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ABSTRACT

Tool Path Generation and 3D Tolerance Analysis for

Free-Form Surfaces. (May 2004)

Young Keun Choi, B.S., Konkuk University;

M.S., Konkuk University

Chair of Advisory Committee: Dr. Amarnath Banerjee

This dissertation focuses on developing algorithms that generate tool paths for

free-form surfaces based on the accuracy of a desired manufactured part. A manufac-

turing part is represented by mathematical curves and surfaces. Using the mathemat-

ical representation of the manufacturing part, we generate reliable and near optimal

tool paths as well as cutter location (CL) data file for postprocessing. This algorithm

includes two components. First is the forward-step function which determines the

maximum distance, called forward step, between two cutter contact (CC) points with

a given tolerance. This function is independent of the surface type and is applica-

ble to all continuous parametric surfaces that are twice differentiable. The second

component is the side-step function which determines the maximum distance, called

side-step, between two adjacent tool paths with a given scallop height. This algorithm

reduces manufacturing and computing time as well as the CC points while keeping

the given tolerance and scallop height in the tool paths. Several parts, for which the

CC points are generated using the proposed algorithm, are machined using a three

axes milling machine. As part of the validation process, the tool paths generated

during machining are analyzed to compare the machined part and the desired part.
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CHAPTER I

INTRODUCTION

A. Introduction

1. Introduction

Process planning is the function within a manufacturing facility that establishes

which processes and parameters are to be used to convert a part from its initial form to

a final form predetermined in an engineering drawing. Alternatively, process planning

could be defined as the act of preparing detailed work instructions to produce a part.

Initial material can take a number of forms, the most common of which are bar stock,

plate, casting, forging, or maybe just a slab of metal. With these raw material as a

base, the process planner must prepare a list of processes to convert this normally

predetermined material into a predetermined final shape.

Figure 1 represents the structure of a complete computer-aided process planning

system. Although no existing turnkey system integrates all of the functions shown in

the figure 1, it illustrates the functional dependencies of a complete process planning

system. In figure 1, the modules are not necessarily arranged based on importance

or decision sequence. The system monitor controls the execution sequences of the

individual modules. Each module may require execution several times in order to

obtain an ”optimum” process plan.

The input to the system will be a three-dimensional model from a computer-aided

design (CAD) data base. The model contains not only the shape and dimensioning

information, but also the tolerance and special features. The process plan can be

The journal model is IEEE Transactions on Automatic Control.
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routed directly to the production planning system and production control system.

Time estimates and resource requirement can be sent to the production planning

system for scheduling. The part program, cutter location (CL) file, and material

handing control program can also be sent to the control system.

Process planning is the critical bridge between design and manufacturing. De-

sign information can be translated into manufacturing language only through process

planning. Today both computer-aided design (CAD) and manufacturing (CAM) have

been implemented. Integrating, or bridging, these functions requires automated pro-

cess planning[6].

2. Computer-Aided Part Programming

In figure 1, cutter path generation module is the focus of this dissertation. In this

module, numerical control (NC) plays an very important role to transform the raw

material into a finished part specified on an engineering design that is either design

on paper or in a CAD model. NC system consists of three basic components:

1. A program of instructions

2. A machine control unit

3. Processing equipment

The program of instructions is the detailed step-by-step command that direct

the actions of the processing equipment. In machine tool application, the program of

instructions is called a part program. In this application, the individual commands

refer to positions of a cutting tool relative to the work table on which the work-part

is held. The program is coded on a suitable medium for submission to the machine

control unit.
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The machine control unit (MCU) consists of a micro computer and related con-

trol hardware that stores the program of instructions and executes it by converting

each command into mechanical actions of the processing equipment, one command

at a time. The MCU includes control system software, calculation algorithm, and

translation software to convert the NC part program into a usable format for the

MCU. Today, all MCUs are based on computer technology, hence computer numeri-

cal control (CNC) is referred to NC system.

The last component of NC system is the processing equipment. It accomplishes

the processing steps to transform the starting work-part into a finished part. Its

operation is controlled directly by the MCU, which in turn is driven by instructions

contained in the part programming. In NC machines, the processing equipment

consists of the worktable and spindle as well as the motors and controls to drive

them.

There are different types of movement accomplished by MCU whose features are

explained below. MCU systems for NC can be divided into two types.

1. point-to-point

2. continuous path

Point-to-point systems, also called positioning system, move the work table to

a programmed location without considering the path taken to get to that location.

Once the move has been completed, some processing action is accomplished by the

work head at the location such as drilling or punching a hole.

Continuous path systems generally refer to systems that are capable of continuous

simultaneous control of two or more axes. This provide control of the tool trajectory

relative to work-part. In this case, the tool performs the process while the worktable

is moving, thus enabling the system to generate angular surface, two dimensional
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curves, or three dimensional contours in the work-part. This control mode is required

in milling operations. The term contouring is used when continuous path control is

used for simultaneous control of two or more axes in machining operations. One of

the important aspects of contouring is interpolation. The paths that a contouring-

type NC system is require to generate often consists of circular arcs and other smooth

nonlinear shapes. To cut along a curved path, the curve must be divided into a series

of straight line segments that approximate the curve. The tool is commanded to

machine each line segment in succession so that the machine surface closely matches

the desired shape. The maximum error between the desired surface and the finished

surface can be controlled by the length of the individual line segments which is one

of the main tasks of this dissertation. We will discuss more in detail in following

sections.

The computer’s role in computer-aided part programming consists of the follow-

ing tasks

1. input translation

2. arithmetic and cutter offset computations

3. editing

4. postprocessing

The first three tasks are carried out under the supervision of the language process-

ing program. The fourth task, postprocessing, requires a separate computer program.

The sequence and relationship of the tasks of the part programmer and the computer

are portrayed in figure 2.

The input translation module converts the coded instructions contained in the

program into computer-usable form, preparatory to further processing.
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The arithmetic module consists of a set of subroutines to perform the mathe-

matical computations required to define the part surface and generate the tool path,

including compensation for cutter offset. The individual subroutines are called by the

various statements used in the part programming language. The arithmetic computa-

tions are performed on the PROFIL file. The arithmetic module frees the programmer

from the time consuming and error-prone geometry and trigonometry calculations to

concentrate on issues related to work-part processing. The output of this module is

a file called CLFILE, which stands for “cutter location(CL) file”. This file consists

mainly of tool path data.

In the editing phase, the CLFILE is edited, and a new file is generated called

CLDATA. CLDATA provides readable data on cutter locations and machine tool

operating commands. The machine tool commands can be converted to specific in-

structions during postprocessing. Some of the editing of CLFILE involves processing

of special functions associated with the part programming language. The output of

the editing phase is a part program in a format that can be postprocessed for the

given machine tool on which the job will be accomplished.

The final task is postprocessing, in which the cutter location data and machining

commands in the CLDATA file are converted into low-level code that can be inter-

preted by the NC controller for a specific machine tool. The output of postprocessing

is a part program consisting of G-codes, x-, y-, and z-coordinates, S, F, M, and other

functions in word address format[17].

B. Related Work and Literature Review

The goal of tool path generation is to approximate the part being processed with

a number of curve that can be approximated by line segments. Ideally, every point on
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the designed part should be a CC point so as to minimize machining error. However,

it is very expensive and time consuming. In the process of tool path generation for

a designed part, we distinguish between a tool path distribution strategy and a tool

path calculation strategy[30]. We introduce each strategy in the following sections.

1. Tool Path Distribution Strategy

There are several strategies of distributing the tool path in the domain of the

designed part. The goal of tool path distribution strategies is to span the entire

designed part. The commonly used tool path distribution strategies are

1. zig-zag or raster curves

2. contour curves

3. spiral curves

4. space filling curves

5. sequential generated curves

In this section, we outline commonly used tool path distribution strategies.

1. Zig-zag Curves:

The most commonly used tool path distribution strategies is the zig-zag

strategy, due to the simple algorithm involved in calculating the spanning
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elements. This strategy involves filling the domain with parallel rays which are

trimmed at the boundaries.

2. Contour Curves:

The contour strategy is advantageous when the boundary contours are

included as spanning elements, since a uniform boundary results. This strategy

involves shrinking/expanding contours till the entire domain is spanned.

3. Space Filling Curves:

The previous strategies give a directionality or lay to the surface finish on the

manufactured part. The space filling strategy avoids the directionality by

frequent changes in orientation of the spanning elements by means of recursive

algorithms. The disadvantage of using the space filling strategy is that the

overall length of the spanning elements, in general, is large, increasing

manufacturing time. In addition, the number of short spanning elements is

disadvantageous to the NC machine, since the tool is unable to accelerate to

the specified feedrate.

4. Sequential Curves:

This strategies involves sequentially generating spanning elements starting

with a given initial spanning element. The sequential distribution strategy is

advantageous due to the flexibility of generating various geometries of

spanning elements. The disadvantage of this strategy is the complexity

involved in calculating spanning elements.

Figure 3 schematically shows the above strategies of tool path distribution on

a unit square by means of spanning elements. These spanning elements on a unit

square are then calculated, such that they lie on the designed part, by means of

tool path calculation methods discussed in the next section. It is in the tool path
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calculation methods that the spacing between the tool paths and geometric accuracy

is determined.

2. Tool Path Calculation Strategy

Tool path calculation is the method by which the trajectories of the tool is

constrained to lie on the designed part. Commonly used tool path generations are as

follows:

1. planar section curve

2. iso-parametric curve

3. offset curve

4. projection curve

5. constructive solid geometry (CSG)

Each method is discussed in this section.

1. Planar section curve:

One of the earliest method of generating tool paths was driving the tool along

curves which are intersections of user specified surfaces with the designed part.

Gouging or undercutting of the manufactured part was prevented by defining

check surfaces[3]. This was the basis of APT(automatically programmed

tools) which was developed in the early sixties. It is shown in figure 4. Even

today, generating tool paths along planar intersection curves is a very common

method and improved planar section tool path generation methods that take

into consideration maximum inaccuracy of the manufactured part have been

developed[20]. Some of the disadvantages of using plane sections as tool path
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Fig. 4. Surfaces in APT

are (a) the overall length of tool path is very large, (b) the tool paths do not

take into account the geometry of the designed part.

2. Iso-parametric curve:

With the introduction of parametric patches such as Bézier and B-spline

surface in the late sixties and seventies, machining along iso-parametric curves

was seen as an alternative to APT. Using iso-parametric curves, costly

surface-surface intersection computations were avoided and it became easier

for the user to specify tool paths[23][4].

