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ABSTRACT 
 
 

Environmental Impacts of the Digital Economy: 

The Case of Austin, Texas, 1990 - 2008. (May 2004) 

Wei Tu, B.S.; M.S., East China Normal University 

Chair of Advisory Committee:  Dr. Daniel Z. Sui 

 
 

This dissertation investigates the dynamic economic structure transformation and 

its corresponding environmental consequences at the Austin-San Marcos Metropolitan 

Statistical Area (Austin MSA) from 1990 to 2008.  Input-output (IO) analysis is the 

major methodology and environmental problems are defined as emissions of industrial 

point air pollutants.  Both three- and seven- segment IO models of Austin MSA for the 

years of 1990, 1994, and 1999 are constructed.  Direct and total pollution coefficients of 

six major pollutants are calculated, hypothe tical extraction measurement and structural 

decomposition analysis are implemented, and the quantity and pattern of pollutant 

emissions are simulated based on four major assumed development scenarios from 2000 

to 2008. 

This study finds: 1) the digital economy has emerged in the Austin MSA during 

the 1990s, 2) the manufacturing process of Austin MSA tended to be more 

environmentally friendly, which supports the hypothesis of dematerialization and 

decarbonization, 3) consumption-driven and non-production segments related 

environmental problems becomes more significant in the emerging digital economy. 



 iv 

This study predicts that industrial point air pollutant emissions will grow 

moderately from 2000 to 2008, assuming that the direct pollutant coefficients will 

change at the average rates of the 1990s and the final demand will grow at the half rates 

of the 1990s’ average.  Pollution contribution from production segment will generally 

decrease and contribution from other segments such as ICT and Information will 

increase, however, emission contributions of the segments will vary in terms of 

pollutants as well as development scenarios. 

This study argues that the shift of the source and nature of environmental threats 

of in the digital economy mandates parallel reform of the current environmental policy.  

A new generation of policy should be cooperative rather than confrontational, integrated 

rather than fragmented, flexible rather than rigid.  It should also facilitate innovative 

management initiatives to achieve sustainability.  More fundamentally, it is expected to 

deal with environmental impacts of intangible information flows (bits) which are 

possibly more essential than flows of tangible goods and services (atoms) in the context 

of the digital economy and the information age. 
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CHAPTER I 

INTRODUCTION 

 
 
 
There are no passengers on spaceship 
Earth.  We are all crew. 

 - M. McLuhan 
 
 

1.1 Research background 

The U.S. economy witnessed significant transformation in the 1990s.  The so-

called digital economy emerged quickly from the traditional industrial economy that has 

dominated the country for over a century.  Although its future evolution trajectory 

remains uncertain, the past decade has demonstrated that the core of the digital economy, 

information and communication technology (ICT), has surpassed all previous  

technological revolutions – the printing press, the telephone, the television, the computer 

– in its impact on the economic and social life of common people (Tapscott 1996; 

Standage 1998; Cohen, Delong, and Zysman 2000).1 

Historically, fundamental changes in the economic system are always closely 

associated with far-reaching environmental consequences (Landes 1969; Headrick 1990; 

Rees 1992; Grübler 1994, 1998), and human beings tend to be late to recognize and  

identify, much later to respond, to the unintended negative  environmental impact of 

technological innovations.  The continuous worldwide economic growth after World 

War II has improved the welfare of the inhabitants of the Earth in general, but rising 
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tides have not lifted all boats.  In addition to the growing gap between the rich and the 

poor, the North and the South, the foundation of all economic activities – the natural 

environment – has been deteriorating at an alarming accelerating rate despite many local 

improvements of environment (Meyer 1996; Goudie and Viles 1997). 

The linkage between contemporary environmental problems and the sudden 

acceleration in the rate and power of technological innovations has posed a series of 

questions about the environmental impacts of the digital economy, such as: is the digital 

economy a truly clean, completely environmentally benign economy, which will serve as 

the holy grail of the environment?  Or alternatively, will it bring more burdens to the 

fragile environment by encouraging more demands on material and energy (Sui and 

Rejeski 2002)? 

It is a daunting task to answer these challenging questions.  Few available studies 

have not been able to provide definitive statements.  Mixed evidence about both positive 

and negative environmental impacts of the digital economy has been reported in the 

literature (Marvin 1997; Mills 1999; Romm 1999; Hurst 2001; Reichling and Otto 2001; 

Gay 2002).  On the one hand, the declining energy intensity and the decoupling of many 

kinds of raw materials at per capita level from manufacturing processes indicates the 

positive gains to the environment.  On the other hand, the continuing growth of material 

consumption on absolute volume, the possible rebound effect, and the newly-created 

demands and consumptions on energy and materials, all point to the potential negative 

impact on the environment.  The perplexing net environmental effect of the digital 

economy remains unknown for the time being. 
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The first generation of environmental policy, kicked off by the enactment of 

National Environment Protection Act (NEPA) in 1970, aims to mitigate severe water and 

air pollution through tough, nationally uniform “command-and-control” approach.  To a 

large extent, it was successful in alleviating pollution from big factory smokestacks and 

dirty effluent pipes in the past three decades, bringing about  cleaner air and clearer water 

in general1.  However, whether or not the same policy path will be efficient and effective  

in dealing with the environmental problems of the digital economy is largely uncertain. 

First, the sources and nature of environmental problems are shifting in the digital 

economy.  Environmental threats today are quite different from those tackled over the 

past few decades.  While pollution from manufacturing sectors turns to be less 

significant, global environmental threats, such as deforestation, climate change, 

stratospheric ozone layer depletion, and loss of biodiversity becomes more of great 

concerns.  These new emerging problems are usually less apparent and acute, but are 

more subtle and difficult to identify, are potentially more harmful to human beings, and 

possibly impact larger geographical regions and last much longer (Esty and Chertow 

1997; Sui and Rejeski 2002). 

Scholars, governmental officials, and business leaders have recognized the 

importance of addressing environmental problems in the context of the dynamic digital 

economy (Beck 1992; Esty and Chertow 1997; Richards, Allenby, and Compton 2001; 

Sui and Rejeski 2002).  In academia, the problem has been explored from both 

theoretical and empirical perspectives (Beck 1992; Fichter 2001; Miller and Wilsdon 

2001; Gay 2002; Matthews et al. 2002).  At the governmental level, new environmental 
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policy has been experimented and evaluated, in industries and businesses, funds have 

been allocated to support the research on the relationship between economic systems and 

environment in the context of the new kind of economy (e.g., AT&T’s fellowship on 

industrial ecology).  These innovative initiatives offer many interesting arguments, 

valuable evidence, and inspiring thoughts; however, they generally suffer from the 

problems of inadequate quantification and the lack of regional dimensions in addition to 

the insufficient quantity. 

Economists are traditionally among the vanguards in the academia to tackle the 

relationship between economic growth and environmental problems.  Under the 

umbrella of neoclassical economics, pollution is generally viewed as an important form 

of externalities, which often generate harmful impacts to welfare (James, Jansen, and 

Opschoor 1978).  An impressive literature on environmental problems has been devoted 

to environmental externalities and the tradeoffs between economic welfare and 

environmental qualities.  Most of these studies adopt partial-equilibrium techniques that 

consider only variables regarding environmental impacts.  The major limitation of the 

approach is that it does not capture some of the individually negligible but collectively 

very significant environmental impacts, such as carbon dioxide emissions from 

automobiles. 

Input-output (IO) models are able to overcome these limitations and help better 

understand the relationship or linkage among major sectors of an economy with a large 

number of economic-environmental variables.  The IO model was originally proposed 

for recording the transactions (demands) between economic sectors by Professor 
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Leontief (1941) in his study on the structure of the U.S. economy of the 1930s based on 

the earlier work of Mirabeau (1968) and Walras (1874).  Environmental problems may 

also be tackled in physical terms as well as in monetary values in IO models.  One 

noticeable advantage of the IO model is its flexibility to investigate problems in different 

spatial and temporal scales.  The linear nature of the IO model does limit the scope of its 

application, but never excludes it from popular applications in solving social, economic, 

and environmental problems. 

Geography as an academic discipline has a long and proud tradition in studying 

the human-environment relationship (Marsh 1864; Thomas 1956; Pattison 1964; 

Wilbanks 1994; Turner 2002), and geographers, especially regional geographers, have 

contributed much to the regional economic development issues using IO analysis (Isard 

1951; Hirsch 1959; Isard et al. 1960; Miernyk 1970, 1982; Polenske 1980; Harte and 

Lonergan 1989; Bolton, Jackson, and West 1990; Siegel, Alwang, and Johnson 1995; 

Jackson and Dzikowski 2002; Hu and McAleer 2004).  But it is also surprising that few 

geographers have been involved in intellectual expedition to investigate the 

environmental consequences of the digital economy with IO modeling, although such 

needs have already been recognized (Duchin 1992, 1998; Moffatt and Hanley 2001; 

Dewick, Green, and Miozzo 2003). 

 

1.2 Research objectives 

This study is dedicated to bridging, if not completely, at least partially, the gaps 

between the needs and available studies on the environmental impacts of the digital 
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economy.  The spatial scale is set at regional level, and the environmental impact 

(consequence) is defined as industrial point pollutant emissions in this study.  This study 

has four major research objectives: 

1) Within the Austin-San Marcos Metropolitan Statistical Area, provide empirical 

evidence on the environmental consequences of the emerging digital economy in terms 

of the  quantity, the pattern, and the sources of point industrial air pollutant discharges, 

and forecast the trends (both quantity and patterns) of pollutant emissions under four 

major evelopment scenarios in the first decade of the 21st century (2000 - 2008). 

2) Review the nature of the first generation of environmental policy and explore the 

possible evolution paths for the next generation of environmental policy in the context of 

the digital economy. 

3) Test and enrich the tools used by geographers to explore the complex 

environment-economy interactions through experimenting with IO analysis and several 

other analytic tools on the Austin-San Marcos Metropolitan Statistical Area. 

4) Help the general public better understand the relationship between economic 

growth and environmental problems in the context of the digital economy.  This is 

important because public participation has been widely recognized as an integral part of 

achieving the goal of sustainable development. 

The Austin-San Marcos metropolitan statistical (Austin MSA) area of Texas is 

selected as the case study area.  The temporal interval of the study is 19 years, from 1990 

to 2008.  The dynamic transformation of the economic structure of the Austin MSA and 

its environmental consequences are investigated at the first half of the study period 
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(1990 - 1999).  Industrial point pollutant emissions is simulated at the second half of the 

period (2000 - 2008) based on four major development scenarios.  Both three- and 

seven- segments2IO models for the years of 1990, 1994 and 1999 are constructed.  Four 

analytic tools are chosen for the three major research objectives: general IO analysis and 

hypothetical extraction measurements (HEM) are used to detect the region’s economic 

structure change; environmental extended input-output (EIO) analysis is implemented to 

analyze and forecast the relationship between regional economic structure change and 

the quantity and pattern of pollution discharges; and structural decomposition analysis 

(SDA) is performed to identify the major factors influencing changes of the sources of 

the pollution. 

 

1.3 Dissertation structure  

This dissertation is divided into eight chapters.  Chapter I briefly introduces the 

research background, defines the research objectives, and discusses the significance of 

the study.  Chapter II reviews literature relevant to the research topic, including the 

major features of the emerging digital economy, the relationship between the economic 

development and the environment, and the traditional economic analysis methods on the 

environmental problems.  Chapter III describes the study area – the Austin-San Marcos 

Metropolitan Statistic Area (MSA) – including a brief history, the dramatic economic 

structure change, and rapid development since the 1980s, and the current environmental 

management practices.  Chapter IV suggests possible evolution paths of the next 

generation of environmental policy in the digital economy on the basis of the review of 
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the major features of the environmental policy in the industry economy (first 

generation).  This chapter also raises the research questions of the study.  Chapter V 

describes the methodology used in this study, including general IO analysis, EIO, HEM, 

and SDA.  Chapter VI presents the results of the dynamics of the regional economic 

structure of the Austin MSA in the 1990s based on general IO analysis and HEM.  

Chapter VII reports the results of the changes on the quantity and pattern of pollution 

discharges as the consequence of the economic structure change, the major factors 

contributing to the change of the pollution discharge, and the forecasted pollution 

discharges on the basis of four development scenarios by 2008.  Chapter VIII 

summarizes the theoretical, methodological, and policy implications of the study.  This 

chapter also discusses the limitations of the study and the future research directions.  

There are also three appendixes.  Appendix 1 lists detailed segment information for both 

three and seven segments IO models.  Appendix 2 provides the transaction tables, 

Leontief inverse matrices, and total flow matrices for the years of 1990, 1994, and 1999.  

Appendix 3 presents all the results of SDA at a segmental level. 

 

                                                
 

Notes 
1 In the U.S., from 1970 to 1995, population and GDP increased 31% and 111% respectively.  But the 
emissions of four critical pollutants all declined.  Carbon monoxide by 28%, volatile organic compounds 
by 25%, sulfur dioxide by 41%, and lead by 98% (USEPA 2003a). 
2 A segment is defined as a group of economic sectors in an economy.  Chapter V gives a more detailed 
explanation about the term. 
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CHAPTER II 
 

LITERATURE REVIEW 
 
 
 

I have gathered a posie of other men’s 
flowers, and nothing but only the thread 
that binds them is my own. 

- M. Montaigne 
 
 

2.1 Introduction 

 
 This chapter presents a comprehensive review of the literature regarding the three 

major themes of the dissertation – the economic structure change, the interaction 

between environment and economy, and economic analysis of environmental problems. 

The three sections of this chapter sequentially review the literature on the emerging 

digital economy, the evolution of the paradigms describing the relationship between 

economic development and environment, and major economic analysis methods of 

environmental problems. 

 

2.2 The emerging digital economy 

It is generally agreed among scholars as well as policy makers that the U.S. 

economy has been undergoing a fundamental transformation since the early 1990s 

(Tapscott 1996; Standage 1998; Cohen, Delong, and Zysman 2000).  The core of the 

transformation is the development and diffusion of information and communication 

technology (ICT).  The ICT has not only amplified productivity in one or several leading 

economic sectors as many previous technological revolutions did, but more importantly, 
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has become the engine  for almost all economic sectors (Tapscott 1996; Litan and 

Niskanen 1998; Tapscott, Lowy, and Ticoll 1998; Cohen, Delong, and Zysman 2000).  

A new kind of economy has risen quickly during this process. 

Among various names suggested for the new economy, such as “innovation 

economy,” “network economy,” “weightless economy,” “knowledge economy,” “e-

economy,” “digital economy,” or simply “new economy” (Cohen, Delong, and Zysman 

2000), the term “digital economy” is adopted in this study because it is used by the U.S. 

Department of Commerce and is most familiar to the general public. 1   There is no 

consensus on the definition of the digital economy so far.2  However, three significant 

features of the digital economy can be identified.  First, the digital economy refers to the 

revolutionary development of the ICT sectors and their tremendous impacts on the other 

economic sectors.  Second, the digital economy means the exponential growth of 

Internet users and Internet-based business (also widely known as electronic commerce or 

E-commerce) for the delivery of goods and services.  Third, the digital economy entails 

the globalization of business and growing flexibility for both producers and consumers 

at every expanding spatial and temporal scale (USDOC 1998, 2002a; Pohjola 2002).  

The following section reviews the above three features and discusses the possible social 

and economic implications of the digital economy to the society as a whole.3 

2.2.1 The ICT revolution 

 The core of the ICT revolution is the computer and its wide-ranging applications.  

But the legendary story about the ICT revolution should start with the evolution of the 

transistor, the heart of ICT hardware.  The evolution of the transistor can be explained 
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clearly by “Moore’s Law,” which was coined by Intel Corporation co-founder Gordon 

Moore in the 1960s.  It predicted that the density of transistors on a silicon chip (and 

thus the power of the chip) would double every 18 months.  Interestingly, this law still 

holds true today (Figure 2.1).  Moore’s law, together with a set of other technological 

trajectories,4 underpins the revolution in the ICT and world-wide development of the 

Internet (Dosi 1984). 

 The performance of computers increases dramatically and the prices plummet as 

the density of semiconductor continues to increase.  It is estimated that there was 

perhaps a billion-fold increase in the installed base of computing power in the world 

from 1950 to 1990 (Campbell-Kelly and Aspray 1996).  Today’s $1000 personal 

computers have the same computational capacity of a $20,000 scientific workstation five 

years ago.  The average price per megabyte hard drive disk decreased from $11.54 in 

1988 to $0.02 in 1999 (Toigo 2000), and what was once a supercomputer is now “run-

of-the-mill” (Table 2.1). 
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Figure 2.1. Moore’s Law. 
Sources: Waston (2000), Elliott (2003), and Intel (2003). 
 
 
 

Table 2.1. Semiconductor parts price 
indexes by end use, North America, 1992 - 1999 

Sectors 
Compound annual change 

rate (%) 
 92-99 92 - 95 95 - 99 

Auto -12.46 -4.64 -17.91
Communication -15.58 -3.41 -23.69

Computer -34.74 -13.29 -47.26
Consumer -15.22 -2.17 -23.85

Government -14.74 -3.37 -22.39
Industrial -16.11 -4.27 -24.02

 Source: Aizcobe, Flamm, and Khurshid (2002). 
 
 
 

 The enormous increase in processing capacities generated by the hardware 

revolution has expanded, is expanding, and will continue to expand the applications of 

computers.  Initially the computer was seen and used as a powerful calculation machine 

good at performing a complicated and lengthy set of algorithms.  The world’s first 

computer, ENIAC, born in 1946 at University of Pennsylvania, was the product of a 
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military project named Project PX.  At the beginning, most computers were limited to 

military applications  such as the famous Whirlwind and SAGE projects.  The large-scale 

civilian applications of computers started in the 1960s when society’s demands for more 

efficient  handling of a large volume of repetitive tasks (e.g., intensive calculation, 

report-generating, and record-analyzing) increased quickly.  The capacities of the 

computer were soon expanded beyond performing repetitive calculations into the area of 

automating established processes (e.g., automated reservation system in air industry, 

sorting and classifying in insurance industry). 

 With the continuous growth in computing power and declining hardware prices, 

computer applications continued to diffuse into more areas.  Computer-aided design 

(CAD) and automated office software turned out to be two hot spots in the early 1980s, 

which later led to the fundamental revolution in all kinds of design and office routine 

jobs.  As the popularity of the computers in almost all fields of society grew, computer 

experts soon found that the computer’s major function should not be confined as a 

calculator, nor as a database manager, but should be expanded to a machine which can 

be used to test many kinds of “what- if” questions.  Theoretically, computers allow 

unlimited experiments in the virtual world, which may be prohibitively expensive in 

resources and time in the real world.  With this insight, the application of computers 

soon penetrated into two other important domains : the spreadsheet and the real time 

controller.  The former is used extensively in various office environments; the latter later 

evolved into indispensable parts in both the industrial production process (e.g., industrial 

robots) and the retail business (e.g., retail price-tag scanners). 
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The evolution of computer never ceased, and the  application of computer 

consequently grew out of the limits of the traditional domains and penetrated into more 

social and economic areas such as agriculture, education, and entertainment.  Two quite 

different paths generally dominate the evolution process: one is that computers have 

penetrated inside conventional products as they start to embed into systems and 

merchandise; the other is that computers have connected with each other to create the so-

called World Wide Web (WWW) – a distributional global database of information 

accessible through the single global network – the Internet. The evolution along the first 

path is usually invisible, with the computers (or microprocessors) embedded in 

traditional products that alter the way such products perform.  One of the eminent 

examples is the microprocessor in the various systems of an automobile.  A typical car 

has about 30 microprocessors, making it safer, more efficient, and more reliable 

(Mowery and Rosenberg 1998).  Along the second path, the connected computers lead to 

the formation of the global web of the Internet.  The ICT revolution also caused the rapid 

rising of the ICT sectors and their enormous impact on the economy. 

2.2.2 The rise of the ICT sectors and its impacts on the economy 

In the U.S., ICT industries’ share in total economic output grew from around 5.8 

percent in 1990 to 8.3 percent in 2000, an approximately 40 percent increase.  Although 

ICT industries accounted for less than 10 percent of total U.S. output, they contributed 

about 30 percent of the total U.S. economic growth in the second half of the 1990s 

(Tables 2.2 and 2.3).  In 1998, the ICT workforce totaled roughly 7.4 million, accounting 

for 6.1 percent of all employment.  ICT industry employment grew almost 28 percent 
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from 1994 to 1998, compared to an average 11 percent in non-farm employment during 

the same period of time. 

 
 
 

Table 2.2. Contribution of the ICT to the real GDP growth, 
1996 - 2000 

Items Year 
 1996 1997 1998 1999 2000

(1) Changes in real gross 
domestic income (GDI)* (%) 3.5 4.5 5 4.5 4.7

(2) ICT contribution (%) 1.1 1.1 1.5 1.2 1.2
(3) All other industries 2.4 3.4 3.5 3.3 3.5
(4) ICT share in GDI 
change (2) / (1) (%) 32 25 29 28 26

 *: GDI: the income that originates from the production of the goods and 
services. 
 Source: USDOC (2002a). 

 
 
 

Table 2.3. The ICT sectors’ share in the U.S. economy, 1996 - 2000 
Items 

(Billion USD) Year 
 1996 1997 1998 1999 2000

(1) GPO* of  522.0 588.4 646.9 718.2 796.6
(2) GDP 7715.9 8225.0 8750.2 9279.7 9941.6
(1)/(2) 6.77% 7.15% 7.39% 7.74% 8.01%

*: GDP is usually higher than GPO, so the actual ICT shares may be slightly 
higher than the figures in the table. 
Source: Calculated by the author with the data from the USDOC (2002a) 
and the U.S. Census Bureau (2003a). 

 
 
 
One of the main reasons for the growing importance of the ICT sectors is the 

continuous investment in ICT hardware and software in all the other economic sectors.  

U.S. business invested $407 billion in 1999, an over 100 percent  increase compared to 
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amount of 1992.  At the same period of time, investment in “other capital equipment,” 

including industrial equipment, fell six percent, from 38 percent to 32 percent, in total 

investment.  The annual output growth rate of the ICT sectors jumped from about 12 

percent in the early 1990s to roughly 40 percent in the six consecutive years following 

1993.  Prepackaged software and computer services had a remarkable expansion from 

1995 to 2000, with a 17 percent average annual output (GPO)5 growth rate. 

Jalava and Pohjola (2002) synopsized three primary impacts of the ICT sectors6 

on economy: (1) the producing of ICT goods and services contributes directly to total 

value added generated in an economy, (2) the use of ICT capital as an input in the 

production of other goods and services indirectly contributes to economic growth, and 

(3) the growth of the ICT sectors contributes to the productivity of the economy.  

According to the annual report of the digital economy released by the U.S. Department 

of Commerce (USDOC 1998, 1999, 2000, 2002a), the ICT sectors have significant ly 

influenced the U.S. economy, and the dynamism of the ICT sectors has led the society 

into a new economic era. 

The contribution of ICT productivity growth is generally positive and significant, 

most clearly in service industries that purchase ICT (Baily and Lawrence 2001; USDOC 

2000).  The real net stock capital per labor hour is a direct measurement of the 

productivity growth.  The ratio of the capital stock of computer hardware to hours 

worked (capital deepening7) increased by an average of 16.3 percent annually over the 

period 1991 to 1995, and 33.7 percent yearly between 1996 and 1999; but the average 
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capital deepening in most other sectors (not including computer hardware and software, 

and communication equipment) averaged only about 0.5 percent over the 1990s. 

At firm level, Brynjolfsson and Hitt (1998) find that average productivity is the 

highest among firms with both high ICT investment and decentralized organization.  

Brynjolfsson and Yang (1999) report that a one-dollar increase in computer capital is 

associated with a $10 dollar increase in the valuation of the firm in the stock market.  At 

the sectoral level, several independent studies show that the ICT contributed about two-

thirds of the total acceleration in labor productivity growth in the second half of the 

1990s8 (USDOC 2002a; Table 2.4). 

 
 
 

Table 2.4 Contribution of ICT capital to growth of the labor productivity 

Studies Period 
Capital 

deepening 
Technical 
advance 

Total ICT  
contribution 

Productivity 
acceleration 

ICT share of 
acceleration 

 IT Other IT Other a b a/b*100 

1
1996 - 99 over 

1991 - 95 0.45 0.03 0.26 0.41 0.71 1.04 68.3 

2
1996 - 99 over 

1974 - 99 0.40 NA 0.20 NA 0.60 1.10 54.5 

3
1995 - 99 over 

1973 - 95 0.47 NA 0.23 0.70 0.70 1.47 47.6 

4
1995 - 98 over 

1990 - 95 0.31 0.18 0.19 0.44 0.50 1.00 50.0 

5
1996 - 98 over 

1974 - 95 0.46 NA 0.27 NA 0.73 0.99 73.7 
Source: USDOC (2000). 

 
 
 
Though the full effects of the ICT on the economic productivity during the 1990s 

have not been completely unveiled due to difficulties in the measurement of output in 
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many service industries, evidence from both sector and firm level analyses conclude that 

the ICT contributed substantially to overall productivity growth and thus to the entire 

economy, especially in the second half of the decade.  The growth of the ICT sectors 

may not be the only indicator of the emerging digital economy, but it definitely is one of 

the most evident and important ones. 

2.2.3 The coming of the Internet age 

 The IT revolution and the rise of the ICT sectors laid a solid foundation for the 

accelerated development of the Internet.  Technically, the Internet is the result of two 

revolutionary factors: the availability of high-performance and low-price personal 

computers, and the network and the various media permitting these computers to 

intercommunicate with each other. 

 In the U.S., like the initial applications of computers, the origin of the Internet 

was closely associated with military applications.  The well-known APRANET was fully 

funded and built by the Department of Defense.  With the plummeting cost of computers 

and communication bandwidth, the spread of the Internet became not only 

technologically possible,9 but also economically feasible.  At the beginning, the majority 

of the Internet users were in institutions, especially universities, where desktop 

computers were connected through a local area network (LAN).  Files were accessed 

through Gopher, and email was exchanged through network systems.  The Internet was 

not truly open to millions of home users until the hype text transfer protocol (http) and 

the image-displaying browser were released in the early 1990s.  After the releasing of 

the first WWW software in 1992, the Internet began to grow exponentially worldwide.  
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Figure 2.2 shows the growth of the number of Internet users both in the U.S. and 

worldwide between 1995 and 2002.  Figure 2.3 shows the increase in Internet host 

between 1990 and 2002. 
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Figure 2.2. The U.S. and worldwide online population. 
Source: Nua.com (2003). 
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Figure 2.3. The growth in the Internet host, 1990 - 2002. 
Source: ISC (2003). 
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 By late 1999, more than 60 million computers had accessed the Internet, which 

is, in large part, based on the existing voice telecommunication systems.  The emerging 

new generation of data connection technologies offers consumers more options  such as 

cable modem, DSL, and wireless connections.  The wide-band width, low-latency 

connections not only bring users more convenience and flexibility, but also generate 

more new Internet services and applications.  But the Internet seems to be still in its 

early stage of evolution.  Subsequent generations of still wider-bandwidth connections 

have are on the horizon.  Maxwell (1999) predicts the video-on-demand (VOD) service 

will start in 2003 and fiber optic cables are to be connected to homes around 2015. 

The bottleneck for both wire and wireless communication is the networking 

infrastructure.  Although the communication companies are trying hard to upgrade the 

copper cable to fiber optic cable, fiber optic cable is generally not used in the “last mile” 

to home.  The problem of the application of wireless communications lies in the narrow 

bandwidths.  The fastest wireless data transfer rate today is around 14kb/sec, about four 

times slower than that of the average dial-up connection.  Despite these difficulties, 

high-speed communication subscribers had reached 9.6 million by June 30, 2001, a 250-

percent increase since December 1999 (FCC 2002).  The acceleration in speed means 

that the Internet can accomplish more sophisticated tasks with much less latency and 

expense.  On the side of wireless networks, the providers are setting off a new round of 

network deployment, bringing both new applications and challenges to equipment and 

software players.  The backbone of the network, another important component of the 

Internet, is also evolving rapidly.  It is predicted that a veritable tsunami wave of new 
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capacity, technical advancement, and dropping costs is approaching (Cohen, Delong, 

and Zysman 2000). 

By April 2002, total U.S. online population reached 165.75 million, compared to 

18 million in 1995 (Nua.com 2003).  The growth of online population is also evident 

across various demographic and economic dimensions such as race, ethnicity, income, 

and education (USDOC 2002a).  The Internet is becoming an integral part of the daily 

life of more and more people.  A variety of activities can be fulfilled with this new 

emerging media, such as e-mail, online shopping and entertainment, personal banking, 

driver’s licenses renewal, conferencing, self-education, and more (Figure 2.4). 

With the continuous growth of the computer processing power, widening 

communication bandwidth, and declining costs of computer hardware, software, and 

communication services, the Internet enters more domains of society, significantly 

impacting our daily lives and ways of doing business.  The full story of E-commerce 

starts to unfold here. 
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Figure 2.4. Percentage of online activities in the U.S. population 1998 and 2000. 
Source: USDOC (2002b). 
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2.2.4 The emerging E-commerce10 

 By definition, E-commerce is Internet-based business for the delivery of goods 

and services on a global scale (Leebaert 1998).  Several Silicon Valley firms first sensed 

the Internet’s potential applications in business and started to get involved.  Cisco was 

almost immediately aware of the commercial opportunities of the Internet; now it is the 

leading provider of the Internet traffic controllers, routers, and switches.  Sun 

Microsystems is both the developer of Java, a cross- platform programming language 

especially suitable for the development of Internet applications  , and an important 

supplier of servers for large web sites.  Oracle’s database software is almost the standard 

choice for most websites.  These three firms are composed of key Internet infrastructure 

providers. 

 Big computer manufacturers like IBM, HP, and Dell also responded quickly to 

the business applications of the Internet.  Dell rapidly shifted from the traditional 

production mode of build-to-order to the Internet mode of “just- in-time,” which was 

quickly rewarded by decreasing cost, increasing sales, and fast growth.  In contrast, 

Compaq’s reluctance to replace its long-established traditional retail channels with the 

Internet-based ones turned out to be one of the major causes leading to its merger with 

HP in late 2001 (The Inquirer 2003). 

 Generally speaking, more technologically sophisticated and entrepreneurial firms 

are more likely to experiment with the computer and the Internet in commercial 

applications.  However, rising competition among startups also became a significant 
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stimulus to force more established firms to consider Internet applications for their 

businesses. 

 The startups initiated the Internet data communication business in the late 1980s 

with funds mainly from venture capital investors.  The first major successful startup was 

Netscape.  Founded by two university professors, Jim Clark of Stanford and Marc 

Andreessen of University of Illinois, Netscape was at the very beginning dedicated to the 

development of web browsers.  Its value on the stock market skyrocketed to nearly one 

billion shortly after it went public in August 1995.  Shocked by the legendary success of 

Netscape, venture capitals began to rush into those startups related to the Internet.  By 

March 9, 2000, about 370 Internet firms had gone public and their total valuation 

reached $1.5 trillion, compared to an extremely low sale of $40 billion (Perkins 2000). 

 The Metcalf law also worked out very well.  The rule is simple: more users, 

greater commercial opportunities, and less cost.  The rapid growth in returns stimulated 

more startups to develop new software, create new web pages, and open new web-based 

services.  From 1995 to early 2000, investments to the pioneer startups gained excellent 

returns as firms went public despite fluctuations.  Facing unbelievably high profits, 

venture capital investing became frenzied.  In 1999, the average return for early stage 

funds was 91.2 percent (NVCA 2000). 

 Although a large amount of investment in this massive investment bubble was 

later proven to be blind, rash, and even foolish, the feverish and panic investment wave 

has not only created some global leaders of the Internet, but also forced established firms 

to react to the change of business environment.  During the process, cyberspace was 
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gradually transformed into an economic space at various levels.  This capital-driven 

commercialization process also exhibited the winner-take-all characteristic in the 

business game of the Internet.  The earliest entrants growing to substantial size often 

acquire an insurmountable first-mover advantage. 

 It is not a simple task to define the boundaries and to categorize different types of 

E-commerce.  Hunt and Aldrich (1998) uses an ecological metaphor to describe the 

organization of the Internet.  Kenney (2001) categorizes five kinds of E-commerce by 

the business types of the websites: portals and other miscellaneous sites, consumer-to-

consumer (C2C), consumer-to-business (C2B), business-to-consumer (B2C), and 

business-to-business (B2B) sites. 

1. Portal E-commerce 

 Established in the early stages of internet commercialization, portals are 

important “gates” for web users.  And nearly all the dominant global portals such as 

Yahoo, Excite, Altavista, and Infoseek are the U.S.-based. 

2. C2C E-commerce 

C2C sites create virtual marketplace to connect consumers together.  The profits 

come not from direct sales, but from other revenue sources such as advertising, 

commissions, and referee fees.  The premier example is eBay.  Established in 1995, the 

company has grown into the biggest C2C site in the world.  It planned to expand the 

business into 25 countries by 2006 (Kenney 2001), but by the end of 2002, the 

businesses had been operated in 20 countries (Ebay 2003). 
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3. B2C E-commerce 

The idea behind B2C E-commerce is to replace physical stores (brick and 

mortar) with online sales (click and pay).  When the virtual storefront substitutes for the 

physical one, the sellers save the cost of spaces, employees, and supply chains.  In 

return, the consumers possibly get the same products with lower prices.  Large retailers 

like Wal-Mart, Home Depot, and Office Depot have quickly added online services.  One 

direct consequence of online retailing by these giants is the further marginalization, in 

some cases even the devastation, of both small independent and department stores.  The 

shift is also changing the purchasing habits of the consumers. 

Amazon.com started its online bookstore in July 1995, one year after the 

launching of Netscape and Yahoo.  Today, it has expanded its business from books to 

thousands of items such as CDs, videos, toys, electronics, and computers.  The 

successful listing of Amazon.com on the NASDAQ prompted another round of frenzy 

investment in online retail startups.  Following the steps of Amazon.com, there appeared 

a plethora of specialized sites selling groceries, pet supplies, air travel services, CDs, 

PCs, and more.  Nearly every commonly consumed item can be found in more than one 

online firm.  Some of these firms have not only survived, but have even gone public.  

Others were bankrupted, consolidated, or delisted from the NASDAQ when the initial 

public offering (IPO) boom broke in early 2000.  Although parts of Amazon’s empire 

have gone bankrupt, the sales still reached $3.93 billion in 2002, a 26 percent increase 

from that of 2001.  The pro forma11 net profit was $223 million in 2002, compared to 

$167 million in 2001 (Amazon.com 2003). 
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Facing threats from those startups, traditional retailers also followed to establish 

online operations.  Since selling online is totally different from selling in stores, even the 

retailer giant Wal-Mart had to establish a joint-venture agreement to reestablish its 

online selling after the first unsuccessful attempt (Waxer 2000). 

B2C E-commerce is still undergoing rapid changes along an uncharted path.  But 

it is almost certain that the U.S. retail system has been forced to operate more efficient ly 

than ever due to the birth of E-commerce. 

4. B2B E-commerce 

B2B E-commerce aims at providing online marketplaces for businesses to buy 

and sell.  Although B2B firms emerged later than B2C did, they quickly beat B2C in 

sales.  By the middle of 1998, independent market space of B2B has been filled with 

nearly every imaginable business (Helper and MacDuffie 2001; Kinsey 2001).  Most 

B2B firms were funded either by traditional venture capital or the new publicly-held 

venture capital firms such as ICG and CMGI. 

Just like B2C E-commerce, the establishment of B2B sites was initially launched 

by startups and uncontested by existing large firms and industries.  These startups aimed 

at attracting established firms to their sites.  Larger firms soon decided to create their 

own websites in order not to give up market shares.  In 2001, the largest B2B sites were 

those operated by focal firms such as Cisco, Dell, IBM, and Intel for their suppliers 

and/or consumers. 

Kenney (2001) argues that U.S. firms have become the global leader in every 

aspect of the Internet business except wireless Internet and optical switching.  He further 



 

 

27 

attributes the situation to three major factors: (1) the early thoroughgoing deregulation of 

the U.S. telecommunication market and the flat-rate tariff structure for local phone 

service significantly reduced online costs, encouraging the use of telecommunication 

services and the Internet, (2) Americans seem to be comfortable with purchasing 

remotely.  With the previous experiences of purchasing by catalog, by phone call, or by 

mail, and paying by credit card,  it is not a difficult task for them to shop online, (3) the 

unique environment of the venture capital system strongly supported high-tech 

entrepreneurship.  Venture capital entered almost all types of Internet investments.  The 

large amount of funds not only financially nurtured the rapid growth of the Internet, but 

also attracted many of the best managers, technologists, and workers of the country to 

compete and make their fortunes in  gold mines of newfound cyberspace. 

2.2.5 The digital economy: Respect and prospect 

The continuous productivity gains, economic growth, and E-commerce boom in 

the 1990s seem to support an optimistic view of the future for the digital economy.  The 

third annual report on the digital economy released by the U.S. Department of 

Commerce claimed that E-commerce has become the engine for economic growth in the 

new millennium, and the U.S. economy has entered a new period of economic growth 

with higher, sustainable growth rate and productivity gains (USDOC 2000). 

But changes sometimes come more quickly than what has been predicted.  

During the second half of 2000, when many economists were busy forecasting the 

growth rate for the new digital economy, the U.S. economy, for the first time in more 

than a decade, quickly sank into a recession after five years of unprecedented growth.  
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Following terrorists attack on September 11 of 2001, more uncertainty and doubt were 

added on the future of the digital economy.  The answers to the nature and future of the 

digital economy suddenly became elusive and unclear. 

Due to the strong growth inertia in the previous decade, economic indicators did 

not reflect the recession till the first half of 2001.  ICT investment continued to grow 

through the end of 2000, but the nominal ICT investment in the following year was 

slashed by 16 percent and computers and peripherals were down 29 percent. Both 

production of equipment and the dollar value of ICT shipments plunged over 20 percent 

during the first two quarters of 2001, with a slight bounce-up during the second half of 

the year.  Business spending on computers and peripheral equipment dropped 20 percent 

during the fourth quarter of 2001 compared to that of the same period in the previous 

year (USDOC 2002a). 

Another important signal of the recession was the shakeout of Dotcoms.  

According to a survey, from the first quarter of 2000 to the first quarter of 2003, 962 

large Internet firms were shut down 12 (Figure 2.5). Close to one million people lost their 

jobs in 2001, compared to three million jobs created in the last five years (Baker 2001).  

According to the study conducted by the Industry Standard, from the December 1999 to 

July 2001, over 134,727 employees in 902 dot-com related companies lost their job.13 

The economic environment is cold and difficult under the severe recession.  

Dropping investments on ICT software and hardware, plunging stock values, retreating 

flows of venture capital, dotcom shutdowns, layoffs, all these bad signals have triggered 
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deep worries about the future of the digital economy.  Debates like “Dotcom or Notcom” 

have filled headlines of magazines and websites (Kalin 2000; Krin 2000). 

Despite these difficulties, the economy is still benefited from the past 

investments; the ICT continues to fuel more applications; online expenditures are 

expanding; and more dotcoms are emerging despite the demise of the old ones.  More 

importantly, as E-commerce turns into a standard medium in business, the digital 

economy is becoming a taken-for-granted (Kenney 2001).  The recent skepticism is 

reasonable, but possibly greatly exaggerated, and the previous expectation to the digital 

economy might be too high to be realistic (especially the second half of the 1990s). 

During the recession, many encouraging signs indicated that the digital economy 

was battered but enduring.  Despite a 1.4 percent decline in total private sector 

employment during 2001, employment still grew by 0.5 percent in telecommunication 

services and 1.4 percent in computer software and services.  On each of the last eight 

occasions since 1950 when growth in non-farm business output has turned negative for 

two consecutive quarters, productivity growth has also turned negative.  On the contrary, 

productivity growth remained at a remarkably robust 1.9 percent during 2001.  

Continued strong productivity growth in a period of economic weakness suggests that 

U.S. industries are continuing to benefit from past and current investments in ICT 

equipment, software, services, and related human skills, which are building foundations 

for a stronger digital economy in the coming years (USDOC 2002a). 

 

 



 

 

30 

0

40

80

120

160

200

Q1, 2
000

Q2, 2
000

Q3, 2
000

Q4, 2
000

Q1, 2
001

Q2, 2
001

Q3, 2
001

Q4, 2
001

Q1, 2
002

Q2, 2
002

Q3, 2
002

Q4, 2
002

Q1, 2
003

 
Figure 2.5. Quarterly dot.com shutdowns, Q1, 2000 – Q1, 2003. 
Source: Webmergers.com (2003). 

 
 
 
Then what is the future of the digital economy? What are the impacts of the 

digital economy on society and to our daily lives?  It is always a tricky and hazardous 

business to predict the future14, and it is more challenging to forecast the impacts of the 

rapid evolving digital economy under an uncertain economic environment.  Despites 

these difficulties, scholars have attempted to explore these perplexing questions from 

various perspectives. 

Pohjola (2002) believes that the digital economy will impact economic growth, 

geographic concentration of production, and equity issues related to income and wealth.  

Miller and Wilsdon (2001) argue that the digital economy is altering human being’s 

relationship with the natural environment by changing the way of doing business.  Thus 

it is possible to channel the dynamism and creativity of the digital economy for the good 

of economy, environment, and the society.  Cohen et al. (2000) point out that the digital 

economy is impacting almost all the important domains of society.  They further suggest 
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reconstructing the policy agenda in order to consider many broad social questions raised 

by the digital economy.  Some commonalities on the impacts of the digital economy to 

society in general can be identified from these diversified perspectives and arguments,15 

1) The impacts of the digital economy are diffusing into almost all sectors of the 

economy, rather than influencing just one or a few major economic sectors.  Thus the 

economy is experiencing a fundamental structural change, characterized by the increase 

of gross output of the ICT and service sectors and the decrease of output of traditional 

pillar sectors such as mining and manufacturing.   

2) The digital economy is intruding into almost all important domains of the 

society, changing all aspects of our daily lives such as shopping, communication, 

transportation, entertainment, education, and doing business; and altering the level, the 

pattern, and the style of consumption. 

3) The digital economy is changing the geographic location of production.  On the 

one hand, several centripetal forces (e.g., technological leakage, spillover between 

companies, and access sharing of a common pool of skilled labor force) are attracting the 

geographical cluster of industries.  On the other hand, some ICT industries (e.g., 

semiconductor manufacturers) are shifting the mode of production from a single firm to 

extended networked firms.  Geographic locations of ICT industries are under radical 

changes during the process of closing, sharing, and relocating wafer fabrication units 

(Mazurek 1994).  Thus any generalization about the trend of the location change of the 

ICT production will be premature. 
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4) Recent economic recession has brought down the rapid growth rate of the digital 

economy in the 1990s, and it may well be some time before growth returns to its 2000 

peak.  But the stronger foundation of the economy is still under construction, indicating 

an optimistic future for the digital economy. 

In the several paragraphs above, I have attempted to synopsize the answers for 

those frequently-asked questions (FAQ) about the impacts of the digital economy on the 

economy and society in general.  The answers may be far from complete, but those 

infrequently asked questions (IAQs) such as “what are the environmental consequences 

of the digital economy?’ seem to require more immediate attention.  The environmental 

dimension of the digital economy deserves equal, if not more consideration than the 

other two dimensions because it is one of the three major aspects of sustainable 

development (Munasinghe 1996).  In addition, history has revealed that economic 

growth is always associated with some kind of environmental consequences.  History 

may not always be used to interpret the future, but it at least provides some valuable 

insights and references.  The following section focuses on the environmental impacts of 

the digital economy, starting from depicting the complex relationship  between economic 

development and its environmental impacts since the Industrial Revolution. 

2.3 Economic development and the environment 

During the past 8,000 to 10,000 years, as human society evolved from hunting 

and gathering to an agrarian economy, especially since the beginning of the industrial 

age in the mid-18th century, human beings have increasingly transformed the Earth's 

surface, resulting in the deterioration of the fragile environment at an accelerating rate 
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(Sui and Rejeski 2002).  The scope and scale of the environmental problems have 

expanded from local, to regional and global level,16 coinciding with the increasing 

intensity and extent  of human activities, and in many countries and regions, with the 

improvement of human welfare (Colby 1991).  The major technologies associated with 

each stage of economic development actually played a dual role as both the source and 

remedy of environmental problems (Grübler 1994, 1998).  

This section first reviews various perspectives of the relationship between 

economic development and the environment.  It then introduces major economic 

development stages and their correspondent environmental problems.  Following the 

discussion of human’s knowledge and responses to these problems from the perspective 

of economics, the section ends with a summary of the latest studies on the environmental 

impacts of the digital economy. 

2.3.1 Introduction 

The economy is a collection of technological, legal, and social arrangements 

through which individuals in society seek to increase their material and spiritual well-

being (Field and Field 2002).  Environment, on the other hand, essentially refers to the 

conditions or surroundings where human beings or things exist, live, or develop.  These 

conditions or surroundings could be roughly put into three categories: (1) the 

combination of physical conditions that affect and influence the growth and development 

of an individual or community; (2) the social and cultural conditions that affect the 

nature of an individual or community; and (3) the surrounding of an inanimate object of 

intrinsic social value (Gilpin 2000).  Gilpin’s approach, albeit with a strong 
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anthropocentric flavor, recognizes that all the human activities (including economic 

activities) happen within the limits of the natural environment.  However, till very 

recently, many scholars disagreed with Gilpin’s view on the relationship between the 

economic system and the physical environment. 

In the eyes of these scholars, the economic system is a close and cyclic system, in 

which producers and consumers interact through a market mechanism.  The exchange of 

material and energy exists only between economic agents in the system, but not between 

the economic system and the natural environment.  Cross-boundary energy and material 

exchange is totally ignored (Figure 2.6).  Environmental parameters are relevant in 

circumstances related only to the problem of optimal extraction of non-renewable 

resources, or to the determination of the growth rates of renewable resources.  Pollution 

is generally regarded as one important type of externalities,17 created by the harmful 

residuals and the spill-over from not wholly efficient production and consumption 

processes. 

This view on the environment-economy relationship is built on the framework of 

neoclassical economics, which was pioneered by Marshall (1890) and several other 

economists.  Neoclassical economists believe that only two factors are relevant to an 

economic system: consumption households and production firms.  It is assumed that 

households always try to maximize their satisfaction by allocating financial means over 

various consumption possibilities.  Firms, on the other end, aim at maximizing profits 

under restrictions regarding to the availability of factors of productions (e.g., resources, 

capital, and labor).  Households offer labor and other different things in exchange for 
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certain products.  Firms demand inputs such as labor and capital, and offer consumption 

goods in return.  The behaviors of households and firms are determined by the prices of 

goods.  Environmental goods and services are different from those conventional ones in 

five aspects: (1) lack of market, (2) difficulties in entering the market, (3) the effects of 

individuality; (4) the effects of externality, and (5) the uncertain and unknown effects 

(James, Jansen, and Opschoor 1978).  The deficiencies of the market system in handling 

these problems are the major causes of the indifference to environmental problems in the 

traditional market system. 
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Figure 2.6. The components of a traditional economic system. 
Sources: Asafu-Adjaye (2000). 
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The neoclassical view of the relationship between the economic system and the 

natural environment was challenged in the 1960s.  Boulding (1966) applied two 

metaphors to criticize the ignorance of environmental factors in the traditional economic 

system: the spaceship earth and the cowboy economy.  He argues that the physical 

environment has posed restriction on the economic development.  In the framework of a 

cowboy economy, problems such as shortage of energy and natural resources should 

never be worried about because these problems are so insignificant and negligible  

compared to the vast size of the natural environment.  By contrast, people in a spaceman 

economy realize that they have only a limited stock of inputs and the spaceship has only 

a limited capacity to carry wastes.  The activities that can be undertaken on board the 

spaceship are therefore circumscribed absolutely by the ability of the on-board 

environment to cope with the consequences of those actions (Edwards-Jones, Davies, 

and Hussain 2000). 

Boulding’s insights were widely accepted and further explored in the following 

years.  His followers and advocates generally agreed that: (1) the Earth is a nearly closed 

system with very limited material exchange with areas outside the system, and (2) 

economic activities must be kept within the limits of the natural capacity (although the 

boundaries of limits are hard to define).  They also believe that the natural environment  

plays three important roles: (1) as a source of materials (in the form of stocks such as 

mineral deposits, or of flows, such as forest products and water resources); (2) as a sink 

to accept all the residuals from human economic activities; (3) as the amenity (such as 

nature’s beauty, landscape etc.).  Figure 2.7 shows the relationship between economy 
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and environment as conceptualized by this group of scholars (Georgescu-Roegen 1971; 

Meadows, Meadows, and Behrens  1972; Costanza 1989; Meadows, Meadows, and 

Jorgen 1992; Daly 1968, 1992, 1996). 

Both nature and society are seen not as simple linear systems, but as complex 

non- linear systems.  The environmental consequences of the human impacts are believed 

to be far more complicated than had been understood before.  Adams (1990, x) argues 

that the overlapping of the two complex systems “. . . Profoundly complicating our 

assessment of past human impacts on the environment, or estimates of future ones, is 

prevalence of indirect, or second order interactions . . .”  The implication is that the 

environmental problems are far beyond an isolated single externality which could be 

easily corrected by a market scheme.  James et al. (1978) argue that environmental 

impacts of human activities18 manifest in three forms: (1) something is added into the 

natural environment,19 (2) something is taken out of the environment as both renewable 

and nonrenewable resources, and (3) natural ecosystems are replaced by artificial ones. 

If we consider the flows in Figure 2.8 in greater detail, there also exist three ways 

to solve the problem of pollution: (1) reduce the quantity of goods and services produced 

in the economy, (2) reduce the residuals intensity of production, and (3) increase 

recycling.  If our ultimate goal is set to reduce the damage caused by the discharge of 

production and consumption residuals, Field and Field’s (2002) framework is helpful to 

understand the relationship among residuals discharge, ambient quality, and 

environmental damage. 
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Figure 2.7. Economy as a subsystem of the natural environment. 
Sources: After Asufa-adjaye (2000). 
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Figure 2.8. Emissions, ambient quality, and environmental damages. 
Sources: After Field and Field (2002). 
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2.3.2 Major economic development stages and the correspondent environmental 

problems since the Industrial Revolution 

Environmental change is a continual process that has been in operation since the 

Earth first came into existence.  In most of the Earth’s history, the agents of change have 

been the natural elements such as wind, ice, water, plants, and animals.  The interactions 

among these elements have brought about gradual but sometimes catastrophic 

transformations to the atmosphere, hydrosphere, lithosphere, and biosphere.  The mutual 

interactions between humans and nature started about two to three million years ago 

when Homo sapiens (modern humans) emerged as a new agent.  Human beings then 

gradually evolved into not only the most powerful agents of environmental changes, but 

also a special sphere, noosphere.20  However, significant human impact on the 

environment did not begin until about 8000 to 10,000 years ago after human beings 

colonized most of the Earth’s warm and temperate zones and took hunting and gathering 

as their main food-procurement strategy.  Simmons (1993) divides human history into 

five periods in terms of the unity of human cultures, economic activities, and human-

environment interactions: (1) hunting-gathering and early agriculture (7500 BC to 4000 

BC), (2) riverine civilization (4000 BC to 500 BC), (3) agricultural empires (500 BC to 

AD 1800), (4) the Atlantic- industrial era (AD 1800 to AD 1960), and (5) the Pacific-

global era (AD 1960 -).  Mannion (1991) suggests a more generalized while similar 

division.  His trilogy of human history includes prehistoric (Hunter-gatherers, early 

agriculture, and metal-using sub-periods), historic, and post-1700 period.  According to 

these two and other studies, human impact on the environment inevitably started in the 
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periods before the Industrial Revolution.21  However, the most significant environmental 

changes of the earth did not happen until the Industrial Revolution (Kates, Turner, II, 

and Clark 1990; Mannion 1991; Simmons 1993; Meyer 1996). 

It is thus more important to take a closer look at the human activities and impact 

on the environment since the Industrial Revolution.  Among those related studies 

(Mannion 1991; Simmons 1993; Grübler 1998), Grübler not only presents a 

comprehensive review of the relationship between the technology evolution and global 

change,22 but also adopted a unique perspective.  He argues that the disadvantage in 

unfolding the relationship of economic growth and environmental problems based on 

compartmentalized environmental media has potential danger in overlooking important 

interdependencies or joint causes of environment change, so he chooses to explain the 

relationship in terms of the technological clusters and the economic structural change.  

His major accounts are as follows: 

1. Agriculture  

There are three primary technology clusters from the early 19th century to the 

present.  The first is from the early to mid-19th century.  During this period, agricultural 

output and productivity growth were primarily achieved by biological innovations in the 

forms of inducing new crops and new agricultural practices.  The second period is from 

the mid-19th century to the 1930s.  The agricultural improvement in this period was 

driven mainly by new transportation modes and worldwide trade expansion.  The third 

period covers the remaining years of the 20th century.  The unprecedented output growth 
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in this period was attributed largely to mechanization, chemical fertilizers, synthetic 

factor inputs, and new crops species. 

Four major social and environmental consequences are related to the agricultural 

output and productivity growth: (1) the continuously rising labor productivity 

dramatically reduced the demands for farmers.  Consequently, the migration from rural 

to urban areas led to the trend of urbanization,23 (2) progress in agricultural technologies 

significantly decoupled the expansion of arable land from population and food 

consumption growth.  International trade also effectively transferred the arable land 

expansion to less developed countries.  Since the 1950s, the further expansion of 

agricultural land in industrialized countries is significantly limited, with some land even 

reconverted to other uses, and (3) the quality of the land is continuing to degrade.  

