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ABSTRACT 

 
Modeling Urban Growth and Land Use/Land Cover Change in the Houston Metropolitan 

Area from 2002 – 2030. (May 2004) 

Hakan Oğuz, B.Sc., Karadeniz Technical University; 

M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Raghavan Srinivasan 
Dr. Andrew G. Klein 

   

The Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area 

(Houston CMSA) has experienced rapid population growth during the past decades and is 

the only major US metropolitan area with no zoning regulations.  We use SLEUTH, a 

spatially explicit cellular automata model, to simulate future (2002-2030) urban growth in 

the Houston metropolitan area, one of the fastest growing metropolises in the United 

States during the past decades.  The model is calibrated with historical data for the period 

1974-2002 that are extracted from a time series of satellite images.  The dataset consists 

of four historical urban extents (1974, 1984, 1992, 2002), two land use layers (1992, 

2002), five transportation layers (1974, 1984, 1990, 2002, 2025), slope layer, hillshade 

layer, and excluded layer.  Future growth patterns are predicted based on growth 

coefficients derived during the calibration phase.  After calibrating the model 

successfully, the spatial pattern of urban growth of the Houston CMSA for the period 

from 2002 to 2030 is predicted.   

Within SLEUTH, growth in the Houston CMSA is predominately “organic” with 

most growth occurring along the urban/rural fringe.  Projected increases in urban area 
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from 2002 to 2030 parallel projected increases in population growth within the Houston 

CMSA.   We design three specific scenarios to simulate the spatial consequences of 

urban growth under different environmental conditions.  The first scenario is to simulate 

the unmanaged growth with no restrictions.  The second scenario is to project the 

moderate growth trend by taking into consideration environmental protection, specifically 

for agricultural areas, forests and wetlands.  The last scenario is to simulate the managed 

growth with maximum environmental protection.  Adjusting the level of protection for 

different land cover types was found to markedly affect the land use changes in the 

Houston CMSA. Without any protection on resource lands, Houston CMSA is estimated 

to lose 2,000 km2 of forest land by 2030, about 600 km2 of agricultural land, and 

approximately 400 km2 of wetland.  Approximately half of all resource land could be 

saved by the third scenario, managed growth with maximum protection. 
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CHAPTER I 

INTRODUCTION 

 

The surface of the earth has been altered considerably over the past 50 years by 

humans especially through urbanization, deforestation, and agriculture.  While 

conversion of available lands to agriculture and rates of deforestation vary across the 

world, the number of people residing in cities has been consistently increasing.  

Urbanization has been increasing since World War II, and has shown no sign of slowing 

and is likely to continue into the twenty-first century.  In global scale, 2.5 billion people 

were living in urban areas in 1950, and the United Nations (1997) estimated that this 

number will reach to 3.25 billion by 2005.   

U.S. cities have developed a different structure compared to their non-U.S. 

counterparts.  Cities in foreign countries have grown more compact and more clustered; 

while U.S. cities have experienced accelerated outward growth with low density suburbs 

spreading beyond the boundaries of central cities to form larger metropolitan areas 

(Hartshorn, 1992).  A series of federal and state government policies, massive road 

projects, and automobile dependent community planning has increased the growth of 

suburbs in U.S.  It is estimated that suburbanization converts more than 22.26 km2 of 

farmland and the open space into urban uses each day in the U.S. (Kostmayer, 1989).  

Continuing urban growth raises concerns over the degradation of the environmental and 

its ecological health.  

 

This dissertation follows the style of Remote Sensing of Environment. 
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Understanding urban growth and change is critical to city planners and resource 

managers in these rapidly changing environments (Knox, 1993; Turner et al., 1993).  

Evaluating the impact of urban growth on the environment and understanding the 

dynamics of complex urban systems involves modeling and simulation which require 

innovative methodologies and robust techniques.  A number of analytical and static urban 

models have been developed that are based on diverse theories such as urban geometry, 

size relationship between cities, economic functions and social and ethnic patterns with 

respect to city structures.  However, these models explain urban expansion and evolving 

patterns instead of predicting future urban development.  For understanding the spatial 

consequences of urban growth, a dynamic modeling approach is preferred (Meaille & 

Ward, 1990; Grossman & Eberhardt, 1993; Batty & Longley, 1994).  In Geographical 

Information Science (GISci), dynamic modeling has rapidly gained popularity in recent 

years among urban planners and geographers as an urban simulation tool.  Considerable 

research efforts have developed different dynamic models for urban and environmental 

applications (Turner, 1987; Meaille & Wald, 1990; Batty & Xie, 1994a and 1994b; 

Landis, 1995; Veldkamp & Fresco, 1996; Pijanowski et al., 1997; White & Engelen, 

1997; Clarke & Gaydos, 1998; Wu & Webster, 1998, 2000; Li & Yeh, 2000; Sui & Zeng, 

2001; Wang & Zhang, 2001).  These models, mostly raster, have been developed as 

either stand-alone packages or subcomponents that are linked with GIS or urban planning 

software packages.  These models can be categorized as either stochastic, such as cellular 

automata, Markov, and logit, or processes based, such as dynamic ecosystem model.  All 

these models have some common features, such as the use of transition probabilities in a 

class transition matrix (Turner, 1987; Veldkamp & Fresco, 1996), cellular automata 
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(White & Engelen, 1997; Batty et al., 1999), and the GIS weighted overlay approach 

(Pijanowski et al., 1997).     

Urban growth models based on cellular automata (CA) are probably the most 

impressive among all the documented dynamic models in terms of their technological 

evolution in connection to urban applications.  A typical cellular automaton consists of 

four primary components: cells, states, neighborhoods, and transition rules.  Cells are the 

smallest square units of states.  A cell’s state will change in regard to its neighboring cells 

when a set of transition rules is applied.  Advantages of cellular automata are their 

flexibility, their simplicity to complex urban dynamics, their close ties to remote sensing 

data and GISci (Torrens, 2000).  Much effort has been made to improve the construction 

of cellular automata models especially in the expansion of transition rules to include 

probabilistic expressions, self-modification, and stochasticity (Torrens & O’Sullivan, 

2001).  Because of these innovative technological advancements, cellular modeling has 

grown for an early game-like simulator and evolved into a promising tool for urban 

growth prediction and forecasting as demonstrated by recent research (Batty & Xie, 

1994a; Couclelis, 1997; White & Engelen, 1997; Clarke & Gaydos, 1998; Wu & 

Webster, 1998; Li & Yeh, 2000; Sui & Zeng, 2001; Silva & Clarke, 2002; Yang & Lo, 

2003).          

This thesis focuses on modeling urban growth and land use/land cover change in the 

Houston metropolitan area using the SLEUTH urban growth model.  For the past three 

decades, Houston has been one of the fastest growing metropolises in the U.S. emerging 

as a commercial, industrial, and transportation urban center of the south.  Houston was 6th 

most populous city in U.S. in 1970, 5th in 1980, and 4th in 1990 and 2000 (U.S. Census 
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Bureau, 2001).  The city has expanded greatly as suburbanization consumes large 

amounts of agricultural and forest land adjacent to the city, pushing the urban fringe 

away from the original urban boundary.  This uncontrolled suburban sprawl has raised 

concerns over losses of large areas of primary forests, agricultural land, and open space, 

and the degradation of the quality of life in this region (Streutker, 2003).  The Sierra 

Club’s 1998 Annual Report cited Houston as the second most sprawl-threatened large 

city in the U.S (www.sierraclub.org, 1998).  A lack of city zoning laws has led to large 

amounts of urban sprawl, resulting in a city of large land area and relatively low 

population density (Streutker, 2003).  Although there are many definitions of sprawl, a 

central component of most definitions and of most people's understanding of sprawl is the 

outward spread of a city and its suburbs over more and more rural land at the periphery of 

an urban area.  This involves the conversion of open space (rural land) into built-up, 

developed land over time.  Thus, Houston is an ideal city in which to study 

environmental consequences of accelerating urban growth and its spatial pattern.  This 

research reports the results of urban growth simulation carried out with a cellular 

automata model closely coupled with a land transition model.  The primary objectives of 

this research is to simulate the spatial consequences of future urban growth under 

different planning scenarios considering specific environmental and development 

conditions so that the best scenario could be adopted for future planning.      

A rigorous calibration is required by the model in order to predict future urban growth 

and land use/land cover change.  The second chapter focuses on this calibration 

procedure undertaken prior to the prediction phase.  The third chapter focuses on 
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prediction of urban growth in the study area while the last chapter discusses the effects of 

predicted land use/land cover change from 2002 to 2030 in Houston CMSA.    
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CHAPTER II 

CALIBRATION OF THE SLEUTH URBAN GROWTH MODEL FOR 

HOUSTON-GALVESTON-BRAZORIA CONSOLIDATED METROPOLITAN 

STATISTICAL AREA (HOUSTON CMSA) 

 

The SLEUTH cellular automaton urban growth model has been applied to various 

metropolitan areas in the U.S.  This research calibrated the SLEUTH model for the 

Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area (Houston 

CMSA), which has experienced rapid population growth during the past decades and is 

the only major US metropolitan area with no zoning regulations.   

This study examines differences in the model’s behavior when the only metropolitan 

area with no zoning regulations is captured in the data and modeled to simulate future 

urban growth.  The SLEUTH model is developed with predefined growth rules and uses 

five parameters to calibrate the model to a particular city.  Model input layers are 

composed of a set of land use, historical urban extents, exclusion, topographic slope, 

hillshade, and road transportation.  Model calibration results show that Houston CMSA 

has been experiencing “organic” growth, occurring at the urban edges.  We believe that 

lack of zoning regulations plays an important role on the outward growth of urbanization 

in Houston.  
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1. Introduction 

Natural and human environmental activities such as fire, agriculture, and 

deforestation have profound impacts upon global systems but the most striking human-

induced land transformation of the current era is that of urbanization.  At global scale, 

urbanization is the conversion of natural to artificial land cover characterized by human 

settlements, workplaces, and other infrastructures such as roads.  A complete definition 

of urbanization can be described as a massive unplanned global experiment affecting 

increasingly large acreages of the Earth’s surface (Alig & Healy, 1987).   

Since 1850, while total global population has increased six times, the earth’s urban 

population has increased over 100 times (Hauser et al., 1982).  Aided by the industrial 

revolution, cities have gone from being a minor feature on our planet to a major one.  The 

impact of urban land on economic and environmental systems is immense compared with 

its spatial extent (Clarke et. al., 1997).   

The world’s urban areas are gaining an estimated 67 million people per year – about 

1.3 million every week (UN, 2002).  By 2030, approximately 5 billion people are 

expected to reside in urban areas – 60% of the projected global population of 8.3 billion 

(UN, 2002).  Substantial growth in cities first occurred in Western Europe, America, 

Japan, and China but in the latter part of this century has spread throughout Asia, South 

America, and Africa.  Urban growth at the global scale shows no sign of slowing and is 

occurring even in nations where population growth has stabilized (Clarke et al., 1997).  

From 1980 to 1990, eight of America’s twenty largest metropolitan areas grew by at least 

20% (Knox, 1993).  
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Measured urban extent underestimates the full impact of cities as they require 

building materials, food, water, goods and services from their surroundings, converting 

natural land to agriculture, and agricultural land to urban land uses.  According to Pond 

and Yeates’s (1994) estimation, in a growing country such as Canada, in addition to the 

actual urban area, 20% of the land was in the process of the urban transition and 2% was 

in ex-urban uses, fully dependent on the urban areas. 

Communities across the nation are choosing to complement traditional planning 

approaches with analytical decision making tools to help them plan their sustainable 

futures.  Today, with recent technological advances, a number of technologically-based 

tools are available for communities to use in assessing the impacts of various planning 

decisions and to help balance the demands of growth, environmental sustainability, and 

quality of life needs.  Technologically-based tools such as models and geographic 

information systems (GISs) can provide increased clarity on probable or alternative 

outcomes, and thus enable decision makers to more effectively use traditional planning 

tools.   

Regional growth management strategies involve planners, technical committees, and 

politicians.  Planning agencies use urban modeling techniques to address growth 

management issues.  Models can aid in evaluating future development scenarios and the 

potential consequences of those alternatives.   

The modeling of urban development may serve as one part of a decision support tool, 

which is able to give insights in the consequences of the realization of particular plans to 

the city planners.  For an assessment of environmental impact, the modeling of urban 

growth becomes important to both public institutions and industry.  Modeling is essential 



 

 

9

for the analysis and particularly for the prediction of the urban growth (Silva & Clarke, 

2002).   

Population dynamics is quite important since a reallocation of land is required to 

accommodate the world’s increasing population.  In 1995, the number of people 

worldwide living in settlements of five thousand or more reached 51 percent, jumping 

from 29 percent in 1950 (Clarke & Gaydos, 1998).  Regional, national, and worldwide 

land consumption rates will continue to increase as population numbers grow.  

Before 1900, the City of Houston grew slowly, increasing to a population of 45,000 

in that year.  Throughout the nineteenth century, Galveston was the economic center of 

Texas.  Houston’s growth began with two events in early 1990s: the Galveston hurricane 

in 1900 and the discovery of large oil reserves at Spindletop in 1901, ninety miles east of 

Houston (Vojnovic, 2003).  Today, Houston is the fourth largest city in the U.S. with a 

population of approximately 1.9 million.  What makes the Houston metropolitan area an 

ideal place to do urban modeling is that even though Houston has many characteristics 

that are typical of large metropolitan areas, it also has distinctive qualities not generally 

associated with major U.S. urban centers, in particular its lack of zoning regulations.         

 

2. Urban Modeling and SLEUTH 

How global models reflect local characteristics is a major challenge if modeling is 

ever to move beyond case study comparisons (Silva & Clarke, 2002).  Thus, an effort 

should be directed to an understanding of how increased spatial resolution improves 

sensitivity to local factors.  The first generation of computer-based urban models was 

critical due to their specificity to the cities for which they were developed (Lee, 1973).  
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The current generation of computational models, including SLEUTH urban growth 

model, used very different methods to escape this legacy.  The calibration step of 

SLEUTH involves a multistage optimization of the model to a specific parameter range 

so that we can learn about global properties from the local behavior of SLEUTH’s 

parameters.   

Growth dynamics have measurable dimensions.  Urban sprawl is associated with 

suburbanization, automobile dependency, and highway investments.  A set of variables 

and parameters supports urban and regional models.  Depending on which variables are 

required by the model, elements can be defined and assigned behavior and significance, 

for example the importance of urban extent, parks, forests and agriculture.  These general 

characteristics of urban change are incorporated by most urban and regional models.      

General and known characteristics are usually accepted by urban models that include 

local variation for a specific area such as employment, transportation, and population 

growth.  Alternatively, a model could also include these general characteristics but give 

the user the freedom to incorporate local variation in a way that allows the model to be 

reused from city to city.  The problem would be how one could apply a model developed 

for a specific urban context in another.  The answer to this is to develop a general-

purpose model and to use a technique in modeling called “calibration.” 

Modeling geographic systems with cellular automata is relatively new.  In the 1980s, 

the approach was first related to planning and has seen great interest in the last decade 

(Batty & Longley, 1994; Batty, Xie, & Sun 1999; Couclelis, 1985, 1997).  Cellular 

automata are well suited to model complex dynamical systems composed of large 

numbers of individual elements linked by nonlinear couplings (Openshaw & Openshaw, 
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1997).  The cellular automata’s versatility is responsible for the growth in the 

applications to the diverse fields of urban growth analysis (Clarke & Gaydos, 1998; 

Clarke et al., 1997; Landis & Zhang, 1998), regional economics, demographics and land 

use (White & Engelen, 1997), and location choices (Roy & Snickars, 1998).    

In essence, a model is a simplified representation of a real-life system.  Ford (1999) 

defines a model as a simplified representation of part of the real world or its systems that 

retain enough aspects of the original system to make it useful to the modeler.  In 

modeling, observations are generally transposed into a structure of model elements and 

their relations that are then converted into equations and coded in a manner amenable to 

running as a simulation.  Understanding the complexity of urban landscapes and their 

behavior helps planned human interventions benefit society and the environment.  The 

rapid spread of geographic information into planning is mostly caused by modeling and 

simulation (Birkin, Clarke, Clarke, & Wilson, 1996; Scholten & Stillwell, 1990; Stillwell, 

Geertman, & Openshaw, 1999).       

 

3. Computation Approaches to Modeling Urban Growth 

The implementation of regional growth management strategies involves technical 

committees, planners, politicians, and public participation.  Urban modeling techniques 

are one method that is used by planning agencies to address growth management issues.  

Models can aid in evaluating future development scenarios and the potential 

consequences of those alternatives.  Urban modeling is generally concerned with 

designing, building and operating mathematical models of urban phenomena, typically 

for cities and regions (Batty, 1976).  According to Batty (1976) there are two main 
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reasons for the development of urban models: first is their role in helping scientists to 

understand urban phenomena through analysis and experiment, and second is that their 

importance in helping planners, politicians and the community to predict, prescribe and 

develop the probable urban future.   

A model is a simplified representation of a real-life system by representing reality 

with only those variables that truly affect the behavior of the system, and by clarifying 

the relationships and interdependences between those variables; the assumed “real world” 

is broken down into a form amenable to analysis (Taha, 1976).  Modeling is essential for 

the analysis and the prediction of urban growth.  Yet the successful application of a 

model in one particular geographical area does not necessarily imply its successful use in 

another area because of local characteristics, such as zoning regulations.  Testing the 

efficacy of the model’s algorithms at capturing and simulating the land transformations 

that are specific to a place is just as important to model urban growth across locales 

(Batty & Xie, 1994b; Clarke, Hoppen, & Gaydos, 1996; Li & Yeh, 2000). Many types of 

models have been used by a host of diverse professionals to simulate various aspects of 

the urban environments (EPA, 2000).  Transportation engineers use models to project the 

number of commuters that will travel by car versus those who will make their trips by 

mass transit; economists use models to represent the flow of dollars within a regional 

economy; and biologists use models to describe the impact water pollutants will have on 

living organisms.   