3. Offset curve:

Offset curves on the designed part was proposed to obtain a desired accuracy

on the manufactured part. Of all the tool path generation techniques

available, this technique has the potential of offering the user a direct control

over the accuracy of the manufactured part[35][22].
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4. Constructive solid geometry:

In CAD/CAM, a variety of useful operations can be performed before the

object is manufactured. We may wish to determine whether two objects

interfere with each other, for example, whether a cutting tool will cut only the

material it is intended to remove. There are several techniques to represent

object as a solid[15]. In constructive solid geometry (CSG), simple primitives

are combined by means of regularized Boolean set operators. Before we

discuss the CSG, regularized Boolean set operators is explained. Regularized

boolean set operation is one of the most intuitive technique to represent object

using boolean set operation such as union, difference, and intersection.

However, boolean set operations generate a solid, a plane, a line, a point as

well as null object. It generates “dangling” boundary points, lines, or surfaces.

In contrast, regularized boolean set operations can contain no “dangling”

points, lines, as well as surfaces. As shown in figure 5 (a), the ordinary

boolean intersection of two objects contains the intersection of the interior and

boundary of each object with the interior and boundary of the other as shown

in 5 (b). The regularized boolean intersection of two objects contains the

intersection of their interior and the intersection of the interior of each with

the boundary of the other, but only a subset of the intersection of their

boundaries as shown in 5 (c). In CSG, an object is stored as a tree with

operators at the internal nodes and simple primitives at the leaves. The

general processing strategy is a depth-first tree walk to combine nodes from

the leaves on up the tree. The complexity of this task depends on the

representation in which the leaf objects at the tree’s root must actually be

produced. As shown in figure 6, there are two objects, A and B. The figure is

shown A ∪ B.
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A

B

Fig. 5. Boolean intersection

Fig. 6. CSG operation
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3. Literature Review

The tool paths generation can be classified into 3 methods, iso-parameric, iso-

planning, and iso-scallop height.

In iso-parametric method, Loney and Ozoy[23] and Broomhead and Edkins[4]

have studied the tool path generation using iso-parametirc curve. They approximated

tool path into surface using iso-parametric curve on the surfaces and the distance

between adjacent tool paths, side-step (g), is calculated based on the worst case

scallop height. The forward-step was calculated by “quick and dirty” method which

is iterative and lengthy. Although this approach is the most widely used for the

tool paths generation, it is computationally expensive because a search strategy was

employed. In order to improve the computational efficiency, a quick estimate approach

may be more desirable.

In iso-planar machining, the tool paths are along with the series of planes on the

part. Borrow [3] and Huang and Oliver [20] have developed iso-planar NC tool-paths

generation. A part consists of CSG is sectioned by a series of planes to obtain cut-

ter contact points. Since the calculations are very tedious and sectioning plane is a

non-trivial problem, this methods are not efficient to generate tool paths for free-form

surfaces. Huang and Oliver[20] have also developed iso-planar tool path generation

methods based on non-constant scallop height on the manufactured part. They im-

plemented iso-planar machining on parametric surfaces and determine a machining

error using a computational approach. However, calculations are also iterative and

lengthy. A search strategy is also used to determine the forward-step, as compared

to our method for the forward-step.

The last approach is iso-scallop machining. Suresh and Yang[35]and Lin and

Koren[22] have studied scallop height machining. It was proposed to obtain a de-
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sired accuracy on the manufactured part. Using this method, the user can control

the accuracy of the manufactured part. In these methods of tool path generation,

the objective is to generate shortest overall length of tool paths with predetermined

accuracy of the manufacturing part, tolerance and scallop height. Suh and Lee[34]

have focused on spiral machining, “iso-offset zigzag machining”. The spiral tool path

as constant offset in the Euclidean space is also calculated by considering the worst

case along the boundary profile.

Our method for tool path generation is similar to iso-scallop machining in that

we generate tool paths based on predetermined tolerance and scallop height by using

offset of an iso-parametric curve on the designed part. However, we propose a new and

accurate method to generate tool paths on the designed part. There are problems to

be solved in generation of tool paths. The first problem is cutting efficiency and cut-

ting accuracy in milling operation. The second problem is computing efficiency, since

surface calculations are generally iterative and lengthy. Last, true machining error

will be verified. In order to obtain good accuracies we have used exact mathematical

representation of the surface.

C. Research Motivation

A manufactured part is produced by a NC program containing a series of coded

instruction called NC code which directly affect accuracy and cost of manufactured

part, because accuracy and cost are proportional to the machining time. The coded

instruction (specific command and numerical value) makes specific trajectories on the

part being processed called tool path. There are two main tasks (main subjects of

this research) in NC part programming. The first task is tool path generation. The

second task is defining geometry of the part to be machined.
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Milling operation is the primary machining process in the manufacturing of a

part and divided by two stages. The first stage is rough stage, the second stage is

finish stage. In rough stage, the part is machined in incremental layers and cutter

removes most of the material on the surface so as to avoid damage of tool or/and

machine. In finish stage, the surface is machined smoothly by approximating surface

using line segments to get desired part with predetermined accuracy and shape. The

tool paths in finish stage are important, since the tool path directly affect the accuracy

and manufacturing time of the manufactured part.

In milling operation, a rotating spindle touches the surface at cutter contact point

(CC) and moves to next CC point linearly, that is a curved path is approximated by a

straight line segment as shown in figure 7(a). The accuracy of this linear approxima-

tion controlled by deviation is called tolerance. There is also an un-machined region

between adjacent tool paths called scallop or cusp [figure 7(b)]. After the machining,

a grinding operation is needed to remove scallop. However, the grinding operation to

remove scollop between adjacent tool paths is very expensive and time consuming.

The large scallops increase amount of machining time to smooth the machined sur-

face. Therefore, appropriate tool path in finish stage is very important to reduce the

amount of secondary processes such as grinding and/or polishing.

It is also important to generate tool path with less cutter contact point with

given tolerance and scallop height that affect accuracy of work-part being processed

since we assume that the more line segments, the more is the machining time. Each

discrete line segment quantity is called a forward-step denoted as “s” in figure 7(a)

and the maximum allowable deviation is referred to as the tolerance denoted as “e”

in figure 7(a). Further, the distance between two adjacent tool paths called the side-

step denoted as “g” in figure 7(b). The maximum allowable height of this scallop is

called the scallop-height denoted as “h” in figure 7(b). The value of “e” and “h” are
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s

e

g

h

Fig. 7. Forward-step and side-step

determined in advance and then “s” and “g” are calculated from the value of “e”

and “h”, respectively[35].

A ball-end mill cutter on a 3-axis milling machine is used to generate tool paths.

When we design the NC part program, one of the main tasks is defining geometry of

the part. A surface is the image of a sufficiently regular mapping of a set of points in

a domain into a 3D space and expressed as

r(u, v) = (x(u, v), y(u, v), z(u, v)) (1.1)

where u and v are the parameters of the surface. If the surface is defined on a bounded

domain, generally u = 1, v = 1, it is called a surface patch. A composite surface may

consist of single patches with predetermined continuity condition between patches.

When the domain of a surface is the xy-plane of the given Cartesian coordinate

system, the parametric surface equation given by equation (1.1) reduces to

Z = f(x, y) (1.2)
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It is in an explicit function form and is called a nonparametric surface equation. Now

consider an analytic function

g(x, y, z) = 0 (1.3)

which gives an implicit surface equation. If g(x, y, z) is a linear function it becomes

a plane equation; if g(x, y, z) is a polynomial of degree 2 then it gives a quadratic

surface. A surface represented by equation (1.3) is called an ’analytic surface’, and

one represented by equation (1.1) is called a ’sculptured surface’. A surface that

consist of analytic surface elements (equation (1.2) or equation (1.3)) is called ’analytic

compound surface’, and one that consists of sculptured surface elements (equation

(1.1)) is called a ’parametric compound surface’[8].

In this research, we develop a efficient approach to generate tool paths for NC

machining of free-form surfaces. As such the primary goals of this research are

1. developing a new method for tool path generation in milling operations

2. verifying true machining error in milling operations

We use mathematical representation of tool and manufactured parts to make our

algorithm efficient and reliable. Using this mathematical representation, we are able

to determine reliable forward-step size. From there we develop a method for side-

step size by studying the geometry of the tool and the differential geometry of the

designed part. In this step, we reduce not only the size of the CL (Cutter Location)

data file and machining time but also manufacturing data generated from machining,

that is we reduce cost of data manipulation as well as storage. We then verify true

machining errors by comparing the machined and designed surfaces using the point

cloud method. As a result of this algorithm, the part can be machined in the least

machining time while keeping up with predetermined tolerance and scallop height in



19

the tool path.

D. Dissertation Outline

The remainder of this dissertation is as follows. Chapter II introduces mathe-

matical background of curves and surfaces by which a designed manufactured part

can be represented. This chapter includes mathematical formulation of curves and

surfaces, their derivatives, and differential geometry of curve and surface. In Chapter

III, we propose algorithms to generate tool paths using mathematical representation

described in Chapter II. In this chapter, we develop new methods that calculate for-

ward and side-step in milling operation for free-form surface. It also includes the

methods that convert forward and side-step quantity from physical domain to para-

metric domain. In Chapter IV, the proposed approach is implemented; CL points are

generated using the proposed approach and are subsequently machined using a 3-axis

milling machine. This chapter also includes results of experiment. We verify tolerance

and scallop height after machining by combining the designed and machined surface.

We conclude with Chapter V, that summarizes this dissertation. In this chapter

includes important contribution of this dissertation as well as recommendation for

future research.
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CHAPTER II

MATHEMATICAL REPRESENTATION

In this chapter, we introduce the mathematical preliminaries which help in devel-

oping a new method for tool path generation. The designed part can be represented

by parametric curves and surfaces such as Bézier curves and surfaces. We generate

Bézier curve using de Casteljau algorithm as described in section A. In sections B

and C, blossoms and mathematical representation of Bézier curve are introduced.

The Bézier surface patch is explained in section D. In last section (section E), we

introduce the differential geometry of curves and surfaces on the designed part. The

mathematical representation in this chapter is based on [12], [14], [1], [29], [10], and

[15]. In the following sections, bold letters will represent vectorial quantities and unit

vectors will be shown by a hat.

