the maximization of sensitivity indices 

defined below. 

Based on model (3), we can have 

µAm ⋅=y                                                                                                                (6) 
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)(vec)()(vec 2
nvy IθAΣ ⋅σ+⋅π= ,                                                                               (7) 

where π(⋅) is a matrix transform defined as 

[ ]TTnnTnTnT )*()*()*()*()( 1111 aaaaaaaaA LLL=π ,                               (8) 

and ja  is the jth row vector of A and * represents the Hadamard product (Schott 

1997). 

Following the same spirit in defining diagnosability, the sensitivity for detecting 

changes in mean and variance components can be defined as the ratio of change in the 

mean or variance of y over a perturbation of the mean or variance of the input sources.  

We define the detecting sensitivity of mean and variance components as follows. 

Definition 1. Given measurement y, the mean-detecting sensitivity, denoted as Sm, is 

defined as 

)()(
)()(

min
µµ
mm

0µ δδ

δδ
≡

≠δ T
y

T
y

mS ,                                                                                            (9) 

and the variance-detecting sensitivity, denoted as Sv, is defined as 

)()(
)~~(

min
θθ
ΣΣ

0θ δδ

δ⋅δ
≡

≠δ T
yy

v

tr
S ,                                                                                            (10) 

where yΣ~  is the covariance matrix contributed from the process variation  sources, 

i.e., θAΣ ⋅π= )()~(vec y .  

Given the linear relation in equations (6) and (7) and utilizing the eigenvalue 



 15

property of a symmetric matrix (Schott 1997, pp. 105), we can express the above-

defined sensitivity indices in terms of the eigenvalue of ATA as follows (the proof is 

fairly straightforward and is thus omitted): 

)(min AAT
mS λ=  and ))()((min AA ππλ= T

vS ,                                                          (11) 

where )(min ⋅λ  denotes the smallest eigenvalue of a matrix.  In deriving Sv, the relation 

that  )~(vec)~(vec)~~( y
T

yyytr ΣΣΣΣ δ⋅δ=δ⋅δ  is used. 

Remarks: 

1. The squared summation of elements in input/output vectors is used in the above 

definition so that we can have a scalar sensitivity index that is easy to interpret.  

The squared summations are equivalent to the Euclidean norm of the 

corresponding vector/matrix; )~~( yytr ΣΣ δ⋅δ  is the Euclidean norm of matrix yΣ~δ . 

2. In the variance sensitivity definition, we use yΣ~  rather than Σy because it is 

assumed that sensor noise variance 2
vσ  is known. 

3. Without the minimum, the ratios in equations (9) and (10) are input dependent.  

Using input-dependent indices, we will have to design a sensor system for 

individual changes of input variation source and it would then be inconvenient. 

The minimum operator defines the sensitivity indices to be the smallest ratios 

given all possible combinations of input changes. Equation (11) shows that the 

above defined sensitivity indices are in fact input independent; they are solely 
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determined by the system matrix A.  

4. The above definition is also consistent with the intuitive relation between 

sensitivity and diagnosability, about which we expressed before the definition. The 

diagnosability conditions obtained in Zhou et al. (2003a) are: the mean 

components are diagnosable if  ATA is of full rank and the variance components 

are diagnosable if the matrix p
jij

T
i 1,

2}){( =aa  is of full rank, where ia  is the ith 

column vector of A and p
ji 1,}{ =⋅  is a p×p matrix.  It can be shown that 

p
jij

T
i 1,

2}){( =aa = )()( AA ππ T ; the proof is included in Appendix I. It is then 

apparent that a full diagnosability is guaranteed if the corresponding sensitivity 

index is nonzero and a system with a zero sensitivity is equivalent to the one that 

is not fully diagnosable.  

Since Sm and Sv are different functions of A, a sensor system design may end up 

with different results, depending on which one of the objectives is chosen, either 

achieving the maximum mean detection sensitivity or the maximum variance 

detection sensitivity. However, further investigation found an inequality relationship 

between Sm and Sv; 2
mS  is a lower bound for Sv for the same A. The result is stated in 

Lemma 1 and its proof can be found in Appendix II. 