Traditional urbanization models have attempted to predict either the economic and 

size relationships between cities or the social and economic patterns within the city limits 

(Clarke et al., 1997).  Christaller’s central place theory, Zipf’s rank-size rule, Alonso and 
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Muth’s land-use transition model in landscape economics are of the first type (Wilson, 

1978).  Wong and Fotheringham have introduced a reinterpretation of the fractal model 

as a mechanism behind at least Zipf’s rule.  The Alonso and Muth model is spatial, 

modeling the demand curve relationship for land as a function of linear distance from a 

central marketplace.  Other models have focused on social and ethnic patterns and less on 

geometry and economics as determinants of city structure (Jacobs, 1961).  Many site-

specific urban models have been developed for a particular region, mainly for use by 

urban planners. A well-known example is the BASS II which predicts urbanization at the 

regional scale for the San Francisco Bay area (Landis, 1992). 

The SLEUTH cellular automaton urban growth model was developed by Keith 

Clarke to model and predict regional patterns of urbanization.  The rules of the model are 

more complex than those of a typical cellular automaton (CA) and involve the use of 

multiple data sources such as road networks, topography, and existing settlement 

distributions (Clarke et al., 1997).   

Although both BASS II and the SLEUTH model predict regional urban growth, they 

differ vastly in their level of detail, data requirements, and applications.  BASS II is 

developed to the specifics of the San Francisco Bay Area; however the growth rules in 

the SLEUTH model are designed to be general enough to allow it to be applied to other 

regions.   

A few theories have examined the rural to urban transition as a physical process, 

except for the outer edge expansion of the rural/urban boundary.  For example, the urban 

edge is largely ignored in Christaller’s model because the model seeks to predict the point 

provision of goods and services on a spatial tessellation of hexagonal market areas.  The 
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physical characteristics of urban expansion remained ill defined until the work of Batty 

who, together with his colleagues, used a dynamic systems model called “diffusion-

limited aggregation” (DLA) to model urban expansion (Batty and Longley, 1994). 

Batty’s dynamic systems model also lends itself to the techniques of cellular automata 

(CA) which is a simple and easily automated method for generating simulations 

(Couclelis, 1985). Application of computational CA models to predict urban areas was 

pioneered by Roger White (White & Engelen, 1993).  A classical CA approach is used by 

White’s models.  The modeling technique involves:  

- reduction of space to a grid of square cells  

- establishment of an initial set of conditions 

- establishment of a set of transition rules between iterations 

- recursive application of the rules in a sequence of iterations of the spatial pattern.  

Development of such a model involves: (1) determining the rules from an existing 

system; (2) calibrating the CA to give results consistent with historical data; and (3) 

predicting the future by allowing the model to continue to iterate with the same rules 

(Clarke et al., 1997). 

White used simple urban growth for some world cities and a more complex island 

model with self-modification and multiple land uses linked by rules.  In self-modifying 

cellular automata however, the rules are allowed to change as the system grows or 

changes.  For example, if all flat urban land is used by existing settlements, the rules 

penalizing building up slopes can be eased to reflect land pressure.  During the last 

decade, urban modeling with cellular automata became widespread.  White and Engelen 

(1992a) have extended their land use model to an entire island; Batty and Xie (1994) 
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modeled the historical growth of Cardiff, Wales, and Savannah, Georgia using their DLA 

model.  Cellular urban modeling is described in a recent work as a new school of urban 

modeling, although one with roots in the work of von Neumann (1966), Wolfram (1994), 

Hagerstrand (1967), and Tobler (1979).  The research used here is a modified version of a 

CA which features the ability to modify parameter settings when the growth rate of the 

system exceeds or falls below critical threshold to model urban growth in the Houston 

Metropolitan area. 

This paper focuses on calibrating the SLEUTH model, formerly the CLARKE 

Cellular Automaton Urban Growth Model (Clarke & Gaydos, 1998; Clarke, Hoppen, & 

Gaydos, 1997) for Houston-Galveston-Brazoria Cosmopolitan Metropolitan Statistical 

Area (Houston CMSA).  SLEUTH is composed of first letters of the input layers: Slope, 

Land Use, Exclusion, Urban Extent, Transportation, and Hillshade.  SLEUTH is a self-

modifying cellular automaton model.  Self modification of the rules changes the control 

parameters when modeled growth rates are exceeded (Clarke et al., 1997).  In SLEUTH, 

self-modification is equivalent to adaptation or evolution, and the calibration method lets 

the model “learn” its local setting over time (Clarke et al., 1996).  During the calibration 

of the five control parameters, this learning is quantified by the variation. 

The United States Geological Survey (USGS) has a long tradition of studying land 

use and land cover, both current and potential.  As a contribution to the U.S. Global 

Change Research Program, the USGS initiated a human-induced land transformations 

project (HILT) to understand the urban transition from a historical perspective and 

SLEUTH, was developed by Keith Clarke (Clarke et al., 1997) as part of this study.   
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The SLEUTH model was applied to the Houston-Galveston-Brazoria Consolidated 

Metropolitan Statistical Area (Houston CMSA).  Houston CMSA consists of eight 

counties: Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and 

Waller.  The urban pattern is mostly concentrated at the main nuclei, the City of Houston.       

Urban expansion in SLEUTH is modeled in a spatial two-dimensional grid and the 

basic growth procedure is a cellular automaton.  Five coefficients control the behavior of 

the cellular automaton.  These are diffusion coefficient, breed coefficient, spread 

coefficient, slope resistance coefficient, and road-gravity coefficient.  Four types of 

growth are possible in the model: spontaneous, diffusive, organic, and road influenced 

growth.     

 

4. The Role of GIS in Urban Modeling 

Despite the efforts to build cellular modeling functions into GIS directly (Takeyama 

& Couclelis, 1997; Park & Wagner, 1997) and the suitability both of specific GIS 

packages and of control languages and cellular automata, it is likely that most numerical 

modeling especially that requiring exhaustive or rigorous calibration, will need to parallel 

the GIS rather than work within software (Clarke & Gaydos, 1998).  GIS is quite helpful 

in providing real-world environments for cellular automata, yet the full integration of 

cellular automata tools directly into GIS has not yet been achieved (Park & Wagner, 

1999).  Research on geographic modeling with cellular automata is still exploring and 

building upon modeling capabilities (Clarke & Gaydos, 1998; Li & Yeh, 2000).       

The integration of GIS and modeling has been well documented (Wilson, 1995; 

Goodchild et al., 1996; Wagner, 1997).  Anselin et al. (1993) classified and described the 



 

 

17

relation of modeling to GIS as one of “loose coupling.”  Park and Wagner (1997) 

implemented a tight coupling of several cellular automaton models including SLEUTH.  

GIS serves at least three important roles in the context of SLEUTH model that none of 

which could be called tight coupling.   

The first of these roles is data integrator.  In all initial applications, data were either 

already available as GIS coverages, or were captured by scanning and digitizing 

(Crawford-Tilly et al., 1996).  Although the coverages existed, new map extents, 

projections, and grid resolutions were required, and the GIS ensured co-registered model 

input.  All further modeling and analysis depended on this essential first step, what 

Chrisman has called a “universal requirement” for GIS (Chrisman, 1997).  Data layers 

were each raster grids.  Second, GIS allows the results to be visualized.  This was the 

weakest part of the loose coupling.  Third, the outputs were reintroduced into the GIS 

data sets available for application, allowing further analysis and decision making.  This 

part favors the use of loose coupling.   

 

5. The Role of Calibration in Modeling Urban Growth 

One of the most important elements of successful model application is calibration 

(Silva & Clarke, 2002).  Calibration allows users to narrow down the resulting values of 

the model to reflect the characteristics of locale.  Birkin et al. (1996; p. 93) states that 

“the key component of the modeling process […] is calibration: the process by which 

numerical values are assigned to the model parameters in such a way that the model 

accurately reproduces the real patterns.”  The publications of calibration results document 

the importance of calibration (Batty & Xie, 1994b; Birkin et al., 1996; Clarke et al., 1996; 
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Landis & Zhang, 1998; Silva & Clarke, 2002).  The model’s applicability, verifiability 

and robustness are closely correlated by the calibration phase.     

 

6. The SLEUTH Model 

6.1. Introduction  

The SLEUTH urban growth model is a cellular automaton (CA) model that has been 

widely used to model urbanization throughout various regions of the United States and 

the world (Solecki et al., in press; Yang & Lo, 2003; Esnard & Yang, 2002; Silva & 

Clarke, 2002; Clarke & Gaydos, 1998; Clarke et al., 1997).  The model was originally 

developed by Keith Clarke, University of California at Santa Barbara (Clarke et al., 

1997).  The model has the ability to model urban/non-urban dynamics as well as 

urban/land use dynamics.  Both abilities have led to the development of two 

subcomponents within the model; an urban growth model (UGM), and a land use/land 

cover change model (Land Cover Deltatron or LCD).  The model uses same calibration 

routine for each of the subcomponent.  If only urban growth is analyzed, then LCD is not 

activated by the model.  LCD is activated when land use is being analyzed.   
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SLEUTH is a cellular automaton model written in the C programming language and 

developed with sets of predefined growth rules that are applied in a set of nested loops.  

The outer control loop executes each growth “history,” retaining cumulative statistical 

data, while the inner loop executes the growth rules for a single year.  The growth rules 

are applied on a cell-by-cell basis and the array is synchronously updated at the end of 

each year.  The modified array forms the basis for urban growth in each succeeding year.  

Potential cells for urbanization are selected at random and the growth rules evaluate the 

properties of the cell and its neighbors such as whether or not they are already urban, 

what their topographic slope are, how close they are to a road. This study utilized Version 

3.0 of the SLEUTH model obtained from the Gigalopolis website 

(http://www.ncgia.ucsb.edu/projects/gig/).  The model’s general structure is illustrated in 

Fig. 2.1.  It has four main components: input, parameter initialization, growth rules 

application, and output.  Similar to other predictive models, this model requires some 

input data in order to initiate the simulation.  Version 3.0 of this model requires an input 

of six types of eight-bit GIF format data if land use change is being analyzed: urban 

extent, land use, road, excluded, slope, hillshade.             
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Fig. 2. 1 General structure of the SLEUTH model (Yang & Lo, 2003) 

 

SLEUTH begins with a set of initial conditions.  A set of growth or decision rules is 

then applied to the data in order to simulate urban growth (Gigalopolis, 2003).  These 

rules are: 
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1) Spontaneous growth 

2) Diffusive (New Center) growth 

3) Organic (Edge) growth 

4) Road-influenced growth 

 

How these growth rules are applied depend on five growth control parameters 

(coefficients) (Gigalopolis, 2003): 

1) Diffusion (dispersion) coefficient 

2) Breed coefficient 

3) Spread coefficient 

4) Slope coefficient 

5) Road-gravity coefficient.   

 

The number of Monte Carlo iterations to be specified is a very important parameter in 

terms of determining the computation time and the simulation error level.  The likelihood 

of urbanization throughout the growth process depends on two suitability measures.  The 

suitability is defined by an exclusion layer (e.g. water) and by slope.  Urbanization cannot 

occur on slopes above 21 percent (Gigalopolis, 2003).   

Spontaneous growth defines the occurrence of random urbanization of land.  This 

means that any unurbanized cell on the lattice has a certain (small) probability of 

becoming urbanized in any time step.  New Spreading Center growth determines whether 

any of the new, spontaneously urbanized cells will become new urban spreading centers.  
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Organic or edge growth defines the growth that stems from existing spreading centers.  

This growth propagates both the new centers generated in New Spreading Center growth 

step, and the more established centers from earlier times.  Road-Influenced growth is 

determined by the existing roads as well as the most recent urbanization (Silva & Clarke, 

2002). 

Diffusion (dispersion) coefficient controls the number of times a pixel will be 

randomly chosen for possible urbanization.  Diffusion coefficient controls the 

spontaneous and road-influenced growth.  Breed coefficient determines the probability of 

a spontaneous growth pixel becoming a new spreading center.  This is used by new 

spreading center growth and road-influenced growth.  Spread coefficient controls the 

probability that any pixel that is part of a spreading center will generate an additional 

urban pixel in its neighborhood.  Slope coefficient influences the likelihood of settlement 

exceeding up steeper slopes.  Slope coefficient affects all growth rules in the same way.  

Road-gravity coefficient attracts new settlements toward and along roads.  This 

coefficient controls the road-influenced growth (Clarke et al., 1998).   

The process of urban growth is not linear.  This is easily demonstrated by looking at 

the number of homes built over time, there are clear cycles of booms and busts – largly 

tied to urban and regional economics.  SLEUTH also utilizes a second level of growth 

rules termed self-modification rules to account for these cyclic periods of growth.  The 

self-modifying rules of the model are prompted by an unusually high or low calculated 

growth rate.  In SLETUH, the growth rate is computed by comparing the number of new 

cells urbanized to the total existing urban area during a single time period.  Critical high 

and critical low growth thresholds, respectively, defined by the model, will initiate an 
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increase or decrease in diffusion, breed, and spread coefficients.  An increase in the 

diffusion, breed, and spread coefficients represents the tendency of an expanding urban 

system to grow even more rapidly (Fig. 2.2).  A decrease in the diffusion, breed, and 

spread coefficients causes growth to slow (Fig. 2.2).   

 

 
Fig. 2. 2 Growth patterns under the self-modification rules  (Gigalopolis website, 

http://www.ncgia.ucsb.edu/projects/gig/) 

 
 

The other two self-modification rules affect the road gravity coefficient and the slope 

resistance coefficient.  The road gravity coefficient is increased as the road network 

enlarges, representing increased accessibility to the area.  The slope coefficient is 

decreased as the percentage of land available for development decreases, allowing 

expansion to move up steeper slopes.  Under self-modification, the coefficient values 

during a model run increase most rapidly in the beginning of a growth cycle, when many 

cells are open for urbanization, and decrease as urban density increases in the region and 

expansion declines (Clarke & Gaydos, 1998).    
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Both growth rules and self-modification rules are the core of the model.  They reflect 

the universal understanding of the process of urbanization, but, to be successfully used, 

they need to be refined to the locale.  To describe the behavior of the system correctly 

and predict its possible futures, the model needs to be calibrated (Silva & Clarke, 2002).           

 We installed and compiled the SLEUTH model (version 3.0) on a SUN UNIX 

workstation.  Fig. 2.3 illustrates the procedure for the model implementation in this 

project, which consists of four main components: 1) developing input dataset, 2) model 

calibration, 3) model prediction (simulation), and 4) model output. 

 

 
Fig. 2. 3 General procedures for the SLEUTH model implementation (Yang & Lo, 2003) 

 

6.2 SLEUTH Inputs  

Six types of input information are required to successfully run SLUETH.                              

These include: 1) urban extent, 2) land use, 3) transportation, 4) excluded areas, 5) slope, 

Developing Input 
Dataset 

Model Calibration Model Prediction 

Model Output 
Spatial Data 
assembling 

Data 
Standardization 

Naming 
Convention 

Coarse 
Calibration 

Fine Calibration

Final 
Calibration 

Derived 
Coefficients 

Past to 
Present 

Scenario One

Scenario Two

Scenario 
Three 

Statistical 
Output 

Graphic 
Output 



 

 

25

and 6) hillshade.  For statistical purposes, the model requires urban extent from at least 

four time periods.  It also requires at a minimum transportation layers from two different 

years, a slope layer and a layer indicating which areas should be excluded from 

urbanization.  A hillshade layer serves as a graphical background.  Land use from at least 

two time periods is also required for the land use change analysis.   

1992 land use data is downloaded from U.S. Environmental Protection Agency’s 

(EPA) National Land Cover Dataset (NLCD) website.  The data was in GeoTIFF format 

and had 30 meters spatial resolution.  Original projection was in Albers Conical Equal 

Area.  The downloaded GeoTIFF data covered all of Southeast Texas, so it was subset to 

our study area.  The classification schema was recoded based on following format in 

order to match our 2002 land use classification schema (Table 2.1): 

 

Table 2. 1  
The NLCD classification scheme 

11 - Open water  
12 - Perennial Ice/Snow 
21 - Low Intensity Residential 
22 - High Intensity Residential 
23 - Commercial/Industrial/Transportation 
31 - Bare Rock/Sand/Clay 
32 - Quarries/Strip Mines/Gravel Pits 
33 - Transitional 
41 - Deciduous Forest 
42 - Evergreen Forest 
43 - Mixed Forest 
51 - Shrub land 
61 - Orchards/Vineyards/Other 
71 - Grasslands/Herbaceous 
81 - Pasture/Hay 
82 - Row Crops 
83 - Small Grains 
84 - Fallow 
85 - Urban/Recreational Grasses 
91 - Woody Wetlands 
92 - Emergent Herbaceous Wetlands 
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Following transformation is used to group NLCD classes into general 6-class 

Category I (Table 2.2): 

 

Table 2. 2  
The transformation table for NLCD classification  
NLCD Classification  Category I 
21, 22, 23 =======> 1 (urban) 
51, 61, 71, 81, 82, 83, 84, 85 =======> 2(agriculture) 
41, 42, 43 =======> 3 (forest) 
11 =======> 4 (water) 
91, 92 =======> 5 (wetland) 
31, 32, 33 =======> 6 (other) 
 

 

Because of the processing (CPU) time requirement of the SLEUTH model, we 

reduced the data resolution from 30 meters to 100 meters.  The base resolution for the 

project was chosen as 100 meters due to CPU limitations.  Thus, we resampled all of our 

data to 100 meters using Nearest Neighbor technique.  Nearest Neighbor technique is 

chosen for the reason of not averaging the neighboring cells instead assigning the nearest 

cell to the target cell during resampling.  The further data processing has been applied to 

the data.  Using 7x7 kernel-size, we applied “majority” function to make the image 

smoother.        

For 2002 land use data layer, we have purchased three Landsat ETM scenes 

(path25row39, path25row40, path26row39) from the United States Geological Service 

(USGS).  The data were had 30 meters spatial resolution and were in Albers Conical 

Equal Area projection.  Then the images were classified based on 6 general classes above 

(Table 2.2) utilizing ISODATA unsupervised classification technique and then mosaiced 

together to form one image.   
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Four Landsat MSS Triplicate scenes (path25row39, path25row40, path26row39, 

path26row30) were purchased from the USGS Land Processes Distributed Active 

Archive Center.  From the triplicate data, only 1974 and 1984 MSS scenes were used.  

The original images were in UTM projection, so they are reprojected to Albers Conical 

Equal Area.  The data have 60 meters spatial resolution.  These images were then 

classified to urban/nonurban using ISODATA unsupervised classification technique and 

then mosaiced together to create urban extent layers for the study area.   