A. The De Casteljau Algorithm

de Casteljau algorithm:

Given: b0,b1, · · · ,bn ∈ E3 and t ∈ R,

set

br
i (t) = (1− t)br−1

i (t) + tbr−1
i+1 (t)





r = 1, · · · , n

i = 0, · · · , n− r

and b0
i (t) = bi. Then bn

0(t) is the point with parameter value t on the Bézier Curve

bn, hence bn(t) = bn
0(t). The polygon P formed by b0, · · · ,bn is called the Bézier

polygon or control polygon of the curve bn. Similarly, the polygon vertices bi are

called control points. A cubic Bézier curve is illustrated in figure 8. The point, b3
0

can be obtained from iterative linear interpolation of control points. For example,
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b1
0(

1
2
) = 1

2
b1(1

2
) + 1

2
b1(

1
2
). In this example, t = 1

2
. This curve is the Bernstein-Bézier

approximation to the control polygon. The intermediate coefficient br
i (t) can be

written in triangular array, the de Casteljau scheme. The cubic case can be expressed

as

b0

b1 b1
0

b2 b1
1 b2

0

b3 b1
2 b2

1 b3
0

(2.1)

In equation 2.1, b0,b1,b2,b3 are control points for the curve as shown in figure

8. b1
0 can be obtained linear interpolation between b0 and b1. If parameter t = 1

2
,

the point b1
0 should be placed a half way between b0 and b1 as shown in figure 8. If

parameter t = 0 and t = 1, the point, b1
0, can be b0 and b1, respectively. In similar

manner, the control points b1
1 is linear interpolant between control points, b1 and b2.

The last interpolant b3
0 can be obtained linear interpolation between b2

0 and b2
1.

B. Blossom of Polynomial

Blossoming is an elegant tool for studying polynomial curves expressed in the

Bézier form. It provides a simply way of determining the control polygon of the poly-

nomial curve over an interval. The fundamental idea of this approach is that for any

polynomial function F (x) of degree n, there exists a unique function f(u1, u2, . . . , un)

which is n− affine (i.e.,f(u1, u2, . . . , un) = f(uσ(1), uσ(2), . . . , uσ(n))) for any permu-

tation σ on 1, 2, ..., n) and satisfies f(x, x, . . . , x) = F (x) for every x ∈ R. Function

f is called the blossom of polar form of F.

If the polynomial F is expressed in the Bernstein basis, Bn
i (x), over an interval
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Fig. 8. The de Casteljau algorithm

[a, b], i.e.,

F (x) =
n∑

i=0

piB
n
i (x)

where Bn
i (x), i = 0, . . . , n, are the Bernstein polynomials defined by

Bn
i (x) = Ci

nα(x)n−iβ(x)i

and α(x), β(x) the barycentric coordinates of x with respect to a and b, i.e.,

α(x) = (b− x)/(b− a), β(x) = (x− a)/(x− b)

then the value of pi is equal to f(a, . . . , a,︸ ︷︷ ︸
n−i

b, . . . , b︸ ︷︷ ︸
i

), where f is the blossom of the

polynomial F . The points (a + i(b−a)
n

, pi), i = 0, 1, . . . , n, are called the Bézier points

of F with respect to the interval [a, b]. The linear interpolant of the Bézier points

is also called the control polygon of the polynomial F with respect to the interval

[a, b]. In this dissertation, we also called the sequence of real values (p0, p1, . . . , pn)

the control polygon of the polynomial F with respect to interval [a,b]

Since the blossoms are closely related to the de Casteljau algorithm, the blossoms
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are also represented in triangular array.

b0

b1 b1
0[t1]

b2 b1
1[t1] b2

0[t1, t2]

b3 b1
2[t1] b2

1[t1, t2] b3
0[t1, t2, t3]

(2.2)

If we set all three values equal, t = t1 = t2 = t3, the original curve can be

recovered. The first and last points of curve can be expressed using blossoms that is

b[0, 0, 0] = b0 and b[1, 1, 1] = b3. If [t1, t2, t3] = [0, 1, 1], the triangular array equation

2.2 can be simplified to the following triangular array.

b0

b1 b0

b2 b1 b1

b3 b2 b2 b2[0, 1, 1]

(2.3)

Thus we can find original Bézier points using the blossoms at arguments consisting

only 0′s and 1′s. Therefore, the de Casteljau algorithm can be expressed as following

triangular array

b0 = b[0, 0, 0]

b1 = b[0, 0, 1] b1
0[0, 0, t]

b2 = b[0, 1, 1] b1
1[0, t, 1] b2

0[0, t, t]

b3 = b[1, 1, 1] b1
2[t, 1, 1] b2

1[t, t, 1] b3
0[t, t, t]

(2.4)

Thus, we can express the Bézier points using these blossom value:

bi = b[0<n−i>, 1<i>] (2.5)

where 0<n−i> means that 0 appears n − i times in argument. So, the de Casteljau
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algorithm can be expressed as

b[0<n−r−i>, t<r>, 1<i>] =

(1− t)b[0<n−r−i+1>, t<r−1>, 1<i>] + tb[0<n−r−i>, t<r−1>, 1<i>] (2.6)

The point on the curve is b[t<n>].

We represented Bézier curve defined by interval [0, 1] so far. However,we can

also represented Bézier defined by interval over [a, b]. In this interval, Bézier points

are expressed by the following equation:

bi = b[a<n−i>, b<i>] (2.7)

Figure 9 shows the Bézier curve defined over interval [a, b].

C. Bézier Curve

1. Mathematical Representation of Bézier Curve

Bézier curves can be defined by a recursive algorithm, which is how de Casteljau

first developed them. We will express Bézier curves in terms of Bernstein polynomials

Bn
i (t) =

(
n

i

)
ti(1− t)n−i

One of their important properties is that they satisfy the following recursion:

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t)

with

B0
0(t) ≡ 1
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Fig. 9. Bézier curve over interval [a, b]

and

Bn
j (t) ≡ 0 for j /∈ 0, 1, . . . , n

The proof is simple:

Bn
i (t) =

(
n
i

)
ti(1− t)n−i

=
(

n−1
i

)
ti(1− t)n−i +

(
n−1
i−1

)
ti(1− t)n−i

= (1− t)Bn−1
i (t) + tBn−1

i−1 (t)

Another important property is that Bernstein polynomials form a partition of unity:

n∑
j=0

Bn
j (t) ≡ 1

A Bézier curve may be written as b[t<n>] in blossom form. Since t = (1−t)·0+t·1,

the blossom may be expressed as b[((1−t) ·0+t ·1)<n>], and now the Leibniz formula

directly yields,

b(t) = b[t<n>] =
n∑

i=0

biB
n
i (t) (2.8)
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since bi = b[0<n−i>, 1<i>].

Similarly, the intermediate de Casteljau point br
i can be expressed in terms of

Bernstein polynomials of degree r:

br
i (t) =

r∑
j=0

bi+jB
r
j (t) (2.9)

this follows directly from

br
i (t) = b[0n−r−i, tr, 1i]

and the Leibniz formula.

With the intermediate points br
i at hand, we can write a Bézier curve in the form

bn(t) =
n−r∑
i=0

br
i (t)B

n−r
i (t) (2.10)

This is to be interpreted as follows: first, compute r levels of the de Casteljau

algorithm with respect to t. Then, interpret the resulting points br
i (t) as control

points of a Bézier curve of degree n− r and evaluate it at t.

2. The Derivative of a Bézier Curve

We start with an identity, closely resembling Leibniz’s formula for derivatives.

Let t be on the real line, and let ~v be a vector in the associated 1D linear space. Then

b[(t + ~v)<n>] =
n∑

i=0

(
n

i

)
b[tn−i, ~v<i>] (2.11)

This is an immediate consequence of the Leibniz formula.

The derivative of a curve x(t) is typically defined as

dx(t)

dt
= lim

h→0

1

h
[x(t + h)− x(t)]

We will be a little more precise and observe that t is a 1D point, whereas h is a 1D
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vector. We thus denoted it by ~h and obtain

dx(t)

dt
= lim

~h→~0

1∣∣∣~h
∣∣∣
[x(t + ~h)− x(t)]

Then, we have

dx(t)

dt
= lim

~h→~0

1∣∣∣~h
∣∣∣

[ n∑
i=0

(
n

i

)
b[t<n−i>,~h<i>]− b[t<n>]

]
(2.12)

For i = 0, two terms b[tn] cancel. We expand the rest and factor in the term
∣∣∣~h

∣∣∣ :

dx(t)

dt
= lim

~h→~0

(
nb

[
tn−1,

~h∣∣∣~h
∣∣∣

]
+

(
n

2

)
b

[
t<n−2>,

~h∣∣∣~h
∣∣∣
,~h

]
+ · · ·

)

We observe that
~h

|~h| = ~1. Taking the limit annihilates all other terms containing ~h,

and we thus have

dx(t)

dt
= nb[t<n−1>,~1] (2.13)

From now on, we use the expression ẋ(t) for the first derivative. This has two

possible interpretations. For the first one, we perform a de Castejau step with respect

to ~1, and then n-1 steps with respect to t; as an equation:

ẋ(t) = n

n−1∑
j=0

(bj+1 − bj)B
n−1
j (t) (2.14)

This can be simplified somewhat by the introduction of the forward difference operator

∆:

∆bj = bj+1 − bj (2.15)
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We now have for the derivative of a Bézier curve:

ẋ(t) = n

n−1∑
j=0

∆bjB
n−1
j (t); ∆bj ∈ R3 (2.16)

For a second interpretation of (2.13), we first perform n-1 steps of the de Casteljau

algorithm, resulting in the two points bn−1
1 (t) and bn−1

0 (t). Now performing one step

with respect to ~1 yields (after multiplication by n):

ẋ(t) = n
(
bn−1

1 (t)− bn−1
0 (t)

)
(2.17)

Higher derivatives follows the same pattern:

drx(t)

dtr
=

n

(n− r)!
b[t<n−r>,~1<r>] (2.18)

To compute the derivatives from the Bézier points, we first generalize the forward

difference operator(2.15): the iterated forward difference operator ∆r is defined by

∆rbj = ∆r−1bj+1 −∆r−1bj (2.19)

We list a few examples:

∆0bi = bi

∆1bi = bi+1 − bi

∆2bi = bi+2 − 2bi+1 + bi

∆3bi = bi+3 − 3bi+2 + 3bi+1 − bi

The factors on the right-hand sides are binomial coefficients, forming a Pascal like

triangle. This pattern holds in general:

∆rbi =
r∑

j=0

(
r

j

)
(−1)r−jbi+j (2.20)
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The rth derivative of a Bézier curve is now given by

dr

dtr
bn(t) =

n!

(n− r)!

n−r∑
j=0

∆rbjB
n−r
j (t) (2.21)

Two important special cases of (2.21) are given by t = 0 and t = 1.

dr

dtr
bn(0) =

n!

(n− r)!
∆rb0 (2.22)

and

dr

dtr
bn(1) =

n!

(n− r)!
∆rbn−r (2.23)

Thus the rth derivative of a Bézier curve at an end point depends only on the r + 1

Bézier points near (and including) that end point. For r = 0, we get the already

established property of endpoint interpolation. The case r = 1 states that b0 and

b1 define the tangent at t = 0, provided they are distinct. Similarly, bn−1 and bn

determine the tangent at t = 1.