Lemma 1. For the same A, Sv ≥ (Sm)2 

There is another angle to view the relationship between Sv and Sm. For equation 

(7), if the variance components in θ  are estimated using a maximum likelihood 
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estimator (MLE), the variance-covariance matrix of θ̂  is approximated by the inverse 

of Fisher Information Matrix as 

1
,

11 ])}()(([{)ˆcov( −−−∝ p
ji

T
jjy

T
iiytr aaΣaaΣθ .                                                                 (12) 

Some constant is omitted from the right hand side in (12), thus we used “∝” instead of 

“=”. This expression suggests that cov( θ̂ ) depends on the true value of θ  because 

)(vec yΣ = θA ⋅π )(  )(vec2
nv I⋅σ+ .  Under a normal process condition when there is no 

outstanding variation sources, we can assume that θ =0 and then yΣ = nvI
2σ .  As such, 

equation (12) becomes 

141
,

24

1
,

4

)]()([]})[{(

]}([{|)ˆcov(
−−

−
=

ππ⋅σ=⋅σ=

⋅σ∝

AAaa

aaaaθ 0θ

T
v

p
jij

T
iv

p
ji

T
jj

T
iiv tr

.                                                             (13) 

Thus, the variance of linear parametric function θf ˆT  under a normal process condition 

is  

fAAfθf 0θ
14 )]()([|)ˆcov( −

= ππ⋅σ∝ TT
v

T .                                                                     (14) 

Then, the maximum variance of θf ˆT  for any unit vector f is the maximum eigenvalue 

of 1)]()([ −ππ AA T .  In other words, Sv, the smallest eigenvalue of )]()([ AA ππ T , 

represents the maximum variance of θf ˆT ,∀||f||=1, under a normal process condition. 

The criterion to maximize Sv is then equivalent to selecting an A to minimize the 

maximum variance of θf ˆT  under a normal process condition. Similarly, it is not 

difficult to show that maximizing Sm is equivalent to minimizing the maximum 
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variance of µp ˆT , ∀||p||=1, under a normal process condition.   

On the other hand, given model (1), we can estimate u by yAAAu TT 1)(ˆ −=  and 

use û  as if it was directly observed.  Then, the variance-covariance matrix of û  is  

T
nv

T ))()(diag()ˆcov( #2# AIAθAAu ⋅σ+⋅⋅= .                                                          (15) 

where TT AAAA 1# )( −≡  and diag(⋅) converts a vector into a matrix of which diagonal 

elements are the vector elements.  Under a normal process condition where θ  is 

assumed 0, we have 

12 )(|)ˆcov( −
= ⋅σ= AAu 0θ

T
v .                                                                                         (16) 

Equation (16) suggests that maximizing Sm is also equivalent to minimizing the 

maximum prediction variance of ua ˆˆ Ty = , ∀||a||=1, under a normal process condition. 

Equation (16) and Lemma 1 indicate that minimizing the maximum prediction 

variance of ua ˆˆ Ty =  is the same as to minimize the maximum variance of µp ˆT  and 

simultaneously provides a lower bound for the maximum variance of θf ˆT . This is not 

surprising since û  contains richer information than either µ̂  or θ̂ ; it can be used to 

simultaneously calculate both the mean components in µ̂  and the variance 

components in θ̂ , while, on the other hand, knowing µ̂  or θ̂  does not lead to the 

reconstruction of û . 

Based on Lemma 1, we choose to use Sm, i.e., )(min AATλ , as the unified criterion 
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for optimal sensor placement in order to simplify the design process.  Nonetheless, the 

optimization routines presented in the subsequent chapter should be equally applicable 

to the maximization of Sv.  