Humus losses over the last 300 years have averaged approximately 300 million tons 

annually.  But the rate has increased to some 760 million per year over the last 50 years 

(Rozanov, Targulian, and Orlov 1990), (4) agriculture has significantly influenced both 

the global nitrogen (N) and the phosphorus (P) cycle.  Overall, human activity has 

approximately doubled the rate of global nitrogen fixation since pre-industrial times 

(Ayres, Schlesinger, and Socolow 1994).  The main mechanisms have been synthetic 

nitrogen fertilizers, leguminous crops, and biomass burning.  The major environmental 

concerns about the N and P mobility include the surface and groundwater pollution, 

urban photochemical smog, the global greenhouse effect, and eutrophication of rivers 

and lakes. 
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2. Industry 

Similar to agriculture, the global industrial expansion has been accomplished 

through successions of manufacturing technologies, materials, energy sources, and 

improvement of industrial organization.  Industrialization has been divided into five 

stages: textiles (1750 - 1820), steam (1820 - 1870), heavy engineering (1870 - 1930), 

mass production/consumption (1920 - present), and total quality (1980 -).  Each stage is 

associated with one or several major technologies, dominating energy type, and 

transportation method.  The shift of stages can be observed from the four major groups 

of facts: (1) augmentation of resources usage, (2) diversification of products and 

production, (3) enlargement of markets (output), and (4) enhancing of productivity.  The 

industrialization process brings both positive and negative environmental impacts.  On 

the one hand, the sustained productivity gains generally reduced the demand for natural 

resources at a per capita base, and consequently mitigated the pollution to some degree.  

On the other hand, industrialization not only significantly intensified certain types of 

environmental impacts (e.g., deforestation, land disturbances, and air and water 

pollution), but also created new problems by introducing new materials (e.g., DDT and 

CFC) that may bring long-term negative impacts on the environment.24  Environmental 

concerns are moving from local and regional to global levels; global warming and 

stratospheric ozone layer damage appear to be two prominent examples.  Environmental 

productivity gains are still outpaced by output growth in general, resulting in continuous  

increase of resource depletion and pollutant emissions in terms of absolute volume. 
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3. Service 

 The service sector is playing an increasingly important role in the economy.  The 

sector determines how individuals use their time and spend their money.  The 

environmental impacts of the service sector are highly associated with the pattern and 

level of consumption.  One example is the personal use of automobiles.  Air pollution 

and urban sprawl are two direct results of the quick growth of private automobiles.  It is 

possible that the environmental impacts from the service sector will be as significant as 

that from agriculture and industry in the future. 

In October 1987, about 100 interdisciplinary scientists and scholars around the 

world gathered at Clark University in Worcester, Massachusetts for a week-long 

conference around the topic “The earth as transformed by human action.”  Meyer (1996) 

later synopsizes the major points of the conference as follows: 

1) Human-induced change has penetrated into most of the significant spheres of the 

earth, including the atmosphere, biosphere, hydrosphere, and lithosphere.  Human-

induced change has not only become a significant fraction of natural change, but in some 

cases, has also overwhelmed natural impacts.  In addition, the human-induced impacts 

have significantly changed the earth’s principal material and energy cycle and landscape 

“faces” with an unprecedented acceleration rate since the Industrial Revo lution. 

2) Both inadvertent (e.g., CFC emission) and deliberate activities (e.g., 

deforestation and urbanization) are the causes of human-induced environmental changes  
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3) Modern environmental impacts are complexly interwoven together. Ameliorating 

one problem may create a new one or make another worse.  And environmental 

problems are more likely to be nonlinear rather than linear in nature. 

4) More environmental changes are expected in the future even though significant  

change has happened already. The increasing population and the improving living 

standard are two major causes of the expected environmental changes. 

2.3.3 The evolution of the environmental management paradigms: From frontier 

economics to industrial ecology 

The threats of environmental problems on human civilization have a long history, 

as do human’s attempts to understand and deal with these problems (Kula 1998).  The 

collapse of civilization in the Middle East is very likely related to large-scale 

deforestation, over-salinization, soil erosion, and the following desertification.  The 

capital of the Roman Empire suffered from water pollution and human waste.  In China, 

soil erosion caused by intensive logging and rice terrace was observed as early as in the 

Zhou Dynasty (1066 BC - 771 BC).  In 1388, English Parliament has enacted the 

ordinance to penalize those who cast dung, the remains of animals and rubbish, into 

ditches and rivers (Clapp 1994). 

Quesnay is among the earliest thinkers who were concerned about the 

relationship between economic growth and natural resource problems before modern 

economics was founded (Woog 1950).  Malthus (1890) is probably the first economist 

who not only expressed grave concerns, but also proposed solutions to the population 

growth and resource (food) supply issues.  Debates about the relationship among 
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economic growth, environmental protection, and natural resource conservation have 

actually never ceased.  Different questions have been raised, different assumptions 

made, different evidence and arguments provided, and various solutions and 

management strategies proposed and practiced.  Various schools and paradigms 

appeared, being argued and challenged, prevailed, and evolved.  More are yet to come.  

Most of these studies appearing after the nationwide environmental movement in the 

1960s are rooted in two schools of thought : neo-classical economics and ecological 

economics.25  The major themes of the two schools can be further represented in the  

following five major paradigms.26 

1. Frontier economics 

Colby (1991) employs “frontier economics” to describe the approach which 

prevailed in many of the countries until the late 1960s.  The term first appeared in 

Boulding’s (1966) short but inspiring article “The economics of the coming spaceship 

Earth.”  Frontier economics is built on the theory of neo-classical economics, in favor of 

free market economy, arguing that economy will correct itself in the long run if 

government and other obstacles are removed (Kula 1998). 

Holding onto a strong anthropocentric stance, frontier economics suggests a total 

separation between man and nature.  Nature is treated as an infinite supply of physical 

resources for human benefits, and also as an infinite sink for by-products of the 

consumption of these benefits.  Nature is seen in this paradigm as existing to be 

explored, manipulated, exploited, and modified by humans.  The biophysical 

environment is regarded as irrelevant to the economy.  As Thurow (1980) argue, it is not 
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rational to worry about natural resource exhaustion from the point of view of economics.  

Another important figure, Gifford Pinchot, the former head of the U.S. Forest Service, 

contends that there are only people and resources;  animals and other species are merely 

resources for mankind to exploit and enjoy for recreational proposes and for their 

aesthetic values.  They should be saved for future generations only for similar 

exploitation and enjoyment (Fox 1981; Sessions 1995a). 

Frontier economics is deeply influenced by Bacon’s thought of “technological 

progress” which once illuminated the way of modern Western science.  The Baconian 

paradigm sees nature as existing for man’s instrumental benefit: to be explored, 

manipulated, exploited, modified, and even cheated in any way possible that could 

improve the material quality of human life (White 1967; Berman 1981; Pepper 1984). 

The growth rate of the gross national product (GDP) has been almost universally 

accepted as a standard measurement rod for the economic success of the nations.  

Likewise, at an individual level, income and wealth give a person great prestige in a 

modern consumer society.  Consumption and production are regarded as good things, 

and little consideration is paid to resource depletion and environment deterioration.  

Frontier economics errs in ignoring economy’s basic dependence on the natural 

environment for both material inputs and waste disposal (Westman 1977). 

2. Deep ecology 

Emerging at the peak of the environmental movement of the 1960s, deep ecology 

was promoted outside the U.S. by Naess (1989) and Synder (1977, 1994).  Deep ecology 

is thought to be at the other end of the spectrum of the environment and economic 
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development paradigms close to frontier economics.  It emphasizes the ethical, social, 

and spiritual aspects of the dominant economic worldview that have long been ignored 

(Nash 1989).  It promotes a shift of values, perceptions, and lifestyles from 

anthropocentrism to ecocentrism in the human-environment relationship.  The roots of 

deep ecology can be traced in the teachings of Taoism and Zen Buddhism and to the 

thoughts of Huxley, Orwell, Jeffers, Muir, and many more (Sessions 1995b). 

Deep ecologists advocate a harmonious view between man and nature.  They sell 

the idea of “biospecies equality,” which champions the reduction of human population, 

encourages bioregional autonomy, and biological and cultural diversity; and advances 

more dependence on indigenous management and technological systems.  Technology is 

believed to be able to bring more troubles than solutions to the environment.  The 

extreme form of the paradigm is of an anti-growth eco-topia, which expects the entire 

world to return to pre- industrial, rural lifestyles (Naess 1973; Devall and Sessions 

1995b). 

In practice, humans are required to be subservient to nature, a total reverse of 

frontier economics hierarchy.  The traditional economic growth, measured by level of 

the GDP, is argued to have nothing to do with human welfare (Capra 1995).  Radical 

changes of social, legal, and economic systems, and definitions of development and 

welfare are expected.   The distinction between shallow and deep ecology is that the 

former focuses on the fight against pollution and resource depletion, while the latter 

targets on more normative goals, such as promoting the ecophilosophical movement  

(Naess 1973). 
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Its opponents criticize deep ecology as highly unrealistic and excessively 

simplistic.  Hooker (1992) argued that deep ecology lacks a solid theoretical foundation, 

and it is so simplistic and idealistic that is not able to take into account many important 

societal circumstances, for example, tensions and conflicts between interest groups.  

Bookchin (1987) criticized Naess’s “anti-human” bias and points out that social change, 

primarily through a local participatory democracy and decentralized economic system, is 

necessary to bring transition to a more ecologically sustainable lifestyle. 

While parts of the arguments of deep ecology are valid and inspiring to re-

examine the human-environment relationship, the extreme imperative of an anti-

development stance is impractical and undesirable to most people.  As Jantsch (1980) 

commented, the “organic” feature of deep ecology is not consistent with the “creative” 

nature of human beings, which may be one of the most fundamental driving factors of 

the development of the society. 

3. Environmental protection 

The paradigm of environmental protection emerged in the late 1960s when 

environmental problems attracted the public’s attention and became a nationwide 

concern.  This paradigm holds a more moderate stance compared to polarized views of 

both frontier economics and deep ecology in dealing with environmental problems.  

Environmental protection recognizes the tradeoffs between the environment and 

economic growth.  It is largely based on the externality theory of economics.  The 

concept of externality was first introduced by Marshall (1890), and further developed by 

others ( see Pigou 1929; Kapp 1950).  It is argued tha t negative externalities are mainly 
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caused by market failure, and the standard solution is to “internalize” these externalities; 

that is, externalities are priced and bearers are compensated by the producers of negative 

externalities (Scitovsky 1954; Bator 1958). 

In practice, negative or defensive strategy in environmental management is 

widely adopted, with “command and control” being the major institutional regulatory 

tool.  The governmental environment protection agencies are assigned the responsibility 

to set pollution limits, monitor environmentally harmful activities, enforce pollution 

controls, and clean up pollution.  Optimal pollution levels are defined according to short- 

term economic acceptability rather than the need for long-term maintenance of 

ecosystem resilience.  The goal of pollution control is to mitigate pollution levels rather 

than to restore ecological functions of the environment.  The practical strategy of the 

paradigm has been labeled as “end-of-the-pipe” or “business-as-usual” as well as a 

treatment plant approach (Colby 1991). 

4. Resource management 

Forrester (1971) constructs a purely hypothetical, functional correlation model 

using a number of stock and flow variables to simulate the quality of life in the future.  

Based on the simulation results, he concludes that quality of life will decline 

progressively as the population and economy continue to grow.  His primary prescription 

is to greatly reduce the birth rate in order to curb pollution and depletion of natural 

resources.  Meadows et al. (1972) model the future world resource consumptions using 

Forrester’s system dynamics model as a prototype.  The conclusion is that economic 

growth might not benefit human beings, and was even potentially harmful and disastrous  
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to human beings, with or without population growth.  Despite serious deficiencies of 

these models and the failure of the “doom and gloom” predictions, the concepts behind 

these models still have valuable implications on many serious social and environmental 

problems such as globalization of pollution, non-renewable resource depletion, and 

population explosion.  It also nourishes the successive paradigm: resource management. 

Although theoretical foundation of resource management extends from 

neoclassical economics theory, substantial changes are made in terms of practical 

strategies.  This paradigm requests that all types of capital and resources, from 

biophysical, to human, to infrastructural, to monetary, should be incorporated into the 

social and economic accounts.  These capitals and resources are also considered in 

development and investment planning.  The concept of natural capital is induced to 

emphasize the importance of ecological products and services to the quality of life 

(Hawken, Lovins, and Lovins 1999). 

In practice, ecological services and products are regarded as fundamental, vital 

resources to be managed.  The interdependence and multiple values of all types of 

resources are taken into greater account.  New initiatives in many international issues, 

such as global climate change, stratospheric ozone layer depletion, biodiversity 

protection, and oceanic resources management have been launched to protect the “global 

commons.” 27 

The paradigm is also composed of the primary theme of the reports from many 

important international institutions and organizations, such as the Brundtland’s Report 

(WCED 1987), the Worldwatch Institute’s Annual State of the World, and the World 
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Resources Institute’s Biannual World Resource Report.  Concerns over the environment 

are no longer regarded as anti-developmental.  Although neoclassical imperative of 

economic growth still dominates the decision-making process, sustainable development 

has gradually been accepted as an important concept and has become an integral part of 

the development strategies.  Much has been done to integrate the understanding of the 

economy of nature with the economy of markets.  New national accounts systems and 

indicators are introduced to measure economic success of the nations more objectively 

(Serafy 1997; England 1998; Tjahjadi et al. 1999; Gerlagh et al. 2002). 

Mandatory adoption of particular clean-up technologies is recognized as an 

inefficient instrument in environmental management.  The “polluter pays principle” 

(PPP) of internalizing the social costs of pollution is gradually put into practice.  

Pollution taxation and tradable emission permits are introduced as new policy 

instruments for more efficient environmental management. 

5. Eco-development 

The eco-development paradigm emerged in the 1980s (Riddell 1981; Glaeser 

1984; Sachs 1984a, 1984b) as another attempt to reconcile the tensions between the 

polarized “back-to-nature” view of deep ecology, and frontier economics’ traditional 

ignoring of the limits of nature.  The essence of eco-development is to restructure the 

relationship between economic development and environment to reach the goal of 

“positive sum game.”  Human activities are proposed to be reorganized to be synergetic 

with ecosystem processes and services.  The use of “development” rather than “growth” 
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indicates the emphasis on the integration of social, ecological, and economic concerns 

rather than inclining to any one aspect of the three. 

The emerging ecological economics becomes theoretical foundation behind the 

paradigm.  Ecological economics aims at connecting the neoclassical environmental 

economics and ecologic impacts studies together with a holistic view (Costanza 1989).  

Under the framework of ecological economics, the economic system is viewed as a 

thermodynamically open system embedded within the ecosystem, rather than a closed 

system separated from the natural ecosystem. 

In practice, the principle of environmental management shifts from the “polluter 

pays principle” to the “pollution prevention pays”.  An important strategy to deal with 

environment problems is to reduce throughput to economic activities.  The goal of 

environmental protection goes beyond pollution mitigation to maintain throughput at a 

sustainable level while achieving growth in economic welfare.  New multidisciplinary 

fields such as agroecology, industrial ecology, and ecological engineering appeared in 

the 1980s, starting to consider environmental impacts of more nodes in the entire 

product life cycle chain to achieve synergic environmental gains (Sachs and Silk 1988; 

Costanza 1989; Mitsch and Jorgensen 1989).  Industrial ecology has been gaining 

increasing attention from both academia and industries.  Robert White (cited in Powers 

and Chertow 1997, 27) defined industrial ecology as “the study of the flows of materials 

and energy in industrial and consumer activities, of the effects of these flows on the 

environment, and of the influences of economic, political, regulatory, and social factors 

on the flow, use, and transformation of resources.”  The lens of industrial ecology is 
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focused on three driving factors influencing the material flows among economic 

processes: (1) industrial production of (raw) materials, (2) industrial manufacturing of 

products, and (3) the cycle of consumer products.  The ultimate goal of industrial 

ecology is to optimize total industrial material use and disposal in every single stage of 

the product life cycle: raw material, finished material, components of the manufacturing 

product, finished product, waste, and ultimate disposal. 

Eco-development suggests that society give up the business-as-usual notion 

because things that have been done in the past are possibly not appropriate today.  

Tradable pollution permit is accused of not able to adequately take ecological 

uncertainty and social equity considerations.  A new tax scheme is proposed, in which 

taxes on resource extraction and polluting activities are increased, while taxes on other 

activities (e.g., labor, savings and investment) are simultaneously leveled down.  The so-

called eco-tax is considered to be more flexible in taking more social equitable issues 

into account (Colby 1991; Fredriksson and Gaston; 1999; Matschoss 2002).  Eco-

development also shares with deep ecology many ideas on social equity and cultural 

concerns.  It suggests the shift from economizing ecology to ecologizing the economy, 

from the conflict between anthropocentric and ecocentric views, to place humanity 

neither above nor below nature. 

6. Summary 

Colby (1991) lists three sets of conditions that may combine together to drive the 

convergence of these paradigms toward the direction of eco-development: (1) the 

unprecedented degree of threat of global changes in the ozone layer depletion and global 
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warming issues, (2) widespread problems of resource depletion/degradation, and (3) the 

easing of the military and ideological competition between the superpowers.  He also 

contends that the defensive (remedial) strategy has gradually given way to more neutral 

(resource management, systems analysis) approaches.  Colby succeeded admirably in 

summarizing the trends of the paradigm evolution of environmental management before 

1990.  But the unprecedented development of the digital economy in the 1990s raises 

new questions about possible environmental consequences in the information age, and 

corresponding environmental management strategies, which become the major themes of 

this study. 

Figure 2.9 is a summary of the above paradigms and depicts the major research 

objectives of the study.  From left to right, X axis represents three major themes: the 

environmental management strategies, the economic theories, and the environmental 

problems.  Y axis is the evolution of these themes over time.  The top row of the figure 

depicts the major objective of the dissertation: to examine the possible environmental 

consequences and propose an environmental management framework in the emerging 

digital economy. 
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The symptoms of environmental problems shift from resource scarcity and 

diminishing economic return in the late 19th century to today’s global environmental 

challenges.  The corresponding environmental management strategy evolves from 

pollution mitigation to ecosystem management.  Three diversified branches of economic 

thoughts – neoclassical, neomarxis t, and neomalthusian – are rooted in the theory of 

classical economics.  They are all valid to some degree, but none is able to ultimately 

explain and solve the perplexing environmental problems.  The climax of paradigm 

evolution is ecological economics.  It is not a new discipline but rather a synthesis of 

many separate disciplines, and it examines the relationship among economic, ecological, 

and social systems to assist in a comprehensive understanding of complex environmental 

problems, and to search for ways to harmonize the co-evolution of three systems  

(Edwards-Jones, Davies, and Hussain 2000). 
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2.3.4 The environmental impacts of the digital economy: What do we know now? 

Understanding the possible environmental impact of the digital economy will 

provide valuable insights for further exploration on environmental policy, strategy, and 

instruments in the new information age.  Literature reports are growing as more scholars 

become aware of the significance of these problems, although the results of the existing 

studies remain anecdotal, speculative, and inconclusive (Jokinen 1998; Jokinen et al. 

1998, Cohen 1999, Hurst 2001, Sui and Rejeski 2002).  These studies can generally be 

put into five categories: theoretical-oriented exploration, examination of impacts of the 

ICT sectors, examination of impacts of ICT applications, examination of impacts of E-

commerce, and examination of social and economic structure change. 

1. Theoretical explorations 

In the English translation of Beck’s seminal book, “Risk Society,” published in 

the early 1990s (Beck 1992), three trenchant issues threatening modern society were 

illuminated: the liabilities of economic growth, the pervasiveness of hazardous 

technology, and the inadequacies of reductionism in scientific research.  Beck questions 

the conventional development paradigm, which argues that human social evolution is an 

inexorable forward march in which successive stages of economic progress bring 

increasing levels of mastery over the environment and security from adversity.  He 

contends that risk society is caused by the escalating uncertainty bringing by 

technological hazards and by a system in which scientific knowledge has been stretched 

to its limits.28  Contrasted to Beck’s view of the future, Huber (1985), along with Janicke 

(1985) and Simonis (1988), propose the theory of ecological modernization, taking a 
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more optimistic stance on the future development of human society.  The theory 

suggests the refortification of industrial ingenuity to correct the environmental failures of 

contemporary production and consumption practices.  The power of human ingenuity is 

believed to be able to harmonize economic advancement with environmental 

improvement.  Although Beck’s and Huber’s studies are not conducted in the context of 

the digital economy, the possible environmental consequences of technological 

advancement and economic growth in the postindustrial society are discussed. 

Miller and Wilsdon (2001) propose an “agenda for a sustainable digital 

economy” by introducing 10 “dot commandments.”  They argue that the digital economy 

offer an explosion of opportunities to tackle the challenge of sustainability.  Cohen 

(1999) claims that E-commerce may cause both positive and negative impacts to the 

environment.  He calls for manufacturers, consumers, and government to work shoulder 

to shoulder to win a green future by prescribing 10 solutions for the digital age. 

Sui and Rejeski (2002) contend that the Internet, is not the Holy Grail for 

environmental salvation, but rather is full of potentia l environmental risk and 

uncertainty.  They also suggest reexamine environmental policy in the context of the 

digital economy.  Fichter (2001) points out three possible directions to investigate the 

environmental impacts of E-commerce and Internet use: (1) the direct environmental 

impacts of ICT infrastructure (e.g., energy consumption of ICT hardware), (2) the 

secondary effects caused by the Internet use, and (3) the subsequent and rebound effects 

brought by E-commerce and Internet application.  Geels and Smit (2000) believe that 

failure in predicting the future is due largely to the overly simplistic conceptualization of 
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technological development and its impacts on society, and the overlooking of the 

dynamic co-evolution of technology and society.  Heinonen et al. (2001) discuss the 

necessity and possibility of developing scenarios and indicators to launch detailed life 

cycle analyses on ICT products, infrastructures, and applications.  They suggest 

replacing the ICT with Information Society Technologies (IST) to assess the 

consequences of information society in broader economic, socio-cultural, technological, 

and ecological contexts. 

2. Impacts of the ICT sectors  

Plepys (2002) suggests understanding the environmental impacts of the ICT from 

two levels: the life cycle of ICT hardware (direct impact) and the ICT applications 

(indirect or higher order impact).  He argues that additional studies should be dedicated 

to both the direct and indirect negative environmental impacts of the ICT, although he 

also believed that the ICT would help decouple economic growth from environmental 

degradation.  Langrock et al. (2002, 108) argues that ICT products are “far from 

environmentally friend ly”.  By implementing a four-stage life cycle analysis,29 they 

conclude that neither the direct nor the indirect environmental impacts of ICT products 

are sufficiently understood.  Both policy prescriptions and legal actions were required to 

retard the negative impacts of the ICT products.  Mazurek (1994) examines three 

organizational and spatial manifestations of restructuring in the semiconductor industry 

to illustrate how economic and geographic changes complicate efforts to evaluate and 

manage industry’s environmental performance.  She finds that decrease in toxics release 

listed in the Toxic Release Inventory (TRI) of the U.S. EPA is caused not by the real 
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reduction of toxic discharges from these semi-conduct companies, but more likely by 

organizational and geographic shifts of the semiconductor industry. 

3. Impacts of the ICT applications  

Lang (2002) argues that the applications of the ICT have brought new 

environmental challenges. On the production side, the outsourcing of manufacturing and 

relocation of manufacturing facilities helped diffusion of environmental harms 

throughout the world.  The compression of product life-cycles and hastened product 

obsolescence translated into more stresses on the environment.  On the consumption 

side, quick and effortless access to products information promoted and facilitated an 

increasingly ravenous consumption, which might bring more wastes and pollutants.  

Reichling and Otto (2001) contends that telecommunication services and new network 

infrastructure offers new opportunities for the increase of energy and resource efficiency 

under certain circumstances, but they are not necessarily more inherently 

environmentally.  Romm (1999) predicts that 67 billion cubic feet of natural gas will be 

saved and 35 million metric tons of greenhouse gas will be reduced by the year 2007 in 

the new digital economy.  He argues that fewer pollutants will be discharged in the age 

of digital economy due to the overall productivity growth and energy and materials 

savings in the manufacturing processes.   

In contract, Mills (1999) argues that environmental problems will be very 

challenging in the Internet age because a large amount of energy (electricity) is required 

to power the movement of information over the network.  His calculation shows that 

eight percent of the total electricity generated in the U.S. is used to support the running 
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of the Internet.  Marvin (1997) examines the environmental consequences of the 

development of telecommunication systems.  His conclusion is that telecommunication 

will not only displace the need for travel in cities, but will also induce new demands for 

physical flow and movement.  And the net environmental impacts are uncertain. 

4. Impacts of the E-commerce 

Gay (2002) studies the energy consumption of E-commerce and traditional retail 

commerce in five distinctive businesses: bookstore, grocery and perishable food, 

software compact disc, music industry, and personal computer.  He finds that E-

commerce is beneficial to the reduction of energy consumption and pollutants emissions 

in most cases.  Galea and Walton (2000) challenge the assertion that the wider adoption 

of E-commerce will lead to greater environmental gains.  After examining the business 

model of Webvan, an early American online grocery delivery service, which filed 

bankruptcy on July 2001, they conclude that Webvan’s business practice is less energy-

efficient, emits more air pollution, and provides no significant improvements in product 

and delivery packaging than conventional grocery business. 

Hurst (2001) summarizes 13 direct and indirect environment impacts of E-

commerce through case studies on seven companies and literature evaluation.  She 

employs an iceberg metaphor to indicate that the unknown (the below-water part of the 

iceberg) portion of the environmental consequences of E-commerce was much more 

voluminous than the known part (the iceberg visible above the water) (Figure 2.10).  

Matthews et al. (2002) explore the energy consumptions of online book retailing both in 

the U.S. and Japan.  Their research indicates that online book selling is not necessarily 
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more energy-efficient than the traditional book retailing.  They believe that energy 

consumption of book selling business is related to multiple factors, such as the mode of 

transportation and distance to bookstores.  On the basis of two case studies using life 

cycle analysis (LCA) on traditional and “digital” way of providing communication 

services, Zurkirch and Reichart (2001) argue that the relative environmental burdens of 

telecommunication service are more dependent on real context, than on how to provide 

service (i.e., transitional or digital). 

5. Social and economic impacts 

Debates on and predictions of the social and economic impacts of the economic 

structure change have lasted for decades.  Even though most of these studies were not 

carried out in the context of the emerging digital economy, they still provided valuable 

insights to this study.  It is argued that the post-Fordism age was approaching, and the 

environmental problems in this incoming new age (and with indeterminate form) could 

not be solved using market-led solutions because the “implacable logic” of capitalism 

would lead the efforts to solve environmental problems only into an impasse30 (Lipietz 

1992 a, 1992b; Altvater 1993; Drummond and Marsden 1995).  One inevitable outcome 

of the post-Fordism era was the emergence of dispersed and self-contained local 

economies in which small firms and smaller units of larger firms were more likely to 

grow.  The restructured economy might reduce negative environmental impacts because 

the localized economy was assumed to be more self- reliant and less environmentally 

harmful (Welford and Gouldson 1993).  Through analyzing the economic structure 
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changes in the U.S. economy, Machlup (1962, 1984) and Porat (1977) claim that the 

U.S. is evolving into an information society. 

The implications of the information society, however, were not discussed 

explicitly in these studies.  By studying the U.S. national input-output tables between 

1963 and 1987, Machado (1994) demonstrates that production sectors are more 

dependent on information sectors but less dependent on energy sectors.  He concludes 

that there exists substitut ion effect between energy and information (see also Machado 

and Miller 1997).  Bell (1976) brings the theory of post-industrialism in his book The 

Coming of Post-Industrial Society”.  He asserts that modern industrial countries are 

experiencing the transition into the last of a three-stage sequence of economic evolution.  

“Finally the third stage . . . This is the economy of the knowledge worker.  Whereas the 

pre-industrial economy is a game with nature, or the industrial a game with the 

fabrication of nature, the post- industrial economy is a game among people where 

intellectual technology replaces machine technology” (cited in Williams 1988, 16).  Bell 

explicitly expresses his optimistic view about the future of the environment in the post-

industrial economy. 

 

 

 



 

 

65 

 Known environmental
consequences of the digital

economy, such as "3D effects"

Unknown environmental
consequences of the digital

economy, such as rebound effects

 Environmental consequences
iceberg of

the digital economy

 
Figure 2.10. Iceberg metaphor of the environmental consequences of the digital 
economy. 
Source:  Adapted from Hurst (2001). 
 
 
 
6. Summary 

So what do all these studies tell us?  It is indeed a daunting task to answer the 

question “What are the environmental consequences of the digital economy.”  However 

it is still possible to weave these small pieces of evidence together to make a larger and 

clearer picture.  In general, the environmental impacts of the digital economy are like a 

double-edged sword, presenting both positive and negative impacts. 

Optimists summarize the potential positive impacts of the digital economy using 

“3D effects”: de-materialization, de-carbonization, and de-mobilization.  Their beliefs 

are based on the following arguments.  First, the relative importance of production, 

transformation, and exchange of information is rising quickly in all types of economic 
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activities.  In the meanwhile, the relative significance of production of tangible goods is 

declining.  The replacement of “atom” with “bit” indicates energy and materials savings.  

Economic structure change also lead to the decrease of heavily polluting industries such 

as mining and manufacturing and the increase of “cleaner” industries such as 

information and service sector.  Pollution will be possibly decoupled from economic 

growth due to the reduction of material and energy throughput in the production 

processes.  Second, continuous technological progress is assumed to be able to promote 

considerable pollution abatement and more efficient use of natural resources.  These 

arguments are backed up by several empirical studies (Ausubel and Sladovich 1989; 

Ausubel and Langford 1997; Billatos and Basaly 1997; Nilles 1998; Romm 1999; Gay 

2002). 

However, the opponents of those optimists argue that positive impacts may be 

simply the tip of the iceberg above the sea surface, with many substantial and mysterious 

parts submerged under the waves.  First, a stable increase in the productivity of tangibles 

may be directed toward the growth of total production; thus the savings resulting from 

dematerialization are offset by the increasing total use of material resources.  Some 

empirical studies demonstrate that the inputs of natural resources and emissions of 

pollutants are decreasing on a per capita basis, however, the absolute environmental 

stresses and natural resource consumption are still increasing (Wernick et al. 1996; 

Grübler 1998).  

Second, the so-called “rebound effect”31 may cause unintended consequences to 

cancel the environmental ga ins from the 3D effects.  The digital economy may boost 
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rather than reduce the consumptions of some types of commodities.  One example is the 

continuous growth of paper consumption in the U.S. since the 1950s.32  The implication 

is that the substitution effect of the digital economy may not be as high as expected.  Bits 

may better seen as supplements rather than substitutions of atoms.  In addition, 

expansion and differentiation of the ICT offer more chances to generate more linkages 

between economic sectors and more options to the consumers (Ellger and Scheiner 

1997).  The possible consequence is the induction of new material flows and 

movements, creating new demands on travel and physical spaces (Mokhtarian, Handy, 

and Salomon 1995; Marvin 1997; BOMA 2000). 

Third, the supposedly negligible environmental impacts of these “clean” 

economic sectors such as the service sector are not comple tely self-evident.  Instead, 

there are growing concerns about the possible negative environmental consequences of 

service sectors (Ellger and Scheiner 1997; Salzman 1999; Rosenblum, Horvath, and 

Hendrickson 2000; Lang 2002).  Service sectors may have low direct environmental 

impacts, but the indirect and secondary impacts caused by inter- industry linkages are 

potentially high.  Negligible individual threats may accumulate into non-negligible total 

effects (Rosenblum, Horvath, and Hendrickson 2000). 
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With all things considered, we are still not able to develop a picture of the net 

environmental impacts of the digital economy.  Both optimists and pessimists only 

provide only partial and inconclusive answers, so any generalization will be premature.  

There are three major gaps in the available studies: the lack of empirical evidence, the 

lack of quantification method, and the lack of regional studies.  This research makes an 

effort to bridge these gaps, if not completely, at least partially, and hopefully shedding 

more light on the mysterious iceberg submerged in the water. 

 

2.4 Economic analysis methods of the environmental problems: A 

methodological perspective 

2.4.1 Introduction 

Specialized vocabulary, conceptual structure, and analytical tools must be 

prepared to give coherent explanations to the environmental consequences of various 

economic conditions and to elucidate connections and interactions between economic 

and environmental variables (Field and Field 2002).  Economics is a mature discipline 

that is able to provide well-developed theories and rich analytical tools in studying 

environmental problems. 

Munasinghe (1996) explains how economic analytical tools can help explore the 

impacts of economic activities on the environment in a socio-economic system at 

various geographic scales (Figure 2.11).  The bottom part of the figure indicates the 

hierarchical nature of socio-economic activities that happen in various geographical 

scales.  The global or multinational level refers to one (or more) sovereign nation(s); the 
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national level refers to multisectoral economic activities of a country, or several sectors 

in a region; and the  sub-sectoral level refers to specific projects.  The top part of the 

figure shows the breakdown of environmental issues in terms of subjects of pollution: 

(1) global and transnational (e.g., climate change and stratospheric ozone layer destroy), 

(2) natural habitat (e.g., forest), (3) land (e.g., agricultural zones), (4) water resources 

(e.g., water basin, aquifer), and (5) urban- industry (e.g., metropolitan area).  

Complications arise when a natural system cuts across the structure of a socio-economic 

system (e.g., a large river basin), or when environmental subsystems interact each other 

(e.g., SO2 in the air becomes acid rain).  The middle part of the figure depicts the major 

analytical tools and methods used to trace environmental impacts associated with the 

socio-economic activities.  The following sections review major conventional economic 

analytical tools for environmental problems to decide appropriate methodology for this 

study.
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2.4.2 Environmental valuation 

Environmental valuation involves two important tasks: (1) measuring the benefits 

of environmental goods, services, and environmental protection activities, and (2) 

measur ing the costs of environmental damage.  The central question of environmental 

valuation is how to use monetary terms to quantify the benefits and damages.  In terms 

of the utility theory of neoclassical economics, the underlining assumption of 

environmental valuation is that changes of natural environment somehow impact an 

individual’s utility.  Conventional economic analysis on the utility change is performed 

in assumed perfect market systems.33  The market system, however, is not perfect due to 

the following reasons : (1) for many environmental commodities there is no market; (2) 

market entry is not transparent to all interested parties; (3) some environmental 

commodities are indivisible; and (4) relatively little is known about the consequences of 

environmental deterioration.  In practice, it is common that environmental commodities 

are assigned very low or even zero values due to the imperfection of market. 

Several assumptions must be made to valuate environmental commodities and 

services.  Edwards-Jones (2000) makes four assumptions: (1) environmental changes 

must impact on the utility, or well-being, of individuals in some ways if the changes are 

assigned non-zero monetary values, (2) society is understood to be simply all individuals 

added together.  So the total value of the environmental goods is the sum of the values of 

their effects on individuals, (3) different kinds of impacts must be commensurable: that 

is, they can be compared and a monetary sum can always act as a substitute for some  
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quantity of environmental goods, and (4) similarly, environmental goods of equal value 

can be substituted for each other with no loss of welfare.34 

1 Measuring the benefits of the environmental assets 

 The total economic value (TEV) of environmental goods and services is the total 

value of these goods and services in so far as they affect human welfare.  TEV can be 

further divided into two broad categories: use values and non-use values. 

Use values are associated with the benefits that come as a result of direct contact 

with the environmental goods in some way, including both direct consumptive (e.g., 

logging forests for timber) and non-consumptive uses (e.g., using forests as an important 

media of soil stabilization and water retention).  Option value is sometimes regarded as 

the third component of TEV in addition to the other two.35  It is defined as the value 

placed on environmental assets by those people who want to secure the use of the goods 

or services in the future. 

Non-use values relate to the benefits not from the direct and indirect 

consumption of, but from the existence of environmental goods.  Non-use values can be 

further subdivided into intrinsic values and bequest values.  Intrinsic values come from 

the simple knowledge of the existence of an environmental good; for example, a 

particular habitat.  Bequest values relate to altruism towards others as part of the value 

(e.g., preserve a piece of forest for the enjoyment of other people). 

The total economic value of an environmental asset can then be obtained by 

summing up the three value components.  Figure 2.12 illustrates the categorization of 

these values to the total economic value of environmental assets. 
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Non-use valueUse value

Total economic value
(TEV)

Indirect use valueDirect use value Existence  valueBequest value Optional value

 
 
Figure 2.12. The components of total economic value of environmental assets. 
Source: After Asafu-Adjaye (2000). 
 
 
 

There are generally two methods to evaluate the benefit: the market value 

method and the non-market value method.  The former method is more straightforward.  

In practice, real situations and conditions determine which method is preferable; for 

instance, the availability of the data. 

1) Market value method 

The market value method is usually based on the direct, indirect, and optional use 

of the environmental commodities.  It is relatively simple and straightforward to estimate 

the actual market value of the environmental goods or services.  There are, however, two 

shortcomings of the method: (1) it is not suitable for captur ing non-market value, (2) 

physical flows of the goods may be difficult to define, and environmental goods and 
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their market values may not have obvious linkage.  The usual market value methods 

include productivity function method, opportunity cost method, dose-response method, 

defensive or preventive expenditures method, restoration cost method, and substitute 

cost method. 

2) Non-market value method 

The non-market value method is much more complicated than the market value 

method in that it deals with the intangible values.  Revealed preferences (RV) and stated 

preference (SP) are the two most common approaches.  RV obtains the value of 

environmental goods or services by investigating an individual’s behavior in an actual or 

simulated market, and SP mainly uses survey techniques to obtain data on how much an 

individual is willing to pay for specific environmental goods and services.  SP is 

relatively straightforward method based on fewer theoretical assumptions behind, 

obtaining the valuations based on the statistical analysis on the information collected 

from individual interviews.  In the meanwhile, the validity and reliability of the method 

are questionable due to inherent biases of the method, such as hypothetical bias, part-

whole bias, and starting point bias.  Certain practice procedures in survey design are 

usually applied to minimize the negative impacts of the biases before put ting these 

methods into use. 

2 Measuring the costs of environmental damage and protection 

 In the framework of traditional neoclassical economics, pollution has been 

regarded as the addition of physical environmental factors so that the increased level of 

such factors in the environment is proven or assumed to negatively influence present or 
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future human welfare (James, Jansen, and Opschoor 1978).  Human activities also 

produce more of other types of outputs, except for the pollutants that positively impact 

the welfare.  In the same neoclassical economic framework, the goal of environmental 

protection is reduced to seek the optimal level of human activities and pollutant  

discharges. 

1) Homogeneous pollution approach 

 This approach aims to maximize the welfare by locating the point at which 

marginal control cost equals marginal damage cost.  Pollution is usually treated as one 

single entity (Muraro 1974).  The advantage of this approach is that environmental 

problems can be analyzed rigorously in an economic framework.  The disadvantages, on 

the other hand, are twofold.  First, it is a static model considering no spatial and temporal 

changes of environmental factors.  Second, the one-entity assumption of pollution is not 

realistic because environmental problems are always associated with multiple pollutants. 

2) The monetary damage function (MDF) 

Theoretically, physical and monetary damage should be of the same importance.  

Practically, however, the economic valuation seems to be more popular to the general 

public as well as policymakers because monetary units are simple, and easy to convert 

and compare.  MDF provides means not only to quantify the effects of environmental 

deteriorations, but also to convert multi-dimensional physical effects into monetary 

units. 

The method generally follows Nath’s principle of value judgment, including four 

assumptions : (1) the welfare of society is a function of individual levels of welfare, so 
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calculation must consider the welfare of all individuals of the society, (2) individuals 

should be considered the best judge of their own welfare; (3) if a certain change 

increases the welfare of some individuals without reducing that of any other, then the 

change should be considered to have increased social welfare, and (4) greater social or 

individual welfare is preferred (Nath 1964). 

The application of MCF has also been built on the assumptions of full 

employment of production factors and perfect competition.  Considering the 

imperfection of the market for environmental goods and services, Mäler (1974) proposes 

four principles to better estimate monetary damage, (1) use an interview or survey 

techniques to derive individual estimates of willingness to pay, or compensation 

required, for a change in environmental quality, (2) estimate indirect effects using 

interdependencies between private marketable goods and elements of environmental 

quality, (3) estimate physical damages with the aid of market prices, and (4) vote 

behavior with respect to environmental quality. 

The validity of MCF is always questionable due to the inadequacy of the 

knowledge of physical effects, dose-effect relationships, and reliability of measuring 

instruments.  However, MCF not only provides partial answers to the questions about the 

environmental damage in monetary terms, but also forms the basis for other economic 

analysis such as cost-benefit analysis (CBA) and cost-effectiveness analysis (CEA). 

2.4.3 The cost-benefit analysis (CBA) 

In many cases, it is important to decide whether or not to carry out a project or to 

choose which plan to implement from several candidates.  The project here is defined as 
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a set of activities that are inter-related to form a “whole” in order to reach certain social 

and economic goals.  Examples are the construction of a wastewater treatment facility or 

an airport. 

CBA is defined as a tool to transform all relevant effects of the projects into 

monetary values.  Under the Pareto criterion (Goodstein 2002), a project (or one plan of 

the project) is regarded as desirable when the total valuation of the positive effects 

exceeds evaluation of the negative effects. 

CBA plays an important (although not dominant) role in the decision-making 

process in the fields where different environmental consequences needed to be 

compared.  CBA usually follows steps to those described by Asafu-Adjaye (2000) and 

Tietenberg (2000): (1) define the objectives and scope of the project, (2) identify and 

screen alternatives, (3) value the costs and benefits for the remaining alternatives, (4) 

calculate discounted cash flows and project performance criteria for each alternative, (5) 

rank the alternatives according to the preferences, (6) conduct a sensitivity analysis and 

/or risk analysis for the preferred alternative, and (7) make a final recommendation. 

The French engineer A.J. E.J. Dupuit first proposed the procedure of CBA.  In 

the U.S., CBA did not receive formal recognition from the government until the passing 

of the U.S. Flood Control Act in 1936 (Gilpin 2000).  In 1950, a formal procedure was 

introduced by the U.S. Federal Inter-Agency River Basin Committee to compare costs 

and benefits of flood control projects (Pearce 1983).  Theoretically, CBA is a powerful 

instrument since it is based on a set of widely accepted value judgment rules.  

Practically, CBA suffers from disadvantages like any other method, which reduce the 
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satisfaction of the outcomes and limit its applications.  Some major disadvantages are: 

ignorance of distribution issues, the difficulty in dealing with ethical or political 

concerns, the difficulty in dealing with temporal changes; the possibility of producing 

multiple, rather than single solutions, and difficulty in the conversion between money 

and welfare.  Thus, it is preferable to use BCA together with other instruments to better 

accomplish its strength (James, Jansen, and Opschoor; 1978; Tietenberg 2000). 

2.4.4 Other types of analyses 

CBA is important, but is also only a subset of policy analysis.  Many other types 

of analyses are also needed to obtain more complete information related to the project 

evaluation.  Some major analyses include cost-effectiveness analysis (CEA), 

environmental impact analysis (EIA), stakeholder analysis (SA), damage assessment 

(DA), and risk analysis (RA). 

CEA is preferred when the major benefits cannot be quantified in monetary 

terms.  CEA does not provide absolute criteria to judge the economic viability of 

projects, so it is not suitable for the decisions that require level of the output.  CEA 

generally follows the procedure of common CBA, and suffers from disadvantages 

similar to those found in CBA. 

DA appeared after the enactment of the Comprehensive Environmental 

Response, Compensation, and Liability Act of 1980.  It estimates the value of damages 

to an injured resource so that these amounts can be recovered from those held liable by 

the courts.  The U.S. Department of Interior (DOI) decided the damages should be equal 

to the lesser of: (1) the lost value of the resources or, (2) the value of restoring the 
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resource to its former state.  In recent years, it is preferred to measure damages 

according to the restoration costs which may include restoration, rehabilitation, 

replacement, and /or the acquisition of equivalent resources.  DA is actually a legal 

procedure to evaluate the cost of the damage of environmental goods and services. 

RA was developed to analyze the uncertainties in environmental decisions.  

Standard RA involves three primary steps: risk assessment, risk valuation, and risk 

management.  Risk assessment studies where risk comes from and how people respond 

to it.  Risk valuation deals with the determination of prices tagged on certain risks, which 

are normally calculated based on the principle of willingness-to-pay (WTP).  Risk 

management involves the study of the possibility and distribution of environmental risks 

under different policies. 

2.4.5 General equilibrium assessment method 

 The analytical tools discussed so far are suitable for projects or one specific 

sector of the economy, but not for the evaluation of total environmental costs (or 

benefits) throughout the entire economy.  General equilibrium assessment methods can 

satisfy the needs to study the economy-environment interactions in all the sectors of an 

economy through two dominating modeling approaches: Input-output (IO) models, and 

mathematical programming (MP).  IO models are extremely useful in studying structural 

interrelationships of a large number of economic and environmental variables, providing 

(although limited) information about an economic system with n-dimensional economic 

activities, resource inputs, environmental services, and waste discharges.  When 

decision-makers’ value judgments are known, MP becomes a useful tool in that social 
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preferences may be combined with an extended consumption possibilities set to 

determine a specific social optimum in a general equilibrium model using mathematical 

programming methods. 

The IO model will be briefly introduced below; a more detailed discussion will 

follow in Chapter V.  Developed as a tool of empirical economic research, the IO model 

is a special kind of linear system model initially designed to simulate the responses of 

production sectors within a given region or nation to a change in final economic 

demands.  Its applications are later extended to model environmental problems, from 

simple representations of demands for environmental inputs and generation of waste 

flows to model ambient levels of pollution and the behavior of an ecosystem (Miller and 

Blair 1985). 

An IO model divides the entire economic system into multiple sectors that are 

related to each other by a linear relationship.  Each industry is both a supplier and a 

buyer.  The change of final demands in one sector leads to chain reactions of input and 

gross output across all sectors due to the interindustry linkages.  The distinct advantage 

of the IO model is that it provides the opportunity to study industries in fine detail and 

the performance of the economic system as a whole. 

For optimization problems such as seeking the largest benefit or profit, or 

spending the smallest amount  of money, mathematical programming techniques turn out 

to be an ideal choice.  The common techniques include, linear programming, integer 

programming, and non- linear programming.  The general linear programming involves 
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construction objective functions and restriction functions.  The optimal solution is 

situated on a corner of the feasible region. 

If some restriction functions are added to the set of the general linear 

programming problem, then the optimum solution may not be situated at the corner of 

feasible area, an integer programming technique then has to be introduced to help solve 

this kind of problem. 

For problems with non- linear relationships, which are more frequently 

encountered than those of linear types, new programming methods have to be induced to 

solve the optimization problem.  However, non-linear problems are far more complex 

than those of linear programming.  In fact, no standard method is available to solve the 

problems even though theorems are available to describe some properties of the 

optimum.  That’s why linear programming is often used, even when the functions are in 

fact not linear (James, Jansen, and Opschoor 1978). 

 

2.5 Summary 

 The review of the history of human impacts on the natural environment, 

especially the most recent 300 to 400 hundred years, reveals how the Earth’s surface has 

been significantly and quickly transformed with an accelerating rate and toward an 

uncertain future.  From Amazonian tropical rainforest to Arctic tundra, human beings 

have left their footprint almost everywhere on this spaceship Earth, even if many of the 

transformations are invisible to the naked eye.  Furthermore, many transformations, such 
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as ozone layer depletion, are of humankind’s doing, but not humankind’s original 

intention (Meyer 1996). 

 The review also illustrates multiple consequences of industrialization.  

Industrialization has brought tremendous productivity gains and rising welfare (e.g., 

increased incomes and reduced work time).  In the meanwhile, decreasing per capita 

resource input and waste discharge has been observed in most industrial sectors as the 

result of technology advancement.  However, the absolute volume of material and 

energy consumption and certain types of pollutant emissions are still increasing due to 

many interactive factors such as population growth and improving living conditions. 

The emerging digital economy is bringing both improvements and uncertainties 

to the environment.  The mixed evidence presented in the existing studies is insufficient 

to depict a clear picture for the net environmental impacts.  Thus it is meaningful to 

continue to explore, both theoretically and empirically, the question of “What are the 

environmental consequences of the digital economy?” 

Environmental economics has provided a set of analytical tools for the study of 

environmental problems such as environmental valuation, CBA, and CEA.  Most of 

these methodologies are partial-equilibrium tools, focusing primarily on the 

microeconomic aspect and partial equilibrium effects.  This study aims at examining the 

environmental impacts of the digital economy from a macroeconomics perspective.  

Thus a general-equilibrium approach, IO analysis will be taken as the main methodology 

to investigate the problem at the regional level. 
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Notes 
1 Cohen et al.(2000) suggest using the term “E-conomy .”  They argue that other names were either too 
general, such as “new economy ,” or too narrow, such as “network economy.” 
2 The U.S. department of Commerce began to publish the annual report on the digital economy  in 1998. 
But the term “ICT” has not been formally defined in these annual reports. 
3 The environmental impacts of the digital economy  will be discussed in a later section. 
4  The other three less known trajectories are Metcalfe’s Law, postulating that the functionality of a 
network will increase exponentially with the addition of each user; Shugart’s Law, basing upon the 
observation that the price per bit of magnetic storage halves every 18 months; and the Law of the 
Telecom, predicting that the price of transmitting a bit of information is halved every 12 months. 
5 GPO: Gross product originating.  GPO excludes intermediate transactions between businesses , it equals 
GDP in private business equals gross domestic product in the economy , but less than GDP in government, 
private households, and nonprofit institutions (USBEA  2003). 
6  ICT sectors here follow the definition given by U.S. Department of Commerce (USDOC 2000), 
including four big groups of industry, 29 sub-sectors. 
7 Capital deepening occurs when the amount of capital rises relative to the amount of labor hours. 
8  Broadened ICT definition to include software, communications equipment in addition to computer 
hardware also helped ICT gain importance in the economy. 
9 As early as the reign of Queen Victoria, the bits could be transferred at light speed across 4000 miles by 
the means of telegraph, but the extremely high cost prevented its application at that time (Standage 1998). 
10 This section draws heavily on Kenney’s (2001) research on the growth and development of the Internet 
in the United States. 
11 Pro forma : Description of financial statements that have one or more assumptions or hypothetical 
conditions built into the data. Often used with balance sheets  and income statements, "pro forma" financial 
results that address only one component of a company's financial results  – for example, earnings before 
interest, taxes, depreciation, and amortization, so it can sometimes be misleading. 
12 “Substantial” refers to all the Internet companies that have received some kind of outside funding from 
venture capitalists or other investors  (Webmergers 2003). 
13 The industry standard layoff tracker, July 26, 2001, cited in the USDOC (2002a). 
14 History provides enough examples of unsuccessful prophecies.  In 1899, Charles Duell, the former U.S. 
patent commissioner, proposed shutting down the Patent Office because he thought that “all that could be 
invented has been invented.”  Thomas Watson, the former CEO of IBM in the late 1940s predicted that 
“there is a world market for maybe five computers.” Cited in Miller and Wilsdon (2001). 
15 There are growing concerns about the environmental consequences of the digital economy .  As a major 
theme of the study, literature review on this topic will be offered in the following section. 
16 According to Grübler (1998), the “global change” started at the preparatory work for the 25th 
anniversary celebration of the first International geophysical year, which first took place in 1957-1958.  
But the perceptions of the Earth as a complex, self-regulating system has emerged from the earlier work of 
Boulding (1966), Georgescu-Roegen (1971), Meadows et al. (1972), Lovelock (1979), and many other 
scholars. 
17 “Externality” refers to a cost of a transaction not borne by the buyer or seller.   Pollution is termed an 
externality because it imposes costs on people who are “external” (not related) to the production and 
consumption of the polluting product (Goodstein 2001). 
18 Another widely-used classification of the environmental problems is based on the media that is polluted: 
air, water, soil, etc.  See Munasinghe (1996). 
19 The addition includes both qualitative and quantitative form.  Qualitative form refers to the addition of 
new factors to ecosystems (e.g., CFC).  Quantitative form means an increase in the level at which factors 
are present already (e.g., SO2). 
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20 Noosphere: the sphere of human consciousness and mental activity, especially in regards to its influence 
on the biosphere and in relation to evolution.  Merriam-Webster online dictionary, http://www.m-
w.com/cgi-bin/dictionary?book=Dictionary&va=noosphere (last accessed 11 January 2003). 
21 “Industrial Revolution” was coined by Toynbee (1896).  It refers to the accelerated rates of change of 
industry after the middle of the 18th century.  It was also criticized as a misnomer since the concept 
implicitly ignored the important development in pre -industry societies that paved the way for the 
“revolution” (Cameron 1989). 
22 Global change here is defined as transformation processes that operate at a truly planetary scale plus 
processes  that operate at smaller spatial scales (local, regional and continental) but that are so ubiquitous 
and pervasive as to assume global importance (Grübler 1998). 
23 Urban environmental problems due directly to high population concentration are most notable as air and 
water pollution, usually overstretching the assimilative capacity of the environment (Grübler 1998, 189-
90). 
24 The U.S. National Research Council estimates that there are approximately five million known chemical 
substances  that theoretically need to have safety examination.  Only about 7,000 have been tested for 
carcinogenicity so far. 
25 These thoughts are of course connected to the different world view or environmental philosophy; the 
emphasis here is on the economic perspective. More detailed discussions on the human-environment 
relationship from a philosophical perspective can be found in Armstrong and Botzler (1993). 
26 Colby (1991) summarizes five fundamental paradigms of environmental management in development 
and human-nature relationship.  They are frontier economics, deep ecology, environmental protection, 
resource management, and eco-development.  His taxonomy is generally followed but reorganized and 
further elaborated here. 
27 Some international efforts include: The Antarctica Treaty, the Convention on the International Trade of 
Endangered Species, Montreal Protocol on Ozone, Framework Convention on Climate Change, the 
Convention on Biological Diversity, and Tokyo protocol on greenhouse gas emission. 
28 Beck demonstrates two examples of the threat of catastrophic accidents associated with industrial 
production and technology, nuclear power, and toxic chemicals. 
29 The four stages include material acquisition, manufacturing and sale, use, and waste disposal. 
30 Fordism refers to the system of mass production and consumption characteristic of highly-developed 
economies during the 1940s-1960s. Under Fordism, mass consumption combined with mass production to 
produce sustained economic growth and widespread material advancement. The logic of a capitalist 
regime of accumulation founded on intensive growth and mass production for mass consumption has been 
to both produce and stimulate consumption to the maximum (Lipietz 1992b). 
31 Rebound effect is mostly studied in energy economics.  It refers to the fact that the decrease of energy 
price may result in an increase in demand as the response to the price decreases.  The increased demand 
for the energy without an offsetting increase in fuel price can erode technological efficiency (Greening et 
al. 2000). 
32 U.S. paper consumption is currently over six times the 1950 level, and has more than doubled since the 
1970s (Resource conservation alliance, 2003). 
33 The following conditions are usually hold simultaneously for perfect market system: (1) there must be a 
market for all goods and services , (2) there is no concentration of power in markets , (3) there is free entry 
to all markets for all who are interested, (4) all goods and services can be broken down into individually 
consumable quantities, (5) utility functions and production functions are mutually independent, (6) there is 
full information so that all markets are transparent, (7) the individual is the best judge of his own welfare, 
(8) societal welfare is a function only of the welfare of individuals forming a society (James, Jansen, and 
Opschoor 1978). 
34 These assumptions are not without objections, especially at a philosophical level.  See Edwards-Jones et 
al. (2000). 
35 For example, Tietenberg (2000) considers option value as part of the non-use value. 
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CHAPTER III 

AUSTIN: FROM COLLEGE TOWN TO THE SILICON HILLS 

 
 
 

Here in Austin our faith is not altogether in 
material things.  We believe that 
intelligence is better than industry. 