D. Bézier Surface Patch

1. Mathematical Representation of Bézier Surface

The definition of a surface is “a surface is the locus of a curve that is moving

through space and thereby changing its shape”. We now formalize this intuitive

concept in order to arrive at a mathematical description of a surface. First, we

assume that the moving curve is a Bézier curve of constant degree m. At any time,

the moving curve is then determined by a set of control points. Each original control

point moves through space on a curve. Our next assumption is that this curve is

also a Bézier curve, and that the curve on which the control points move are all of

the same degree. This can be formalized as follows: Let the initial curve be a Bézier
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curve of degree m:

bm(u) =
m∑

i=0

biB
m
i (u).

Let each bi traverse a Bézier curve of degree n:

bi = bi(v) =
n∑

j=0

bi,jB
n
j (v).

We can now combine these two equations and obtain the point bm,n(u, v) on the

surface bm,n as

bm,n(u, v) =
m∑

i=0

n∑
j=0

bi,jB
m
i (u)Bn

j (v). (2.24)

With this notation, the original curve bm(u) now has Bézier points bi,0; i = 0, . . . , m.

An arbitrary iso-parametric curve v̂ = const of a Bézier surface bm,n is a Bézier

curve of degree m in u, and its m + 1 Bézier points are obtained by evaluating all

column of the control net at v̂ = const. As a formula:

b0,n
i,0 (v̂) =

n∑
j=0

bijB
n
j (v̂); i = 0, . . . , m.

Iso-parametric curves û = const are treated analogously.

2. The Derivative of a Bézier Surface

In the curve case, taking derivatives was accomplished by differencing the control

points. A partial derivative is the tangent vector of an iso-parametric curve. It can

be found by a straightforward calculation:

The derivatives are partial derivatives ∂
∂u

or ∂
∂v

. This partial derivative is tangent

vector of iso-parametric curve. It can be calculated by following Equation.

∂

∂u
bm,n(u, v) =

n∑
j=0

[
∂

∂u

m∑
i=0

bi,jB
m
i (u)

]
Bn

j (v). (2.25)

where m is degree of Bézier curve in u, and n is degree of Bézier curve in v.
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We can rewrite Equation 2.25 in terms of forward difference operator ∆.

∂

∂u
bm,n(u, v) = m

n∑
j=0

m−1∑
i=0

∆1,0bi,jB
m−1
i (u)Bn

j (v). (2.26)

The superscript (1, 0) of difference operator means that differencing is performed only

on the first subscript. ∆1,0bi,j = bi+1,j − bi,j. If we take partial derivative in terms

of v, the difference operator act only on the second subscript. ∆0,1bi,j = bi,j+1−bi,j.

Therefore, partial derivative in v can be written by following equation.

∂

∂v
bm,n(u, v) = n

m∑
i=0

n−1∑
j=0

∆0,1bi,jB
n−1
j (v)Bm

i (u). (2.27)

Therefore, we can write the formulas for higher-order partial:

∂r

∂ur
bm,n(u, v) =

m!

(m− r)!

n∑
j=0

m−r∑
i=0

∆r,0bi,jB
m−r
i (u)Bn

j (v). (2.28)

Where the difference operator ∆r,0bi,j = ∆r−1,0bi+1,j −∆r−1,0bi,j and

∂s

∂vs
bm,n(u, v) =

n!

(n− s)!

m∑
i=0

n−s∑
j=0

∆0,sbi,jB
n−s
j (v)Bm

i (u). (2.29)

Where the difference operator ∆0,sbi,j = ∆0,s−1bi,j+1 −∆0,s−1bi,j

We can write down the mixed partial of arbitrary order:

∂r+s

∂ur∂vs
bm,n(u, v) =

m!n!

(m− r)!(n− s)!

m−r∑
i=0

n−s∑
j=0

∆r,sbi,jB
m−r
i (u)Bn−s

j (v). (2.30)

E. Differential Geometry

Differential geometry is the description of local curve and surface properties (such

as curvature). Specifically, we discuss differential geometry preliminaries which help

in quantifying the local geometry and curves and surfaces of the designed part.
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1. Differential Geometry of Curves

A curve in E3 is given by the parametric representation

x = x(t) =




x(t)

y(t)

z(t)




, t ∈ [a, b] ⊂ R (2.31)

Any point on a curve is obtained by specifying a value for the parameter t. Where its

cartesian coordinates x, y, and z are differentiable functions of t. To avoid potential

problems concerning the parametrization of the curve, we shall assume that

ẋ(t) =




ẋ(t)

ẏ(t)

ż(t)



6= 0, t ∈ [a, b] (2.32)

Where dots denote derivatives with respect to t. Such a parametrization is called

regular. Any point on a space curve x is obtained by specifying a value for the

parameter t. The length of the curve, estimated between any two values of the

parameter t is referred to as the arc length. The arc length can be estimated as

follows:

s(t) =

∫ b

a

√(dx2

dt
+

dy2

dt
+

dz2

dt

)
du (2.33)

Alternatively, the square of the differential arc length can be represented as follows:

ds2 = dx · dx = dx2 + dy2 + dz2 (2.34)

We can obtain a local cartesian (orthogonal) system with origin x and axes

t,m,b as shown in figure 10.

t =
ẋ

|ẋ| , m = b ∧ t, b =
ẋ ∧ ẍ

|ẋ ∧ ẍ| (2.35)
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X

b

m

t

Fig. 10. Frenet frame

where ∧ denotes the cross product.

The vectors,t,m,b are the tangent, normal, binormal vectors. The frame(or

trihedron) t,m,b is called the Frenet frame; it varies its orientation as t traces out

the curve.

The tangent can be geometrically visualized as a line that passes through two

infinitesimally close points on the curve. The plane containing the tangent and the

normal is referred to as the osculating plane and can be visualized as the plane

containing three infinitesimally close points on the curve x(t). The plane containing

the normal and the binormal is called the normal plane and the plane containing the

binormal and tangent vectors is called the rectifying plane. The scalar quantity k(s)

is the curvature of the curve x(t) at the point of evaluation. The curvature of the

curve measures the rate of change of the tangent vector along the curve. The radius

of curvature (inverse of curvature) is the radius of a circle that passes through three

infinitesimally close points on the curve. Figure 11 schematically shows the above

mentioned planes.
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Normal Plane

Rectifying Plane

Tangent Plane

x(t)

m(t)

t(t)

b(t)

Fig. 11. Curve frame

2. Differential Geometry of Surfaces

A surface may be given by an implicit form f(x, y, z) = 0 or by its parametric

form. The cartesian coordinates of a parametric surface x in terms of two parameters

as shown below.

r(u, v) =




x(u, v)

y(u, v)

z(u, v)




; u =




u

v


 ∈ [a, b] ⊂ R2 (2.36)

Points on the surface S are obtained by varying the parameters u and v. Where

the cartesian coordinates x, y, z of a surface point are differentiable functions of pa-

rameters u and v and [a, b] denotes a rectangle in the u− v plane. As in the case of

a curve, the surface S also has a frame consisting of three orthogonal unit vectors.

This frame is referred to as the surface frame and is represented as follows:

F(u, v) =




t̂1(u, v)

t̂2(u, v)

n̂(u, v)




(2.37)
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The vectors t̂1 and t̂2 represent the unit vectors and the vector n̂ represents the unit

normal vector of the surface S at given values of the parameters u and v as shown

below. The surface normal n̂ at an arbitrary point P(u, v) is expressed as

n̂ =
Xu ×Xv

|Xu ×Xv| (2.38)

Given an embedded curve P(u(t), v(t)) on the designed surface S passing through

a point Pp represents a parametric curve on the designed surface. The square of the

differential arc length at Pp, along curve P, on the surface can be expressed as follows.

I = P t · P t = E
du

dt

du

dt
+ 2F

du

dt

dv

dt
+ G

dv

dt

dv

dt
(2.39)

is referred to as the first fundamental-form, where “t” is the independent variable

along the path and

E = P u · P u; F = P u · P v; G = P v · P v (2.40)

are the coefficients of the first fundamental form. The first fundamental form provides

us with information of metric properties of the surface such as measurement of lengths,

areas and angles. The quadratic

II = L
du

dt

du

dt
+ 2M

du

dt

dv

dt
+ N

dv

dt

dv

dt
(2.41)

is referred to as the second fundamental-form where

L = P uu · n, M = P uv · n, N = P vv · n (2.42)

are the coefficients of the second fundamental form. The second fundamental form II

is of interest in deriving expression for curvature of a surface. The second fundamental

form provides measurement of change in the unit normal along the given curve on

the surface.
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CHAPTER III

PROPOSED APPROACH

In this chapter, we develop new methods for generating tool paths for free-form

surfaces that can be represented by parametric curves and surfaces. In section A,

we discuss how the CC point is on a tool and how the CL point is a reference point

by which the tool moves along a surface in removing material. In section B, we

discuss the conceptual approach through which we outline each step for generating

tool path. Sections C, D, and F are devoted to the new methods for tool paths

generation. In section C, we introduce the algorithm used to calculate forward-step

size. In section D, the algorithm used to calculate side-step size is introduced. In

section F, we introduce a method that converts forward and side-step size from the

physical domain to parametric domain.

A. Tool Characteristics

A proper tool must be used in machining that covers all the chip-making pro-

cesses (such as milling, drilling, turning, and boring). When the degree of complexity

for machining is increased, the number of tool selections and work-part materials also

increases. There are several factors to be considered in machining: first, selecting

tool material and geometry involves material, shape, size of the work-part, design

requirement, and operation type (roughing or finishing); second, deciding on machin-

ing conditions such as feed rate, spindle speed, and depth of cut. The metal cutting

process is the removal of work piece materials to obtain a designed part. In this

dissertation, we assume that the operation is milling with a ball-end tool. To reduce

machining error we have considered two kinds of points on the tool as shown in figure
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12. One is CC the point and the other is the CL point.

1. Cutter Contact Point and Cutter Location Point

The cutter contact(CC) point can be any point on the tool path where there

is instantaneous contact between the tool and the manufactured part. The cutter

location (CL) point is a fixed point which the machine drive tool references in moving

along the tool path. Ideally, the CC point should lie on the designed part so as to

minimize manufacturing errors. However, as shown in figure 12, the CC point is

not always located at the center point of the tool nose when working on a free-form

surface. In case of down-hill or up-hill machining, CC points would be to the left or

right side of the tip of the the tool nose. To reduce machining errors, CC points can

be converted to CL points in order to compensate. The CL point is always placed

along the normal direction of the point on the surface (as shown in figure 12). Thus,

a CL point can be obtained from a CC point and the surface normal of the point.

