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ABSTRACT

Intrusion Detection in Mobile Ad Hoc Networks. (May 2004)

Bo Sun, B.S., Nanjing University of Posts & Telecommunications;

M.S., Beijing University of Posts & Telecommunications

Chair of Advisory Committee: Dr. Udo W. Pooch

Most existent protocols, applications and services for Mobile Ad Hoc NET-

works (MANETs) assume a cooperative and friendly network environment and do

not accommodate security. Therefore, Intrusion Detection Systems (IDSs), serving

as the second line of defense for information systems, are indispensable for MANETs

with high security requirements.

Central to the research described in this dissertation is the proposed two-level

nonoverlapping Zone-Based Intrusion Detection System (ZBIDS) which fit the unique

requirement of MANETs. First, in the low-level of ZBIDS, I propose an intrusion de-

tection agent model and present a Markov Chain based anomaly detection algorithm.

Local and trusted communication activities such as routing table related features are

periodically selected and formatted with minimum errors from raw data. A Markov

Chain based normal profile is then constructed to capture the temporal dependency

among network activities and accommodate the dynamic nature of raw data. A lo-

cal detection model aggregating abnormal behaviors is constructed to reflect recent

subject activities in order to achieve low false positive ratio and high detection ratio.

A set of criteria to tune parameters is developed and the performance trade-off is

discussed.

Second, I present a nonoverlapping Zone-based framework to manage locally

generated alerts from a wider area. An alert data model conformed to the Intru-
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sion Detection Message Exchange Format (IDMEF) is presented to suit the needs of

MANETs. Furthermore, an aggregation algorithm utilizing attribute similarity from

alert messages is proposed to integrate security related information from a wider area.

In this way, the gateway nodes of ZBIDS can reduce false positive ratio, improve de-

tection ratio, and present more diagnostic information about the attack.

Third, MANET IDSs need to consider mobility impact and adjust their behav-

ior dynamically. I first demonstrate that nodes’ moving speed, a commonly used

parameter in tuning IDS performance, is not an effective metric for the performance

measurement of MANET IDSs. A new feature - link change rate - is then proposed as

a unified metric for local MANET IDSs to adaptively select normal profiles . Different

mobility models are utilized to evaluate the performance of the adaptive mechanisms.
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CHAPTER I

INTRODUCTION

In this chapter, we first illustrate why Intrusion Detection Systems (IDSs) are nec-

essary when we deploy Mobile Ad hoc NETworks (MANETs) in reality. We then

discuss why traditional wired IDSs are not applicable to MANETs and the research

challenges when we design MANET IDSs. Finally, an overview of the dissertation

will conclude this chapter.

A. Introduction and Motivation

Unlike conventional cellular wireless mobile networks that rely on extensive infras-

tructure to support mobility, MANETs do not need expensive base stations or wired

infrastructure. The absence of a fixed infrastructure requires mobile hosts in MANETs

to cooperate with each other for message transmissions. To form such a cooperative

self-configurable environment, every mobile host is supposed to be a friendly node

and is willing to relay messages for others to their ultimate destinations. Global

trustworthiness in all network nodes is the main fundamental security assumption in

MANETs.

However, this assumption is not always true in reality. The nature of MANETs

makes them very vulnerable to malicious attacks ranging from passive eavesdropping

to active interfering. Most routing protocols only focus on providing efficient route

discovery and maintenance functionality and pay little attention to routing security.

Very few of them specify security measures from the very beginning. The nature of

MANETs makes them very vulnerable to malicious attacks compared to traditional

The journal model is IEEE Transactions on Computers.
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wired networks, because of the use of wireless links, the low degree of physical security

of the mobile nodes, the dynamic topology, the limited power supply and the absence

of central management point [1]. Some environments (such as the military tactical

operations) have very stringent requirements on security, which make the deployment

of security-related technologies necessary.

Intrusion prevention measures, such as encryption and authentication, can be

used in MANETs to reduce intrusions, but cannot eliminate them. For example,

a physically captured node that carries the private keys may allow the defeat of

the authentication safeguards. The history of security research has demonstrated

that no matter how many intrusion prevention measures are used, there are always

some weak points in the system. In a network with high security requirements, it

is necessary to deploy intrusion detection techniques. MANET IDSs, serving as the

second wall of defense to protect MANETs, should operate together with prevention

mechanisms (authentication, encryption etc.) to guarantee an environment with high-

secure requirements. They should complement and integrate with other MANET

security measures to provide a high-survivability network.

However, most of today’s Intrusion Detection Systems (IDSs) focus on wired

networks. The dramatic differences between MANETs and wired networks make it

inapplicable to apply traditional wired ID technologies directly to MANETs. MANET

does not have a fixed infrastructure. While most of today’s wired IDSs, which rely

on real-time traffic parse, filter, format and analysis, usually monitor the traffic at

switches, routers, and gateways. The lack of such traffic concentration point makes

traditional wired IDSs inapplicable on MANET platforms. Each node can only use

the partial and localized communication activities as the available audit traces. There

are also some characteristics in MANET such as disconnected operations [2], which

seldom exist in wired networks. What’s more, each mobile node has limited resources
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(such as limited wireless bandwidth, computation ability and energy supply, etc.),

which means MANET IDSs should have the property to be lightweight. All of these

imply the inapplicability of wired IDSs on the MANET platform. Furthermore, in

MANETs, it is very difficult for IDSs to tell the validity of some operations. For

example, the reason that one node sends out falsified routing information could be

because this node is compromised, or because the link is broken due to the physical

movement of the node. All these suggest that an IDS of a different architecture needs

to be developed to be applicable on the MANET platform [1].

B. Research Challenges

It is very challenging to design an intrusion detection system for mobile ad-hoc net-

works. The lack of fixed infrastructures and concentration points make it difficult to

collect audit data for the entire network. However, detection models only relying on

partial and localized information are difficult to achieve desirable performance. We also

need to consider the scarce MANET resources (such as limited wireless bandwidth,

computation ability and energy supply, etc.) when we design the IDS framework

for MANETs. What’s more, mobility makes the distinction between normalcy and

anomalcy obscure. It is more difficult to distinguish false alarms and real intrusions.

For example, a node that sends out falsified routing information could be because it

has been compromised, or because of its arbitrary movement [1].

In summary, the following lists the research challenges in designing a viable

intrusion detection system for mobile ad-hoc networks:

• What is the good intrusion detection framework for mobile ad-hoc networks?

• What are the statistical security features that could be used to construct de-

tection models?
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• What are the appropriate approach to construct detection models?

C. Overview of the Dissertation

It is very difficult to design a once-for-all intrusion detection system. Instead, an

incremental enhancement strategy may be more feasible. A secure protocol should at

least include mechanisms against known attack types. In addition, it should provide

a scheme to easily add new security features in the future. Due to the importance of

MANET routing protocols, we focus on the detection of attacks targeted at MANET

routing protocols. Specifically, we use the routing disruption attack as the threat

model throughout this dissertation. The general methodology is: we first establish

the local detection model for MANET routing activities, then develop framework

to facilitate the cooperation of IDS agents. The whole dissertation is organized as

follows.

In Chapter II, we summarize the related work which has been done in wired and

wireless intrusion detection systems. This includes alert aggregation and correlation

systems which build on existing IDS prototypes in order to improve detection per-

formance. We further introduce a few important existing prototypes and detection

algorithms for wired networks, and demonstrate that very few research efforts have

been devoted to MANET IDSs. We detail the characteristics of MANETs, especially

their routing protocols, and describe why they are particularly vulnerable to attacks.