III.2 Formulations for Sensor System Optimization 

With the unified sensitivity index Sm= )(min AATλ , the problem of optimal sensor 

placement will be formulated as follows. The design parameters are the number and 

locations of sensors, denoted by T
ss ZXZXs ][)( 11 L≡φ .  Moreover, certain 

constraints should be satisfied.  One constraint is that a sensor location has to be a 

point on the product (geometrical constraint), represented by G(⋅)>0, where G(⋅) 

represents the appropriate geometry function of a manufactured product. Meanwhile, 

in order for OCMM to perform parallel measurements, we exert the second constraint 

to avoid any possible optical interference among laser beams when taking 

measurements. Our engineering knowledge indicates that it would be sufficient for 

enabling parallel measurements if we keep the sensor locations at least 100-mm apart 

from each other. For a given number of sensors, we try to find the optimal sensor 

locations that maximize Sm,  namely  

ruleapartmm100the0))((

)(max min)(

−>

λ≡

andsGtosubject

S T
ms

φ

AA
φ .                                      (17) 

The criterion of maximizing )(min AATλ  is the same as the E-optimality in optimal 

experimental design, initially proposed by Ehrenfeld (1955), when A matrix is 

considered as the mathematical equivalence of X in a regression model.  Other 
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optimality criteria were also proposed in optimal experimental design, such as the D-

optimality (max det( AAT )), the A-optimality (max tr( AAT )), where tr(⋅) and det(⋅) 

are the trace and the determinant of a matrix, respectively.  These three measures are 

related to each other through eigenvalues of AAT p
ii 1}{ =λ :  

i
p
i

T
optD λΠ= =1)det(: AA ; i

p
i

T
optA λΣ= =1)(tr: AA ; and )(: min AAT

optE λ .      (18) 

The D-optimality criterion is the most widely used in experimental designs mainly 

due to its attractive mathematical properties (Fedorov 1972, pp. 138, Atkinson and 

Donev 1992, pp. 107). It possesses an invariant property under scaling, i.e., optimal 

experiments can be designed using a group of standardized dimensionless variables 

instead of the original physical variables.  

Those optimality criteria were also used in observer design for control systems 

(Muller and Weber 1972; Patton 1989) as well as other engineering systems designs 

(e.g., the D-optimality was used by Wang and Nagarkar (1999) for sensor placement). 

In the sensor system design, D-optimality may be interpreted as that if an eigenvalue 

of AAT  is considered as the sensitivity index for the canonical model with a 

diagonalized A matrix, the D-optimality corresponds to the multiplication of 

sensitivities for all input/output pairs.  Likewise, the A-optimality is the sum of those 

sensitivities. These two criteria attempt to optimize an aggregated (multiplication or 

summation) sensitivity when designing a sensor system. By contrast, the E-optimality 

is more conservative because it optimizes the smallest sensitivity. Our experience 

indicates that the E-optimality criterion is more easily to be accepted by practitioners.  
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Meanwhile, the invariant property of the D-optimality may be inapplicable to an 

engineering system design because engineering system designs are often accompanied 

by complex constraints, e.g., the geometric constraints imposed by the shape of the 

rear quarter panel (refer to Fig 2(a)). This complexity makes it almost impossible to 

design an engineering system based on a group of dimensionless standardized 

variables.   

The optimization in equation (17) does not determine the number of sensors.  

Noticing that an increase in sensor number will generally result in a larger maximum 

of Sm, people usually try to determine the appropriate sensor number by trading off 

between the benefit gained from an increase in Sm and the cost for more sensors. 

However, in engineering practice, it is not easy to quantify the monetary saving 

associated with an increase in Sm. It is thus difficult to define an accurate cost function 

to attain this trade-off. Alternatively, we can specify a lower bound for Sm or  

equivalently, an upper bound for the maximum prediction variance based on (16). 

Then, the second optimization formulation is to minimize the sensor number, while 

satisfying a lower bound constraint on Sm in addition to other constraints previously 

specified, i.e., 

ruleapartmm100the,0))((,

min

−>≥ andsGcStosubject

s

m φ
φ                             (19) 

where c is the lower bound, decided based on engineering requirements. 

In the next chapter, we will mainly study the optimization in (17), which is 
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equivalent to the “exact” design problem in optimal experimental designs. 