2. Conversion of CC to CL

The surface normal n at an arbitrary point P(u, v) is expressed as

n =
Su × Sv

|Su × Sv| (3.1)

where Su and Sv are the derivatives along the u and v directions on surface S at

point P. Assuming that the cutter axis T is parallel to the Z-axis, let T = (0,0,1). If

the surface normal vector n points to the -Z direction, the surface cannot be machined

with a 3-axis milling machine. As such, it is assumed in this research that all the

surface normal vectors point to the +Z direction, i.e (T · n) > 0.

For a ball-end mill, the CL point is the point on the offset surface of the workpiece,
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Fig. 12. CC and CL point

while the CC point is the point on the cutter that contacts the work piece surface(Pcc)

(figure 12). Let (Pcc) be the CC point, r be the radius of the ball-end mill, the CL

point (Pcl) is given by

Pcl = Pcc + rn (3.2)

B. Overall Conceptual Approach

In this section, we summarize the approaches that can be used to generate tool

paths. The proposed approach in this research is derived from an overall conceptual

approach as explained briefly in this section. The overall conceptual approach is also

summarized in the flowchart shown in figure 13.

1. Define the designed surface in the u, v − plane.

A designed part can be represented using Bézier curves and surfaces as de-

scribed in the previous chapter. In parametric surface, holding one parameter



39

Fig. 13. Overall procedure
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constant defines an iso-parametric curve. If one of the parameters reaches zero

or one, the curve becomes exactly one of the boundary curves surrounding the

surface. If both parameters are held constant, a point is specified on the surface

patch.

2. Calculate the forward-step size with given tolerance, e.

Each tool path on the surface is approximated by discrete points that make

errors in tolerance. In this step, we approximate the tool path by linear inter-

polation. The forward-step size, s can be calculated using derivatives of Bézier

curves while keeping up with predetermined tolerance. The forward-step size

is the maximum distance between CC points on the current tool path in which

deviation does not exceed given tolerance, e.

3. Convert the forward-step size form the physical domain into the parametric

domain

The calculated forward-step size is in the physical domain instead of the para-

metric domain, u, v. Thus, to calculate the next CC point, the forward-step

size has to be converted because work-part being processed is represented by

Bézier curves and surfaces using parameter values (u, v).

4. Convert CC points to CL points

The result of calculating the forward-step is a CC point that can be any point

on the tool. However, to reduce machining errors, it has to be converted to a

CL point using equation 3.2.

5. Calculate side-step, g with given scallop height, h

A manufactured part can be approximated by a series of tool paths. Un-

machined regions between adjacent tool paths are called scallop. When the
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parameter value of an iso-parametric curve reaches one at the end of current

curve, side-step (g), should be calculated for the next tool path. The side-

step size is the maximum distance between two adjacent tool paths in which

maximum scallop height is expressed.

6. Convert side-step from the physical domain into the parametric domain

The calculated side-step size is also in physical domain and it does need to be

converted in order to generate the next tool path.

7. Convert CC points to CL point points

The CC points are also converted to CL points to store the points as a CL data

file.

C. Calculation of Forward-Step

Each tool path is approximated by a series of line segments whose accuracy of

tool path is controlled by deviation [figure 7(a)]. Each segment amount is a forward-

step and the maximum deviation is called tolerance. To calculate forward-step, we use

first and second derivatives; therefore, this function is independent of surface types

and is applicable to all continuous parametric surfaces that are twice differentiable.

1. Theory

The mathematical formula for forward-step can be derived from iso-parametric

curve on the surface using some theorems and lemmas as shown below. First, we

consider Lipschitz condition.

Theorem 1. If f(x, y) is continuous at all points (x, y) in some rectangle

R : |x− x0| < a, |y − y0| < b
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and bounded in R, say,

|f(x, y)| ≤ K ∀(x, y) ∈ R (3.3)

then the problem, y′ = f(x, y), y(x0) = y0, has at least one solution y(x), which is

defined at least for all x in the interval |x− x0| < α where α is the smaller of the two

numbers a and b/K

Theorem 2. if f(x, y) and ∂f
∂y

are continuous for all (x, y) in that rectangle R and

bounded, say,

(a) |f | ≤ K, (b)

∣∣∣∣
∂f

∂y

∣∣∣∣ ≤ M ∀(x, y) ∈ R (3.4)

then the problem, y′ = f(x, y), y(x0) = y0, has only one solution y(x), which is

defined at least for all x in that interval |x− x0| < α

According to the theorems 1 and 2, since y′ = f(x, y), condition 3.3 implies that

|f(x, y)| ≤ K; that is, the slope of any solution curve y(x) in R is at least −K and

at most K. Hence the solution curve which passes through the point must lie in the

region bounded by lines whose slopes are −K and K, respectively. The conditions in

the two theorems above are sufficient conditions rather than necessary ones and can

be lessened. By the mean value theorem of differential calculus we have

f(x, y2)− f(x, y1) = (y2 − y1)
∂f

∂y
|y=ỹ (3.5)

where ỹ is a suitable value between y1 and y2. From this equation it follows that

|f(x, y2)− f(x, y1)| ≤ M |y2 − y1| (3.6)

and the condition 3.4(b) may be replaced by the above equation 3.6 which is known

as a Lipschitz condition.
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Lemma 1. Let (i) Ω be the set of all functions f(x) satisfying the Lipschitz condition

|f(x3)− f(x4)| ≤ K1 |x3 − x4| with a finite K1 in the interval (x1, x2), and f(x1) =

y1, f(x2) = y2; (ii) f1(x) be the function such that f1(x1) = y1, f1(x2) = y2, f
′
1(x) =

K1 for all x ∈ (x1, x3), f
′
1(x) = −K1 for all x ∈ (x3, x2), x1 ≤ x3 ≤ x2. Then for any

f(x) ∈ Ω, f(x) ≤ f1(x)for all x ∈ (x1, x2)

Lemma 2. Let (i) f1(x) and Ω be as defined above; (ii) L(x) be the function whose

graph is the straight line joining two points (x1, y1) and (x2, y2). then

max
f(x)∈Ω

{ max
x∈(x1,x2)

|f(x)− L(x)|} = max
x∈(x1,x2)

|f(x)− L(x)| = K1δ

2

where δ = (x2 − x1).

According to this lemma, the maximum deviation |f(x)− L(x)| for f(x) ∈ Ω is

obtained by considering the f1(x) of Ω. The magnitude of this deviation equals
∣∣∣( δ

2K1
)(K2

1 −m2)
∣∣∣ where m = L̇(x), and its maximum is attained for m = 0 giving us

K1δ
2

.

Since a function with a bounded derivative satisfied Lipschitz condition, using

the above lemmas we have the following theorem

Theorem 3. Let f(x) be a differentiable function with
∣∣∣ḟ(x)

∣∣∣ ≤ K1 for all x ∈ (a, b).

If f̂(x)is the piecewise linear approximation of f(x) in (a, b) with subdivision interval

s, then maxx∈(a,b)

∣∣∣f(x)− f̂(x)
∣∣∣ ≤ K1

s
2
.

Since twice differentiability of a function f(x) implies a Lipschitz condition on

ḟ , we have the following theorem

Theorem 4. Let f(x) be a twice differentiable function with
∣∣∣f̈

∣∣∣ ≤ K2 for all x ∈
(a, b). If f̂(x)is the piecewise linear approximation of f(x) in (a, b) with subdivision

interval s, then maxx∈(a,b)

∣∣∣f(x)− f̂(x)
∣∣∣ ≤ K2

s2

8
.
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Now the case in which both
∣∣∣ḟ

∣∣∣ and
∣∣∣f̈

∣∣∣ have known bounds K1 and K2 respec-

tively, is handled in the following theorem.

Theorem 5. Let f(x) be a twice differentiable function passing through the points

(x1, y1)(x2, y2) with
∣∣∣ḟ

∣∣∣ ≤ K1,
∣∣∣f̈

∣∣∣ ≤ K2. Let x2 ≥ x1, (x2−x1) = s,m = (y2−y1)
(x2−x1)

(|m| ≤
K1). Then depending on the values of δ,K1, K2 we have the information of Table I.

The distance between two CC points can be determined by using maximum

deviation (e), K1, K2. Using the above theorems, the forward-step, s, can be found

for any max
∣∣∣f(x)− f̂(x)

∣∣∣ (e) in the interval (x1, x2)[36]. They can then be used

to find the maximum value of s by using
∣∣∣f(x)− f̂(x)

∣∣∣ , x ∈ (a, b), where f̂ is the

piecewise linear approximation of f(x) in (a, b). It should be noted that Theorem 3,

4, 5 imply the existence of the derivatives since they are stated in terms of the first,

second, or both the derivatives. Again this method is independent of surface types

and is applicable to all continuous parametric surface that are twice differentiable.

2. Forward-Step Function

The derivatives are partial derivatives ∂
∂u

or ∂
∂v

. This partial derivative is a

tangent vector of an iso-parametric curve. It can be calculated by

∂

∂u
bm,n(u, v) =

n∑
j=0

[
∂

∂u

m∑
i=0

bi,jB
m
i (u)

]
Bn

j (v) (3.7)

where m is a degree of Bézier curve in u, and n is a degree of Bézier curve in v. We

can rewrite equation 3.7 in terms of forward difference operator ∆ from the chapter

II.

∂

∂u
bm,n(u, v) = m

n∑
j=0

m−1∑
i=0

∆1,0bi,jB
m−1
i (u)Bn

j (v). (3.8)

The superscript (1, 0) of the difference operator means that difference is per-
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Table I. Value of s

Value of s Error:max
∣∣∣f(x)− f̂(x)

∣∣∣
s < 2(K1−|m|)

K2
E1 = K2s2

8

s > 2(K1+|m|)
K2

E2 = 1
2
(K2

1 − |m|2)( s
K1
− 1

K2
)

2(K1−|m|)
K2

< s < 2(K1+|m|)
K2

E3 = (K1 + |m|){
√

2s(K1+|m|)
K2

K1+|m|
2K2

− s
}

s = 2(K1−|m|)
K2

E4 = max{E1, E3}
s = 2(K1+|m|)

K2
E5 = max{E2, E3}

formed only on the first subscript. ∆1,0bi,j = bi+1,j − bi,j. If we take v − partial,

the difference operator acts only on the second subscript. ∆0,1bi,j = bi,j+1 − bi,j.

Therefore, partial derivative in v can be written

∂

∂v
bm,n(u, v) = n

m∑
i=0

n−1∑
j=0

∆0,1bi,jB
n−1
j (v)Bm

i (u). (3.9)

However, higher-order partial can be expressed as

∂r

∂ur
bm,n(u, v) =

m!