-A Macallum 
 
 
3.1 Introduction 

The Austin-San Marcos Metropolitan Statistical Area (Austin MSA)1 has been 

chosen to be the study area for this dissertation due to several reasons.  First, Austin’s 

rapid ascent as the IT hub of the U.S. South in the past two decades makes it an ideal 

case to examine environmental consequences of economic structure change.  Second, the 

environmental management strategy of the local government has been evolving in the 

past decade to deal with the increasing environmental pressures, with two most latest 

and significant efforts – the smart growth initiative (SGI) and the Central Texas 

Sustainable Indicator Project (CTSIP).  So the study will shed new light on the future 

environmental management practice of Austin in the emerging digital economy.  Third, 

the proximity to Austin makes data collection and field survey convenient and 

inexpensive.  This chapter introduces the Austin MSA’s historical development, its 

economic structure changes since the early 1980s, and the latest environmental and 

sustainable development strategies. 

 



 

 

86 

3.2 Geographic location, population, and a brief history of economic development 

The city of Austin is located in Travis  County, Texas, with the scenic hills and 

pleasant lakes in the west and the Colorado River running through it.  The Austin MSA 

is composed of five counties in central Texas: Bastrop, Caldwell, Hays, Travis, and 

Williamson (Figure 3.1).  The region was sparsely populated until the first half of the 

20th century.  A post-World War II economic boom stimulated fast population growth in 

the area.  Since the beginning of the 1960s Austin’s population has doubled every 20 

years on average.  The U.S. Census data indicated that the Austin MSA had 1,249,763 

residents in 2000, with over half of them, 656,562, living in the city of Austin (Table 3.1, 

Figure 3.2). 

The population growth rate of the Austin MSA is much higher than that of Texas 

and the nation as a whole.  Inside the  Austin MSA, Williamson and Hays are the two 

counties with the fastest growth rate, which can be partially explained as the result of 

Austin’s urban sprawl (Yang 2001).  The population of the Austin MSA is projected to 

have an accelerated growth rate in the years to come, increasing at a faster pace than that 

of Texas in general (Table 3.2, Figure 3.3). 

The high population growth rate is one of the direct consequences of the rapid 

growth of the high-tech industries.  About 59 percent of the Austin MSA’s population 

growth is attributed to the move- in of out-of-state population during the 1990s (CAPCO 

2003; GAACC 2003; and GACC 2003).  The urbanized area of the city has doubled 

about every 20 years since the 1960s to accommodate the increasing population.  In 
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2000 the City of Austin occupied a land area of 263.8 square miles and the  Austin MSA 

covers an area of 2,705 square miles (Figure 3.4). 

 
 
 

Table 3.1. Population growth in the Austin MSA, 1960 - 2000 

 1960 1990 2000 
1960 -
1990 

1990 -
2000 

1960 -
2000 

BASTROP 16,925 38,263 57,733 126.1% 50.9% 241.1% 
Caldwell 17,222 26,392 32,194 53.2% 22.0% 86.9% 

Hays 19,934 65,614 97,589 229.2% 48.7% 389.6% 
Travis 212,136 576,407 812,280 171.7% 40.9% 282.9% 

Williamson 35,044 139,551 249,967 298.2% 79.1% 613.3% 
Austin MSA 301,261 846,227 1,249,763 180.9% 47.7% 314.8% 

Texas 9,579,677 16,986,510 20,851,820 77.3% 22.8% 117.7% 
The U.S. 179,323,175 248,709,873 281,421,906 38.7% 13.2% 56.9% 

 Source: U.S. Census Bureau (2003a). 
 
 
 

Table 3.2. Population projection of the Austin MSA, 2000 - 2040, Scenario 0.52 
 2000 2010 2020 2030 2040 2000 - 2040 

Bastrop 57,733 75,386 97,601 123,734 153,392 165.69%
Caldwell 32,194 39,971 49,445 59,163 68,923 114.09%

Hays 97,589 118,606 178,784 223,665 268,766 175.41%
Travis 812,280 963,120 1,105,551 1,245,654 1,371,840 68.89%

Williamson 249,967 341,322 449,652 581,210 724,667 189.91%
Austin MSA 1,249,763 1,538,405 1,881,033 2,233,426 2,587,588 107.05%

Texas 20,851,820 24,178,507 27,738,378 31,389,565 35,012,330 67.91%
 Source: Texas State Data Center and Office of the State Demographer (2004). 
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 Figure 3.2. Population growth in Austin area. 
 Sources: City of Austin 2003b. 
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 Figure 3.3. Population projection of the Austin MSA, 2000 - 2040, Scenario 0.5. 
 Sources: Texas State Data Center and Office of the State Demographer (2004). 
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  Figure 3.4. Land area growth of Austin, 19990 - 2000. 
  Source: City of Austin, 2003a. 
 
 
 

Although Anglo-Americans’ first settlement along the Colorado River could be 

dated back to the early 1800s, Austin did not become the capital of the Texas until 1872 

after decades’ of wrestling against political opponents, fighting armed enemies on the 

frontier, and competing with other Texas towns.3  In the beginning, Austin was not 

envisioned as a simply political city but also an “emporium,” a hub connecting the 

trading routes west to Santa Fe and along the upstream Colorado River.  However, being 

the state capital did not help Austin gain many commercial and trade opportunities.  On 

the contrary, the newly-built railroad diverted and sparked the trade and commerce to 

many other competing Texas cities, weakening Austin’s bright future to achieve 

commercial prospects by being Texas’ capital city. 

Several years later, the victory of being the host city of the University of Texas 

(UT Austin) lighted Austin’s hope to instantly boost their economy again.  With the 

opening of UT Austin in 1883, the city started its new role as a seat of higher education.  



 

 

91 

But Austinities soon painfully found UT Austin did not boost the economy of the city as 

significantly as they had expected.  Their dream to make their city a manufacturing and 

commercial success was still a long way off.  Wooldridge, the mayor of the city from 

1909 to 1919, suggested building a dam across the Colorado to provide waterpower for 

manufacturing and water for irrigation.  His proposal successfully attracted support from 

both private investors and the general public, who believed that the regional economy 

would benefit from the supply of electricity, and that economic boom would “rushing 

the city like Johnstown flood.”  The rosy picture of a booming Austin was painted as 

factories lining the Colorado River resounding with the din of machines.  The dam-

generated electricity did power industry and city utilities, but Austin failed to sell itself 

as a manufactory center in the South.  In fact, no one ever seriously considered Austin as 

a large factory site.  The collapse of the dam in 1900 broke the last bubble of Austin’s 

19th century dream to become a manufacturing center. 

In the first half of the 20th Century, Austinities seemed to have changed their 

minds about  the identity of the city.  As McCallum, the superintendent of schools at that 

time stated, “We do not claim the capital of Texas to be a great commercial center, here 

in Austin our faith is not altogether in material things.  We believe that intelligence is 

better than industry” (Cited in Humphrey 1997, 47).  Austin’s 1928 plan made it clear 

that industrial development would not determine Austin’s future; instead, a cultural and 

educational center would be the city’s new development goal.  In the following two 

decades, the city grew basically along the direction of the 1928 plan.  At the same time, 

largely fueled by petroleum-dollars, UT Austin developed and swelled rapidly.  A 
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massive bond collected funds to make Austin a more appealing place to live.  

Mushroomed public facilities such as streets, sewage systems, parks, playgrounds, 

schools, and public libraries enriched the city’ cultural landscape.  Even at the period of 

the Depression, improvement in public facilities of Austin was much more auspicious 

than in most other American cities.  By the middle of the 20th Century, Austin had 

established its special identity as a political and University community, with a modest-

sized urban environment, small-town atmosphere, congenial neighborhoods, a leisurely 

pace, affordable cost of living, and a rustic landscape with green wooded hills and clear 

lakes. 

 

3.3 The rise of Austin: From college town to the Silicon Hills 

For about a century after it was chosen as the capital of Texas, the city of Austin 

was almost untouched by the “three waves” of economic development in Texas4.  But 

the city successfully grasped the “fourth wave,” transforming itself from a college town 

into a “Silicon Hills” in the second half of the 20th century, with the most dramatic 

changes occurring in the last quarter of the century.  The starting point of the rising 

trajectory could be dated back to the period of World War II.  Yang (2001) identified 

four stages of the economic development in Austin from the middle 1940s to the late 

1990s. 

3.3.1 Era of federal infrastructure investment (mid-1940s to early 1960s) 

 During this stage, the political leadership of Austin as a state capital outweighed 

its economic strength as a city.  Like many other cities in the nation, Austin benefited 
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from the expansion of military bases and facilities during and after World War II.  The 

construction and permanent installation of Bergstrom Air Force Base in the early 1940s 

provided development opportunities for the city.  In the following decades, the federal 

government continued to invest in such infrastructure projects in the city as highways 

and dams.  Lyndon B. Johnson’s election as U.S. president also helped promote Central 

Texas across the world as well as across the nation.5  Federal investments in 

infrastructure not only compensated (at least partially if not totally) for the slow growth 

of private sectors during the war period, but also laid a solid foundation for the further 

development of Austin. 

3.3.2 Era of advanced manufacturing (1960s to mid-1970s) 

 Traditional governmental and educational services still dominated the local 

economy in this period.  By the end of the 1960s, about 45 percent of non-manufacturing 

positions, approximately four times the number of employees of manufacturing sectors 

in the region, were occupied by governmental employees (City of Austin 1976).  

However, the “fourth wave” finally started to rush into the quiet “college town” at the 

end of the 1960s. 

 The wave was triggered by the founding in 1955 of an engineering consulting 

firm by McBee and three physicists at UT Austin (The firm adopted its current name, 

Tractor, in 1962).  Specializing in providing services for the Department of Defense, 

Tractor soon turned out to be very successful in its business.  It was listed in Fortune 500 

and spawned 22 spin-offs in a short period of time.  At the end of 1993, the fast-growing 
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Tractor also created over 6,000 jobs for Austin.  Tractor actually pioneered the 

transformation process of Austin toward a high-tech hub (Herbig and Golden 1993) 

Following the success of Tractor, other three top-tier high-tech corporations – 

IBM, Motorola, and Texas Instrument (TI) – marched in.  IBM and TI broke ground for 

their branch assembly plants at the end of the 1960s.  Motorola opened up the Ed 

Bluestein branch for large-scale transistor and semiconductor fabrication manufacturing 

in 1974.  These firms played not only instrumental roles in leading the development of 

manufacturing and ICT sectors, but also attracted more firms and “camp followers,” 

small satellite firms that subcontract to larger companies. 

There are several reasons to explain the charm of Austin to these IT giants.  First 

is the locational advantage, such as low land price, availability of a high-tech labor force 

at relatively low cost, and accessibility to the potential market in the Southwest U.S.  

Second is the availability of public goods, such as well-developed government and 

university systems and good infrastructure facilities.  Third is the quiet and pleasant  

environment, such as mild climate, amenities of the landscape, and recreational 

opportunities. 

3.3.3 Era of incubation of research and development (late 1970s to late 1980s) 

This stage can be seen as an important transitional period to add advanced 

research and development (R&D) into the simple assembly manufacturing of the region.  

In 1979, AMD, a microprocessor producer headquartered in the Silicon Valley, opened 

up a major chip fabrication facility in Austin.  In the meanwhile, big companies like 
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IBM and Motorola also expanded the R&D facilities in the Austin branches to 

implement more researches in both hardware and software field. 

In 1983, Austin defeated 56 other cities in 27 states to become the headquarter of 

the Microelectronics and Computer technology Corporation (MCC), a large private high- 

tech consortium aimed at the development of new generation of computers.  The 

successful recruitment of MCC became the turning point for Austin’s engagement in 

high-tech sectors, especially IT.  On the one hand, MCC played an important role in 

attracting private parties to involvement in the advanced R&D activities.  On the other 

hand, “Silicon Hills (Prairie)”6 frequently appeared in the headlines of major newspapers 

such as the New York Times and the Wall Street Journal, which provided the city an 

opportunity to re- identify and promote itself.  Austin’s traditional educational 

advantages  also contributed significantly to the development of R&D activities.  In 

1977, UT Austin received $55 million in grants and contracts, and the fund sharply 

reached $166 million in 1989, which helped to attract more top researchers who in turn 

brought even more research funding to the University.  The flagship status of UT also 

stimulated a further agglomeration of other private and public research institutions in 

Austin. 

Another milestone on Austin’s road toward Silicon Hills was its excelling in the 

competition of the recruitment of SEmiconductor Manufacturing TECHnology 

(SEMATECH) in 1987.  SEMITECH is a national research consortium, targeting at 

maintaining the leading position of the U.S. in the semiconductor industry against the 

rising competition from Japan (Boesche and Boesche 1999) by providing research and 
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development in semiconductor manufacturing techniques and advanced semiconductor 

manufacturing processes. 

Other noteworthy events during this period included the relocation of 3M and the 

birth of Dell.  3M is a multibillion-dollar firm with branches all over the world, focusing 

on display and graphics; electronics and telecommunications; health care; industry; 

safety, security and protection services; transportation, and other businesses.  in 1984, it 

relocated one of its three divisions from St. Paul, MN to Austin.  Founded in 1984, Dell 

has become one of the most successful legends in the circle of computer manufacturing 

in the 1990s.  It is now the largest private employer in the Austin region. 

With the continuous strengthening of research abilities in both public and private 

sectors, more spin-offs and start-ups have been generated and more companies have 

migrated to Austin to set up their home bases.  High-tech companies have increased 

from 125 in 1979 to 457 in 1989 (Lee 2002).  By the late 1980s, Austin had established 

its new identity as a new rising technopolis in the Southwest. 

3.3.4 Era of fast-growing technopolis (late 1980s to late 1990s) 

The last decade of the 20th Century witnessed the blooming flowers of the high-

tech seeds sown in the past decades in Austin, which is nurtured by two factors.  First, 

big firms like IBM, Motorola, and AMD not only became the major employers of the 

high-tech labor force of the city, but also functioned as important R&D bases.  IBM 

created a major R&D center for of product designing and software development.  

Motorola set up the headquarters of communication and advanced consumer 

technologies.  AMD built a research center for the development  of the next generation of 
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microprocessors.  A recent survey showed that about three-quarters of the companies 

interviewed had increased R&D spending in the first half of the 1990s (Cunningham et 

al. 1997).  Second, IT sectors have established theirs positions in the economy of Austin, 

and the software industry has grown more rapidly than the hardware counterpart.7  By 

the end of 2000, high- tech employment accounted for approximately 21 percent of the 

Austin region’s total employment.  About three-quarters of the total number of high-tech 

employees were working in three major sectors: semiconductor and electronics, 

computer and peripherals, and software and telecommunication, indicating the rising IT 

industry in the region (Tables 3.3 and 3.4).  By the end of the 1980s, hardware and 

software firms almost equaled in numbers. However, among 849 new-established high-

tech firms in the 1990s, 587 turned out to be software companies (Table 3.5). 

Entering the 1990s, the combined effects of corporate relocation and expansion, 

rapid population growth, extensive investment in technology and Internet-related start-

ups, and the meteoric rise of Dell promoted Austin to be the fastest growing 

metropolitan area in Texas as well as in the country.  From 1990 to 2000, per capita 

personal income  rose from $18,092 to $32,039, the average price of a house sold grew 

from $87,600 to $199,500, and newly-created non-agricultural jobs increased from 

164,000 to 272,000. 

These achievements have not gone unnoticed outside the state.  The  Austin 

MSA remained in the top position in the latest POLICOM economic strength rankings 

released on July 15, 2002 (POLICOM 2003).  This is the fourth consecutive year the  

Austin MSA has ranked the top among the 318 metropolitan statistical areas in the 
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county.  According to another survey, the Forbes/Milken Institute’s best places for 

business and career, the  Austin MSA was ranked number one among 200 metropolitan 

areas from 1999 to 2001 based on measured job and earned income growth, and the 

activity in critical technologies that foster growth (Forbes 2003).  In addition, the 

unemployment rate dropped for 10 consecutive years in the 1990s, and it remained lower 

than the state and national average after the nationwide economic depression starting in 

the second half of 2000 (Tables 3.6 and 3.7, Figure 3.5). 

Austin’s short-term economic outlook has obviously been influenced by the 

overall national trends.  The symptoms of the nationwide economic recession, such as 

slowdown in output and income, a soft labor market, sluggish investment, a continuous 

interest rate cut, and slowing consumer spending has also been experienced by Austin 

since the first quarter of 2001.  The stagnant venture capital investment has had 

significantly negative impacts on the Austin economy, especially on the high-tech 

sectors, the most important contributor to the local economy in the past decade. 

However, although the digital economy is battered, it has endured.  Most people 

are still optimistic about the future of the Austin economy.  According to an economic 

forecast report, growth in the Austin region will begin to accelerate from 2002 to 2006 if 

the U.S. economy continues its modest recovery rate, although it may well be some time 

before local manufacturing returns to its 2000 peak.  Austin-area job growth is predicted 

to turn positive by 2003, expanding at a rate of 2.4 percent from 2002 through 2006, 

about half of the rate experienced between 1997 and 2001.  Personal income is 
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forecasted to grow 6.3 percent annually from 2002 through 2006, about half of the rate 

as the period of 1997 - 2001(City of Austin 2003c). 

 
 
 

Table 3.3. Major IT employers in the Austin MSA, 2000 

Company Product or Service 
Number of Local 

Employees 
Dell Computer Corp. Computers and Peripherals 20,800 

Motorola Inc. Semiconductors and Electronics 10,000 
IBM Corp. Computers and Peripherals 6,000 

Sulzer Orthopedics, Inc. Biosciences 5,479 
Advanced Micro Devices  

(AMD), Inc. Semiconductors and Electronics 4,600 
Applied Materials, Inc. Semiconductors and Electronics 4,500 

Solectron Texas Semiconductors and Electronics 4,400 
Kent Electronics Telecommunications 2,000 

National Instrument, Inc. Computers and Peripherals 1,800 
3M Austin center Semiconductors and Electronics 1,800 

      Source: GACC (2003). 
 
 
 

Table 3.4. High-tech Employment by category 
               in Austin, 2000 

Industry Total number percent 
Semiconductor and 

electronics 43217 30.5
Computer and peripherals 36383 25.6

Software 23948 16.9
Telecommunication 15955 11.3

Others 22361 15.7
Total 141864 100

                                 Sources: GACC (2003). 
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Table 3.5. Growth of high-tech firms in Austin 
Industry category Exited 

before 1979 
Established in 
1980 - 1989 

Established in 
1990 - 2000 

Total by 2000 

Software* 54 184 587 825
Hardware* 71 148 262 481

Total 125 332 849 1306
             Source: After Lee (2002). 
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Figure 3.5. Unemployment rate in the  Austin MSA, Texas, and the U.S., 1990 - 2002. 
Source: USBLS (2003a). 
 
 
 

Table 3.6. Top 10 MSA with the highest economic strength in the U.S., 
1995 - 2001 

Metropolitan Area 2002 2001 2000 1999 1998 1997 1996 1995 
Austin-San Marcos, TX 1 1 1 1 4 24 27 28 

Denver, CO 2 2 5 11 19 29 34 32 
Atlanta, GA 3 3 9 12 7 2 2 3 

Seattle -Bellevue-Everett, WA 9 4 2 4 6 5 4 6 
Salt Lake City-Ogden, UT 7 5 3 2 2 3 7 14 

Raleigh-Durham-Chapel Hill, NC 6 6 7 3 1 1 1 1 
Dallas, TX 5 7 8 9 12 27 35 30 

Fort Collins-Loveland, CO 8 8 4 5 3 8 5 13 
San Antonio, TX 12 9 13 19 27 39 29 39 

Madison, WI 11 10 6 15 9 10 10 24 
Source: POLICOM (2003). 
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Table 3.7. Forbes/Milken best places rank, 
1999 - 2002. 

 1999 2000 2001 2002 
Seattle, WA 1 13 15 92 
Austin, TX 2 1 2 19 
 Dallas, TX 3 24 5 14 

Ventura, CA 4 32 18 4 
Oakland, CA 5 12 10 8 

                                  Source: Forbes (2003). 
 
 
 
3.4 Environmental management practices 

 Far away from the dirty smokestacks, Austinities are always proud of the 

pleasant environment of their city, clear lakes and rivers, green wooded hills, and clear 

blue sky.  The only natural environmental threat – flood – has been totally relieved with 

the construction of a network of dams and lakes northwest of the city in the early 1960s8.  

But the  boom-bust wave featured by fast economic growth and urban expansion in the 

1990s brought not only more jobs, wealth, and opportunity to the city, but also more 

visible and invisible environmental challenges. 

In the middle of the 1980s, some environmental problems related to the rapid 

urban development emerged.  The collapse of overloaded wastewater systems led to 

millions of gallons of inadequately treated sewage being discharged into Barton Creek 

and the Colorado River.  Homebuilders had to ferry the sewage from the area served by 

an overloaded treatment plant to another area with surplus treatment ability, a process 

called “sewage on wheels” (Northcott 1987). 

Traffic conditions have deteriorated as the region has become more populous, 

accompanied by rising congestion-related costs.  Watchwords like “Pray for me – I drive 
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183” on a bumper sticker indicated Austinities’ worry about the worsening traffic 

(Renfro 1990).  One survey conducted in the early 1990s revealed that a high percentage 

of the general public felt that the general quality of the environment was worsening, 

rather than improving (Beatly and Brower 1994).  At the city level, the responses to the 

new rising environmental problems were carried out through several approaches 

including conventional governmental regulations and enforcement, city ordinances, 

urban planning, and various environmental initiatives and programs. 

3.4.1 Urban planning 

Due to Texas’s liberal annexation law,9 the pace of suburbanization of Austin 

was very fast in the 1960s and 1970s (Figure 3.3).  At the same time, public concerns 

over the negative impacts of urban sprawl (as manifested in Houston, and many other 

cities across the country) started to rise.  In 1980, the city proposed Austin Tomorrow, 

an urban planning program aimed at protecting the natural environment and minimizing 

the negative impacts of growth in Austin.  Thousands of citizens were involved in the 

compilation of the plan.  In 1985, Austin voters approved an amendment to make the 

Austin Tomorrow (with the new name “Austinplan”) a mandatory guideline because it 

was charged as being too broad to guide the course of urban development.  However, the 

preferred growth corridors outlined in Austinplan were unable to regulate the major 

urban development afterwards due to strong resistance from the development 

communities, the lack of fiscal support, and the deficiency of administrative incentives.  

Despite the failure, thought, Austinplan left rich legacies.  It was a successful social 

learning process which not only provided excellent opportunit ies for the citizens to 
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comprehend  the complicated planning process, but also offered a starting point for 

future planning programs and initia tives, such as the smart growth initiative launched in 

the late 1990s. 

In the early 1980s, land prices in the environmentally sensitive northwest part of 

Austin suddenly rocketed due to 3M’s decision to build a new facility there.  The high 

land prices inevitably caused the high density development that was perceived to 

jeopardize the water quality and scenic beauty of the area.  In December 1984, the 

planning department of the city of Austin released Northwest Area Land Use Guidance 

Plan (NALUG) to direct the development at about 77 square miles of land in northwest 

Austin.  The plan was the result of the negotiation between the city and interest groups, 

without legal binding power like other city ordinances and plans, but NALUG 

nevertheless played an important role in balancing the development and environmental 

protection in the area. 

The unprecedented economic growth in the 1990s pushed the land development 

to the uncontrollable edge.  In 1999, 75 percent of new houses were built outside the city 

limits (Briseno 1999).  The danger of losing its tax base, degradation of the environment, 

and deterioration of the central city made a new urban plan not only necessary but 

urgent.  In early 1998, the Austin city council kicked off the Smart Growth Initiative 

(SGI), a long-range urban development plan to guide and shape future growth both to 

minimize the negative environmental, economic, and social impacts and to preserve the 

best aspects of life in the region.  There are three major goals of the initiative: first, to 

determine where and how to grow; second, to improve the quality of life; and third, to 
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enhance the tax base (City of Austin 2003d).  Because it is a newly- launched program, 

the effectiveness of the plan is yet to known.  According to a preliminary study, the plan 

seems not to work very well in the first few years after it has been officially launched.  

The expected outcome of the SGI, growing construction in encouraged development 

zones and decreasing construction in protected development zones, has not been 

observed (Sui, Tu, and Gavinha  2003).  On the other hand, some negative social 

consequences of the program, such as deepening east-non-white and west-white social 

and racial segregation (Briseno 1999, Lee 2002).  SGI is nevertheless the latest addition 

to the existing growth plans of the city with the goal of promoting the balance of fiscal 

equity, environment sustainability, and a better sense of community. 

3.4.2 Environmental management 

The mode of environmental management in Austin resembles the bureaucratic 

system of the U.S. municipal government; that is, separate governmental divisions are 

responsible for different problems.  The City of Austin organizes environmental 

management divisions in terms of the various media, such as air, water, and wastewater.  

The primary functions of these divisions are to develop and implement programs to 

reduce the negative environmental impacts of the business and activities in the region, 

and to promote environmental-related education in local businesses and communities.  

The city of Austin also actively cooperates with environmental and natural resource 

management agencies and non-government organizations (NGOs) at regional, state, and 

federal levels, such as the Capital Area Planning Council (CAPCO), the Greater Austin- 
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San Antonio Corridor Council (GAACC), Texas Commission on Environmental Quality 

(TCEQ), EPA Region 6, and the Clean Air Force of Central Texas. 

Ordinances are also taken by the City Council as important strategies to regulate 

the development and reduce the negative environmental impacts.  The city council 

passed the first environment-related ordinance, Comprehensive Watersheds Ordinance 

(CWO), in May 1986 after intensive debates between pro-development and pro-

environment groups.  CWO aimed to control non-point source pollution by providing 

development standards within the watersheds in the region.  Not surprisingly, the final 

product of the ordinance was a compromise among the interests groups, satisfying all 

parties involved in general.  Land developers won a bit more time to adjust their 

development plan, and environmentalists were happy about the items related to the 

requirement of density and buffer zones control in all the land development plans.  

With the rising environmental consciousness and the popularity of the concept of 

sustainability, the community gradually felt the traditional “piecemeal” way of 

environmental management was insufficient to meet the goal of sustainable development.  

Instead, a more holistic approach integrating the economic, environment, and social 

concern is needed.  The City of Austin’s sustainable communities initiative, UT Austin, 

and some community leaders began to create a sustainable indicators system to help the 

community better understanding the challenges of the sustainable development.  The 

project was kicked off in 1999 by a regional survey called “Thumbs Up! For the 

Economy, the Environment, and the Community.”  The first annual report of the project 

was released in March 2000, covering three of the five counties of the  Austin MSA, 
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Travis, Hayes, and Williamson.  The latest SIP report was published in May 2002, with 

several revisions on the indicators and inclusion of the other two counties of the  Austin 

MSA – Bastrop and Caldwell – into the project (CTSIP 2003).  These reports 

comprehensively examined the facts and trends of development in social, economic, and 

environmental aspects of the region using over 40.  CTSIP provides both decision 

makers and the general public with a relatively complete picture about the three 

perspectives of sustainable development: economy development, environmental 

protection, and the social equity.  The disadvantage of CTSIP is that it focuses more on 

the status than on the causes of the three concerns by threading a large amount of 

anecdotal information together. 

 

3.5 Summary 

 The past two decades saw the  Austin MSA grow quickly from a quiet college 

and state capital town into a prosperous high-tech hub.  Historically, Austinities have 

never suffered seriously from the industry-related environmental problems.  However, 

the rapid economic structural changes and urban expansion are bringing new 

environmental challenges to the region.  According to the CTSIP 2002 report, fewer than 

half of the monitored water bodies in the  Austin MSA have met water quality standards, 

the overall hazardous materials are increasing, and fewer than a third of the central 

Texan believe their surroundings are becoming more appealing. 

 Thus it is a meaningful and valuable task to explore the environmental 

consequences of the economic structure change of the  Austin MSA.  The results will 
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provide us a clearer view about the trend of the status of the environmental quality, the 

possible change of pollutant sources, and the implications to the practices of 

environmental management of the city in the emerging digital economy. 

 

                                                
 

Notes 
1  Most of the discussions of the chapter focus on the city of Austin, the core area of Austin MSA.  
Considering the geographical as well as economical connections of the five counties, the input-output 
analysis in chapters VI and VII is applied on the Austin MSA. 
2 This scenario has been prepared as an approximate average of Scenario zero (0.0) and Scenario (1.0) 
between years 1990 and 2000.  It assumes that the rates of net migration are one-half those of the 1990s.  
It suggests a slower than the 1990s’ average but steadily growing rate. 
3 The majority of the section is synopsized from Humphrey (1997). 
4 Agriculture, ranching, and oil industries are the first three economic development waves in Texas.  The 
fourth wave is high-tech industry (O’Reilly 1985; Yemma 1987). 
5 It was Johnson who coaxed the most money out of New Deal officials into a set of civic projects in the 
Austin area. 
6 “Silicon Hills” was coined by a MCC recruitment team to identify and promote the city as a nice place 
for investment, living, and working (Kim 1998). 
7 Based on the high-tech industry definition given by the Greater Austin Chamber of Commerce (GACC 
2003), Lee (2002) divides high-tech firms into two big categories: hardware and software.  Hardware 
refers to Biosciences, computers and peripherals, semiconductors and electronics, and others.  Software 
includes e-commerce, multi-media/film/music, software, and telecommunications. 
8 The dams not only controlled the annoying flooding, but also provided steady and cheap electricity for 
Austin. 
9 The 1963 Texas Municipal Annexation Act allows cities to annex with simply a majority vote of the City 
Council.  It was later amended to include a few addition laws (Briseno 1999). 
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CHAPTER IV 

ECONOMIC STRUCTURE CHANGE AND ITS IMPLICATIONS ON 

ENVIRONMENTAL POLICY  IN THE DIGITAL ECONOMY 

 
 
 

Every generation needs a new revolution. 
-T. Jefferson 

 
 

4.1 Introduction 

 As discussed in chapter II, contemporary environmental problems are closely 

associated with human’s overexploitation of nature as both a source of raw materials and 

as a sink for waste discharges.  Although the earliest concerns to natural resources and 

environmental protection in the U.S. can be dated back to the first half of the 19th 

century, they did not develop into a national movement before the 1960s.  The first 

generation of environmental policy1 emerging in the late 1960s and the early 1970s was 

the direct response of the government to the rising environmentalism.  Symbolized by 

the enactment of the National Environmental Policy Act (NEPA) in 1970, the first 

generation of environmental policy was largely pollution control-based and law-driven, 

with smokestack sources sitting squarely in laws’ regulatory crosshairs (Esty and 

Chertow 1997; Salzman 1999).  The laws and regulations were effective and successful 

to some degree.  The classic pollution images, like dirt-streaked factories shrouded in 

smoke, and leaking effluent pipes churning out drums of waste have gradually become 

history.  However, these laws and regulations may not be effective and efficient enough 

to deal with the new environmental challenges of information age. 
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 The structure of the economy has changed in many fundamental ways in the 

emerging digital economy.  The nature of environmental problems is evolving quickly 

with the shrinking of some sectors (e.g., manufacturing, mining, and energy) and the 

expansion of other sectors (e.g., ICT, information, and service) in the economy.  The 

major pollution sources are also shifting from a relatively few big dirty smokestacks to 

hundreds of thousands of small-scale, widely-distributed, and individually insignificant 

sources.  In addition, consumption is turning out to be environmentally problematic 

because the new rising E-commerce is indirectly affecting the levels and patterns of 

consumers’ options by fundamentally changing the ways of both selling and purchasing. 

All these changes are challenging the first generation of environmental policy, 

which are characterized by their fragmented, industry-specified nature.  As Allenby 

(1997) sharply perceived, “The simplicity of the underlying assumption – regulate 

manufacturing emissions and you will create an environmentally acceptable world – is 

touching but, unfortunately, wrong.” 

Surprisingly little existing research systematically has addressed the 

environmental policy issues in the context of the emerging digital economy.  Salzman 

(1999) reported that among five major reviews 2  of the U.S. environmental policies 

involving major leading figures in the field, only one (the next generation project 

sponsored by Yale University) took economic structure change as an important factor 

influencing future policymaking.  However, this review, together with a few other 

studies, addressed only the environmental policy implications of economic structure 

change from the perspective of the growing importance of the service sectors, rather than 
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emerging digital economy (Ellger and Scheiner 1997; Guile and Cohon 1997; Salzman 

1997, 1999; Davies 2000; Rosenblum et al. 2000).  These studies, albeit offering many 

valid arguments and illuminating ideas, have not been able to give more insights on 

many critical environmental policy issues in the context of digital economy and 

information age. 

This chapter reviews the evolution of the U.S. environmental policy over the last 

three decades (first generation)  and discusses the possible directions of evolution of 

environmental policy in digital economy (new generation).3  The purpose of the chapter 

is to set the context of the research questions and shed light on the interpretation of the 

results of empirical studies for the dissertation. 

 

4.2 The first generation of environmental policy: 1970 - 2000 

4.2.1 Policy prior to 1970: A brief retrospect 

 American environmentalism grew out of the movement to preserve forests, 

grazing lands, and wildlife (Nash 1989; Shabecoff 1993).  As early as 1827, a forest 

preservation program was launched under the administration of President Adams 

(Englebert 1961).  But political leaders and their advisors did not fully recognize the 

need to conserve natural resources till the end of the 19th Century.  Two critical events 

heavily influenced their opinions on environmental issues.  First was the successful 

establishment of Yellowstone, the first national park in the U.S. in 1872.  Second, at the 

end of the 1800s, a group of influential federal employees including Gifford Pinchot, 

John Powell, Fredrick Newell, and George Maxwell promoted the idea of conservation, 
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which suggested not a lockup, but wise use of natural resources.  Their doctrines were 

gradually accepted by the federal government, and the concepts of “multiple use” and 

“sustained yield” later became the core creed of the conservation movement (Lester 

1998). 

However, the federal government played only a very limited role in 

environmental policymaking before 1970 except in the area of public land management.  

The Interior and Agricultural Departments were the two leading governmental agencies 

which managed the lands in public interest to protect them from inappropriate 

development (Culhane 1981; Kraft and Vig 2000).  In the following decades, Congress 

enacted several important Acts to protect natural resources and landscape with 

remarkable biological, scenic, and cultural value, including the Wilderness Act (1964), 

the Land and Water Conservation Fund Act (1964), and the Wild and Scenic Rivers Act 

(1968). 

Compared to the federal government’s long-term concerns and efforts in resource 

conservation and land management, air and water pollution were long considered as 

local issues and had never been in the center of the national agenda concerning 

environmental and natural resources issues.  Environmental policies of the federal 

government extended very slowly in controlling industrial pollution and human waste 

before World War II, despite the fact that the Refuse Act for the control of pollution in 

navigable waters had been enacted as early as 1899.  After World War II, the federal 

government began to work with its state and local counterparts to deal with air and water 

pollution through passing Acts, constructing sewage treatment plants, and setting 
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pollution abatement standards.  Some important Acts include the Water Pollution 

Control Act (1948), the Air Pollution Control Act (1955), and the Clean Air Act (1963) 

(Vig and Kraft 2000).  However, through the post-war boom years, the threats from 

water and air pollution have still been regarded  as  regional, rather than nationwide 

problems.  The situation was quickly reversed by the bottom-up, nationwide 

environmental movement in the 1960s, which not only fundamentally changed views of 

the general public toward the environmental issues, but also set the context for the 

emergence of the so-called first generation of environmental policies starting in the 

1970s. 

4.2.2 Policy in the 1970s: The command and control approach 

Nationwide concerns over environment problems in the 1960s were triggered 

mainly by the interactions of several factors, including the accumulative damages of 

industrial pollution, increasing affluence, rising education levels of the general public, 

and the federal government’s predicament in a series of internal and international affairs.  

The inspiring thoughts in several pioneering books and papers on environmental issues, 

including Carson's (1962) Silent Spring, Boulding’s (1966) Spaceship Earth, and 

Hardin’s (1968) Tragedy of the Commons, also deeply influenced public opinions on the 

seriousness of the issues related to resource depletion and environmental degradation.  In 

addition,  the newly-emerging environmentalism was politically attractive to 

policymakers who were deeply troubled by both domestic and foreign affairs.  President 

Nixon proclaimed the 1970s as the “environmental decade”, and the National 

Environmental Policy Act (NEPA) was the first act he officially signed in 1970, which 
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raised the curtain on the first generation of environmental policy.  During the 1970s, sets 

of legislation on environmental protection and natural resource policy was enacted, 

covering a wide range of issues such as pesticides regulation, endangered species 

protection, control of hazardous and toxic chemicals, ocean and coastline protection, 

restoration of strip-mined lands, and the creation of “Superfund” to clean up toxic waste 

sites.  However, the full impact and cost of these laws and legislations were far from 

completely understood before they had been passed and enforced (Kraft and Vig 2000). 

Despite the government’s enthusiasm about the development of environmental 

policies, population and energy policy were largely ignored.  In the early 1970s, two 

organizations – the Commission on Population Growth, and the American Future – 

suggested that the country should have a plan to stabilize population, but their advice 

went unnoticed.  The population issue remained more or less dormant over the next two 

decades.  The energy issue was more politically and economically complicated.  The 

Nixon, Ford, and Carter administrations all focused on the policies to increase energy 

supplies to achieve energy independence.  But their attempts were unsuccessful and no 

consensus was reached on a national energy policy due to many political constraints, and 

only President Carter connected energy policy with the issue of environmental 

safeguards and conservation. 

Aside from the enactment of landmark environmental policies, rapid institutional 

development also surfaced as an integral part of the commitment of the government to 

the environmental issues.  The Environmental Protection Bureau (EPA) was established 

in 1970 as an independent agency that reported directly to the President.  The EPA one 
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was a comprehensive institution dealing with various environmental responsibilities that 

had previously been scattered among dozens of agencies, offices, and programs.  With a 

budget of $1.3 billion, the EPA had employed 13,000 staffs by 1980, a substantial 

growth compared to 7,000 employees and a $500 million budget of 1971.  Other 

agencies, such as the Forest Service in the Department of Agriculture and the Bureau of 

Land Management in the Department of Interior, were also established to serve the need 

for better planning and management of natural resources (Kraft and Vig 2000). 

 

4.2.3 Policy in the 1980s: Environmental relief and reform 

 Entering the 1980s, many problems and difficulties related to the implementation 

of the environmental policy enacted in the previous decade emerged.  Implementation 

often lagged years behind schedule due to legislation’s underestimation of the time 

necessary to develop and apply new technologies.  Lawmakers felt headaches over the 

complex mission of setting standards for hundreds of major industries and dozens of 

pollutants.  Regulated industries complained about the rigidity and inefficiency of the 

regulations and sought to block the ir implementation. Environmental management 

officials found that compliance costs were often underestimated. 

These difficulties and problems  stimulated the reform of environmental policy 

and improvement of administrative capabilities of the Reagan administration.  Reagan’s 

“environmental deregulation” decade was kicked off to reevaluate nearly all 

environmental and resource policies enacted during the 1970s to narrow the scope of 

governmental regulations, to shift part of the responsibilities to the states and local 
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governments, and to rely more on the private stakeholders.  However, the Reagan 

administration focused more on providing short-term regulatory relief to the industries, 

rather than supplying long-term solutions to environmental problems.  The early 1980s 

saw sharply shrinking budgets, weakening authority of experienced professionals in 

environmental agencies, and elimination or restructuring of many offices and programs, 

particularly inside the EPA.  Environmentalists charged that the Reagan administration’s 

approach “blew the chance to streamline regulations and use marketplace incentives in 

an honest way to speed up environmental progress, lower regulatory costs, and foster 

economic growth” (Davies 1984). 

Congress played an important role in partially offsetting the negative impacts of 

government’s environmental policy during the period.  It soon turned around its initial 

stance on supporting  the budget cut and frequently criticized the management of the 

EPA and the Interior Department under the leadership of Anne Burford and James Watt.  

The U.S. Congress also strengthened several important Acts, including the Resource 

Conservation and Recovery Act (1984), the Superfund Amendments and 

Reauthorization Act (1986), the Safe Drinking Water Act (1986), and the Clean Water 

Act (1987).  Congress also discussed the environmental impact of energy policy (energy 

consumption and global climate change) and other global environmental issues in the 

second half of the decade. 

The budget cuts, loosening  enforcement, and weakening of the administrative 

capacities of environmental institutions in the early years of the Reagan administration 

not only negatively influenced the development and implementation of the 
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environmental policy, but also paradoxically strengthened environmental forces in the 

nation by stimulating more dissatisfied parties to join pro-environment groups, which 

forged formidable political pressures at different levels of government. 

In the first two years of his Presidency, George H. Bush adopted a more positive 

environmental policy agenda than his predecessor.  At the same time, Congress was also 

enthusiastic in advanc ing environmental policy.  These all indicated a more positive 

environment agenda in the coming decade. 

4.2.4 Policy in the 1990s: Standing at the turning point of information age 

 The Clinton-Gore team showed a far more supportive stance on the 

environmental protection issues than did George H. Bush during the 1992 campaign, 

though environmental issues were actually not among the top concerns of most voters.  

Gore (1992) even argued in his best-seller book Earth in the Balance that the central 

organizing principle for civilization was to rescue the environment.  Clinton during his 

campaign promised a long and impressive list of commitments to deal with many 

environmental problems.  He articulated a vision that environment protection would not 

block economic development, but rather would not only create jobs but also help 

improve the future competitiveness of the U.S. economy by promoting environmentally 

clean, energy-efficient technologies. 

Clinton’s appointment to key environmental positions indicated his intention to 

deliver his environmental agenda at the beginning of his Presidency.  Relying primarily 

on the “administrative presidency” to achieve his environmental goals, Clinton 

attempted to reform and to strengthen the management of environmental protection 
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through his powers of appointment, budget, reorganization, and regulatory oversight.  

The most important environmental legacy Clinton left behind was a new, more 

corporative relationship between government and business, and a more flexible 

regulatory system, which was ready to better serve the improvement of environment 

quality. 

On the other hand, Congress strengthened the enforcement of the existing 

regulations despite the outcries, threats, pressures, and oppositions from industries and 

businesses.  Tighter ambient air quality standards for ozone and small particulate 

material were implemented; more hazardous waste sites were cleaned up supplemented 

by the proposal of economic redevelopment in the “brownfields” of the inner-city; the 

quantity of chemical substances required by Toxic Release Inventory (TRI) doubled; and 

more criminal and civil cases were referred to the Department of Justice for assessment 

and prosecution (Kraft and Vig 2000). 

More efforts also went into the protection of natural resources such as the Florida 

Everglades and Yellowstone National Park.  On the international issues, the U.S. finally 

signed the Kyoto Protocol at the end of 1998, demonstrating America’s attempt to 

reestablish its leadership in international environmental issues.4  The President’s council 

on sustainable development was established, comprising twenty-nine leaders from 

business, government, and nonprofit organizations.  Across the nation, a series of novel 

initiatives at various  levels of communities were launched to provide principles and 

strategies to direct the sustainable development. 
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In academia, the argument that environmental problems are shifting from the 

stage of acute pollution and environmental catastrophes to a new stage dominated by 

chronic and harder-to-diagnose pollution symptom has gradually been recognized.  

Targeting these “creeping catastrophes” (Böhret 1990), the environmental policy in the 

1990s kept evolving to broaden the scope they covered, to induce new management 

strategies and enforcement instruments, to deepen the level of thinking about 

environmental issues, and to win greater societal supports (Lester 1998). 

The scope of environmental policy was extended from local issues such as air 

and water pollution to regional (such as watershed management) and global issues (e.g., 

global warming and biodiversity).  The enactment  of the Pollution Prevention Act of 

1990 marked a new age in dealing with environmental problems, focusing more on 

prevention beforehand rather than clean-up afterwards.  The regulatory toolkit began to 

be supplemented by a range of new environmental policy instruments (NEPIs) and new 

environmental management systems (NEMSs) (Gunningham and Sinclair 1998; Jordan, 

Wurzel, and Zito 2003).  Virtually all sectors of American society, from working-, 

middle-, to upper-class, paid more attention to environmental problems and policies.  

Scholars have extended their earlier emphasis from empirical studies to more normative 

and philosophical thinking on environmental problems (Lamb  1996; Lester 1998; 

Oliveira de Paula and Cavalcanti 2000; Ehrlich 2002). 

 Almost every dimension of environmental policy is evolving rapidly: the targets, 

spatial and temporal scales, institutional organizations, and regulatory instruments 

(Liberatore 1997).  However, little has been achieved to fundamentally reform the 
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current policy to satisfy the changing reality except few weak calls from academia (Esty 

and Chertow 1997; Salzman 1997, 1999).  Facing the rapidly evolving digital economy 

and information age, current generation of environmental policy is at a crucial turning 

point.  Comprehensive understanding of the nature of the current generation of 

environmental policy and of digital economy will be essential to formulate a new 

generation of environmental policies to guide our society to a more sustainable future. 

4.2.5 First generation environmental policy: An assessment 

 Compared to the situation in the 1970s, today acute pollution from decades of 

industrial pollution has generally been alleviated, and the environment has been 

significantly improved as the  result  of the implementation of the first generation of 

environmental policy (USEPA 2004).  There is no doubt that environment would have 

been much worse today without these laws and regulations.  However, these successes 

did not come without problems, difficulties, controversies, and costs. 

 The first generation of environmental policy was largely industry-focused and 

law-driven, with environment and economic growth as two conflicting parties; that is, 

pollution was the inescapable side effect of human activities.  Consequently, regulatory 

attention was focused on those high smokestacks and dirty effluent pipes in 

manufacturing sectors, relying almost exclusively on the “command and control” 

enforcement approach.  While most major pollution sources in manufacturing sectors 

have been successfully captured and regulated, the impacts of many other rising sectors 

(e.g., the service sector) and other aspects of the economic system (e.g., consumption) 

have not been seriously and systematically considered.  A report from EPA’s Office of 
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Policy admitted that the U.S. pollution control system was focused primarily on 

production industries such as manufacturing, mining, and agriculture.  Comparatively 

little analysis has been done on the environmental impact of the service sectors 

(Salzman, 1999).  The causes of negligence are complex and multidimensional.  The 

buffering effect of environment to pollution; the inadequate knowledge of chemical 

substances, the deficiency of bureaucratic system, the high enforcement costs, and the 

partisan interests and bias are all possible influencing factors.  In addition, these factors 

also tend to multiply and interplay each other, further preventing the effective catching 

the environmental problems outside the manufacturing sectors. 

 The first generation of environmental policy compartmentalized environmental 

problems according to major environmental media such as air, water, and land.  Detailed 

regulatory rules were then designed, written, and rigidly implemented.  The 

fragmentation approach has apparent advantage in expediting the enforcement process in 

face of the immediate environmental risks in the beginning.  The environmental 

problems today, however, are much different from those of 1960s and 1970s as an 

industrial-based economy is gradually evolving toward an information-based economy.  

These problems tend to be less plainly harmful, more subtle  and unpredictable, harder to 

identify and quantify, and impacting in longer temporal and on larger geographical 

scales.  The setbacks of the fragmentation approach, such as the contradiction among 

separate laws and regulations, the lack of flexibility, and the missing of potential 

regulation targets significantly impact the effectiveness and efficiency of the first 

generation of environmental policy . 
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In short, the first generation of environmental policy succeeded in picking up  

those “low-hanging fruits” of environmental problems in the past three decades, but are 

not sophisticated enough to address the new rising problems in the emerging digital 

economy.  However, the rich legacies left by the first generation of environmental policy 

has formed foundations for the development of a new generation of policy initiatives, 

which must go beyond the inefficient “one-size-fits-all” approach, to focus on the new 

rising environmental targets, to take a more holistic view, and to include new regulatory 

instruments. 

 

4.3 Beyond smokestack: Toward the new generation of environmental policy 

In the emerging digital economy, many primary elements of the economic 

system, such as methods of production, patterns of distribution, forms of business, and 

styles of consumption are evolving quickly; so is the nature of environmental problems, 

which is directly connected to the type and structure of the economy.  Liberatore (1997) 

proposed a framework with multiple dimensions for the analysis of the environmental 

policy, including a sectoral dimension, an issue dimension, a spatial and temporal 

dimension, an organizational dimension, a toolkit dimension, and a distributive and 

ethical dimension.  These dimensions not only suggest various angles to examine the 

environmental policies problems, but more importantly, provide a practical handle to 

develop new policy strategies and initiatives.  The following sections synopsize some 

possible directions for the new generation of environmental polices in terms of these 

dimensions on further analysis of the weakness of the current generation of policy. 
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4.3.1 Overcoming policy fragmentation 

 The essence of the fragmentation is the divide/conquer dichotomy.  

Fragmentation makes the problems more tractable and accessible to deal with at the 

possible cost of losing the vision of the whole, missing potential targets, and generating 

unwanted overlap, gaps, and conflicts among pieces of laws and legislations.  Powers 

and Chertow (1997) defines three types of fragmentation problems: 1) by type of 

pollutants, 2) by life-cycle stages, and 3) by organizational characteristics. 

 Many empirical studies have demonstrated that pollutants hardly follow any 

types of boundaries, whether political or ecological.  Tall smokestacks can help release, 

dilute, and displace sulfur dioxide more quickly and efficiently, but they do not 

permanently eliminate it.  Sulfur dioxide may easily land (in rare cases at the same 

geographical location as it was discharged) as acid rains that damage vegetation, 

buildings, and water supplies.  Scrubs can be used to catch the pollutants before they are 

discharged, but the resulting sludge turns out to be more troublesome to dispose of  The 

fragmentation approach also fails to identify pollution when pollutants shift between 

political and administrative regions (Powers and Chertow 1997). 

Fragmentation by product life-cycle chain errs in that it focuses only on the 

emissions from factories, but neglects almost all the other stages of the entire product 

life cycle chain, from raw material extraction, to manufacturing, distribution, final use of 

product, and waste disposal.  The fragmentation not only severely reduces the possibility 

of permanently getting rid of the wastes, but also increases the chance to displace the 
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problems between different stages of the entire product lifecycle chain and geographical 

locations. 

 Fragmentation by organization means that each ecological medium is regulated 

by a separate set of laws and regulations, which are designed to have specific definitions, 

standards, penalty rules and liability, and different enforcement agencies (or different 

subdivisions inside the same agency).  Polluters would try their best to satisfy specific 

regulatory requirements, and regulators would focus on whether those requirements are 

met.  Unfortunately, the real goal of the environmental policy, seeking optimum 

solutions to improve the environmental quality and protect the ecosystems, has been 

largely been marginalized on both sides of the game. 

 The new generation of environmental policies have to adopt a more holistic and 

long-term view that goes beyond the fragmentation featured by single-medium, single-

species, single-substance, single life-cycle-stage, and single organization approaches 

(Powers and Chertow 1997).  Our growing knowledge and experiences concerning the 

nature of environmental problems, the connections between environmental problems and 

economic systems, and most efficient way of enforcement of environmental laws and 

regulations will help overcome the barrier of the  fragmentation to achieve a more 

inclusive and holistic environmental policy framework. 

4.3.2 Beyond the manufacturing sectors: Policies for the economic sectors 

outside the domain of manufacturing 

 The first generation of environmental policy emphasized on the treatment of tall 

and dirty smokestacks in manufacturing sectors.  Policy prescriptions to other economic 
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sectors, especially to the service and ICT sectors, remained marginal.  The general lack 

of attention to sectors outside the manufacturing domain tends to be more problematic in 

the emerging digital economy. 