Optimization (19) can be solved using the resulting exact design algorithm with a 

gradually increasing sensor number. In Chapter V, we will briefly discuss other 

considerations in solving (19) as well as how to select constant c. 



 23

CHAPTER IV 
 

EXCHANGE ALGORITHM AND ITS REVISION 
 

 

IV.1 Exchange Algorithms from Optimal Experimental Design 

The optimization problems formulated in Chapter III are nonlinear in design 

parameters φ .  Standard nonlinear programming approaches (such as quadratic 

programming) are usually based on a derivative calculation and they will be easily 

entrapped in a local optimum. The derivative-based approaches will be especially 

ineffective for a non-convex design space, imposed by the geometry of panels 

involved, not to mention those design spaces in the assembly that are not simply 

connected, for instance, the rear quarter panel, since the window-opening area is not a 

candidate area for sensor placement. 

In the research of optimal experimental design, exchange algorithms were 

developed for optimizing those aforementioned design criteria, such as D-, A-, and E-

optimality; please see Cook and Nachtsheim (1980) and Atkinson and Dover (1992) 

for reviews and comparisons of exchange algorithms. According to Meyer and 

Nachtsheim (1995), exchange algorithms have more freedom to maneuver on a 

complicated design space because each of its exchanges involves only a part of design 

parameters (associated with one design point). Then, exchange algorithms could be 

more effective in escaping a local optimum than the derivative-based nonlinear 

programming. Additionally, exchange algorithms have other advantages to be applied 
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to engineering system designs.  Their procedures are intuitive and implementation is 

easy.  The algorithms are flexible and can easily handle complicated constraints in 

engineering system design.  It can also be used for a wide variety of design criteria. 

To use exchange algorithms, we discretize the continuous design space first.  We 

call the resulting discretized design space with Nc candidate sensor locations as the 

candidate space (denoted as Dc) and the space with s current sensor locations as the 

sensor space (denoted as Ds). The basic idea of an exchange algorithm is to start with 

a set of s design points (i.e. the sensor location) in Ds, usually randomly selected, and 

exchange the current design points with those points in the much larger Dc  in order to 

improve the chosen design criterion.  In exchange algorithms, however, the action of 

exchange is not carried out for every single point. Every point in Ds will be tested 

against a point in Dc, meaning that the improvements in design criterion is recorded, 

supposing the point in Ds had been exchanged with a point in Dc. There are different 

variants to the above basic idea, depending on how often the action of exchange is 

actually carried out. One option is to perform the exchange action after all points in Ds 

have been tested against the entire set of points in Dc.  It exchanges the pair of points, 

one in Ds and one in Dc, which made the maximum improvement in design criterion. 

This option is actually the celebrated Fedorov exchange algorithm.  Another option is 

to perform the exchange action for every point in Ds after that design has been tested 

against all points in Dc. In other words, point i in Ds will be exchanged with a point in 

Dc that maximizes the improvement in design criterion and the same action is repeated 

in a sequential order for i=1, 2, …, s.  The second option is the modified Fedorov 
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exchange.  In combinatorial optimization, these are two extreme cases of a general k-

exchange algorithm, with k=s for Fedorov exchange and k=1 for modified Fedorov 

exchange (Aarts and Lenstra 1997).     

When applying them to the sensor placement problem, we notice that exchange 

algorithms, especially the Fedorov algorithm, could consume a great deal of CPU time 

for the cases with a moderate to large number of sensors (e.g., s=8 or larger). This is 

not surprising because the exchange algorithm was initially developed for 

experimental design with a relatively small number of factors and experiments  (Cook 

and Nachtsheim 1980). In the subsequent chapter, we will suggest and implement a 

sort-and-cut procedure that will shorten the computation time without sacrificing 

much the optimal value it finds. Fedorov algorithm, which provides us a better 

optimal solution, will serve as a benchmark for comparison. 

IV.2 Fast Exchange Algorithms with Sort-and-Cut 

Let us first conceptually understand the factors affecting the algorithm’s 

computation time. Define the process to pass over the entire Dc set once as a “loop.” 