(m− r)!

n∑
j=0

m−r∑
i=0

∆r,0bi,jB
m−r
i (u)Bn

j (v). (3.10)

where the difference operator is ∆r,0bi,j = ∆r−1,0bi+1j −∆r−1,0bi,j

and

∂s

∂vs
bm,n(u, v) =

n!

(n− s)!

m∑
i=0

n−s∑
j=0

∆0,sbi,jB
n−s
j (v)Bm

i (u). (3.11)

where the difference operator is ∆0,sbi,j = ∆0,s−1bij + 1−∆0,s−1bi,j

We can write down the mixed partial of arbitrary order
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∂r+s

∂ur∂vs
bm,n(u, v) =

m!n!

(m− r)!(n− s)!

m−r∑
i=0

n−s∑
j=0

∆r,sbi,jB
m−r
i (u)Bn−s

j (v). (3.12)

We can also determine partial and mixed derivatives of a point on a surface using

the above equations. From these, we are interested in four boundary curves such as

∂
∂u
|u=o,

∂
∂u
|u=1,

∂
∂v
|v=o, and ∂

∂v
|v=1. We can obtain one of the boundary curves, ∂

∂u
|u=0,

using the following equation.

∂r

∂ur
bm,n(0, v) =

m!

(m− r)!

n∑
j=0

∆r,0b0,jB
n
j (v). (3.13)

Similar patterns hold for the other three boundary curves. First and second deriva-

tives, K1 and K2, can be calculated by the above equation at each point, p, on the

surface. The maximum forward-step with given tolerance can then be determined.

Let K2 be the maximum second derivative of current curve. The forward-step

size can be calculated using

s2 =
K2

e ∗ 8
(3.14)

where e is given tolerance.

The cubic Bézier curve can be represented by four control points. Figure 14

shows a cubic Bézier curve with four control points generated by the de Casteljau

algorithm using MATLAB. In this figure, each circle (vertex of the control polygon)

is a control point of the cubic Bézier curve. Figure 15 shows the cubic Bézier curve

and CC points calculated by equation 3.14. In figure 15, each circle on the curve

represents CC points that will be converted to CL points used to generate the NC-
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code for machining. Figure 16 shows linear interpolation of the CC points. In this

example, the maximum distance between two CC points is 0.0816 inches and a total of

twenty six CC points were generated. Maximum and minimum deviation between the

designed curve and the linear interpolation of the CC points are 0.000694 inches and

0 inch with a given tolerance of 0.005 inches. The result is summarized in Table II.

The second column represents maximum and minimum measured tolerance. Distance

(third column), is the maximum step size between two CC points in the physical

domain; in the parametric domain, the maximum distance is 0.0401 if the curve is

bounded by parameter value u = 1. (The method that converts step size in physical

domain to that in parametric domain is introduced in section F.) According to the

result, there is no point at which the deviation between linear interpolation of CC

points and the curved surface that exceeds given tolerance, e. Thus, the algorithm

for calculating forward-step is working well for the parametric curve.

The forward-step function reduced CC points by 74%. The designed curve was

represented by one-hundred points, where the parameter value of the distance between

two points is 0.01 inches. However, we approximated the curve by twenty six points

with a given tolerance of 0.005 inches.

D. Calculation of Side-Step

For the purpose of machining, the designed part is approximated by a series of

parametric curves and the distance between two adjacent tool-paths is a finite distance

called the side-step. The side-step, in general, may vary along the machined surface

and the un-machined region between two adjacent tool paths (the scallop or cusp).

The upper limit on the height of this scallop is called the scallop-height-allowance.

Typically, the desired value of the scallop height is given, from which the side-step,
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Fig. 14. Cubic Bézier curve generated by the de Casteljau algorithm

Fig. 15. Cubic Bézier curve and CC points
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Fig. 16. Linear approximation of CC points

g, is determined.

1. Part Geometry

Consider a designed part S : r = r(u,v) which has unique normal n̂(u,v) defined

on its parametric domain. The method for calculating side-step used to calculate the

maximum side-step distance between two adjacent tool paths while observing the

Table II. Computational results

Given Measured Distance Number of

tolerance Max Min s CL points

0.005 0.0007 0.0 0.0816 26

unit=inches
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given scallop height, h. The designed part S in figure 17, is approximated by the

circle of curvature. Since we are interested in the path perpendicular to the tool

path, it is denoted ∗. The curvature of the surface in the direction of the given curve

is called the normal curvature and is calculated from

kn =
II

I
(3.15)

where I and II are first and second fundamental form introduced in section II.E.

The sign of the normal curvature indicates the direction of the center of the

curvature with respect to the surface normal. As shown in figure 17, the sign of

the curvature determines surface type (such as flat, concave, and convex). We are

interested in the radius of the curvature(R∗) along the path perpendicular to the tool

path at point, p on the surface.

To determine the radius of the curvature perpendicular to a parametric curve,

first we consider the angle γ between two curve directions.

Ṗ = Puu̇ + Pvv̇, Ṗ∗ = Puu̇
∗ + Pvv̇

∗

Then γ is given by

cosγ =
Ṗ · Ṗ∗

∣∣∣Ṗ
∣∣∣ ·

∣∣∣Ṗ∗
∣∣∣

=
Eu̇u̇∗ + F (u̇v̇∗ + v̇u̇∗) + Gv̇v̇∗√

Eu̇2 + 2Fu̇v̇ + Gv̇2
√

Eu̇∗2 + 2Fu̇∗v̇∗+ Gv̇∗2

where E, F, and G are coefficients of the first and second fundamental forms.

If Ṗ∗ is orthogonal to Ṗ(γ = π
2
), then it follows that

u̇∗

v̇∗
= −Fu̇ + Gv̇

Eu̇ + F v̇
= α (3.16)
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This leads to a simple expression of R∗.

R∗ =

∣∣∣∣
I

II

∣∣∣∣ (3.17)

where

I = E du∗
dt

du∗
dt

+ 2F du∗
dt

dv∗
dt

+ Gdv∗
dt

dv∗
dt

,

and

II = Ldu∗
dt

du∗
dt

+ 2M du∗
dt

dv∗
dt

+ N dv∗
dt

dv∗
dt

R∗ [3.17] then reduces to the equation

R∗ =

∣∣∣∣
E + 2Fα + Gα2

L + 2Mα + Nα2

∣∣∣∣ (3.18)

2. Side-Step Function

The side-step, g, is a function of the scollop height (h), tool-radius(r) and the local

radius of the curvature (R∗). In this section, we develop a new method to calculate

side-step size with the given constraint of scallop height. The designed part’s surface

can be classified into convex, concave, and flat surface. The curvature of convex,

concave, and flat surface are positive, negative, and zero, respectively. Therefore, we

consider three different cases to calculate side-step size, g.

First, a flat surface as shown in figure 18, II=0

h = r −
√

r2 − (
g

2
)2

g2 = 4r2 − 4(r − h)2

g = 2
√

r2 − (r − h)2 (3.19)

Second, a convex curvature shown in figure 19, II < 0

To find the side-step for a convex surface we find δ, the difference between a designed
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Designed Part

- Radius of curvature

+ Radius of curvature

Convex

Concave

Flat

Fig. 17. Sign convention of radius of the curvature

r

h

g

r

Fig. 18. Tool position on flat surface
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curve and a linear tool path, as shown in figure 19

δ = OB −OA

To find OA, we first calculate the side-step size, g (g
2

= p) using equation 3.19.

Because the side-step size is very small, we could use p (g
2
) as an initial value. So

OA =
√

r2 − p2

OB = R∗

h = r −
√

r2 − p2 + δ

g = 2
√

r2 − (r + δ − h)2 (3.20)

where R∗ is the local radius of the curvature of the convex surface.

Third, a concave curvature, II > 0

In a similar manner, we calculate the step size for a concave surface (figure 20).

δ = OB −OA

OA =
√

r2 − p2

OB = R∗

h = r −
√

r2 − p2 − δ

g = 2
√

r2 − (r − δ − h)2 (3.21)

where R∗ is the local radius of the curvature of the concave surface.

Using the above equations, g is calculated at each point on the current curve.

Among these values, the minimum is taken as the optimum value for the path interval

(g).
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Fig. 19. Tool position on convex surface
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Fig. 20. Tool position on concave surface
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E. Combination of Forward and Side-Step Error

The side-step function in the previous section is independent of forward-step

function controlled by chordal deviation (tolerance, e). However, the side-step func-

tion can be improved by considering given tolerance, e. The location of cutter on the

tool path is placed below (convex surface) or above (concave surface) the designed

surface due to the given tolerance, e as shown in figures 21 and 22. Thus, the scallop

height is overestimated and underestimated for the free-form surfaces. The maximum

scallop height is twice of the given scallop height and the minimum scallop height is

half of the given scallop height for free-form surfaces. Therefore, the scallop height is

varying from h/2 to 2h (= e+h) for free-form surfaces, although the part is machined

with constant scallop height, h. In the following, the maximum error will be close to

2h for free-form surfaces because the tolerance and scallop height are set as the same

value. If the scallop height is set as half of the given scallop height, h, all areas of

machined surface will be good within the given tolerance and scallop height.

F. Conversion of the Interval to the Parametric Domain

The forward and side-step size calculated in the previous section is in the physical

domain instead of the parametric domain (u, v). Since the part being processed is

represented by a Bézier surface which is described by using u, v parameters, we have to

convert the forward and side-step in the physical domain into the parametric domain

in order to calculate the next CC point on the surface.

1. Conversion of Forward and Side-Step Size

The forward and side-step size calculated in the previous section can not be apply

to the parametric domain directly because their directions of forward and side-step
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h 

e

Designed Surface

Machined Surface

Practical Tool Position

Fig. 21. Practical tool position on convex surface

h + e

e

Designed Surface

Machined Surface

Practical Tool Position

Fig. 22. Practical tool position on concave surface

in the physical domain are not same as the direction of the parametric curve and is

calculated with physical unit (inch) instead of parameter value (u, v). Therefore, we

have to convert them in order to calculate the next CC point and tool path on the

surface as it is represented by a Bézier surface.