The understanding of MANET characteristics is necessary for us to develop a proper

MANET IDS system. We also summarize the existing prevention mechanisms for

MANETs because they need to integrate with MANET IDSs to provide a highly sur-

vivable network. Note that the research described in this dissertation only focuses on

the detection part, although intrusion response component is necessary in the system.
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In Chapter III, we propose a nonoverlapping Zone-Based Intrusion Detection

System (ZBIDS) that fits the requirements of mobile ad-hoc networks. In the system

aspect of ZBIDS, an IDS agent is attached to each node. The network is logically

divided into nonoverlapping zones which enable these agents to cooperate with each

other to perform the intrusion detection task. Each IDS agent performs the function-

alities of low level ZBIDS. It utilizes the local and trusted information and runs inde-

pendently to monitor the node’s local activities for abnormal behaviors and broadcast

the locally generated alerts inside the zone. We present an internal model of the IDS

agent and describe a Markov Chain based anomaly detection algorithm to construct

its local detection engine. The details of feature selection, data collection, data pre-

process, Markov Chain construction, classifier construction and parameter tuning are

described. A simple approach utilizing relative entropy is adopted to demonstrate

the effectiveness of selected features. In the high level of ZBIDS, the gateway nodes

(also called interzone nodes, those nodes which have physical connections to different

zones) of each zone are responsible for aggregating and correlating the locally gen-

erated alerts inside the zone in order to make the final decisions. An algorithm is

presented to aggregate the locally generated alerts and to further improve the per-

formance of ZBIDS. In ZBIDS, only gateway nodes can utilize alerts to generate the

alarms. In this dissertation, we use alerts to denote the potential security breaches

identified by local IDS agents, while alarms are finalized decisions made by ZBIDS

to indicate an intrusion. An alert format compatible with the Intrusion Detection

Message Exchange Format (IDMEF) [3] is presented to facilitate the interoperability

of IDS agents.

In Chapter IV, based on Parsec [4] and GloMosim [5], extensive simulation

is carried out in order to demonstrate the effectiveness of ZBIDS. Under Random

Waypoint model and use the Dynamic Source Routing protocol (DSR) [6] as the
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exemplary routing protocol, different sets of data, i.e., training data, test data, and

attack data, are collected at different mobility levels. False positive ratio, detection

ratio, and Mean Time to First Alarm (MTFA) are computed to measure the per-

formance of ZBIDS. Detailed analysis of simulation results is provided. Proposed

aggregation algorithm is also simulated to illustrate its better performance compared

to local IDS.

In Chapter V, we describe our initial efforts in constructing an adaptive local

MANET IDSs. How to effectively integrate mobility impact into MANET IDSs and

take adaptiveness into consideration is very important. In Chapter V, focusing on

the protection of MANET routing protocols, we first demonstrate that node moving

speed, a most commonly used parameter in measuring MANET performance, is not

desirable with respect to the performance measurement of local MANET IDSs. Then

we propose the usage of a new feature - the link change rate, which could not only

act as a unified metric in measuring MANET IDS performance, but also be used to

facilitate local MANET IDSs to select normal profiles adaptively. We utilize different

mobility models, Random Waypoint Model and Random Drunken Model, to study

the performance of our proposed adaptive mechanism at different mobility levels.

Simulation results show that our proposed adaptive mechanisms could provide IDSs

which are less dependent on mobility models and keep roughly the same performance

compared to non-adaptive mechanisms in terms of false positive ratio, detection ratio

and MTFA. Detailed analysis of simulation results is also provided.

Chapter VI concludes this dissertation and lists important future work. Because

not many research efforts have been devoted to MANET IDSs, this research only

provides the initial effort in constructing a viable MANET IDS. Based on the detailed

methodology of building ZBIDS described in this dissertation, Chapter VI summarizes

important future directions in this respect.
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CHAPTER II

RELATED WORK

Intrusion detection research on MANETs requires the discussion of intrusion detec-

tion systems (IDSs), alert aggregation and correlation systems and mobile ad-hoc

networks. As we have mentioned, extensive research efforts have been devoted to

wired IDSs, however, there are few work devoted to wireless IDSs. In recent years,

several wired aggregation and correlation systems have emerged in order to improve

the performance of wired IDSs. To the best of my knowledge, there are no work

devoted to alert aggregation on MANET platform prior to the work described in this

dissertation.

In this chapter, we first introduce the background knowledge of intrusion detec-

tion systems. This will cover wired IDSs, wired aggregation and correlation tech-

niques, and wireless IDSs. We then introduce mobile ad hoc networks and their

routing protocols. The understandings of these are necessary for us to construct a

suitable MANET IDSs.

A. Intrusion Detection

Intrusion detection is a security technology that attempts to identify individuals who

are trying to break into and misuse a system without authorization and those who

have legitimate access to the system but are abusing their privileges [7]. The system

protected is used to denote an information system being monitored by an intrusion

detection system. It can be a host or a network equipment, such as a server, a firewall,

a router, or a corporate network, etc [8].

An intrusion detection system (IDS) is a computer system that dynamically

monitors the system and user actions in the network and computer systems in order
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to detect intrusions. Because an information system can suffer from various kinds

of security vulnerabilities, it is both technically difficult and economically costly to

build and maintain a system which is not susceptible to attacks. Experience teaches

us never to rely on a single defensive line or technique. IDSs, by analyzing the system

and user operations in search of activity undesirable and suspicious, can effectively

monitor and protect against threats. IDSs have been widely regarded as being part

of the solution to protect today’s computer systems.

Research on IDSs began with a report by Anderson [9] followed by Denning’s

seminal paper [10], which lays the foundation for most of the current intrusion

detection prototypes. Since then, many research efforts have been devoted to wired

IDSs. Numerous detection techniques and architecture for host machines and wired

networks have been proposed. A good taxonomy of wired IDSs is presented in [8].

With the rapid proliferation of wireless networks and mobile computing applica-

tions, new vulnerabilities that do not exist in wired networks have appeared. Security

poses a serious challenge in deploying wireless networks in reality. However, the vast

difference between wired and wireless networks make traditional intrusion detection

techniques inapplicable. Wireless IDSs, emerging as a new research topic, aim at

developing new architecture and mechanisms to protect the wireless networks.

1. Wired Intrusion Detection Systems

Focusing mainly on network traffic data and computer audit data, there are two

general approaches to detecting intrusions: misuse based intrusion detection (also

referred to as knowledge-based detection, or detection by appearance) and anomaly

based intrusion detection (also referred to as behavior-based detection or detection

by behavior). They are complementary to each other for intrusion detection.
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a. Misuse Based Intrusion Detection Systems

Misuse based IDSs operate based on a database of known attack signatures and system

vulnerabilities. When IDS analyzer identifies an activity matching a signature that

is stored in the database, an alarm is triggered. The advantages of misuse based

IDSs include that they may have very low false alarm ratio. The triggered alarms are

meaningful because the attack signatures contain the diagnostic information about

the cause of the alarm. Disadvantages include that its completeness is not good

because the attack signature databases and system vulnerabilities need to be kept

up-to-date. This is a tedious task because new attacks and system vulnerabilities

are detected on a daily basis. Careful analysis of the vulnerabilities is also time-

consuming. Misuse detection based IDSs also face the generalization issues because

most of the knowledge of the attacks is focused on the different versions of operating

systems and applications.

There are several approaches in misuse detection. They differ in the representa-

tion as well as the matching algorithm employed to detect intrusion patterns. Here

we simply list the main approaches:

• Expert system: Expert systems provide strategies and mechanisms for process-

ing facts regarding the state of a given environment, and derive logical inferences

from these facts. Audit events and the security policy are mapped to the facts

that are recorded and evaluated by the system. During the process of mapping,

a semantic meaning is attached to increase the abstraction level of the audit

data. The expert system contains a set of rules that describe the attacks. These

rules are triggered when certain activities that can satisfy their conditions hap-

pen. The execution speed of the expert system shell is usually poor because

all of the audit data need to import into the shell as facts. Therefore, expert
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system based IDSs only exist in research prototypes, as performance is more

important in commercial products.

Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMER-

ALD) [11] is an extension of the Intrusion Detection Expert System (IDES)

[12] [13] and Next Generation Intrusion Detection System (NIDES) [14] by

SRI International. EMERALD uses a rule-based expert system component for

misuse detection. A forward-chaining rule-based expert system development

toolset called the Production-Based Expert System Toolset (P-BEST) [15] is

utilized to develop a modern generic signature-analysis engine. A chain of rules

is established utilizing P-BEST to form the signature database.

• Pattern Recognition: In this approach, the encoding of known intrusion signa-

tures as patterns (e.g., strings, a sequence of events, etc.) are matched against

the audit data. The incoming events are searched to match the patterns repre-

senting intrusion scenarios. This method allows a very efficient implementation.

Therefore, they are commonly used in commercial tools, such as RealSecure of

Internet Security Systems [16].