1990 and 1999 road shapefiles are acquired from Houston-Galveston Area Council 

(H-GAC) for our study area.  Using 1974, 1984, 1990, 2002 Texas Department of 

Transportation (TxDOT) highway maps, we filtered out roads that were not highway 

from the original H-GAC road shapefiles.  Then these newly created shapefiles for above 

years were converted to raster format with 100 meters resolution.  We also created a road 

layer for TxDOT’s future road plan, Trans-Texas Corridor Plan.  This Corridor is planned 

to be ready by 2025.  A JPEG image of the Trans-Texas Corridor Plan was acquired from 

TxDOT.  The image then was georeferenced using a Texas county map.  The image then 

was subset to our study area.  Using Geographic Information System (GIS), the image 

then was edited to create 2025 road layer.     

National Elevation Data (NED) data for our study area counties were downloaded 

from Texas Natural Resources Information System website.  Original data were in Arc 

Interchange (e00) format, so data were imported into GRID format, and then reprojected 

to Albers Conical Equal Area.  Then these are resampled to 100 meters and mosaiced 

together to form Digital Elevation Model (DEM) for our study area.  The SLEUTH 
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model requires slope to be in percent, thus Percent Slope and Hillshade are derived from 

this DEM dataset.   

Floodplain data was provided by Federal Emergency Management Agency.  This 

dataset did not however include floodplain for Harris County.  Floodplain data for Harris 

County was provided by Mr. John S. Jacob at Texas Coastal Watershed Program.  The 

floodplain data was used in excluded layer.  City and State Parks data were downloaded 

from the Texas General Land Office website.  Forest, agriculture, wetland and water were 

acquired from 2002 land use layer to be used in excluded layer along with parks, 

floodplain data.  Excluded layer is reclassified to weigh cell values to be used in 

calibration mode in SLEUTH model.  Resulting excluded layer had following values for 

their respective classes as seen in Table 2.3: 

 

Table 2. 3  
Excluded layer with respective values to be used in calibration phase in SLEUTH model 

EXCLUDED FROM DEVELOPMENT (in percent) 
 Agriculture Forest Floodplain Wetland Parks Water Unclassified 
Cell Values 40 40 40  60 90 100 100 
 

 

1992 and 2002 land use/land cover data were reclassified as urban/non-urban to 

develop 1992 and 2002 urban extents to be used in the model along with 1974 and 1984 

urban extents.  Then we assigned 100 for urban pixels and 0 for non-urban for each urban 

extent year.  For road data (1974, 1984, 1990, 2002, and 2025), we followed the same 

procedure above and assigned 100 for road pixels and 0 for non-road.     

Following dataset was created when input dataset preparation step was finally over 

(see Table 2.4) and all data is in raster format.   
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Table 2. 4  
Input data sources and years for SLEUTH model 
SLEUTH Inputs Input Data Sources Data Types Input Data Years 
Urban Landsat MSS, ETM Raster 1974, 1984, 1992, 2002 
Lulc Landsat TM Raster 1992, 2002 
Road Shapefiles Converted to Raster 1974, 1984, 1990, 2002, 2025 
Excluded Landsat TM Raster N/A 
Slope NED Raster N/A 
Hillshade NED Raster N/A 
 

 

However, the SLEUTH model requires all input data to be in grayscale 8-bit GIF 

format.  Therefore, we converted all data into grayscale 8-bit GIF format using GIS and 

Image Processing Software.  The model also requires a special naming format for the 

input dataset, so all input data was then applied to appropriate naming format.       

1974 was the seed year, while the other years provided control data against which the 

model output was compared.  Two land use layers 1992, and 2002; and five road layers 

1974, 1984, 1990, 2002, and 2025 were used in this project.  However, 2025 road data 

layer was not included during calibration phase; instead it was used in the prediction 

phase of the model. 

An accuracy assessment has been made between our 2002 land use and Houston-

Galveston Area Council’s (H-GAC) 2002 land use for the study area.  Table 2.5 

illustrates confusion matrix (Congalton, 1991; Congalton & Mead, 1983) output based on 

the accuracy assessment for the Houston CMSA.  As shown in Table 2.5, kappa 

coefficient and overall classification accuracy came out as 0.82 and 87.33% respectively.  

User’s accuracy represents the probability that a given pixel will appear on the ground as 

it is classed (the percentage correct for a given column divided by the total for that 
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column), while producer’s accuracy represents the percentage of a given class that is 

correctly identified on the map (the percentage correct for a given row divided by the 

total for that row).  User’s and producer’s accuracy can also be expressed in terms of 

commission and omission errors.  Error of commission indicates pixels that were placed 

in a given class when they actually belong to another, while error of omission indicates 

the percentage of pixels that should have been put into a given class but were not 

(Congalton, 1991).  This indicates that our 2002 land use map is within acceptable 

accuracy range.  

 

Table 2. 5  
Confusion matrix and kappa coefficient for the 2002 land use/land cover 
 Reference Data Points (Houston Galveston Area Council LULC 2002 (HGAC LULC 2002)) 

 Urban Agriculture Forest Water Wetland Other Row Total Producers 
Accuracy 

Users 
Accuracy 

Urban 28 5 1 1 1 0 36 93.33% 77.78% 
Agriculture 1 117 4 0 4 0 126 89.31% 92.86% 
Forest 1 5 67 0 7 0 80 89.33% 83.75% 
Water 0 0 1 35 0 0 36 97.22% 97.22% 
Wetland 0 2 2 0 15 0 19 53.57% 78.95% 
Other 0 2 0 0 1 0 3 --- --- 
Column Total 30 131 75 36 28 0 300   
Overall Classification Accuracy = 87.33% 
Kappa (Khat) Coefficient = 0.82 

 



 

 

31

No data

Urban

Agriculture

Forest

Water

Wetland

Other

�

HOUSTON CMSA LULC 2002 

0 14070
Kilometers  

Fig. 2. 4 Our 2002 Houston CMSA land use/land cover 
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Fig. 2. 5 H-GAC’s 2002 Houston CMSA land use/land cover 
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Figs. 2.4 and 2.5 illustrate our own 2002 land use/land cover map, and H-GAC’s 

2002 land use/land cover map respectively. 

  

6.3 Calibration of SLEUTH 

SLEUTH is a calibrated model.  In order for it to successfully simulate the urban 

growth of a particular metropolitan area its general rules of urban growth must be 

adjusted to local conditions.  Thus, calibration is the most important step in modeling 

urban growth using SLEUTH (Clarke & Gaydos, 1998; Silva & Clarke, 2002).  SLEUTH 

utilizes a three phase (coarse, fine and final) approach to calibration.  At each phase, the 

user tries to extract the values for each of the five coefficients controlling growth that 

provide the best match between the modeled and observed patterns of urban growth over 

the calibration period.  For the Houston study presented here, the calibration phase 

encompassed the years 1974 to 2002 and utilized four urban extent maps (1974, 1984, 

1992, and 2002). 

The SLEUTH calibration process is automated with the “brute force method.”  In the 

calibration process, the model tests many combinations and permutations of the control 

parameters and performs multiple runs from the seed year, 1974, to the present (last) 

year, 2002.  At each comparison year (1974, 1984, 1992, 2002), 13 different measures of 

the goodness of fit between the modeled and the real dispersion of urban pixels are used 

to assess how accurately the adjusted growth rules simulate observed urban growth.  This 

calibration approach relies on the availability of significant computing power               

and benefits significantly from parallel processing and high performance computing 
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methods.  Results are sorted, and parameters of the highest scoring model runs are used 

to begin the next, more refined sequences or permutations over the parameter space.  The 

first exploration of the parameter space uses a condensed, smaller (reduced resolution) 

version of the input data layers, and as the calibration closes in on the “best” run; the data 

are increased in spatial resolution.  

Determining which coefficients provide the best match for observed growth is 

accomplished by computing 13 metrics (see Table 2.6) which represent either a 

determination of fit between actual and predicted values for the urban growth pattern 

such as number of pixels, number of edges, number of clusters; for spatial metrics, such 

as shape measures (Clarke & Gaydos, 1998).   

 
 
Table 2. 6  
Metrics that can be used to measure the goodness of fit in the SLEUTH model 
Metric Name Description 
Product All other scores multiplied together 

Compare Modeled population for final year / actual population for final year, or  
IF Pmodeled > Pactual { 1 - (modeled population for final year / actual population for 
final year)}. 

Pop Least squares regression score for modeled urbanization compared to actual 
urbanization for the control years 

Edges Least squares regression score for modeled urban edge count compared to actual 
urban edge count for the control years 

Clusters Least squares regression score for modeled urban clustering compared to known 
urban clustering for the control years 

Cluster Size Least squares regression score for modeled average urban cluster size compared to 
known average urban cluster size for the control years 

Lee-Sallee A shape index, a measurement of spatial fit between the model's growth and the 
known urban extent for the control years 

Slope Least squares regression of average slope for modeled urbanized cells compared to 
average slope of known urban cells for the control years 

% Urban Least squares regression of percent of available pixels urbanized compared to the 
urbanized pixels for the control years 

X-Mean Least squares regression of average x_values for modeled urbanized cells 
compared to average x_values of known urban cells for the control years 

Y-Mean Least squares regression of average y_values for modeled urbanized cells 
compared to average y_values of known urban cells for the control years 

Rad Least squares regression of average radius of the circle which encloses the urban 
pixels 

F-Match A proportion of goodness of fit across landuse classes. { #_modeled_LU correct / ( 
#_modeled_LU correct +  #_modeled_LU wrong)} 
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SLEUTH calibration relies on maximizing spatial and other statistics between the 

model behavior and the known urban extent at specific calibration data years, 1974, 1984, 

1992, and 2002, for this particular project.   

A variety of different goodness of fit measures (see Table 2.6 above) can be used to 

narrow the five growth parameters (coefficients) range.  There is not one sole metric that 

has been shown to be the most effective.  Traditionally the Lee and Sallee (Lee & Sallee, 

1970) metric has been used to determine which parameter sets best describe the 

replication of the historical datasets.  Therefore, we have chosen Lee-Sallee metric as our 

primary goodness of fit measure in this project.  The Lee-Sallee shape index is a 

measurement of spatial fit between the model’s growth and the known urban extent for 

the control years.  This simple measure of shape was adjusted to describe distributions, 

and was computed by overlaying the observed and the predicted maps of urban extent, 

computing the union and the intersection of their total areas on a pixel by pixel basis, and 

then dividing the intersection by the union.  For a perfect match, the Lee-Sallee measure 

gives a value of 1.0 and for all others a smaller number, similar to an r-squared value. 

A Monte Carlo approach used to test the full range of coefficients, and averages of 

the 13 comparison metrics are computed across multiple runs to ensure robustness of the 

solutions. The three calibration phases are performed at successively higher and higher 

spatial resolution. Coarse calibration mode runs at ¼ of original spatial resolution, fine 

calibration mode at ½ and the final calibration phase utilizes the entire spatial resolution 

of the input data.  By using different spatial resolutions and a sequential multistage 

optimization of the coefficients that control the system, the model is carefully adapted to 

local characteristics throughout calibration and the user can select parameter set that best 
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simulates growth in the urban area under study and that best enable the model to predict 

future urban expansion.  

The current version of the SLEUTH can drive a land use/land cover change model 

(land cover deltatron or LCD), although the urban growth model can run independent of 

the LCD model.  The general structure of LCD model could be explained: select a pixel 

at random.  This pixel cannot be one of following pixels: urban, water, no-data.  Get this 

pixel’s land cover class.  Select two transition classes randomly.  These classes should 

not be no-data, urban, water, or current land cover class.  Compare the slope of the 

selected pixel with the average slope of the two transition classes.  The transition class 

whose mean slope is closer to the slope of the selected pixel is then assigned as the new 

class.  Draw a number at random.  If this value is smaller than the transition probability 

for the transition class, then the program will take the following actions: apply land cover 

transition to the selected pixel, then create land cover transition cluster of neighborhood 

pixels through a random walk, and assign “ALIVE” to corresponding pixels in “deltatron 

space.”  In deltatron space, apply cellular automata growth rules to “ALIVE” pixels 

(Gigalopolis, 2003).    

  

 

 

 

 



 

 

37

7. Study Area: Houston CMSA 

Houston, Texas, is located on the flat upper Gulf coastal plain 50 miles from the Gulf 

of Mexico (Figs. 2.6-2.7). The city itself has a population of 1.9 million people making it 

the fourth most populous city in the nation, trailing on New York, Los Angeles and 

Chicago and the largest in Texas. Houston is also the only metropolitan city that 

functions without zoning regulations or plans (Vojnovic, 2003). 

While most of the region’s population is concentrated in and around the city of 

Houston proper, which is also serves as the Harris county seat, the The Houston-

Galveston-Brazoria Consolidated Metropolitan Statistical Area (Houston CMSA) 

encompasses Primary Metropolitan Statistical Areas (PMSAs) in eight counties (Fig. 2.6) 

on the Texas Gulf Coast.  The Houston PMSA occupies six counties Chambers, Fort 

Bend, Harris, Liberty, Montgomery, and Waller Counties. The Galveston-Texas City 

PMSA and Brazoria PMSA each occupy a single county, Galveston and Brazoria, 

respectively 

The total population of the Houston CMSA’s is 4.8 million making it the 10th largest 

U.S. metropolitan statistical area. 
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Fig. 2. 6 The Houston CMSA counties 
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Fig. 2. 7 Study area (Houston CMSA) 
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Table 2. 7  
Study area (Houston CMSA) 
NAME AREA COVERED ( km2 ) 
Houston CMSA 22,735.80 
Houston PMSA 16,328.09 
Brazoria PMSA 4,137.61 
Galveston PMSA 2,270.02 
Harris County 4,604.71 
City of Houston 1,538.79 
 
 

 

The City of Houston proper occupies three counties: Harris (1,511 km2) (see Table 

2.7), Fort Bend (21 km2), and Montgomery (7 km2).  Under Texas’ Municipal 

Annexation Act of 1963, cities have certain powers over surrounding unincorporated 

areas which is termed Extraterritorial Jurisdiction (ETJ).  The ETJ is a function of 

population, for cities over 100,000, it can cover all unincorporated area within 8 

kilometers of any point on the city limits.  Houston’s ETJ encompasses 3,397.93 km2, 

excluding the area of incorporated areas that lie within it.  For example Houston’s ETJ 

would not include the 35 incorporated areas lying wholly or partially in Harris County. 

The Houston CMSA lies in the northern portion of the northern Gulf coastal plain in a 

64- to 80-kilometer-wide swath along the Texas Gulf Coast. The topography of the area 

is flat with altitudes typically only rises approximately 19 centimeters per kilometer 

inland. The northern and eastern portions of the Houston CMSA are largely forested, 

southern and western portions are predominantly prairie grassland while coastal areas are 

prairie.  Surface water in the Houston region consists of lakes, rivers, and an extensive 

system of bayous and manmade canals that are part of the rainwater runoff management 

system.  Because of its low lying topography and proximity to the Gulf of Mexico, 

flooding is a major problem to Houston and is an impediment to urban growth. Some 

25%-30% of Harris County lies within the 100-year flood plain.   
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Houston’s land surfaces are unconsolidated clays, clay shales, and poorly-cemented 

sands extending to depths of several kilometers that have deposited by a river networks 

carrying material eroding from the Rocky Mountains to the sea. From an economic 

standpoint these interbedded sands and clays deposited also contain significant amounts 

of organic matter that over time have decayed and been transformed into oil and natural 

gas. 

The City of Houston was founded in 1836 and incorporated in 1837.  The city grew 

slowly, increasing in population to only about 45,000 by 1900.  During the 1800’s 

Galveston, located on the Gulf of Mexico some 80 kilometers south of Houston, was the 

economic center of Texas throughout the nineteenth century and a key commercial port 

for cotton in the U.S. (Vojnovic, 2003).   

Two events early in 1900s stimulated Houston’s first phase of significant growth.  

First, in 1900 a hurricane destroyed much of Galveston and left approximately 6,000 

dead.  A year later oil reserves were discovered at Spindletop 145 km east of Houston. 

These two events led to Houston’s rapid growth (Vojnovic, 2003). In the 19th century, 

new investment on transportation infrastructure in Houston began with new railroad and 

the construction of the Houston Ship Channel. Waterway improvements made it possible 

for ships to dock directly in Houston and taking its principal product directly to Europe 

(Vojnovic, 2003).  

In the 20th century, federal and state intervention in the Houston economy expanded 

to include the funding of petrochemical plants, gas pipelines, refineries, and research and 

development in the petrochemical industry.  The decision to locate the National 
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Aeronautics and Space Administration (NASA) complex was another boost to the 

Houston area in the 1960s.   
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Fig. 2. 8 Past and projected population growth in Houston CMSA 
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The population grew from approximately 1.5 million in 1960 to 4.5 million in 2000.  

Fig. 2.8 illustrates the past population growth in Houston CMSA from 1960 to 2000 (The 

Perryman Group, 2002) and also illustrates the projected population increase till 2030 

(Texas State Data Center, 2003).   

Several factors combine to make the Houston CMSA an ideal urban area to study 

urban growth using SLEUTH.  The first is that in recent decades Houston has rapidly 

expanded and current population projects suggest this growth trend will continue.  

Secondly, because of its location on the flat Texas Gulf Coastal Plain topography 

presents a minimal barrier to urban expansion.  Lastly because the city of Houston lacks 

comprehensive zoning regulations, urban expansion can be expected to be both less 

fettered and less influenced by government regulations.  From this perspective, Houston 

represents one possible endmember of urban growth – a city with few barriers either 

natural or governmental to growth. 

Following Figs. 2.9-2.16 illustrate land use, urban extent, and roads that are used as 

input to SLEUTH.   
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Fig. 2. 9 The Houston CMSA 1992 land use/land cover 
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Fig. 2. 10 The Houston CMSA 2002 land use/land cover 
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Fig. 2. 11 The Houston CMSA urban extents 
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Fig. 2. 12 1974 road network used as input to SLEUTH during calibration phase 
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Fig. 2. 13 1984 road network used as input to SLEUTH during calibration phase 
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Fig. 2. 14 1990 road network used as input to SLEUTH during calibration phase 
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Fig. 2. 15 2002 road network used as input to SLEUTH during calibration phase 
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Fig. 2. 16 2025 road network used as input to SLEUTH during prediction phase 

 
 

8. Calibration Results for the Houston CMSA 

By running the model in calibration mode, the control parameters are refined in the 

calibration phases: coarse, fine and final calibrations (Silva and Clarke 2002).  The model 
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was calibrated using hierarchical spatial resolutions, beginning with data of coarser 

resolution, narrowing the range of parameter that most accurately described the growth of 

the system, and then using a finer resolution to narrow the parameter values to one 

distinct set.  Thus, we resampled all input data which are in 100 meters resolution into 

400 meters to be used in coarse calibration phase, into 200 meters to be used in fine 

calibration phase.  We used data sets with 100 meters (full resolution) resolution in final 

calibration phase.      