1. The service sectors  

 The service sector contains a remarkably heterogeneous group of economic 

activities such as transportation, utilities, wholesale and retail trade, finance, insurance, 

real estate, health services, legal services, and government services. All vary 

significantly in the levels and patterns of environmental impact.  The service sector is 

not necessarily more environmentally problematic than the manufacturing sector, but 

their incomparable importance on the economy and unusual environmental impact 

deserve special policy prescription, rather than the general treatment designed for the 

manufacturing sector.  In addition, the service sector is more dynamic than the 

manufacturing sector.  Table 4.1 shows that service sector experienced the most changes 

among all economic sectors of the years 1987, 1997, and 2002. 
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Table 4.1.  Comparison of 1987 SIC, 1997 and 2002 NAICS 
1987 SIC 1997 NAICS 2002 NAICS 

Code Definition Code Definition Code Definition 

01-09 
Agriculture, Forestry, 

and Fisheries 11 
Agriculture, Forestry, 
Fishing, and Hunting 11 

Agriculture, Forestry, 
Fishing and Hunting 

10-14 Mineral Industries 21 Mining 23 Construction 
15-17 Construction Industries 22 Utilities 31-33 Manufacturing 
20-39 Manufacturing 23 Construction 42 Wholesale Trade 

41-49 

Transportation, 
Communications, and 

Utilities 31-33 Manufacturing 44-45 Retail Trade 
50-51 Wholesale Trade 42 Wholesale Trade 51 Information 
52-59 Retail Trade 44-45 Retail Trade 52 Finance and Insurance 

60-67 
Finance, Insurance, 

and Real Estate  48-49 
Transportation and 

Warehousing 53 
Real Estate and Rental 

and Leasing 

70-89 Service Industries 51 Information 54 
Professional, Scientific, 
and Technical Services 

91-97 Public Administration 52 Finance and Insurance 55 

Management of 
Companies and 

Enterprises 

  53 
Real Estate and Rental 

and Leasing 56 

Administrative and 
Support and Waste 
Management and 

Remediation Services 

  54 
Professional, Sc ientific 
and Technical Services 61 Educational Services 

  55 

Management of 
Companies and 

Enterprises 62 
Health Care and Social 

Assistance 

  56 

Administrative and 
Support and Waste 
Management and 

Remediation Services 71 
Arts, Entertainment, and 

Recreation 

  61 Educational Services 72 
Accommodation and 

Food Services 

  62 
Health Care and Social 

Assistance 81 
Other Services (except 
Public Administration) 

  71 
Arts, Entertainment and 

Recreation 92 Public Administration 

  72 
Accommodation and 

Food Services   

  81 
Other Services (except 
Public Administration)   

  92 Public Administration   
  Sources: Summarized by the author from the U.S. Census Bureau (2003b). 
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Salzman (1999) categorized the service sector into three groups in terms of their 

environmental impacts: 1) smokestack services, 2) cumulative services, and 3) leverage 

services. 5   Smokestack services include utility companies, transportation industries, 

telecommunication firms, and healthcare providers, all of which usually emit significant 

quantities of pollutants.  Cumulative services refer to all other services that do not cause 

significant environmental harm when they are operated individually, but may generate 

potentially large collective impacts.  Leverage services contain large retailers and 

utilities providers, who act as funnels in product life cycles, influencing the behaviors of 

both upstream (producers) and downstream (consumers) players.  The environmental 

impact of smokestack services falls mostly into “low-hanging fruit,” which has been 

picked by the first generation of environmental policy.  Cumulative services, similar to 

other non-point pollution sources, are generally beyond the reach of the current laws and 

regulations, remaining to be “high-hanging fruit”.  Salzman’s classification scheme, 

albeit coarse and subjective, is nevertheless helpful in identifying new pollution sources 

and in preparing and evaluating the effectiveness of new regulatory instruments. 

1) Smokestack services 

Among the three service types, smokestack services apparently contributes the 

most to the direct pollutant emission.  During the past three decades, they were also 

directly squared in the center of regulator’s crosshair.  For example, Title IV of the 1990 

Clean Air Act amendment heavily regulates sulfur dioxide emissions from power plants, 

the mobile sources provision of the Clean Air Act regulates air pollution from 
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transportation vehicles, and  the Resource Conversation and Recovery Act regulates the 

biomedical waste from hospitals. 

However, these laws and regulations are not tailored specifically for service 

sectors, but for those dirty smokestacks in the manufacturing sectors.  The service sector 

in general is not considered as generic polluters, but is often regulated according to the 

standards proposed for manufacturing sector, which causes either under-regulation or 

over-regulation.  The Toxic Release Inventory (TRI), one  of EPA’s major measures used 

to gather information on toxic chemical discharge from both industry groups and federal 

facilities, is an example of under-regulation.  The TRI was established under the 

Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA) and later 

expanded in the Pollution Prevention Act of 1990.  However, the TRI database is limited 

to the facilities falling in the sectors with the two-digit 1987 SIC from 20 to 39, all of 

which belong to the manufacturing sector.  The story about BellAtlantic, a 

telecommunication service provider in the Northeast U.S., provides an example of over-

regulation.  BellAtlantic has to deal with the hazardous waste from 113,000 manholes.  

BellAtlantic was not allowed to handle these waste sites using mobile treatment units 

which are permitted to use only by manufacturing companies (BellAtlantic’s SIC 

identified it as a service company) according to the current law.  Unfortunately, 

BellAtlantic has to bear the extra regulatory burdens caused by the mismatch of 

regulation and feature of the company (Salzman 1999). 

The policy implications for smokestack services, according to Salzman (1999), 

are twofold.  First, the operations, impacts, and interactions of service sectors should be 
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fully understood before any governmental interventions may be applied.  Second, 

smokestack services warrant special attention because over-regulation and under-

regulation may cost both polluters and the regulators. 

2) Cumulative services 

 Caldwell (1990) described two generations of environmental problems. The first 

generation comprises traditional point source emissions on local and regional scales, the 

new generation involves trans-boundary and global threats such as ozone depletion and 

climate change.  Salzman (1999) coined the term “atomized sources” to identify the third 

generation of environmental problems following Caldwell’s conception.  Atomized 

sources are those small-scale, large-quantity, and widely-distributed pollution sources, 

falling in mostly the service sector.  The story of the silver contamination in the San 

Francisco Bay area vividly illustrates the nature of the environmental impacts of 

atomized sources.  In the early 1990s, both regulators and scientists were surprised to 

find concentration of silver in San Francisco Bay was much higher than the normal 

standard.  After a long investigation, the dental offices in the area were accused of the 

major suppliers of the silver.  Each individual office might discharge  only a negligible  

amount of sliver, but the collective burden turned out to be significant enough.6 

These atomized sources usually fall out of the crosshair of traditional regulatory 

system due mainly to the high compliance and regulation costs.  These sources accounts 

for a large portion of the total number of firms in the U.S. economy.  In 1999, among the 

total of approximately 5.6 million firms in the U.S, about 5 million firms had 19 or fewer 

employees (U.S. Census Bureau 2003c).  In the emerging digital economy, the atomized 
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sources are expected to grow continuously due to two reasons: the outsourcing of 

manufacturing giants to small and medium-sized companies, and the growing service 

sector.  Thus it will be a new focus for the next generation of environmental polices to 

understand and regulate these rising sources. 

Collection of the relevant information is the key to properly regulating the 

environmental impacts of cumulative services.  The Environmental monitoring and 

accounting systems have to be reconfigured to be able to supply necessary data for 

further policy prescriptions.  Two novel approaches emerged to overcome the practical 

barriers to deal with the environmental impacts of cumulative services: new 

environmental policy instruments (NEPIs) and new environmental management systems  

(EMSs).  They will be further discussed below.

2 The ICT sectors  

Policy implications of the ICT sectors merit a separate exegesis because of these 

sectors’ significance to digital economy and information age.  The environmental 

impacts of the ICT sectors can be generally categorized into two levels: direct impacts 

related to the life cycle of ICT hardware, and indirect or high-order impacts from the 

applications of ICT.  Part of the direct impacts, especially the part related to the 

manufacturing process, has been covered by the first generation of environmental policy.  

However, many aspects of both direct and indirect impacts remained unregulated.  First, 

the direct impacts outside the manufacturing process are largely ignored.  The TRI 

records only the chemical emissions from the manufacturing processes, leaving behind 

the impacts of other stages of the product life cycle, although the number of the 
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chemicals covered by TRI has doubled from 1987 to 2003.  Second, the knowledge of 

the long-term toxicity and environmental impacts of these chemicals is far from 

complete.  Third, many indirect impacts, such as the possible growth in energy 

consumption and rebound effects, have not been seriously and systematically 

considered.  There is a long way to go before the entire picture related to the 

environmental impacts of ICT can be clearly delineated.   

Langrock et al. (2002) offered a set of solutions to reduce the negative 

environmental impacts of ICT sectors, mainly through carefully analyzing the 

environmental problems associated with various phases of the ICT lifecycle (Table 4.2). 

This is a good starting point for the further exploration of the policy initiatives for ICT 

sectors in the emerging digital economy. 

 
 
 

Table 4.2. Strategies toward more sustainable ICT products 
Phase in Life cycle Possible solution 

Material acquisition • Use more material with smaller “ecological rucksacks” 

Manufacturing 
• Reduce emissions and energy consumption by product environmental 

design 

Final use 

• Adopting end of life management  

• Encouraging product upgrading  

• Promoting new business models (such as leasing) 

End product disposal 

• Stop untreated disposal 

• Increase recycling quota 

• Treat parts that contain highly toxic substances separately 

• Stop illegal export of electrical and electronic waste 

• Collect electric and electronic waste separately from municipal waste 

 Sources: After Langrock et al. (2002). 
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4.3.3 E for environment: Policy prescriptions for E-commerce 

 Another important feature of digital economy is the rapid growth of E-

commerce, whose policy implications requires further discussion.  A common E-

commerce chain consists of several interconnected nodes: suppliers, logistics (for the 

delivery of raw materials), company, logistics (for the delivery of final products), and 

the final users.  These nodes, at first glance, seem not to be too different from those of 

traditional business chains; but some nodes of E-commerce chain may bear very distinct 

features.  For example, logistics and distribution play an extremely important role in E-

commerce because these two nodes are essential for maintaining new business modes 

such as “just- in-time,” “just-enough,” and “just- for-you.”  The tough competition forces 

the businesses to deliver the goods in the shortest possible time while keeping the leanest 

inventory.  Air cargo transportation is more likely than in traditional bus inesses to be 

used; sometimes airplanes are even treated as the “flying warehouses” in E-commerce 

businesses.  The changes in logistics and distribution systems have profound 

environmental implications.  On the positive side, online shopping may save energy by 

reducing transportation to and from retail stores.  On the negative side, online shopping 

may increase the energy consumption and pollutant emission by stimulating more 

energy-intensive delivery mode (e.g., overnight delivery). 

The environmental impacts of E-commerce are actually far more complex than 

they first appear to be.  Fichter (2001) distinguished three levels of environmental effects 

of E-commerce and Internet use: direct effects of information technology infrastructure 

(energy and material use of networks, servers, receiver systems, PCs, etc.), secondary 
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effects caused by the transformation of business processes and markets, and tertiary 

effects due to subsequent and rebound effects (Table 4.3).  Despite the possible overlaps 

and gaps, Fichter’s approach still provided an useful analytical framework to examine 

the far-reaching the environmental impacts of E-commerce. 

These new emerging problems have not been addressed in the first generation 

environmental policy.  Although concrete policy prescription can be offered only after 

sufficient empirical studies, two points can be made to stimulate further thinking and 

discussions.  First, it may be more appropriate for policymakers to play the goal-setting 

role, leaving the solutions of environmental problems  to the profit-seeking industry.  

Second, a systematic approach should be adopted to cover every node in the entire E-

commerce chain to avoid either displacement or omission of the possible environmental 

problems. 

 
 
 

Table 4.3. Environmental effects of E-commerce and Internet use 
Level of effects First Order effects  Second Order effects  Third Order effects  

Sources of 

change 

• Networks, router, server, 

etc. 

• Receiving systems 

(Modems, etc.) 

• End appliances (PCs, 

mobile phones, etc. 

• Product design and life-

cycle management 

• Manufacturing and supply 

chain management 

• Logistics/distribution 

• Product use, take-back, 

recycling 

• Changes in 

economic structure 

• Change in lifestyles 

and consumption 

pattern  

• Rebound effects  

Potential 

environmental 

gains/losses  

• Energy use 

• Hazardous substance 

• Electronic waste 

• Electromagnetic radiation 

• Material and energy use 

• Transport volume 

Use of space 

 

   Source: Fichter (2001). 
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Supplier

Logistics

Logistics

Company

Customer

An element in an E-commerce chain

Linkage among the elements

 

Figure 4.1. E-commerce components. 
Sources: After Fitcher (2001). 
 
 
 
4.3.4 Close the product life cycle: from sustainable production to sustainable 

consumption 

 So far the discussions on environmental policy has been narrowly confined into 

the manufacturing aspect of the economic system.  Another equally important (if not 

more important) aspect, end users consumption, has been almost absent.  It is surely very 

important to regulate the pollution from the producing processes in any type of 

economy.  Pollution of manufacturing sources is in fact the major regulation target of the 

first generation of environmental policy.  However, consumption-induced environmental 

impact has never been systematically cons idered, becoming a major setback of the 
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current generation of environmental policy.  How to bridge this gap should be a major 

theme of the new generation of environmental policy. 

Consumption has long been taken as a self-evident concept and has rarely been 

precisely defined, but its meaning actually varies significantly in academia.  

Consumption has been conflated as all human material activity (Stern et al. 1997; Myers 

and Kent 2002); it has been equated with materialism (Scitovsky 1992; Wilk 1998); and 

it has also been treated as a population and technology issue (Wilkins 1997).  In this 

study, the general production-consumption dichotomy is followed for the ease of 

analysis, and consumption is defined as consumers’ decisions on purchase and use of all 

goods and services.  It is beyond the scope of the study to clarify the definition of 

consumption; a thorough discussion on some conceptual issues surrounding 

consumption and the environment can be found in Princen (1999).  

Durning (1992) reported that in the past 50 years, per capita consumption of 

some major raw materials has continued to increase in the U.S. Copper, steel, energy, 

timber, and meat consumption has doubled; plastic has expanded five-fold, and 

aluminum has had seven-fold increase.  In fact, more goods and services have been 

consumed since 1950 than the consumption of all previous generations combined.  In 

other developed countries, the situation of resource consumption is more or less the 

same.  More noticeably, many intensely populated-developing countries are copying the 

lifestyles and consumption habits of the developed world as their economies continue to 

go up.  The worldwide growth of consumption not only accelerates the use of natural 

resources, but also imposes additional burdens on the environment.  Fortunately, the 
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impact of consumption has been taken as one of the major themes of environmental 

protection in international community.  In the 1992 Rio Earth Summit, the unsustainable 

pattern of consumption and production was recognized as one of the major causes of the 

continuous deterioration of the global environment, and industrialized countries were 

required o take the leading roles in adopting more sustainable lifestyle and consumption 

patterns (The UN 1992). 

Princen (1999) identified three levels of consumption: background consumption, 

over-consumption, and mis-consumption, that aggregately impact the environment.  

While the background consumption is necessary to meet the basic physical and 

psychological needs of human being, its environmental impacts is considered to be 

inevitable.  However, other two levels of consumptions negatively impact the 

environment in general. 

According to Salzman (1997), consumption impacts the environment in two 

ways: by pattern (what to consume) and by level (how much to consume).  The law is 

generally more effective in addressing pattern-related issues (e.g., mandate catalytic 

converters on cars) than levels-related problems  (e.g., regulate how many cars each 

person is allowed to possess).  Compared to the relatively straightforward goal of 

minimizing pollution in regulating the manufacturing sectors, the ultimate objective of 

consumption regulation is more subtle and uncertain because it is very challenging, if 

not at all impossible, to answer such normative questions as “How much is too much?” 

and “How much is enough?” 
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In the emerging digital economy, rapid evolving E-commerce is influencing both 

the pattern and level of consumption.  The “click-and-pay” type of business mode makes 

the shopping process effortless, especially to those non-differentiated goods (e.g., 

electronics books, and CDs).  The worldwide expansion of Internet and the number of 

online population not only make consuming goods more accessible, but also help 

consumption patterns and lifestyles more to easily penetrate physical, political, and 

cultural boundaries to spread throughout the countries.  Thus the polic ies to regulate 

consumption are essential to the environmental protection and resource conservation in 

the emerging digital economy and information age. 

In fact, the regulation of consumption pattern did exist in the first generation of 

environmental policies (e.g., the mandates for lead-free gas).  However, they were not 

only inadequate in quantity, but also insufficient in the depth and broadness to fully 

cover the consumption issues and direct the way toward a more sustainable pattern and 

level of consumption. 

Ehrlich and Holdren (1971) proposes the formula I=PAT (I: environmental 

impacts, P: population, A: consumption, T: technology) to describe the relationship 

among environmental impacts, population, consumption, and technologic advancement.  

The model demonstrates that there exists three options to reduce the overall impacts on 

environment, 1) by increasing efficiency (doing more with less), 2) by reducing 

sufficiency (consuming less), and 3) by controlling population growth.  Technological 

advancement  seems to be the most ideal choice at a first glance.  However technology is 

not always that reliable and predictable.  John Von Neumann (1955) has warned half 
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century ago, “New technologies affect the earth in its entirety.  The more useful a 

technology is, the more unstablizing its effects can also be”.  Steam engines were able to 

produce the same amount of power with one-third the coal than the most efficient  

technology at the time it  was invented.  However, the coal consumption increased ten-

fold because steam engine was soon put into many more applications (Jevons 1865).  So 

the uncertainties of the inducing of new technologies have to be fully considered before 

the real environmental gains can be counted.  Population control is difficult for many 

social, economic, religious, and political reasons.  The remaining choice is to regulate 

the levels and patterns of consumption, which is also complicated by many factors, such 

as rebound effects, standardization effects, and cultural effects. 

The environmental impacts of consumption are long-existing problems, rather 

than the direct outcome of digital economy.  Although some unique features of digital 

economy do make these problems more significant and problematic in some degree, the 

long time evolution, accumulation, and inattention should be blamed as the major cause.  

The ultimate solutions remain distinct due to the complexities and difficulties in creating 

appropriate measurement methods, addressing equity concerns (intergenerational, intra-

generational and geographical), and dealing with issues of societal norms, such as the 

freedom to choose lifestyles.  Dowdeswell once noted, “Ultimately, sustainable 

consumption is not a scientific or a technical question.  It really is first and foremost a 

question of values” (cited in Salzman 1997, 1256.). 

Systematic policy solutions to the consumption issue have yet to develop.  

However, some promising approaches have been proposed.  Caviglia-Harris et al. (2003) 
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suggests two “demand-side” policies to supplement the traditional supply-side policies 

to achieve both efficiency and sustainability, one is to promote substitutes in production, 

the other is to promote substitute in consumption.  The former approach is expected to 

help sustainable production processes, the latter is assumed to indirectly contribute to 

sustainability by creating demands for products that generate less environmental 

burdens.  The extended produce responsibility (EPR) introduced in Salzman’s paper 

(1997) also provides a promising model for the future policymaking to regulate 

consumption behavior.  In general, market mechanisms and governmental interventions 

have to be combined to achieve the goal of sustainable consumption. 

4.3.5 Atoms to bits: New foundations for the environmental policy in digital 

economy and information age 

One of the fundamental changes in digital economy from the traditional 

industrial economy is the rapid growth of information related activities.  The generation, 

retrieval, movement, transformation, and exchange of information are competing with 

the production of tangible goods as the primary economic activity in digital economy.  

The major targets of the environmental laws and regulations are shifting as the result of 

the declining significance of the industrial sources and rising environmental impacts 

from many other factors in the economy (e.g., the impacts of service and ICT sectors, the 

consumption issues),  The next generation of environmental policies has to bring about 

new visions, new management approaches, and new analytical tools to deal with these 

new targets with high efficiency and effectiveness. 
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On the basis of the above discussion, five guidelines have been identified for the 

next generation of environmental polices.  These guidelines are overlapping and cross-

cutting in many subtle and complex ways.  They also might not be detailed and solid 

enough to serve as the practical action plans, but they will nevertheless stimulate further 

thinking and discussions in many valuable aspects. 

First, the new generation of environmental policy has to be adapted to the 

changing nature of the economy in digital economy, taking into account many new 

rising issues, such as the rising ICT, information, service sectors, the dynamic E-

commerce, and the patterns and levels of consumption. 

Second, the next generation of environmental policies should become more 

comprehensive in focus and attentive in the linkages across problems, covering the full 

range of the product lifecycle  and both sides of the production/consumption dichotomy 

to minimize the omission and displacement effects of the old piece-meal approach. 

Third, governmental interventions should play a more active role in correcting 

market failures, conveying correct price signals, and promoting the concept of 

sustainable consumption.  For consumption policy, there are at least three roles the 

government can play, the gatekeeper to mandate product performance and content, the 

information source of environmental impact data of products to direct more rational 

purchasing decisions, and the price controller to capture externalities through fees and 

taxes (Salzman 1997). 

Fourth, environmental protection should become the business of all stakeholders, 

inclusive of not only all levels of governmental officials, but also industrial 
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organizations, environmental groups, businesses, civil associations, and common 

citizens.  The ultimate solution to environmental problems may be how to influence the 

consumption decisions of billions of individuals, who are both passengers and crews of 

the spaceship Earth. 

Last, but not the least, the toolbox of the new generation of environmental 

policies needs to be significantly expanded and upgraded to supply more powerful 

instruments.  NEPIs and NEMSs are two promising directions  in this regard and many 

practices in the Europe Union countries have been reported.  These policy instruments 

and management strategies are different from the “command-and-control” approach in 

that they are in nature more flexible and cooperative incentive-based (Gunningham and 

Sinclair 1998; Jordan, Wurzel, and Zito 2003). 

NEPIs can be divided into three major categories, market-based instruments 

(MBIs), voluntary agreements (VAs), and information devices (Jordan, Wurzel, and Zito 

2003).  MBIs associate the financial incentives with environmental goals through market 

mechanism, including pollution charge systems (e.g., eco-tax), tradable permits, and 

deposit-refund systems.  VAs are basically commitments made by industries to pursue 

actions leading to the improvement of the environment (OECD 1998).  Information 

devices (e.g., eco- labels) rely on moral persuasion by providing consumers with 

information about the environmental impact of particular products and services (Jordan, 

Wurzel, and Zito 2003). 

The traditional environmental management systems (EMSs) focus on the 

enforcement of emission standards and promote advanced pollution control technologies 
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for plants in the manufacturing sectors.  The successful implementation of EMSs 

depends mainly on two factors: 1) the appropriate emission standards, 2) the suitable 

environmental technologies, but it is very difficult to achieve both efficiency and 

effectiveness at the same time.  The NEMSs are more organic  and mechanic in nature, 

that is to say, the entire ecosystem, rather than a single environmental medium or 

pollutant, becomes the central objective in the management system (Haeuber 1998); and 

management system focuses more on the strict following of pollution reduction 

procedures rather than on the setting of precise emission standards.  New initiatives and 

strategies of these NEMSs include self-regulation, third-party oversight, and stakeholder 

involvement (Ring 1997; Gunningham and Sinclair 1998). 

Hot disputes and debates are still going on both in academia and governmental 

agencies on both theoretical and practical issues of the NEPIs and NEMSs.  It is 

important to understand that what really matters are “ideas.”  That is to say, if these new 

instruments and initiatives are valuable in the basic principles, their effectiveness will be 

finally approved in the practice of the environmental management. 

 

4.4 Summary: Research questions in the context of the Austin MSA 

 Explorations of the changing nature of environmental problems and 

correspondent policy prescriptions in the context of digital economy have become 

interesting to more and more scholars in a variety of disciplines.  Existing studies have 

raised critical questions, presented interesting results, and reported valuable facts and 

evidence, but no general conclusions have yet been made, possibly indicating either the 
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complexity of the problems or the insufficiency of the existing empirical studies.  The 

present situation encouraged the author to study economic structure change and its 

environmental consequences at the regional level in the context of emerging digital 

economy.  This study, equipped with environmental-extended input-output analysis, will 

provide answers, or at least throw more light on the three major research questions : 

1) What kind of economic structure transformation is occurring in the emerging 

digital economy?  Are there any observable trends from the perspective of 

macroeconomics? 

2) How does the transformation in the economic structure contribute to the quantity, 

pattern, and source of the point industrial air pollutant emissions? 

3) What will the environmental consequences be in the foreseeable future along 

various development trajectories? 

                                                

 
Notes 
1 Esty and Chertow (1997) originated generational divisions for the U.S. environmental polic ies.  The first 
generation started at the beginning of the 1970s and lasted about three decades till the late 1990s.  Earlier 
efforts of resources conservation and pollution control have been recognized to set the stage for first 
generation of environmental polic ies, but not to be systematic enough to form a generational approach. 
2 Rejeski (1997) provides detailed descriptions about these reviews. 
3 Vig and Kraft (2000) have provided a more thorough and systematic review of the U.S. environmental 
policy from 1970 to 2000.  
4 The Bush administration retreated from the protocol on March, 2001 (ACS 2003). 
5 The author does not regard leverage service as a separate category of service; thus its policy implications 
are not included in the following discussions. 
6 More detailed description of the story can be found in Rejeski (1997). 
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CHAPTER V 

RESEARCH METHODOLOGY 
 
 
 

We have to remember that what we observe 
is not nature in itself but nature exposed to 
our method of questioning. 

-W. Heisenberg 
 
 

5.1 Introduction 

 Chapter II introduces the Input-output (IO) analysis as an appropriate analytical 

tool for studying the structural interrelationships in an economic system with n-

dimensional variables of economic activities, environmental goods and services, and 

waste discharges.  IO analysis, along with two other analytical tools, structural 

decomposition analysis (SDA), and hypothetical extraction measurement (HEM), are 

selected as the methodologies used to investigate the environmental impacts of the digital 

economy at a regional level.   This chapter introduces the IO analysis, an environmental 

extension of IO analysis (EIO), HEM, and SDA techniques, and describes the data 

sources and the design of classification and aggregation schemes. 

 

5.2 IO analysis 

5.2.1 Origin and development 

French economist Francois Quesnay published “the Tableau Economique” in 

1758, in which he discussed the broad interrelationships within an economic system and 

the concept of general equilibrium (Spiegal 1952).  But it is not Quesnay, but his French 

peer, Leon Walras, who is generally recognized as the founding father of modern general 

economic equilibrium theory.  Walras developed a general equilibrium model based on a 
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series of simultaneous equations representing goods or services produced in an economy 

(Spiegal 1952).  However, Walras’s focused on theoretical explorations, rather than on 

the practical applications of the model.  About 60 years later, Wassily Leontief (1936) 

published the U.S. input-output table.  His book, The Structure of the American 

Economy, 1919 - 1929 was published in 1941, which later became one of the classic 

textbooks on IO analysis (Leontief 1941).  Leontief systematically extended Quesnay’s 

and Walras’ theories by providing an empirical tool for the general equilibrium model.  

He perceived that complicated interactions within an economy could be approximated by 

proportional relationships between industrial sectors.  Further, the production level of 

each commodity can be determined by the final use of output and the assumed production 

structure. 

IO models were later modified to satisfy interest in economic analysis at the 

regional level, which was developed to reflect the peculiarities of regional problems.  

Two basic features of a regional economy may influence the characteristics of a regional 

IO analysis.  First, the structure of production in a particular region may be identical to, 

or may differ significantly from, that at the national level.  Second, the smaller the 

economic region, the economy of the region is relied more on the trade with “outside” 

areas (Miller and Blair 1985).  Starting from the 1950s, an enormous number of studies 

related to the regional and multiregional IO analysis appeared (Isard 1951; Moore and 

Petersen 1955; Hirsch 1959; Emerson 1969, 1971; Giarratani, Maddy, and Socher 1976; 

Polenske 1980; Miernyk 1970, 1982; McGregor, Swales, and Yin 1996; Li and Ikeda 

2001; Lenzen et al. 2003). 
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The formal attempt to model the natural resource and environmental problems 

with IO analysis  started in the early 1960s.  Lofting and McGauhey (1963) calculated 

water-use coefficients using the IO table of California.  Cumberland (1966) discussed the 

possibility of measuring the impact of economic growth on the environmental quality 

using IO models.  Canion and Trock (1968) applied IO analysis to determine the 

resources required to sustain a given output level.  In the following decades, more studies 

have extended the IO applications into many new fields, such as accounting pollution 

generation, estimating abatement costs, examining the impacts of taxation on the 

pollution generation, and investigating institutional aspects of environment impacts 

(Leontief 1970; Laurent and Hite 1971; Giarratani and Thompson 1974; Janicke et. al 

1989; Hawdon and Pearson 1995; Lave, Cobas, Hendrikson, and Mcmichael 1995; 

Matthews 1999; Steenge 1999). 

The latest expansion of IO analysis was made by Duchin (1998), who proposed 

the principles of structural economics on the basis of Leontief’s IO model and Stone's  

(Stone 1970, 1971) social and demographic extension on input-output economics.  

According to Duchin (1998), structure economics is concerned with both quantitative and 

qualitative changes that take place in an economic system with the passage of time.  

Structural economics provides a new approach for situating economic activities (from 

both production and consumption side) in a broader environmental, technological, social, 

demographic, and cultural context compared to the stylized utilitarian approach in the 

theoretical framework of the traditional neoclassic economics. 
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5.2.2 Basics of input-output analysis 

 Table 5.1 presents a general IO model, in which an economy is divided into n 

purchasing (input) sectors (rows) and producing (output) sectors (columns).  The rows of 

the table describe the distribution of a producer’s output throughout the economy.  The 

columns describe the composition of inputs required by a particular sector to produce its 

output (Miller and Blair 1985). 

In Table 5.1, Xi is the total output of sector i, Yi is the total final demand of sector 

i, xij is the flow from sector i to sector j (as one type of the input factor to produce j) in a 

given period of time.  All the intersectoral flows are usually recorded with monetary 

values for the convenience of analysis, though the physical terms may be more 

appropriate for representing the exchange of materials between sectors.  The total input of 

a sector (column sum) equals the row sum of the sector, including the intermediate 

demands of the other sectors and the final demand, which could be further disaggregated 

into four factors: household consumption, government consumption, investment, and 

export.  Figure 5.1 shows that a standard IO table can be divided into four parts, 

intermediate industry exchange (upper left), final demand (upper right), value added 

(lower left), and gross national product (lower right). 

The dimensions of an IO table may vary from a few to hundreds.  The IO table  

produced by the U.S. Bureau of Economic Analysis (BEA) has its own coding systems 

different from standard industrial classification (SIC) and North America industry 

classification system (NAICS).1  But items in IO tables can be easily bridged into SIC or 

NAICS or, vice versa.  If there are more digits in the code for an item in an IO table, the 

greater detailed classification schemes are used for the record of that industry activity (or 
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commodity produced), and the higher the dimension (n) of the input-output table may be.  

Encoding with four digits SIC, the most detailed input-output table usually has 528 

economic sectors. 

 
 
 

Producer Final demand

Sector 1 Sector 2 ... Sector n Household
consumption

Governmental
consumption Investment Export

Sector 1

Intermediate Industry Exchange Final Demand
Sector 2

...
Sector n

Employees

Value Added* Gross National Product (GNP)
Owners of

business and
capital

Government

Figure 5.1. Four components of a general input-output model. 
Source: After from Miller and Blair (1985). 
*: Value added includes employee compensation, profit-type income and capital 
consumption allowances, and indirect government tax. 
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Table 5.1. A general input-output model 
Producing 

Sectors 
            Purchasing Sectors (Intermediate Flows) Final 

Demand 
Total 
Output 

  1 2 .  .  j .  .  n     
1 x11 x12 .  .  . x1j .  .  . x1n Y1 X1 

2 x21 x22 .  .  . x2j .  .  . x2n Y2 X2 

. . .   .   .     

. . .   .   .     

. . .   .   .     
i xi1 .  .  . .  .  . xij .  .  . xin YI Xi 

. . .   .   .     

. . .   .   .     
                  
n xn1 xn2 .  .  . xnj .  .  . xnn Yn Xn 

Households 
(h) 

xh1 xh2 .  .  . xhj .  .  . xhn Yh Xh 

Local Govt. 
(l) 

xl1 xl2 .  .  . xlj .  .  . xln Yl Xl 

State Govt. 
(s) 

xs1 xs2 .  .  . xsj .  .  . xsn Ys Xs 

Federal 
Govt. (f) 

xf1 xf2 .  .  . xfj .  .  . xfn Yf Xf 

Gross 
Savings (g) 

Xg1 xg2 .  .  . xgj .  .  . xgn Yg Xg 

Depreciation 
(d) 

xd1 xd2 .  .  . xdj .  .  . xdn Yd Xd 

Imports (I) xI1 xI2 .  .  . xIj .  .  . xIn YI XI 

Total Input ∑ξ1 ∑ξ2   ∑ξ ι   ∑ξνι ∑ΨΙ ∑Ξι 

Source: After Gay (2002) 
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By examining Table 5.1, a series of linear equations can be generated: 
 

X1  =  x11 + x12 + . . . + x1j + . . . + x1n + Y1    (5.1) 
X2  = x21 + x22 + . . . + x2j + . . . + x2n + Y2 

 
Xi  = x i1 + x i2 + . . . + in + . . . + x in + Yi 
 
Xn = xn1 + xn2 + . . . + x nj + . . . + x nn + Yn 

 

 Let Ax be the total output of sector j, the ratio of input from sector I to total input 

of sector j is: 

 

j

ij
ij X

x
a =                                                                      (5.2) 

 

 Rewriting equation 5.1 by replacing in with jij Xa , yields equation 5.3: 

11112121111 ...... YXaXaXaXaX njj ++++++=                                                                                      (5.3) 

21222221212 ...... YXaXaXaXaX njj ++++++=  

............  

iinjijiii YXaXaXaXaX ++++++= 12211 ......  

............  

nnnjnjnnn YXaXaXaXaX ++++++= 12211 ......  
 

Bringing all X terms in equation 5.3 to the left and group ing X1s together in the 

first equation, the X2s in the second equation, and so on, then yields equation 5.4: 

 

1111212111 ......)1( YXaXaXaXa njj =+++−                                                                                                   (5.4) 

2122222121 ......)1( YXaXaXaXa njj =++++−+−  

............  

iinjijii YXaXaXaXa =++−+++ 12211 ...)1(...  
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............  

nnnjnjnn YXaXaXaXa =−+++++ 12211 )1(......  

 

In matrix notion, define: 

 

]
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n
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−
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1
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1

nx
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x

X =  

 

Rewriting equation 5.4 in matrix notation 

 

YAX =*                                                                                                                         (5.5)  

or 

YAIX =− )(                                                                                                                  (5.6) 

 

Where 

X : gross output vector 

A : technical coefficients matrix 

Y : final demands vector 

I : nn ×  identity matrix 
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Solve equation2 5.6 for X : 

 

YAIX 1)( −−=                                                                                                               (5.7) 

 

Rewriting equation 5.7 by denoting (I - A)-1 with ijα , yield: 

 

nnjj YYYYX 112121111 ...... αααα +++++=                                                                                                       (5.8) 

nnjj YYYYX 222221212 ...... αααα +++++=  

............  

ninjijiii YYYYX αααα +++++= ......2211  

............  

nnnjnjnnn YYYYX αααα +++++= ......2211  

 

 Equation 5.8 makes it clear that the output of each sector of the economy is 

dependent on the final demands of all the sectors. Matrix (I - A)-1is the key matrix in the 

IO model.  The elements of this matrix measure both the direct and indirect output levels 

from each sector of the economy required to satisfy given levels of final demand.  It is 

also called the matrix of interdependence coefficients, or the Leontief inverse matrix. 

 

5.3 Environmentally extended input-output analysis 

The environmental extension of the basic Leontief model requires the 

consideration of many additional conditions such as natural resource inputs, pollutant 
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generation, and pollution abatement activities.  Miller and Blair (1985) summarizes three 

types of environmental input-output (EIO) models: (1) generalized input-output models  

introducing the technical coefficients matrix with additional rows and columns to 

represent the pollution generation and abatement activities, (2) Incorporating 

“ecosystem” sectors into the general input-output models, recording ecological inputs and 

residuals flows between economic sectors and ecosystem, and (3) commodity-by- industry 

models describing environmental factors as commodities in a commodity-by- industry 

input-output table. 

Laurent and Hite (1971) illustrates the first type of EIO using a figure in the  

studies on economic-ecologic interactions in the Charleston, South Carolina, 

metropolitan area.  The figure (Figure 5.2) presents a clear conceptual framework for the 

EIO adopted in this study. The figure also helps one understand the linkage between the 

standard IO model and ecological (environmental) imports and exports.  The upper left 

corner is a standard IO matrix.  a11 is the amount of output sector 1 required to produce 

one unit of gross output of sector 1 , a21 is the amount of output sector 2  required to 

produce one unit of gross output of sector 2, and so on.  This matrix is labeled as A 

matrix.  Below the A matrix, in the lower left-hand corner, is the G matrix.  It shows that 

m types of ecological imports are required to generate gross outputs by the economic 

sectors in the A matrix.  If G1 is water, the G11 is the amount of water required to generate 

one unit of gross output by A, and so on.  The E matrix, in the upper right-hand corner, is 

analogous to the G matrix, except it shows exports of residuals (pollutants) back to the 

environment from the economic sectors in the A matrix.   Thus, if E1 is carbon dioxide, 
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e11 is the amount of carbon dioxide associated with one unit of gross output by sector 1, 

and so on. 

 
 
 

1 2 ... ... n

1 a11 a12 ... ... a1n

2 a21

... ...

... ...

n a2n

1 2 n

1 g11 g12 ... ... g1n

2 g21

... ...

... ...

m gm1

1 2 ... ... k

e11 e12 ... ... e1k

e21

...

...

en1

Matrix A (Interindustry Matrix)

Matrix G (Ecologic imports )

Matrix E (Ecological exports)

 
 
Figure 5.2. Simplified environmentally extended IO model. 
Sources: After Laurent and Hite (1971). 
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When final demand requires output to increase (or decrease), the amount of 

pollutants generated also changes correspondently.3  The direct pollution coefficient  can 

be expressed as the ratio of total pollutants generated by a sector to total sector output.  

However, the total pollution coefficient is not enough to measure the total impact on 

pollution generation in the economy, since indirect pollution generation has not been 

taken into account.  The Leontief inverse matrix can be used to estimate total pollution 

generated.  The relationship between pollution generation and output can be stated as: 

 
jkjkj Xbr =                                                                                                                       (5.9) 

 
Where 
 

:kjr   the amount of pollutant k discharged from sector j 

:jX   output of sector j 

:kjb   the amount of pollutant k discharged per unit of output in sector j 

 

j

kj
kj X

r
b =                                                                                                                       (5.10) 

 

Let kR be equal to the total discharge of pollutant k. Then: 

 

nknkkj

n

j
kj

n

j
kjk XbXbXbXbrR +++=== ∑∑

==

...2211
11

                                                   (5.11) 
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Expanding this equation, the discharges of pollutants k = 1 through m are: 

 

nn XbXbXbR 12121111 ... +++=                                                                                    (5.12) 

nn XbXbXbR 22221212 ...+++=  

nmnmmm XbXbXbR +++= ...2211  

In matrix notation, 

 

BXR =                                                                                                                         (5.13) 

 

Where 

 

][ 2

1

mR

R
R

R = , ]

...

...

...

[

21

22221

11211

mnmm

n

n

bbb

bbb
bbb

B = ,     ][ 2

1

nX

X
X

X =  

 

It has already been established in equation 5.7 that, 

 

YAIX 1)( −−=  

 

Substituting X in equation 5.13 with equation 5.7, the discharges of the pollutants are, 

 

YAIBR 1)( −−=                                                                                                           (5.14) 
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or, 

 

PYR =                                                                                                                          (5.15) 

where 1)( −−= AIBP  

 

The matrix P shows the direct and indirect effect of the final demand change on 

the various pollutants’ emissions/discharges.  Let kjP  be an element in the matrix P.  

Then, for every unit worth of final demand for products of sector j, kjP  units of pollutant 

k are discharged directly from producing sector j and indirectly through discharges 

induced by output changes in other sectors of the economy. 

 
 
 
5.4 The hypothetical extraction measurement 

5.4.1 Introduction 

 One important theme of this research is to identify the change in relative 

importance of the sectors in an economy as economic structure evolves.  Hypothetical 

extraction measurement (HEM) is one of the indices to quantify the relative importance 

of an individual sector in an economy (Schultz 1977; Cella 1984; Blair and Miller 1990).  

HEM is built on the assumption that sectors with higher linkages to other sectors are 

more important than those with lower linkage, and the key sector is the sector that has the 

highest linkage with other sectors.  The general idea of the HEM is to compare the 

difference of the gross output generated in sector (j) in an economy with n sectors in two 

situations : (1) the gross output from n-1 sectors, when sector j is still part of the n sectors 
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economy to meet the requirement of a specified level of final demand, and (2) the gross 

output of the same n-1 sectors, when sector j has been extracted from the economy 

through the removal of the row and column from the technical coefficients matrix to meet 

the same level of final demand not including sector j.  The difference between the two 

measurements is considered as the total interdependence (linkage effect) of sector j on the 

rest of the sectors of the economy. 

HEM is a useful method to identify the key sectors of the economy.  Previous 

applications can be found in Harrigan and Mcgilvray (1988), Machado (1994), and 

Machado and Miller (1997).  The drawbacks of this approach are discussed by Cella 

(1984).  The major problems include the lack of any distinction between back and 

forward linkages, 4  possible underestimation of the effect of the total linkage of the 

extracted sector, and dependence of the result on the level of aggregation.5 

5.4.2 Model description 

 For the convenience of explanation and understanding, a more specified rather 

than general model is introduced below.  It has already been established in equation (5.7) 

that: 

 

YAIX 1)( −−=  

 

Let 

 

jXIXX −=* ,                                                                                                             (5.16) 

 



 

 

158 

where 

*X :  the total output after extracting the output of sector j 

jX :   the output of sector j 

I : 1×n vector with all elements equal to 1 

 

Let 

 

)(
1

)()( ][ jjj YAIX −−=                                                                                                    (5.17) 

 

where 

)( jX : the total output of n-1 sector after extracting sector j from the economy 

)( jA : technical coefficients matrix from which row j and column j have been extracted 

)( jY : the final demand from which the final demand of sector j has been removed 

 

Then the total linkage can be defined as: 

)(
*

jXXTL −=                                                                                                              (5.18) 

 

TL shows the linkages effects of sector j on the total economy.  One way to 

normalize TL is to calculate the ratio of TL and X*, which represents the percentage of 

the linkages effects to the total gross output (after subtracting the output of sector j).  

Generally speaking, the larger the TL (or ratio) is, the higher the linkage effect, and the 

more important the sector is. 
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5.5 Structure decomposition analysis 

5.5.1 Introduction 

Structural decomposition analysis (SDA) is a relatively new methodology that has 

gained attention since the early 1970s (Leontief and Ford 1972).  This analytical tool has 

made it possible to quantify fundamental “sources” of change in a wide range of 

variables, including economic growth, energy use, workforce requirement, trade, and 

material intensity of use (Rose and Casler 1996). 

The formal definition of SDA emerged in the late 1980s and early 1990s.  The 

central idea of SDA is to distinguish major sources of change in an economy by means of 

identifying a set of comparative static changes in key parameters in an input-output table 

(Rose and Miernyk 1989; Rose and Chen, 1991).  The primary rationale for SDA is to 

split an identity into its components.  This division can be as simple as the three-part 

basic form (technological change, mix, and level), or as complex as desired.  Leontief and 

Ford (1972) first perform the formal three-part decomposition to identify the sources of 

change in air pollution emissions.  Following their steps, more attempts have been 

practiced, with the most prominent jobs done by Skolka (1989) and Rose (Rose and Chen 

1991). 

SDA has several advantages.  First, it overcomes many static features of the IO 

model and is able to examine changes over time in technical coefficients and a sectoral 

mix.  Second, it requires much less input and has relatively insignificant restrictions 

compared to traditional econometric estimation.  Third, SDA’s  IO base makes it much 

easier to link the environmental and natural resource issues to intermediate sectors and to 

look at root causes of pollution and resource depletion. 
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Despite the criticism of its weak theoretical foundation, lack of verification of 

mutual exclusivity, and conceptual problems in defining the terms of decomposition, a 

wide variety of applications have been implemented concerning sources of change in 

international trade, technological change, energy use, workforce requirement, and 

development planning (Sterner 1985; Chen and Wu 1995; Lin and Polenske 1995; Han 

1995; Dietzenbacher and Los 1998; Wier 1998; Kim 2002; Andreosso-O’Callaghan and 

Yue 2002).  Stevens and Moore (1980) argue that the “persistence” of applications is due 

to the straightforwardness o SDA, which means it can be implemented with readily 

available data.  However, no definitive test of its accuracy has yet been undertaken. 

5.5.2 Model description 

After summarizing the method proposed in the research paper of Fujimagari 

(1989) and Sawyer (1992), Wier (1998) suggests six components to be the sources 

influencing the change of pollutant emissions: the level of the final demand, the 

composition of the final demand, IO coefficient s, emission factor, energy intensity, and 

fuel-mix in the production sectors.  Wier’s model is as follow: 

Suppose there is an economy with n industry sectors, m fuel types for each 

industry, and k sectors of final demand, At a given point in time, production-based 

emissions of a certain pollutant (i.e. SO2) are given by: 

 

.),,2

)(]')'[( 1

etcNOCOSOi

DdAIJQMFE

x

pp
i
p

i
p

=

−= −

                                                                              (5.19) 

Where 

i
pE :   a scalar of total emissions of type i from the production sectors 
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i
pF :   a mn ×  matrix of emission per unit of total demand for energy for all the 

production sectors 

pM :   a nm ×  matrix of fuel mix in the production sectors 

Qp:   a  nn ×  diagonal matrix of energy intensities 

J :    a 1×n  matrix with all elements equal to 1 

1)( −− AI :   nn ×  Leontief inverse matrix 

D:   a kn ×  matrix of the composition of final demand 

d:    a 1×k  matrix of absolute level of final demand for all categories of final demand 

The change in the level of emissions from sectors given by equation (1) from time 

t-1 until time t is given by, 

 

dDAIQMFtEtE pp
i
p

i
p

i
p ∆+∆+−∆+∆+∆+∆≈−− −1)()1()(                                  (5.20) 

 

Each element in the decomposition formula has the same general form.  Using the 

emission factor effect as an example, this element is given by 
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 Kim (2002) took a very similar but more simplified approach than Wier (1998) 

did.  The change in emissions from production is considered be related to three 
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contributors: emission intensities, technical coefficients, and final demands.  Kim’s 

model is as follow: 

 

)'()( 1 MzYAIBTE pp −−= −                                                                                        (5.22) 

 

Where 

pTE :   a scalar6 of total quantity of emissions of type p pollutant from the all the  

            production sectors 
pB :    n×1  vector of direct pollutant coefficient for pollutant p 

1)( −− AI :    Leontief Inverse Matrix 

Y :    4×n  matrix of four components of final demand, household consumption 

government consumption, investment, and export 

M :   1×n  vector of imports 

Z:   a 14 ×  vector of with all one element 

 

The change in emissions from all the production sectors from time t-1 to time t 

can be disaggregated into three components by equation 5.23,7 
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                                                                           (5.23) 

 

 

Where 

pB∆ : change in emission intensity 
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1)( −−∆ AI : change in technical coefficient 

)'( MzY −∆ : change in the composition of final demand and import 

 Since detailed fuel mix and energy mixture data is currently not available for the 

Austin MSA during the period studied, to simplify the calculation, Kim’s approach is 

followed in this research.  The three contributors for the change of pollutant emissions 

are: emission intensity, technical coefficients, and final demand. 

 

5.6 Data sources 

5.6.1 Input-output tables 

In the U.S., every five years, the Bureau of Economic Analysis (BEA) of the U.S. 

Department of Commerce (USDC) compiles and publishes the input-output table of the 

U.S. economy.  The table is available for each state and counties within states.  Through 

Regional Economic Information System (REIS) and other sources, the USDC provides 

income and employment multipliers for counties throughout the U.S.  It also provides 

multipliers for a designated group of counties, such as Metropolitan Statistical Area 

(MSA); the services are charged based on different requests (Jones 1997). 

Another source of IO table is the commercial group called the Minnesota 

IMPLAN Group Incorporated, or MIG Inc. in Stillwater, Minnesota.  This organization 

maintains and markets a national database and input-output analysis software known as 

IMPLAN (Input-output Model for PLANning).  IMPLAN data files are compiled from a 

wide variety of sources including the U.S. Bureau of Economic Analysis, the U.S. Bureau 

of Labor, and the U.S. Census Bureau.  IMPLAN data is available at the state, county, 

and custom Zip Code level (MIG 2003). 
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Three IO tables, (1990, 1994, and 1997) used in this research are collected from 

MIG.  Each IO table includes 528 industrial sectors.  IMPLAN version 2.0, the software 

developed by MIG, was used to build IO models and implement the IO analysis for the 

study. 

5.6.2 Emission data sources 

Point industrial air emission data is used as a proxy to explore the environmental 

impacts of the economic structure change in the Austin MSA.  Starting from 1990, Texas 

Natural Resources Conservation Committee (TNRCC)8  began to collect information 

about air pollutants emitted from industrial point sources in Texas for the State of Texas 

Air Reporting System (STARS).  STARS is currently tracking about 50,000 plants of the 

state, in which about 3000 industrial point sources exceeding the reporting applicability 

levels are recorded in the database.9  According to national ambient air quality standards 

(USEPA 2003b), seven pollutants are tracked and recorded: non-methane organic 

compound (NMOC), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide 

(CO), particulate matter less than ten microns in diameter (PM10), total particulate matter 

(TSP), and Lead (Pb). 

Twelve years of records (1990 –2001) in the Austin MSA were extracted from the 

STARS, which includes all the emission data of industrial point sources exceeding the 

reporting applicability level.  The data was further aggregated according to 1987 four- 

digit SIC.  Pb was excluded from the following analysis because most of the sources have 

zero or near zero emission. 
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5.7 Sectoral aggregation and classification 

The problem of sectoral aggregation is noteworthy to any IO analysis.  The level 

of aggregation not only influences the sensitivity of the model, but also impacts the data 

requirement of the research (Hawdon and Pearson 1995).  The demand for data 

(especially environmental data) and computational load12 will significantly increase when 

a less aggregated model is adopted.  So it is always attractive to build an IO model at a 

very low level of aggregation to obtain more detailed information, but, due to data 

deficiencies, it is simply not practical in many cases. 

This study takes a high- level aggregation approach because the point industrial 

emission data are highly concentrated into very few four-digit SIC sectors, as will be 

detailed in the following chapters.  Both three-segment13 and seven-segment models are 

constructed for the years of 1990, 1994, and 1999.  The standard of aggregation is based 

on the industrial classification systems which are briefly introduced in the following 

section. 

5.7.1 An introduction to SIC 

The first Standard Industrial Classification (SIC) for the United States appeared in 

the late 1930s.  The lists of manufacturing industries and non-manufacturing industries 

were published separately in 1938 and 1939.  SIC was designed to classify industries 

based on various types of statistical data and to become the standard of industrial 

classification schemes of the federal government (Pierce 1957). 

After its establishment, SIC has been revised periodically to reflect changes in the 

economic structure of the United States.  The overall structure of SIC remains mostly 

unchanged since the 1930s despite the minor addition, deletion, and combination of the 
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sectors.  Releasing in 1987, the latest version of SIC was categorized into 10 divisions at 

the highest aggregation level. 

Since the early 1990s, the adoption of the North American Free Trade Agreement 

(NAFTA) and the quick emergence of new sectors has made SIC outmoded and non-

reflective of the economic situation of the United States.  A new system, North American 

Industrial Classification System (NAICS), was released in 1997 to replace SIC in order to 

represent the new nature of the economy and to include Canada and Mexico in the 

system.  

The 1997 NAICS recognized the change and growth of service sectors in the U.S. 

economy and its North American neighbors. At the highest aggregation level, 16 sectors 

were services-related in total 20 sectors of 1997 NAICS, compared to 10 divisions in 

1987 SIC of which five were service-related.  At sector level, 565 out of 1,170 industries 

were defined as service-based, while 416 out of 1,004 industries were service-related in 

1987 SIC. 

There are two major differences between NAICS and SIC.  First, NAICS is a six-

digit system that provides for comparability among the three countries at the five-digit 

level, albeit with a few exceptions.  The SIC is a four-digit system that is not linked in 

any way to the systems of Canada and Mexico.  A six-digit system is adopted for NAICS 

to provide more flexibility.  NAICS allows each country to recognize activities that are 

important in the respective countries, but may not be large or significant enough to 

recognize in all three countries.  The sixth-digit system is reserved for this purpose.  

Secondly, the highest level of aggregation in a NAICS system is called a sector, 
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equivalent to a division in SIC.  Table 5.2 shows difference of the nomenclature between 

NAICS and SIC. 

Since early 1999, the 1997 NAICS has been applied in handling the economic 

census data.  The latest version of NAICS is NAICS 2002, which included substantial 

revision within the construction and wholesale trade sectors and some revisions for the 

retail and information sectors.  NAICS 2002 was adopted in the 2002 U.S. economic 

census. 

 
 
 

Table 5.2. Nomenclature difference between NAICS and SIC 
NAICS SIC 

Level Name Level Name 
2-digit Sector Letter Division 
3-digit Subsector 2-digit Major Group 
4-digit Industry Group 3-digit Industry Group 
5-digit NAICS Industry 4-digit Industry 
6-digit National N/A N/A 

  Source: The U.S. Census Bureau (2003c). 
 
 
 
5.7.2 Three-segment model 

 Machado (1994) concludes that there was a clear trend of informatization14 in the 

U.S. using IO analysis on a highly aggregated three-segment economy during the period 

of 1963 to 1987.  Machado’s work confirms the results of several previous studies, all of 

which concluded that information sectors will eventually outgrow the production sectors 

as the major components of the economy (Machlup 1962; Porat 1977; Dizard 1989).  

These studies suggest that it is feasible to adopt highly aggregated models to investigate 

the trend of economic structure change. 
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Following Machado’s (1994) approach, this study first divides the economy of the 

AUSTIN MSA into three segments, production, energy, and information, which makes 

the result comparable to Machado’s previous work.  It is relatively straightforward to 

define sectors of production and energy.  However, the boundary of information sectors 

seems more vague and uncertain.  The definitions of information sectors are not 

consistent in the literature (Machlup 1962; Porat 1977; Machado 1994).  In this study, a 

more restricted but standard definition of information sectors in 1997 NAICS is followed 

because the definitions in literature are generally too broad to be objective.  Thus the 

information segment contains 13 economic sectors out of 528 economic sectors in the IO 

tables.  At the same time, eight sectors are selected and defined as the energy segment; 

the remaining 507 sectors fall into the production segment.  The descriptions about the 

sectors in energy and information segments are listed in Tables 5.3 and 5.4.  Detailed 

descriptions about the sectors in the production segment are available in Appendix 1 in 

order to simplify the text of the chapter. 

5.7.3 Seven-segment model 

Although the three-segment models are helpful in capturing the macro trend of 

economic structure change, they are also too aggregated to be useful in modeling the 

economy-environment interactions.  So less aggregated, seven-segment models are 

developed to serve this end.  Although the seven-segment models are still high in 

aggregation level, they are the least aggregated models that can be achieved in this study 

due to the availability of the matching environmental data. 