• Colored Petri Nets: In this method, the signatures of the intrusions are modeled

as a number of different states, which form Colored Petri Nets (CPNs). It has

more generalities to represent the signatures and make it easy to write complex

intrusion scenarios. However, it is very computationally expensive to try to

manifest the misbehavior in the audit trail. Intrusion Detection In Our Time

(IDIOT) is the one example that uses CPNs [17].

• State transition analysis: In this approach, an intrusion is represented as a

sequence of actions performed by an intruder that leads from the initial state
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to the target compromised state. State transition diagrams identify the steps

and the requirements of the penetration. The states that make up the intrusion

form a simple chain that has to be traversed from the beginning to the end. It

is a technique proposed by Porras and Kemmerer [18], which is implemented

in Ustat - a real-time intrusion detection system for UNIX [19].

b. Anomaly Based Intrusion Detection Systems

Anomaly based IDSs assume that an intrusion can be detected by observing a devia-

tion from normal or expected behavior of the systems or users. Normalcy is defined by

the previously observed subject behavior, which is usually created during a training

phase. The normal profile is later compared with the current activity. If a deviation

is observed, IDS flag the unusual activity and generate an alarm. The advantages of

anomaly detection based IDSs include that they might be complete to detect attacks,

i.e., they can detect attempts that try to exploit new and unforeseen vulnerabilities.

They are also less system-dependent. Disadvantages include that they may have very

high false alarm ratio and are more difficult to configure because the comprehensive

knowledge of the expected behavior of the system is required. They usually require

a periodic online learning process in order to build the up-to-date normal behav-

ior profile. Anomaly detection approach is harder to implement, which make them

inappropriate for commercial use.

Several anomaly detection techniques exist and differ in the representation of a

normal profile and the inference of a deviation from the normal profile. The main

approaches used in anomaly detection are:

• Statistics: Statistical-based anomaly detection techniques build a statistical

profile (e.g., statistical distribution) of subject normal activities from historic
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data by measuring a number of variables over time. Examples of the variables

are the login/logoff times, the time duration of one session, the number of

packets transmitted in this session, etc.

In EMERALD [11], the statistical algorithms employ four classes of measures

to track subject activities: categorical, continuous, intensity, and event distribu-

tion. The profile is subdivided into short and long-term elements. A short-term

profile may characterize the recent activity of the system, while a long-term

profile is slowly adapted to the changes of the system activity. Many traffic

perspectives are used to profile TCP/IP streams [11]. For example, all ICMP

exchanges are parsed to analyze ICMP-specific transactions. The application-

layer sessions from specific internal hosts to specific external hosts are analyzed

for specific applications.

• Neural networks: The use of neural networks in IDS consists of three steps:

learning the normal pattern of the system by collecting the training data; train-

ing the neural networks to identify the subject; applying the output of the

neural networks to the observed activity to identify intrusions. Neural networks

are computationally intensive, so they are not widely used in IDSs. Hyperview

[20] is an example IDS that uses neural networks.

There are other anomaly detection techniques: anomaly detection techniques

based on immunology [21] capture a large set of event sequences as the normal profile

from historic data of subject normal activities, and use either negative selection or

positive selection algorithms to detect the difference of incoming event sequences

from event sequences in the normal profile [22]. Expert systems can also be used to

implement anomaly detection techniques [13]. The IDSs can study the activities of

the target system to form a set of rules to describe its normal behavior. Lee et al.
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proposed to use datamining approach to construct intrusion detection models [23].

Anomaly detection techniques utilizing Chi-square test are also introduced in [24]

and [25].

There are also anomaly detection techniques that use a first-order or high-order

Markov model of event transitions to represent a normal profile [26] [27] [28] [29].

In [26], utilizing a Markov Chain model, Jha et al. proposed a general framework

for constructing anomaly detectors. We modify it to fit MANET requirements. We

define the from state as the previous w ordered values of the categorized statistical

measure and the to state as the current statistical feature value. That is, we define the

from state as {Xi, Xi+1, . . . , Xi+w−1}, and to state as {Xi+w} (w is a parameter that

characterizes the Markov Chain). Therefore, we can consider the routing changes as

a random process with stationary transition probabilities. We use the VQ algorithm

[30] to preprocess the data and introduce “rare symbol” to construct a Markov Chain

which would lead to better results in our environment. Locality frame is also used in

the classifier construction. We also adopt a different approach to tune the parameters.

Details of our methodology are described in Chapter III.

Besides misuse detection and anomaly detection, there is a new class of detection

algorithm: specification-based techniques [31]. It combines the advantages of misuse

detection and anomaly detection techniques. They detect attacks as deviations from

a normal profile. Their approaches are based on manually developed specifications,

thus avoiding the high rate of false alarms. However, the development of detailed

specifications can be time-consuming.

2. Wireless Intrusion Detection Systems

Relatively few research efforts have been devoted to wireless IDSs. In [32], Kachirski

at al. proposed a distributed intrusion detection system for ad hoc wireless networks
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based on mobile agent technology. In [33], Samfat et al. proposed an Intrusion

Detection Architecture for Mobile Networks (IDAMN). Its main functionality is to

track and detect mobile intruders in real time. IDAMN includes two algorithms

which model the behavior of users in terms of both telephony activities and migration

patterns. In [34], a routing misbehavior in mobile ad hoc networks is identified: a

node may misbehave by agreeing to forward packets and then failing to do so, because

it is overloaded, selfish, malicious, or broken. The authors proposed to install extra

facilities, watchdog and pathrater, to identify routing misbehavior in MANETs.

In the pioneer work of wireless intrusion detection research, Yongguang et al.

[1] proposed a general intrusion detection and intrusion response architecture for

MANETs. An agent is attached to each mobile node, and each node in the network

participates in the intrusion detection and response. A majority-based distributed

intrusion detection approach is proposed to facilitate the cooperation of neighboring

nodes. Many of our ideas benefit from the research described in [1] [35]. In [36], a new

data mining method that performs the “cross-feature” analysis to capture the inter-

feature correlation patterns of MANET normal traffic is introduced to construct the

normal profile. They focused on techniques for automatically constructing anomaly

detection methods that are capable of detecting new attacks.

B. Wired Aggregation and Correlation Systems

Alert aggregation and correlation techniques are important to overcome the short-

comings manifested by IDSs. These shortcomings include the overwhelming alerts

(alert flooding) generated by IDSs, high false positive ratio of the generated alerts,

and the poor diagnosis information provided by the alerts. Existing alert aggregation

and correlation systems have demonstrated promising approaches to analyze alerts
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and generate more global and synthetic alerts.

Several alert aggregation and correlation techniques [37] [38] [39] [40] [41] [42]

have been proposed to facilitate the analysis of intrusions. Based on the abundant

attack scenarios, these approaches try to find the causal relationships between alerts

and reveal the attack strategies. In [37], an aggregation and correlation component

is built in Tivoli Enterprise Console. Cuppens et al. [38] [39] use Lambda language

to specify attack scenarios and use Prolog predicates to correlate alerts based on

IDMEF data model. In [40], a probabilistic method is used to correlate alerts using

the attribute similarity among their features. Ning et al. [41] develop three utilities

to facilitate the analysis of large sets of correlated alerts. In [42], a formal data model

called M2D2 is proposed in order to make full use of the available information. The

effectiveness of the proposed aggregation and correlation algorithms depends heavily

on the information provided by the individual IDS.

C. Mobile Ad-Hoc Networks

Unlike conventional cellular wireless mobile networks that rely on extensive infras-

tructure to support mobility, a wireless Mobile Ad hoc NETwork (MANET) does not

need expensive base stations or wired infrastructure. Nodes within the radio range of

each other can communicate directly over the wireless links, while those that are far

apart use other nodes as relays. In MANETs, each host must act as a router since

routes are mostly multihop. Nodes in such a network move arbitrarily, thus the net-

work topology changes frequently and unpredictably. Moreover, the wireless channel

bandwidth is limited, and the mobile nodes operate on the constrained battery power

which will eventually be exhausted.

Extensive research efforts have been devoted to various issues related to MANETS.
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Because this research focuses on the protection of MANET routing protocols, here

we briefly describe existing MANET routing protocols.