The coarse calibration process ran from April 10, 2003 to April 16, 2003.  The fine 

calibration ran from April 17, 2003 to May 05, 2003.  Both coarse and fine calibrations 

were run on a Linux machine with 1.3 GHz CPU and 1.2 GB RAM.  We have made two 

attempts to run final calibration with our Linux machine but the process would take 

extremely long time to finish (about over 2 months).  Both attempts were unsuccessful 

because of the random local power outages.  I would like to thank to Mr. Mark Feller, 

who is a research scientist at USGS.  He accepted to run the final phase of the calibration 

for us on USGS’s 16-node Beowulf PC Cluster.  The final calibration began to run on 

May 29, 2003 and continued until June 09, 2003. 

The coarse calibration began with parsing the parameter space into five areas and 

using the values of 1, 25, 50, 75, and 100 for each of the five parameters.  This gives 

3,125 (55) different parameter sets that are tested to determine which range of parameter 

the one parameter set that best describes the data is located within.  Results from the 

coarse calibration (see Table 2.8) are examined to determine the goodness of fit for each 

of the parameter sets.  We used LeeSallee metric as goodness of fit measure throughout 

this project in order to narrow down the parameter set.  After coarse calibration was done, 
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the output statistics file was sorted by descending order using LeeSalle metric.  Then 

three highest scoring LeeSallee values and respective parameter values were selected.  

These optimum parameter values were then used to form input parameter ranges in fine 

calibration.  Table 2.8 illustrates the resulting parameter values after the coarse 

calibration phase.   

 

Table 2. 8  
Coarse calibration, 526 x 462 (rows x columns) 

Run Product Compare Population Edges Cluster Cluster 
Size Leesalee 

70 0.00148 0.78558 0.99959 0.89401 0.61675 0.37173 0.54257 
66 0.00448 0.78437 0.99950 0.92294 0.62635 0.38578 0.54219 
60 0.00753 0.78066 0.99973 0.91913 0.97203 0.45256 0.54217 

 
Slope %Urban Xmean Ymean Rad Fmatch  

0.99494 0.99899 0.70073 0.02839 0.99878 0.85617  
0.99115 0.99886 0.89536 0.06230 0.99864 0.85618  
0.99772 0.99920 0.89767 0.05749 0.99899 0.85608  

 
Diffusion Breed Spread Slope resist Road gravity  

1 1 50 100 1  
1 1 50 75 25  
1 1 50 50 1  

 

 

For the fine calibration, same procedure was followed.  The dataset that were used 

here had 200m spatial resolution. Therefore, this process took more time than coarse 

calibration.  Table 2.9 illustrates the output parameter values after fine calibration phase.     
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Table 2. 9  
Fine calibration, 1051 x 923 (rows x columns) 

Run Product Compare Population Edges Cluster Cluster 
Size Leesalee 

167 0.00032 0.64802 0.99942 0.76536 0.89472 0.47960 0.53129 
153 0.00462 0.64451 0.99943 0.82819 0.62212 0.57374 0.53115 
174 0.00514 0.64463 0.99927 0.82730 0.91520 0.52199 0.53115 
175 0.00514 0.64463 0.99927 0.82730 0.91520 0.52199 0.53115 
176 0.00514 0.64463 0.99927 0.82730 0.91520 0.52199 0.53115 
154 0.00412 0.64626 0.99924 0.82067 0.74215 0.57311 0.53110 

 
Slope %Urban Xmean Ymean Rad Fmatch  

0.96311 0.99854 0.05125 0.06652 0.99819 0.86134  
0.96918 0.99856 0.86135 0.06371 0.99821 0.86145  
0.97311 0.99831 0.71654 0.06345 0.99793 0.86193  
0.97311 0.99831 0.71654 0.06345 0.99793 0.86193  
0.97311 0.99831 0.71654 0.06345 0.99793 0.86193  
0.92966 0.99828 0.61884 0.06968 0.99791 0.86081  

 
Diffusion Breed Spread Slope resist Road gravity  

1 1 60 80 25  
1 1 60 60 15  
1 1 60 100 1  
1 1 60 100 5  
1 1 60 100 10  
1 1 60 60 20  

 

 

The final calibration is the most time consuming procedure in SLEUTH due to its full 

resolution dataset.  The procedure is same for the final calibration.  See Table 2.10 below 

for the output of final calibration phase.    
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Table 2. 10  
Final calibration, 2100 x 1843 (rows x columns) 

Run Product Compare Population Edges Cluster Cluster 
Size Leesalee 

485 0.00541 0.53550 0.99910 0.84385 0.99834 0.43084 0.51069 
226 0.00501 0.53286 0.99927 0.86201 0.99666 0.38350 0.51061 
215 0.00502 0.53284 0.99928 0.84966 0.99898 0.39583 0.51053 

 
Slope %Urban Xmean Ymean Rad Fmatch  

0.97246 0.99765 0.90340 0.07230 0.99719 0.86400  
0.98400 0.99790 0.95309 0.06932 0.99746 0.86366  
0.97344 0.99791 0.90037 0.07293 0.99747 0.86367  

 
Diffusion Breed Spread Slope resist Road gravity  

1 2 77 40 15  
1 1 77 35 12  
1 1 77 25 15  

 

 

The last section of Tables 2.8-2.10 defines the composite results of the optimum 

values for the control parameters (diffusion, breed, spread, slope, and road gravity) (see 

Table 2.11).  Tables 2.8-2.10 show successive improvement in the parameters that control 

the behavior of the system.  Parameter values range from 1 to 100.  In the coarse 

calibration, the resulting values were narrowed to 1, 1, 50, 100, 1; and with fine 

calibration values became more sensitive to locale having 1, 1, 60, 80, 25.  In the final 

calibration, values even became more sensitive to the locale with results presenting, 

respectively, values of: 1, 2, 77, 40, and 15.  This extensive automated exploration of the 

parameter space shows the importance of this multistage optimization throughout the 

selection of the different scores, which allowed narrowing to actual values that better 

reflect the characteristics of the metropolitan area.   
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Table 2. 11  
Coefficients defined in the Tables 2.8-2.10  
Coefficients Definitions 

Diffusion determines the overhaul dispersiveness of growth, for both single grid cells 
and of the movement of new settlements outward through the road systems 

Breed determines how likely a newly generated detached settlement is to begin its 
own growth cycle 

Spread controls the amount of outward "organic" expansion 
Slope resistance influences the likelihood of settlement extending up steeper slopes 
Road gravity encourages new settlements to develop near or along the road network 

 

 

The comparison of the model final “population” gives very high correlation of 0.99.  

On the other hand, “compare” presents average value of 0.53.  These scores state that the 

prediction of the model based on the initial seed year of the present urban pattern using 

those refined values in similar to what happened in reality.  “Edges” and “cluster” scores 

are used to evaluate the shape and form of urbanization.  For the final calibration 

correlation was 0.84 in the case of the score “edges.”  In the case of the score “cluster”, 

the correlation was 0.99.           

The spread coefficient value of 77, shows that the urbanization of the Houston CMSA 

tended to occur from the main nucleus.  It indeed grew from the main nucleus of City of 

Houston and growing to outward.  The low values of diffusion and breed coefficients 

state that the opportunity for new urban center is very small, and more and more people 

are moving out from urban centers to suburbs.  This tendency also helps the organic 

growth of the Houston CMSA.  Because of heavy urbanization, slope coefficient allows 

new urbanization into upper slopes.  Road gravity has relatively less effect on 

urbanization due to the high spread coefficient and they are being located in the already 

urban centers.   
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The final results of the calibration process are coefficient values that best simulate 

historical growth for a region.  However, due to SLEUTH’s self-modification qualities, 

the values of the five growth coefficients at the start of the calibration period may differ 

substantially from those at the end of the calibration period.  To achieve the best 

simulations, the coefficient values from the end of the calibration period are desirable..  

Using the best coefficients derived from calibrating and running SLEUTH for the 

historical calibration period will produce a single set of finishing date coefficients to 

initialize forecasting.  However, due to the random variability of the model, averaged 

coefficient values taken from multiple Monte Carlo-iterations will produce a more robust 

forecasting coefficient set than those taken from the single best simulation. 

The result of this sorting and averaging was reflected in a change in coefficients that 

control the model over the duration of the calibration period as is illustrated for the three 

comparison years in Table 2.12.  The increase in the spread coefficient and decrease in 

slope resistance over the calibration period are the most obvious changes.  Spread                               

coefficient values jumped from 77 to 100 after self-modification.  Slope resistance values 

nearly halved from 40 to 22.  One possible interpretation of these values is that the 

Houston CMSA is susceptible to intense boom phases as evidenced in the high increase 

seen in the spread coefficient over the calibration period and as urbanization continued to 

increase from the main nucleus in the study area – the city of Houston.  The Houston 

CMSA has relatively low slopes and as the urban areas continue to expand, less space 

remains for urbanization.  Thus, self-modification causes slope resistance to decrease.   
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Table 2. 12  
Averaged coefficient values after “derive forecasting coefficients phase” 

Year Diffusion Breed Spread Slope resistance Road gravity 
1984 1 2 84 36 15 
1992 1 2 91 31 16 
2002 1 3 100 23 17 

 

 

During the prediction phase, an error was discovered involving the misnaming of the 

1974 and 1984 extents.  These were incorrectly given the years, 1970 and 1980 

respectively.  The problem was how the model treats time in SLEUTH modeling.  In 

order to see if this misnaming would affect the outcome, we have rerun the final phase of 

calibration, deriving forecasting coefficients phase (see Tables 2.13-2.14).   

 

Table 2. 13  
“Derive forecasting coefficients” results before the misnaming 

Year Diffusion Breed Spread Slope resistance Road gravity 
1980 1 2 84 36 15 
1992 1 2 95 29 16 
2002 1 3 100 22 17 

 
 
 
Table 2. 14  
“Derive forecasting coefficients” results after the misnaming 

Year Diffusion Breed Spread Slope resistance Road gravity 
1984 1 2 84 36 15 
1992 1 2 91 31 16 
2002 1 3 100 23 17 
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The results show almost perfect similarity.  We have found that the temporal spacing 

of control data sets does not drastically affect the final parameter values in SLEUTH 

modeling.  Based on these results, misnaming error did not cause serious problems.   

An additional statistical validation of the models predictive performance was 

undertaken.  This was accomplished by running the model in prediction mode using the 

1974, 1984, and 1992 urban extents to predict 2002 urban extent for the study area.  We 

will call the resulting output image “Predicted Urban Extent.”  Since we have an 

independently derived estimate of 2002 urban extent from remote sensing, we can 

undertake a statistical comparison between our 2002 predicted urban extent and the 2002 

observed urban extent.  This comparison is illustrated in Figs. 2.17-2.18 and an error 

(confusion) matrix (Congalton, 1991; Congalton & Mead, 1983) and kappa coefficient 

(Table 2.15) were computed to quantify the degree comparison accuracy.    
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Fig. 2. 17 The Houston CMSA 2002 predicted urban extent 
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Fig. 2. 18 The Houston CMSA 2002 observed urban extent 

 
 

 
 
 
 

 
 



 

 

62

Table 2. 15      
Confusion matrix and kappa coefficient for the 2002 predicted urban extent     
 Reference Data Points (OBSERVED URBAN 2002) 

 Nonurban Urban Row Total Producers 
Accuracy 

Users 
Accuracy 

Nonurban 227 3 230 99.13% 98.70% 

Urban 2 24 26 88.89% 92.31% 

C
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Column Total 229 27 256  
Overall Classification Accuracy = 98.05% 
Kappa (Khat) Coefficient = 0.89 
 

 

We obtained a 98% overall accuracy with kappa coefficient of 0.89.  Kappa values 

are also characterized into 3 groupings: a value greater than 0.80 (80%) represents strong 

agreement, a value between 0.40 and 0.80 (40 to 80%) represents moderate agreement, 

and a value below 0.40 (40%) represents poor agreement (Congalton, 1996).  Our kappa 

coefficient value came out as 0.89, which represents a strong agreement.  Based on high 

overall classification accuracy and kappa coefficient value, we can say that the model 

predicts in high accuracy.   

 

9. Results and Discussion 

Despite some minor setbacks, through simulation of observed urban growth in the 

Houston CMSA from 1974 – 2002 a thorough calibration of SLEUTH was undertaken. 

Through the process of calibration, several important conclusions concerning SLEUTH’s 

ability to successfully model growth in the Houston Metropolitan area can be drawn.  It is 

important to recognize that compared to urban growth in many other cities, urban growth 

in Houston is largely unimpaired by topography and zoning restrictions.  The population 

of the Houston CMSA increased from 1.5 million in 1960 to 4.5 million in 2000, it 
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simply tripled.  It is projected that Houston CMSA’s population will increase to 7.5 

million by 2030 (The Perryman Group, 2002).  The study area has a total of 20,019 km2 

of land area.  Of this land, only 5 percent was occupied by urban settlements in 1974.  

However, in 2002, the urbanized area in Houston CMSA accounted for 19 percent of the 

total CMSA land, a nearly quadruple increase.      

The performance of the SLEUTH calibration in the Houston CMSA was improved 

with increased spatial resolution.  As the calibration process progressed, the five 

coefficient values were successfully adjusted to accurately reflect the study area.  The 

slope resistance coefficient value dropped substantially indicating that slope was not a 

factor of urbanization in at least the Houston CMSA due to the area’s low slope.  The 

spread coefficient, on the other hand increased substantially showing that infill and edge 

growth are major factors on urban development in Houston CMSA.  Lack of zoning 

regulations, suitable topography, and warm environment are expected to be the main 

factors that affect spread coefficient to be high.     

Coarse calibration phase has made the initial improvement in model performance.  

Values that were fed to coarse calibration had a starting value of 1 and finishing value of 

100.  After the coarse calibration was done, the values for five coefficients were 1, 1, and 

50 for diffusion, breed, and spread coefficients respectively.  For slope resistance, 

resulting values ranged from 50 to 100.  For road gravity, however, it ranged from 1 to 

25.  Out of five coefficients, the values for the three coefficients, spread, slope resistance, 

and road gravity, showed the most improvement from coarse to fine, and from fine to 

final calibration.  The intensity of the values of this improvement varied with the local 

environmental and urban characteristics of Houston CMSA.  The study area presented a 
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regular transition from coarse, fine, and final calibration (see Fig. 2.19); the values tend 

to adjust to local characteristics gradually.  The possible explanation of this could be that 

the input dataset with higher resolution produce better results (Yang & Lo, 2003).    
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Fig. 2. 19 The behavior of the study area, Houston CMSA, to the growth coefficients 

 

 

The LeeSallee metric was chosen our primary goodness of fit measure during the 

SLEUTH model run.  In this study, the LeeSallee score, which is a shape index metric, 

defined as a ratio of the AND to the OR of the actual and predicted urban images as 

binary layers (Keith et. al., 1996), is used to rank the growth scenarios and select an 

appropriate suite of coefficient values to model Houston’s future growth.  Let say “A” is 
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our predicted urban image for calibration year, and “B” is observed (or actual) urban 

extent image.  Then, the LeeSallee shape index is calculated by following formula: (A ∩ 

B) / (A U B).  The degree of shape match between the modeled growth and the known 

urban extent for the control years is measured through LeeSallee score.  If the model 

grows in different ways or in different directions this index will reflect that.  The 

predicted urban extent in 2002 after final calibration and compared to that obtained 

independently from a remotely-sensed land use/land cover map had a shape index of 0.51 

for Houston CMSA.  Even though SLEUTH widely popular modeling urban growth; 

there are only a few published results that show output statistics.  Silva & Clarke (2002) 

modeled urban growth in Lisbon and Porto, Portugal using SLEUTH urban growth 

model.  They achieved a LeeSallee value of 0.35 for Lisbon, and 0.58 for Porto.  Clarke 

& Gaydos (1998), however, achieved a LeeSallee value of 0.30, and they emphasized 

that even a 30 percent (0.30) match was quite good for their study.   

Houston CMSA presents a very low value of diffusion and breed and very high 

spread coefficient and low slope coefficients.  This indicates that growth clearly occurs at 

the urban-rural fringe.  The increase in suburbs and exurbs has increased organic growth.  

Another reason that Houston CMSA may present a very high value of spread is that 

Houston is the only metropolitan area that functions without a zoning plan (Vojnovic, 

2003).  The outward growth occurs from every direction in Houston CMSA because 

development outward from the existing urban centers is unrestricted by zoning.   

Road gravity presents low value because expansion of the highway network in the 

Houston metropolitan area from 1974 to present consisted primarily of upgrading 

existing roads rather than developing roads in areas where non existed before. However, 
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a new major transportation construction, Texas Corridor, is planned to be finished in 

2025 by Texas Department of Transportation (TXDOT) and will be included in 

predicting Houston’s future growth.  

   

10. Conclusions 

Concerns over the degradation of our environment are raised because of increasing 

urban growth through the world.  Modeling and simulation are required to understand the 

dynamics of complex urban systems and to evaluate the impacts of urban growth on 

environment.  Dynamic modeling has gained popularity in recent years among city and 

urban planners as a useful tool for urban modeling.  Cellular automaton has 

technologically advanced in the last decade as a popular dynamic modeling method.   

We used Houston CMSA as our case study due to its rapid change in urban 

development during the past 30 years.  This study has examined the spatial consequence 

of urban growth for Houston CMSA, only metropolitan area in the U.S. that has no 

zoning regulations (Vojnovic, 2003).  The cellular automaton modeling has been found to 

be the most suitable for use in simulating urban growth in a metropolitan area.  The 

calibration results clearly show that the growth occurs at the urban fringe and it grows 

outward in every direction due to lack of zoning regulations.    