First, we consider the direction of the forward-step that is parallel to the x

axis and not in the direction of the iso-parametric curve on the surface to obtain

u, v parameter values corresponding to the forward-step size in the physical domain.
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Second, we consider the direction of the side-step that is not an orthogonal direction

of the tool path.

a. Direction of Forward-Step

The forward-step size that is parallel to the x axis is transferred to the direction

of iso-parametric curve by

cosθ =
s

sp

(3.22)

where sp is the forward-step in the current parametric curve direction and g is the

forward-step in the direction of the physical domain as shown in figure 23. θ is the

angle between the tangent vector of the forward-step in the physical domain, T, and

the tangent vector of the parametric curve which can be calculated by

θ = cos−1

(
∂P
∂v
·T

∂P
∂v
·T

)
(3.23)

b. Direction of Side-Step

The side-step size calculated in the previous section is also in the physical domain

instead of parametric domain,(u, v). Thus, the side-step size, in orthogonal direction

of the tool path, is needed to be transferred to the direction of the iso-parametric

curve by

gp =
g

sinθ
(3.24)

where gp is the side-step in the current parametric curve direction and g is the side-

step in the orthogonal direction of the current tool path (figure 24). θ is the angle

between the tangent vector of the tool path and the tangent vector of the parametric
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Parametric direction

X

Y

Z

Parametric

curve

Physical

direction

Fig. 23. Angular differences between the parametric direction and forward-step

curve which is calculated by

θ = cos−1

(
∂P
∂u
·T

∂P
∂u
·T

)
(3.25)

c. Conversion

The forward, s, and side-step, g, quantity in the physical domain is converted

into the parametric domain ∆v, ∆u in order to calculate the next tool path or CC

point on the iso-parametric curve as shown in figures 23 and 24. We can convert

the forward and side-step in physical domain into the parametric domain using the

Taylor expansion and an error compensation technique shown below.

Given a parametric curve P (v), 0 ≤ v ≤ 1, which is the current curve on the

surface, the Taylor series expansion of this parametric curve is

P (v) = P (v0) + Ṗ (v0)∆v +
1

2
P̈ (v0)∆v2 +

1

3!

...
P (v0)∆v3 + . . . (3.26)

where∆v = v − v0
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Fig. 24. Angular differences between the parametric direction and side-step

For side-step quantity, g, the equation is

P (u) = P (u0) + Ṗ (u0)∆u +
1

2
P̈ (u0)∆u2 +

1

3!

...
P (u0)∆u3 + . . . (3.27)

where∆u = u− u0

∆v and ∆u are the parametric quantities between two CC points on the iso-

parametric curve and the distance between two tool paths that correspond to the

forward-step size and the side-step size in physical domain, respectively. v0 and u0

are the current CC point in the parametric domain and the term |P (v0)− P (v)| and

|P (u0)− P (u)| are actually the forward and side-step in the parametric direction, sp

and gp. If we neglect higher order terms, the forward-step can be derived as

sp = |P (v0)− P (v)| = |Ṗ (v0)∆v − 1

2
P̈ (v0)∆v2| (3.28)

gp = |P (u0)− P (u)| = |Ṗ (u0)∆u− 1

2
P̈ (u0)∆u2| (3.29)
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Therefore,

s2
p = Ṗ (v0)

2∆v2 + Ṗ (v0)P̈ (v0)∆v3 +
1

4
P̈ (v0)

2∆v4 (3.30)

g2
p = Ṗ (u0)

2∆u2 + Ṗ (u0)P̈ (u0)∆u3 +
1

4
P̈ (u0)

2∆u4 (3.31)

Equation 3.30 and 3.31 can be written as

s2
p =

[(dx

dv

)2

+
(dy

dv

)2

+
(dz

dv

)2
]
∆v2 +

[
dx

dv
· d2x

dv2
+

dy

dv
· d2y

dv2
+

dz

dv
· d2z

dv2

]
∆v3 +

1

4

[(d2x

dv2

)2

+
(d2y

dv2

)2

+
(d2z

dv2

)2
]
∆v4 (3.32)

g2
p =

[(dx

du

)2

+
(dy

du

)2

+
(dz

du

)2
]
∆u2 +

[
dx

du
· d2x

du2
+

dy

du
· d2y

du2
+

dz

du
· d2z

du2

]
∆u3 +

1

4

[(d2x

du2

)2

+
(d2y

du2

)2

+
(d2z

du2

)2
]
∆u4 (3.33)

However, the above equations are iterative. In order to find a parameter value,

an initial value is needed such as Newton’s method. The approximation of these

functions is introduced in the following section.

2. Approximation of Functions

Equation 3.32 which represents the forward-step sp requires a tedious iterative

solution process and a proper initial value. To calculate ∆v, we apply an error-

compensation method introduced by Lin and Koren[22] to solve ∆v and ∆u in equa-
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tion 3.32 and 3.33. In this section, only an approximation of the equation 3.32 is

introduced. We can approximate the equation 3.33 using a similar manner.

The first order approximation of equation 3.32 is

∆va =
sp√√√√

[(
dx
dv

)2

+
(

dy
dv

)2

+
(

dz
dv

)2
] (3.34)

We can define error term ε, for the last two terms in equation 3.32.

That is,

ε =

[
dx

dv
· d2x

dv2
+

dy

dv
· d2y

dv2
+

dz

dv
· d2z

dv2

]
∆v3 +

1

4

[(d2x

dv2

)2

+
(d2y

dv2

)2

+
(d2z

dv2

)2
]
∆v4 (3.35)

The error is calculated by using ∆v = ∆va from equation 3.34. Therefore, we

can calculate ∆v using the following equation.

∆v =

√
s2

p − ε√√√√
[(

dx
dv

)2

+
(

dy
dv

)2

+
(

dz
dv

)2
] (3.36)

By using this error-compensation method, the accuracy is of the same order of mag-

nitude as Newton’s method, and it only needs one iteration.
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CHAPTER IV

IMPLEMENTATION

The proposed solution approach was developed and implemented. There are

several parts for which the CC points were generated using the proposed algorithm

and were subsequently machined using a 3-axis milling machine with different tol-

erance and scallop height. The hardware and software used to implement proposed

algorithms are:

1. Hardware:

• Milling machine: proLIGHT 1000 Machining Center

• 3D Laser scanner: LDI RPS 150

2. Software:

• MATLAB 6.5

• AUTOCAD 2002

• Surveyor Scan Control

• GEOMAGIC QUALIFY 5

• WPLM1000 Control Software

The proposed algorithms were coded in MATLAB on a personal computer (Pen-

tium III, 1.0 GHhz CPU, 256 Mb of physical memory) operating under Microsoft XP

Professional. We machined a free-form shaped part using a block of wax and measured

tolerance between the machined surface and the desired surface. After machining, a

3D laser machine (LDI RPS 150) with Surveyor Scan Control software (point cloud

method) was used to scan the machined surface. GEOMAGIC QUALIFY 5 was used
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to compare surfaces. The desired surface was generated by AUTOCAD 2002 using

X, Y, and Z coordinates generated by MATLAB 6.5. The WPLM1000 control soft-

ware was used to control the milling machine described above. Several parts were

machined with the following machining parameters:

Ball-end tool radius : 0.125 inches.

Maximum tolerance : 0.05 and 0.01 inches.

Maximum Scallop height: 0.05 and 0.01 inches.

A. Experiment and Results

A bi-cubic Bézier surface defined by 4 X 4 control points matrix as shown in

below.

Example 1

(0.0 0.0 1.5) (0.0 1.0 1.2) (0.0 2.0 1.2) (0.0 3.0 1.5)

(0.7 0.0 1.2) (0.7 1.0 0.9) (0.7 2.0 0.9) (0.7 3.0 1.2)

(1.4 0.0 1.5) (1.4 1.0 1.2) (1.4 2.0 1.2) (1.4 3.0 1.5)

(2.0 0.0 1.2) (2.0 1.0 0.9) (2.0 2.0 0.9) (2.0 3.0 1.2)

Figure 25 refers to the tool path for the surface defined by the single patch

Bézier surface in example 1 with the maximum allowed tolerance and scallop height

are 0.01 inches (0.25 mm). One of the harder tasks was to combine the surfaces by

finding reference points. GEOMAGIC QUALIFY 5 was used to compare the designed

and finished surfaces. In GEOMAGIC QUALIFY 5, best fit alignment option was

used to combine surfaces in which the software sampled 300 to 1500 points as a
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Fig. 25. Tool path of example 1

reference. Figures 26 and 29 refer to the results of the comparison between desired

and machined surface with 0.05 inches and 0.01 inches tolerance and scallop height,

respectively. Figures 27 and 28 show the machined part and scanned surface. Figures

30 and 31 show the real machined part and the scanned surface of the machined part

with 0.01 inches tolerance and scallop height. The points on the surface were shaded

using their normal vector to get a better view of the surface.
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-0.133
-0.119

-0.050
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-0.091
-0.105 Y-Axis
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Fig. 26. Comparison between desired part and machined part for example 1 with tol-

erance 0.05 inches

Fig. 27. Machined part of example 1 with tolerance 0.05 inches
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Y-Axis

Z-Axis X-Axis

Fig. 28. Scanned surface of example 1 with tolerance 0.05 inches
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Fig. 29. Comparison between desired part and machined part for example 1 with tol-

erance 0.01 inches

Fig. 30. Machined part of example 1 with tolerance 0.01 inches
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Y-Axis

Z-Axis X-Axis

Fig. 31. Scanned surface of example 1 with tolerance 0.01 inches
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Table III. Result of example 1

Scallop and Number of Total Length

Tolerance SE TE Average CL points Proposed Iso-scallop

0.01 0.019 0.018 0.0046 132 67.41 67.62

0.05 0.067 0.06 0.017 42 37.6 38.47

unit=inches
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The results of example 1 are summarized in Table III. In the first column,

“Scallop” and “Tolerance” represent maximum allowed tolerance and scallop height.

The second column, SE, represents the maximum scallop height on the machined

surface. TE stands for maximum error of tolerance. “Average” in the fourth column

represents the average tolerance and scallop height over the surface. The fifth column,

“Number of CL points”, is for CL points used to create the NC-code by which the

machined surface was generated. The last column, “Total Length” shows the total

length of tool paths. The total length of tool paths generated by proposed approach

was compared with total length of tool paths of efficient iso-scallop approach proposed

by Lin and Koren[22]. They also showed the efficient iso-scallop approach is efficient

machining compared with iso-parametric machining. The total length of the tool

paths generated by proposed approach is shorter than the total length of the tool

paths for the efficient iso-scallop approach. Therefore, the proposed approach is

efficient machining compared with the iso-scallop and iso-parametric approach. The

total lengths of tool paths of the proposed approach are 37.6 and 67.41 inches and

they are 38.47 and 67.62 inches of the iso-scallop approach with tolerance and scallop

height 0.05 and 0.01 inches, respectively. According to the Table III, the proposed

algorithm reduced CL points significantly and almost all areas tolerance and scallop

height were within the given maximum allowed tolerance and scallop height for the

free-form surface. However, the tolerance around a few CC points is a little higher

than the given tolerance and some scallop heights are a little higher as well. In Table

III, the maximum error of scallop height and tolerance are not greater than 0.017

inches (0.43mm) and 0.01 inches (0.25mm).