1. Routing Protocols of Mobile Ad-Hoc Networks

Many routing protocols have been proposed for MANETs. In general, these proto-

cols could be divided into three categories: proactive, reactive, and hybrid. Proactive

routing protocols (such as Destination-Sequenced Distance Vector routing protocol

(DSDV) [43] and the Wireless Routing Protocol (WRP) [44]) waste limited band-

width by continuously maintaining the complete routing information about the whole

network. They react to topology changes, even if there is no traffic. They are also

called table-driven methods. The protocols in this area differ in the number of tables

maintained, the information each table contains as well as the details of how they are

updated. Reactive routing protocols (such as Ad hoc On-demand Distance Vector

routing protocol (AODV) [45], the Temporally Ordered Routing Algorithm (TORA)

[46], and the Dynamic Source Routing protocol (DSR) [6]) are based on demand for

data transmission. They can significantly reduce the routing overhead when the traf-

fic is lightweight and the topology changes less dramatically, since they do not need

to periodically update route information and do not need to find and maintain the

routes when there is no traffic. The differences among reactive routing protocols lie in

the implementation of the path discovery mechanism and optimizations to it. Hybrid

methods combine proactive and reactive methods to find efficient routes. ZHLS [47]

is one example of hybrid routing protocols. In ZHLS, the whole network is divided

into nonoverlapping zones. ZHLS is proactive if the traffic destination is within the

same zone of the source. It is reactive because a location search is needed to find the

zone ID of the destination.

Fig. 1 is a categorization of existing routing protocols in MANETs. In the figure,
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solid lines represent direct descendants while dotted lines depict logical descendants.

Since new routing protocols are always being proposed for MANETs, we do not expect

to include all of them here.

MANET Routing Protocols

Reactive (On-Demand Driven) HybridProactive (Table Driven)

DSDV WRP LANMARGSR OSLR

CGSR Fisheye

Flooding AODV LMR

SSR

ABRDSR

TORA

LAR DREAM CEDAR ZRP ZHLS

 

Fig. 1. A Classification of MANET Routing Protocols.

2. Prevention Mechanisms in MANETs

MANET IDSs can only provide one layer of defense for MANETs. They should

complement existing prevention techniques in order to provide a highly survivable

system. Considerable research [48] [49] [50] [51] [52] [53] [54] [55] [56] [57]

[58] has been devoted to MANET prevention mechanisms, especially focused on the

routing layer. In order to better understand the role of IDSs in MANETs, we briefly

summarize the prevention mechanisms.

Zhou and Haas [50], Dahill et al. [51] proposed to use asymmetric cryptogra-

phy to secure on demand MANET routing protocols. However, its potential intensive

computation may make the nodes in the network unable to verify the signatures

quickly enough. Hu, Johnson and Perrig [52] proposed to use hash chains to secure

DSDV and the use of Ariadne [58] with TESLA, an efficient broadcast authentica-

tion scheme that requires loose time synchronization. In [48], the authors proposed
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Secure Routing Protocol (SRP) based on the assumption that there exists a security

association and a shared secret key between the source node and the destination node.

In [53], a new routing technique called Security-Aware ad hoc Routing (SAR) was

introduced. It assumes a pre-established trust hierarchy and the network is classified

into different trust and privilege levels. Nodes at each trust levels share symmetric

encryption and decryption keys.

There are also some works devoted to protecting MANETs against specific at-

tacks. In [59], Hu et al. introduced a wormhole attack, in which the attacker records

a packet, or individual bits from a packet, at one location in the network, tunnels the

packet to another location, and replays it there. They also introduced the general

mechanism of packet leashes - geographic leashes and temporal leashes to detect worm-

hole attacks. In [60], rushing attack is introduced, and Rushing Attack Prevention

(RAP) is developed to defend against this new attack.
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CHAPTER III

ZONE-BASED INTRUSION DETECTION SYSTEMS

Intrusion Detection Systems (IDSs) are necessary in Mobile Ad-hoc NETworks (MANETs)

with high-survivability requirements. Serving as the second wall of defense to protect

MANETs, they complement intrusion prevention techniques to tackle the exploitable

weaknesses of the system. Our objective is to design a suitable intrusion detection

system which could meet the requirements of MANETs.

In this chapter, we describe a nonoverlapping Zone-Based Intrusion Detection

System (ZBIDS). Section A provides the assumptions and the network model. Section

B briefly introduces the Dynamic Source Routing (DSR) [6] protocol which is used

as the example routing protocol throughout this research. It then details the threat

model - the routing disruption attack. Section C presents the nonoverlapping Zone-

Based Intrusion Detection System (ZBIDS), which mainly consists of two parts: the

local intrusion detection agent and the nonoverlapping zone based framework. Section

D provides the detailed descriptions of the local IDS agent. The functionality of each

module is specified. Section E illustrates a Markov Chain based anomaly detection

algorithm. Detailed procedures from feature selection, data preprocess, Markov Chain

model construction, and the classifier construction are provided In order to achieve

desirable performances, an approach to tune the parameters of the detection model is

also presented. Section F depicts an aggregation algorithm used in ZBIDS. It works

together with the local detection agent to form a complete intrusion detection system.

An alert class hierarchy used by ZBIDS is also depicted. The proposed alert class

hierarchy conforms to the Intrusion Detection Message Exchange Format (IDMEF)

[3], which could facilitate the interoperability with other IDS systems. Section H

concludes this chapter.
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A. Assumptions and Network Model

1. Assumptions

All security systems must rely on some specific assumptions to guarantee their effec-

tiveness. Our ZBIDS system is valid under the following assumptions.

We assume that the network can be divided into nonoverlapping zones. For

example, each node can utilize a Global Positioning System or other methods [47]

to find its physical location and determine its zone identity by mapping its physical

location to a predefined zone map. The partitioning of the network could be based

on simple geographic partitioning or other clustering algorithms [61]. We also assume

that the zone partitioning mechanism is accurate and safe.

This research focuses on the protection of MANETs. Preventing and detecting

attacks aimed at IDS itself will be another challenging research topic and is beyond the

discussion of this dissertation. We assume the local IDS agent is tamper resistant.

There are many software tamper resistance techniques [62] that are very hard to

crack. Under these techniques, the attacker will not be able to reverse engineer

any secrets from the “good” agents. The secret embedded in the software could be

prevented from being extracted by the attacker. Under this assumption, we do not

need to consider the security issues of the IDS agent itself. In addition, we assume

that information exchange between IDS agents cannot be forged by an attacker.

This excludes the possibility that some compromised node actively generates falsified

alerts to disrupt the correct execution of the aggregation algorithm. When the local

IDS is not tamper resistant, the compromised IDS has no incentive to send reports

because this may result in the detection of attackers. Also, the alerts provided by

noncompromised IDSs could dominate the information that gateway nodes collect.

This could still enable the correct execution of the aggregation algorithm described
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in Section F.

We assume that when initiating the attack, the attacker can use a fake address

but does not change it dynamically. If an attacker changes its address quite often, a

neighboring monitor mechanism can identify this misbehavior effectively.

Wireless communication is fundamentally untrusted. We do not place any trust

assumptions on the communication infrastructure. We do not assume nodes using

trusted hardware either. This model is still impractical in many situations and secu-

rity problems under this assumption are much simpler. The network can be secured

through a network-wide shared secret key for all message encryption and authentica-

tion.

2. Network Model

We model the network as an undirected graph G. A graph G = (V, E) consists of

a set of n nodes (vertices) and a set of m node pairs (edges). The set of nodes,

denoted by V = {1, 2, . . . , n}, represents the network-enabled ad hoc devices; the set

of edges, denoted by E, represents the wireless communication links. Each link (i, j)

is bidirectional and connects node i and j. Link (i, j) is removed when the distance

between node i and j is greater than the radio transmission range, while a new link is

formed when their distance is less than or equal to the radio transmission range. The

topology of G is constantly changing, as is the set of E. In this model, the neighbor

set of a node v is defined as a set of those nodes that have links to v.

B. Threat Model

Since routing protocols are the cornerstone of MANETs, this research will focus on

the detection of attacks targeted at MANET routing protocols, more specifically
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on detecting one of the most important active attacks: routing disruption attacks.

Routing disruption attacks are particularly harmful to the whole network. It is deemed

as one of the most vicious attacks and has been studied broadly by other researchers.

In this section, we use DSR as the exemplary routing protocol to model the behavior

of the routing disruption attack.