There are two major factors affecting the run time: the average number of loops and 

the size of the candidate space Nc. In order to reduce the computation time, we will 

have to reduce the average number of loops as well as the size of the candidate design 

space Nc.  The following sort-and-cut procedure is employed to achieve both goals.  

The basic idea is to perform multiple exchanges in each loop to reduce the average 

number of loops, and after each loop, discard a subset of the candidate design points to 
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reduce Nc.   

When designing a uniform coverage design in molecule selection, Lam et al. 

(2002) suggested that instead of exchanging one design point per loop, one may want 

to exchange multiple candidate points in the upper tail of the distribution of 

improvements in design criterion among all the candidates.  In this way, the number of 

design points that will be changed during each loop will be more than one so that the 

average number of loops required to replace all random initial designs can be reduced.  

In so doing, we should record the improvement in design criterion that a candidate 

location can make if the corresponding exchange is indeed carried out.  Denote the ∆ 

as the improvement in the Sm criterion, i.e., old
m

new
m SS −≡∆ .  Record all ∆j’s (j=1, …, 

Nc) when we loop through the Nc candidate locations. Sort the value of ∆j’s in a 

descending order as ∆(1) ≥ ∆(2) ≥ … and so on.  The distribution of improvements is 

approximated by the sorted values ∆(j).  Then, we will set an integer number q so that 

the first q candidate locations in the upper tail of ∆(j) will be exchanged in each loop.  

On the other side, we can reduce the total number of candidate points Nc.  The 

sorted values of design improvement ∆(j) actually provide us valuable information 

about the potential of a candidate location.  Those candidate locations with a low ∆ 

value are less likely to be picked up by the exchange algorithm in next iterations.  

Thus, we could remove a proportion of candidate points after each iteration. Denote 

by α the proportion of candidate points that will be kept after a cut.   
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To implement this sort-and-cut procedure, there are two parameters to be 

determined: q and α. In our sensor system design problem, the sensor number in Ds 

usually is only a small percentage of that in Dc space (for instance, Ds=10 but Dc = 

10,000). We recommend an aggressive choice of α, e.g., from 10% to 20% (For the 

above example, if α=10% for the first two iterations, the remaining locations in Dc are 

still about 10 times of that in Ds).  

For a sort-and-cut procedure to work, the assumption is that the distribution of 

improvements approximated by data from the previous exchange routine can represent 

well enough the distribution in next exchange. However, whenever an exchange 

happens, the distribution cannot be exactly the same since the Ds space generating that 

distribution is no longer the same.  The common ground is actually constituted by the 

design points that are not exchanged in this iteration. Thus, for the above assumption 

to hold, q should be smaller than s, namely, sq <≤1 .  When q is close to s, however, 

almost all sensors in Ds will be exchanged in one iteration and the distribution 

recorded in ∆(j) from the previous loop does not truly represent the distribution for the 

new Ds space. A subsequent exchange based on the ∆(j) could make a poor choice that 

has to be re-done in the following loops.  On the other hand, too small a q will result 

in too few exchanges per loop and thus miss our original goal of having multiple 

exchanges to reduce the average number of loops. We therefore recommend selecting 

q=s/2 to strike a balance so that half of the sensors in Ds will not be exchanged to 

provide a common ground for distribution and half of the sensors will be exchanged to 
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reduce the average loop number.   

Please note that we are different from Lam et al. (2002) that instead of using q as 

the direct control on the number of exchanges they set ∆(q) as the threshold to control 

the exchange,  i.e., if there is an improvement greater than ∆(q), then carry out the 

exchange. We find using ∆(q) in our application is not effective.  The difference is due 

to our subsequent cut action, which is not used by Lam et al. (2002). The effect of the 

cut action, as explained in the above paragraph, requires us to have more direct control 

over the number of exchanges, which cannot be fulfilled by using ∆(q). 

The algorithm for an s-sensor exact design is summarized as follows. 

Step 1. The candidate design space Dc is discretized and s locations are randomly 

selected to form Ds.  