The seven segments are production, energy, ICT, information, transportation, 

service, and education and public administration (Edu_PA).  One primary assumption of 
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the emerging digital economy is that some economic sectors such as ICT, information, 

and service sectors are growing, while some other sectors such as production, 

transportation, and energy are decreasing .  The sectors are grouped into the above seven 

segments so that the assumption can be tested by empirical results and environmental 

consequences of the sectors change can also be examined.  The Edu_PA is studied as an 

independent segment rather than part of the service segment because it was once one of 

the pillar segments in the Austin economy.  Table 5.5 shows the number of sectors in 

each of the seven segments.  More detailed descriptions about these sectors are again 

available in Appendix 2. 

 
 
 

Table 5.3. Sectors in the energy segment 
IO table 
Record 
number Description 

87 SIC 
code Note 

37 COAL MINING 1200  
38 NATURAL GAS & CRUDE PETROLEUM 1310  
39 NATURAL GAS LIQUIDS 1320  
213 LUBRICATING OILS AND GREASES 2992  
443 ELECTRIC SERVICES 4910 Also part of 4930 
444 GAS PRODUCTION AND DISTRIBUTIO 4920 Also part of 4930 
511 STATE AND LOCAL ELECTRIC UTILI N/A Part of 4910 
512 OTHER STATE AND LOCAL GOVT ENT N/A  

Source: The U.S. Census Bureau (2003c). 
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Table 5.4. Sectors in the information segment 
IO table Record 

Number Description 87 SIC code 
174 NEWSPAPERS 2710 
175 PERIODICALS 2720 
176 BOOK PUBLISHING 2731 
178 MISCELLANEOUS PUBLISHING 2740 
181 GREETING CARD PUBLISHING 2770 
371 PHONOGRAPH RECORDS AND TAPE 3652 
441 COMMUNICATIONS, EXCEPT RADIO A 4810 4820 4840 
442 RADIO AND TV BROADCASTING 4830 
470 OTHER BUSINESS SERVICES 7320 7331 733 
475 COMPUTER AND DATA PROCESSINGS 7370 
483 MOTION PICTURES 7800 
484 THEATRICAL PRODUCERS, BANDS ET 7920 
497 OTHER EDUCATIONAL SERVICES 8230 8240 8290 

   Source: The U.S. Census Bureau (2003c). 
 
 
 

Table 5.5. The number of sectors in economic segments of the Austin economy 
Segment Production Energy Information ICT Service Transportation Edu_PA 
No. of 
Sectors 409 8 13 17 58 13 10 

    Source: Calculated by the author. 

                                                 
Notes 
1 A later section in this chapter will give a more detailed description of the industry classification systems 
in North America. 
2 A unique solution for X may not always exist; for a more detailed discussion see Miller and Blair (1985). 
3 The format of this section was adapted from Jones (1997). 
4  The backward linkage refers to the increase of gross output stimulated by the require ment of final 
demand.  The forward linkage refers to the increase of gross output stimulated by the growth of supply. 
5 For more detailed discussions and way of improvement see Cella (1984), and Meller and Marfan (1981). 
6 If element-by-element multiplication rather than matrix multiplication is applied, more specific segment 
(sector) emissions can be obtained. 
7 Step by step deduction of the formula can be found in Kim (2002). 
8  TNRCC was officially renamed to the Texas Commission of Environmental Quality (TCEQ) on 
September 1 2002. 
9 More detailed information on the reporting applicability levels can be found in 30 Texas Administrative 
Code 101.10. 
12 The computation ability is no longer a major constraint as the computers are becoming more powerful 
and affordable in the digital age. 
13 “Segment” is suggested by Machado (1994) to describe a group of economic sectors.  It helps distinguish 
between one economic sector and a set of sectors in an economy because “sector” can be understood as 
either one or more economic activity in some cases.  “Segment” has the same meaning as “sectors” in this 
research. 
14 “Informatization” is defined as the process of development of information activities over time (Machado 
1994). 
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generation, and pollution abatement activities.  Miller and Blair (1985) summarizes three 

types of environmental input-output (EIO) models: (1) generalized input-output models  

introducing the technical coefficients matrix with additional rows and columns to 

represent the pollution generation and abatement activities, (2) Incorporating 

“ecosystem” sectors into the general input-output models, recording ecological inputs and 

residuals flows between economic sectors and ecosystem, and (3) commodity-by- industry 

models describing environmental factors as commodities in a commodity-by- industry 

input-output table. 

Laurent and Hite (1971) illustrates the first type of EIO using a figure in the  

studies on economic-ecologic interactions in the Charleston, South Carolina, 

metropolitan area.  The figure (Figure 5.2) presents a clear conceptual framework for the 

EIO adopted in this study. The figure also helps one understand the linkage between the 

standard IO model and ecological (environmental) imports and exports.  The upper left 

corner is a standard IO matrix.  a11 is the amount of output sector 1 required to produce 

one unit of gross output of sector 1 , a21 is the amount of output sector 2  required to 

produce one unit of gross output of sector 2, and so on.  This matrix is labeled as A 

matrix.  Below the A matrix, in the lower left-hand corner, is the G matrix.  It shows that 

m types of ecological imports are required to generate gross outputs by the economic 

sectors in the A matrix.  If G1 is water, the G11 is the amount of water required to generate 

one unit of gross output by A, and so on.  The E matrix, in the upper right-hand corner, is 

analogous to the G matrix, except it shows exports of residuals (pollutants) back to the 

environment from the economic sectors in the A matrix.   Thus, if E1 is carbon dioxide, 



 

 

153 

e11 is the amount of carbon dioxide associated with one unit of gross output by sector 1, 

and so on. 
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Figure 5.2. Simplified environmentally extended IO model. 
Sources: After Laurent and Hite (1971). 
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When final demand requires output to increase (or decrease), the amount of 

pollutants generated also changes correspondently.3  The direct pollution coefficient  can 

be expressed as the ratio of total pollutants generated by a sector to total sector output.  

However, the total pollution coefficient is not enough to measure the total impact on 

pollution generation in the economy, since indirect pollution generation has not been 

taken into account.  The Leontief inverse matrix can be used to estimate total pollution 

generated.  The relationship between pollution generation and output can be stated as: 

 
jkjkj Xbr =                                                                                                                       (5.9) 

 
Where 
 

:kjr   the amount of pollutant k discharged from sector j 

:jX   output of sector j 

:kjb   the amount of pollutant k discharged per unit of output in sector j 
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b =                                                                                                                       (5.10) 

 

Let kR be equal to the total discharge of pollutant k. Then: 
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Expanding this equation, the discharges of pollutants k = 1 through m are: 

 

nn XbXbXbR 12121111 ... +++=                                                                                    (5.12) 

nn XbXbXbR 22221212 ...+++=  

nmnmmm XbXbXbR +++= ...2211  

In matrix notation, 

 

BXR =                                                                                                                         (5.13) 

 

Where 
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It has already been established in equation 5.7 that, 

 

YAIX 1)( −−=  

 

Substituting X in equation 5.13 with equation 5.7, the discharges of the pollutants are, 

 

YAIBR 1)( −−=                                                                                                           (5.14) 
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or, 

 

PYR =                                                                                                                          (5.15) 

where 1)( −−= AIBP  

 

The matrix P shows the direct and indirect effect of the final demand change on 

the various pollutants’ emissions/discharges.  Let kjP  be an element in the matrix P.  

Then, for every unit worth of final demand for products of sector j, kjP  units of pollutant 

k are discharged directly from producing sector j and indirectly through discharges 

induced by output changes in other sectors of the economy. 

 
 
 
5.4 The hypothetical extraction measurement 

5.4.1 Introduction 

 One important theme of this research is to identify the change in relative 

importance of the sectors in an economy as economic structure evolves.  Hypothetical 

extraction measurement (HEM) is one of the indices to quantify the relative importance 

of an individual sector in an economy (Schultz 1977; Cella 1984; Blair and Miller 1990).  

HEM is built on the assumption that sectors with higher linkages to other sectors are 

more important than those with lower linkage, and the key sector is the sector that has the 

highest linkage with other sectors.  The general idea of the HEM is to compare the 

difference of the gross output generated in sector (j) in an economy with n sectors in two 

situations : (1) the gross output from n-1 sectors, when sector j is still part of the n sectors 
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economy to meet the requirement of a specified level of final demand, and (2) the gross 

output of the same n-1 sectors, when sector j has been extracted from the economy 

through the removal of the row and column from the technical coefficients matrix to meet 

the same level of final demand not including sector j.  The difference between the two 

measurements is considered as the total interdependence (linkage effect) of sector j on the 

rest of the sectors of the economy. 

HEM is a useful method to identify the key sectors of the economy.  Previous 

applications can be found in Harrigan and Mcgilvray (1988), Machado (1994), and 

Machado and Miller (1997).  The drawbacks of this approach are discussed by Cella 

(1984).  The major problems include the lack of any distinction between back and 

forward linkages, 4  possible underestimation of the effect of the total linkage of the 

extracted sector, and dependence of the result on the level of aggregation.5 

5.4.2 Model description 

 For the convenience of explanation and understanding, a more specified rather 

than general model is introduced below.  It has already been established in equation (5.7) 

that: 

 

YAIX 1)( −−=  

 

Let 

 

jXIXX −=* ,                                                                                                             (5.16) 
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where 

*X :  the total output after extracting the output of sector j 

jX :   the output of sector j 

I : 1×n vector with all elements equal to 1 

 

Let 

 

)(
1

)()( ][ jjj YAIX −−=                                                                                                    (5.17) 

 

where 

)( jX : the total output of n-1 sector after extracting sector j from the economy 

)( jA : technical coefficients matrix from which row j and column j have been extracted 

)( jY : the final demand from which the final demand of sector j has been removed 

 

Then the total linkage can be defined as: 

)(
*

jXXTL −=                                                                                                              (5.18) 

 

TL shows the linkages effects of sector j on the total economy.  One way to 

normalize TL is to calculate the ratio of TL and X*, which represents the percentage of 

the linkages effects to the total gross output (after subtracting the output of sector j).  

Generally speaking, the larger the TL (or ratio) is, the higher the linkage effect, and the 

more important the sector is. 
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5.5 Structure decomposition analysis 

5.5.1 Introduction 

Structural decomposition analysis (SDA) is a relatively new methodology that has 

gained attention since the early 1970s (Leontief and Ford 1972).  This analytical tool has 

made it possible to quantify fundamental “sources” of change in a wide range of 

variables, including economic growth, energy use, workforce requirement, trade, and 

material intensity of use (Rose and Casler 1996). 

The formal definition of SDA emerged in the late 1980s and early 1990s.  The 

central idea of SDA is to distinguish major sources of change in an economy by means of 

identifying a set of comparative static changes in key parameters in an input-output table 

(Rose and Miernyk 1989; Rose and Chen, 1991).  The primary rationale for SDA is to 

split an identity into its components.  This division can be as simple as the three-part 

basic form (technological change, mix, and level), or as complex as desired.  Leontief and 

Ford (1972) first perform the formal three-part decomposition to identify the sources of 

change in air pollution emissions.  Following their steps, more attempts have been 

practiced, with the most prominent jobs done by Skolka (1989) and Rose (Rose and Chen 

1991). 

SDA has several advantages.  First, it overcomes many static features of the IO 

model and is able to examine changes over time in technical coefficients and a sectoral 

mix.  Second, it requires much less input and has relatively insignificant restrictions 

compared to traditional econometric estimation.  Third, SDA’s  IO base makes it much 

easier to link the environmental and natural resource issues to intermediate sectors and to 

look at root causes of pollution and resource depletion. 
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Despite the criticism of its weak theoretical foundation, lack of verification of 

mutual exclusivity, and conceptual problems in defining the terms of decomposition, a 

wide variety of applications have been implemented concerning sources of change in 

international trade, technological change, energy use, workforce requirement, and 

development planning (Sterner 1985; Chen and Wu 1995; Lin and Polenske 1995; Han 

1995; Dietzenbacher and Los 1998; Wier 1998; Kim 2002; Andreosso-O’Callaghan and 

Yue 2002).  Stevens and Moore (1980) argue that the “persistence” of applications is due 

to the straightforwardness o SDA, which means it can be implemented with readily 

available data.  However, no definitive test of its accuracy has yet been undertaken. 

5.5.2 Model description 

After summarizing the method proposed in the research paper of Fujimagari 

(1989) and Sawyer (1992), Wier (1998) suggests six components to be the sources 

influencing the change of pollutant emissions: the level of the final demand, the 

composition of the final demand, IO coefficient s, emission factor, energy intensity, and 

fuel-mix in the production sectors.  Wier’s model is as follow: 

Suppose there is an economy with n industry sectors, m fuel types for each 

industry, and k sectors of final demand, At a given point in time, production-based 

emissions of a certain pollutant (i.e. SO2) are given by: 
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                                                                              (5.19) 

Where 

i
pE :   a scalar of total emissions of type i from the production sectors 
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i
pF :   a mn ×  matrix of emission per unit of total demand for energy for all the 

production sectors 

pM :   a nm ×  matrix of fuel mix in the production sectors 

Qp:   a  nn ×  diagonal matrix of energy intensities 

J :    a 1×n  matrix with all elements equal to 1 

1)( −− AI :   nn ×  Leontief inverse matrix 

D:   a kn ×  matrix of the composition of final demand 

d:    a 1×k  matrix of absolute level of final demand for all categories of final demand 

The change in the level of emissions from sectors given by equation (1) from time 

t-1 until time t is given by, 
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Each element in the decomposition formula has the same general form.  Using the 

emission factor effect as an example, this element is given by 
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 Kim (2002) took a very similar but more simplified approach than Wier (1998) 

did.  The change in emissions from production is considered be related to three 



 

 

162 

contributors: emission intensities, technical coefficients, and final demands.  Kim’s 

model is as follow: 

 

)'()( 1 MzYAIBTE pp −−= −                                                                                        (5.22) 

 

Where 

pTE :   a scalar6 of total quantity of emissions of type p pollutant from the all the  

            production sectors 
pB :    n×1  vector of direct pollutant coefficient for pollutant p 

1)( −− AI :    Leontief Inverse Matrix 

Y :    4×n  matrix of four components of final demand, household consumption 

government consumption, investment, and export 

M :   1×n  vector of imports 

Z:   a 14 ×  vector of with all one element 

 

The change in emissions from all the production sectors from time t-1 to time t 

can be disaggregated into three components by equation 5.23,7 
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Where 

pB∆ : change in emission intensity 
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1)( −−∆ AI : change in technical coefficient 

)'( MzY −∆ : change in the composition of final demand and import 

 Since detailed fuel mix and energy mixture data is currently not available for the 

Austin MSA during the period studied, to simplify the calculation, Kim’s approach is 

followed in this research.  The three contributors for the change of pollutant emissions 

are: emission intensity, technical coefficients, and final demand. 

 

5.6 Data sources 

5.6.1 Input-output tables 

In the U.S., every five years, the Bureau of Economic Analysis (BEA) of the U.S. 

Department of Commerce (USDC) compiles and publishes the input-output table of the 

U.S. economy.  The table is available for each state and counties within states.  Through 

Regional Economic Information System (REIS) and other sources, the USDC provides 

income and employment multipliers for counties throughout the U.S.  It also provides 

multipliers for a designated group of counties, such as Metropolitan Statistical Area 

(MSA); the services are charged based on different requests (Jones 1997). 

Another source of IO table is the commercial group called the Minnesota 

IMPLAN Group Incorporated, or MIG Inc. in Stillwater, Minnesota.  This organization 

maintains and markets a national database and input-output analysis software known as 

IMPLAN (Input-output Model for PLANning).  IMPLAN data files are compiled from a 

wide variety of sources including the U.S. Bureau of Economic Analysis, the U.S. Bureau 

of Labor, and the U.S. Census Bureau.  IMPLAN data is available at the state, county, 

and custom Zip Code level (MIG 2003). 
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Three IO tables, (1990, 1994, and 1997) used in this research are collected from 

MIG.  Each IO table includes 528 industrial sectors.  IMPLAN version 2.0, the software 

developed by MIG, was used to build IO models and implement the IO analysis for the 

study. 

5.6.2 Emission data sources 

Point industrial air emission data is used as a proxy to explore the environmental 

impacts of the economic structure change in the Austin MSA.  Starting from 1990, Texas 

Natural Resources Conservation Committee (TNRCC)8  began to collect information 

about air pollutants emitted from industrial point sources in Texas for the State of Texas 

Air Reporting System (STARS).  STARS is currently tracking about 50,000 plants of the 

state, in which about 3000 industrial point sources exceeding the reporting applicability 

levels are recorded in the database.9  According to national ambient air quality standards 

(USEPA 2003b), seven pollutants are tracked and recorded: non-methane organic 

compound (NMOC), nitrogen oxides (NOx), sulfur dioxide (SO2), carbon monoxide 

(CO), particulate matter less than ten microns in diameter (PM10), total particulate matter 

(TSP), and Lead (Pb). 

Twelve years of records (1990 –2001) in the Austin MSA were extracted from the 

STARS, which includes all the emission data of industrial point sources exceeding the 

reporting applicability level.  The data was further aggregated according to 1987 four- 

digit SIC.  Pb was excluded from the following analysis because most of the sources have 

zero or near zero emission. 
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5.7 Sectoral aggregation and classification 

The problem of sectoral aggregation is noteworthy to any IO analysis.  The level 

of aggregation not only influences the sensitivity of the model, but also impacts the data 

requirement of the research (Hawdon and Pearson 1995).  The demand for data 

(especially environmental data) and computational load12 will significantly increase when 

a less aggregated model is adopted.  So it is always attractive to build an IO model at a 

very low level of aggregation to obtain more detailed information, but, due to data 

deficiencies, it is simply not practical in many cases. 

This study takes a high- level aggregation approach because the point industrial 

emission data are highly concentrated into very few four-digit SIC sectors, as will be 

detailed in the following chapters.  Both three-segment13 and seven-segment models are 

constructed for the years of 1990, 1994, and 1999.  The standard of aggregation is based 

on the industrial classification systems which are briefly introduced in the following 

section. 

5.7.1 An introduction to SIC 

The first Standard Industrial Classification (SIC) for the United States appeared in 

the late 1930s.  The lists of manufacturing industries and non-manufacturing industries 

were published separately in 1938 and 1939.  SIC was designed to classify industries 

based on various types of statistical data and to become the standard of industrial 

classification schemes of the federal government (Pierce 1957). 

After its establishment, SIC has been revised periodically to reflect changes in the 

economic structure of the United States.  The overall structure of SIC remains mostly 

unchanged since the 1930s despite the minor addition, deletion, and combination of the 
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sectors.  Releasing in 1987, the latest version of SIC was categorized into 10 divisions at 

the highest aggregation level. 

Since the early 1990s, the adoption of the North American Free Trade Agreement 

(NAFTA) and the quick emergence of new sectors has made SIC outmoded and non-

reflective of the economic situation of the United States.  A new system, North American 

Industrial Classification System (NAICS), was released in 1997 to replace SIC in order to 

represent the new nature of the economy and to include Canada and Mexico in the 

system.  

The 1997 NAICS recognized the change and growth of service sectors in the U.S. 

economy and its North American neighbors. At the highest aggregation level, 16 sectors 

were services-related in total 20 sectors of 1997 NAICS, compared to 10 divisions in 

1987 SIC of which five were service-related.  At sector level, 565 out of 1,170 industries 

were defined as service-based, while 416 out of 1,004 industries were service-related in 

1987 SIC. 

There are two major differences between NAICS and SIC.  First, NAICS is a six-

digit system that provides for comparability among the three countries at the five-digit 

level, albeit with a few exceptions.  The SIC is a four-digit system that is not linked in 

any way to the systems of Canada and Mexico.  A six-digit system is adopted for NAICS 

to provide more flexibility.  NAICS allows each country to recognize activities that are 

important in the respective countries, but may not be large or significant enough to 

recognize in all three countries.  The sixth-digit system is reserved for this purpose.  

Secondly, the highest level of aggregation in a NAICS system is called a sector, 
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equivalent to a division in SIC.  Table 5.2 shows difference of the nomenclature between 

NAICS and SIC. 

Since early 1999, the 1997 NAICS has been applied in handling the economic 

census data.  The latest version of NAICS is NAICS 2002, which included substantial 

revision within the construction and wholesale trade sectors and some revisions for the 

retail and information sectors.  NAICS 2002 was adopted in the 2002 U.S. economic 

census. 

 
 
 

Table 5.2. Nomenclature difference between NAICS and SIC 
NAICS SIC 

Level Name Level Name 
2-digit Sector Letter Division 
3-digit Subsector 2-digit Major Group 
4-digit Industry Group 3-digit Industry Group 
5-digit NAICS Industry 4-digit Industry 
6-digit National N/A N/A 

  Source: The U.S. Census Bureau (2003c). 
 
 
 
5.7.2 Three-segment model 

 Machado (1994) concludes that there was a clear trend of informatization14 in the 

U.S. using IO analysis on a highly aggregated three-segment economy during the period 

of 1963 to 1987.  Machado’s work confirms the results of several previous studies, all of 

which concluded that information sectors will eventually outgrow the production sectors 

as the major components of the economy (Machlup 1962; Porat 1977; Dizard 1989).  

These studies suggest that it is feasible to adopt highly aggregated models to investigate 

the trend of economic structure change. 
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Following Machado’s (1994) approach, this study first divides the economy of the 

AUSTIN MSA into three segments, production, energy, and information, which makes 

the result comparable to Machado’s previous work.  It is relatively straightforward to 

define sectors of production and energy.  However, the boundary of information sectors 

seems more vague and uncertain.  The definitions of information sectors are not 

consistent in the literature (Machlup 1962; Porat 1977; Machado 1994).  In this study, a 

more restricted but standard definition of information sectors in 1997 NAICS is followed 

because the definitions in literature are generally too broad to be objective.  Thus the 

information segment contains 13 economic sectors out of 528 economic sectors in the IO 

tables.  At the same time, eight sectors are selected and defined as the energy segment; 

the remaining 507 sectors fall into the production segment.  The descriptions about the 

sectors in energy and information segments are listed in Tables 5.3 and 5.4.  Detailed 

descriptions about the sectors in the production segment are available in Appendix 1 in 

order to simplify the text of the chapter. 

5.7.3 Seven-segment model 

Although the three-segment models are helpful in capturing the macro trend of 

economic structure change, they are also too aggregated to be useful in modeling the 

economy-environment interactions.  So less aggregated, seven-segment models are 

developed to serve this end.  Although the seven-segment models are still high in 

aggregation level, they are the least aggregated models that can be achieved in this study 

due to the availability of the matching environmental data. 

The seven segments are production, energy, ICT, information, transportation, 

service, and education and public administration (Edu_PA).  One primary assumption of 
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the emerging digital economy is that some economic sectors such as ICT, information, 

and service sectors are growing, while some other sectors such as production, 

transportation, and energy are decreasing .  The sectors are grouped into the above seven 

segments so that the assumption can be tested by empirical results and environmental 

consequences of the sectors change can also be examined.  The Edu_PA is studied as an 

independent segment rather than part of the service segment because it was once one of 

the pillar segments in the Austin economy.  Table 5.5 shows the number of sectors in 

each of the seven segments.  More detailed descriptions about these sectors are again 

available in Appendix 2. 

 
 
 

Table 5.3. Sectors in the energy segment 
IO table 
Record 
number Description 

87 SIC 
code Note 

37 COAL MINING 1200  
38 NATURAL GAS & CRUDE PETROLEUM 1310  
39 NATURAL GAS LIQUIDS 1320  
213 LUBRICATING OILS AND GREASES 2992  
443 ELECTRIC SERVICES 4910 Also part of 4930 
444 GAS PRODUCTION AND DISTRIBUTIO 4920 Also part of 4930 
511 STATE AND LOCAL ELECTRIC UTILI N/A Part of 4910 
512 OTHER STATE AND LOCAL GOVT ENT N/A  

Source: The U.S. Census Bureau (2003c). 
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Table 5.4. Sectors in the information segment 
IO table Record 

Number Description 87 SIC code 
174 NEWSPAPERS 2710 
175 PERIODICALS 2720 
176 BOOK PUBLISHING 2731 
178 MISCELLANEOUS PUBLISHING 2740 
181 GREETING CARD PUBLISHING 2770 
371 PHONOGRAPH RECORDS AND TAPE 3652 
441 COMMUNICATIONS, EXCEPT RADIO A 4810 4820 4840 
442 RADIO AND TV BROADCASTING 4830 
470 OTHER BUSINESS SERVICES 7320 7331 733 
475 COMPUTER AND DATA PROCESSINGS 7370 
483 MOTION PICTURES 7800 
484 THEATRICAL PRODUCERS, BANDS ET 7920 
497 OTHER EDUCATIONAL SERVICES 8230 8240 8290 

   Source: The U.S. Census Bureau (2003c). 
 
 
 

Table 5.5. The number of sectors in economic segments of the Austin economy 
Segment Production Energy Information ICT Service Transportation Edu_PA 
No. of 
Sectors 409 8 13 17 58 13 10 

    Source: Calculated by the author. 

                                                 
Notes 
1 A later section in this chapter will give a more detailed description of the industry classification systems 
in North America. 
2 A unique solution for X may not always exist; for a more detailed discussion see Miller and Blair (1985). 
3 The format of this section was adapted from Jones (1997). 
4  The backward linkage refers to the increase of gross output stimulated by the require ment of final 
demand.  The forward linkage refers to the increase of gross output stimulated by the growth of supply. 
5 For more detailed discussions and way of improvement see Cella (1984), and Meller and Marfan (1981). 
6 If element-by-element multiplication rather than matrix multiplication is applied, more specific segment 
(sector) emissions can be obtained. 
7 Step by step deduction of the formula can be found in Kim (2002). 
8  TNRCC was officially renamed to the Texas Commission of Environmental Quality (TCEQ) on 
September 1 2002. 
9 More detailed information on the reporting applicability levels can be found in 30 Texas Administrative 
Code 101.10. 
12 The computation ability is no longer a major constraint as the computers are becoming more powerful 
and affordable in the digital age. 
13 “Segment” is suggested by Machado (1994) to describe a group of economic sectors.  It helps distinguish 
between one economic sector and a set of sectors in an economy because “sector” can be understood as 
either one or more economic activity in some cases.  “Segment” has the same meaning as “sectors” in this 
research. 
14 “Informatization” is defined as the process of development of information activities over time (Machado 
1994). 
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CHAPTER VI 

THE DYNAMICS OF THE AUSTIN MSA’S ECONOMIC STRUCTURE: 

1990 - 1999 

 
 
 

If we could first know where we are, and 
whither we are tending, we could better 
judge what to do, and how to do it. 

 - A. Lincoln 
 
 

6.1 Introduction 

 Two important arguments have been made in the previous chapters.  First, 

environmental problems are closely connected to the types and structure of the economy.  

Second, environmental policies must evolve along with economic structure change.  

What is important now is to supply empirical evidence to either support or rebuff these 

arguments.  The dynamics of the economy in the Austin MSA of the 1990s will be 

examined first to set the context for the further exploration of economy-environment 

interactions and the environmental policies in the emerging digital economy. 

This research is not the first attempt to use IO analysis to examine the economic 

issues in Austin.  In the early 1970s, the City of Austin adopted IO analysis to provide 

“more complete and more accurate information to guide planning and policy-making 

functions” (City of Austin 1976, 1).  Social and economic growth in the 1960s was 

studied using the IO models for the  Austin Standard Metropolitan Statistical Area 

(SMSA1), and results were used as economic base data for the Austin Development Plan.  
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The Austin SMSA has expanded quickly with the rapid regional economic growth.  In 

the early 1980s, Bastrop and Caldwell County, in addition to Travis, Hayes, and 

Williamson County, became two new members of the Austin-San Marcos Metropolitan 

statistical area (Austin MSA).  Austin’s economy, especially the high-tech and  ICT 

sectors, has continued to evolve during the past two decades with an unprecedented 

growth rate.  However, a comprehensive examination of Austin’s economic structure 

change and its new social and economic identity as the “Silicon Hills” has yet to be 

accomplished, even though IO analysis has long been recognized as a comprehensive, 

multi-purposes planning tool to serve urban economic analysis section of the urban 

master plan (City of Austin 1976). 

This chapter provides answers to the first two major research questions of the 

study: “What kind of economic structure transformation was accruing in the Austin 

MSA during the 1990s? and “Were there any observable trends (e.g., informatization)?  

These questions are further disaggregated into four tasks to be accomplished using IO 

analysis and hypothetical extraction measurement 

1) Trends based on input-output accounts of the economy.   

2) Trends based on the direct effects of the input-output models (technical 

coefficient matrices). 

3) Trends based on the total effects-direct plus indirect effects (Leontief inverse) 

4) Trends based on the hypothetical extraction measurement. 

All the analysis is conducted based on the IO models in the years of 1990, 1994, 

and 1999.  This chapter presents the results for the period of 1990 to 1999 which will 
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depict a general picture of the trend of the economic structure change in the Austin 

MSA.  Results of the two intervals of the study period – 1990 to 1994 and 1994 to 1999 

– are detailed in Appendix 2 to keep the main text concise. 

6.2 Trends based on input -output account of the economy 

6.2.1 Three-segment aggregation 

 The Austin economy is  first aggregated into three sectors: production, energy and 

information.  Three IO tables (1990, 1994, and 19992) of Austin MSA are constructed to 

compare the change of transactions among the three segments regarding total output, 

intermediate flow, and final demand.3  It is a common practice to use five-year intervals 

in a time series IO analysis concerning economic structure change (Machado and Miller 

1997; Wier 1998; Kim 2002). 

 Table 6.1 shows the percentage changes in intermediate output, final demand, and 

total output of the three segments from 1990 to 1999.  The percentage changes are 

calculated using the formula 7.1, 
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Where 

t
pX : Value of intermediate output, final demand or total output at time t 

p : Intermediate output, final demand or total out 

t time 
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Table 6.1 indicates that the information segment had a much higher growth rate 

than the production segment, in sales both to other segments (174%) and to final 

consumers (87%).  The energy segment decreased about 24 percent in intermediate 

output, about 3 percent in final demand, and over 14 percent in total output.  The 

decreasing of the energy segment in both intermediate and total output can be explained 

partly by the dropping energy price in the 1990s (especially in the first half of the 

decade), and partly by the absolute reduction in energy consumption due to the rising of 

energy efficiency brought by the technical advancement. 

Tables 6.2, 6.3, and 6.4, show the evolution of the share of each of the three 

segments in the totals of intermediate output, final demand, and output.  Looking across 

the rows of production segment in the three tables, production’s share of the economic 

activity increased from 1990 to 1994; the increase was partly counterbalanced by the 

decrease during the period of 1994 to 1999, resulting in a slight increase of production’s 

share in all of the three measures in the 1990s.  The share of energy segment 

monotonically decreased in all the three measures with an average rate of about 70 

percent, indicating its declining importance in the regional economy in the 1990s.  The 

information segment, on the contrary, increased in all of the three measures, over 110 

percent in intermediate output, over 40 percent in final demand, and close to 58 percent 

in total output, showing the strong trend of growth of the segment during the period 

studied. 

The figures in these tables illustrate a crude but clear picture of the trend of the 

economic structure change in Austin’s economy during the 1990s.  The growing 
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importance of the information segment and declining significance of the energy segment 

supports the argument that Austin is evolving into the digital economy, in which the 

significance of information activities (bits) are competing with the traditional economic 

activities (atoms).  In addition, the changing pattern of the segments’ shares in total 

intermediate outputs possibly indicates that so-called “dematerialization” was occurring 

in the manufacturing processes during the period studied. 

 
 
 

Table 6.1. Change of intermediate output,  
final demand, and total output in the Austin economy, 

1990 - 1999 (three-segment model)4 

 
Intermediate 

Output 
Final 

demand 
Total 

Output 
Production 165.72% 187.57% 182.38%

Energy -23.84% -2.94% -14.54%
Information 453.13% 304.38% 340.22%

 
 
 

Table 6.2. Shares of the production, information,  
and energy segments in the total output,  

1990 - 1999 (three-segment model) 

 1990 1994 1999 
Change  

(1990 - 1999) 
Production 86.91% 89.07% 87.99% 1.25%

Energy 6.81% 3.34% 2.09% -69.36%
Information 6.29% 7.59% 9.92% 57.84%
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Table 6.3. Shares of the production, information,  
and energy segments in the intermediate output, 

1990 - 1999 (three-segment model) 

 1990 1994 1999 
Change  

(1990 - 1999) 
Production 79.57% 85.04% 82.96% 4.26%

Energy 14.58% 6.09% 4.36% -70.12%
Information 5.84% 8.87% 12.68% 117.03%

 
 
 

Table 6.4. Shares of the production, information,  
and energy segments in the final demand, 

1990 - 1999 (three-segment model) 

 1990 1994 1999 
Change 

(1990 - 1999) 
Production 89.47% 90.34% 89.55% 0.09% 
Energy 4.09% 2.47% 1.38% -66.22% 
Information 6.44% 7.19% 9.07% 40.75% 

 
 
 
6.2.2 Seven-segments aggregation 

The same analysis of three-segment models is repeated on the seven-segment  

models.  The results, as expected, are very similar to what has been shown in the three-

segment model except that the trend of the economic structure change is delineated in a 

more detailed manner (Tables 6.5, 6.6, 6.7, and 6.8).  Table 6.5 shows that six segments 

have experienced the significant growth in terms of intermediate output, final demand, 

and gross output in the 1990s, leaving the energy as an outliner segment with negative 

growth rates in all the three measures.  The ICT and information segments apparently 

had a much higher growth rate than the other segments in all of the three measures.  In 

the mean while, the energy segment lost about 25 percent in final demand and 15 percent 

in total output  in 1999, compared to those of 1990.  The argument that in the digital 



 

 

177 

economy the ICT and information segments will increase with the accompaniment of the 

declining of the traditional segments (e.g., production, energy, transportation) has been 

approved in the situation of the AMSA during the 1990s. 

Table 6.6 shows that the top three segments in Austin’s economy in terms of the 

absolute share in gross output did not change during the 1990s.  What has been changed 

is the relative importance of the segments.  While the ICT, information, and service 

segments were expanding, production, energy, transportation, and Edu_PA were 

shrinking in the entire economic pie of Austin during 1990s.  Table 6.7 further illustrates 

what was going on in terms of material flows among segments in the manufacturing 

processes.  It shows that in general relatively fewer inputs were required by the 

production, energy, transportation, and Edu_PA, while more inputs were required by 

into ICT, information, service segments. 

The shares of ICT and information segments in total final demand increased 

about 44 percent and 39 percent during the 1990s respectively, while the shares of all the 

other segments in total final demand decreased (Table 6.8).  The share of energy 

segment dropped about 67 percent ; transportation, Edu_PA, service, and production 

segment declined about 30, 14, five, and four percent. 
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Table 6.5. Change of the intermediate output, final demand, 
and total output in the segments in the Austin economy, 

1990 - 1999 (seven-segment model). 

 
Intermediate  

output Final demand Total output 
Production 172.86% 120.58% 156.22%

Energy -4.87% -24.90% -14.54%
ICT 312.52% 407.71% 340.22%

Information 298.89% 251.27% 298.37%
Transportation 97.93% 86.99% 92.51%

Service 171.35% 207.78% 179.36%
Edu_PA 145.36% 35.07% 139.49%

 
 
 

Table 6.6. Segment shares in the total output, 
1990 - 1999 (seven-segment model) 

 1990 1994 1999 
Change  

(1990 - 1999) 
Production 17.65% 16.75% 16.21% -8.13%

Energy 6.81% 3.34% 2.09% -69.36%
ICT 6.29% 7.59% 9.92% 57.84%

Information 11.09% 15.13% 15.85% 42.84%
Transportation 2.73% 2.82% 1.88% -30.97%

Service 45.09% 45.26% 45.16% 0.17%
Edu_PA 10.35% 9.11% 8.89% -14.13%

 
 
 

Table 6.7. Segment shares in the intermediate output, 
1990 - 1999 (seven-segment model) 

1990 1994 1999 
Change 

(1990 - 1999) 
Production 24.78% 24.20% 21.24% -14.30%

Energy 14.50% 5.46% 4.23% -70.82%
ICT 8.07% 10.29% 15.91% 97.25%

Information 0.52% 1.33% 0.71% 36.47%
Transportation 5.96% 7.50% 4.33% -27.35%

Service 43.74% 50.23% 52.30% 19.58%
Edu_PA 2.43% 0.99% 1.27% -47.52%
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Table 6.8. Segment shares in the final demand, 
1990 - 1999 (seven-segment model) 

 1990 1994 1999 
Change 

 (1990-1999) 
Production 15.55% 14.61% 14.88% -4.33%

Energy 4.55% 2.73% 1.52% -66.64%
ICT 5.76% 6.82% 8.34% 44.64%

Information 14.19% 19.10% 19.85% 39.86%
Transportation 1.78% 1.47% 1.23% -30.60%

Service 45.48% 43.83% 43.27% -4.86%
Edu_PA 12.67% 11.45% 10.90% -13.97%

 
 
 

6.3 Trends based on direct effect 

So far we have observed Austin’s economic structure change in the 1990s with 

an aggregated macroeconomic approach.  The next step is to investigate the changes 

concerning the required inputs from the segments to produce outputs, which  will help 

provide a sharper vision on the trend of the economic structure change in the region 

during the period studied. 

6.3.1 Three-segment aggregation 

 Again, the three-segment economy of AMSA in the years 1990, 1994 and 1999 is 

examined first.  The technical coefficients matrices (A) for all the three years are 

extracted using IMPLAN and are presented in Appendix 2.  Columns in an A matrix 

record the inputs from all other segments to one segment in order to produce one unit of 

output for that segment.  Table 6.9 shows the percentage change of the elements in A 

matrix from 1990 to 1999.  To produce one unit of the output of the production segment, 

the required inputs from the energy and production segment s decreased 67 percent and 6 

percent, but the input from the information segment increased 67 percent.  The input 
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requirements of information segment to the energy and production segments dropped 70 

percent and five percent, but 91 percent more input was required from itself.  The 

situation is a little different in terms of the energy segment.  It required more inputs from 

both the production and information segments, 24 percent and 175 percent respectively, 

while the input from the segment itself decreased 37 percent.

 It can also be noted that the direct input of the information and energy segments 

went in the opposite direction.  In general, the significant growth in the requirements of 

information segment and dropping requirements of the production and energy segments 

suggest not only more efficient (less energy and material inputs), but also more 

information-intensive (more information inputs) production processes during the 1990s 

in the Austin MSA.  These figures reveal two possible consequences of the economic 

structure change in the Austin MSA during the 1990s:  First, information was 

substituting for energy as the input to economic segments; second, information was 

contributing to energy savings.  The results are identical to what has been observed by 

Machado and Miller (1997) on the trend of economic structure change in the U.S. 

economy between 1963 and 1987.  But it must be noted that the definition of 

information segment are different in the two studies. 

The input required by per unit output comes from not only manufacturing but 

also non-manufacturing factors, such as capital and labor.  The direct input of these non-

manufacturing factors also changes over time.  In order to eliminate the influence of the 

non-production factors on the total inputs, it is necessary to calculate the share of each of 

the technical coefficients in the column sum, creating figures representing the 
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proportions of the intermediate inputs in the per unit worth of output of that column 

(segment), eliminating the influence of non-manufacturing factors.  The results for all 

the segments in 1990, 1994, and 1999 are listed in Table 6.10, which shows a similar 

pattern as that in the element change of A (Table 6.9).  The only difference is that the 

input of production required by the segment itself increased slightly rather than 

decreased.  The shares of the technical coefficient of the energy segment decreased 

remarkably in all the segments, and the shares of the technical coefficient of information 

increased in all the three segments.  The shares of the technical coefficient of the 

production segment increased 2.25 percent and 47 percent in production and energy 

segments respectively, and decreased 20 percent in the information segment.  Again all 

these figures can be interpreted in general as the substitution effect between the energy 

and information segments as the input to gross output in all the segments. 

6.3.2 Seven-segment aggregation 

 Table 6.11 presents the change of A coefficients of the IO models with seven 

segments from 1990 to 1999.  The direct input of energy, transportation, and Edu_PA 

decreased in all segments, indicating less energy, transportation, and Edu_PA products 

were required in produc ing one unit of output in all segments.  The direct input of 

production also decreased in all but the energy segment, suggesting less production was 

required to produce one unit of output in most of the segments.  The requirement of 

information, ICT, and service for one unit of output for all the segments increased except 

for the direct ICT input to the production segment, which decreased slightly.  The all-

negative numbers in the Edu_PA segment can be explained by the increasing input share 
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from those non-manufacturing factors, and the figures can be normalized by calculating 

the change the share of the factors in the column of A matrix (Table 6.12).  The results 

painted a picture of economic structure change similar to that from the three-segment 

model, with more detailed segmental information. 

Table 6.12 shows the change of shares in column sum of A.  These results 

conveyed the same messages presented in Table 6.11 exclusive of the possible influence 

from non-manufacturing factors.  In general, the economy was less dependent on the 

production, energy, transportation, and the Edu_PA segment, and more dependent on the 

information, ICT, and the service segment, showing that the digital economy had 

emerged in the AMSA during the period studied. 

 
 
 

Table 6.9. Change in the elements of A matrix,  
1990 - 1999 (three-segment model) 

 Production Energy Information 
Production -6.36% 24.90% -4.90%

Energy -67.03% -37.66% -70.13%
Information 66.80% 175.13% 91.47%

 
 
 

Table 6.10. Change in the share of column sum of A 
1990 - 1999 (three-segment model) 

 Production Energy Information 
Production 2.25% 47.61% -20.31%

Energy -64.00% -26.33% -74.97%
Information 82.13% 225.15% 60.44%
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Table 6.11. Change in the elements of A matrix, 
1990 - 1999 (seven-segment model) 

 Production Energy Information ICT Transportation Service Edu_PA
Production -1.63% 44.48% -24.93% -50.70% -2.71% -25.45% -57.14%

Energy -57.52% -34.13% -68.10% -71.28% -74.99% -64.22% -92.91%
Information 92.13% 174.61% 90.59% 68.11% 100.53% 43.40% -13.83%

ICT -3.12% 52.60% 138.17% 2.94% 16.57% 30.25% -47.76%
Transportation -9.71% -19.54% -47.29% -35.92% -19.38% -35.70% -73.07%

Service 35.50% 35.65% 20.43% 9.16% 49.39% 0.71% -58.66%
Edu_PA -34.80% -47.77% -50.86% -65.03% -21.31% -53.80% -50.21%

 
 
 

Table 6.12. Change in the share of column sum of A, 
1990 - 1999 (seven-segment model) 

 Production Energy Information ICT Transportation Service Edu_PA 
Production -2.92% 67.13% -39.90% -40.50% -10.20% -21.94% 20.00%

Energy -58.07% -23.80% -74.46% -65.34% -76.91% -62.54% -80.14%
Information 89.62% 217.66% 52.59% 102.89% 85.10% 50.16% 141.23%

ICT -4.39% 76.52% 90.69% 24.24% 7.60% 36.39% 46.24%
Transportation -10.89% -6.93% -57.80% -22.66% -25.58% -32.67% -24.60%

Service 33.73% 56.91% -3.58% 31.74% 37.89% 5.45% 15.74%
Edu_PA -35.65% -39.58% -60.66% -57.80% -27.36% -51.62% 39.39%

 
 
 

6.4 Trends based on total effect 

This section seeks more evidence for the changing nature of Austin’s economy 

by examining two sets of different but closely related data from the results of IO 

analysis, Leontief inverse matrix (L), and total flow multiplier.  L matrix is derived from 

the A matrix by inversing the (I-A) matrix.  The elements of L matrix can be interpreted 

as the changes of gross output of segment (i) in response to the change of final demand 

of the segment (j).  Total flow multiplier is the ratio of change in total output of segment  

j and change of total output of segment i.  The formula used to calculate the total flow 
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multiplier is as follows.  Notice that the diagonal elements of the total flow matrix are all 

ones by definition, and the changes in diagonal elements are all zero as shown in the 

following result tables. 
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Where 

ijα :   an element in a Leontief inverse matrix 

iX∆ :   gross output change for segment i 

jY∆ :   final demand change for segment j 

 

6.4.1 Three-segments aggregation 

The three original L matrices of 1990, 1994, and 1999 are provided in Appendix 2.  

Table 6.13 shows the changes of each element in L from 1990 to 1999.  The total energy 

requirements to satisfy one unit of final demand of production, energy, and information 

all decreased.  Both the production and information segments required about 71 percent 

less of the inputs from the energy segment to satisfy the increasing of one unit of final 

demand of the two segments.  In contrast, more information was required to satisfy one 

unit of final demand of all the three segments; especially for the production and energy 

segments.  The information requirement s were up about 141 percent and 72 percent 
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respectively.  Both the production and information segments required slightly less from 

the production segment to satisfy one unit of final demand.  But the energy segment 

required about 10 percent more from the production segment to satisfy one unit growth 

of final demand. 

The pattern observed in the changes of L matrix is comparable to that in A matrix 

(Tables 6.9 and 6.11).  The only difference is that the total (direct and indirect) rather 

than the direct effect is calculated in L matrix.  Once again, the substitution effect of 

information and production to energy segment is confirmed. 

 Table 6.14 presents the results of the changes of elements in total flow matrices.  

The figures in Table 6.14 generally repeat the results shown in Tables 6.9 and 6.10, 

except that all elements have more dramatic change rates.  Direct and indirect input from 

the energy segment for one unit of the production and information segments decreased 

more than 70 percent, while information requirements for the production and energy 

segments increased 75 percent and 171 percent respectively.  The production input for 

one unit of the energy output increased almost 34 percent, but the information input 

increased more than 170 percent. 

 
 
 

Table 6.13. Changes in the elements of  
Leontief inverse matrices (L), 

1990 - 1999 (three-segment model) 
 Production Energy Information 
Production -1.86% 10.43% -1.57%

Energy -71.04% -10.93% -71.37%
Information 72.13% 141.45% 5.97%
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Table 6.14. Changes of elements  
in the total flow matrix, 

1990 - 1999 (three-segment model) 
 Production Energy Information 
Production 0 23.97% -7.12%

Energy -70.50% 0 -72.99%
Information 75.39% 171.06% 0

 
 
 
 The change of relative importance of individual elements in the Leontief inverse 

matrix can also provide valuable information about the economic structure change.  The 

column sum of the Leontief inverse is termed as total output multiplier, which ind icates 

the total output required for one unit change in final demand of segment.  Table 6.15 

lists the total output multipliers of the three segments for the years of 1990, 1994 and 

1999.  The decreasing multipliers of the production and energy segments and the 

increasing multiplier of the information segment indicate the economy is more sensitive  

to the stimulus of final demand from information segment  and less sensitive to the 

production and energy segments. . In another words, more information is required to 

satisfy the increase of final demands of the segments, but less production and energy are 

required to satisfy the increase of final demands of the segments in 1999 than that in 

1990.  The share in multiplier reflects the relative response from a segment in the total 

response to the stimulus of the change of a unit of final demand for production, energy, 

or information. 

 Changing rates of energy’s share in output multipliers for all three segments are 

negative, suggesting the decreasing importance of the energy segment to economic 

activities (Table 6.15).  In contrast, changing rates of information’s share in output 
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multipliers for all three segments are positive, reflecting the rising importance of the 

information segment to the economic activity.  The share of production in the production 

segment increased 1.17 percent, which is much less significant than the changing rate of 

the energy and information segments.  Compared to the over 160 percent growth of the 

share of information segment, the 20 percent increase of the share of production in the 

energy segment is still relatively insignificant. 

 
 
 

Table 6.15. Total multipliers, 
1990 - 1999 (three-segment model) 

  Production Energy Information 
1990 1.346973 1.520797 1.281477
1994 1.310183 1.422201 1.332519
1999 1.306626 1.409119 1.332025

 
 
 

Table 6.16. Changes in the shares of  
Leontief inverse in the total output multiplier, 

1990 - 1994 (three-segment model) 
 Production Energy Information 

Production 1.17% 19.18% -5.31%
Energy -70.15% -3.87% -72.46%

Information 77.45% 160.58% 1.95%
 
 
 
6.4.2 Seven-segment aggregation 

 Tables 6.17, 6.18, 6.19, and 6.20 present results strikingly similar to those of the 

three-segment models.  Table 6.17 indicates a monotonic increasing requirement for the 

information, ICT, and service segments for one unit of final demand growth from all the 

segments, a monotonic decreasing requirement for the production, energy, 
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transportation, and Edu_PA segment.  The all-negative figures of the Edu_PA suggest 

that the segment relies more on the inputs from non-manufacturing than those from 

manufacturing factors.  Compared to the 1990 figures, all the multipliers in 1999 

dropped except those of the information and transportation segment s (Table 6.18).  The 

results from the analysis of total flow matrices and shares of Leontief inverse generally 

show that the economy is more dependent on the information, ICT, and service 

segments, while less dependent on the production, energy, transportation, and Edu_PA 

segments at the end of the 1990s (Tables 6.19 and 6.20). 

 
 
 

Table 6.17. Changes in Leontief inverse elements, 
1990 - 1999 (seven-segment model) 

 Production Energy Information ICT Transportation Service Edu_PA
Production -0.40% 26.27% -20.47% -48.89% -4.57% -25.49% -59.25%

Energy -61.88% -9.73% -69.21% -75.35% -73.99% -68.68% -92.90%
Information 98.10% 141.62% 5.97% 71.32% 107.94% 51.55% -14.86%

ICT -0.71% 38.86% 124.92% 0.01% 18.86% 27.13% -49.32%
Transportation -14.39% -25.91% -43.08% -39.62% -1.96% -36.88% -73.90%

Service 32.90% 27.04% 25.64% 6.28% 45.42% 0.24% -57.93%
Edu_PA -38.08% -51.01% -48.21% -64.04% -26.33% -53.69% -0.19%

 
 
 

Table 6.18. Total multipliers, 1990 - 1999 (seven-segment model) 
  Production Energy Information ICT Transportation Service Edu_PA 
1990 1.418596 1.497040 1.253906 1.279526 1.344000 1.283445 1.127036
1994 1.347125 1.418960 1.323957 1.240772 1.527500 1.327881 1.053527
1999 1.414487 1.407752 1.317813 1.226320 1.368653 1.267953 1.043865
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Table 6.19. Changes of elements in the total flow matrix, 
1990 - 1999 (Seven-segment model) 

 Production Energy Information ICT Transportation Service Edu_PA
Production 0 39.89% -24.95% -48.89% -2.66% -13.29% -59.18%

Energy -61.73% 0 -70.95% -75.36% -73.47% -68.75% -92.89%
Information 98.91% 167.66% 0 71.31% 112.10% 51.19% -14.71%

ICT -0.31% 53.83% 112.24% 0 21.24% 26.82% -49.23%
Transportation -14.04% -17.92% -46.29% -39.62% 0 -37.03% -73.85%

Service 33.44% 40.74% 18.56% 6.27% 48.33% 0-57.86%
Edu_PA -37.83% -45.73% -51.13% -64.05% -24.85% -53.80% 0

 
 
 

Table 6.20. Changes in the shares of Leontief inverse 
in the total output multiplier, 1990 - 1999 (seven-segment model) 

 Production Energy Information ICT Transportation Service Edu_PA
Production -0.40% 26.27% -20.47% -48.89% -4.57% -25.49% -59.25%
Energy -61.88% -9.73% -69.21% -75.35% -73.99% -68.68% -92.90%
Information 98.10% 141.62% 5.97% 71.32% 107.94% 51.55% -14.86%
ICT -0.71% 38.86% 124.92% 0.01% 18.86% 27.13% -49.32%
Transportation -14.39% -25.91% -43.08% -39.62% -1.96% -36.88% -73.90%
Service 32.90% 27.04% 25.64% 6.28% 45.42% 0.24% -57.93%
Edu_PA -38.08% -51.01% -48.21% -64.04% -26.33% -53.69% -0.19%

 
 

6.5 Trends based on the hypothetical extraction measurement 

6.5.1 Three-segment aggregation 

The purpose of hypothetical extraction analysis is to compare the relative 

importance of a segment (j) by calculating the total linkage of the segment (j) to all the 

other segments.  The result of the analysis shows the difference between the output of n 

segments (after extracting the output of segment  j from the total output of the n segment 

economy) and the output of n-1 segment economy (Segment j has been removed from 

the n segment economy). 
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As discussed in Chapter V, the results of the hypothetical extraction 

measurement are sensitive to the aggregation level of the IO models.  So the 

interpolation of the results should be focused on the relative rather than absolute values.  

As clearly shown in Table 6.21, the information segment was gaining significance, and 

the importance of the production and energy segment was slipping during the 1990s.  

For example, in 1990 the linkage effect of the information segment to all the other 

segments was about 1.4 percent of the total output (not including the output of the  

information segment).  In 1999, the figure increased to 2.0 percent.  In the meanwhile, 

the production and energy segments were less significant to the economy in 1999 than in 

1990, as the linkages of the two segments dropped 5.71 and 1.23 percent from 1990 to 

1999. 

6.5.2 Seven-segment aggregation 

Table 6.22 shows the results of hypothetical extraction analysis on seven-

segment  economy.  It is clear that the ICT and information segments were becoming 

more significant to Austin’s economy, but the relative importance of the other five 

segments all decreased during the same period of time.  In 1990, the linkage effect of the 

information segment brought 3.43 percent more output into the economy than it would 

have had without it, and the linkage effect of the segment reached 4.17 percent in 1999.  

In the meantime, the linkage effect of the production segment dropped from 4.61 to 4.19 

percent, energy down from 1.02 to 0.40 percent, and so on. 
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6.6 Summary 

The results from the above analyses help unfold  some trends in the economic 

structure change in the Austin MSA during the 1990s.  Tables 6.23 and 6.24 show the 

rankings of the segments in terms of gross output in 1990 and 1999.  The share of the 

energy segment in the entire economy dropped approximately 70 percent, transportation; 

Edu_PA, production were down 31, 14, and 8 percent respectively compared to the 

approximately 58 and 43 percent growth of the share of the ICT and information 

segments.  The service segment remained almost unchanged.  In terms of the rank ing by 

gross output, ICT was up two steps; energy and Edu_PA were down two  and one step 

respectively.  The gross output tends to concentrate in fewer segments.  It is also obvious 

that the service segment has dominated the Austin MSA economy since 1990, 

accounting for over half of the gross output.  If the information and Edu_PA segments  

were counted as part of the service segment, service would have accounted for over two-

thirds of the gross output in the Austin MSA economy.  Similarly, the production 

segment would have actually increased in its share in the economy during the period 

studied, provided that the ICT segment was counted as part of the production. 