1. Basic Operations of DSR

We use the Dynamic Source Routing (DSR) protocol [6] as our exemplary routing

protocol throughout this research due to its popularity in MANET community. The

DSR routing protocol also defines a number of optimizations (such as preventing route

reply storm, path state and flow state mechanisms, piggybacking on route discoveries

and gratuitous route errors etc.). For simplicity, we only use a basic version of DSR

without optimizations throughout this research. With modest revision, however, our

proposed ZBIDS is applicable to DSR with more complicated functionalities. Since

routing protocols such as DSR have not been standardized and no routing protocol

seems to be an obvious winner for ad hoc networks in a short time, we leave the work

of expanding the proposed intrusion detection scheme as further work.

DSR uses the source routing approach (every data packet carries the whole path

information in its header) to forward packets. Before a source node sends data packets,

it must know the total path to the destination. Otherwise, it will initiate a route

discovery procedure by flooding a Route REQuest (RREQ) message. The RREQ

message carries the sequence of hops it passed through in the message header. Any

nodes that have received the same RREQ message will not broadcast it again. Once

an RREQ message reaches the destination node, the destination node will reply with

a Route REPly (RREP) packet to the source. The RREP packet will carry the path

information obtained from the RREQ packet. When the RREP packet traverses
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backward to the source, the source and all traversed nodes will know the route to the

destination. Each node uses a route cache to record the complete route to desired

destinations. Route failure is detected by the failure of message transmissions. Such

a failure will initiate a route error message to the source. When the source and the

intermediate nodes receive the error message, they will erase all the paths that use

the broken link from their route cache.

2. Routing Disruption Attack

Fig. 2 illustrates one example of the routing disruption attacks.
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Fig. 2. An Example of the Routing Disruption Attack.

In the example, node 1 is the attacker and node 3 is the attack objective. Node

1 actively sends randomly-constructed, falsified RREP (Routing REPly) packets to

node 3. The purpose is to effectively disrupt the routing logic of the victims, or

even the whole network. The attacker may also try to induce the victim to form a

short path to it, forming a routing black-hole. Since DSR uses source routing, the

randomly constructed RREP needs to contain the path 1 → 5 → 3 in order to reach
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the destination. To do so, the attacker may initiate a route discovery procedure first

to node 3, and based on the received RREP packet, the attacker can obtain a valid

path. Thus, the path contained in the randomly constructed RREP may look like:

{2, 4, 9, 7, 1, 5, 3}. Although the part {2, 4, 9, 7} are randomly constructed, the valid

partial path {1, 5, 3} can guarantee that this fake RREP can reach node 3. When

this fake RREP is unicasted to node 3, all nodes along the path (node 5) and their

neighbors (for example, node 2, 4, 7, 8) become victims due to the wireless broadcast

nature and the enabled promiscuous-listening mode in the nodes. All victims will

change their routing caches according to the newly received or promiscuously heard

RREP packets. The victims could further disseminate this falsified routing informa-

tion because it is assumed to reflect the current network topology. This attack can

have a serious negative impact on the routing logic of the whole network.

The occurrence of this type of attack does not limit to the normal route discovery

procedure. One obvious difference in the routing disruption attack between wired

networks and MANETs is that: when a node moves, it is hard for the node to be

targeted all the time. In the above example, the movement of node 3 may lead to

the link break between node 5 and 3. Therefore node 3 may fail to receive falsified

RREPs from node 1. This will lead to the phenomenon that a node is “partially”

victimized during the whole intrusion session and it becomes more obvious with the

increase of mobility.

Because mobility is arbitrary, it is very difficult to establish a mathematical

model to characterize this kind of attack. One important assumption of intrusion

detection is that normal and intrusive behaviors are distinct. If the attacker only

sends one or two falsified routing control packets, it is very difficult for the victim

to tell whether these falsified routing control packets are caused by mobility induced

errors or generated by attackers, based only on local communication activities. Also,
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sending only a few falsified routing control packets may not cause a serious impact

on the whole network, considering the periodic route cache refreshment mechanism.

What’s more, it has been demonstrated that mobility can be utilized to propose new

mechanisms to enhance security [63], thus reducing the attacker’s ability to perform

light attacks. Therefore, in the context of intrusion detection, we assume that an

attacker has to send many falsified routing control packets in order to effectively

disrupt the routing logic of the network.

C. Zone-Based Intrusion Detection System (ZBIDS)

In this section, we detail our proposed intrusion detection system - ZBIDS. From the

system aspect, we attach an IDS agent to each mobile node. These IDS agents run

independently and monitor local activities to detect abnormal behaviors. We choose

to implement an anomaly detection algorithm because it is expected that more types

of attacks will be launched against MANETs in the future. It is also difficult to

obtain the complete trace of the attacks, which are often required in designing a

misuse detection algorithm.

We logically divide the network into nonoverlapping zones to manage the locally

generated alerts. By integrating the network information from a wider area, this

management framework could reduce false positive ratio and improve detection ratio.

Therefore, the description of ZBIDS mainly consists of two parts: the overall

network framework and the internal conceptual model of each IDS agent.

1. ZBIDS Framework

We adopt a zone-based intrusion detection framework because of the following con-

siderations:
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• Due to the dynamic nature of MANETs, alert flooding is expected in such an

environment. Attacks are likely to generate multiple related alerts. By creating

some alert concentration points, we can logically group related alerts together

and reduce the false alarms generated for various reasons.

• Flat architecture is undesirable in managing the alerts. When the network

becomes very large, scalability will be a serious problem. It is also unrealistic

to have a centralized console in MANETs to manage all of the alerts because

of the complicated mobility management and the issue of network reliability

caused by the single point of failure.

A problem with a hierarchical approach in MANETs, however, is the cost of

maintaining the hierarchy in face of mobility. When mobility is high, the introduction

of the message overhead to create and maintain the hierarchy is unbearable.

We thus adopt a nonoverlapping zone-based framework because the communica-

tion overhead for creating and maintaining the topology is small [47]. It also requires

little mobility management efforts. Actually, ZBIDS requires few extra control mes-

sages propagated within the zone in order to maintain the framework. Nevertheless,

the selection of the zone size is critical and depends on factors such as node mobil-

ity, network density, transmission power and propagation characteristics, etc. The

zone size should be neither too large nor too small. Large zone size compromises

the advantage of using the hierarchical structure since the broadcast alerts may in-

volve large communication overhead. Likewise, if the zone size is too small, the alert

management nodes cannot collect enough information for aggregation.

The formation and the maintenance of zones are beyond the research topic in this

dissertation. In a simple approach, the zones can be obtained based on geographic

partitioning. Based on network connectivity, each node can be classified into one of
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two categories: the interzone node (also called the gateway node) and the intrazone

node. With the availability of GPS, it is possible for a mobile host to know its

physical location. It can then determine its zone ID by mapping its physical location

to a zone map, which has to be worked out at the design phase. By some locally

broadcast mechanism (Hello messages, e.g.), each node can know the information of

its neighbors. Therefore it can determine whether it is an interzone node or intrazone

node. A node may change its role over time due to mobility. An example of ZBIDS

is depicted in Fig. 3.
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Fig. 3. The Zone Based IDS Framework for Mobile Ad Hoc Networks.

In Fig. 3, nodes 4, 7 and 8 are the gateway nodes of zone 5. Each mobile node

is attached an agent, and all of these agents collaboratively perform the intrusion

detection task. Each IDS agent runs independently to monitor its system activities,

such as the user behavior, system behavior, radio communication activities, etc. and

perform intrusion detection tasks locally. Intrazone nodes will report their locally
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generated alerts to the gateway nodes in the same zone, and the gateway nodes will

aggregate and correlate the received alerts. Gateway nodes in neighboring zones can

further collaborate in order to perform intrusion detection tasks in a wider area.

Zhang et al. proposed an intrusion detection architecture [1], in which, only

neighboring nodes can collaboratively cooperate. When the network becomes very

large, scalability will become a serious problem. In order to solve this problem,

we adopt the zone-based architecture and introduce the concept of intrazone and

interzone nodes in MANET IDSs. There may exist many gateway nodes in a zone,

thus avoiding the issue of single point of failure.

Intrusion detection must necessarily be deployed in various layers of networks.