We conclude that the proposed approach is efficient machining compared with

the iso-scallop approach and the maximum machining error is from 0.01 inches to

0.017 inches for the tolerance and scallop height for this example.
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Example 2:

The control points shown below makes a convex shape surface.

(0.0 0.0 1.5) (0.0 1.0 1.2) (0.0 2.0 1.2) (0.0 3.0 1.5)

(0.7 0.0 1.2) (0.7 1.0 0.7) (0.7 2.0 0.7) (0.7 3.0 1.2)

(1.4 0.0 1.2) (1.4 1.0 0.7) (1.4 2.0 0.7) (1.4 3.0 1.2)

(2.0 0.0 1.5) (2.0 1.0 1.2) (2.0 2.0 1.2) (2.0 3.0 1.5)

Figure 32 refers to the tool path for the surface defined by the single patch Bézier

surface in example 2 with the maximum allowed tolerance and scallop height are 0.01

inches (0.25 mm). Figures 33 and 36 refer to the result of comparison between the

desired surface and the machined surface with 0.05 inches and 0.01 inches of tolerance

and scallop height. Figures 34 and 35 show the machined part and scanned surface.

Figures 37 and 38 show the machined part and scanned surface of machined part with

0.01 inches tolerance and scallop height. The points on the surface were shaded using

their normal vector.

Table IV. Result of example 2

Scallop and Number of Total Length

Tolerance SE TE Average CL points Proposed Iso-scallop

0.01 0.02 0.02 0.0045 154 70.63 70.76

0.05 0.063 0.054 0.016 40 37.67 38.13

unit=inches

The results of example 2 is summarized in Table IV. According to Table IV,

our algorithm also reduced CL points significantly and almost all areas of tolerance

and scallop height were within the given maximum allowed tolerance and scallop
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Fig. 32. Tool path of example 2

height for the convex shape surface. Again, some scallop height is a little higher

than allowed scallop height and tolerance around a few CC points is a little higher

than the given parameters. From Table IV, the maximum error of scallop height

and tolerance was less than 0.013 inches (0.33mm) and 0.01 inches (0.2mm). There

is also an approximated constant machining error for this case. The total lengths of

tool paths of the proposed approach are 37.67 and 70.63 inches and they are 38.13 and

70.76 inches of the iso-scallop approach with tolerance and scallop height 0.05 and

0.01 inches, respectively. Therefore, we can say that the proposed approach is more

efficient machining than the iso-scallop as well as iso-parametric machining and the

maximum machining error is from 0.01 inches to 0.013 inches for the scallop height

and tolerance.

According to the Tables III and IV, our algorithm reduced CL points significantly

and is efficient machining compared with the iso-scallop approach. Almost all areas
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Fig. 33. Comparison between desired part and machined part for example 2 with tol-

erance 0.05 inches

of tolerance and scallop height were given maximum allowed tolerance and scallop

height. According to the results in chapter III, there is no point whose deviation

exceeds the given tolerance. However, tolerance around a few CC points is a little

higher and can be attributed to machining errors such as vibration and cutting force

as well as measuring (point cloud method) errors. For instance, we have to set up

the origin of the part to be machined manually and that can make serious errors for

the machining with very small allowed scallop height and tolerance. Analysis of these

errors is beyond the scope of this work. In Tables III and IV, the maximum error of

scallop height and tolerance were not greater than 0.017 inches (0.43mm) and 0.01

inches (0.25mm). There is an approximated constant machining error for both cases;

therefore, we conclude that the proposed approach is more efficient machining than
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Fig. 34. Machined part of example 2 with tolerance 0.05 inches

the iso-scallop approach as well as the iso-parametric approach and the machining

error is from 0.01 inches to 0.017 inches for the machining.
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Fig. 35. Scanned surface of example 2 with tolerance 0.05 inches
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Fig. 36. Comparison between desired part and machined part for example 2 with tol-

erance 0.01 inches

Fig. 37. Machined part of example 2 with tolerance 0.01 inches



77

Y-Axis

Z-Axis X-Axis

Fig. 38. Scanned surface of example 2 with tolerance 0.01 inches
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B. 3D Tolerance Analysis

In this section, we analyze tolerance on the machined surface. Figure 39 shows

X, Y, and Z coordinates of the designed surface and machined surface where the two

surfaces are combined with tolerance and maximum scallop height of 0.05 inches. We

sampled eight points on the surface to perform this analysis and the results of 3D

tolerance analysis are summarized in Table V and VI. In the first column, “Name”

represents the x, y, and z coordinates of a point. The second column, “Designed

part”, represents the x, y, and z coordinate at the point on the designed surface. The

third column, “Manufactured part”, represents the x, y, and z coordinate at the point

on the machined surface. Deviation in the fourth column represents the difference at

the point between the designed and manufactured surfaces.

From Tables V and VI, the point (A8) has the largest tolerance at 0.11 inches.

More detailed representations are shown in figures 41 - 50, which are included in

Appendix A.
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Fig. 39. Annotation on the top view
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Table V. Tolerance analysis 1

Name Designed part Manufactured part Deviation

A1 -0.040

X 0.753 0.753 0.000

Y 2.900 2.1913 0.013

Z 1.327 1.289 -0.038

A2 0.064

X 1.890 1.919 0.029

Y 2.372 2.372 0.000

Z 1.100 1.157 0.057

A3 -0.060

X 1.595 1.595 0.000

Y 1.556 1.556 0.000

Z 1.100 1.040 -0.060

A4 0.042

X 0.477 0.495 0.018

Y 0.922 0.922 -0.000

Z 1.183 1.220 0.038
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Table VI. Tolerance analysis 2

Name Designed part Manufactured part Deviation

A5 0.058

X 1.865 1.891 0.026

Y 0.834 0.834 0.000

Z 1.073 1.124 0.052

A6 -0.059

X 1.387 1.387 0.000

Y 1.506 1.506 0.000

Z 1.120 1.061 -0.059

A7 0.062

X 1.287 1.287 0.000

Y 2.247 2.227 -0.020

Z 1.179 1.238 0.059

A8 -0.065

X 1.457 1.457 0.000

Y 0.017 -0.003 -0.020

Z 1.334 1.273 -0.061
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C. Integrate to CAD/CAM System

Process planning is the function in a manufacturing system that determines

which processes and parameters are to be used to convert a part from its initial form

to a final form designed in an engineering drawing. The input of process planning

will be a three-dimensional model from a CAD data base. The model contains not

only geometric information such as shape and dimensioning, but also the tolerance

and special features. The basis of the process plan consists of geometric and technical

information about raw materials and the finished product. The geometric information

is taken from the engineering drawing generated by a CAD system in which free form

curves and surfaces are available. The most popular and common type in CAD

systems is Bézier curve that can be designed directly on a computer using control

points. Commonly used surfaces in CAD systems are bicubic surfaces such as Bézier

surface, B-spline surfaces, and nonuniform rational B-spline surface (NURB).

In this section, the method for integration of tool path generation module to

CAD system is introduced. Figure 40 shows the logical process used to integrate tool

path generation module to CAD/CAM system. The CAD/CAM system contains

geometric and engineering information of raw material and finished product. This

information can be represented in an engineering BOM (bill of material). In this

dissertation, since designed and machined parts are represented by Bézier curves and

surfaces, control points of the Bézier surfaces should be included in the engineering

BOM. Using this information, a tool path generation module generates CL data file

and generates machine independent NC-code. (These modules are subject of this

dissertation.) Then the commercial CAD/CAM system generates NC-code using

their postprocesser to machine the part.
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CHAPTER V

RESEARCH SUMMARY AND CONCLUSIONS

A. Research Contribution and Conclusion

The proposed algorithm for tool path generation was developed and implemented

successfully through the integration of mathematical modelling used for calculating

forward and side-step size into the core of the our algorithms. As such the primary

contribution of this dissertation are

1. developing a new method for tool path generation in milling operations

2. verifying true machining error in milling operations

We used mathematical representation of tool and manufactured parts to make our

algorithm efficient and reliable. Using this mathematical representation, we were able

to determine forward-step size. From there we have developed a method for side-step

size by studying the geometry of the tool and the differential geometry of the designed

part. We then verified true machining errors by comparing machined and designed

surfaces using the point cloud method. The implementation of this algorithm shows

that it is very efficient for finish machining and the algorithm involved one iteration

compared to existing methods.

Additional contribution is related to mathematical representation of manufac-

tured parts through the use of parametric curves and surfaces.

As a conclusion, we list some advantages of this dissertation.

1. We reduced CL points significantly (by which NC code was generated) as shown

in Tables III and IV in chapter IV. For example, the designed part was generated

by 100 × 100 points. However, we generated machined surface by less than
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160 CL points with predetermined scallop height and tolerance for small test

problems. As a result of this, the manufacturing data generated from machining

also decreased significantly, that is we reduce cost of data manipulation as well

as storage.

2. We verified true machining errors by comparing designed surface and machined

surface using the point cloud method. Previous efforts have relied upon com-

putational approach (such as Huang and Oliver[20]) and our work provides

superior verification via true machining.

3. Our method is independent of surface types and is applicable to all continuous

parametric surfaces that are twice differentiable. Therefore,this approach is well

suited for sculptured and analytic surfaces.

B. Future Direction

While this dissertation gives us an increased understanding of NC tool path

generation, it also gives us several ideas for future research. Some of these directions

described below are extensions of this dissertation.

1. Virtual Prototype: In this dissertation, we machined a real part and compared

to the surface of the desired part and manufactured part to verify tool paths

and true machining errors. However, there are several ways to verify tool paths.

One is dry cut on the machine without a work-part but a dry cut can not detect

detailed geometric errors. Other method is actually machine a prototype. How-

ever, the cost of machining is very expensive and time consuming in some cases.

For instance, the work-part to be machined is very expensive or machining cost

is very high. Thus, a virtual prototype will be needed to verify tool paths and
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true machining error without real machining by considering appropriate ma-

chining conditions such as feed rate, spindle speed, and tool radius, as well as

work piece material characteristics.

2. Tool path generation using flat ended tool: Although we used a ball-end tool

in the milling operation, flat ended tool is also commonly used in milling oper-

ations. For a flat ended tool, swept section changes are needed depending on

the inclination of the tool with the surface normal.

3. Integration: Tool path generation is part of the process planning in manufac-

turing systems as described in chapter I. Therefore, the module of tool path

generation has to be integrated into other processes of manufacturing. The in-

tegration of data generated from the different module in process planning would

be a direct extension of this dissertation.
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APPENDIX A

3D TOLERANCE ANALYSIS
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