Both direct and indirect inputs of information, ICT, and service to one unit of 

gross output increased in almost all the segments, while direct and indirect input s of 

production, energy, transportation, and Edu_PA decreased in general, indicating the 

economy is more dependent on “bits” than on “atoms” in the emerging digital economy.  

The empirical study of this chapter provides evidence to support the argument that the 

digital economy was emerging in the AMSA in the 1990s, where new segments such as 
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information, and ICT grew quickly and traditional segments such as production, energy, 

transportation, and Edu_PA continued to decrease.  However, the shares of the 

information and ICT segment are much less significant than of the service and 

production segments in the entire economic pie, suggesting that it is still on the early 

stage of the new kind of economy. 

Tables 6.25, 6.26, 6.27, and 6.28 show that there is no significant change in terms 

of shares of imports and factors of value-added in the total inputs to the economic 

segments, which not only excludes the possible influence of non-production factors to 

the economic structure change, but also further supports the conclusions on the trends of 

economic structure change in Austin during the 1990s. 

 
 
 

Table 6.21. Results of the hypothetical extraction analysis, 
1990 - 1999 (three-segment model) 

 1990 1994 1999 Change rate (90 - 99) 
Production 30.51% 23.75% 24.80% -18.72%
Information 1.38% 1.55% 2.01% 45.83%

Energy 1.65% 0.76% 0.42% -74.73%
 
 
 

Table 6.22. Results of the hypothetical extraction analysis, 
1990 - 1999 (seven-segment model) 

 1990 1994 1999 Change rate  (90 - 99) 
Production 4.61% 3.16% 4.19% -9.13%

Energy 1.02% 0.77% 0.40% -60.90%
ICT 1.20% 1.53% 1.87% 55.25%

Information 3.43% 4.18% 4.17% 21.74%
Transportation 0.61% 0.86% 0.51% -16.79%

Service 8.33% 8.18% 7.04% -15.43%
Edu_PA 1.43% 0.53% 0.41% -70.91%
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Table 6.23. Segment ranking in terms of output, 1990 

 Rank Output share 
Cumulative 
percentage 

Service 1 45.09% 45.09%
Production 2 17.65% 62.73%
Information 3 11.09% 73.83%

Edu_PA 4 10.35% 84.18%
Energy 5 6.81% 90.99%

ICT 6 6.29% 97.27%
Transportation 7 2.73% 100.00%

 
 
 

Table.6.24. Segment ranking in terms of output, 1999 

 Rank Output share 
Cumulative 
 percentage 

Service 1 45.16% 45.16%
Production 2 16.21% 61.38%
Information 3 15.85% 77.22%

ICT 4 9.92% 87.14%
Edu_PA 5 8.89% 96.03%
Energy 6 2.09% 98.12%

Transportation 7 1.88% 100.00%
 
 
 

Table 6.25. The change of segment output share, 1990 - 1999 

 
Output 

share1999 
Output share 

1990 

Change of 
shares  

1990 - 1999 
Service 45.16% 45.09% 0.2%

Production 16.21% 17.65% -8.2%
Information 15.85% 11.09% 42.9%

ICT 9.92% 10.35% 57.7%
Edu_PA 8.89% 6.81% -14.1%
Energy 2.09% 6.29% -69.3%

Transportation 1.88% 2.73% -31.1%
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Table 6.26. Shares of value-added, 
1990 - 1999 (three-segment model) 

 Production Energy Information 
1990 0.744908 0.644184 0.788929
1994 0.764435 0.689817 0.748207
1999 0.766378 0.698917 0.748111

 
 
 

Table 6.27. Shares of value-added, 1990 - 1999 (seven-segment model) 
  Production Energy Information ICT Transportation Service Edu_PA 
1990 0.6956728 0.6550288 0.805171 0.791476 0.743264 0.783646 0.90729
1994 0.7437154 0.6971963 0.75729 0.821128 0.62531 0.755261 0.960235
1999 0.6916445 0.7017792 0.756656 0.827221 0.721861 0.793385 0.966884

 
 
 

Table 6.28. Shares of import, 
1990 - 1999 (three-segment model) 

 1990 1994 1999
Production 14.95% 14.83% 12.85%

Energy 15.14% 18.32% 17.25%
Information 14.32% 15.82% 13.46%

 
 
 

Table 6.29. Shares of import, 1990 - 1999 (seven-segment model) 
 Production Energy Information ICT Transportation Service Edu_PA 
1990 0.292556 0.162737 0.159977 0.376091 0.174608 0.125175 0.066006
1994 0.22122 0.189866 0.167069 0.344276 0.181578 0.110782 0.027105
1999 0.260656 0.176974 0.14293 0.336226 0.173736 0.089522 0.022243

 
Notes 
1 The term SMSA was changed to metropolitan statistical area (MSA) in 1983 (The U.S. Census Bureau 
2003d). 
2 When the analysis of the study started, the latest IO table available in MIG, Inc was for the year of 1999.  
As of February 28, 2004, the newest IO table available in MIG is 2001. 
3 The format of the rest of the chapter is adapted from Machado (1994). 
4 All data are original except indicated otherwise. 
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CHAPTER VII 

ENVIRONMENTAL IMPACTS OF THE EMERGING DIGITAL ECONOMY IN 

THE AUSTIN MSA, TEXAS, 1990 - 2008 

 
 
 

That which is good and helpful ought to be 
growing and that which is bad and 
hindering ought to be diminishing . . . We 
therefore need, above all else, . . . concepts 
that enable us to choose the right direction 
of our movement and not merely to measure 
its speed. 

- E. F. Schumacher 

 

 

7.1 Introduction 

Chapter VI discussed the changing nature of the economic structure in the Austin 

MSA during the 1990s.  The empirical results indicate the emergence of the digital 

economy in the region.  With the rapid rise of the information and ICT segments, mild 

growth in the service segment, and the declining of the energy, transportation, education 

and public administration (Edu_PA), and the production segments, the nature of the 

Austin MSA’s economy was very different by the end of the 1990s than what it was at 

the beginning of the 1990.  This chapter continues to answer the remaining research 

questions according to the answers to the trends of the economic structure change in the 

Austin MSA.  These questions include, “Are there any changes in terms of the source and 

quantity of pollutant emissions?” “Are there any changes in terms of the relative 

contributions of the segments to the emission of one particular pollutant?” “What are the 

pollutant emissions of Austin MSA in terms of quantity and structure along the different 

development scenarios in the first decade of the 21st Century?” 
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Answers to these questions will be beneficial to further explore the strategies of 

the new generation of environmental policies  in the age of the digital economy.  A 

positive rather than normative research method is taken since a series of “what if” and 

“what are” rather than “what should be” questions are asked and answered in the 

following sections.  The results from EIO analysis, structure decomposition analysis, and 

scenario simulations are presented, including direct and total environmental coefficient  

matrices, change of the sources to industrial point emissions from different factors from 

1990 to 1999, and simulated quantity and structure of emissions from 1999 to 2008. 

 

7.2 Anatomy of pollutant emissions, 1990 - 1999 

The yearly total emissions for five pollutants increased during the 1990s, with CO 

experiencing the most remarkable growth rate, at over 311 percent (Table 7.1 and Figure 

7.1).  The only exception is the emission of SO2, which dropped nearly 3 percent during 

the same time period.  In general, the pollution emissions have relatively slower average 

growth rates than those of the gross output with the exception of CO.  Table 7.2 shows 

the elasticity1 of the six pollutants.  SO2 is the only pollutant with negative elasticity, 

indicating that the emission of SO2 increased more slowly than the final demand during 

the 1990s.  CO is the only pollutant with elasticity greater than 1, indicating that the 

emission of CO grew faster than the final demand during the 1990s.  Elasticity for the 

single segment  cannot be obtained because the complete emission data are only available 

for the production and energy segments. 
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7.3 The changing emission pattern of economic segments, 1990 - 1999 

Taking a close look at the point industrial emissions data provided by the TCEQ, 

we will find that the emissions are concentrated in the production, energy, ICT, and 

service segments. Only two years of data are available for the transportation segment.  

There is simply no record available for the information and Edu_PA segments2 (Table 

7.3).  Compared to the rich and detailed economic data in IO tables3, the environmental 

data is very limited.  The study has to choose highly aggregated rather than less 

aggregated IO models due to the asymmetry between economic and environmental data. 

 
 
 
Table 7.1. Annual industrial point air pollutant emissions, 1990 - 1999 

 TSP PM10 SO2 NOX NMOC CO 
1990 985.66 565.64 2746.66 6858.72 405.64 887.5 
1992 872.73 495.89 2594.23 6908.89 744.14 1304.77 
1993 1080.3 516.24 3111.9 7214.91 700.34 3210.61 
1994 1174.83 407.8 1349.65 8058.71 914.16 3759.87 
1995 1233.88 470.13 1754.2 8773.51 481.78 3594.51 
1996 1213.27 448.77 1646.84 8731.62 644.61 3791.37 
1997 1011.01 487.64 1875.25 8110.62 444.94 3587.94 
1998 1181.2 905.26 1521.14 9006.63 570.68 5183.68 

1999 1228.03 898.64 2671.42 9223.05 546.97 3653.5 
Change rate  

(1990 - 1999) 24.59% 58.87% -2.74% 34.47% 34.84% 311.66% 
       Source: Raw data from TCEQ (2003), summarized by the author. 
       Note: There is no record available in 1991. 
 
 
 

Table 7.2. Elasticity of the pollutants4 
Pollutants TSP PM10 SO2 NOX NMOC CO 
Elasticity 15.11% 36.18% -1.68% 21.19% 21.41% 191.54% 
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Table 7.3. Number of emission sources in each of the segments, 
1990 - 1999 

 1990 1992 1993 1994 1995 1996 1997 1998 1999 
Production 2 5 4 6 7 8 7 6 5

Energy 3 3 3 3 3 3 3 3 3
Information 0 0 0 0 0 0 0 0 0

ICT 0 2 1 2 2 2 2 1 2
transportation 0 0 0 0 0 1 1 0 0

Service 1 2 1 2 1 1 1 1 3
Edu_PA 0 0 0 0 0 0 0 0 0

Total 6 12 9 14 13 15 14 11 13
                   Source: TCEQ (2003), summarized by the author. 
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Figure 7.1. Annual industrial point air pollutant emission in the Austin MSA, 
1990 - 1999. 
Source: TECQ (2003). 
 
 
 
7.3.1 Direct pollution coefficients 

 Direct pollution coefficients are calculated using Formula 7.1.  Tables 7.3, 7.4, 

and 7.5 show the direct pollution coefficients of seven segments in the years of 1990, 

1994, and 1999.  The many zero items indicate the coefficients are not available for all 

the segments, or all the pollutants for certain segments.  The coefficients are available for 
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all the pollutants for production and energy in all the three years (except NMOC for the 

production segment in 1990).  For the segment of transportation, service, and ICT, the 

coefficients are only partially available for certain pollutants in certain years.  For the 

segments of information and Edu_PA, the coefficients are simply unavailable. 

Changes of direct pollution coefficients for each of the six pollutants in the years 

of 1990, 1994, and 1999 are presented in Figures 7.2 - 7.7.  For the production segment, 

all the coefficients declined, indicating a “cleaner” or more efficient production process.  

The service segment also had declining coefficients.  For the ICT segment, all the 

coefficients decreased except for TSP.  In contrast, the pollution coefficients of the 

energy segment increased in all the pollutants except for SO2. 

 
 
 

jkjkj XPb /=                                                                                                                      (7.1) 
 
Where 

kib : direct pollution coefficient of pollutant k for sector j 

kjP : total emission of pollutant k in sector j 

jX : total output of sector j 
 
 
 

Table 7.4. Direct air pollution coefficients, 1990 

 Production Energy Information ICT Transportation Service Edu_PA 
TSP  175.24 27.78 0.00 0.00 0.00 0.00 0.00 

PM10  106.13 1.50 0.00 0.00 0.00 0.00 0.00 
SO2  204.09 814.27 0.00 0.00 0.00 0.00 0.00 
NOX  445.20 2200.37 0.00 0.00 0.00 0.00 0.00 

NMOC 0.00 80.62 0.00 0.00 0.00 17.78 0.00 
CO  20.55 380.82 0.00 0.00 0.00 0.00 0.00 

 Unit: Kg/million USD. 
 
 
 



 

 

200 

Table 7.5. Direct air pollution coefficients, 1994 
 Production Energy Information ICT Transportation Service Edu_PA 

TSP  138.0215 50.17758 0 5.973525 0 0.17256 0 
PM10  49.8867 17.60063 0 0.023198 0 0 0 
SO2  48.54026 636.668 0 0.213133 0 0.464846 0 
NOX  307.5233 3654.117 0 13.95079 0 2.853057 0 

NMOC 68.26547 107.9782 0 20.64201 1.4803272 4.096847 0 
CO  322.3867 723.7306 0 6.272201 0 7.506362 0 

Unit: kg/million USD 
 
 
 

Table 7.6. Direct air pollution coefficients, 1999 
 Production Energy Information ICT Transportation Service Edu_PA 

TSP  66.49413 125.6289 0 7.697966 0 0.085631 0 
PM10  49.74193 125.6289 0 0.024856 0 0.085631 0 
SO2  141.3725 424.3682 0 0.098673 0 0.227293 0 
NOX  204.3 3623.362 0 5.298189 0 1.248526 0 

NMOC 10.38692 152.6034 0 9.601367 0 0.311867 0 
CO  136.5718 922.5742 0 2.609927 0 4.019123 0 

Unit: kg/million USD 
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Figure 7.2. Direct air pollution coefficients, TSP, 1990, 1994, and 1999. 
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Figure 7.3. Direct air pollution coefficients, PM10, 1990, 1994, and 1999. 
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Figure 7.4. Direct air pollution coefficients, SO2, 1990, 1994, and 1999. 
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Figure 7.5. Direct air pollution coefficients, NOx, 1990, 1994, and 1999. 
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Figure 7.6. Direct air pollution coefficients, NMOC, 1990, 1994, and 1999. 
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Figure 7.7. Direct air pollution coefficients, CO, 1990, 1994, and 1999. 

 
 
 
7.3.2 Total pollution coefficients 

 Direct pollution coefficients represent only the impacts from direct polluters, but 

not the indirect effects that occur because of inter- industry linkages.  Total pollution 

coefficients are calculated by multiplying the Leontief inverse by the direct coefficients 

(Formula 7.2).  The results are shown in Tables 7.4 - 7.6 and Figures 7.8 - 7.13.  

Production and energy rema ined as two segments with the highest indirect pollution 

coefficients.  The zero elements disappeared in the total pollution coefficient matrices 

because all the segments contributed to emissions either directly or indirectly through 

linkage effects of the economic segments. 

 
1)1( −−= ABT                                                                                                                   (7.2) 

 
Where 

T: total pollution coefficient matrix 

B: direct pollution coefficient matrix 
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1)1( −− A : Leontief inverse matrix 

 
 
 

Table 7.7. Total air pollution coefficients, 1990 
 Production Energy Information ICT Transportation Service Edu_PA 

TSP  209.18 47.17 8.48 17.54 14.18 9.21 6.77 
PM10  125.55 8.18 4.95 10.26 8.18 5.31 3.58 
SO2  301.94 1095.28 19.18 38.82 37.38 24.79 34.40 
NOX  690.27 2953.52 46.88 94.65 92.86 61.69 89.43 

NMOC 8.27 108.72 2.89 3.95 4.11 22.43 3.52 
CO  52.69 507.87 5.49 10.94 11.74 7.87 13.60 

 
 
 

Table 7.8. Total air pollution coefficients, 1994 
 Production Energy Information ICT Transportation Service Edu_PA 

TSP  162.17 71.84 7.82 16.72 13.53 7.53 2.79 
PM10  58.58 25.33 2.80 3.89 4.86 2.63 1.00 
SO2  74.85 744.28 6.24 10.36 13.93 8.81 3.90 
NOX  463.33 4274.64 37.48 74.41 82.71 52.27 22.96 

NMOC 83.16 132.65 4.99 27.37 10.56 9.42 1.87 
CO  396.94 872.98 22.44 38.32 41.93 31.71 9.52 

 
 
 

Table 7.9. Total air pollution coefficients, 1999 
 Production Energy Information ICT Transportation Service Edu_PA 

TSP  77.79 148.01 2.80 11.25 5.48 3.12 1.15 
PM10  59.03 146.83 2.20 3.05 4.30 2.52 0.93 
SO2  169.60 494.12 6.47 9.07 12.66 7.50 2.80 
NOX  326.54 4148.71 19.96 34.77 38.29 27.98 10.94 

NMOC 15.81 174.89 0.96 10.63 1.79 1.54 0.49 
CO  178.30 1062.62 8.53 14.46 16.20 14.26 3.94 
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Figure 7.8. Total air pollution coefficients, TSP, 1990, 1994, and 1999. 
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Figure 7.9. Total air pollution coefficients, PM10, 1990, 1994, and 1999. 
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Figure 7.10. Total air pollution coefficients, SO2, 1990, 1994, and 1999. 
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Figure 7.11. Total air pollution coefficients, NOx, 1990, 1994, and 1999. 
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Figure 7.12. Total air pollution coefficients, NMOC, 1990, 1994, and 1999. 
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Figure 7.13. Total air pollution coefficients, CO, 1990, 1994, and 1999. 
 
 
 
7.4 The change of pollution sources 

 This section presents the results of SDA, another analytic tool used to explore the 

change of the sources of point air pollutant emissions during the 1990s.  The total 

emission change  of pollutants from time (t-1) to time (t) is decomposed into three factors: 

(1) the change of the direct pollution coefficient, (2) the change of the technical 

coefficient, and (3) the change of the final demand.  The first two factors are considered 
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as technical effects, and the third factor, the final demand is associated with the 

consumption side of the economy, and can be further disaggregated into four components: 

household consumption, government consumption, investment, and export. 

 The results of the SDA of the six air pollutants for the segment sum are shown in 

Tables 7.10 - 7.15.  The period of 1990 to 1999 is divided by two intervals: 1990 to 1994, 

and 1994 to 1999.  Tables 7.16 - 7.21 show the results of the SDA at the segmental level 

between 1990 and 1999.  More detailed SDA results at the segment level of the two 

intervals are provided in Appendix 3.  Please note that the total change (1990 to 1999) 

cannot be derived by simple addition of the changes during the two intervals (1990 to 

1994, and 1994 to 1999), because all the changes in a component are initially multiplied 

by the other components in the period. 

 As shown in Table 7.10, TSP emission increased 242 tons between 1990 and 

1999.  Technological advancement contributed approximately 1000 tons of TSP 

reduction, which was offset by emission growth caused by the increase of the level of the 

final demand.  Among the four components of the final demand, the contribution of 

government consumption was noticeable, which was responsible for about 48 percent of 

the total emission increase.  Table 7.16 provides more detailed data at the segmental level.   

It is clear that the growth of the final demand in the segments of production, service, and 

ICT contributed most to the growth of TSP emission.  Table 7.16 also offers detailed 

information on the contribution of each of the four components of the final demand to the 

emission growth.  For example, the growth of government consumption, investment, and 

household consumption for the production segment  were the most significant contributors 

to growth of the TSP emission.  It is also evident that the improvement of pollution 
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coefficients, especially in the production segment, contributed the most to the reduction 

of the TSP emission. 

 The 333 tons  of increase in the PM10 emission can be explained by the fact that 

the growth of the final demand outpaced technology advancement (Table 7.11).  

Government consumption was the most significant contributor to the emission growth. 

During an economic boom, government tends to spend more on all kinds of activities, 

such as public infrastructures and education, which indirectly contributes to the total 

pollution emissions through linkage effects.  The increase of PM10 may be an indicator of 

the growth in the construction projects.  Table 7.17 indicates that the final demand 

growth in the production, service, and ICT segments, and the increasing of the pollution 

coefficient in the energy segment were the major contributors to the emission growth at 

segmental level.  Improvement of the pollution in production segment remained the 

major source of the reduction of the PM10 emission. 

 Table 7.12 shows that SO2 emission decreased 75 tons from 1990 to 1999.  The 

gain from technical advancement surpassed the loss caused by the growth of the final 

demand during the first interval, but the increasing pollution coefficient in the production 

segment largely cancelled gains from the first interval.  At the segmental level, the main 

factors for emission reduction are from the declining exports in the energy segment, the 

reduction of technical coefficients in the production, information, service, and Edu_PA 

segments, and the reduction of the pollution coefficient in the production, energy, and 

service segments (Table 7.18).  The growth of household consumption in the energy, 

production, and service segments, and the growth of government consumption in the 
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energy and production segments, and the growth of investment in the production segment 

were the major contributors to the increase of SO2 emissions. 

 The same exercises are repeated on all the rest of the pollutants with the results 

shown in Tables 7.13 - 7.21 and Figures 7.14 - 7.19.  Although the causes of the change 

of the pollutant emissions are quite diverse, several common patterns can be summarized: 

(1) technical coefficient (change of the economic structure) contributed to the emission 

reduction for all the pollutants.  In the case of CO and SO2, the effects were quite 

substantial compared to the total emission change, (2) the pollution coefficients decreased 

in all the pollutants, except for CO, and pollution coefficients turned out to be the major 

contributors for emission reductions.  However, the situation did exist when the pollution 

coefficient decreased in the first interval but rebounded in the second, such as NOx and 

NMOC, indicating that technology may not always bring positive environmental 

consequences, (3) the final demand was the major contributor to the emission growth.  

Among the four components of the final demand: household consumption and 

government consumption appeared to be the two most significant factors to the emission 

growth.  The increasing final demand at both household and governmental level can be 

interpreted as one of the direct results of the economic boom, and (4) at the segment level, 

production, energy, and ICT are the top three segments that contributed the most to the 

emissions increase.  Edu_PA was the only segment that contributed to the emission 

reduction for all the pollutants, which also indicates the decreasing significance of 

traditional industries at the Austin MSA.  No answers can be easily found to explain why 

the energy segment contributed the most to the SO2 reduction.  But it may be helpful to 

investigate the fuel mixture of the segment during the period studied. 
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Table 7.10. Result of SDA of TSP, segmental sum, 1990 - 1999, Unit: Ton 

Technology Final demand 
Period 

 
Technical 

Coefficient 
Pollution 

Coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Exports Import 

Sum 
 

1990 -
1999 -192 -792 1198 228 581 262 127 28 242 

1990 -
1994 -35 -143 386 63 73 49 201 -19 189 

1994 -
1999 -104 -541 656 133 354 156 14 43 53 

 
 
 

Table 7.11. Result of SDA of PM10, segmental sum, 1990 - 1999, Unit: Ton 
Technology Final demand 

Period 
  

Technical 
Coefficient 

Pollution 
Coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Exports Import 

Sum 
  

1990 -
1999 -99 -354 712 132 342 157 80 74 333 

1990 -
1994 -12 -280 230 37 43 30 121 -96 -158 

1994 -
1999 -37 134 227 47 128 56 -5 167 491 

 
 
 

Table 7.12. Result of SDA on SO2, segmental sum, 1990 - 1999, Unit: Ton 
Technology  Final demand 

Period 
  

Technical 
Coefficient 

Pollution 
coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Exports Import 

Sum 
  

1990 -
1999 -1086 -1038 2103 565 1172 394 -27 -55 -75

1990 -
1994 -477 -1007 624 117 138 71 297 -536 -1397

1994 -
1999 -127 569 410 136 244 79 -49 470 1322

 
 
 

Table 7.13. Result of SDA of NOx, segmental sum, 1990 - 1999, Unit: Ton 
Technology   Final demand 

Period 
  

Technical 
Coefficient 

Pollution 
coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Exports Import 

Sum 
  

1990 -
1999 -2836 -339 4972 1395 2825 907 -155 568 2364

1990 -
1994 -1277 959 1455 280 330 162 682 63 1200

1994 -
1999 -753 -1099 2539 806 1476 487 -230 476 1164
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Table 7.14. Result of SDA of NMOC, segmental sum, 1990 - 1999, Unit: Ton 
Technology Final demand 

Period 
  

Technical 
Coefficient 

Pollution 
coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Exports Import 

Sum 
  

1990 -
1999 -82 -301 446 186 95 46 118 79 141

1990 -
1994 -37 249 119 44 9 8 57 178 509

1994 -
1999 -69 -690 491 105 201 88 97 -100 -367

 
 
 

Table 7.15. Result of SDA of CO, segmental sum, 1990 - 1999, Unit: Ton 
Technology Final demand 

Period 
  

Technical 
Coefficient 

Pollution 
coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Exports Import 

Sum 
  

1990 -
1999 -439 1868 482 171 307 74 -70 854 2766

1990 -
1994 -215 2128 129 29 34 12 54 829 2872

1994 -
1999 -335 -1580 1788 443 959 398 -13 21 -106

 
 
 
Table 7.16. Result of SDA of TSP, 1990 - 1999 (Disaggregated into segment level), Unit:Ton 

Segment Technology   Final demand  Sum 

 
Technical 

Coefficient 
Pollution 

coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Expo. import  

Productio
n 

-13 -781 875 146 526 245 -41 -30 51 

Energy  -1 75 -1 6 10 0 -17 32 105 
Informatio

n 
-8 -16 28 5 3 1 19 1 5 

ICT -75 26 115 0 1 1 113 31 97 
Trans. -1 -4 4 1 1 0 1 0 -1 
Service -64 -84 149 67 15 15 53 -4 -3 
Edu_PA -30 -9 29 3 26 0 0 -1 -11 

Total -192 -792 1198 228 581 262 127 28 242 
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Table 7.17. Result of SDA of PM10, 1990 - 1999 (Disaggregated into segment level), Unit:Ton 
Segment Technology   Final demand  Sum 

 
Technical 

Coefficient 
Pollution 

coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption Investment Expo. import  

Production -4 -392 525 88 316 147 -25 27 157 
Energy  1 100 0 1 2 0 -3 45 145 

Information -4 -7 16 3 1 1 11 1 6 
ICT -43 -17 67 0 0 0 66 2 8 

Trans. 0 -2 2 1 1 0 1 0 0 
Service -34 -32 86 38 9 9 30 0 20 
Edu_PA -15 -3 15 2 14 0 0 -1 -3 

Total -4 -392 525 88 316 147 -25 27 157 
 
 
 

Table 7.18. Result of SDA of SO2, 1990 - 1999 (Disaggregated into segment level), Unit: Ton 
Segment Technology   Final demand  Sum 

 Technical 
Coefficient 

Pollution 
coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption 

Investment Expo. import  

Production -241 -530 1264 211 759 353 -59 167 661 
Energy  -70 -325 -35 145 229 -5 -404 -197 -627 

Information -37 -16 62 10 6 2 44 2 12 
ICT -206 -45 254 1 1 2 250 -5 -2 

Trans. -9 -4 10 3 4 1 3 -2 -4 
Service -316 -106 401 179 40 40 142 -15 -35 
Edu_PA -207 -12 147 15 133 1 -2 -6 -79 

Total -1086 -1038 2103 565 1172 394 -27 -55 -75 
 
 
 
Table 7.19. Result of SDA of NOx, 1990-1999 (Disaggregated into segment level), Unit: Ton 

Segment Technology   Final demand  Sum 
 Technical 

Coefficient 
Pollution 

coefficient 
Final 

demand 
subtotal 

Household 
Consumption 

Government 
consumption 

Investment Expo. import  

Production -647 -1516 2889 482 1735 808 -136 158 884 
Energy  -191 1163 -94 392 618 -15 -1089 375 1254 

Information -96 -15 153 25 14 6 107 11 53 
ICT -515 16 620 1 4 4 611 46 167 

Trans. -24 -4 25 8 10 1 7 -2 -5 
Service -819 14 999 446 100 100 352 -3 190 

Edu_PA -544 1 381 40 345 2 -6 -16 -178 
Total -2836 -339 4972 1395 2825 907 -155 568 2364 
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Table 7.20.    Result of SDA of NMOC, 1990 - 1999 (Disaggregated into segment level), Unit: Ton 
Segment Technology   Final demand  Sum 

 Technical 
Coefficient 

Pollution 
coefficient 

Final 
demand 
subtotal 

Household 
Consumption 

Government 
consumption 

Investment Expo. import  

Production -19 71 35 6 21 10 -2 46 133 
Energy  -7 59 -3 14 23 -1 -40 21 69 

Information -1 -7 9 2 1 0 7 0 2 
ICT -11 73 26 0 0 0 25 45 133 

Trans. 0 -1 1 0 0 0 0 0 0 
Service -24 -496 363 162 36 36 128 -32 -188 

Edu_PA -21 0 15 2 14 0 0 -1 -7 
Total -82 -301 446 186 95 46 118 79 141 
 
 
 
Table 7.21. Result of SDA of CO, 1990 - 1999 (Disaggregated into segment level), Unit: Ton 

Segment Technology   Final demand  Sum 
 Technical 

Coefficient 
Pollution 

coefficient 
Final 

demand 
subtotal 

Household 
Consumption 

Government 
consumption 

Investment Export
s 

import  

Production -110 953 220 37 132 62 -10 577 1639 
Energy  -34 454 -16 67 106 -3 -187 177 581 

Information -14 29 18 3 2 1 13 9 42 
ICT -66 103 72 0 0 0 71 54 162 

Trans. -4 7 3 1 1 0 1 3 9 
Service -124 302 127 57 13 13 45 37 343 

Edu_PA -86 21 58 6 53 0 -1 -2 -10 
Total -439 1868 482 171 307 74 -70 854 2766 
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 Figure 7.14. Result of SDA on TSP, 1990 - 1999. 
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 Figure 7.15. Result of SDA of PM10, 1990-1999. 
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  Figure 7.16. Result of SDA of SO2, 1990 - 1999. 
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Figure 7.17. Result of SDA of NOx, 1990 - 1999. 
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Figure 7.18. Result of SDA of NMOC, 1990 - 1999. 
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Figure 7.19. Result of SDA of CO, 1990 - 1999. 
 
 
7.5 Industrial point air pollutant emission simulation, 2000 - 2008 

 The previous analysis has demonstrated how the quantity, the pattern, and the 

source of the industrial point air pollution emissions have evolved as the result of the 

dramatic transformation in the structure of the AUSTIN MSA’s economy.  A logical step 

of the subsequent exploration is to forecast the trend of pollutant emissions as Austin’s 

economy continues to evolve in the context of the digital economy in the years to come.  

The results from such exercises will greatly facilitate decision makers to develop more 

effective and efficient policies to cope with environmental problems in various scenarios. 

It is a common practice to apply IO analysis to investigate the interactions 

between the environment and economy, and to simulate the effects of a variety of 

environmental policies and possibilities (Ketkar 1984; Jorgenson and Wilcoxen 1990; 

Hawdon and Pearson 1995; Steenge 1999; Kebede, Schreiner and Huluka 2002).  The 

assumption of linearity between the final demand  and emissions  is usually maintained 



 

 

218 

because the data necessary to fully evaluate the dependence of emissions on the final 

demand and other factors are usually not available (Fritz 1996).  Even though the 

constraints posed by the strict linearity assumption are severe, the results of the forecast 

are still valuable because: (1) it can serve as a benchmark forecast; (2) the comparison 

between different scenarios will shed light on how the changes of emission factors (direct 

emission coefficient, Leontief inverse matrix, and the final demand) affect the total 

emissions in the near future; (3) the segmental emission patterns will also be estimated 

under different “what . . . if” scenarios. 

The main purpose of the following forecast, then, is not to provide accurate 

quantity of emissions, but to identify trends of emissions as the result of different 

development scenarios based on a series of “what . . . if” questions.  IO analysis serves as 

a positive planning tool rather than a valuation tool, thus it is appropriate and beneficial 

to the major objective of the study. 

 Local economic growth has been extraordinary in the Austin MSA during the 

1990s.  However, in the background of the national recession and dot.com implosion,5 

the rapid growth halted at the beginning of the new millennium and is not expected to 

resume the same growth rate as was experienced in the 1990s in near future.  The City of 

Austin economic deve lopment white paper (City of Austin 2003c) reports that, with the 

gradual (still modest) recovery of the U.S. economy,  Austin-area job growth will become 

positive by 2003, up about 1.4 percent from the level of 2002, with most new jobs 

occurring in the secondary segments of services, trade, and government.   

Over the 2002 to 2006 period, growth in the Austin region should begin to 

accelerate, although expans ion most likely will not be as rapid as that in the period of 
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1997 - 2001.  The forecast growth rate is about half of the peak rate during the period of 

1997 - 2001.  The Austin MSA job base is expected to expand at a rate of 2.4 percent 

from 2002 through 2006, compared to a compound annual growth rate of 4.5 percent 

from 1997 to 2001.  The forecast increase of Travis County personal income is 6.3 

percent annually from 2002 through 2006, compared to an astonishing 13.2 percent 

annual growth from 1997 - 2001 (Tables 7.22 - 7.23). 

 
 
 

Table 7.22. Austin area economic forecast, 2000 - 2006 
 2000 2001 2002 2003 2004 2005 2006 

MSA Employment 
(000s) 672.7 675.7 672.1 682.0 700.2 720.0 741.7 

City Employment 
(000s) 382.5 383.0 380.9 382.6 388.9 395.9 403.8 

County Population (000s) 818.8 833.8 846.9 860.6 875.0 890.1 905.4 
County Personal Income 

(Billion USD.) 32.1 32.7 33.0 34.4 37.0 39.5 41.9 
 Source: City of Austin (2003c). 
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Table 7.23. Austin area employment forecast, 2000 - 2006 
 2000 2001 2002 2003 2004 2005 2006 

Mining 1.5 1.7 1.8 1.9 2.0 2.0 2.1 
Construction 39.1 40.3 40.0 38.8 40.1 41.4 42.4 
Non-durable 

Manufacturing 13.9 13.4 13.0 13.4 13.8 14.1 14.4 
Durable Manufacturing 71.2 65.9 56.0 56.5 58.9 62.1 65.5 

Wholesale Trade 38.7 38.5 37.5 38.0 38.8 39.7 40.7 
Retail Trade 114.5 116.4 117.5 119.0 122.8 125.7 128.9 

Finance/Real Estate 33.5 34.2 34.6 34.4 34.7 35.2 35.7 
Transportation/Utilities 21.6 21.5 20.7 21.2 21.8 22.4 23.1 

Services 201.9 203.3 204.0 208.4 214.0 221.3 230.0 
Government 136.8 140.5 147.0 150.4 153.3 156.1 158.9 

Total 672.7 675.7 672.1 683.0 700.2 720.0 741.7 
Unit: 1,000 of jobs 
Source: City of Austin (2003c). 
 
 
 

 Thus a relatively realistic prediction of the growth of industrial point emission in 

the foreseeable future will be based upon the assumption of a moderate economic growth 

rate.  However, considering the uncertainties of the future growth trajectory and major 

objective of the research, it will also be valuable to experiment on some other 

possibilities.  The results from a wide variety of development scenarios offer a good 

opportunity to examine various possible environmental consequences along different 

growth trajectories with varied types of economic structure, levels of technologic 

advancement, stimulus of the final demand, and the combinations of these factors. 

 Four scenarios are designed on the basis of two general assumptions on the trend 

of future economic development in the Austin MSA.  The benchmark year was set to be 

1999.  Scenarios 1 and 2 assume the annual direct pollution coefficients from 1999 to 

2008 will change at the average rates of those between 1990 and 1999.  The difference 

between Scenarios 1 and 2 is the growth rate of the final demand.  Scenario1 assumes 

that the annual final demand from 1999 to 2008 will grow at the average rate of the 
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1990s; Scenario2 assumes that the annual final demand will grow at half of the rate of 

Scenario1.  Scenarios 3 and 4 assume the direct pollution coefficients from 2000 to 2008 

will be the same as those of 1999.  Scenario 3 assumes that the annual final demand will 

grow at the average rate of the 1990s.  Scenario 4 assumes that the annual final demand 

from 2000 to 2008 will grow at half of the rate as of Scenario 3. 

Scenarios 2 and 4 are more conservative (realistic) estimations of the future 

development, while scenarios 1 and 3 take more optimistic views.  There are two sub-

scenarios – a and b – under each of the four scenarios.  All the conditions of the two sub-

scenarios, except the Leontief (L) matrix,  are kept the same.  Sub-scenario a uses the 

1999 L inverse, and sub-scenario b uses the 1990 L inverse.  The purpose is to examine 

how the economic structure change impacts pollution emissions.  Figure 7.20 illustrates 

four development scenarios. 
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7.5.1 Scenario 1 

 This scenario assumes that the growth trend of the economy during the 1990s will 

continue through the year of 2008, and the direct pollutant Pollution coefficient s are 

assumed the same as the 1990s’ average.  Based on these assumption, the average final 

demand growth rate for each segment and the average change rates of direct pollution 

coefficients of the 1990s are calculated first, and then the future emissions are 

extrapolated by multiplying the 1999 total emissions by the above two change rates. 

1 Scenario 1a6 

 CO emission is forecast to grow the fastest, and SO2 the slowest because of the 

difference in the pollution elasticity (Table 7.24 and Figure 7.21).  Figure 7.22 shows the 

changing pattern of the relative contribution of segments to the total pollution. 

 For the TSP, the contribution from the production segment will decrease about 15 

percent, while the share from the energy and ICT segment s will increase about 10 percent.  

The growing share of the energy segment can be interpreted by the segment ’s increasing 

direct pollution coefficient.  In contrast, the increasing share of the ICT segment is 

largely pushed by the rapid growth in the final demand.  For PM10, the total shares of two 

segments, the production and the energy are over 80 percent in both 1999 and 2008.  But 

the relative distributions of the two segments are quite different in the beginning and the 

end of the simulation period.  In 1999, the share from the production and energy 

segments were 67 and 17 percent respectively, but the share is projected to be 25 and 68 

percent in 2008.  Thus the relative importance is projected to shift between the two 

segments.  The quickly increasing contribution of the energy segment is due to the 

remarkable increase in the direct pollution coefficient. 



 

 

224 

For SO2, the share from the production segment will increase from 65 percent in 

1999 to 80 percent in 2008, while the share from the energy segment will drop from 19 

percent in 1999 to 7 percent in 2008.  The changing pattern can be explained by the fact 

that the direct pollution coefficient of energy segment dropped much more quickly than 

that of the production sector from 1990 to 1999 (50 percent vs. 20 percent).  For NOx, the 

contribution of the segments is not expected to change dramatically in general.  The 

production and energy segments remain to be the two largest contributors, and the share 

from the ICT segment is expected to have a slight growth of about 1.3 percent. 

For NMOC, the contribution from the ICT segment will increase from 27 percent 

in 1999 to close to 58 percent in 2008 compared to the declining contribution from the 

energy segment from 30 percent in 1999 to about 10 percent in 2008.  The changes in the 

remaining segments are much less insignificant than those of the ICT and energy 

segments.  For CO, the share from the production segment will decrease from over 74 

percent in 1999 to about 50 percent in 2008, while the share from the energy segment is 

projected to increase 30 percent in 2008, a 20 percent jump from the level of 1999. 

 
 
 

Table 7.24. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 1a 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP  1228.03 1393.54 1570.57 1699.10 1799.15 1870.71 2028.02 2056.85 2057.19 2029.04
PM10  898.64 1295.16 1680.48 2040.21 2379.16 2697.32 2794.80 3081.77 3347.96 3593.37
SO2  2671.43 2924.57 3159.98 3335.18 3464.31 3547.40 3864.57 3878.57 3846.51 3768.40
NOX  9223.13 10044.93 10856.49 11490.07 12001.59 12391.03 13078.53 13284.88 13369.15 13331.36

NMOC 546.97 681.10 887.94 1094.87 1326.09 1581.61 1732.19 2024.16 2340.42 2680.97
CO  3653.52 4975.37 6571.45 8363.56 10377.76 12614.07 13684.18 16253.63 19045.18 22058.82

Unit: ton. 
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Figure 7.21. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 1a. 
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Figure 7.22. Segment contributions to the total emissions, 1999. 
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Figure 7.23. Segment contributions to the total emissions, 2008, Scenario 1a. 
 
 
 
2 Scenario 1b 

 Table 7.25, and Figures 7.24 and 7.25 present the simulation results of scenario 

1b, under which all other factors are kept the same as those in scenario 1a, except that the 

1999 Leontief inverse matrix is substituted with the 1990 Leontief matrix.  As expected, 

the forecast emissions for all six pollutants are higher under scenario 1b than under 

scenario 1a (Table 7.26), indicating that the economic structure of 1999 is more 

environmentally friendly than that of 1990 in the Austin MSA. 

 
 
 

Table 7.25. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 1b 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP  1228.03 1687.97 1908.09 2064.94 2186.61 2273.09 2470.46 2504.16 2502.69 2466.02
PM10  898.64 1593.32 2041.61 2450.71 2831.82 3184.96 3315.89 3627.06 3910.24 4165.44
SO2  2671.43 3782.89 4109.58 4331.85 4483.46 4564.42 4985.29 4960.26 4864.57 4698.23
NOX  9223.13 16134.12 17608.91 18667.61 19461.32 19990.06 21408.45 21539.71 21406.00 21007.30

NMOC 546.97 964.26 1238.15 1511.25 1813.48 2144.84 2353.84 2728.90 3133.09 3566.41
CO  3653.52 6941.36 9145.74 11576.69 14295.06 17300.87 18838.01 22274.96 25999.35 30011.17

Unit: ton. 
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Figure 7.24. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 1b. 
 
 
 

0%

20%

40%

60%

80%

100%

TSP  PM10  SO2  Nox  NMOC  CO 

Edu_PA

Service

Transportation

ICT

Information

Energy

Production

 
Figure 7.25. Segment contributions to the total emissions, 2008, scenario 1b. 
 
 
 

Table 7.26. Forecast emissions in 2008: Scenario1a vs. 1b 

 
Scenario 1a  

Ton/year 
Scenario 1b 

Ton/year Difference 
TSP  2029.04 2466.02 17.72%
PM10  3593.37 4165.44 13.73%
SO2  3768.40 4698.23 19.79%
NOX  13331.36 21007.30 36.54%

NMOC 2680.97 3566.41 24.83%
CO  22058.82 30011.17 26.50%
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7.5.2 Scenario 2 

This scenario assumes that the average growth rate of the final demand between 

1999 and 2008 will keep a moderate pace, which is half of the 1990s’ average  A more 

pessimistic rather than optimistic stance is held under this development scenario, while 

direct pollution coefficients are assumed to be the same as the 1990s’ average.  Based on 

these assumption, again both the average economic growth rate for each segment and the 

average change rate of the direct pollution matrix in Austin are calculated first, and then 

the future emissions are extrapolated by multiplying the 1999 total emissions with the 

average changing rate of the direct pollution matrix and half the average final demand 

growth rate of 1990 - 1999.  Leontief inverse matrices of are used separately to examine 

the difference of total emissions induced by economic structure change. 

1 Scenario 2a7 

 The emissions at the end of the simulation period are forecast to be much lower 

than those of Scenario 1 due to the much lower growth in the final demand (Table 7.27, 

Figure 7.26).  CO emission is still expected to have the highest growth rate.  The 

emission of SO2 in 2008, however, is projected to be even slightly lower than the level of 

1999, indicating that the decreasing rate of the direct pollution coefficient will finally 

outpace the growth in the final demand. 

The patterns (the relative emission contribution of the segments) of the total 

emissions generally remain unchanged from those in Scenario 1, as indicated in Figure 

7.27.  Compared to the patterns of Scenario 1, the relative contributions from the 

production and ICT segments will decrease, but the energy segment will contribute 

relatively more because slowing growth in the final demand will have a much greater 



 

 

229 

impact on the production and ICT segments than the energy segment which had a much 

lower growth in final demand in the 1990s than the other two segments. 

 
 
 

Table 7.27. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 2a 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP  1228.03 1306.40 1370.53 1420.41 1456.04 1477.44 1556.09 1556.12 1541.90 1513.44
PM10  898.64 1230.43 1551.82 1862.82 2163.42 2453.63 2502.37 2776.99 3041.22 3295.05
SO2  2671.43 2734.09 2773.73 2790.34 2783.92 2754.47 2913.06 2849.07 2762.05 2652.01
NOX  9223.13 9635.03 9985.89 10275.73 10504.52 10672.29 11016.04 11092.25 11107.43 11061.57

NMOC 546.97 654.31 773.80 905.44 1049.22 1205.15 1280.44 1454.60 1640.90 1839.35
CO  3653.52 4688.48 5834.49 7091.54 8459.65 9938.80 10473.85 12119.58 13876.35 15744.18

Unit: ton. 
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Figure 7.26. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 2a. 
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Figure 7.27. Segment contributions to the total emissions, 2008, scenario 2a. 
 
 
 
2 Scenario 2b 

 The simulation results of Scenario 2b are presented in Table 7.28 and Figure 7.28.  

The difference between Scenarios 2a and 2b is shown in Table 8.8.  Again the simulated 

emissions in this scenario are higher than those in Scenario 2a, showing the effect of the 

structural change of the economy.  As for the segment contributions, there is no 

significant difference between Scenarios 2b and 1b (Figure 7.29). 

 
 
 

Table 7.28. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 2b 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP  1228.03 1582.18 1657.94 1716.11 1756.69 1779.67 1878.35 1874.95 1853.95 1815.36
PM10  898.64 1511.09 1868.70 2212.33 2541.97 2857.62 2923.08 3217.75 3498.42 3765.10
SO2  2671.43 3535.56 3582.72 3594.55 3571.05 3512.23 3722.67 3610.85 3463.70 3281.23
NOX  9223.13 15311.05 15793.04 16142.55 16359.56 16444.08 17153.28 17039.06 16792.36 16413.16

NMOC 546.97 918.81 1072.84 1241.44 1424.60 1622.33 1726.83 1946.41 2180.55 2429.26
CO  3653.52 6521.08 8039.75 9702.13 11508.22 13458.04 14226.60 16391.99 18701.09 21153.90

Unit: ton. 
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Figure 7.28. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 2b. 
 
 
 

0%

20%

40%

60%

80%

100%

TSP  PM10  SO2  Nox  NMOC  CO 

Edu_PA

Service

Transportation

ICT

Information

Energy

Production

 
Figure 7.29. Segment contributions to the total emissions, 2008, scenario 2a. 
 
 
 

Table 7.29. Forecast emissions in 2008: Scenarios 2a Vs. 2b 

 
Scenario 2a 

Ton/year 
Scenario 2b 

Ton/year Difference 
TSP  1513.44 1815.36 16.63%
PM10  3295.05 3765.10 12.48%
SO2  2652.01 3281.23 19.18%
NOX  11061.57 16413.16 32.61%

NMOC 1839.35 2429.26 24.28%

CO  15744.18 21153.90 25.57%
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7.5.3 Scenario 3 

This scenario assumes, as does Scenario 1 that the economic trends of 1990 - 

1999 will continue through the year 2008, but the direct pollutant Pollution coefficients 

remain the same as those in 1999, rather than changing annually with the average rates of 

the 1990s.  Based on these assumptions, the average final demand growth rate for each 

segment in the 1990s is calculated first, and then the future emissions are extrapolated by 

multiplying the 1999 total emissions with the average final demand growth rate of 1990 - 

1999.  The 1999 and 1990 Leontie f inverse matrices are used to compare the 

environmental impacts caused by economic structure change. 

1 Scenario 3a 

 By 2008, the total pollutant emissions will show a very different picture under this  

scenario than under Scenario 1 (Table 7.30, Figures 7.30, 7.31).  The share of emission of 

the production segment will increase for all the pollutants, making the production 

segment the most important contributor of the pollutant emissions among all the 

segments.  The shares from the ICT and service segments are also projected to increase 

slightly.  At the same time, the contributions from the energy and transportation segments 

are expected to decline. 

The differences between Scenarios 1a and 3a are presented in Table 7.31.  In 2008, 

the total emissions of PM10, NMOC, and CO are predic ted to be much lower than those in 

scenario 1a, while the total emissions of the remaining four pollutants are predicted to be 

much higher than those in scenario 1a.  Under scenario 3a, the growth rate of the final 

demand is the only influencing factor of the change of total emissions.  Under scenario 1a, 

the change of total emissions is the affected by both the rate of the final demand growth 
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and the changing rate of the direct pollution coefficient.  The high elasticity of CO in 

1990s is assumed to continue in Scenario 1a, but not in 3a, thus the projected total CO 

emission in 2008 is much higher under Scenario1a than that of Scenario 3a, in which the 

growth rate of CO is actually equal to the growth rate of the final demand. 

 
 
 

Table 7.30. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 3a 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP  1228.03 1228.03 1685.09 1913.62 2142.14 2370.67 2599.20 2827.73 3056.26 3284.28
PM10 898.64 898.64 1197.53 1346.98 1496.42 1645.87 1795.31 1944.76 2094.20 2243.25
NOX  9223.13 9223.13 3536.05 3968.36 4400.66 4832.97 5265.28 5697.59 6129.90 6561.03

NMOC 546.97 546.97 11208.47 12201.13 13193.80 14186.47 15179.13 16171.80 17164.47 18153.59
CO  3653.52 3653.52 726.66 816.50 906.35 996.19 1086.03 1175.88 1265.72 1355.40
TSP  1228.03 1228.03 4683.25 5198.11 5712.98 6227.84 6742.71 7257.7 7772.44 8285.80

Unit: ton. 
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Figure 7.30. Industrial point air pollutant emission forecast, 1999-2008, Scenario 3a. 
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Figure 7.31 Segment contributions to the total emissions, 2008, scenario 3a. 
 
 
 

Table 7.31. Forecast emissions in 2008: Scenarios 1a vs. 3a 

 
Scenario 1a  

Ton/year 
Scenario 3a 

Ton/year Difference 
TSP  2029.04 3284.28 38.22%
PM10  3593.37 2243.25 -60.19%
SO2  3768.40 6561.03 42.56%
NOX  13331.36 18153.59 26.56%

NMOC 2680.97 1355.40 -97.80%
CO  22058.82 8285.80 -166.22%

 
 
 
2 Scenario 3b 

 The simulation results of this scenario are listed in Table 7.32 and Figures 7.32 - 

7.33.  In 2008, the forecast emissions of all the pollutants under this scenario  will be 

higher than those under 3a due to the differences in Leonitef inverse matrices (Table 

7.33). 
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Table 7.32. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 3b 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP  1228.033 1745.14 2059.49 2344.82 2630.15 2915.48 3200.81 3486.14 3771.47 4056.06
PM10  898.6434 1328.21 1541.25 1742.14 1943.03 2143.91 2344.80 2545.69 2746.58 2946.83
SO2  2671.431 4013.80 4648.11 5245.62 5843.14 6440.66 7038.17 7635.69 8233.21 8828.77
NOX  9223.133 16616.04 18858.25 20939.10 23019.94 25100.78 27181.63 29262.47 31343.31 33414.27

NMOC 546.9729 891.07 1051.70 1187.87 1324.04 1460.22 1596.39 1732.56 1868.74 2004.48
CO  3653.522 5907.19 6783.25 7601.81 8420.37 9238.92 10057.48 10876.04 11694.60 12510.04

Unit: ton. 
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Figure 7.32. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 3b. 
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Figure 7.33. Segment contributions to the total emissions, 2008, scenario 3b. 
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Table 7.33. Forecast emissions in 2008: Scenarios 3a vs. 3b 

 
Scenario 1a 

Ton/year 
Scenario 3a 

Ton/year Difference 
TSP 3284.28 4056.06 19.03%
PM10 2243.25 2946.83 23.88%
SO2 6561.03 8828.77 25.69%
NOX 18153.59 33414.27 45.67%

NMOC 1355.40 2004.48 32.38%
CO 8285.80 12510.04 33.77%

 
 
 
7.5.4 Scenario 4: Fixed direct pollution coefficients with moderate final demand 

growth rate 

This scenario assumes that the annual growth rate of the final demand between 

1999 and 2008 will be half of the 1990s’ average, and the direct pollution coefficient s are 

assumed to be the same as those of 1999.  Based on these assumptions, the average 

annual final demand growth rate of each segment is calculated first, and then the future 

emissions are extrapolated by multiplying the known 1999 total emissions with half of 

the average final demand growth rate of 1990 - 1999. 

1 Scenario 4a 

 Scenario 4 is based on a much slower growth rate of the final demand  than that of 

Scenario 3.  Thus the total emissions in 2008 under scenario 4 are forecast to be much 

lower than those of Scenario 3 (Table 7.34, Figure 7.34).  The segment contributions to 

the total emissions in 2008 are displayed in Figure 7.35. 
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Table 7.34. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 4a 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP 1228.03 1342.30 1456.56 1570.83 1685.09 1799.35 1913.62 2027.88 2142.14 2256.16
PM10 898.64 973.37 1048.09 1122.81 1197.53 1272.26 1346.98 1421.70 1496.42 1570.95
SO2 2671.43 2887.59 3103.74 3319.89 3536.05 3752.20 3968.36 4184.51 4400.66 4616.23
NOX 9223.13 9719.47 10215.80 10712.13 11208.47 11704.80 12201.13 12697.47 13193.80 13688.36

NMOC 546.97 591.89 636.82 681.74 726.66 771.58 816.50 861.42 906.35 951.18
CO 3653.52 3910.95 4168.39 4425.82 4683.25 4940.68 5198.11 5455.55 5712.98 5969.66

Unit: ton. 
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Figure 7.34. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 4a. 
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Figure 7.35. Segment contributions to the total emissions, 2008, Scenario 4a. 
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2 Scenario 4b 

 The simulation results of Scenario 4b are provided in Table 7.35 and Figures 7.36 

- 7.37.  The difference between Scenarios 4a and 4b is shown in Table 7.36. 