Certain attacks may be detected much earlier in the application layer, because it

contains richer semantic information than the lower layer. For example, for a denial-

of-service attack, the application layer may detect very quickly that a large number

of incoming service connections have no actual operations; whereas the lower layers,

which rely on information about the amount of network traffic (or the number of

channel requests), may take longer to recognize the unusually high volume.

This research focuses on the attacks targeted at the routing layer, thus our IDS

locates in the routing layer. It obtains data from routing caches to construct the

classifier. Because of the distributed nature of ZBIDS, the communications among

the IDS agents may rely on the underlying routing protocols.

In this research, we do not consider the following issues:

• We do not consider attacks targeted at the physical layer and Medium Access

Control layer. We focus on the routing attack and use it as the threat model to

develop our whole system. However, ZBIDS is general and can accommodate

attacks targeted at other layers easily.
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• We do not consider the formation and maintenance of zones. That is, we as-

sume that the network can be divided into nonoverlapping zones and the zone

partitioning mechanism is accurate and safe.

• We focus on the protection of MANETs. Preventing and detecting attacks

aimed at IDS itself will be another challenging research topic and is beyond the

discussion of this research. Therefore, we do not consider the security issues of

IDS agent itself.

In the following sections, we describe the local detection model and aggregation

algorithm used by the ZBIDS in detail.

D. Internal Model of the IDS Agent

The internal model of the IDS agent can be divided into the following components:

the data collection module, the detection engine, the local aggregation and correla-

tion engine (LACE), the global aggregation and correlation engine (GACE), and the

intrusion response module. A diagram is given in Fig. 4.

The data collection module is mainly responsible for collecting the security re-

lated data from various audit sources. The detection engine will use the data which

are parsed, filtered and formatted by the data collection module to perform intrusion

detection locally. LACE will locally aggregate and correlate the detection results

from different detection engines in the IDS agent. No detection model stands alone

as a catch-all for network penetrations. In an environment with high security re-

quirements, it is desirable to have multiple detection engines, which enable the use

of different detection techniques. They will complement each other to improve the

detection performance. The functionality of LACE is to combine the detection results

of different local detection engines. The functionality of GACE depends on the type
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Fig. 4. Diagram of an IDS Agent.

of mobile nodes. If the node is an intrazone node, GACE is mainly responsible for

transmitting the locally generated alerts to the gateway nodes in the same zone; if

the node is a gateway node, GACE is to aggregate and correlate the detection results

from the LACE of its own agent and the LACEs of the intrazone nodes in the same

zone, and to cooperate with the GACEs of the gateway nodes with which it has phys-

ical connections. The intrusion response module is to handle the generated alarms.

A detailed description of each module is as follows.

1. Data Collection Module

The functionality of the data collection module is to collect the security related data

from various audit data sources and preprocess them to conform to the input format of

the detection engines. There may exist many data collection modules in an IDS agent.

Each module is responsible for collecting data from a particular data source. There

are mainly two different data sources: network packets and host audit trails. Because
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this research is focused on the routing attacks, the data source mainly consists of the

routing activities, topological patterns and traffic changes, etc.

The data collection module consists of two layers: data filter layer and data

preprocess layer. The functionality of the data filter layer is to select a particular

security-related data source (the routing activities, e.g.) and generate the raw data.

The data preprocess layer defines the representational data input format for the de-

tection engine. It abstracts the raw data into a set of statistical variables in order

to reflect the network status and periodically generates reports following the format

required by the detection engine.

2. Detection Engine

Different detection techniques can be deployed in different detection engines in order

to improve the detection performance. Misuse-based detection techniques operate

based on the known attack scenarios and system vulnerabilities. Their main disad-

vantage is that they are only effective in detecting known attacks. It is expected that

many new different types of attacks can be mounted in MANETs, so anomaly based

detection techniques will play a main role in the MANET environment.

We try to avoid the use of computationally intensive detection techniques, such

as the powerful Hidden Markov Model [64], Hotelling’s T2 test [65], etc. which also

require a large memory to store the computed matrix. Mobile nodes have limited

power supply and storage space, thus excluding the possibility of such approaches.

Several types of anomaly detection techniques exist: string-based [21] [66],

statistical-based [14] [13], and specification-based [31], etc. They differ in the

format and the amount of available audit data as well as the modeling algorithms.

An advantage of statistical-based anomaly detection techniques is their capability of

explicitly representing and handling variations and noises involved in activities. In
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the training process, the established normal profile of the subject must consider and

represent variations of normal activities for distinguishing truly anomalous activities

from expected variations of normal activities. Due to arbitrary mobility of nodes,

MANETs are expected to demonstrate more dynamic activities. Therefore, we utilize

a statistical based anomaly detection approach - the Markov Chain based anomaly

detection algorithm to meet the challenge.

Details about how to construct the classifier are introduced in section E.

3. Local Aggregation and Correlation Engine (LACE)

Because different detection techniques can be deployed in the IDS agent, it is neces-

sary for the LACE to aggregate and correlate the different detection results before

transmitting them to the GACE.

The local IDS agents for a mobile node should be capable of operating in a stand-

alone mode and detect attacks against the node. Since wireless ad hoc networks are

constrained by bandwidth, energy consumption, and process capability, it is desirable

to correlate the alert information on the local nodes first, as opposed to transmitting

every alert across the network. The correlation could be very simple, for instance,

based purely on the source address.

4. Global Aggregation and Correlation Engine (GACE)

The functionality of the GACE depends on the node types: if the node is a gate-

way node, its GACE utilizes the aggregation and correlation algorithm to combine

the detection results from the IDS agents of intrazone nodes in the same zone and

neighboring gateway nodes. If the node is an intrazone node, the functionality of the

GACE is to distribute the outputs of its LACE to all of the gateway nodes in the

same zone.
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5. Intrusion Response Module

The countermeasures taken by the intrusion response module are different due to the

different intrusions, network services, applications and confidence in the evidence.

Possible countermeasures may include identifying the intruders, reinitiating the com-

munication channels and excluding the compromised nodes from the networks.

This research focuses on intrusion detection, i.e., the detection of whether the

network is under attack and the identification of the attackers. The functionality of

intrusion response is simplified.

E. Anomaly Detection in Mobile Ad Hoc Networks

Detecting new attacks while keeping acceptably low false positive ratio is probably

the most challenging and important problem in intrusion detection. In this section,

we detail the procedure of constructing the detection model.

1. Outline of the Methodology

We collect the statistical features of interest, Percentage of the Change in Route

entries (PCR) and Percentage of the Change in number of Hops (PCH), from the

routing cache of mobile nodes, which reflect the mobility of the network, to construct

a Markov Chain as the normal profile. The use of the Markov Chain can capture

the temporal dependency among the network activities. It also takes into account

their ordering property. Vector quantization (VQ) [30] approach is used in this

process to convert the continuous raw audit data to categorized data items with

minimum errors. The output of the VQ is then used to construct a Markov Chain

model, which employs conditional probabilities in its transition probability matrix

to represent the temporal profile of normal behavior. The Markov Chain model,
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considering the ordering property, characterizes the normal changes of the routing

caches with probabilities. It determines the probability of the next valid change, given

the previous N changes. The Markov Chain model is then turned into a classifier,

which serves as the detection algorithm. Conditional entropy is used in this process to

determine the proper window size which parameterizes the Markov Chain model, thus

avoiding the tedious trial-and-error process. The definition of conditional entropy and

window size will be given in the following sections.

In the detection process, we define the distance of the current transition based

on the transition probability matrix recorded in the Markov Chain model. A single

deviation from the Markov Chain does not always correspond to the occurrence of

an attack. An alert is generated only when the average distance over the near past is

beyond some preset threshold value. The parameters used in the detection algorithm

are tuned properly using the defined performance metrics.

We use an offline training process to generate the classifier. The general flowchart

of using the offline training process to construct a classifier is illustrated in the right

part of Fig. 5. The left part of Fig. 5 illustrates our corresponding strategy. The

dotted line depicts their mapping relationships.