Step 2. In every iteration 

  (1) Rank the sensor locations in Dc in a descending order according to their ∆j 

values; 

(2) Cut off those locations with low ∆j values and keep the top α×100% of 

candidate points in Dc; 

(3) Exchange the top sensor locations in Dc, which satisfy the constraint 

condition, with the sensor locations in the current Ds space in a sequential order, 

starting from the one with the largest ∆j.  Each time, one sensor in Dc is added to 

Ds to generate a (s+1) design, and then, remove one sensor from the (s+1) design, 
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which makes the smallest decrease in the sensitivity index, so that the number of 

sensors in Ds will remain s. Repeat this exchange for q sensors. 

Step 3. Repeat Step 2 until the improvement in design criterion for two successive 

designs is smaller than a pre-determined threshold (we used 0.1%). 

IV.3 Implementation and Comparison 

Algorithms described in the above chapters are coded in MATLAB and compared 

on the same computer. Their running times are longer than the cases if they were 

coded in C or FORTRAN.  However, the relative performances should not be different 

due to the way of coding. 

We measure algorithm efficiency by the time that it takes to find the optimal 

value.  Meanwhile, we measure algorithm effectiveness by the average value of 

optimal solutions (i.e., average Sm) it finds when a group of random sensor layouts is 

used as the initial design. In the literature of algorithm comparison (e.g., Cook and 

Nachtsheim 1980), a relative effectiveness R was often used, which is defined as the 

ratio of the average optimal value over the best optimal solution found by all the 

algorithms in the comparison under the same setting.  We use both measures in this 

study. 

For the SUV side panel assembly in Figure 2(a), we discretize it with candidate 

points 10 millimeters apart. Our engineering experience indicates that this resolution 

of discretization is sufficient to generate a fine enough grid on a panel that has a size 

of over a thousand millimeters. The discretization results in a total of Nc = 13,304 
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candidate positions in Dc. As for the sort-and-cut procedure, we choose α=0.1 and 

q=s/2. In this application, we only implement the cut action in the first iteration.   

We perform numerical study to compare these algorithms for different choices of s. 

The minimal s is two because at least two sensors that are not collinear are needed to 

measure all variation sources associated with the two fixture locators (P1 and P8) that 

support the eventual side panel assembly. In the comparison, 50 trials with randomly 

generated initial designs are performed; the comparison results are included in Table 1. 

To save some space, only the results with an even s value are displayed, whereas the 

understanding can be generally extended to an odd s. 

Table 1. Comparisons of the resulting algorithms 

 Average Computer Time 
(seconds) 

Average Maximal Sm R 

Fedorov 27.24 1.0044 0.9995 

Modified Fedorov 19.12 0.9975 0.9926 
 

s=2 
Fast Exchange 2.47 0.9300 0.9255 

Fedorov 98.12 2.0105 0.9980 

Modified Fedorov 50.61 2.0088 0.9972 
 

s=4 
Fast Exchange 3.24 1.9794 0.9826 

Fedorov 106.50  3.0145 0.9979 

Modified Fedorov 63.50  3.0150 0.9981 
 

s=6 
Fast Exchange 4.21 2.9715 0.9837 

Fedorov 187.95 4.0177 0.9972 

Modified Fedorov 87.55 4.0188 0.9975 
 

s=8 
Fast Exchange 4.29 3.9913 0.9907 

Fedorov 376.80 5.0214 0.9978 

Modified Fedorov 142.04 5.0207 0.9976 
 

s=10 
Fast Exchange 5.11 4.9965 0.9928 
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We observed the following: (1) the sort-and-cut procedure indeed considerably 

improves the algorithm efficiency.  The reduction in computation time ranges from 

90% (for s=2) to 98% (for s=10).  In fact, the reduction is more noteworthy when the 

sensor number is relatively large (e.g., s=8 or 10), which is desirable for engineering 

system design problem. We also apply this fast exchange algorithm to large sensor 

numbers such as s=20, 30, 40, 50, and 60. The computation time versus the sensor 

number is shown in Fig. 3, where the value indicated below each mark is the average 

computation time. From this figure, one can find that the average time required to find 

an optimal 60-sensor design using this fast exchange algorithm is similar to what 

Fedorov needs for a 2-sensor design. More importantly, a linear trend is demonstrated 

in the computation time when the sensor number increases, which make this fast 

exchange algorithm an ideal tool for solving design problems with a large sensor 

number.  (2) We also noticed that the R value increases as s increases.  For s=2, 

R=0.9255, which is noticeably lower than Fedorov and modified Fedorov.  This can 

be explained by the same reason we used to choose the q value in the previous chapter.  