Self-modification rules were found to play an important role in controlling urban 

growth in the study area, Houston CMSA.  The coefficient values that control the system 

capture the essence of the study area.  Population grew constantly starting from 1960s in 

Houston CMSA, and this certainly influenced new developments in the metropolitan 

area.  
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This study is unique in several ways: first, it represents the first modeling of urban 

growth of a Consolidated Metropolitan Statistical Area using SLEUTH. Moreover, the 

city of Houston is the only major metropolitan area operating without a zoning plan and 

with very little topographic control on urban expansion. Therefore, this study represents 

calibration of the SLUETH model under the case where growth is virtually unrestricted 

by either natural barriers or governmental controls.  

The rigorous calibration process has resulted in the determination of a set of 

diffusion, breed, spread, slope resistance, and road gravity growth coefficients that enable 

SLEUTH to quite accurately simulate the observed growth in the Houston CMSA over 

the period 1974 to 2002.  Because Houston CMSA is located upon relatively flat 

topography, and having no zoning regulations, the study area has been experiencing a 

steady population and urban growth increase.  Our results indicate a very high spread 

coefficient indicating an edge growth in Houston CMSA.  Slope coefficient also was 

relatively low because the topography is clearly less of a constraint to growth in the 

Houston CMSA.  Just as importantly, the high values of the spread coefficient relative to 

the others, indicates that the calibration process has successfully captured the organic 

nature of the Houston’s growth.  Clarke & Gaydos (1998) have modeled urban growth in 

San Francisco and Washington/Baltimore, reporting spread coefficients as 19 and 21 

respectively.  Slope resistance coefficients were 31 for San Francisco and 10 for 

Washington/Baltimore.  Yang and Lo (2003) also modeled urban growth in Atlanta, 

Georgia, using the SLEUTH urban growth model, and they reported their spread 

coefficient and slope coefficient as 41 and 95 respectively.  This gives extra strength to 

the model’s own ability to automatically calibrate itself.  For Houston CMSA, the 
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calibration presented a set of starting parameter values in 1974 of: 1, 3, 100, 22, and 17, 

for diffusion, breed, spread, slope resistance, and road-gravity respectively.  

  

11. Recommendations for Future Research 

 This paper introduces an exhaustive and rigorous calibration of the SLEUTH model 

to data from the Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area 

(Houston CMSA).  As, the current literature provides little guidance in which metrics to 

use in the selection of SLEUTH’s growth coefficients, in this research, the leesalee, shape 

index, metric which is defined as a ratio of the AND to the OR of the actual and predicted 

urban images as binary layers was used to select among the possible alternatives. 

However, additional metrics and an increased number of Monte Carlo iterations may 

improve the coefficients obtained from the calibration phase. Time constraints precluded 

performing an exhaustive comparison among leesalee, population, edges, and clusters or 

some composite of these.  

 The coefficient values that are computed here during rigorous calibration phases are 

going to be used in predicting urban growth in Houston CMSA and also land use/land 

cover change will be simulated throughout 2030.   
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CHAPTER III 

PREDICTING URBAN GROWTH IN HOUSTON-GALVESTON-BRAZORIA 

CONSOLIDATED METROPOLITAN STATISTICAL AREA (HOUSTON CMSA) 

 

The Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area 

(Houston CMSA) has experienced rapid population growth during the past 3 decades and 

it is projected to reach approximately 7.5 million by 2030. Houston also is the only major 

US metropolitan area with no zoning regulations. Using SLEUTH, a spatially explicit 

cellular automata model, the spatial pattern of future urban growth within the Houston 

CMSA is predicted for the 2002 to 2030 period. The SLEUTH model is calibrated for 

local conditions in Houston using four historical urban extents, two land use layers, four 

transportation layers, slope layer, and excluded layer for the period from 1974 to 2002. 

The modeled SLEUTH, growth in the Houston CMSA is predominately “organic” with 

most growth occurring along the urban/rural fringe.  Projected increases in urban area 

from 2002 to 2030 parallel projected increases in population growth within the Houston 

CMSA.  From 1990 to 2000, the population of Houston CMSA more than doubled from 

approximately 2,000,000 to 4,600,000 and it is expected to grow by an additional 

2,800,000 people by 2030.  Secondly, urban growth in Houston over the past 30 years has 

epitomized the term urban sprawl because the urban area has quadrupled, growing from 

941 to 3,724 km2 from 1974 to 2002, and it is predicted to double by 2030, reaching 

6,621 km2. 
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1. Introduction 

Urban planners and other academics focused their attention on urban growth models 

in order to help understand, and potentially lower the negative effects of large-scale 

urbanization.  Planning agencies have recently been integrating analytical decision 

making tools with traditional planning approaches to improve planning for their 

communities.  Technologically based tools such as urban models and geographic 

information systems (GIS) can provide insight into different growth scenarios, enabling 

policy makers to more effectively use traditional planning tools (EPA, 2000).  

Geographic information developed to support growth management strategies can be 

incorporated into planning activities and environmental analysis.   

Sprawl has been in effect with the exurban growth in our cities.  Middle-class and 

wealthy residents are drawn out of the inner city into the suburbs and exurbs (Beale, 

1977; Hodge & Qadeer, 1983; Davies, 1990).  Higher taxes on farmland, demand for 

better public services, trespassing on farmlands, and displacement of farm families to the 

city are some of indirect impacts of exurban growth (Rodd, 1976; Bryant & Russwurm, 

1979; Bryant, 1981). 

Between 1900 and 1970 net migration in the USA was predominately from rural 

areas to urban centers (Wardwell & Brown, 1980). Since then, the nation’s rural 

population fluctuated between 50 and 60 million, while the urban population increased 

nearly seven-fold to approximately 150 million in 1970 (Fuguitt et. al., 1989).  During the 

1970s, the trend of net migration to urban centers reversed with large cities losing 

population to non-metropolitan rural areas and small cities with populations less than 

25,000 residents laying on the urban fringe (Wardell & Brown, 1980). The largest net 
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population growth rates in the 1970s were in the non-metropolitan counties adjacent to at 

least one metropolitan county (Johnson, 1989).  A metropolitan county contains a city 

with at least 50,000 people or is part of an urbanized metropolitan area with a population 

of at least 100,000 (Myers, 1992).  During the 1980’s, the nation returned to the historical 

norm of rapid metropolitan population growth with net out-migration from rural areas to 

metropolitan areas (Fuguitt et al., 1989). However, population continued in non-

metropolitan counties located adjacent to metropolitan ones (Johnson, 1989). 

Population dispersion from city centers to the outwards in the USA and in other 

industrialized nations has been facilitated by advances in transportation and 

communication technologies, changes in labor-force composition, increases in personal 

affluence, and a reduction in rural-urban differences (Wardwell, 1980; Fuguitt et al., 

1989).  The lessening distance brought about by technological changes and by the 

expansion of transportation infrastructure has made rural landscapes in both metropolitan 

and adjacent non-metropolitan counties accessible for residential development.  Because 

of the diversity of residential locations urbanization decisions are increasingly influenced 

by the quality of public services (Anas, 1982) and by the spatial distribution of 

environmental amenities and disamenities (Diamond & Tolley, 1982; Knapp & Graves, 

1989). 

During the last 50 years, these migration patterns to and within metropolitan areas in 

the United States have caused rapid growth, transforming farmland, wetland, and forests 

into extensive urban landscapes.  Research scientists and policy makers are paying 

attention to the consequences of urbanization as a result of the environmental impacts it 

produces.  The widespread expansion of urban areas has been especially evident in 
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regions that are undergoing rapid economic development.  In such areas, problems arise 

when urbanization is poorly planned.  Unplanned and uncontrolled urbanization results in 

sprawl, conversion of prime agricultural land to urban uses, and habitat fragmentation.    

Houston, Texas, is an archetypical example of rapid expansion of an urban area in the 

United States.  The Houston-Galveston-Brazoria Consolidated Metropolitan Statistical 

Area (hereafter referred to as the Houston CMSA) is among the nation’s most dynamic 

and rapidly growing metropolitan areas.  Between 1900 and 2000, the region’s population 

more than doubled growing from approximately 2,000,000 to 4,600,000 (U.S. Census 

Bureau, 2000a).  The population is projected to grow by an additional 2,800,000 by the 

year 2030 (The Perryman Group, 2002).  Because Houston’s areal growth over the past 

30 years has been a prime example of urban sprawl and there is no reason to assume this 

growth mode will not continue in the future. 

Any substantial increase in population usually has a negative effect on land because it 

requires the land, which is employed for other uses, to be converted to urban land.  There 

has been a movement recently to develop urban simulation models that are designed to 

help understand the spatial expansion of urban areas (White & Engelen, 1993; Batty & 

Xie, 1994; Cecchini, 1996; Batty et al., 1997; Clarke et al., 1997; Clarke & Gaydos, 

1998; Semboloni, 1997; White et al., 1997; Li & Yeh, 2000).  These urban growth 

models follow in the long and distinguished tradition of the mapping and quantifying 

spatial patterns of urban growth (Tobler, 1970).  Urban models have been developed to 

predict, describe, and analyze the spatial expansion of urban areas for research and policy 

purposes (Lee, 1973; Batty, 1976; Landis, 1994; Couclelis, 1997; Guhathakurta, 1999; 

Klosterman, 2000).   
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One of these new urban growth simulation models is the SLEUTH model.  The 

acronym, SLEUTH, was compiled from the image input requirements of the model: 

Slope, Land cover, Exclusion, Urbanization, Transportation, and Hillshade.  The 

SLEUTH model has been designed for easy portability to diverse regions throughout 

regional and global scale and SLEUTH has successfully predicted urban expansion in the 

San Francisco Bay area, the Washington-Baltimore corridor and in Lisbon-Porto, 

Portugal (Clarke et al., 1997; Clarke & Gaydos 1998; Silva & Clarke 2002). SLEUTH is 

currently being used to model urban growth in Chicago-Milwaukee, Portland-Vancouver, 

the Philadelphia-Wilmington and New York metropolitan areas (Gigalopolis, 2003).  The 

model’s validity can be evaluated by its ability to generate realistic urban patterns useful 

for scenario planning and various types of regional analysis. In this research, SLEUTH 

model is used to predict the future urbanization patterns in the Houston CMSA for the 

period 2002 to 2030. 

 

2. The Houston-Galveston-Brazoria CMSA 

Houston, Texas, presents an ideal metropolitan area for modeling spatial patterns in 

urban growth using SLEUTH model. First, from 1990 to 2000, the population of Houston 

more than doubled from approximately 2,000,000 to 4,600,000 and it is expected to grow 

by an additional 2,800,000 people by 2030.  Secondly, urban growth in Houston over the 

past 30 years has been epitomized by the term urban sprawl.  The urban area has 

quadrupled; growing from 941 to 3724 km2 from 1974 to 2002.  Thirdly, compared to 

many other cities, urban expansion in Houston is largely unconfined. Outside of water 

bodies and floodplains, there are few physiographic limits to Houston’s growth.  Because 
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Houston is the only major city without a zoning plan (Vojnovic, 2003), urban growth 

there faces much less regulatory constraints than urban growth in many other cities in the 

United States. Texas political columnist Molly Ivins succinctly summarized Houston’s 

climate, topography and rapid urban sprawl in her description of “Houston is Los 

Angeles with the climate of Calcutta” 

Houston lies largely in the northern portion of the Gulf coastal plain along a 64 to 80 

km. wide swath along the Texas Gulf Coast.  The northern and eastern portions of the 

eight-county study area are largely forested, while the southern and western portions are 

predominantly prairie grassland.  Perhaps the largest physiographic obstacle to growth in 

the Houston metropolitan area is surface water.  The study area contains lakes, rivers, 

bays and an extensive system of bayous and manmade canals that are part of the 

rainwater runoff management system.  Approximately 25%-30% of Harris County, which 

contains most of the city of Houston, lies within the 100-year flood plain. 

The Houston-Galveston-Brazoria Consolidated Metropolitan Statistical Area 

(Houston CMSA) forms the basic areal unit of this study.  The Houston CMSA (see Fig. 

2.6) contains eight counties and three Primary Metropolitan Statistical Areas (PMSAs): 

The Houston PMSA encompasses Chambers, Fort Bend, Harris, Liberty, Montgomery, 

and Waller Counties while the much smaller Galveston-Texas City PMSA and Brazoria 

PMSA each comprise a single county, Galveston and Brazoria, respectively.  The 

Houston CMSA’s population of 4.8 million is the 10th largest among U.S. metropolitan 

statistical areas.  The city of Houston has a population of 1.9 million and is the 4th most 

populous city in the nation trailing only New York, Los Angeles, and Chicago. 
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The City of Houston lies in three counties: Harris (1,511.13 km2), Fort Bend (20.92 

km2), and Montgomery (6.73 km2) (see Table 3.1).  Under Texas’ Municipal Annexation 

Act of 1963, the city of Houston (as can all cities over 100,000) also can exert certain 

powers over unincorporated areas lying within 8 km of any point on the city limits, which 

is termed the Extraterritorial Jurisdiction (ETJ).  Houston’s ETJ encompasses 3,397.93 

km2, excluding the area of cities that lie within it.  In addition to Houston, Harris County 

contains part or all of 35 individual incorporated areas which lie outside of Houston’s 

ETJ. 

 

Table 3. 1  
Spatial extent of Metropolitan Statistical Areas and counties and the City of Houston 
NAME AREA (km2) 
Houston CMSA 22,736 
Houston PMSA 16,328 
Brazoria PMSA 4,138 
Galveston PMSA 2,270 
Harris County  4,605 
Chambers County 1,551 
Fort Bend County 2,266 
Liberty County 3,004 
Montgomery County 2,704 
Waller County 1,335 
City of Houston 1,539 
 

 
 

The City of Houston was founded in 1836 and incorporated in 1837, but grew slowly 

prior to 1900 when it reached a population of only 45,000.  The Galveston Hurricane of 

1900 and the discovery of large oil reserves at Spindletop in 1901, 145 kilometers east of 

Houston, led to Houston’s rapid growth.  Transportation improvements in the 19th and 
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20th centuries including the creation of the Houston Ship Channel which enabled 

oceangoing vessels to reach Houston itself also fueled Houston’s growth.  In the 20th 

century, federal and state intervention in the Houston economy expanded to include the 

funding of petrochemical plants, gas pipelines, refineries, and research and development 

in the petrochemical industry.  The decision to locate the National Aeronautics and Space 

Administration (NASA) complex was another boost to the Houston area in the 1960s.  

Vojnovic (2003) provides a good review of the factors fueling Houston’s growth. 

 

3. Population Growth and Urbanization 

Globally, the world’s population is becoming more urbanized.  In 1995, 51 percent of 

the world’s population lived in settlements of at least five thousand people, an increase of 

29 percent from 1950 (Clarke & Gaydos 1998).  It is expected that the equivalent of 

1,000 cities, each of three million inhabitants, will have to be constructed worldwide by 

the year 2040 (Binde, 1998). According to U.S. Census Bureau projections (U.S. Census 

Bureau 2000b), which rely on assumptions about future fertility, mortality, and 

international migration rates, suggest a doubling of the U.S. population by 2100 to 

approximately 570 million people (U.S. Census Bureau 2000c). 

Texas’s population has also increased dramatically since the 1960’s, and in 2003 

totaled approximately 22 million making Texas the 2nd most populous state after 

California (MERIC, 2003; U.S. Census Bureau, 2000a).  

Detailed population predictions for the period 2000 to 2040 have been performed on a 

county level basis for the state of Texas by the Texas Office of the State Demographer 

and The Department of Rural Sociology at Texas A&M University. These projections 
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utilize a state of the art methodology cohort-component projection technique with 

existing demographic patterns taken into account (Texas State Data Center, 2003). Three 

population projection scenarios have been developed.  The population projection used 

here represents the one-half 1990-2000 Migration scenario which assumes that net 

migration will occur at a rate one-half that observed during the 1990s (see Appendix).  

These projections are those recommended for most applications (Texas State Data 

Center, 2003).  Table 3.2 below illustrates the population projections from 2005 to 2030 

for each Houston CMSA county, Houston CMSA, and Houston PMSA (Texas State Data 

Center, 2003). 

 

Table 3. 2  
Population projections from 2005 to 2030 for the Houston CMSA counties 

 2005 2010 2015 2020 2025 2030 

Brazoria 263,631 285,850 308,656 331,731 354,258 375,664 

Chamber 28,637 31,375 34,261 37,328 40,256 42,867 

Fort Bend 401,710 449,811 501,218 557,407 615,222 670,032 

Galveston 259,872 268,714 277,238 284,731 290,522 294,218 

Harris 3,674,011 3,951,682 4,240,026 4,541,661 4,853,680 5,17,4691 

Liberty 75,876 81,930 88,354 94,898 10,1220 107,335 

Montgomery 335,176 379,363 426,858 478,187 531,570 585,111 

Waller 36,644 41,137 46,142 51,175 56,654 62,352 

Houston PSMA 4,552,054 4,935,298 5,336,859 5,760,656 6,198,602 6,642,388 

Houston CMSA 5,075,557 5,489,862 5,922,753 6,377,118 6,843,382 7,312,270 

 
 

 

Fig. 3.1 illustrates population projections for counties in the study area, excluding 

Harris for the 2005 - 2030 period.  Fort Bend and Montgomery counties have the highest 
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population among the seven counties and also they are projected to have the highest 

growth rate between 2005 and 2030.  Chambers, Waller, and Liberty counties have low 

population amount and also have low growth rate relative to Fort Bend and Montgomery.  

Galveston also shows a trend close to send group, Chambers-Waller-Liberty, based on a 

lower growth rate especially after 2015.  
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Fig. 3. 1 Population projections for counties in the study area, excluding Harris, for the 2005-2030 period 

 

Fig. 3.2 plots population growth for Harris county, Houston PMSA and Houston 

CMSA.  Houston PMSA and Houston CMSA are similar in terms of their growth rate.  