IDSs are classifiers. Their purposes are to classify an unknown activity to nor-

mal or anomalous. Classifiers are usually offline trained from collected data. Their

purpose is to derive a set of rules which can be used during runtime. In the offline

training phase, features of interest are first collected and preprocessed using training

data whose classification is known a priori. The classification rules can then be de-

rived correspondingly [67] [68]. In our system, we offline generate a Markov Chain

to represent the subject normal behavior. Then we use normal data and abnormal

data to determine proper threshold and generate the classifiers. We will elaborate on

these issues in the remaining part of this chapter.
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Fig. 5. General Strategy of Using the Markov Chain to Build the Classifier.

2. Detailed Descriptions

In the following, we first give some definitions related to information theory [69],

then we describe how to construct the Markov Chain model and discuss how to use

it to construct the classifier.

Definition 1 Entropy: Suppose X is a dataset, Cx = {Cx[1], Cx[2], . . . , Cx[m]}
is a class set. Each data item of X belongs to a class x ∈ Cx[i]. Then the entropy of

X related to this |Cx|-wise classification is defined as:

H(X) =
m∑

i=1

−PilogPi.

where Pi is the probability of x belonging to class Cx[i].

Entropy is an important concept which is widely used in the field of communica-

tions. It can be interpreted as the number of bits required to encode the classification

of a data item. It measures the uncertainty of a collection of data items. The lower
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the entropy, the less varied the class distribution. If all data items belong to one

class, its entropy is 0, which means that no bits need to be transmitted because the

receiver knows that there is one class. The more varied the class distribution, the

larger the entropy. When all of the data items are equally distributed over the m

classes, its entropy is logm. In the context of anomaly detection, entropy could be

used as a measure of the regularity of audit data. Here regularity refers to the se-

quential dependencies of sequences. Nevertheless, because we often need to predict

the next state given the history information, conditional entropy is more useful in this

respect.

Definition 2 Conditional Entropy: Suppose X and Y are two datasets, Cx =

{Cx[1], Cx[2], . . . , Cx[m]} and Cy = {Cy[1], Cy[2], . . . , Cy[n]} are two class sets. Each

data item of X belongs to a class x ∈ Cx[i] and each data item of Y belongs to a

class y ∈ Cy[i]. Then given Y and Cy, the entropy of X related to Cx is defined as:

H(X|Y ) =
m∑

i=1

n∑
j=1

Pij log
1

Pi|j

where Pij is the probability of x ∈ Cx[i] and y ∈ Cy[j], Pi|j is the probability of

x ∈ Cx[i] given y ∈ Cy[j].

Conditional entropy describes the uncertainness of X given Y . The smaller the

conditional entropy, the more correlated X and Y . If X can be determined by Y ,

H(X|Y ) is 0. In the context of anomaly detection, conditional entropy can be used

to explore the temporal sequential characteristics of audit data due to the temporal

nature of system activities.

More history information is desirable in achieving better detection performance.

However, the more information we include in the detection model, the more data pro-

cessing time required and the more complexity of the data model. Window size is an



37

important parameter to reflect how much information the data model includes. We

choose the proper window size when the conditional entropy of the training data asso-

ciated with the window size does not drop dramatically. We will have an experimental

description of how to decide window size in the next chapter.

Definition 3 Relative Entropy: The relative entropy or Kullback Leibler distance

between two probability mass function p(x) and q(x) is defined as

D(p ‖ q) =
∑

p(x)log
p(x)

q(x)

Relative entropy can be used to as a metric to measure the “distance” between

two probability distributions, although it is not really a “distance”. Relative entropy

is always non-negative. In anomaly detection, we often build a model using the

training data and apply the model to test and intrusion data. It it better that

the “distance” between the training data and test data is small while the “distance”

between the training data and the intrusion data is large in order to make the detection

model achieve desirable performance. We will use relative entropy to demonstrate

PCR and PCH are good candidate features.

Definition 4 Classifier: Suppose ξ = {a1, a2, . . . , an} is a set of symbols. ξ∗ is a

set of finite traces which only consist of the symbols in ξ. λ = {Normal, Anomalous}.
Then in the context of intrusion detection, a classifier is a function f : ξ∗ → λ.

a. Feature Selection

Each intrusion detection approach is technically suited to identify a subset of the se-

curity violations to which the system is subject. The selection of statistical measures

should be based on good understanding about the system itself as well as all possible

attacks that may influence the system’s normal behavior. Different attacks may be

sensitive to different statistical features. Sometimes it requires domain expert knowl-
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edge to help select good features. In the history of IDSs, people have used various

features to construct detection models. They tend to define the normal behavior of

a user, a program, or a network element. Since the ground-breaking discovery of S.

Forrect [22], people find the short sequence of system calls of priviledged programs

is stable in building the detection model, many research efforts have been focused

on constructing different data models using the short sequence of system calls since

then.

Designing IDS in MANETs needs to define new features, as MANETs are a new

communication paradigm. These statistical features should be reliable in order to be

trusted and used. Due to the distributed nature of MANETs, these features should

also be locally collected. That is, they should be collected within the node itself

or its communication activities. Because we focus on routing disruption attacks, we

need to define features associated with the routing caches of mobile nodes in order to

characterize their normal changes.

In MANETs, each mobile node can act as a router to relay data for other nodes.

A routing table usually contains, at the minimum, the next hop to each destination

and the distance to the destination (in terms of the number of hops). For a given

application, we assume that the movement of each mobile node is independent and

each node has its own specific behavior regarding movement. In typical mobile net-

works, nodes exhibit some degree of regularity, i.e., non-random behaviors, in their

mobility patterns. For example, a car traveling on a road is likely to follow the path

of the road and a tank traveling across a battlefield is likely to maintain its head-

ing and speed for some period of time. As such, the mobile nodes tend to follow

regular movement characteristics which are usually determined by specific MANET

applications. As nodes in the network move in and out of wireless transmission range

of one another, the routing cache of the nodes changes correspondingly, invalidating
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Table I. Features Used

PCR Percentage of the change in route entries

PCH Percentage of the change in number of hops

old cached routing information or adding new routing entries: adding new routing

entries when RREP packets are received; deleting mobility-induced routing entries

when RERR packets are received; deleting expired routing cache entries when they

are not used for a long time; updating the routing cache when a node promiscuously

hears RREP/RERR/data packets, etc. Therefore, we define the normal updates of

routing information as the normal profile.

Specifically, based on our experiment results, we use the features described in

Table I that are sensitive to routing disruption attacks.

In DSR routing protocols, each entry contains a full path to the destination.

Two routing entries are the same if the full paths contained in the route entries are

the same. This includes the route destination and the hop-by-hop route comparison.

It is undesirable to consider only the route destination to distinguish two routes.

According to the specification of DSR [6], for a given node, it is possible that there

exist multiple routes to a destination (this is called path redundancy). If we only

consider the route destination to distinguish two routes, this may not be desirable

because it will only demonstrate a very small portion of the route cache changes.

Suppose for a given node, at time t1, there are N1 routing entries, the routing

entry set is S1, and the sum of hops of all routing entries is H1; at time t2, there are

N2 routing entries, the routing entry set is S2, and the sum of hops of all routing

entries is H2. We define PCR and PCH as following:
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• PCR: PCR is calculated as (|S2 − S1| + |S1 − S2|)/|S1|. |S| indicates the

number of elements in S. (S2 − S1) means the newly increased routing entries

during the time interval (t2 − t1), and (S1 − S2) means the deleted routing

entries during (t2− t1). They together represent the changes of routing entries

in (t2 − t1).

• PCH: PCH is calculated as (H2 −H1)/H1. (H2 −H1) indicates the changes

of the sum of hops of all routing entries during the time interval (t2 − t1).

For traces at each mobility level, we further measure the relative entropy between

training data and test normal data (denoted as REtest henceforth) and the relative

entropy between training data and intrusion data (denoted as REintrusion henceforth)

in order to demonstrate the effectiveness of PCR and PCH. Relative entropy is a

measure of the “distance” between two probability mass functions [69]. For anomaly

detection, in order to achieve high performance, REtest should be small (indicating

the same or similar regularity between training data and test normal data) while

REintrusion should be large (indicating different regularity between training data and

intrusion data) [70][71].