When s=2, even if only one sensor has been exchanged, the previously recorded ∆j can 

hardly represent the distribution for next loop because it is based on one single 

(usually randomly selected) sensor. When the sensor number increases, this problem is 

alleviated.  Actually, for s=4 and onward, R is large enough compared with the other 

two algorithms, meaning that the fast exchange does not scarify much the optimal 

value. For s=2, since it is a small scale problem similar to those in experimental 

designs, Fedorov or modified Fedorov can be used directly. 
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Figure 3. The computation time versus the number of sensors 
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CHAPTER V 
 

OPTIMAL SENSOR LAYOUT AND DISCUSSION  
 

 

The resulting optimal sensor layouts with an even sensor number (s=2, …10) are 

shown in Fig. 4, where a “*” mark indicates a sensor location.  From the layouts, we 

observe that the sensors are located in the area close to the panel boundary and many 

of them are actually on the edge. It brings up the question if we can reduce our 

candidate locations by limiting our search to the geometry boundary of each part in 

the first hand.  The answer is yes.  However, we should also notice that not all the 

sensor locations are on the edge (refer to the cases for s=8 and s=10).  Based on 

empirical knowledge alone, it is nontrivial to determine a search area that contains all 

the potential good sensor locations. In this study, we used the approximated 

distribution of design improvements in the sort-and-cut procedure, which provides 

more reliable information and quantitative evaluation to find the area of the potential 

good sensor locations.  The algorithm is fairly general and it can be used together with 

a reduced candidate pool to further improve the algorithm efficiency, should the 

aforementioned intuitive rule was implemented before the search. 

The above exact design algorithm is to find an optimal sensor layout when the 

sensor number is specified.  In order to solve for optimization (19), one may wonder if 

we can use a sequential routine, i.e., we start from one randomly generated point, and 

then sequentially add one more sensor from Dc to Ds which maximizes the resulting Sm, 
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until eventually Sm≥c. For such a sequential strategy to work well, the sensor layout 

for (s-1) sensors should be a subset of the optimal layout for s sensors.  This might be 

true when sensor number is small (s<4) but it does not stay that way when sensor 

number is getting larger. Although we did not show the sensor layouts for odd sensor 

numbers, they actually agree with the phenomenon demonstrated by the displayed 

layouts in Fig. 4. Therefore, the sequential routine could often miss the optimal layout.  

Nonetheless, we can combine the sequential probing and the exact design.  That is, 

first use sequential routine to probe and find a sensor number which can yield Sm≥c 

and then switch to an exact design routine to find the optimal sensor locations for 

sensor numbers around the one found by the sequential routine.  This way, we can 

skip a number of time-consuming exact designs, especially when the resulting sensor 

number is relatively large. 

In optimization (19), we specify a constant c to stop the algorithm. Usually the 

choice of c depends on engineering requirements and is specified under particular 

context.  In this study, we can choose c based on the accuracy requirement.  It is 

known that the OCMM, although more agile and faster, is not as accurate as the 

mechanical CMM -- the OCMM measurement repeatability is five to ten times lower 

than the CMM (Hu 1990).  Let us be optimistic and consider an OCMM is five times 

less accurate than an CMM, namely, 2
,

2
, 5 CMMvOCMMv σ=σ .  According to equation (16), 

under a normal process condition, the maximum variance in estimating process 

variation sources is 
m

OCMMv

S

2
,σ

. 
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In order to achieve the same variance level as if a CMM was used to directly 

measure the process variation source, we hence require that  mOCMMv S/2
,σ < 2

,CMMvσ , 

which translates into Sm>5.  Then, we will choose c=5 in this study.  Certainly, this 

value may change when the accuracy requirement is different.  But the above logic 

can still be applied in determining an appropriate c.  When choosing c=5, we find that 

10 sensors will provide an equivalently well sensing capability as a CMM.   