This indicates that population is concentrated on Houston PMSA.  Harris, Fort bend, and 

Montgomery counties have the highest population growth rate and population amount.  
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Therefore, Houston PMSA shows parallel growth rate to Houston CMSA.  The rest of the 

counties; such as Galveston, Waller, and Liberty; do not account much for the study area 

in terms of population growth and growth rate.   
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Fig. 3. 2 Population projections for Harris County and the Houston Primary (PMSA) and Consolidated 
(CMSA) Metropolitan Statistical Areas for the 2005-2030 period 

 

Population dynamics are important because land is required to accommodate the 

world’s rapidly increasing urban population. In Texas, the major urban growth form is 

sprawl, occurring as a result of a surging state population.. Urban sprawl such as has 

occurred in Houston is characterized by (1) low density development that extends 

outward from city centers,  (2) a heavy dependence on automobiles for transportation and 

(3) single-use zoning that separates one type of land use from another (EPA, 2000).  As a 
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result of urban sprawl, farmland and natural habitats are being replaced with low density 

single family dwellings and sprawling retail shopping complexes, deteriorating the 

environment and outpacing the economic benefits of growth. As outlying growth centers 

continue to develop, such as Houston’s edge cities (Garreau, 1991) of the Galleria and 

Greenspoint, people and businesses then begin to move away from the central city, which 

can lead to urban decay and the isolation of disadvantaged populations (EPA, 2000).  

 

4. Urbanization and Modeling 

Urban modeling is generally concerned with designing, building and operating 

mathematical models of urban phenomena, typically for cities and regions to help 

scientists understand urban phenomena through analysis and experiment and aid planers 

politicians and the community to predict, prescribe and invent the urban future (Batty, 

1976).  The role of models in the planning process is to help understand the behavior of 

urban systems.  Hester (1970) identifies two objectives for the use of models in urban 

planning.  One is to uncover the dynamics of urban development, as a means of 

advancing the theory of urban growth, and making theory operational so that it can be 

refined and tested.  The second objective for the use of models in urban planning is to 

provide a method for projecting the future state of the systems they describe, in order to 

anticipate or influence the course of urban development in accordance with public policy.   

According to Guhathakurta (1999), the renewed optimism of large-scale urban 

models stems from two sources: (1) the power of personal computers and (2) the promise 

of geographical information systems (GIS) as a communicative platform for testing and 

applying urban models.  This new technology must be integrated with a new planning 
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philosophy.  Guhathakurta (1999) argues that it is essential to forge a symbiotic 

relationship between planning theory and the urban modeling efforts and the validity of 

urban modeling can be demonstrated through successful use by the planning community.  

The role of models in the planning process has increased in relation to their greater 

acceptance in the planning community. 

 

5. Urban Models 

Modeling has been used to study the demographics, economic activity and spatial 

organization of urban areas using both descriptive and predictive approaches.  Computer 

models used in community planning traditionally have focused on regional economic 

trends or transportation related impacts on economic growth (EPA, 2000).  Demographic 

models are used for the analysis and projection of population dynamics and are useful for 

planning purposed because they can examine the effect of population grown on land 

requirements for housing and other urban activities and the influence of population 

growth on investment decisions and on public policy (Masser, 1972; Oppenheim, 1980).  

Economic activity models (i.e. inter-industry relationships, economic base, input-output 

analysis) are techniques for analyzing economic activity in relation to urban planning and 

can aid in the  formulation of planning policies and provide insights into the structure of 

the local economy (Masser, 1972).  Finally, spatial organization models such as gravity 

models, the Lowry model, and operational urban models, attempt to explain the spatial 

organization of population and economic activity within regions and urban areas.   

Since all urban activities influence one another, a model that considers the spatial 

relationships represents an improvement in modeling urban growth.  Gravity models have 
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long been used for analyzing spatial relationships in regions and urban areas more than 

any other form of mathematical model (Lee, 1973; Masser, 1972).  Gravity models 

analyze the interaction between various urban activities, and are so called because the 

gravity concept of human interaction is based on the Newtonian concept of gravity (Lee, 

1973).  Main urban modeling, the gravitational pull exerted by two bodies is interpreted 

as the amount of interaction between two areas, and the mass of the bodies is measured in 

terms of size and attractiveness of the urban areas (Lee, 1973).  Even though gravity 

models have been widely within the planning community, they have problems and 

limitations.  The main criticism is the lack of a sound theoretical base.  Lee (1973) states 

that gravity models are not based on any theory of urban system behavior and lack 

explanatory behavior.  Gravity models may describe the interaction between activity 

centers; however, they fail to explain the interactions.   

One of the most widely applied urban models is the Lowry model which depicts well 

the relationships between transportation and land use.  The core assumption of the Lowry 

model assumes that regional and urban growth (or decline) is a function of the expansion 

(or contraction) of the basic sector.  This employment is in turn having impacts on the 

employment of two other sectors, retail and residential.  The Lowry model introduced 

two major innovations into the urban modeling field: (1) it incorporated within its 

structure both a forecasting land use distribution and intensity of land use activities and 

(2) it related three elements of the urban system (population, employment and 

transportation) within one model framework (Lee, 1973).  According to economic base 

theory, the major force driving changes in the structure of an urban region is employment 

change in the region’s industries, and this affects population and employment levels 
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directly and indirectly (Lee, 1973).  The model has been widely applied and has proved 

useful in a variety of studies, but it also has been criticized because it is a static model 

(Lee, 1973).  

Recently there has been renewed interest in the development of operational urban 

models to aid in understanding the adverse effects of urban expansion.  This renewed 

interest in urban models stems from a increases in computer computational power, 

software developments such as Geographic Information Systems (GIS), plentiful digital 

data and increasing environmental concerns.  The emphasis on “smart growth” which 

attempts to balance the needs for development with quality of life has put an increasing 

emphasis on spatially explicit models that address the environmental consequences of 

land use/land cover (LULC) change.  “Smart growth” places emphasis on town-centered 

development, mass transit and pedestrian oriented planning, and seeks to achieve a 

balanced mix of housing, commercial and retail uses (EPA 2000). Operational urban 

models can be applied at multiple locations and generate results that address relevant 

planning issues.  Table 3.3 summarizes the type of operational urban models currently 

available (Klosterman 2000) where “model type” refers to aspects of the models such as 

operational method, underlying math structure and thematic scope.  Although a number 

of urban models have been developed, only a few are actually available, and even fewer 

are freely available.  The LUCAS, Markov, SLEUTH, Smart Growth Index, UPLAN, and 

UrbanSim are the only free models available for academic research. 
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Table 3. 3  
Type of operational urban models 

Model Spatial 
Interaction 

GIS (Planning 
Requirements) GIS (Calibration) Other 

Community Viz  X   
CUF, I  X   
CUF, II   X  
CURBA   X  
DELTA    X 
DRAM/EMPAL X    
GSM  X   
INDEX  X   
IRPUD X    
LTM    X 
LUCAS   X  
Markov    X 
MEPLAN X    
METROSIM X    
SAM-IM  X   
SLEUTH    X 
Smart Growth 
Index  X   

Smart Places  X   
TRANUS X    
Ugrow    X 
UPLAN  X   
UrbanSim X    
What if?  X   
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6. Complexity of Urban Environments 

Urban areas have complex land use patterns. This complexity is meaningful as it 

represents the information-rich nature of the system, and is necessary for the successful 

functioning of the city (White et al. 1997). Work by White and Engelen (1993) on the 

theory of dynamics and evolutionary systems provides support for the idea that 

complexity is an inherent and necessary characteristic of cities. These complex urban 

patterns can by capture by a GIS for use in models.  The integration of Cellular Automata 

(CA) with GIS provides an approach to modeling spatial dynamics that both retains and 

utilizes the spatial complexity of cities (White at al. 1997).  Clarke and Gaydos (1998) 

believe CA models are ideally suited to modeling urban systems, because of more 

unknown than measurable variables.  The number of variables involved in the urban 

growth process has not been concretely established.  The SLEUTH model attempts to 

simplify the process by modeling the complex nature of urban areas solely by the 

physical controls to development.   

 

7. Limitations of Modeling in GIS 

GIS requires improvement and advancement of analytical capabilities.  Solutions are 

required for problems that address both the performance and the modeling problems of 

contemporary GIS (Wagner, 1997).  Contemporary GIS has serious deficiencies as a 

platform for urban modeling including poor performance for many operations (especially 

for large data volumes), poor ability to handle dynamic spatial models, and poor handling 

of the temporal dimension (Park & Wagner, 1997).  Research has focused on improving 
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the analytical capabilities of spatial modeling within GIS (Park & Wagner 1997; 

Fotheringham & Rogerson, 1994; Semboloni, 1997).  In these efforts the focus is on the 

incorporation existing spatial models into GIS and to a lesser extent the development of a 

more suitable GIS-based framework for spatial modeling (Wagner 1997). 

Sui (1998) claims that the integration of urban modeling with GIS must proceed with 

the development of new models for inherently complex cities, the incorporation of multi-

dimensional concepts of space and time with GIS, and through extension of the feature-

based model to implement these new urban models and spatial-temporal concepts.  One 

means to overcome the performance constraints of current generation of GIS for urban 

modeling is through the use of cellular automata (CA). 

The integration of CA and GIS is not only feasible, but provides many advantages.  

Cecchini (1996) concluded that CA and other techniques from within the artificial 

intelligence paradigm are useful for representing socioeconomic and urban development 

phenomena which are shaped by individual choices and decisions.  Current research on 

coupling CA with GIS has improved the analytical capabilities for dynamic spatial 

modeling (Wagner, 1997; Park & Wagner, 1997; Clarke & Gaydos, 1998).  Park and 

Wagner (1997) have shown significant advantages of CA in data analysis and modeling.  

The abilities of CA to perform spatial dynamic modeling, to handle time explicitly, and 

the ease with which CA models can be constructed are all valuable benefits (Wagner, 

1997).  Couclelis (1997) argues that the integration with GIS has helped move cellular 

automata-based urban and regional models from the realm of instructive metaphors to 

that of potentially useful quantitative forecasting tools. 
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8. Cellular Automata 

CA belongs to a family of discrete, connectionist techniques that are currently being 

used to investigate fundamental principles of dynamics, evolution, and self-organization 

(White & Engelen, 1993).  Essentially, a cellular automaton model is composed of a 

finite set of grid cells, the current state of each cells, a set of transition rules for the cells, 

and the neighborhood of a cell.  In a strict cellular automaton the rules must be uniform 

and must apply to every cell, state, and neighborhood.  Every change in state must be 

local implying that there is no action at a distance (Batty et al., 1997).  There are many 

renditions of CA, but the current ones that have applicability to urban systems follow 

Conway’s logic (Batty & Xie, 1994). 

 

9. Urban Modeling Using CA 

The application of CA to dynamically model urban systems can be traced back to 

CA’s beginnings.  The first attempts to build mathematical CA models of urban systems 

originated with Hagerstrand’s (1967) spatial diffusion models.  This was followed with 

work accomplished by Tobler (1970) formulating a demographic model based on the 

cell-space concept in the Detroit region.  Tobler (1979) continued his pioneering efforts 

by formulating models for geographic problems following strict CA principles.  Couclelis 

(1985, 1989, and 1997) followed using CA to explore theoretical issues such as 

complexity and structure formation of urban systems. 

A number of studies applied CA to practical problems in urban modeling and land use 

planning starting in the early 1990s.  White and Engelen (1993) used a cellular modeling 

approach to investigate the dynamics, evolution, and self-organization of urban land use 
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patterns.  Batty and Xie (1994) formulated a CA model to simulate historical 

development in Savannah, Georgia and this was followed by Batty and Xie (1997) who 

established a generic framework for urban simulation using CA.  Cecchini (1996) 

implemented an urban modeling scheme through a system called urban automata, 

conceptually developed by the CAVE (Cellular Automata in VEnice) research group.  

White et al. (1997) developed a cellular automaton model that generated a spatially 

detailed representation of the evolution of urban land use patterns.  Semboloni (1997) 

developed an urban and regional model based on CA and economic theory, structure and 

policy parameters, and population.  Wu (1998) developed a fuzzy-logic-controlled CA to 

simulate urban encroachment on rural land in the context of sustainable development.  

Webster and Wu (1999) used cellular automata simulations to explore the impact of 

alternative systems of pollution property rights on urban morphology and performance.  

More recently, Li and Yeh (2000) attempted to model sustainable urban development 

with a cellular automaton model and GIS.   

The basis of the SLEUTH CA model used in this research had traces its heritage to 

Clarke et al. (1997) who used a self-modifying cellular automaton to model historical 

development in the San Francisco Bay area.  This initial work was followed by Clarke 

and Gaydos (1998) who applied the same model to the Washington-Baltimore corridor in 

the Eastern United States.  This research by Clarke et al. (1997) and Clarke and Gaydos 

(1998) demonstrated that urban growth in these two quite different regions could be 

successfully predicted using loose-coupling of a cellular automaton model in concert with 

GIS. The developed model is scale independent, which allows local, regional, and 

continental scale processes to be described in a single context. The model functions 
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similarly to the way in which a city expands; i.e. every single part acts as part of an 

ensemble to collectively urbanize a region.  The complex aggregate behavior of CA 

modeling results from many interacting self-motivated agents, which has great value for 

both urban modeling and for the data rich environment of GIS (Clarke & Gaydos 1998). 

The theoretical advance of the represented by this model is its incorporation of self-

modifying rules.  The control parameters of the model are allowed to self-modify; that is, 

the CA adapts itself to the circumstances it generates (Clarke et al. 1997).  The self-

modification rules account for periods of rapid growth or economic stagnation.  As time 

progresses, the factors controlling real-world urbanization change and this is represented 

by the model’s self-modifying rules.  Without these rules, the model produces linear or 

exponential growth as long as new land remains available for urbanization.  Self-

modification generates the typical S-curve growth rate (see Fig. 2.2) of urban expansion 

observed within a region (Clarke & Gaydos, 1998).  Clarke and Gaydos (1998) identify 

the need for the model to be ported to, and repeatedly applied to, new study areas and at 

different map scales.  Applying the model to different study areas will test the reliability 

and applicability of the model. 

 

10. Materials and Methods 

10.1. The Basics of the SLEUTH Model 

The SLEUTH model, formerly known as the Clarke Cellular Automaton Urban 

Growth Model (Clarke & Gaydos, 1998; Clarke et al., 1997) is a CA model written in the 

C programming language and selected for predicting urban growth in the Houston 

CMSA.  SLEUTH is an acronym created from its six required input layers: Slope, Land 
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Use, Exclusion, Urban, Transportation, and Hillshade.  SLEUTH is a self-modifying 

cellular automaton model whose control parameters change when modeled growth rates 

exceed or fall below critical threshold values (Clarke et al., 1997).  In SLEUTH, self-

modification is equivalent to adaptation or evolution, and the calibration method enables 

the model to “learn” its local setting over time (Clarke et al., 1996).   

Urban expansion in SLEUTH is modeled on a two-dimensional grid.  SLEUTH’s sets 

of predefined growth rules are applied in a set of nested loops.  The outer control loop 

executes each growth “history,” of the two-dimensional grid and retains cumulative 

statistical data, while the inner loop executes the growth rules for a single “year.”  The 

growth rules are applied on a cell-by-cell basis and the array is synchronously updated at 

the end of each year in the simulation.  The modified array forms the basis for urban 

growth in the succeeding year.  Potential cells for urbanization are selected at random and 

the growth rules evaluate the properties of the cell and its 8 successive neighbors such as 

whether or not they are already urbanized, what their topographic slope is, and their 

proximity to a road. 

Four types of urban growth are possible in the model: 1) spontaneous, 2) new 

spreading center (diffusive), 3) organic (edge), and 4) road influenced growth (Table 3.4).  

Spontaneous growth occurs when a randomly chosen cell falls adjacent to an already 

urbanized cell.  It simulates the influence urban areas have on their surroundings.  New 

spreading center growth permits the urbanization of cells which are flat enough to be 

desirable locations for development, even if they are not located adjacent established 

urban cells.  Organic growth spreads outward from existing urban centers and represents 
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the tendency of cities to expand.  Road influenced growth encourages urbanized cells to 

develop along the road network. 

 

Table 3. 4  
SLEUTH growth types 
SLEUTH GROWTH TYPES DEFINITION OF GROWTH TYPES 
Spontaneous Growth Simulates the random urbanization of land 
New Spreading Centers Simulates the development of new urban areas 
Edge (Organic) Growth Stems from existing urban centers 

Road-Influenced Growth Simulates the influence of the transportation network on 
development patterns 

 
 

 

Five coefficients control the behavior of the cellular automaton, 1) the diffusion 

coefficient determines the overall outward dispersiveness of the distribution; 2) the breed 

coefficient specifies how likely a newly generated detached settlement is to begin its own 

growth cycle; 3) the spread coefficient controls how much organic expansion occurs from 

existing settlements; 4) the slope resistance coefficient influences the likelihood of 

settlement exceeding up steeper slopes; and 5) the road gravity coefficient attracts new 

settlements toward and along roads.   

SLEUTH’s second level growth rules are its self-modification rules which are 

prompted when growth rates exceeds critical high values or critical low value.  Crossing 

a critical high or low threshold, defined by the model will initiate an increase or decrease 

in diffusion, breed, and spread coefficients.  An increase in the diffusion, breed, and 

spread coefficients represents the tendency of an expanding urban system to grow even 

more rapidly while a decrease represents declining growth in a depressed or saturated 

urban system.  The self-modification rules also affect the road gravity coefficient and the 

slope resistance coefficient.  The road gravity coefficient is increased as the road network 
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enlarges which represents increased accessibility to the area.  As the amount of land 

available for development decreases as urbanization progresses, the slope resistance 

coefficient will decrease as well allowing expansion to encroach upon steeper slopes 

which are less desirable for urbanization.  Typically under SLEUTH’s self-modification 

rules, the coefficient values increase most rapidly in the beginning of a growth cycle, 

when many cells are open for urbanization, and decrease as urban density increases in the 

region and expansion declines (Clarke & Gaydos 1998). 

 

10.2. SLEUTH Inputs 

SLEUTH is a scale independent model and can be used to model the spatial patterns 

of urban growth at a variety of spatial scales in different regions.  Successful initialization 

of SLUETH for the eight-county Houston CMSA requires five input layers: urban extent, 

transportation, areas to be excluded from urbanization (e.g., water bodies), slope and a 

hillshade image (for visualization only).  For statistical purposes, model requires at least 

four urban extent layers.  It also requires at least two transportation layers of different 

years, a single layer of slope, one layer with areas excluded from urbanization and a 

hillshade layer for use only as a background with the graphical version of the model 

(Gigalopolis, 2003).   