 
 
 

Table 7.35. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 4b 
 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 

TSP 1228.03 1631.49 1774.16 1916.82 2059.49 2202.16 2344.82 2487.49 2630.15 2772.44
PM10 898.64 1239.92 1340.36 1440.81 1541.25 1641.70 1742.14 1842.58 1943.03 2043.15
SO2 2671.43 3751.83 4050.59 4349.35 4648.11 4946.87 5245.62 5544.38 5843.14 6140.92
NOX 9223.13 15736.99 16777.41 17817.83 18858.25 19898.68 20939.10 21979.52 23019.94 24055.42

NMOC 546.97 847.44 915.52 983.61 1051.70 1119.78 1187.87 1255.96 1324.04 1391.91
CO 3653.52 5555.41 5964.69 6373.97 6783.25 7192.53 7601.81 8011.09 8420.37 8828.08

Unit: ton. 
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Figure 7.36. Industrial point air pollutant emission forecast, 1999 - 2008, Scenario 4b. 
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Figure 7.37. Segment contributions to the total emissions, 2008, Scenario 4b. 
 
 
 

Table 7.36. Forecast emissions in 2008: Scenarios 4a Vs. 4b 

 
Scenario 4a  

Ton/year 
Scenario 4b 

Ton/year Difference 
TSP 2256.16 2772.44 18.62%
PM10 1570.95 2043.15 23.11%
SO2 4616.23 6140.92 24.83%
NOX 13688.36 24055.42 43.10%

NMOC 951.18 1391.91 31.66%
CO 5969.66 8828.08 32.38%

 
 
 
7.5.5 Forecast accuracy 

 It is a common practice to examine the accuracy of the forecast results.  Three 

years of emission inventory data (2000, 2001, and 2002) are available for checking the 

accuracy of the forecast results.  The comparison between actual and simulated total 

emissions of the years 2000 to 2002 is presented in Tables 7.37 - 7.40 and Figures 7.38 - 

7.43.  The simulated results from Scenarios 1b, 2b, 3b, and 4b are not used for error 

checking because the 1990 Leontief matrix is far less realistic than that of the 1999.  The 

residual standard deviation (r) of all the pollutants for each of the four scenarios was 
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calculated, and the results are presented in Table 7.41.  The formula used to calculate 

residual standard deviation is as follows: 
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Where 

ar : residual standard deviation of scenario a, a = 1-4 

mtX : ratio of forecast emission and actual emission 

n : n  = 1-3 

k : type of pollutant, k =1-6 

ftY : forecast emission at time t 

mtY : actual emission at time t 

 

The results in Table 7.41 indicate that Scenario 2a has the best estimation (having 

the smallest r value).  The result is under expectation because it is closer to the actual 

situation to assume a moderate final demand growth rate and to assume the direct 

pollution coefficients to be the same as the 1990 average.  It is also noticeable that 

emissions of 2001 are significantly lower than those of the years of 2000 and 2002 in 

terms of the inventory data, but no reasonable explanation could be easily obtained.8  
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There are both overestimations and underestimations of the actual emissions in each of 

the scenarios forecast. 

 
 
 
Table 7.37. Actual vs. forecast total emissions, 2000 - 2002, Scenario 1a 

 
2000 

forecast 
2000 

 actual 
Forecast 

error 
2001 

forecast 
2001 
actual 

Forecast 
error 

2002 
forecast 

2002 
actual 

Forecast 
error 

TSP 1435.84 1644.90 -12.71% 1685.09 1344.40 25.34% 1913.62 1929.50 -0.82%
PM10 1042.89 1108.50 -5.92% 1197.53 945.80 26.62% 1346.98 1270.70 6.00%
SO2 3088.28 2761.90 11.82% 3536.05 2672.10 32.33% 3968.36 3035.10 30.75%
NOX 10155.84 9845.70 3.15% 11208.47 9294.80 20.59% 12201.13 10424.90 17.04%

NMOC 616.77 932.00 -33.82% 726.66 840.50 -13.54% 816.50 1227.40 -33.48%
CO 4143.47 5667.60 -26.89% 4683.25 5393.70 -13.17% 5198.11 8293.50 -37.32%

 
 
 

Table 7.38. Actual vs. forecast total emissions, 2000 - 2002, Scenario 2a 

 
2000 

forecast 
2000 
actual 

Forecast 
error 

2001 
forecast 

2001 
actual 

Forecast 
error 

2002 
forecast 

2002 
actual 

Forecast 
error 

TSP 1342.30 1644.90 -18.40% 1456.56 1344.40 8.34% 1570.83 1929.50 -18.59%
PM10 973.37 1108.50 -12.19% 1048.09 945.80 10.81% 1122.81 1270.70 -11.64%
SO2 2887.59 2761.90 4.55% 3103.74 2672.10 16.15% 3319.89 3035.10 9.38%
NOX 9719.47 9845.70 -1.28% 10215.80 9294.80 9.91% 10712.13 10424.90 2.76%

NMOC 591.89 932.00 -36.49% 636.82 840.50 -24.23% 681.74 1227.40 -44.46%
CO 3910.95 5667.60 -30.99% 4168.39 5393.70 -22.72% 4425.82 8293.50 -46.64%

 
 
 

Table 7.39. Actual vs. forecast total emissions, 2000 - 2002, Scenario 3a 

 
2000 

forecast 
2000 
actual 

Forecast 
error 

2001 
forecast 

2001 
actual 

Forecast 
error 

2002 
forecast 

2002 
actual 

Forecast 
error 

TSP 1393.54 1644.90 -15.28% 1570.57 1344.40 16.82% 1699.10 1929.50 -11.94%
PM10 1295.16 1108.50 16.84% 1680.48 945.80 77.68% 2040.21 1270.70 60.56%
SO2 2924.57 2761.90 5.89% 3159.98 2672.10 18.26% 3335.18 3035.10 9.89%
NOX 10044.93 9845.70 2.02% 10856.49 9294.80 16.80% 11490.07 10424.90 10.22%

NMOC 681.10 932.00 -26.92% 887.94 840.50 5.64% 1094.87 1227.40 -10.80%
CO 4975.37 5667.60 -12.21% 6571.45 5393.70 21.84% 8363.56 8293.50 0.84%
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Table 7.40. Actual vs. forecast total emissions, 2000 - 2002, Scenario 4a 

 
2000 

forecast 
2000 
actual 

Forecast 
error 

2001 
forecast 

2001 
actual 

Forecast 
error 

2002 
forecast 

2002 
actual 

Forecast 
error 

TSP 1306.40 1644.90 -20.58% 1370.53 1344.40 1.94% 1420.41 1929.50 -26.38%
PM10 1230.43 1108.50 11.00% 1551.82 945.80 64.08% 1862.82 1270.70 46.60%
SO2 2734.09 2761.90 -1.01% 2773.73 2672.10 3.80% 2790.34 3035.10 -8.06%
NOX 9635.03 9845.70 -2.14% 9985.89 9294.80 7.44% 10275.73 10424.90 -1.43%

NMOC 654.31 932.00 -29.79% 773.80 840.50 -7.94% 905.44 1227.40 -26.23%
CO 4688.48 5667.60 -17.28% 5834.49 5393.70 8.17% 7091.54 8293.50 -14.49%

 
 
 

Table 7.41 Standard deviation of forecast emissions (Actual value = 1) 

 TSP PM10 SO2 NOx NMOC CO 
Average 

RSD 
1a 0.20 0.20 0.33 0.19 0.35 0.34 0.27
2a 0.19 0.14 0.14 0.07 0.44 0.17 0.20
3a 0.18 0.71 0.15 0.14 0.21 0.18 0.26
4a 0.24 0.57 0.06 0.06 0.29 0.17 0.23
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Figure 7.38. Actual vs. forecast TSP emissions, 2000 - 2002. 
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Figure 7.39. Actual vs. forecast PM10 emissions, 2000 - 2002. 
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Figure 7.40. Actual vs. forecast SO2 emissions, 2000 - 2002. 
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Figure 7.41. Actual vs. forecast NOx emissions, 2000 - 2002. 
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Figure 7.42. Actual vs. forecast NMOC emissions, 2000 - 2002. 
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Figure 7.43. Actual vs. forecast CO emissions, 2000 - 2002. 

 
 
 
7.6 Summary 

7.6.1 Trends of industrial point air pollutants emission in the Austin MSA, 1990 - 

1999 

The economic and environmental data are linked by an environmentally extended 

I-O model to explore the environmental impacts of the emerging digital economy in the 

Austin MSA during the 1990s.  It has been demonstrated that EIO can effectively 

facilitate this type of comprehensive analysis.  By examining the direct and total pollution 

coefficients using three years of EIO models, the contributors to the growth of the 

pollutant emissions using the SDA, and the quantity and pattern of pollutant emissions by 

the year of 2008 using linear extrapolation, the environmental consequences of economic 

structure change have been gradually, if not completely, unfolded at least from angle of 

the changing pattern of industrial point pollutant emissions. 

The results clearly indicate that the technological advancement and the economic 

structural transformation do help relieve the burden of the industrial point pollution in 
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general in the Austin MSA during the 1990s.  The direct pollution coefficients decreased 

substantially in most of the economic segments, suggesting the decoupling of the 

pollutant emissions from the manufacturing processes.  But the increasing of the direct 

pollution coefficients of NOx and NMOC in the second interval of the 1990s, the 

monotonic increase of CO may also indicate the unstable conditions or uneven 

development in technological advancement for the different pollutants and economic 

segments.  Decreasing technical coefficients also suggest that the Austin’s economy is 

more “clean” and more “efficient” as it evolves toward the digital economy. 

Since five out of the six direct pollution coefficients of the energy segment 

increased from 1990 to 1999, it might indicate a significant change in terms of fuel 

mixture in the energy segment, but the conclusions cannot be made, and further 

investigation is needed.  Although the production segment remains the most substantial 

contributor to most of the pollutant emissions, its relative contribution is declining.  On 

the other hand, the final demand is playing an increasingly important role as the indirect 

contributor to the emissions.  Increasing household consumption, government spending, 

and exports require more production, which may be consequently translated into more 

emissions as the byproducts of the manufacturing process.  Substantial growth of the final 

demand has been observed in the household consumption, the government consumption, 

and the exports in the production, energy, ICT, and service segments.  It is thus not unfair  

to charge the rapid growth of the final demand to be the major contributor of the growth 

of the pollutant emissions in emerging digital economy in the Austin MSA. 

It is also noticeable that only a few economic segments are responsible for the 

airborne emissions from industrial point sources in the Austin MSA during the period 
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studied.  The direct pollution coefficients of the  new rising economic segments, such as 

information, ICT, and service, are generally lower than those of the traditional segments 

such as production and energy.  However, the total environmental impacts of these new 

rising segments are still substantial.  And in some cases, they are even comparable to the 

impacts from the traditional segments due to the ir tight economic linkage and significant 

shares of total output in the economy. 

It is equally important to be aware of the source of the data which influences how 

the results of the study can be interpreted.  The industrial point pollutant emission 

represents only a small portion of the total air emissions in the region, and the 

environmental data used in the analysis is not even the whole set of the  industrial point 

emission data (only the facilities exceeding the report criteria).  Non-point sources (such 

as household energy consumption and transportation vehicles) have also not been 

considered in the above analysis. 

7.6.2 Perspective of point industrial emissions in the Austin MSA, 1999 - 2008 

 Four development scenarios are proposed to simulate the environmental 

consequences of the economic structure change using the IO analysis in the AUSTIN 

MSA from 2000 to 2008.  IO has been approved to be an effective analytical tool for 

examining the complex segmental linkages and economic-environmental 

interrelationships along different growth trajectories, and 10 years is probably the longest 

reasonable simulation period for IO models considering the stability of the economic 

structure in a region. 

Table 7.42 compares the simulated emissions of the six pollutants in four 

scenarios in the year of 2008.  In general, the influence from the growth of the final 
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demand is the most significant, while the other two factors may also cause remarkable 

changes to the total emissions in certain scenarios.  Each segment is quite different in 

terms of the growth rate of the final demand and changing rate of direct pollution 

coefficients.  The total emissions are actually the results of interactions of these factors. 

Two points can be made concerning the segment contributions to the total 

emissions by the year of 2008.  First, the segments of production, energy, ICT, and 

service are the four major contributors to the total emissions.  In contrast, the 

contributions from the other three segments are too insignificant to be counted.  Second, 

the patterns of relative contributions of the segments to a particular pollutant may be 

quite different in the four scenarios.  The importance of one specific segment to the total 

emission of any one of the six pollutants is determined by the combined effects of the 

changing rate of direct pollution coefficients and the final demand (Leontief inverse is 

assumed to be the same).  Figure 7.44 shows the different patterns of segment 

contributions to TSP emission in the year of 2008 under four different scenarios.  The 

patterns for the rest of the pollutants are provided in Appendix 3. 

IO analysis has been approved to be very helpful in investigating the 

environmental consequences of economic structure change.  The study would be more 

valuable if the investigation could have been continued using more disaggregated 

environmental data.  However, the inadequacy of data became a major obstacle of further 

investigation.  In fact, the data issue (especially environmental-related data) is a common 

difficulty of all kinds of IO applications.  Some researchers tried to use proxy data to 

estimate environmental data.  For example, airborne pollutant emissions were estimated 

using energy consumption data.  But these studies were conducted at national level where 
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detailed survey data is more likely to be available and complete, rather than at regional or 

lower level of geographical region (Joshi 1998; Wier 1998; Matthews 1999; Kim 2002).  

According to the author’s knowledge of the study area, county-level energy consumption 

data arranged by SIC is currently not available, preventing the further examination at 

more disaggregated geographical level.9 

 
 
 

Table 7.42. Summary of simulation results, four scenarios in the year of 2008 

 1999 

2008 
Scenario 

1a 

2008 
Scenario 

1b 

2008 
Scenario 

2a 

2008 
Scenario 

2b 

2008  
Scenario 

3a 

2008 
Scenario 

3b 

2008  
Scenario 

4a 

2008 
Scenario 

4b  
TSP 1 1.65 2.01 1.23 1.48 2.67 3.30 1.84 2.26
PM10 1 4.00 4.64 3.67 4.19 2.50 3.28 1.75 2.27
SO2 1 1.41 1.76 0.99 1.23 2.46 3.30 1.73 2.30
NOX 1 1.45 2.28 1.20 1.78 1.97 3.62 1.48 2.61

NMOC 1 4.90 6.52 3.36 4.44 2.48 3.66 1.74 2.54
CO 1 6.04 8.21 4.31 5.79 2.27 3.42 1.63 2.42

Note: Emissions of 1999 = 1, relative values. 
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Figure 7.44. Segment contribution to TSP emission, 2008. 
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Figure 7.45. Segment contribution to PM10 emission, 2008. 
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Figure 7.46. Segment contribution to SO2 emission, 2008. 
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Figure 7.47. Segment contribution to NOX emission, 2008. 
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Figure 7.48. Segment contribution to NMOC emission, 2008. 
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Figure 7.49. Segment contribution to CO emission, 2008. 

                                                 
Notes 
1 Elasticity is calculated according to the following formula 

)/)/(()/)(()//()/( 19901990199919901990199919901990 YYYPPPYYPPE iiiii
i −−=∆∆=   Where 

iE : elasticity for pollutant i 
iP : emission of pollutant i 

Y : final demand 
2 The missing of emission data in the database can more likely to be interpreted by the fact that no source 
exceeds the reporting applicability levels required by TCEQ, rather than by the situation that no pollutants 
are discharged by the sources in the two segments. 
3 A usual IO table generally records economic variables from 528 industries (each industry is equivalent to 
one three-four digit SIC-level segment). 
4  All data are original except indicated otherwise.  
5 The National Bureau of Economic Research defines “growth recession” as “a recurring period of slow 
growth in total output, income, employment, and trade, usually lasting a year or more.” (NBER 2003). 
6 Letters a and b are used to differentiate the scenarios using 1999 and 1990 Leontief inverse matrices 
respectively.  For example, Scenario 1a uses the 1999 Leontief inverse matrix; Scenario 1b uses the 1990 
Leontief inverse matrix, and so on. 
7 The descriptions of Scenarios 2, 3, and 4 are focused on the unique situations.  Similar information was 
skipped to keep the text tight and concise. 
8 The author has asked the staff of TCEQ why there was a sudden decline of emissions in the Austin MSA 
but not in the entire state (of Texas) in 2001.  No affirmative answer was obtained.  One guess is that 
Austin was hit more heavily by the economic recession but rebounded more quickly than Texas on average.  
Further checking on relevant social and economic data is necessary to provide more convincing. (personal 
communication with Jim Parks, 16 May 2003). 
9 “ . . . Energy data at the county level by SIC does not exist . . ., in fact, even state by SIC does not exist in 
any government surveys . . .” (Personal communication with Robert Adler, Energy Information Agency, 
Department of Energy.  June 2003). 
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CHAPTER VIII 

DISCUSSION AND CONCLUSION 
 
 
 
If I have not seen as far as others, it is 
because giants were standing on my 
shoulders.  
                                                  - H. Abelson  

 
 

8.1 Introduction 

This study addresses the long-term environmental concerns in the context of the 

emerging digital economy and information age using well-developed IO analysis 

techniques on the regional scale.  The dissertation contributes to the literature in two 

important ways.  First, it strengthens the thin factual bases of debates concerning the 

environmental consequences and correspondent policy prescriptions of the digital 

economy.  Second, it demonstrates how geographical knowledge can be combined with 

economic theories and methods to provide new insights into one of the principal 

questions of geography, human-environment interactions  that have both puzzled and 

inspired geographers in the past one and half centur ies (Marsh 1864; Thomas 1956; 

Pattison 1964; Wilbanks 1994; Turner 2002). 

This chapter recaps methodological, theoretical, and policy-related issues of the 

study.  It also makes final conclusions and briefly discusses the limitations of the study.  

This chapter and thus the dissertation end with some thoughts on the agenda of future 

study. 
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8.2 Discussion 

8.2.1 Methodological implications  

Methodologically, this dissertation centered on the IO analysis to examine the 

linkage between urban economic structure change and consequent environmental 

impacts.  Major analytical tools include time series descriptive IO models, direct and 

total pollution coefficient matrices, hypothetical extraction measurement, and structural 

decomposition analysis.  This dissertation has demonstrated that IO analysis is effective 

in investigating the complex environment-economy interactions among major segments 

of an economy in four aspects: 

1) On the investigation of the trend of economic structure change, IO analysis 

provided macroeconomic accounts, technical coefficient matrices, and Leontief inverse 

matrices, and formed the basis of hypothetical extraction measurement.  This analysis 

supplied solid evidence to explain the changing nature of the economic structure in the 

Austin MSA during the 1990s.   

2) On the calculation of the pollution coefficients, IO analysis not only bridges the 

economy (sectoral outputs) and the environment (sectoral pollutant emissions), but also 

connects the direct and indirect effects of the economy to the environment.  Patterns of 

pollutant emissions from major economic segments are clearly delineated with the help 

of IO analysis. 

3) Static IO models were extended to examine the dynamics of the relative 

importance of three major contributors to the total pollutant emissions using structural 

decomposition analysis.  SDA also made it possible to investigate the environmental 
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impacts of final demand, which is a long-overlooked but important  factor influencing the 

environmental quality. 

4) Four development scenarios have been simulated by taking the 1999 IO model as 

benchmark to forecast the quantities and patterns of pollutant emissions in the first 

decade of the 21st century (2000 to 2008).  The linear nature of the IO model simplified 

the computational process, and provided an approachable method in examining the 

environmental consequences under various possible developing scenarios in the years to 

come. 

 IO analysis is, of course, just one of the gadgets in the magic toolbox of 

geographers, and the results from the linear model in most cases provide a somehow 

distorted image of the non- linear real world.  However, IO analysis is a well-established 

and straightforward methodology that can be used to systematically model the 

perplexing economic and environmental interactions in an economic system with a large 

number of variables.  In the light of the findings of the dissertation, IO analysis again 

distinguishes neoclassical economists’ stylized, utilitarian methodologies in its bold 

simplification to highlight important variables and relationships in an economic system 

(Duchin 1998).  In short, this dissertation has demonstrated that IO analysis is a valuable 

tool in quantifying complex economic-environment interactions from a macroeconomic 

perspective. 
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8.2.2 Theoretical implications  

 The theoretical implications of this dissertation are twofold: 1) to the 

substitutability between information and energy/material, and 2) to the emerging 

information ecology in the digital economy. 

1 The substitutability between information and energy/material 

 The discussion about the substitutability between information and energy begins 

with the problem of Maxwell’s Demon in physics in the late 19th century (Leff and Rex 

1990).  Maxwell’s Demon challenged the second law of thermodynamics by claiming 

that information is able to generate free energy starting from a state of maximum 

entropy.  The problem has been touched upon primarily with three approaches, in 

physics (e.g., of idealized models of our physical environment); in engineering (e.g., of 

descriptions of machines dedicated to particular tasks); and in economics (e.g., of 

national accounts and models of production and consumption (Spreng 1993).  This 

dissertation explored the substitutability problem using the third approach. 

Spreng (1993) argues that the substitutability between energy, time, and 

information can be observed in many instances, in parts of physics, engineering, and 

economics.  He also argues that new information technology (NIT) can be used to 

substitute time and energy to improve the quality of life without adding stress to the 

environment (Spreng 1993, 23).  Chen (1994, 26) contends that information could 

substitute for traditional production factors, such as capital, material, and energy, via its 

incorporation in the production factors and its combinations.  He asserts that “the 

incorporation of information into the factors of production and their combinations is the 
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major force behind the current tendency towards the dematerialization of the productive 

system.”  However, neoclassical economic theory is not capable of modeling 

information in its traditional framework.  According to the neoclassical theory, a 

production factor has four intrinsic properties: divisibility, substitutability by other 

factors, complementarity with other factors, and independence vis-à-vis the others.  Non-

material information, on the other hand, is independent of any of the four factors.. It is 

neither additive; nor divisible, nor is it easily quantifiable, nor exhaustible.  These 

characteristics of information make it difficult for scholars to analyze the substitutability 

between information and other production factors using traditional neoclassical 

economic theory. 

Both Chen (1994) and Spreng (1993) suggest that one feasible way to examine 

the substitutability between information and energy without measuring information in its 

physical terms was to study the economic activities of a society.  In fact, since the early 

1960s, scholars have started to investigate the information activities by analyzing the 

national accounts of economy of the U.S.  Machlup (1962, 1984) and Porat (1977) 

conclude that information activity was playing increasingly significant role in the U.S. 

economy.  They argue that the U.S. has entered an information society.  Machado (1994) 

demonstrate not only the trend of informatization, but also the possible substitutability 

between energy (output of energy segment) and information (output of information 

segment) using IO analysis in the U.S. economy between 1963 and 1987 (see also 

Machado and Miller 1997).  These efforts indicate that IO analysis (national economic 

account analysis in general) is a approachable way to study the economic structure 
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change and substitutability effects between segments in an economic system despite the 

difficulty in reaching a consensus on standard classification scheme of the economy. 

In the context of Austin, the results from both the trends of input-output accounts 

and hypothetical extraction measurement support two conclusions: (1) there was a trend 

of informatization in the Austin MSA during the 1990s, (2) there existed substitution 

effects among input factors (e.g., information and energy/production) to produce per unit 

of output in economic segments, and increasing importance of information sector in the 

economy has demonstrated not only by the growth in the share of total output, but also 

by its share in the total input (both direct and ind irect) to generate one unit of output for 

all the segments.  In addition, decreasing requirements to inputs (both direct and 

indirect) from energy and production sectors to generate one unit of output for all the 

segments indicates the declining significance of the two segments in Austin’s economy 

during the 1990s.  In both three-and seven-segment models, the above arguments are 

valid except that inputs from production to energy segment increased. 

The implication of the above discussion is that, even though information is not a 

direct (tangible) factor of production, and its abundance does not automatically cause the 

growth of production, the mastery of information may help transform abundant 

information into productivity.  In the digital economy, the argument of substituting 

information for energy/materials (dematerialization) is not only possible, but also 

expected to slow down entropy degradation, although how to turn the idea into practice 

remains an open question.  On the other hand, the interpretation of the implication has to 
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be confined to the Austin MSA, additional analysis on various geographical scales is 

necessary before the implication should be generalized. 

2 From industrial ecology to information ecology: A paradigm shift? 

At the end of the 1980s, Frosch and Gallopoulos (1989) coined the term 

“industrial ecology” in order to treat the side effects of the “end of pipe” syndrome 

which became increasingly evident and acute after about two decades of the practice of 

the first generation of environmental policy.  The ecological analogy of industrial 

process makes it possible not only to trace the flows and transformations of materials in 

all industrial processes, but also to integrate the waste fully into the web of industrial 

relationships.  The accomplishments of industrial ecology have expanded the focus of 

the waste control from a manufacturing process into the entire life cycle of products. 

In the past fifteen years or so, the methodological development of industrial 

ecology has been dominated by the functional approach, which focuses on the potential 

environmental effects that a product generates over its entire life cycle from cradle to 

grave.  It is usually practiced via life-cycle analyses, total quality management, and 

design for environment of certain products or services.  The functional approach 

measures all significant environmental flows and impacts by means of providing 

services, largely independent of the location of linked processes and any predefined 

temporal boundary.  The primary objective of the approach is to compare alternative 

options (products and services) in terms of their environmental impacts by detailed 

documentation on the material and energy flows related to its suppliers, customers, 

stakeholders, and corporate partners (Sui 2003). 
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The regional approach was inspired by the analogy of food webs of ecological 

systems.  Local-regional industrial ecosystems are collections of industrial actors in a 

geographically defined area.  In an ideal situation, the actors form an ecosystem through 

co-operation and inter-dependency and use each other’s waste material (recycling of 

matter) and waste energy (cascading of energy) for the inputs of raw materials and  

energy.  In practice, the “eco- industrial parks” have been launched in the 1970s with a 

limited success (Erkman 1997; Sui 2003). 

From its origin to the latest development, industrial ecology has always focused 

on the functional approach, aiming at optimizing material flows to minimize the resource 

input and waste generation.  Compared to the rich empirical case studies using the 

functional approach, the regional approach is much less frequently adopted.  

The emerging digital economy, however, is very likely to rely more on the flow 

of information than on the tangible goods and services, as demonstrated in this study as 

well as in some previous ones.  The creation, transformation, and dissemination of 

information, the interactions and substitutability between information and 

energy/material flows are exerting great impacts on the environment of the physical 

world, although little is known about the cause-and-effect relationships among these 

complex relations. 

The unbalanced use of the two approaches of the industrial ecology becomes 

more of a problem due to the fundamental difference between the digital and industrial 

economy in terms of the material and information flow.  If we confine our 

conceptualization solely to the metabolism of the physical part of the economy, we may 
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not be able to capture the whole picture of the environmental impacts of the digital 

economy.  The reconceptualization of the foundations of the industrial ecology is 

expected to provide a new analytic framework to better understand the interactions 

between flows of information, material, and energy and the consequent environmental 

impacts in the emerging digital economy and information age.  There are two promising 

trends toward the evolution of the industrial ecology: 1) to integrate regional and 

functional approaches, that is, to set a clear spatial and temporal specification in units for 

functional approach; and 2) to pay more attention to information flows of the economy. 

Information ecology is proposed to be an equivalent concept of industrial 

ecology in the digital economy to model complex information flows and their 

environmental impacts in the emerging digital economy (Sui 1998; Sui and Rejeski 

2002).  The term “information ecology” is first seen in the discussion of social and 

linguistic dimensions of information by social scientists who are interested in the social 

consequences of the information explosion (Harris 1989; Davenport and Prusak 1997; 

Nardi and O’Day 1999).  The term is borrowed for the study of industrial ecology, 

referring to a new analytic framework extending from industrial ecology to explore the 

environmental impacts of not only material flows, but more importantly, information 

flows in the digital economy. 

In the traditional industrial economy, our understanding of the environmental 

impacts of the economic development is dominated by the tyranny of a mechanistic 

scheme in a Cartesian framework, in which almost everything can be explained by a 

simple linear law taking the form of a statement with a single cause and consequent 
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effect.  The defining characteristics of the emerging digital economy challenge the 

conventional thinking on the environment and the economy for its deterministic, 

predictable, and mechanistic view.  The latest research result s from the theories of 

nonlinear dynamics and complexity may be more helpful in illuminating the convoluted 

relationship between the digital economy and the environment.  The information ecology 

is expected to go beyond the traditional wisdom to understand the interactions among 

information flows, industrial metabolism, and the environment with a nonlinear, 

complex, process-dependent, organic, and dynamic view. 

The main instruments in the toolbox of industrial ecology are life cycle analysis 

(LCA), total quality control (TQC), and design for environment (DE).  It may be 

premature to discuss the toolkit of information ecology because the subject is still in the 

stage of conceptualization.  However, some insights can be drawn from the examination 

on the major approaches of industrial ecology, and LCA and IO analysis  are two 

potential methods that can be inherited.  LCA is proposed because it can act as an 

important analytical tool to investigate the complex interactions among information, 

energy, and material flows at the company/industry (microeconomic) level.  IO analysis 

excels as another feasible choice because it is not only a well-developed method to 

model the interactions among information activities, material flows, and environmental 

inputs (and residuals) on various geographic and temporal scales, but it is also able to 

avoid the conceptual conflicts between primary properties of information and traditional 

production factors. 
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The benefits of the integration of the functional and regional approaches seem to 

be more obvious in the emerging digital economy.  For the functional approach, a clear 

spatial and temporal specification in units will be beneficial because it assigns 

geographic meaning to LCA, which is important to compare the commonalities and 

differences of the results of LCA spatially.  For the regional approach, the target of the 

analysis has to be disaggregated into certain material flow(s) between economic system 

components either in an entire regional economy or on specific segments within an 

economy.  Systematic studies on how to synergistically integrate the two approaches to 

address challenging environmental problems in the digital economy is essential to the 

methodological frameworks of the information ecology. 

Information ecology is yet a virgin field to be explored as a logical extension of 

industrial ecology.  Expanding the concepts, theories, and methodological framework of 

industrial ecology to information ecology is a ground-breaking project.  Erkman (1997) 

believed that a strong motive to ensure a lasting success for industrial ecology is 

aesthetic and elegant, quoting Ausubel’s word “The goal of industrial ecology is a more 

elegant, less wasteful network of industrial processes” (Erkman 1997, 7).  The goal of 

information ecology, then, can also be set to pursue more elegant, less wasteful 

networked industrial and information processes. 

8.2.3 Policy implications  

This dissertation provides insights for the new generation of environmental 

policies for the Austin MSA in particular and the U.S. in general in two major aspects: 

1) goals and targets, 2) environment monitoring and regulatory instruments. 
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1 Goals and targets 

 The first generation of environmental policies was centered on the regulation of 

residuals from manufacturing processes featured by fragmented thoughts and practices.  

To a large extent, these laws and policies worked out.  In the emerging digital economy, 

as targets of the policy shift from the production and consumption behavior of a few 

larger smokestack industries to millions of small enterprises and individuals, 

environmental problems generally become less painfully obvious, but are harder to 

quantify and more unpredictable, and more difficult to enforce.  In addition, these 

problems are by no means fewer in quantity.  As Socolow (1994) states, the 

environmental future “will be no less restless than our own.”  The next generation of 

environmental policies has to address not only the effects of production processes, 

whether they are big smokestacks or atomized sources, but also ourselves, thousands of 

millions of consumers whose decisions about what to buy, where to live, how much to 

drive, and what to throw away are profoundly shaping the quality of our environment 

(Esty and Chertow 1997). 

 The new rising industrial ecology successfully extended the material/energy 

analysis from a manufacturing process into the whole life cycle of products, but it falls 

short in capturing the environmental consequences of information flows, which are 

closely related to the information generation, transformation, distribution, and 

interaction with other economic activities.  Industrial ecology is still expected to play a 

critical role in dealing with the optimization of material flows in a product lifecycle, but 
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it has to be complemented by the emerging information ecology to adapt the changing 

nature of the economy and the society in the digital economy and information age. 

 It is probably more appealing, morally logical, and relatively easier to require 

major pollution sources to pay for the cost of environmental damages as the first 

generation of environmental policy has done.  However, it is essential but especially 

challenging to fashion a coalition to carry out a new generation of environmental policy 

when the target of regulation is millions of individual consumers and small businesses.  

On the one hand, a law is not only far less effective in changing the cultural values 

underlying the consumption of goods than the technology to produce these goods, but 

also less effective in influencing individual rather than cooperative behaviors.  On the 

other hand, the expected high enforcement costs may prevent the effective 

implementation of laws and regulations.  Thus the new generation of environmental 

policy must regulate the impacts of both production and consumption processes.  The 

primary goal, minimizing the resource input and pollution generation and preventing 

resource depletion, must be supplemented by a second goal; that is, effectively 

influencing the consumption behavior of government, cooperations, and individuals to 

achieve sustainability. 

2. Environment monitoring and regulatory instruments 

 There are two common problems in the current pollution monitoring systems, 

such as TCEQ’s STARS and EPA’s TRI.  First, they are generally limited to 

manufacturing segments (i.e. TRI contains only the information of releases and other 

waste management activities of the facilities in manufacturing segments with SIC codes 
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20 - 39).  Second, these environmental monitoring systems were designed to collect data 

from major industrial point sources (Both STARS and TRI have reporting applicability 

levels).  High costs make it practically infeasible to monitor every single point source.  

One possible solution is to use social-economic data as a proxy for pollution estimation 

because they are usually more likely than environmental data to be collected 

systematically and extensively.  For example, energy consumption and fuel mixtures 

data can be combined to estimate non-point air pollutant emissions. 

Even the currently available environmental-related statistical data are not without 

any problems.  First, these data tends to be available only at high levels of aggregation 

(both geographically and sectorally).  Second, if disaggregated data are available in 

some unusual cases, they might not be organized by standard industrial classification 

schemes (e.g., SIC and NAICS).  The direct consequence of these problems is the 

serious data mismatch and asymmetry between economic and environmental data, which 

becomes one of the major impediments to over-aggregate certain environmentally 

sensitive segments in particular and to quantify the economic-environment interactions 

in a more detailed  manner in general.  The problem can be partially addressed through 

more coordination, communication, and information exchange among various 

governmental agencies at the federal, state, and local levels, non-governmental 

environmental groups, private parties, and research institutes.  In many cases, the data is 

not unavailable; it may simply not have been systematically organized, carefully edited, 

and properly stored in the right place and/or in an appropriate format.  One bold solution 

to the problem is to create a new independent scientific agency to collect and 
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disseminate data regarding to environmental and public health1  (Esty and Chertow 

1997). 

 In the digital economy, the top-down regulatory approach will continue to play 

an important role in the processes of environmental policymaking and implementation, 

but the bottom-up participatory policy needs to be strongly encouraged and strengthened 

to become an indispensable part of the next generation of environmental policies. 

It is true that environmental protection should remain one of the major businesses 

of all levels of government, from federal, to state, to local.  But it should also be the 

business of everybody, environmental groups, industries, businesses, community 

associations, and the general public.  The CTSIP introduced in Chapter III is a promising 

initiative to encourage the general public to play their stewardship roles in the 

management of local environment. 

 New Environmental Protection Instruments (NEPIs) and Environmental 

Management Systems (EMSs) are suggested to be deployed and practiced in wider 

domains with a faster pace.  Actually, not only have they been employed in many EU 

countries and Japan for quite a while, but they have caused “fundamental transition” in 

environmental policies in these countries (Golub 1998; Zito et al., 2003).  NEPIs and 

EMSs are expected not only to be the supplemental instruments for environmental 

management, but more importantly, to help the conceptual transition from the traditional 

environmental government to environmental governance. 
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8.3 Conclusion 

 This dissertation has achieved three major objectives.  The primary objective is 

to investigate the dynamics of economic structure change and consequent environmental 

impacts in the emerging digital economy and information age using the Austin MSA – a 

new rising high-tech hub in central Texas – as a case study.  The relationship between 

economic structure change and point air pollutant emission has been analyzed, and four 

future development scenarios simulated.  The second objective is to investigate the 

possibility and feasibility of using environmentally extended IO analysis in exploring 

complex environment-economic interactions in a very dynamic economic environment.  

This dissertation has not only demonstrated the applications and limitations of IO 

analysis, but also highlighted the values of SDA and HEM in investigating the regional 

environment-economic interactions.  The third objective is to suggest guidelines for the 

new generation of environmental policies in the context of the emerging digital 

economy.  This has been achieved by critically reviewing the advantages and 

disadvantages of the current generation of environmental policy and by the analysis of 

the defining characteristics of the emerging digital economy.  These achievements are 

accomplished through three major steps.  IMPLAN software has been used to construct 

IO models, and all the data analysis has been finished using Microsoft EXCEL. 

 Step one is the construction of the IO models.  Both three-and seven-segment 

IO models for the years of 1990, 1994, and 1997 are constructed using IMPLAN after 

the IO tables have been collected and segmental classification schemes determined.  

These models form the basis for the following analysis and simulations. 
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 Step two is IO-based analysis and modeling.  Analysis based on input-output 

accounts, direct effects (technical coefficient matrices), and total effects (Leontief 

inverse matrices) have been performed to examine the trend of economic structure 

change during the 1990s.  Hypothetical extraction measurement is implemented to 

compare the change of the relative importance of economic segments.  Both direct and 

total pollutant coefficients have been calculated to examine how the quantity and 

patterns of pollutant emissions change with the  transformation of the economic 

structures.  SDA is used to identify the major sources of pollutant emissions during the 

1990s. 

 Step three is EIO-based simulation and forecast.  Four development scenarios 

have been designed and simulated by the year of 2008 using a 1999 IO model as the 

benchmark.  Future pollution emission patterns along various development trajectories 

are further forecasted and compared. 

 The dissertation has led to the following conclusions at the methodological, 

theoretical, and policy levels: 

1) At the methodological level, this dissertation has demonstrated the utility of the 

(E)IO analysis for exploring the complex economic-environmental interactions.  The 

integration of IO analysis, hypothetical extraction measurement , and SDA not only 

provide analytic handles for investigating the environmental impacts of the digital 

economy, but also enrich the collections of tools for geographers to launch studies on the 

problems of social, economic, and environmental interactions on various temporal and 

spatial scales.  In practice, the environmental data is found to be less available as 
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geographical scale goes down to the state or county level, limiting the application of IO 

analysis. 

2) At the theoretical level, three hypotheses about the environmental 

consequences of the digital economy: dematerialization, decarbonization, and the 

substitutability between information and energy/material, have been inexplicitly tested.  

The argument about the dematerialization and the substitutability between information 

and energy/material in manufacturing process in the emerging digital economy have 

been generally supported by two facts: the input of the information segment to all the 

segments increased, the input of the production segments 2  for all the segments 

decreased.  Decarbonization has been substantiated by the fact that both direct and total 

pollutant coefficients declined during the 1990s in general. 

 This study concludes that the overall environmental impacts of the emerging 

digital economy at the Austin MSA were benign during the 1990s from the perspective 

of macroeconomics.  In the first decade of the 21st century (by the year 2008), assuming 

a moderate final demand growth rate and repeating the changing rate of direct pollutant 

emission coefficients of the 1990s, SO2, NO, NMOC, and TSP are expected to have 

moderate growth, PM10 and CO, the other two pollutants with the highest emission 

elasticity in the 1990s, are expected to have relatively high growth rates. 

 While the manufacturing processes tends to be more environmentally friendly, 

the rapid growth of final demands has been proven to contribute increasingly to the 

pollutant emissions in the Austin economy, offsetting the environmental gains from the 

technological advancement and economic structure changes.  Thus environmental 
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impacts from the demand side deserve more theoretical and practical studies of scholars 

and more policy considerations of regulators. 

3) At the policy level, the dissertation argues that the first generation of 

environmental policies has to be reformed in order to adapt the changing nature of 

environmental problems in the dynamic digital economy.  Information ecology is 

proposed to be the equivalent of industrial ecology in industrial economy to direct the 

continuous explorations on the environmental impacts of the digital economy featured 

by the rising significance of information flows. 

 In the case of Austin MSA, environmental impacts of the ICT segment are 

worth more intimate attentions from policymakers.  First, the ICT segment is playing an 

increasingly important role in the local economy.  Second, many negative environmental 

impacts of the ICT segment tend to be indirect, subtle, and potentially last longer. 

Policymakers in Austin can learn a great deal from the experience of the Silicon 

Valley, an area dominated by the ICT segment and established its high-tech image a 

decade earlier than the Austin MSA.  In the Silicon Valley, the leaking of toxic 

chemicals from underground storage tanks of those high-tech companies has caused 

substantial regional groundwater contamination.  The establishment of the Silicon Valley 

Toxics Coalition (SVTC) was the direct response to the rising social, environmental, and 

public health concerns of the general public in the Silicon Valley region.  SVTC has 

been playing an important role in four aspects, (1) advance environmental sustainability 

and clean production, (2) improve community health, (3) promote environmental and 

social justice, and (4) ensure democratic decision-making for communities and workers 
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affected by the high-tech revolution in Silicon Valley and other high-tech areas of the 

US and the world. 

 As the new rising Silicon Hills, the potentially negative impacts of the ICT 

segment have neither been fully understood, nor received enough attention from the 

local government.  These problems may simply have been overwhelmed by 

unprecedented economic achievements in the past 10 to 15 years.  The annual reports of 

CTTSIP, the first initiative to promote the sustainability of the region, have not 

emphasized the significant social, economic and environmental impacts of ICT either 

(CTSIP 2003).  In addition, some negative consequences of the development of ICT 

(high- tech industries in general) have already been reported.  One study accuses the fast 

high-tech development of the direct cause of the increasing social inequity and spatial 

segregation in the region during the 1990s (Lee 2002). 

 

8.4 Limitation 

Input-output analysis offers a practical approach to explore the trend of economic 

structure change and to evaluate the possible environmental consequences of the 

emerging digital economy.  The method, however, suffers the same drawbacks as other 

published researches using the same approach.  The study itself, just like any other great 

or mediocre study, has its limitations.  I’d like to call attention to at least the following 

four limitations : 

 First, the assumption of linearity between sectoral output and emissions has been 

maintained in the study.  The linearity nature of IO models posed limitations on the 
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results of the study because the assumption is more likely not hold in the mostly non-

linear real world.  The author is fully aware that the results and conclusions of the study 

are only imperfect representation of what are happening in the real world.   

Second, the environmental data in empirical parts of the dissertation are based on 

the point industrial air pollutant emissions, which represent only a portion of, rather than 

the total set of the air pollutant emissions of the region.  Point sources not exceeding the 

report criteria, non-point sources emissions (e.g., emissions from transportation 

vehicles), and emissions related to direct household energy consumptions (e.g., energy 

consumed for household cooling and heating) have not been considered in the analysis 

due to the difficulties in data collection.  Thus the conclusions must be interpreted 

carefully,  and further generalization of the conclusions may not be applicable and 

appropriate. 

Third, although highly aggregated IO models are able to provide valuable 

insights on the general trends of the economic structure change and the correspondent 

environmental consequences, they are not able to supply more detailed economic and 

environmental information at much less disaggregated segmental level, especially on 

those environmentally sensitive segments.  The asymmetry of the economic and the 

environmental data is the cause of the limitation.   Anther major disadvantage of the lack 

of less aggregated models is that it is impossible to apply sensitivity analysis.  And 

sensitivity analysis is important in examining the stability of the results of IO analysis, 

which are sensible to level of aggregation in many cases. 
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Fourth, it would be ideal if longer time series data were available (e.g., starting 

from 1980).  Economic data (IO tables) are more accessible, time-series data of the 

1980s or even earlier are usually not difficult to obtain. The problem is the general 

dearth of related environmental data.  To this study, the industrial point emissions data 

earlier than the year of 1990 (and almost all the other environmental data set at the MSA 

level at least in Texas) are unfortunately not available and/or inaccessible.  The ten-year 

span is the longest time series that can be possible to achieve in this study, and the 

reliability and applicability of the results are unfortunately diminished due to this 

limitation. 

 

8.5 Future research agenda 

 The study has sketched only the outline, rather than painted the full picture of the 

environmental impacts of the emerging digital economy.  The future study will be 

continued along the following directions: 

1) The similar study will be extended on both higher or lower geographic scales 

(e.g., on county, state, multi-state, and country levels). 

2) The methodologies will be applied on other types of ecological inputs (e.g., water 

use) and ecological outputs (e.g., toxic chemicals released).   

3) SDA will be implemented at a more disaggregated level; e.g., including energy 

mix and level to supply more detailed evidences on the interactions among economic 

structure change, energy use, and environmental consequences if relevant environmental 

and economic data are available. 
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4) Household lifestyle options and their impacts on the environment will be further 

investigated.  This is actually one of the major themes of Duchin’s structure economics 

(Duchin 1998), which eagerly calls for more detailed study on household consumption 

behavior.  Comprehensive understandings on the environmental implications of 

lifestyles will offer an opportunity to identify the environmental consequences of the 

economic structure change from the demand, rather than the supply side, which forms 

one of the major themes of the next generation of environmental policy.   

The ultimate solutions to the environmental problems, however, have to touch 

the very heart of societal norms such as lifestyles, equity, cultural identities, social 

values (e.g., publicly recognized expectations), and social motivations (e.g., moral 

beliefs and values systems).  These issues can not be easily solved by either harsh 

regulations, or by advanced science and technology, and ethical and philosophical 

considerations then surface as essential to answer these normative questions.  At the very 

end of the study, I suddenly sensed that I have the answer for a question that has puzzled 

me since the first day as a Ph.D. student; that is, why the dissertation is the partial 

requirement for the degree of Doctorate of Philosophy, not of Geography, Environment, 

Economics, or any other discipline. 

 

                                                 
Notes 
1 The name of the new agency has been suggested to be Bureau of Environmental Indicators and Statistics. 
2  Production segments include production and energy segments in three segments models.  In seven-
segment model, production segments includes to all the segments except for information, service, and 
Edu_PA. 
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APPENDIX A 
 

DESCRIPTIONS OF ECONOMIC SEGMENTS 
 
 

Three Austin I-O tables, 1990, 1994, and 1999 are used as original data sources. 

Each of the three tables is actually a 528 by 528 matrix.  The sectors in the tables are 

grouped into more aggregated segments to capture the major feature of Austin economy.  

Detailed description about seven segments economy is provided, for the three-segment 

aggregation, only IO table record number is provided since the sectors are the same as in 

the seven-segment aggregation. 