One may also wonder what happens if we have used Sv instead of Sm as our design 

criterion.  Examples using Sv are shown in Fig. 4(f)-(h) for s=2, 6, 10.  Interestingly, 

the sensor layouts using Sv bears a strong similarity as those using Sm, especially in 

terms of areas where the sensors will be located.  Of course, the resulting layouts 

using Sv deviate to some extent from those using Sm and the deviation is less obvious 

for s=2 but is getting more appreciable for a larger s.  
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                             (a)  s=2                                                          (b) s=4 

   
                          (c) s=6                                                            (d) s=8 

     
                          (e)  s=10                                                         (f)  s=2 using Sv 

    
                          (g)  s=6 using Sv                                            (h)  s=10 using Sv 

Figure 4. Optimal sensor layouts 

 



 37

CHAPTER VI 
 

SUMMARY  
 

 

This thesis presents some statistical and optimization methods for coordinate 

sensor placement for estimating the mean and variance components of variation root 

causes. Beyond previously defined diagnosability indices, sensitivity indices of a 

sensor system are defined to characterize the system capability of detecting the 

underlying process mean and variance changes. Mathematically, they are the same as 

the E-optimality criterion proposed in optimal experimental design. Optimization of 

the design criterion is then fulfilled by revising the exchange algorithm. In this 

application, we devised a fast exchange routine with a sort-and-cut procedure, which 

considerably reduces the algorithm’s computation time while maintaining the optimal 

value it can find.   

It is noted that the exchange algorithm, including its variants, has been intensively 

studied and broadly applied in experimental designs. However, its applications in 

engineering system design are not well explored. Given the flexibility of exchange 

algorithm and the empirical evidence that the presented fast exchange algorithm is 

capable of handling large scale engineering design problems, much more needs to be 

done to present theoretical justifications of the algorithm’s performances. 

Optimal design of sensor systems will surely make the task of variation root cause 

diagnosis more meaningful and efficient. However, criteria and methods presented in 
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this thesis will certainly find their applications beyond coordinate sensor placement 

since the approach is based on a general linear system model.  
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APPENDIX  

A.1 Proof of p
jij

T
i 1,

2}){( =aa = )()( AA ππ T . 

Proof.  Recall that )(tr)( 2 T
jj

T
iij

T
i aaaaaa =  and )(vec)(vec)(tr BAAB T=  for any 

symmetric matrices A and B. The (i, j)th element in p
ji

T
jj

T
ii 1,)}(tr{ =aaaa  is 

)(vec))((vec T
jj

TT
ii aaaa .  Actually, )(vec T

iiaa  is the ith column vector in )(Aπ .  That 

leads to the conclusion that )()( AA ππ T = p
jij

T
i 1,

2}){( =aa .  ◊ 

A.2 Proof of Lemma 1. 
Proof.  We know that AAaa Tp

jij
T
i ==1,}{ . Then, p

jij
T
i 1,

2}){( =aa  is actually 

)(*)( AAAA TT . From the above proof, we know that p
jij

T
i 1,

2}){( =aa = )()( AA ππ T , 

which means )()( AA ππ T = )(*)( AAAA TT .  Theorem 7.28 in Schott (1997, p 276) 

stated that )()*( minmin ABBA λ≥λ  for any non-negative definite matrices A and B.  

The matrix AAT  is a non-negative definite matrix so that we can have 

)))((())(*)(( minmin AAAAAAAA TTTT λ≥λ .Since 

))(()))((( 2
minmin AAAAAA TTT λ=λ , the above inequality is equivalent to 

)())()(( 2
minmin AAAA TT λ≥ππλ .  ◊ 
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