The development of the required thematic information for calibrating the growth 

coefficients for the Houston CMSA based on observed urban growth during the 1974-

2002 calibration period and for predicting urban growth in the Houston CMSA over the 

2002-2030 prediction period is described in detail in Chapter II. A summary table of the 

SLEUTH inputs is described in Table 3.5. 
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Table 3. 5  
SLEUTH input dataset 

SLEUTH INPUT DATASET 
# of Layers Layer Type Years 

4 Urban 2002 1992 1984 1974  
2 Lulc 2002 1992    
5 Road 2025 2002 1990 1984 1974 
1 Excluded 
1 Slope 
1 Hillshade  

 

 

The SLEUTH model domain for the eight county Houston CMSA study area (which 

is approximately 22,736 km2.) was 1843 pixels east-west and 2100 pixels north-south. 

The spatial resolution of each grid cell in the model domain was 100 m x 100 m.   

   

10.3. SLEUTH Calibration Results 

In chapter II, we have successfully calibrated the SLEUTH model using historical 

urban extent, land use, and road layers.  Table 3.6 shows coefficient values that were 

obtained in calibration phase.  Five coefficients that control the behavior of growth are 

derived after the rigorous calibration process.  These coefficient values are used in 

prediction mode in the model to predict urban growth till 2030 for the study area, 

Houston CMSA.   

 

Table 3. 6  
Averaged coefficient values after the “derive forecasting coefficients phase” 

Year Diffusion Breed Spread Slope resistance Road gravity 
1984 1 2 84 36 15 
1992 1 2 91 31 16 
2002 1 3 100 23 17 
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The values that will be used in prediction mode are laid out in year 2002.  As seen 

from the table above, spread coefficient is the single dominant coefficient, which states 

that the metropolitan area has been experiencing an “organic” growth. 

 

11. Results  

Future urban growth of the Houston CMSA is predicted from 2002 to 2030.  The 

predicted growth is outputted individual years from 2003 to 2030.  For this particular 

paper, predictions from only three years, 2010, 2020, and 2030 are illustrated in Figs. 3.3. 

3.4, and 3.5 respectively.   

The growth is concentrated on the urban-rural fringes and the calibration of the model 

helped us reach the best values.  The model was accurate in modeling Houston CMSA’s 

organic growth and this gives extra strength to the model’s own ability to automatically 

calibrate itself.     

Predicted population estimates (Texas State Data Center, 2003) are used to compare 

with urban growth predictions.  The results indicate that urban growth rate is slightly 

higher than population rate as shown in Fig. 3.6.   
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Fig. 3. 3 Predicted urban extent in 2010 for Houston CMSA 
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Fig. 3. 4 Predicted urban extent in 2020 for Houston CMSA 
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Fig. 3. 5 Predicted urban extent in 2030 for Houston CMSA 
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Fig. 3. 6 Population vs. urban growth in Houston CMSA 

 

 Past and future urban growth predictions in the three PMSAs that form Houston 

CMSA are presented in Fig. 3.7.  It is easy to see that major urban growth occurs in 

Houston PMSA rather than other two PMSAs.   
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Fig. 3. 7 Urban growth in Houston, Galveston, and Brazoria PMSAs 

 

Urban growth by the percentage of land portion of county is a good measure to 

illustrate how much of the urban development account for the whole county area.  Fig. 

3.8 exhibits that Harris and Galveston counties account for most of the urban based on 

their county size.   
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Fig. 3. 8 Urban area growth (% of Land portion of county) 

 
 

Fig. 3.9, depicts an interesting result, such that, Harris and Galveston counties’ 

growth rates have been in decline more than the other counties in Houston CMSA.  This 

could be due to following two reasons:  either growth rate is declining because available 

land also is declining for both of the counties, Harris and Galveston (see Fig. 3.8); or 

these two counties might have implemented a smart growth policy.  
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Fig. 3. 9 Growth rates [(year2-year1)/5] for CMSA counties 

 

Fig. 3.10 illustrates the urban growth for each county, plotted in logarithmic scale.  It 

is clear that Harris County is the most urbanized county in our study area. 
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Fig. 3. 10 Urban growth in each county (logarithmic scale)  

 

12. Conclusions 

The uniqueness of this study is twofold: first, it is the only Consolidated Metropolitan 

Statistical Area that is modeled for urban growth and second, it is the only metropolitan 

area that functions without zoning and a plan.  Most increase in urban and population 

growth in Houston CMSA occurred between 1970s and 1990s.  This trend however had 

slowed down in both urban and population by 2002.  Results reveal that urban growth is 

concentrated on the urban/rural fringes in the Houston CMSA.  Predicted results also 

indicate that urban growth for the period from 2002 to 2030 is in almost parallel with the 

population growth prediction.         



 

 

103

Among Houston PMSAs, Houston was the major metropolitan area that drove the 

population and urban growth in Houston CMSA.  Galveston and Brazoria PMSAs did not 

show increase in both and they reflect very small part of Houston CMSA.   
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CHAPTER IV 

USING THE SLEUTH URBAN GROWTH MODEL TO SIMULATE THE 

IMPACTS OF FUTURE POLICY SCENARIOS ON URBAN LAND USE IN THE 

HOUSTON-GALVESTON-BRAZORIA CMSA 

 

We used the SLEUTH urban growth model, closely coupled with a land transition 

model, to simulate future urban growth in the Houston metropolitan area, one of the 

fastest growing metropolises in the United States during the past three decades.  The 

model was calibrated with historical data extracted from a time series of satellite images.  

Three specific scenarios are designed to simulate the spatial pattern of urban growth 

under different environmental conditions.  Then first scenario depicts an unmanaged 

growth with no restriction on environmental areas, such as forest, agriculture, and 

wetland.  The second scenario assumes a managed growth with moderate protection.  The 

last scenario simulates a managed growth with maximum protection on forest, 

agricultural areas, and wetland.  The third scenario demonstrates the most conserved 

natural land with the least urban development.  This scenario should be the most 

desirable for the future urban growth of Houston.   
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1. Introduction 

In industrialized countries, the current pattern of urban development is increasingly 

taking the form of low-density, decentralized residential and commercial development.  

This form of development, the environmental and quality-of-life impacts of which are 

becoming central to debates over land use and land cover in urban and suburban areas is 

now commonly known as “sprawl.”  Many classic symptoms are loss and fragmentation 

of the natural resource, declining water quality, and traffic congestion (Burchell et al, 

1998).  “Smart growth,” a land use policy orientation embodied by a suite of policies 

aimed at natural resource and agricultural preservation, transit-oriented development, and 

“brownfield” redevelopment, is becoming a reality for some areas within the Houston 

CMSA.   

Land cover is an important element of ecological function, especially in terms of 

hydrological processes (Wickham et al, 2000).  While urbanization has occurred, natural 

resource lands, such as forest, wetlands and agriculture, have been replaced by land uses 

with more impervious surfaces.  Predicting future environmental consequences requires 

being able to predict the spatial pattern of land use change.            

In recent years, spatially explicit simulation models of urban growth patterns have 

emerged.  The economic versions of these models estimate land use transition 

probabilities using discrete choice methods based on the behavior of agents making land 

use decisions (Bockstael, 1996).  The spatially explicit model of Landis (1995) for the 

San Francisco Bay and Sacramento areas is an example of a micro-level model that 

makes use of data from a geographic information system (GIS) to generate spatially 

disaggregated predictions of land use change.  These modeling efforts require detailed 
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parcel-level and GIS data that are often not widely available.  This limits the ability to 

expand the models to a broader region or transfer them to other areas together. 

A relatively simple class of models, cellular automata (CA), has gained attention from 

researchers attempting to simulate and predict spatial patterns of urban development.  CA 

models require that space should be represented as a grid of cells that can change state as 

the model iterates.  These changes are regulated by rules that specify a set of 

neighborhood conditions to be met before a change in state can occur (O’Sullivan, 2001).  

CA models are not only conceptually elegant but also they have the potential to simulate 

the complex behavior of systems, such as cities (Torrens et al, 2001).  CA models have 

been used to simulate different types of urban forms (Yeh et al, 2001) and development 

densities (Yeh et al, 2002), and to investigate the evolution of urban spatial structure over 

time (White et al, 2000).  Although pure CA models have been quite successful at 

recreating patterns of urban development, they have been criticized for their seeming 

inability to account for processes driving urban change.  Recently, advances have been 

made in developing hybrid CA that can incorporate process-based factors.   
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Webster et al (2001), for example, incorporate microeconomic urban theory into a 

spatially explicit CA to investigate the effects of alternative planning regimes on land use 

patterns.  As planning tools, CA urban models have several benefits: they are interactive, 

potential outcomes can be visualized and quantified, they can be closely linked with CIS, 

and raster based spatial data derived from remote sensing platforms are easily 

incorporated into the CA modeling environment (Couclelis, 1997). 

In order to assess the potential effectiveness of smart growth policies in the Houston 

CMSA, our study area for this particular research (see Fig. 2.6), our objective was to 

develop a predictive modeling system capable of depicting the impacts of different land 

use and land management policies within the Houston CMSA.  The design and 

development of the model were specifically focused on a number of criteria: (1) the 

model should be policy driven to facilitate discussion and testing of the effects of 

different land use management policies; (2) the model assumptions, implementation 

methodology, and results should be transparent to the average citizen; and (3) the model 

should be modular to facilitate the inclusion of additional scenarios and impact 

assessments.  

The amount of urbanized land in the USA increased by 47% to 307,500 km2, while 

the population grew by 17% between 1982 and 1997 (Fulton et al., 2001).  The 

conversion of land for development was estimated to have increased from about 5,000 

km2 per year between 1982 and 1992 to 13,000 km2 per year between 1992 and 1997 

(NRCS, 1999).  In general, urban sprawl in the south has been aggravated by a decline in 

population density in urban centers (Fulton et al., 2001). 
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Population growth has been especially rapid in the states along the USA-Mexico 

border (USCB, 1993).  In Texas, population is projected to increase from 19 to 33 million 

by 2030, with over 70% of the growth expected to occur along the central and southern 

portions of the I-35 highway corridor and in the Lower Rio Grande Valley (Conner & 

James, 1996).  Houston was the fastest growing city in the United States in the 20th 

century (American City Business Journals, 1999).  Houston has also become one of the 

fastest growing metropolitan areas in the USA, experiencing a 20% increase in 

population from 1990 to 2000, reaching approximately 2 million in 2000 and now being 

the fourth largest city in the country (Demographia, 2000).  This growth can be attributed 

to a steady growth in employment in the Houston area, and less expensive housing 

among 20 metropolitan areas with populations of more than 2 million (ACCRA, 2000), 

and low cost of living (ACCRA, 2001). 

This population growth is increasingly impacting rural areas, especially those close to 

major urban centers in the southern part of Texas, by accelerating land subdivision and 

reducing the average size of land parcels (Conner & James, 1996).  In addition, increase 

in urban sprawl generally leads to greater traffic volumes, increased pressure on local 

resources, less open space (Holtzclaw, 1999), and such land use changes often have a 

significant negative impact on the affected ecosystems and the goods and services that 

they provide.  Ecosystem services represent the benefits that living organisms derive 

from ecosystem functions that maintain the earth’s life support system, and include 

nutrient cycling, carbon sequestration, air and water filtration, and flood amelioration, to 

name a few (Costanza et al., 1997). 
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Changes in land use may significantly affect ecosystem processes and services.  

Monitoring and processing the impacts of such land use changes are difficult for several 

reasons.  Impact of land use changes on ecosystems often become noticeable at the 

regional scale however monitoring changes is difficult because of the large volume of 

data and interpretation required.  In addition, accurately quantifying the impacts of urban 

sprawl on changes in ecosystem services is difficult because of the lack of information 

about the contribution of alternate landscapes to these services. 

The objectives of this study are: (1) to quantify land use change in Houston CMSA 

from 1992 to 2002; and (2) to predict land use change in study area from 2002 to 2030.      

 

2. Materials and Methods 

Houston, the seat of Harris County, Texas, is located on the upper Gulf coastal plain 

at 80 km from the Gulf of Mexico.  The Houston-Galveston-Brazoria Consolidated 

Metropolitan Statistical Area (Houston CMSA) consists of three Primary Metropolitan 

Statistical Areas (PMSAs): Houston (Chambers, Fort Bend, Harris, Liberty, 

Montgomery, and Waller Counties), Galveston-Texas City (Galveston County), and 

Brazoria (Brazoria County) (see Fig. 2.6).  The Houston CMSA’s population of 4.8 

million is 10th largest among U.S. metropolitan statistical areas.  The population is 

concentrated mainly around the city of Houston.  The city of Houston has a population of 

1.9 million and is the fourth most populous city in the nation (trailing only New York, 

Los Angeles, and Chicago), and the largest in the southern U.S. and Texas.  Houston is 

the only metropolitan U.S. city that functions without a zoning plan (Vojnovic, 2003).  

Houston CMSA encompasses an area of 22,735.80 km2.   



 

 

110

The City of Houston lies in three counties: Harris (1,511.13 km2), Fort Bend (20.92 

km2), and Montgomery (6.73 km2).  Harris County contains part or all of 35 individual 

incorporated areas.  Under Texas’ Municipal Annexation Act of 1963, cities have certain 

powers over surrounding unincorporated areas, termed the Extraterritorial Jurisdiction 

(ETJ).  The ETJ is a function of population, for cities over 100,000, it can cover all 

unincorporated area within 8 kilometers of any point on the city limits.  Houston’s ETJ 

encompasses 3,397.93 km2, excluding the area of cities lying within it.   

Houston lies largely in the northern portion of the Gulf coastal plain, a 64- to 80-

kilometer-wide swath along the Texas Gulf Coast (Fig. 2.7).  Typically, elevation rises 

approximately 0.19m per kilometer inland.  The northern and eastern portions of the area 

are largely forested, while the southern and western portions are predominantly prairie 

grassland.  Surface water in the Houston region consists of lakes, rivers, and an extensive 

system of bayous and manmade canals that are part of the rainwater runoff management 

system.  Approximately 25%-30% of Harris County lies within the 100-year flood plain.  

Elevation ranges for each county as follows: Brazoria 0-45m, Chambers 0-30m, Fort 

Bend 4-48m, Galveston 0-13m, Harris 0-94m, Liberty 0-82m, Montgomery 13-133m, 

and Waller 24-109m.   

Houston’s land surfaces are unconsolidated clays, clay shales, and poorly-cemented 

sands extending to depths of several kilometers.  The region’s geology developed from 

stream deposits from the erosion of the Rocky Mountains.  These sediments consist of a 

series of sands and clays deposited on decaying organic matter that, over time, was 

transformed into oil and natural gas.   
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The City of Houston was founded in 1836 and incorporated in 1837.  The city grew 

slowly, increasing in population to only about 45,000 by 1900.  Galveston, located on the 

Gulf of Mexico, 80 km south of Houston, was the economic center of Texas throughout 

the nineteenth century.  Galveston was a key commercial port for cotton in the U.S.   

Two events early in 1900s stimulated Houston’s first phase of significant growth.  

First, the Galveston Hurricane of 1900 that killed about 6,000 people destroyed much of 

Galveston, contributing to its decline as the commercial center of the State.  Second, the 

discovery of large oil reserves at Spindletop in 1901, 145 km east of Houston, led to 

Houston’s rapid growth.  In the 19th century, new investment on transportation 

infrastructure began with the railroad and port projects.  In the 20th century, federal and 

state intervention in the Houston economy expanded to include the funding of 

petrochemical plants, gas pipelines, refineries, and research and development in the 

petrochemical industry.  The decision to locate the National Aeronautics and Space 

Administration (NASA) complex was another boost to the Houston area in the 1960s.  

Houston ship channel and its port were the two areas that received considerable attention 

in the 19th and 20th centuries.  Major improvements were needed along Buffalo Bayou, 

the San Jacinto River and Galveston Bay if Houston would like to have central role as a 

shipping port in Texas.  With the improvements of the waterway, large ships were pulling 

into Houston and taking its principal product directly to Europe.  In addition to that, 

combustion engine production demanded petroleum and oil began to play an increasing 

important role in the Houston economy (Vojnovic, 2003).          
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2.1. SLEUTH Model 

The Urban Growth Model (UGM) is a C program running under UNIX that uses the 

standard gnu C compiler (gcc) and may be executed in parallel.  The land cover transition 

model is included within the code and will be called and driven by the UGM.  The land 

cover transition model is tightly coupled with the urban code, but the UGM can run 

independently of it.  Together, these coupled models are referred to as SLEUTH.  The 

name SLEUTH is an acronym for the input image requirements of the model (Slope, 

Land use, Exclusion, Urban extent, Transportation, Hillshade) (U.S. Geological Survey, 

2003).   

SLEUTH is adopted because of its success with regional scale modeling, its ability to 

incorporate different levels of protection for different areas, and the relative ease of 

computation and implementation (U.S. Geological Survey, 2003).  Each cell in the study 

area for urban extent layer had only two possible states: urbanized or non-urbanized.  The 

land use layer had seven different possible states: unclassified, urban, agriculture, forest, 

water, wetland, other.  The transportation layer had four possible states: non-road, 2-lane 

roads, 3 or 4-lane roads, more than 4-lane roads.  Whether or not a cell becomes 

urbanized is determined by four growth rules, discussed below, each of which attempts to 

simulate a particular aspect of the development process.  In their original application of 

the Clarke urban growth model, a predecessor to SLEUTH, in the San Francisco Bay 

area, Clarke et al (1997) stressed the utility of the model in simulating historic change, 

the description of which  can help in the explanation of growth processes at a regional 

scale, and in predicting future urban growth trends.  The model was successful in 

simulating urban change between 1900 and 1990 for the San Francisco area, and was 
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later applied to the Baltimore/Washington corridor (Clarke et al, 1998), where 

calibrations and long term predictions for both San Francisco and Baltimore/Washington 

were presented, allowing for an effective comparison to be made between the growth 

patterns and processes of the two urban systems. 

SLEUTH simulates four types of urban land use change: spontaneous growth, new 

spreading center growth, edge growth, and road-influenced growth.  These four growth 

types are applied sequentially during each growth cycle, or year, and are controlled 

through the interactions of five growth coefficients: dispersion, breed, spread, road 

gravity, and slope (Table 4.1).  Each coefficient has a value that ranges from 0 to 100.  