 
 
 

1 Seven-segment aggregation 
 
 
 

Table A.1 Education and public administration (10 sectors) 
IO table record No. Description 87 SIC code 

495 ELEMENTARY AND SECONDARY SCHOO 8210 
496 COLLEGES, UNIVERSITIES, SCHOOL 8220 
498 JOB TRAININGS & RELATED SERVIC 8330 
499 CHILD DAY CARE SERVICES 8350 
512 OTHER STATE AND LOCAL GOVT ENT -- 
515 OTHER FEDERAL GOVERNMENT ENTER -- 
519 FEDERAL GOVERNMENT - MILITARY -- 
520 FEDERAL GOVERNMENT - NON-MILIT -- 
522 STATE & LOCAL GOVERNMENT - EDU -- 
523 STATE & LOCAL GOVERNMENT - NON -- 
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Table A.2 Energy (8 sectors) 
IO table Record No. Description 87 SIC code Note 

37 COAL MINING 1200  
38 NATURAL GAS & CRUDE PETROLEUM 1310  
39 NATURAL GAS LIQUIDS 1320  

213 LUBRICATING OILS AND GREASES 2992  
443 ELECTRIC SERVICES 4910 Also part of 4930 
444 GAS PRODUCTION AND DISTRIBUTIO 4920 Also part of 4930 
511 STATE AND LOCAL ELECTRIC UTILI  Part of 4910 
512 OTHER STATE AND LOCAL GOVT ENT --  

 
 
 

Table A.3 ICT (17 sectors) 
IO table 
Record Description 87 SIC code 

267 NONFERROUS WIRE DRAWING AND IN 3357 
339 ELECTRONIC COMPUTERS 3571 
340 COMPUTER STORAGE DEVICES 3572 
341 COMPUTER TERMINALS 3575 
342 COMPUTER PERIPHERAL EQUIPMENT, 3577 
343 CALCULATING AND ACCOUNTING MAC 3578 
370 RADIO AND TV RECEIVING SETS 3651 
372 TELEPHONE AND TELEGRAPH APPARA 3661 
373 RADIO AND TV COMMUNICATION EQU 3663 
374 COMMUNICATIONS EQUIPMENT NEC 3669 
375 ELECTRON TUBES 3671 
376 PRINTED CIRCUIT BOARDS 3672 
377 SEMICONDUCTORS AND RELATED DEV 3674 
378 ELECTRONIC COMPONENTS, N.E.C. 3675 3676 367 
400 SEARCH & NAVIGATION EQUIPMENT 3812 
402 AUTOMATIC TEMPERATURE CONTROLS 3822 
473 EQUIPMENT RENTAL  AND LEASING 7350 
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Table A.4 Information (13 sectors) 
IO table 
Record Description 87 SIC code 

174 NEWSPAPERS 2710 
175 PERIODICALS 2720 
176 BOOK PUBLISHING 2731 
178 MISCELLANEOUS PUBLISHING 2740 
181 GREETING CARD PUBLISHING 2770 
371 PHONOGRAPH RECORDS AND TAPE 3652 
441 COMMUNICATIONS, EXCEPT RADIO A 4810 4820 4840 
442 RADIO AND TV BROADCASTING 4830 
470 OTHER BUSINESS SERVICES 7320 7331 733 
475 COMPUTER AND DATA PROCESSING S 7370 
483 MOTION PICTURES 7800 
484 THEATRICAL PRODUCERS, BANDS ET 7920 
497 OTHER EDUCATIONAL SERVICES 8230 8240 8290 

 
 
 

Table A.5 Transportation (13 sectors) 
IO table 
Record Description 

87 SIC 
code Note 

392 SHIP BUILDING AND REPAIRING 3731  
393 BOAT BUILDING AND REPAIRING 3732  

433 RAILROADS AND RELATED SERVICES 
4010, 
4740 Also part of 4789 

434 LOCAL, INTERURBAN PASSENGER TR 4100  
435 MOTOR FREIGHT TRANSPORT AND WA 4200 Also part of 4789 
436 WATER TRANSPORTATION 4400  
437 AIR TRANSPORTATION 4500  
438 PIPE LINES, EXCEPT NATURAL GAS 4600  
439 ARRANGEMENT OF PASSENGER TRANS 4720  

440 TRANSPORTATION SERVICES 
4730 

4783, 47 Also part of 4789 
482 MISCELLANEOUS REPAIR SHOPS 7690  
510 LOCAL GOVERNMENT PASSENGER TRA  Part of 4100 
513 U.S. POSTAL SERVICE 4311  
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Table A.6 Service (58 sectors) 
IO table 
Record Description 87 SIC code Note 

446 SANITARY SERVICES AND STEAM SU 4953 4959 496  
447 WHOLESALE TRADE 5000 5100  
448 BUILDING MATERIALS & GARDENING 5200  
449 GENERAL MERCHANDISE STORES 5300  
450 FOOD STORES 5400  
451 AUTOMOTIVE DEALERS & SERVICE S 5500  
452 APPAREL & ACCESSORY STORES 5600  
453 FURNITURE & HOME FURNISHINGS S 5700  
454 EATING & DRINKING 5800  
455 MISCELLANEOUS RETAIL 5900  
456 BANKING 6000  
457 CREDIT AGENCIES 6100 6710 672  
458 SECURITY AND COMMODITY BROKERS 6200  
459 INSURANCE CARRIERS 6300  
460 INSURANCE AGENTS AND BROKERS 6400  
461 OWNER-OCCUPIED DWELLINGS   
462 REAL ESTATE 6500  
463 HOTELS AND LODGING PLACES 7000  
464 LAUNDRY, CLEANING AND SHOE REP 7210 7250  
465 PORTRAIT AND PHOTOGRAPHIC STUD 7220  
466 BEAUTY AND BARBER SHOPS 7230 7240  
467 FUNERAL SERVICE AND CREMATORIE 7260  
468 MISCELLANEOUS PERSONAL SERVICE 7290  
469 ADVERTISING 7310  
471 PHOTOFINISHING, COMMERCIAL PHO 7334 7335 733  
472 SERVICES TO BUILDINGS 7340  
474 PERSONNEL SUPPLY SERVICES 7360  
476 DETECTIVE AND PROTECTIVE SERVI 7381 7382  
477 AUTOMOBILE RENTAL AND LEASING 7510  
478 AUTOMOBILE PARKING AND CAR WAS 7520 7542  
479 AUTOMOBILE REPAIR AND SERVICES 7530 7549  
480 ELECTRICAL REPAIR SERVICES 7620  
481 WATCH, CLOCK, JEWELRY AND FURN 7630 7640  
485 BOWLING ALLEYS AND POOL HALLS 7930  
486 COMMERCIAL SPORTS EXCEPT RACIN 7941  
487 RACING AND TRACK OPERATION 7948  
488 AMUSEMENT AND RECREATION SERVI 7910 7991 799  
489 MEMBERSHIP SPORTS AND RECREATI 7997  
490 DOCTORS AND DENTISTS 8010, 8020, 8  
491 NURSING AND PROTECTIVE CARE 8050  
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Table A.6 (Continued) 
IO table 
Record Description 87 SIC code Note 

492 HOSPITALS 8060  
493 OTHER MEDICAL AND HEALTH SERVI 0740, 8070, 8  
494 LEGAL SERVICES 8110  
500 SOCIAL SERVICES, N.E.C. 8320 8390  
501 RESIDENTIAL CARE 8360  
502 OTHER NONPROFIT ORGANIZATIONS 8400 8650 869  
503 BUSINESS ASSOCIATIONS 8610 8620  
504 LABOR AND CIVIC ORGANIZATIONS 8630 8640  
505 RELIGIOUS ORGANIZATIONS 8660  
506 ENGINEERING, ARCHITECTURAL SER 8710  
507 ACCOUNTING, AUDITING AND BOOKK 8720, 8990  
508 MANAGEMENT AND CONSULTING SERV 8740  
509 RESEARCH, DEVELOPMENT & TESTIN 8730  
518 USED AND SECONDHAND GOODS --  
521 COMMODITY CREDIT CORPORATION   
525 HOUSEHOLD INDUSTRY-LOW INCOME 8800  
526 HOUSEHOLD INDUSTRY-MED INCOME 8800  
527 HOUSEHOLD INDUSTRY-HIGH INCOME 8800  

 
 
 

Table A.7 Production (409 sectors) 
IO table 
Record Description 87 SIC code Note 

1 DAIRY FARM PRODUCTS 241 Also : part of  0191, 02 
2 POULTRY AND EGGS 0251 0252 025 Also : part of  0191, 02 
3 RANCH FED CATTLE  Part of  0191, 0212, 021 
4 RANGE FED CATTLE  Part of  0191, 0212, 021 
5 CATTLE FEEDLOTS 211 Also : part of  0191, 02 
6 SHEEP, LAMBS AND GOATS 214 Also : part of  0191, 02 
7 HOGS, PIGS AND SWINE 213 Also : part of  0191, 02 
8 OTHER MEAT ANIMAL PRODUCTS  Part of  0191, 0212, 021 
9 MISCELLANEOUS LIVESTOCK 0271 0272 Also : part of  0191 021 
10 COTTON 131 Also : part of  0191, 02 
11 FOOD GRAINS 0111 0112 Also : part of  0191, 02 
12 FEED GRAINS 115 Also : part of  0139, 01 
13 HAY AND PASTURE  Part of  0139, 0191, 021 
14 GRASS SEEDS  Part of  0139, 0191, 021 
15 TOBACCO 132 Also : part of  0191, 02 
16 FRUITS 0171 0172 017 Also : part of  0179, 01 
17 TREE NUTS  Part of  0173, 0179, 019 
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

18 VEGETABLES 0134 0161 Also : part of  0119, 01 
19 SUGAR CROPS 133 Also : part of  0191, 02 
20 MISCELLANEOUS CROPS  Part of  0119, 0139, 019 
21 OIL BEARING CROPS 116 Also : part of  0119, 01 
22 FOREST PRODUCTS  Part of  0181, 0191, 021 
23 GREENHOUSE AND NURSERY PRODUCT 182 Also : part of  0181, 01 
24 FORESTRY PRODUCTS 0810 0830 0  
25 COMMERCIAL FISHING 910  
26 AGRICULTURAL, FORESTRY, FISHER 0710 0720 075 Also : part of  0279 
27 LANDSCAPE AND HORTICULTURAL SE 780  
28 IRON ORES 1010  
29 COPPER ORES 1020  
30 LEAD AND ZINC ORES 1030  
31 GOLD ORES 1041  
32 SILVER ORES 1044  
33 FERROALLOY ORES, EXCEPT VANADI 1060  
34 METAL MINING SERVICES 1080  
35 URANIUM-RADIUM-VANADIUM ORES 1094  
36 METAL ORES, NOT ELSWHERE CLASS 1099  
40 DIMENSION STONE 1410 1420  
41 SAND AND GRAVEL 1440  
42 CLAY, CERAMIC, REFRACTORY MINE 1450  
43 POTASH, SODA, AND BORATE MINER 1474  
44 PHOSPHATE ROCK 1475  
45 CHEMICAL, FERTILIZER MINERAL M 1479  
46 NONMETALLIC MINERALS (EXCEPT F 1480  
47 MISC. NONMETALLIC MINERALS, N. 1490  
48 NEW RESIDENTIAL STRUCTURES  Part 15, 16, 17 
49 NEW INDUSTRIAL AND COMMERCIAL  Part 15, 16, 17 
50 NEW UTILITY STRUCTURES  Part 15, 16, 17 
51 NEW HIGHWAYS AND STREETS  Part 15, 16, 17 
52 NEW FARM STRUCTURES  Part 15, 16, 17 
53 NEW MINERAL EXTRACTION FACILIT  Part 15, 16, 17 
54 NEW GOVERNMENT FACILITIES  Part 15, 16, 17 
55 MAINTENANCE AND REPAIR, RESIDE  Part 15, 16, 17 
56 MAINTENANCE AND REPAIR OTHER F  Part 15, 16, 17 
57 MAINTENANCE AND REPAIR OIL AND 1380  
58 MEAT PACKING PLANTS 2011  
59 SAUSAGES AND OTHER PREPARED ME 2013  
60 POULTRY PROCESSING 2015  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

61 CREAMERY BUTTER 2021  
62 CHEESE, NATURAL AND PROCESSED 2022  
63 CONDENSED AND EVAPORATED MILK 2023  
64 ICE CREAM AND FROZEN DESSERTS 2024  
65 FLUID MILK 2026  
66 CANNED SPECIALTIES 2032  
67 CANNED FRUITS AND VEGETABLES 2033  
68 DEHYDRATED FOOD PRODUCTS 2034  
69 PICKLES, SAUCES, AND SALAD DRE 2035  
70 FROZEN FRUITS, JUICES AND VEGE 2037  
71 FROZEN SPECIALTIES 2038  
72 FLOUR AND OTHER GRAIN MILL PRO 2041  
73 CEREAL PREPARATIONS 2043  
74 RICE MILLING 2044  
75 BLENDED AND PREPARED FLOUR 2045  
76 WET CORN MILLING 2046  
77 DOG, CAT, AND OTHER PET FOOD 2047  
78 PREPARED FEEDS, N.E.C 2048  
79 BREAD, CAKE, AND RELATED PRODU 2051, 2053  
80 COOKIES AND CRACKERS 2052  
81 SUGAR 2061 2062  206  
82 CONFECTIONERY PRODUCTS 2064  
83 CHOCOLATE AND COCOA PRODUCTS 2066  
84 CHEWING GUM 2067  
85 SALTED AND ROASTED NUTS & SEED 2068  
86 COTTONSEED OIL MILLS 2074  
87 SOYBEAN OIL MILLS 2075  
88 VEGETABLE OIL MILLS, N.E.C 2076  
89 ANIMAL AND MARINE FATS AND OIL 2077  
90 SHORTENING AND COOKING OILS 2079  
91 MALT BEVERAGES 2082  
92 MALT 2083  
93 WINES, BRANDY, AND BRANDY SPIR 2084  
94 DISTILLED LIQUOR, EXCEPT BRAND 2085  
95 BOTTLED AND CANNED SOFT DRINKS 2086  
96 FLAVORING EXTRACTS AND SYRUPS, 2087  
97 CANNED AND CURED SEA FOODS 2091  
98 PREPARED FRESH OR FROZEN FISH 2092  
99 ROASTED COFFEE 2095  

100 POTATO CHIPS & SIMILAR SNACKS 2096  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

101 MANUFACTURED ICE 2097  
102 MACARONI AND SPAGHETTI 2098  
103 FOOD PREPARATIONS, N.E.C 2099  
104 CIGARETTES 2110  
105 CIGARS 2120  
106 CHEWING AND SMOKING TOBACCO 2130  
107 TOBACCO STEMMING AND REDRYING 2140  
108 BROADWOVEN FABRIC MILLS AND FI 2210 2220 223  
109 NARROW FABRIC MILLS 2240  
110 WOMENS HOSIERY, EXCEPT SOCKS 2251  
111 HOSIERY, N.E.C 2252  
112 KNIT OUTERWEAR MILLS 2253  
113 KNIT UNDERWEAR MILLS 2254  
114 KNIT FABRIC MILLS 2257 2258  
115 KNITTING MILLS, N.E.C 2259  
116 YARN MILLS AND FINISHING OF TE 2269 2281 228  
117 CARPETS AND RUGS 2270  
118 THREAD MILLS 2284  
119 COATED FABRICS, NOT RUBBERIZED 2295  
120 TIRE CORD AND FABRIC 2296  
121 NONWOVEN FABRICS 2297  
122 CORDAGE AND TWINE 2298  
123 TEXTILE GOODS, N.E.C 2299  
124 APPAREL MADE FROM PURCHASED MA   
125 CURTAINS AND DRAPERIES 2391  
126 HOUSEFURNISHINGS, N.E.C 2392  
127 TEXTILE BAGS 2393  
128 CANVAS PRODUCTS 2394  
129 PLEATING AND STITCHING 2395  
130 AUTOMOTIVE AND APPAREL TRIMMIN 2396  
131 SCHIFFI MACHINE EMBROIDERIES 2397  
132 FABRICATED TEXTILE PRODUCTS, N 2399  
133 LOGGING CAMPS AND LOGGING CONT 2410  
134 SAWMILLS AND PLANING MILLS, GE 2421  
135 HARDWOOD DIMENSION AND FLOORIN 2426  
136 SPECIAL PRODUCT SAWMILLS, N.E. 2429  
137 MILLWORK 2431  
138 WOOD KITCHEN CABINETS 2434  
139 VENEER AND PLYWOOD 2435 2436  
140 STRUCTURAL WOOD MEMBERS, N.E.C 2439  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

141 WOOD CONTAINERS 2441 2449  
142 WOOD PALLETS AND SKIDS 2448  
143 MOBILE HOMES 2451  
144 PREFABRICATED WOOD BUILDINGS 2452  
145 WOOD PRESERVING 2491  
146 RECONSTITUTED WOOD PRODUCTS 2493  
147 WOOD PRODUCTS, N.E.C 2499  
148 WOOD HOUSEHOLD FURNITURE 2511  
149 UPHOLSTERED HOUSEHOLD FURNITUR 2512  
150 METAL HOUSEHOLD FURNITURE 2514  
151 MATTRESSES AND BEDSPRINGS 2515  
152 WOOD TV AND RADIO CABINETS 2517  
153 HOUSEHOLD FURNITURE, N.E.C 2519  
154 WOOD OFFICE FURNITURE 2521  
155 METAL OFFICE FURNITURE 2522  
156 PUBLIC BUILDING FURNITURE 2530  
157 WOOD PARTITIONS AND FIXTURES 2541  
158 METAL PARTITIONS AND FIXTURES 2542  
159 BLINDS, SHADES, AND DRAPERY HA 2591  
160 FURNITURE AND FIXTURES, N.E.C 2599  
161 PULP MILLS 2610  
162 PAPER MILLS, EXCEPT BUILDING P 2620  
163 PAPERBOARD MILLS 2630  
164 PAPERBOARD CONTAINERS AND BOXE 2650  
165 PAPER COATED & LAMINATED PACKA 2671  
166 PAPER COATED & LAMINATED NEC 2672  
167 BAGS, PLASTIC 2673  
168 BAGS, PAPER 2674  
169 DIE-CUT PAPER AND BOARD 2675  
170 SANITARY PAPER PRODUCTS 2676  
171 ENVELOPES 2677  
172 STATIONERY PRODUCTS 2678  
173 CONVERTED PAPER PRODUCTS, N.E. 2679  
177 BOOK PRINTING 2732  
179 COMMERCIAL PRINTING 2750  
180 MANIFOLD BUSINESS FORMS 2760  
182 BLANKBOOKS AND LOOSELEAF BINDE 2782  
183 BOOKBINDING & RELATED 2789  
184 TYPESETTING 2791  
185 PLATE MAKING 2796  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

186 ALKALIES & CHLORINE 2812  
187 INDUSTRIAL GASES 2813  
188 INORGANIC PIGMENTS 2816  
189 INORGANIC CHEMICALS NEC. 2819  
190 CYCLIC CRUDES, INTERM. & INDUS 2865 2869  
191 PLASTICS MATERIALS AND RESINS 2821  
192 SYNTHETIC RUBBER 2822  
193 CELLULOSIC MAN-MADE FIBERS 2823  
194 ORGANIC FIBERS, NONCELLULOSIC 2824  
195 DRUGS 2830  
196 SOAP AND OTHER DETERGENTS 2841  
197 POLISHES AND SANITATION GOODS 2842  
198 SURFACE ACTIVE AGENTS 2843  
199 TOILET PREPARATIONS 2844  
200 PAINTS AND ALLIED PRODUCTS 2850  
201 GUM AND WOOD CHEMICALS 2861  
202 NITROGENOUS AND PHOSPHATIC FER 2873 2874  
203 FERTILIZERS, MIXING ONLY 2875  
204 AGRICULTURAL CHEMICALS, N.E.C 2879  
205 ADHESIVES AND SEALANTS 2891  
206 EXPLOSIVES 2892  
207 PRINTING INK 2893  
208 CARBON BLACK 2895  
209 CHEMICAL PREPARATIONS, N.E.C 2899  
210 PETROLEUM REFINING 2910  
211 PAVING MIXTURES AND BLOCKS 2951  
212 ASPHALT FELTS AND COATINGS 2952  
214 PETROLEUM AND COAL PRODUCTS, N 2999  
215 TIRES AND INNER TUBES 3010  
216 RUBBER AND PLASTICS FOOTWEAR 3020  
217 RUBBER AND PLASTICS HOSE AND B 3052  
218 GASKETS, PACKING AND SEALING D 3053  
219 FABRICATED RUBBER PRODUCTS, N. 3060  
220 MISCELLANEOUS PLASTICS PRODUCT 3080  
221 LEATHER TANNING AND FINISHING 3110  
222 FOOTWEAR CUT STOCK 3130  
223 HOUSE SLIPPERS 3142  
224 SHOES, EXCEPT RUBBER 3143 3144 314  
225 LEATHER GLOVES AND MITTENS 3150  
226 LUGGAGE 3160  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

227 WOMENS HANDBAGS AND PURSES 3171  
228 PERSONAL LEATHER GOODS 3172  
229 LEATHER GOODS, N.E.C 3190  
230 GLASS AND GLASS PRODUCTS, EXC 3210 3229 323  
231 GLASS CONTAINERS 3221  
232 CEMENT, HYDRAULIC 3240  
233 BRICK AND STRUCTURAL CLAY TILE 3251  
234 CERAMIC WALL AND FLOOR TILE 3253  
235 CLAY REFRACTORIES 3255  
236 STRUCTURAL CLAY PRODUCTS, N.E. 3259  
237 VITREOUS PLUMBING FIXTURES 3261  
238 VITREOUS CHINA FOOD UTENSILS 3262  
239 FINE EARTHENWARE FOOD UTENSILS 3263  
240 PORCELAIN ELECTRICAL SUPPLIES 3264  
241 POTTERY PRODUCTS, N.E.C 3269  
242 CONCRETE BLOCK AND BRICK 3271  
243 CONCRETE PRODUCTS, N.E.C 3272  
244 READY-MIXED CONCRETE 3273  
245 LIME 3274  
246 GYPSUM PRODUCTS 3275  
247 CUT STONE AND STONE PRODUCTS 3280  
248 ABRASIVE PRODUCTS 3291  
249 ASBESTOS PRODUCTS 3292  
250 MINERALS, GROUND OR TREATED 3295  
251 MINERAL WOOL 3296  
252 NONCLAY REFRACTORIES 3297  
253 NONMETALLIC MINERAL PRODUCTS, 3299  
254 BLAST FURNACES AND STEEL MILLS 3312  
255 ELECTROMETALLURGICAL PRODUCTS 3313  
256 STEEL WIRE AND RELATED PRODUCT 3315  
257 COLD FINISHING OF STEEL SHAPES 3316  
258 STEEL PIPE AND TUBES 3317  
259 IRON AND STEEL FOUNDRIES 3320  
260 PRIMARY COPPER 3331  
261 PRIMARY ALUMINUM 3334 Also part of 2819 
262 PRIMARY NONFERROUS METALS, N.E 3339  
263 SECONDARY NONFERROUS METALS 3340  
264 COPPER ROLLING AND DRAWING 3351  
265 ALUMINUM ROLLING AND DRAWING 3353 3354 335  
266 NONFERROUS ROLLING AND DRAWING 3356  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

268 ALUMINUM FOUNDRIES 3363, 3365  
269 BRASS, BRONZE, AND COPPER FOUN 3364, 3366  
270 NONFERROUS CASTINGS, N.E.C. 3369  
271 METAL HEAT TREATING 3398  
272 PRIMARY METAL PRODUCTS, N.E.C 3399  
273 METAL CANS 3411  
274 METAL BARRELS, DRUMS AND PAILS 3412  
275 CUTLERY 3421  
276 HAND AND EDGE TOOLS, N.E.C. 3423  
277 HAND SAWS AND SAW BLADES 3425  
278 HARDWARE, N.E.C. 3429  
279 METAL SANITARY WARE 3431  
280 PLUMBING FIXTURE FITTINGS AND 3432  
281 HEATING EQUIPMENT, EXCEPT ELEC 3433  
282 FABRICATED STRUCTURAL METAL 3441  
283 METAL DOORS, SASH, AND TRIM 3442  
284 FABRICATED PLATE WORK (BOILER 3443  
285 SHEET METAL WORK 3444  
286 ARCHITECTURAL METAL WORK 3446  
287 PREFABRICATED METAL BUILDINGS 3448  
288 MISCELLANEOUS METAL WORK 3449  
289 SCREW MACHINE PRODUCTS AND BOL 3450  
290 IRON AND STEEL FORGINGS 3462  
291 NONFERROUS FORGINGS 3463  
292 AUTOMOTIVE STAMPINGS 3465  
293 CROWNS AND CLOSURES 3466  
294 METAL STAMPINGS, N.E.C. 3469  
295 PLATING AND POLISHING 3471  
296 METAL COATING AND ALLIED SERVI 3479  
297 SMALL ARMS AMMUNITION 3482  
298 AMMUNITION, EXCEPT FOR SMALL A 3483  
299 SMALL ARMS 3484  
300 OTHER ORDNANCE AND ACCESSORIES 3489  
301 INDUSTRIAL AND FLUID VALVES 3491, 3492  
302 STEEL SPRINGS, EXCEPT WIRE 3493  
303 PIPE, VALVES, AND PIPE FITTING 3494 3498  
304 MISCELLANEOUS FABRICATED WIRE 3495 3496  
305 METAL FOIL AND LEAF 3497  
306 FABRICATED METAL PRODUCTS, N.E 3499  
307 STEAM ENGINES AND TURBINES 3511  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

308 INTERNAL COMBUSTION ENGINES, N 3519  
309 FARM MACHINERY AND EQUIPMENT 3523  
310 LAWN AND GARDEN EQUIPMENT 3524  
311 CONSTRUCTION MACHINERY AND EQU 3531  
312 MINING MACHINERY, EXCEPT OIL F 3532  
313 OIL FIELD MACHINERY 3533  
314 ELEVATORS AND MOVING STAIRWAYS 3534  
315 CONVEYORS AND CONVEYING EQUIPM 3535  
316 HOISTS, CRANES, AND MONORAILS 3536  
317 INDUSTRIAL TRUCKS AND TRACTORS 3537  
318 MACHINE TOOLS, METAL CUTTING T 3541  
319 MACHINE TOOLS, METAL FORMING T 3542  
320 INDUSTRIAL PATTERNS 3543  
321 SPECIAL DIES AND TOOLS AND ACC 3544 3545  
322 POWER DRIVEN HAND TOOLS 3546  
323 ROLLING MILL MACHINERY 3547  
324 WELDING APPARATUS 3548  
325 METALWORKING MACHINERY, N.E.C. 3549  
326 TEXTILE MACHINERY 3552  
327 WOODWORKING MACHINERY 3553  
328 PAPER INDUSTRIES MACHINERY 3554  
329 PRINTING TRADES MACHINERY 3555  
330 FOOD PRODUCTS MACHINERY 3556  
331 SPECIAL INDUSTRY MACHINERY NEC 3559  
332 PUMPS AND COMPRESSORS 3561 3563  
333 BALL AND ROLLER BEARINGS 3562  
334 BLOWERS AND FANS 3564  
335 PACKAGING MACHINERY 3565  
336 POWER TRANSMISSION EQUIPMENT 3566 3568  
337 INDUSTRIAL FURNACES AND OVENS 3567  
338 GENERAL INDUSTRIAL MACHINERY, 3569  
344 TYPEWRITERS AND OFFICE MACHINE 3579  
345 AUTOMATIC MERCHANDISING MACHIN 3581  
346 COMMERCIAL LAUNDRY EQUIPMENT 3582  
347 REFRIGERATION AND HEATING EQUI 3585  
348 MEASURING AND DISPENSING PUMPS 3586  
349 SERVICE INDUSTRY MACHINES, N.E 3589  
350 CARBURETORS, PISTONS, RINGS, V 3592  
351 FLUID POWER CYLINDERS & ACTUAT 3593  
352 FLUID POWER PUMPS & MOTORS 3594  
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Table A.7 (Continued) 
IO table 
Record Description 87 SIC code Note 

353 SCALES AND BALANCES 3596  
354 INDUSTRIAL MACHINES NEC. 3599  
355 TRANSFORMERS 3612  
356 SWITCHGEAR AND SWITCHBOARD APP 3613  
357 MOTORS AND GENERATORS 3621  
358 CARBON AND GRAPHITE PRODUCTS 3624  
359 RELAYS & INDUSTRIAL CONTROLS 3625  
360 ELECTRICAL INDUSTRIAL APPARATU 3629  
361 HOUSEHOLD COOKING EQUIPMENT 3631  
362 HOUSEHOLD REFRIGERATORS AND FR 3632  
363 HOUSEHOLD LAUNDRY EQUIPMENT 3633  
364 ELECTRIC HOUSEWARES AND FANS 3634  
365 HOUSEHOLD VACUUM CLEANERS 3635  
366 HOUSEHOLD APPLIANCES, N.E.C. 3639  
367 ELECTRIC LAMPS 3641  
368 WIRING DEVICES 3643 3644  
369 LIGHTING FIXTURES AND EQUIPMEN 3645 3646 364  
379 STORAGE BATTERIES 3691  
380 PRIMARY BATTERIES, DRY AND WET 3692  
381 ENGINE ELECTRICAL EQUIPMENT 3694  
382 MAGNETIC & OPTICAL RECORDING M 3695  
383 ELECTRICAL EQUIPMENT, N.E.C. 3699  
384 MOTOR VEHICLES 3711  
385 TRUCK AND BUS BODIES 3713  
386 MOTOR VEHICLE PARTS AND ACCESS 3714  
387 TRUCK TRAILERS 3715  
388 MOTOR HOMES 3716  
389 AIRCRAFT 3721  
390 AIRCRAFT AND MISSILE ENGINES A 3724 3764  
391 AIRCRAFT AND MISSILE EQUIPMENT 3728 3769  
394 RAILROAD EQUIPMENT 3740  
395 MOTORCYCLES, BICYCLES, AND PAR 3750  
396 COMPLETE GUIDED MISSILES 3761  
397 TRAVEL TRAILERS AND CAMPERS 3792  
398 TANKS AND TANK COMPONENTS 3795  
399 TRANSPORTATION EQUIPMENT, N.E. 3799  
401 LABORATORY APPARATUS & FURNITU 3821  
403 MECHANICAL MEASURING DEVICES 3823 3824 382  
404 INSTRUMENTS TO MEASURE ELECTRI 3825  
405 ANALYTICAL INSTRUMENTS 3826  



 315 

Table A.7 (Continued) 
406 OPTICAL INSTRUMENTS & LENSES 3827  
407 SURGICAL AND MEDICAL INSTRUMEN 3841  
408 SURGICAL APPLIANCES AND SUPPLI 3842  
409 DENTAL EQUIPMENT AND SUPPLIES 3843  
410 X-RAY APPARATUS 3844  
411 ELECTROMEDICAL APPARATUS 3845  
412 OPHTHALMIC GOODS 3850  
413 PHOTOGRAPHIC EQUIPMENT AND SUP 3860  
414 WATCHES, CLOCKS, AND PARTS 3870  
415 JEWELRY, PRECIOUS METAL 3911  
416 SILVERWARE AND PLATED WARE 3914  
417 JEWELERS MATERIALS AND LAPIDAR 3915  
418 MUSICAL INSTRUMENTS 3930  
419 DOLLS 3942  
420 GAMES, TOYS, AND CHILDRENS VEH 3944  
421 SPORTING AND ATHLETIC GOODS, N 3949  
422 PENS AND MECHANICAL PENCILS 3951  
423 LEAD PENCILS AND ART GOODS 3952  
424 MARKING DEVICES 3953  
425 CARBON PAPER AND INKED RIBBONS 3955  
426 COSTUME JEWELERY 3961  
427 FASTENERS, BUTTONS, NEEDLES, P 3965  
428 BROOMS AND BRUSHES 3991  
429 SIGNS AND ADVERTISING DISPLAYS 3993  
430 BURIAL CASKETS AND VAULTS 3995  
431 HARD SURFACE FLOOR COVERINGS 3996  
432 MANUFACTURING INDUSTRIES, N.E. 3999  
445 WATER SUPPLY AND SEWERAGE SYST 4940 4952  
516 NONCOMPARABLE IMPORTS --  
517 SCRAP --  
524 REST OF THE WORLD INDUSTRY --  
528 INVENTORY VALUATION ADJUSTMENT --  
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2 Three-segment aggregation 
 
 
 

Table A.8 Sectors in three-segment model (IO table record number only) 
 Production Information Energy 
 1-36 174 37 
 40-173 175 38 
 177 176 39 
 179-180 178 213 
 182-212 181 443 
 214-370 371 444 
 372-440 441 511 
 445-469 442 512 
 471-474 470  
 476-482 475  
 485-496 483  
 498-510 484  
 513-528 497  

Total 
sectors 507 13 8 
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APPENDIX B 
 

TRANSACTIONS TABLES, TECHNICAL COEFFICIENT (A) MATRICES, 

LEONTIEF INVERSE (L) MATRICES, AND TOTAL FLOW MATRICES 

 
 
1 Transaction tables 
 
 
 

Table B.1 Transaction table for 
three-segment model, 19901 

 Production Energy Information 
Production 5490.784 217.7269 272.7158

Energy 611.9492 475.1256 9.120269
Information 326.6767 9.522698 102.949

  Unit: Million USD 
 
 
 

Table B.2 Transaction table for 
three-segment model, 1994 

 Production Energy Information 
Production 8529.244 247.0717 498.1949

Energy 444.2162 212.0256 8.363102
Information 590.3829 12.51627 364.6236

 Unit: Million USD 
 
 
 

Table B.3 Transaction table for 
three-segment, 1999 

 Production Energy Information 
Production 15665.6 250.75 1231.882

Energy 614.7477 273.0956 12.9411
Information 1660.208 24.15755 936.2507

 Unit: Million USD 
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Table B.4 Transaction table for seven-segment model, 1990 

 Production Energy Information ICT Transportation Service Edu_PA 
Production 693.6526 67.81512 58.94626 243.2903 42.92732 447.5141 75.30449

Energy 238.5659 465.6898 9.319453 37.70871 10.95924 120.7538 70.43439
Information 37.19566 9.224582 103.0266 49.70657 11.23789 302.1134 17.77172

ICT 11.35443 1.057451 1.439261 11.06688 0.718805 7.525975 1.180877
Transportation 94.56107 25.98052 24.80291 32.10782 72.15302 132.8362 9.454644

Service 444.1108 93.51057 148.7884 277.3111 60.4398 1754.695 97.08534
Edu_PA 38.02051 17.68975 8.854 19.75255 4.581165 63.6587 7.08215

 Unit: Million USD 
 
 
 

Table B.5 Transaction table for seven-segment model, 1994 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 1025.47 102.9154 127.0583 395.8375 77.12373 675.7272 60.33334
Energy 156.8361 207.5495 8.81445 44.61739 10.41268 113.0491 14.65576

Information 36.41557 11.36292 349.2338 102.7408 23.42233 513.4836 10.95395
ICT 28.54267 3.262376 24.05692 29.58076 3.881162 44.35342 2.114182

Transportation 136.7921 32.88946 37.52957 87.83578 187.9904 273.1377 8.271019
Service 548.2 97.07066 287.5818 559.1962 174.1268 3384.901 65.5164
Edu_PA 24.43852 5.344159 5.480265 13.88937 3.941589 44.43758 3.333004

Unit: Million USD 
 
 
 

Table B.6 Transaction table for seven-segment model, 1999 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 1886.349 90.34397 210.1691 515.5885 86.75134 1005.603 83.40553
Energy 280.1724 282.8552 14.12115 46.54461 5.693902 130.2237 12.90906

Information 197.5636 23.3571 932.6451 359.1739 46.81147 1305.902 39.56973
ICT 30.40879 1.487898 16.28185 48.96712 1.740552 29.54766 1.59394

Transportation 236.0254 19.2746 62.0988 88.43571 120.8378 257.4419 6.579576
Service 1663.588 116.9553 851.1007 1301.151 187.5562 5326.386 103.7133
Edu_PA 68.53129 8.518977 20.6637 29.68792 7.488888 88.64522 9.111575

 Unit: Million USD 
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2 Technical coefficient (A) matrices 
 
 
 

Table B.7 A coefficients, 
three-segment model, 1990 

 Production Energy Information 
Production 0.217851 0.110298 0.149596

Energy 0.024280 0.240694 0.005003
Information 0.012961 0.004824 0.056472

 
 
 

Table B.8 A coefficients, 
three-segment model, 1994 

 Production Energy Information 
Production 0.210082 0.162500 0.143990

Energy 0.010941 0.139450 0.002417
Information 0.014542 0.008232 0.105385

 
 
 

Table B.9 A coefficients, 
three-segment model, 1999 

 Production Energy Information 
Production 0.203998 0.137767 0.142269

Energy 0.008005 0.150044 0.001495
Information 0.021619 0.013273 0.108126

 
 
 

Table B.10 A coefficients, seven-segment model, 1990 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 0.135539 0.034354 0.032334 0.075613 0.054286 0.034223 0.025085
Energy 0.046616 0.235914 0.005112 0.011720 0.013859 0.009235 0.023463

Information 0.007268 0.004673 0.056514 0.015448 0.014211 0.023104 0.005920
ICT 0.002219 0.000536 0.000789 0.003440 0.000909 0.000576 0.000393

Transportation 0.018477 0.013161 0.013605 0.009979 0.091245 0.010159 0.003149
Service 0.086779 0.047371 0.081617 0.086186 0.076432 0.134189 0.032341
Edu_PA 0.007429 0.008961 0.004857 0.006139 0.005793 0.004868 0.002359
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Table B.11 A coefficients, seven-segment model, 1994 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 0.134314 0.067688 0.036723 0.057392 0.060091 0.032754 0.014525
Energy 0.020542 0.136506 0.002548 0.006469 0.008113 0.005480 0.003528
Information 0.004770 0.007473 0.100937 0.014896 0.018249 0.024890 0.002637
ICT 0.003738 0.002146 0.006953 0.004289 0.003024 0.002150 0.000509
Transportation 0.017917 0.021632 0.010847 0.012735 0.146472 0.013240 0.001991
Service 0.071802 0.063844 0.083118 0.081077 0.135670 0.164073 0.015773
Edu_PA 0.003201 0.003515 0.001584 0.002014 0.003071 0.002154 0.000802
 
 
 

Table B.12 A coefficients, seven-segment model, 1999 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 0.133329 0.049637 0.024272 0.037280 0.052812 0.025513 0.010752
Energy 0.019803 0.155406 0.001631 0.003365 0.003466 0.003304 0.001664

Information 0.013964 0.012833 0.107710 0.025971 0.028498 0.033132 0.005101
ICT 0.002149 0.000817 0.001880 0.003541 0.001060 0.000750 0.000205

Transportation 0.016683 0.010590 0.007172 0.006394 0.073563 0.006532 0.000848
Service 0.117584 0.064257 0.098293 0.094081 0.114180 0.135136 0.013370
Edu_PA 0.004844 0.004680 0.002386 0.002147 0.004559 0.002249 0.001175

 
 
 
3 Leontief inverse (L) matrices 
 
 
 

Table B.13 Leontief inverse coefficients, 
three-segment model, 1990 

 Production Energy Information 
Production 1.287776 0.188368 0.205175

Energy 0.041296 1.323076 0.013563
Information 0.017901 0.009352 1.062740

 
 
 

Table B.14 Leontief inverse coefficients, 
three-segment model, 1994 

 Production Energy Information 
Production 1.27309502 0.242369 0.2055625

Energy 0.01624519 1.165171 0.00576285
Information 0.02084308 0.014661 1.12119363
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Table B.15 Leontief inverse coefficients, 
three-segment model, 1999 

 Production Energy Information 
Production 1.263855 0.208008 0.201954

Energy 0.011958 1.178530 0.003882
Information 0.030814 0.022581 1.126188

 
 
 

Table B.16 Leontief inverse coefficients, seven-segment model, 1990 
Production Energy Information ICT Transportation Service Edu_PA 

Production 0.135539 0.034354 0.032334 0.075613 0.054286 0.034223 0.025085
Energy 0.046616 0.235914 0.005112 0.011720 0.013859 0.009235 0.023463

Information 0.007268 0.004673 0.056514 0.015448 0.014211 0.023104 0.005920
ICT 0.002219 0.000536 0.000789 0.003440 0.000909 0.000576 0.000393

Transportation 0.018477 0.013161 0.013605 0.009979 0.091245 0.010159 0.003149
Service 0.086779 0.047371 0.081617 0.086186 0.076432 0.134189 0.032341
Edu_PA 0.007429 0.008961 0.004857 0.006139 0.005793 0.004868 0.002359

 
 
 

Table B.17 Leontief inverse coefficients, seven-segment model, 1994 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 0.134314 0.067688 0.036723 0.057392 0.060091 0.032754 0.014525
Energy 0.020542 0.136506 0.002548 0.006469 0.008113 0.005480 0.003528

Information 0.004770 0.007473 0.100937 0.014896 0.018249 0.024890 0.002637
ICT 0.003738 0.002146 0.006953 0.004289 0.003024 0.002150 0.000509

Transportation 0.017917 0.021632 0.010847 0.012735 0.146472 0.013240 0.001991
Service 0.071802 0.063844 0.083118 0.081077 0.135670 0.164073 0.015773
Edu_PA 0.003201 0.003515 0.001584 0.002014 0.003071 0.002154 0.000802

 
 
 

Table B.18 Leontief inverse coefficients, seven-segment model, 1999 
Production Energy Information ICT Transportation Service Edu_PA 

Production 0.133329 0.049637 0.024272 0.037280 0.052812 0.025513 0.010752
Energy 0.019803 0.155406 0.001631 0.003365 0.003466 0.003304 0.001664

Information 0.013964 0.012833 0.107710 0.025971 0.028498 0.033132 0.005101
ICT 0.002149 0.000817 0.001880 0.003541 0.001060 0.000750 0.000205

Transportation 0.016683 0.010590 0.007172 0.006394 0.073563 0.006532 0.000848
Service 0.117584 0.064257 0.098293 0.094081 0.114180 0.135136 0.013370
Edu_PA 0.004844 0.004680 0.002386 0.002147 0.004559 0.002249 0.001175
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4 Total flow matrices 
 
 
 

Table B.19 Total flow coefficients, 
three-segment model, 1990 

 Production Energy Information 
Production 1.000000 0.142371 0.193063

Energy 0.032068 1.000000 0.012762
Information 0.013901 0.007069 1.000000

 
 
 

Table B.20 Total flow coefficients, 
three-segment model, 1994 

 Production Energy Information 
Production 1.000000 0.208012 0.183343

Energy 0.012760 1.000000 0.005140
Information 0.016372 0.012583 1.000000

 
 
 

Table B.21 Total flow coefficients, 
three-segment model, 1999 

 Production Energy Information 
Production 1.000000 0.176498 0.179325

Energy 0.009461 1.000000 0.003447
Information 0.024381 0.019160 1.000000

 
 
 

Table B.22 Total flow coefficients, seven-segment model, 1990 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 1.000000 0.043809 0.043177 0.094812 0.068636 0.042152 0.032743
Energy 0.063095 1.000000 0.011053 0.023143 0.023874 0.015236 0.033388

Information 0.011078 0.007117 1.000000 0.020279 0.018187 0.025125 0.007850
ICT 0.002355 0.000695 0.000971 1.000000 0.001152 0.000713 0.000522

Transportation 0.022668 0.016211 0.017170 0.014847 1.000000 0.012659 0.005227
Service 0.107287 0.061639 0.101031 0.113827 0.098559 1.000000 0.043715
Edu_PA 0.008737 0.009743 0.005888 0.007808 0.007109 0.005531 1.000000
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Table B.23 Total flow coefficients, seven-segment model, 1994 
 Production Energy Information ICT Transportation Service Edu_PA 

Production 1.000000 0.084342 0.048484 0.073432 0.078347 0.049521 0.018398
Energy 0.024668 1.000000 0.004996 0.010178 0.012478 0.007594 0.004708

Information 0.008632 0.011888 1.000000 0.020452 0.025683 0.028359 0.003749
ICT 0.004141 0.002838 0.007456 1.000000 0.003913 0.00258 0.000673

Transportation 0.023237 0.02871 0.015633 0.01868 1.000000 0.01697 0.003234
Service 0.092878 0.089814 0.107277 0.10919 0.172986 1.000000 0.021771
Edu_PA 0.003584 0.004094 0.002052 0.002612 0.00379 0.002416 1.000000

 
 
 

Table B.24 Total flow coefficients, seven-segment model, 1999 
 Production Energy Information ICT Transportation Service Edu_PA 
Production 1.000000 0.061282 0.032403 0.048457 0.066810 0.036549 0.013367
Energy 0.024149 1.000000 0.003211 0.005703 0.006333 0.004761 0.002375
Information 0.022035 0.019048 1.000000 0.034740 0.038574 0.037986 0.006696
ICT 0.002348 0.001069 0.002060 1.000000 0.001397 0.000904 0.000265
Transportation 0.019484 0.013306 0.009223 0.008964 1.000000 0.007971 0.001367
Service 0.143167 0.086749 0.119781 0.120969 0.146193 1.000000 0.018423
Edu_PA 0.005432 0.005287 0.002878 0.002807 0.005342 0.002555 1.000000
 
                                                 
1 All the data are original except indicated otherwise. 
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APPENDIX C 
 

RESULTS OF THE STRUCTURE DECOMPOSITION ANALYSIS OF THE SIX 

POLLUTANTS AT SEGMENTAL LEVEL, 1990 - 1999 i 

 
 
 

Table C.1 SDA of TSP at segmental level, 1990 - 1994 
Technology  Final demand  

Segment 
Technical 

Coefficient
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports import Sum 

1 -6.36 -157.31 302.17 13.75 19.80 14.50 43.95 -46.49 92.01
2 1.94 14.73 -1.87 -0.46 -1.59 1.71 20.37 5.24 20.04
3 2.36 -3.56 6.87 1.61 0.19 0.13 5.73 1.99 7.66
4 -18.23 14.65 41.54 0.68 0.34 0.32 54.62 18.00 55.95
5 0.74 -0.93 0.27 0.72 -0.02 0.15 0.37 1.15 1.24
6 -2.14 -20.15 41.17 8.92 0.39 1.41 9.94 1.78 20.66
7 -13.28 -2.42 8.36 -1.46 -8.28 -0.01 1.36 -1.06 -8.39

Total -482.60 -1031.98 654.11 -168.29 -200.75 -155.17 -872.83 -536.57 -1397.04
 
 
 

Table C.2 SDA of PM10 at segmental level, 1990 - 1994 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports import Sum 

1 -1.43 -231.72 181.36 -21.69 -31.23 -22.87 -69.33 -93.35 -145.13
2 2.78 8.81 -0.32 -0.36 -1.26 1.36 16.15 4.62 15.89
3 1.60 -5.55 4.01 0.04 0.00 0.00 0.15 0.14 0.20
4 -10.16 -17.81 24.30 -0.09 -0.04 -0.04 -6.98 -3.48 -7.15
5 0.50 -1.45 0.16 -0.48 0.01 -0.10 -0.25 -0.02 -0.82
6 0.47 -35.79 23.70 -6.26 -0.27 -0.99 -6.97 -2.86 -14.49
7 -6.28 -3.88 4.42 -1.11 -6.27 -0.01 1.03 -0.61 -6.35

Total -1292.42 899.60 1529.92 20.39 -256.80 91.63 1344.76 62.88 1199.98
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Table C.3 SDA of SO2 at segmental level, 1990 - 1994 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports import Sum 

1 -13.84 274.57 11.94 59.85 86.18 63.12 191.30 127.79 400.46
2 -8.14 24.31 -4.31 -0.33 -1.14 1.23 14.67 2.57 14.43
3 -0.52 4.36 2.34 1.72 0.20 0.14 6.14 2.02 8.20
4 -5.01 107.72 9.36 2.09 1.04 0.97 168.06 60.09 172.16
5 0.22 1.63 0.08 2.23 -0.05 0.47 1.15 1.88 3.80
6 0.99 -173.04 100.20 -37.94 -1.67 -5.98 -42.28 -16.02 -87.88
7 -10.82 4.32 4.35 -0.46 -2.62 0.00 0.43 -0.50 -2.65

Total -37.12 243.85 123.96 27.15 81.95 59.95 339.46 177.82 508.52
 
 
 

Table C.4 SDA of NOx at segmental level, 1990-1994 
Technology  Final demand  

Segment 
Technical 

Coefficient
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports import Sum 

1 -353.50 -436.59 997.10 -10.11 -14.56 -10.66 -32.32 -274.68 -67.66
2 -217.48 1110.29 -117.21 -23.85 -82.42 88.92 1056.54 263.60 1039.20
3 -18.44 1.21 37.98 5.96 0.69 0.50 21.28 7.68 28.43
4 -169.31 80.52 224.16 2.36 1.18 1.10 190.24 59.52 194.89
5 -5.30 2.40 1.78 2.95 -0.06 0.62 1.52 6.15 5.03
6 -250.11 125.39 275.64 72.14 3.17 11.37 80.39 16.15 167.07
7 -278.29 16.38 110.47 -29.06 -164.80 -0.23 27.10 -15.54 -166.98

Total -1292.42 899.60 1529.92 20.39 -256.80 91.63 1344.76 62.88 1199.98
 
 
 

Table C.5 SDA of NMOC of at segmental level, 1990 - 1994. 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports import Sum 

1 -13.84 274.57 11.94 59.85 86.18 63.12 191.30 127.79 400.46
2 -8.14 24.31 -4.31 -0.33 -1.14 1.23 14.67 2.57 14.43
3 -0.52 4.36 2.34 1.72 0.20 0.14 6.14 2.02 8.20
4 -5.01 107.72 9.36 2.09 1.04 0.97 168.06 60.09 172.16
5 0.22 1.63 0.08 2.23 -0.05 0.47 1.15 1.88 3.80
6 0.99 -173.04 100.20 -37.94 -1.67 -5.98 -42.28 -16.02 -87.88
7 -10.82 4.32 4.35 -0.46 -2.62 0.00 0.43 -0.50 -2.65

Total -37.12 243.85 123.96 27.15 81.95 59.95 339.46 177.82 508.52
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Table C.6 SDA of CO at segmental level, 1990 - 1994 
Technology  Final demand  

Segment 
Technical 

Coefficient
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -60.55 1259.04 76.11 41.03 140.27 65.95 -8.47 589.74 1864.34
2 -39.20 285.94 -20.16 707.50 1063.90 -22.53 -1744.52 85.15 311.73
3 -4.05 35.15 4.45 3.21 1.76 0.70 13.43 11.33 46.87
4 -23.94 144.08 25.90 0.18 0.43 0.52 75.58 77.46 223.50
5 -1.19 9.82 0.23 1.12 1.32 0.17 0.90 8.11 16.97
6 -43.63 359.04 35.15 62.24 13.62 13.47 48.53 59.30 409.87
7 -44.91 28.82 16.80 6.69 56.76 0.37 -0.84 -1.68 -0.97

Total -217.47 2121.90 138.47 821.97 1278.07 58.65 -1615.39 829.41 2872.32
 
 
 

Table C.7 SDA of TSP at segmental level, 1994 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -1.63 -552.68 500.71 89.57 352.92 157.02 -98.80 12.39 -41.21
2 -1.63 56.79 3.47 10.12 15.07 -0.03 -21.69 26.84 85.46
3 -11.55 -11.08 20.90 3.23 2.39 0.90 14.38 -1.06 -2.78
4 -33.45 -16.01 77.68 -0.20 0.42 0.57 76.89 12.48 40.70
5 -1.79 -2.76 3.78 0.87 1.92 0.09 0.91 -1.59 -2.37
6 -52.33 -63.64 98.29 45.07 12.50 10.64 30.09 -6.23 -23.91
7 -5.98 -6.05 9.46 0.79 8.26 0.07 0.34 -0.12 -2.68

Total -108.37 -595.43 714.29 149.44 393.48 169.25 2.12 42.71 53.21
 
 
 

Table C.8 SDA of PM10 at segmental level, 1994-1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -0.58 3.54 180.88 32.36 127.49 56.72 -35.69 118.32 302.16
2 -0.60 88.57 1.22 3.57 5.31 -0.01 -7.65 39.89 129.08
3 -4.12 1.40 7.48 1.16 0.86 0.32 5.15 1.09 5.85
4 -12.05 4.54 18.05 -0.05 0.10 0.13 17.86 4.94 15.48
5 -0.64 0.32 1.36 0.31 0.69 0.03 0.33 0.09 1.13
6 -18.68 15.66 34.39 15.77 4.37 3.72 10.53 2.85 34.22
7 -2.14 1.61 3.40 0.28 2.97 0.03 0.12 0.05 2.92

Total -38.81 115.64 246.78 53.40 141.79 60.94 -9.35 167.24 490.84
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Table C.9 SDA of SO2 at segmental level, 1994 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -3.00 625.42 231.09 41.34 162.88 72.47 -45.60 497.77 1351.28
2 10.52 -191.65 35.91 104.88 156.14 -0.35 -224.76 -56.04 -201.26
3 -9.45 10.51 16.67 2.58 1.91 0.72 11.47 4.39 22.12
4 -36.88 25.26 48.12 -0.13 0.26 0.35 47.64 17.51 54.01
5 -3.38 2.67 3.89 0.89 1.97 0.09 0.94 0.36 3.54
6 -77.54 43.15 115.02 52.74 14.62 12.45 35.21 6.28 86.91
7 -12.71 4.57 13.26 1.11 11.58 0.10 0.48 0.04 5.16

Total -132.44 519.92 463.97 203.41 349.36 85.83 -174.63 470.32 1321.76
 
 
 

Table C.10 SDA of NOX at segmental level, 1994 - 1999. 
Technology  Final demand  

Segment 
Technical 

Coefficient
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -17.62 -880.95 1430.55 255.90 1008.32 448.62 -282.29 419.24 951.23
2 59.85 -151.04 206.25 602.37 896.74 -2.00 -1290.87 99.54 214.60
3 -56.87 -22.12 100.19 15.49 11.46 4.32 68.92 2.99 24.18
4 -218.38 -139.60 345.64 -0.91 1.87 2.52 342.16 -15.31 -27.65
5 -19.76 -5.35 23.11 5.29 11.71 0.53 5.56 -8.36 -10.37
6 -455.81 -182.44 682.33 312.85 86.75 73.86 208.87 -20.91 23.17
7 -74.05 -14.09 77.98 6.52 68.06 0.58 2.82 -0.70 -10.86

Total -782.64 -1395.58 2866.04 1197.51 2084.92 528.43 -944.82 476.48 1164.31
 
 
 

Table C.11 SDA of NMOC at segmental level, 1994 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 0.10 -442.48 256.75 45.93 180.97 80.52 -50.66 -82.26 -267.89
2 0.63 29.95 6.40 18.69 27.83 -0.06 -40.06 17.92 54.91
3 -6.70 -11.46 13.33 2.06 1.52 0.57 9.17 -1.70 -6.53
4 -19.83 -131.30 127.12 -0.34 0.69 0.93 125.84 -15.63 -39.64
5 -1.47 -3.49 2.95 0.68 1.50 0.07 0.71 -1.95 -3.96
6 -39.42 -167.63 122.98 56.38 15.64 13.31 37.64 -16.10 -100.17
7 -4.55 -5.60 6.37 0.53 5.56 0.05 0.23 -0.13 -3.91

Total -71.24 -731.99 535.89 123.94 233.70 95.38 82.87 -99.84 -367.19
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Table C.12 SDA of CO at segmental level, 1994 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -3.53 -1432.75 1225.58 219.23 863.85 384.34 -241.84 -14.23 -224.93
2 7.06 130.25 42.12 123.02 183.14 -0.41 -263.63 89.55 268.98
3 -31.65 -31.02 59.97 9.27 6.86 2.59 41.26 -2.43 -5.12
4 -101.98 -113.56 178.02 -0.47 0.96 1.30 176.23 -23.89 -61.41
5 -7.05 -7.50 11.72 2.68 5.94 0.27 2.82 -5.16 -7.99
6 -186.96 -271.69 413.99 189.81 52.63 44.82 126.73 -22.26 -66.91
7 -24.50 -16.40 32.32 2.70 28.21 0.24 1.17 -0.39 -8.97

Total -348.60 -1742.68 1963.72 546.25 1141.59 433.14 -157.27 21.19 -106.36
 
 
 

Table C.13 SDA of TSP at segmental level, 1990 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -13.22 -781.25 875.42 162.90 556.92 261.84 -33.63 -30.15 50.80
2 -0.63 75.35 -1.49 65.71 98.81 -2.09 -162.02 32.27 105.50
3 -8.12 -15.55 27.58 4.96 2.72 1.09 20.75 0.96 4.87
4 -75.05 26.14 114.82 0.29 0.69 0.83 121.20 30.74 96.65
5 -0.62 -3.90 3.81 1.35 1.59 0.21 1.09 -0.42 -1.13
6 -64.04 -84.12 149.17 72.90 15.95 15.78 56.83 -4.26 -3.25
7 -30.17 -8.60 28.86 3.33 28.26 0.19 -0.42 -1.16 -11.07

Total -191.85 -791.93 1198.16 311.43 704.95 277.84 3.80 27.98 242.36
 
 
 

Table C.14 SDA of PM10 at segmental level, 1990 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -3.59 -392.13 525.42 97.77 334.26 157.16 -20.18 27.34 157.03
2 0.98 99.70 -0.26 11.40 17.14 -0.36 -28.11 44.54 144.97
3 -4.38 -6.93 16.11 2.90 1.59 0.63 12.12 1.25 6.06
4 -43.13 -17.35 67.18 0.17 0.41 0.48 70.91 1.62 8.33
5 -0.22 -1.75 2.20 0.78 0.92 0.12 0.63 0.08 0.32
6 -34.06 -32.19 85.88 41.97 9.18 9.08 32.72 0.10 19.73
7 -14.91 -3.23 15.26 1.76 14.95 0.10 -0.22 -0.56 -3.43

Total -99.30 -353.88 711.80 156.75 378.44 167.21 67.87 74.38 333.00
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Table C.15 SDA of SO2 at segmental level, 1990 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -240.58 -529.65 1263.58 235.13 803.86 377.95 -48.54 167.43 660.78
2 -70.36 -325.28 -34.68 1525.79 2294.39 -48.60 -3762.21 -196.62 -626.95
3 -37.03 -15.91 62.40 11.23 6.16 2.46 46.94 2.34 11.80
4 -206.32 -44.80 254.13 0.63 1.53 1.83 268.24 -5.35 -2.35
5 -9.02 -3.90 10.04 3.56 4.20 0.54 2.86 -1.61 -4.49
6 -315.61 -106.13 401.27 196.10 42.90 42.44 152.89 -14.57 -35.04
7 -206.85 -12.44 146.66 16.92 143.61 0.95 -2.11 -6.40 -79.04

Total -1085.77 -1038.10 2103.39 1989.35 3296.65 377.57 -3341.93 -54.80 -75.28
 
 
 

Table C.16 SDA of NOX at segmental level, 1990-1999 
Technology  Final demand  

Segment 
Technical 

Coefficient
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -646.93 -1515.83 2888.74 482.17 1734.66 807.79 -135.88 157.58 883.56
2 -191.26 1163.50 -93.53 392.25 617.99 -14.58 -1089.19 375.09 1253.80
3 -95.74 -15.03 152.54 25.42 14.05 5.67 107.40 10.84 52.62
4 -514.57 16.50 619.66 1.40 3.52 4.18 610.55 45.65 167.24
5 -24.17 -4.06 24.94 7.51 9.62 1.26 6.55 -2.05 -5.34
6 -819.19 14.18 998.76 446.23 100.19 100.10 352.24 -3.49 190.25
7 -544.37 1.30 381.24 40.05 345.27 2.28 -6.37 -16.02 -177.84

Total -646.93 -1515.83 2888.74 482.17 1734.66 807.79 -135.88 157.58 2364.28
 
 
 

Table C.17  SDA of NMOC at segmental level, 1990 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient 
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -18.59 70.87 34.59 6.44 22.01 10.35 -1.33 45.69 132.57
2 -6.91 58.75 -3.44 151.45 227.75 -4.82 -373.44 20.94 69.34
3 -0.72 -7.35 9.41 1.69 0.93 0.37 7.08 0.33 1.67
4 -11.15 73.27 25.88 0.06 0.16 0.19 27.32 44.51 132.52
5 -0.38 -0.82 1.10 0.39 0.46 0.06 0.31 -0.06 -0.16
6 -23.59 -495.86 363.05 177.42 38.82 38.40 138.33 -31.66 -188.05
7 -20.89 -0.07 15.02 1.73 14.71 0.10 -0.22 -0.62 -6.56

Total -82.22 -301.20 445.62 339.20 304.83 44.64 -201.95 79.13 141.33
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Table C.18 SDA of CO at segmental level, 1990 - 1999 
Technology  Final demand  

Segment 
Technical 

Coefficient
Pollution 
Intensity 

Final 
demand 
subtotal 

Household 
Consumption

Government 
consumption Investment Exports Import Sum 

1 -110.28 952.69 220.49 41.03 140.27 65.95 -8.47 576.50 1639.41
2 -33.70 453.73 -16.08 707.50 1063.90 -22.53 -1744.52 176.76 580.71
3 -14.27 29.24 17.85 3.21 1.76 0.70 13.43 8.92 41.75
4 -66.22 102.98 71.60 0.18 0.43 0.52 75.58 53.73 162.09
5 -4.08 6.93 3.15 1.12 1.32 0.17 0.90 2.98 8.98
6 -123.89 302.27 127.36 62.24 13.62 13.47 48.53 37.21 342.95
7 -86.45 20.58 57.97 6.69 56.76 0.37 -0.84 -2.04 -9.94

Total -438.89 1868.43 482.35 821.97 1278.07 58.65 -1615.39 854.06 2765.95
 
                                                 
Note 
i All the data are original except indicated otherwise.  Unit: Ton. 
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