The exact value assigned to each coefficient was, in our case, derived through a rigorous 

calibration procedure, described in detail in section 2.3.  In conjunction with the excluded 

layer probabilities, the five growth coefficients determine the probability of any given 

location becoming urbanized.  The user-defined excluded layer specifies areas that are 

completely or partially unavailable for development.  Water and unclassified areas, for 

example, would have an exclusion value of 100, indicating that it is 100% excluded from 

development.  If a cell that is chosen for potential urbanization has an exclusion-value of 

50, it has a 50% probability of being urbanized in any given simulation.   
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Table 4. 1  
Summary of growth types simulated by the SLEUTH model 
Growth 
Cycle Order Growth Type Controlling 

Coefficients Summary Descriptions 

1 Spontaneous Dispersion Randomly selects potential new growth 
cells 

2 New Spreading Center Breed Growing urban centers from 
spontaneous growth 

3 Edge Spread Old or new urban centers spawn 
additional growth 

4 Road-Influenced Road-Gravity, 
Dispersion, Breed 

Newly urbanized cell spawns growth 
along transportation network 

Throughout Slope Resistance Slope Effect of slope on reducing probability 
of urbanization 

Throughout Excluded Layer User-Defined User specifies areas resistant or 
excluded to development 

 

 

Spontaneous growth simulates the random urbanization of single pixels, which has 

the potential to capture low density development patterns and is not dependent on 

closeness to existing urban areas or the transportation infrastructure.  The overall 

probability that a single non-urbanized cell in the study area will become urbanized is 

determined by the dispersion coefficient.   

New spreading center growth models the emergence of new urbanizing centers by 

generating up to two neighboring urban cells around areas that have been urbanized 

through spontaneous growth.  The breed coefficient determines the overall probability 

that a pixel produced through spontaneous growth will also experience new spreading 

center growth.   

A newly urbanized cluster can then experience edge growth, which simulates outward 

growth from the edge of new and existing urban centers.  Edge growth is controlled by 

the spread coefficient, which influences the probability that a non-urban cell with at least 

three urban neighbors will also become urbanized.   
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The final growth step, road influenced growth, simulates the influence of the 

transportation network on growth patterns by generating spreading centers adjacent to 

roads.  When road influenced growth occurs, newly urbanized cells are randomly selected 

at a probability level determined by the breed coefficient.  For each selected cell, the 

existence of a road is sought within a search radius defined by the road-gravity 

coefficient.  If roads are found near the selected cell, a temporary urban cell is placed at 

the closest location adjacent to a road.  This temporary urban cell then searches along the 

road for a permanent location.  The direction of the search along the road is random and 

the search is determined by the dispersion coefficient.  The permanent location becomes a 

new spreading center, so up to three cells along a road can be urbanized at this point.   

The slope coefficient accounts for the influence of topography on development 

patterns and is applied as a suitability test before any location is urbanized.  A high slope 

coefficient value will decrease the likelihood that development will occur on steep slopes.   

SLEUTH also has a functionality termed “self-modification” (Clarke et  al, 1997), 

which allows the growth coefficients to change throughout the course of a model run and 

which is intended to more realistically simulate the different rates of growth that occur in 

an urban system over time.  When the rate of growth exceeds a specified critical 

threshold, the growth coefficients are multiplied by a factor greater than one, simulating a 

development “boom” cycle.  Likewise, when the rate of development falls below a 

specified critical threshold, the growth coefficients are multiplied by a factor less than 

one, simulating a development “bust” cycle.  Without self-modification, SLEUTH will 

simulate a linear growth rate.   
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Implementation of the model occurs in two general phases: (1) calibration, where 

historic growth patterns are simulated, (2) prediction, where historic patterns of growth 

are projected into the future.  For calibration, the model requires inputs of historic urban 

extent for at least four time periods, at least two historic land use layers, a historic 

transportation network for at least two time periods, slope, and an excluded layer.   

 

2.2. Input Data  

Unsupervised classification (ISODATA) is applied to Landsat Thematic Mapper 

(TM) and Multispectral Scanner (MSS) imagery.  This allowed us to map urban extent 

for 1974, 1984, and land use for 2002.  1992 land use map is acquired from EPA MRLC 

National Land Cover Data (NLCD) website.  The original data were at 30m resolution in 

TM and 60m in MSS imagery.  Because high resolution TM images produced an array 

that exceeded the available computational resources of our Linux PC and SUN UNIX 

machine, the data were therefore resampled to a lower resolution of 100 meters to reduce 

the size of the array while maintaining the spatial extent of the study area.  

Five time steps for transportation were also prepared (Table 4.2).  Roads layers for 

1974, 1984, 1990, and 2002 were developed using the primary road network and TXDOT 

road maps.  2025 road map is developed by using TxDOT Texas Corridor Plan.  Slope 

and hillshaded are created from National Elevation Dataset (NED) which was 

downloaded from Texas Natural Resources Information System (TNRIS) website.  For 

the calibration phase, the excluded layer consisted of water, which was 100% excluded 

from development, as well as federal, state, and local parks, which were 90% excluded 
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from development.  All input files were rasterized at a 100-meter resolution to the spatial 

extent of the study area.   

 
Table 4. 2  
Input dataset for SLEUTH 
SLEUTH Inputs Input Data Types Input Data Years 
Urban Landsat MSS, Landsat TM 1974, 1984, 1992, 2002 
Lulc Landsat TM 1992, 2002 
Road Shapefiles 1974, 1984, 1990, 2002, 2025 
Excluded Landsat TM  
Slope NED  
Hillshade NED  
 

 

2.3. Model Calibration  

The goal of calibration is to derive a set of values for the growth parameters that can 

effectively model growth during the historic time period, in this case from 1974 to 2002.  

This was achieved in the SLEUTH modeling environment through a brute force Monte 

Carlo method, where the user indicates a range of values and the model iterates using 

every possible combination of parameters.  For each set of parameters, simulated growth 

is compared to actual growth using several least squares regression measures, such as the 

number of urban pixels, urban cluster edge pixels, the number and size of urban clusters, 

and other fit statistics, such as Leesallee metric.  The model calculates these statistics 

internally and writes the results to a log file that can be manipulated by the user to 

evaluate the performance of different parameter sets.  For each set of parameter values in 

a Monte Carlo iteration, the model calculates measurements of simulated urban patterns 

for each control year in the time series.  These measurements are then averaged over the 

set of Monte Carlo iterations and compared to measurements calculated from the actual 
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historic data to produce least squared regression measures (U.S. Geological Survey, 

2003).  The Leesallee metric (Lee et al, 1970) is the only metric that specifically 

measures spatial fit.  SLEUTH model calculates a modified Lee and Sallee index by 

taking a ratio of the intersection and the union of the simulated and actual urban areas 

(Clarke et al, 1998).  A perfect spatial match would result in a value of 1.  As Clarke et al 

(1998) point out, achieving high values for this index is challenging.  With an earlier 

version of the model, Clarke et al, (1998) did not report values of the Lee and Sallee 

statistics that exceeded 0.3, although recent applications of SLEUTH have achieved 

values that approach 0.6 (Silva at al, 2002).  We achieved a value of 0.51 for leesallee for 

this particular research.  

Calibration was performed in three phases: coarse, fine, and final.  Coarse and fine 

calibration phases are done on our Linux machine, however, final calibration was done at 

USGS Rocky Mountain Mapping Center in Denver, CO by Mark Feller.  It was done on a 

Beowulf PC Cluster with a 16-node system.  All calibration (coarse, fine, final) process 

took approximately 2 months.   

Leesallee metric was used as primary metric to evaluate the performance of the 

model.  After each calibration phase, the top set of leesallee scores determined the range 

of values used in the subsequent phase of calibration.  

To perform a spatial accuracy assessment, the model was initialized with 1974 urban 

extent and growth was predicted out to the year 1992.  One hundred Monte Carlo 

iterations were performed, and an urban extent of 2002 was produced (Fig. 2.17).  This is 

compared with 2002 observed urban extent (Fig. 2.18).     
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The confusion matrix is calculated for the observed versus predicted urban areas in 

2002.  As you can see in the Table 2.15, we have found high overall classification 

accuracy, 98%, and a high kappa coefficient, 0.89, between observed urban area and 

predicted urban area. 

 

2.4. Prediction 

SLEUTH requires the following inputs for prediction phase: urban extent, land 

use/land cover (LULC), roads, excluded layer, slope, and a hillshade.  Three future 

growth scenarios were simulated: Unmanaged growth, managed with moderate 

protection, and managed with maximum protection.  The excluded layer served as the 

primary instrument to differentiate between three policy scenarios.  The future 

transportation network, Texas Corridor, which is planned to be completed in 2025, was 

also created and incorporated into the model for the year 2025.   

 

3. Results 

The unmanaged trend scenario reflects that there is no protection against 

development.  Natural resource land was not protected except city and county parks.  

Unclassified pixels, water and parks are fully excluded from development.  However, 

wetland, agricultural land, forest, and floodplain were not protected.  The managed 

growth with moderate protection scenario, however, reflects a stronger commitment to 

spatially focused growth and resource protection.  In the excluded layer higher levels of 

protection were assigned to wetlands, agricultural land, forest land, and floodplain.  The 

third and last scenario, managed growth with maximum protection, implies a more 
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extreme set of protection on resource land.  The data elements for the excluded layer are 

similar to those in the managed growth with moderate protection case, but protection 

levels are higher.   

Data layers and probabilities of exclusion or levels of protection, for each scenario are 

summarized in Table 4.3 below. 

 
 
Table 4. 3  
The growth scenarios and levels of protection 

Excluded From Development (in percent) 
Growth Scenarios 

Agriculture Forest Floodplain Wetland Parks Water Unclassified
Unmanaged 0 0 0 0 100 100 100
Managed with Moderate Protection 40 40 40 60 100 100 100
Managed with Maximum Protection 60 60 60 80 100 100 100
 

 

 The results of the scenario predictions (Figs. 4.1 - 4.3) show higher dispersed 

development patterns for the unmanaged than the managed growth scenario with 

moderate protection, while the managed growth with maximum protection scenario 

shows highly constrained growth over the whole region, with most occurring in and 

around existing urban centers.  Unmanaged growth trend shows similar to low-density 

development patterns.  This is predicted to lead to substantial land consumption 

throughout the study area with a simultaneous loss of resource lands.  Due to the higher 

levels of protection, the growth rates for the managed growth scenarios are reduced, 

producing a much lower predicted loss of resource lands as illustrated in Figs. 4.1 - 4.3.    
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Fig. 4. 1 Unmanaged growth scenario prediction 
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Fig. 4. 2 Managed with moderate protection scenario prediction 
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Fig. 4. 3 Managed with maximum protection scenario prediction 
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Fig. 4. 4 Comparison of three scenarios for future predictions in Houston CMSA 

 

As seen from Fig. 4.4, third scenario would save 1000 km2 forest land compare to 

unmanaged scenario, and about 500 km2 compare to moderate scenario.  Urban sprawl 

seems to affect forested land more than other resource lands.  Spatial distribution of the 

predicted forest loss is illustrated in Figs. 4.5, 4.6, 4.7 for unmanaged growth scenario, 

managed growth with moderate protection scenario, and managed growth with maximum 

protection scenario respectively.   
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Fig. 4. 5 Predicted forest loss in unmanaged growth scenario by 2030 
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Fig. 4. 6 Predicted forest loss in moderate protection scenario by 2030 
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Fig. 4. 7 Predicted forest loss in maximum protection scenario by 2030 

 
 
 
The predicted forest loss area by each Houston CMSA county is illustrated in Fig. 4.8. 
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Fig. 4. 8 Predicted forest loss by 2030 for Houston CMSA counties for the three growth scenarios 
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Fig. 4. 9 Comparison of urban areas in the Houston CMSA for the three growth scenarios 

 

It’s predicted that urban area will cover approximately 7,000 km2 by 2030 in 

unmanaged scenario in the Houston CMSA.  With the maximum protection scenario, 

around 2,000 km2 of land could be saved from development (Fig 4.9).   

 

4. Discussion  

The results from this regional scale assessment have provided interesting insights into 

the future of the region.  Given these findings, SLEUTH could be an appropriate model 

for regional assessments of urban land use change, the results of which could be used to 

guide more localized modeling efforts.  The visualization of potential land use change has 

proven to be a powerful tool for raising public awareness and facilitating discussion.  
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Reports about this research were published in several well-known media sources, such as 

the Washington Post newspaper (Huslin, 2002), and appeared on the website for the 

Chesapeake Bay Foundation, a prominent regional environmental group.  The results for 

the unmanaged trends scenario are especially important to public discussion since they 

demonstrate the potential losses in resource lands that could occur if the observed rates of 

land use change were to continue into the future.  Moreover, as efforts to improve the 

health of the Houston CMSA progress, the need for the regional-scale land use change 

assessments is becoming critical.  SLEUTH may be a tool that can meet these needs and 

this has been recognized by state and regional agencies to explore the use of SLEUTH as 

a potential tool for modeling environmental vulnerability.   

The excluded layer proved to be an effective tool for exploring different policy 

scenarios, and illustrates the advantages of linking the modeling process to a GIS.  All 

data integration and manipulation was performed within GIS, allowing for the precise 

designation of target conservation areas, such as wetlands.  For each scenario, all land 

within the study area was ranked in terms of conservation using a grid-based model.  The 

resulting excluded layer was easily integrated into the model.  Translating various 

policies into exclusion probabilities was done by Mid. Atlantic RESAC (2003), and was 

not an intuitive process.  It consisted of an informed qualitative ranking of each 

conservation policy.  These rankings of low, medium, or high were then translated into 

generalized exclusion probabilities.  In our scenarios, we have used Mid Atlantic 

RESAC’s policy exclusion probabilities.   

Although the excluded layer is ideal for simulating the effects of conservation or 

regulatory policies, SLEUTH does not have an adequate mechanism to simulate the 
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potential impacts of incentive policies.  By encouraging denser and more compact 

development in areas that have existing urban infrastructure, it is hoped to decrease the 

amount of new development occurring in outlying areas (Northrup et al, 1997).    

We also obtained significantly higher values for the Leesallee measure than Clarke et 

al (1998), but this is likely due to the fact that we were working with a shorter time series, 

28 years compared to 200 years.  We also worked with land cover data that were obtained 

from a single source, satellite imagery, while Clarke et al (1998) had obtained data from 

variety of cartographic sources.  The satellite data is more advantageous to the SLEUTH 

modeling environment, and probably contributed to the higher values we obtained for the 

Leesallee metric.       

 

5. Conclusions  

Increasing urban growth through the world has aroused concerns over the degradation 

of our environment. Therefore, understanding the dynamics of urban systems and 

evaluating the impacts of urban growth on the environment are needed and they involve 

modeling.  In regions where regional approaches to land use management are being 

developed, a realistic modeling system that can be used to explore different regional 

futures is critically needed.  Because of an ability to simulate the complex behavior of 

urban systems, CA models represent a possible approach for regional scale modeling.  

Furthermore, consistent, regional data sets derived from satellite imagery and other 

sources can be readily integrated into the CA modeling environment.  Our research 

explored the suitability of utilizing one CA, the SLEUTH model, for regional planning 

applications.   
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The Houston metropolitan area was used as our study area.  The study indicated the 

usefulness of cellular modeling and geographical information systems for urban scenario 

planning.  Three scenarios have been designed and simulated in this research.  The first 

scenario simulated the continued growth (unmanaged) trend if the urban sprawl is 

allowed to continue.  The second scenario projected the growth trend with moderate 

environmental protection.  The last scenario simulated the development trend with 

maximum environmental protection.  The three scenarios of future urban growth 

simulation predict the general trends under different conditions nicely.  Results from first 

scenario indicate that Houston metropolitan area would lose considerable amount of open 

space and natural land, such as forest.  The second scenario results are not encouraging as 

much as the last scenario.  The growth rate is controlled and natural land is conserved 

most with the last scenario.  The results are encouraging, although more accurate 

simulations could be achieved if more growth constraints were considered.  The role of 

remote sensing and GIS in cellular automata-based urban modeling is necessary, 

especially for input data preparation, model calibration and verification, urban pattern 

analysis, and also growth impact assessment.   

SLEUTH provides key functionalities like interactive scenario development and the 

ability to visualize and quantify outcomes spatially.  The availability and consistency of 

historic data sets, especially those that are earlier than satellite availability, is a potential 

issue for some applications.  Empirical calibration of the model using Landsat TM image 

maps of past change aided the model predictions of future change.  Calibration at high 

level of spatial detail remains a computationally intensive process, requiring sufficient 

use of a parallel computing environment, and may prevent the use of the model by local 
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or nongovernmental agencies where computing resources may be a limiting factor.  

Despite these considerations, we found SLEUTH to be a useful tool for assessing the 

impacts of alternative policy scenarios.              
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CHAPTER V 

CONCLUSIONS 

 
Concerns over the degradation of the environment we live in are raised because of an 

increasing urban growth throughout the world.  Modeling and simulation are required to 

understand the dynamics of complex urban systems and to evaluate the impacts of urban 

growth on environment.   

Houston was selected as the study site because Houston is the only major 

metropolitan area in the U.S. that functions without a zoning.  This research focuses on 

modeling urban growth and land use/land cover change in Houston metropolitan area 

using SLEUTH urban growth model.  For the past 3 decades, Houston has been one of 

the fastest growing metropolises in the U.S. and has emerged as commercial, industrial, 

and transportation urban center of the south.       

Calibration of the SLEUTH model for Houston indicates a very high spread 

coefficient, which means that the predicted mode of growth in Houston is “organic” or 

edge growth.  Houston has been experiencing “organic” or edge growth.  Among 

Houston PMSAs, Houston PMSA was the major metropolitan area that drove the 

population and urban growth in Houston CMSA.  The Galveston and Brazoria PMSAs 

did not show increase in both and they reflect very small part of Houston CMSA.  

According to our county level analysis, Harris and Galveston counties contain the highest 

percentage of urban land in proportioned their area.  Urban growth rates for Harris and 

Galveston are higher than other six counties in Houston CMSA.  We also developed three 

environmental scenarios in our study area.  The third scenario provides the best 
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protection for Houston CMSA, and protects most of the resource land.  Without any 

protection on resource lands, Houston CMSA is estimated to lose 2,000 km2 of forest 

land by 2030, about 600 km2 of agricultural land, and approximately 400 km2 of wetland.  

Approximately half of all resource land could be saved by the third scenario, managed 

growth with maximum protect. 
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