Intrusion detection needs to consider subject behavior in recent history. There-

fore, for test data and intrusion data, we use the limited sample size which reflects

its recent subject activities. For a sample of size n, if the number of occurrence of an

item c is nc, the probability of c is calculated as nc/n. Because of the large amount

of training data and limited test data (intrusion data) items, it is possible that some

item appearing in training data does not appear in test data. Therefore, based on

the definition of relative entropy, we cannot calculate the divergence of these two

probability distributions because the denominator is 0. To cope with this problem,

we adopt the popular Jelinek-Mercer smoothing method [72] to eliminate the zero-
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frequency problem. That is, for item c, if its probability is 0 in test data (intrusion

data), we use the following formula to modify its probability:

pλ(c) = λq(c) + (1 − λ)p(c), 0 ≤ λ ≤ 1.

where q(c) is the probability of c in test data (intrusion data) for a given history,

and p(c) is the probability of c calculated from training data. λ is an interpolation

coefficient which is applied as a balancing weight between the observed probabil-

ity in test data (intrusion data) and the probability calculated from training data.

Simulation results of relative entropy will be illustrated in section a.

We do not use features related to the physical movement of nodes (such as the

velocity, direction and moving distance). In the context of our threat model, the

attackers can still attack the network following their normal movements.

We have two alternatives when collecting raw feature values: periodic and event-

triggered. We say an event happens each time the node receives a packet that triggers

the update of the routing entry. For the event-triggered mechanism, the data collection

module computes PCR and PCH each time an event happens. This mechanism could

capture all route changes and therefore is more accurate to reflect the routing cache

statistics. However, when data are collected this way, we may need to keep track of

all events (RREP/RERR/data packets, etc.) and their time. The burst of events may

make their processes a heavy burden for mobile nodes. This is further complicated by

the time calculation. Therefore, it is difficult for event-triggered mechanism to meet

the demands of MANET IDSs.

Therefore, we adopt a periodic mechanism. We collect the raw feature value every

observation period, which determines the detection resolution. The data collection

module of each IDS agent periodically collects data and preprocesses these statistical
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measures into suitable formats. In this way, the temporal behavior of the routing

activities can be represented as a discrete-time stochastic process.

b. Data Preprocess

The output of the data collection module contains only continuous data. However, the

construction of the Markov Chain model requires discrete data. A suitable mechanism

is thus needed to perform the data transformation.

One simple approach is to use n classes to represent raw audit data in n ranges.

The range level can thus be simply defined based on the minimum and maximum

value of raw data. However, this approach does not take into account the attributes

of raw data and could possibly introduce high error rates. Too small number of bins

will make the bins too “coarse”, which will enable most values to reside in one or

two bins. This will result in less sensitivity to intrusions. On the other hand, too big

number of bins tend to be too “fine”, so that many values would be associated with

very small probabilities. The inappropriate selection of the number of bins would

influence the performance of the IDS.

We thus propose to use the Vector Quantization(VQ) algorithm [30] to discretize

the raw continuous data. VQ is a lossy data compression method based on the

principle of block coding. In VQ algorithm, each input vector is mapped to one

of a finite set of predetermined vectors. This set of predetermined vectors, called

codevectors, is the codebook. Given a vector source (corresponding to raw training

data) and a distortion measure (we use the commonly used squared-error distortion

measure), it outputs a codebook and a partition of training data that will result in

the smallest average distortion.

Let’s assume training data consists of M source vectors:

T = {x1, x2, . . . , xM}.
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In our context, they are the one-dimensional data (PCR or PCH) periodically

obtained from the routing caches of the mobile nodes. M is assumed to be sufficiently

large so that the statistical properties of the source are captured in the training

sequence. Suppose each source vector is k-dimensional:

xm = (xm,1, xm,2, . . . , xm,k), m = 1, 2, . . . ,M.

Let N be the number of codevectors which make up the codebook C,

C = {c1, c2, . . . , cN},
Each codevector is also k-dimensional,

cn = (cn,1, cn,2, . . . , cn,k), n = 1, 2, . . . , N.

Let Sn be the encoding region associated with the codevector cn and let

P = {S1, S2, . . . , SN}.
denote the partition of the space. If the source vector xm is in the encoding

region Sn, then its approximation (denoted by Q(xm)) is

cn: Q(xm) = cn, if xm ⊆ Sn.

Because we use the commonly used squared error (d(x, x) = (x− x)2, where x is

the approximation of x) as the distortion measure, the average distortion is given by:

Dave =
1

Mk

M∑
m=1

‖ xm −Q(xm) ‖2,

where ||y|| = (y1)
2 + (y2)

2 + ...+ (yk)
2.

The VQ algorithm can be described as: given T and N , find C and P such that

Dave is minimized. C and P , as the solution to the problem, must satisfy the following

two criteria:

• Nearest Neighbor Condition: Sn = {x :‖ x − cn ‖2≤‖ x − cm ‖2, ∀m =

1, 2, . . . , N}. This condition says that the encoding region Sn should consist of

all source vectors that are closer to cn than any of the other codevectors.



44

• Centroid Condition: cn =
∑

xm⊆Sn
Xm/

∑
xm⊆Sn

1, n = 1, 2, . . . , N . This

condition says that the codevector cn should be the average of all those training

vectors that are in the encoding region Sn.

Unfortunately, designing a codebook that best represents the set of input vectors

is NP-hard. We therefore resort to the suboptimal codebook design schemes - the

Linde-Buzo-Gray (LBG) algorithm [73]. The LBG VQ algorithm works iteratively to

find the codebook C and the partition S of training data to guarantee local optimality

by comparing each input vector with all the codevectors.

After we obtain the codebook C, we need to find the mapped value for each raw

data item. We find it in this way: for each data item x, we map the codevector in

the codebook which has the smallest distance (measured as the (x−Q(x))2) to x. In

this way, the raw data are converted into categorized data.

In our case, we use the 1-dimensional input and construct separate codebooks

for different features (PCR and PCH). The input raw data items are thus converted

into categorized items suitable for the construction of the Markov Chain model.

Due to the dynamic nature of MANETs, nodes may move in an arbitrary man-

ner. It is thus possible that the statistical feature could have unexpected sudden

changes, leading to the small probability of some categorized data items. These cat-

egorized values are abnormal yet not malicious. They are undesirable in the Markov

Chain construction process because they do not represent the general normal changes

of the routing caches and introduce noise to training data. Their existence could

introduce unnecessary states and lead to the distortion of the Markov state transition

calculation. We thus take the following action to cope with this problem: for those

data items whose probability is below some threshold, we convert them to a “rare”

symbol. In this way, the noise in the training data could be reduced. We will detail
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this in the next chapter.

The whole process of using VQ algorithm is illustrated in Fig. 6.
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Fig. 6. Data Preprocess Using Vector Quantization.

c. Markov Chain Based Intrusion Detection

In [35], using the classification algorithm RIPPER [74], and the most discriminating

feature values as the concept, classification rules can be obtained and used to construct

normal profiles. This approach requires examples of abnormal behavior. However,

it is difficult to obtain sufficient examples of malicious behavior that compromise

system security. Leaving aside the practical difficulty of obtaining instances of hostile

activities, there is an issue of coverage. The space of possible malicious behavior is

potentially infinite. It would be difficult to demonstrate complete coverage of the

space from a finite training corpus.

We utilize a Markov Chain based anomaly detection algorithm. It characterizes

the normal behavior of the system and captures the characteristics of the temporal

sequence of the system audit data by utilizing which states it moves between and

with what probabilities.

That is, we define the from state as {Xi, Xi+1, . . . , Xi+w−1}, and to state as
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{Xi+w} (w is a parameter that characterizes the Markov Chain). Therefore, we can

consider the routing changes as a random process with stationary transition probabil-

ities. We use the VQ algorithm to preprocess the data and introduce “rare symbol”

to construct a Markov Chain which would lead to better results in our environment.

Locality frame is also used in the classifier construction. We also adopt a different

approach to tune the parameters.

A Markov Chain is a special type of discrete-time stochastic process. If a collec-

tion of random variables Xt (where the index t runs through 0, 1, . . .) has the property

that:

• the probability distribution of the state at time t+1 only depends on the state

at time t;

• the state transition from time t to time t+1 is independent of time;

The sequence of states Xt forms a Markov Chain.

In other words, P (Xt = j|X0 = i0, X1 = i1, . . . , Xt−1 = it−1) = P (Xt = j|Xt−1 =

it−1) and P (Xt = it|Xt−1 = it−1) = P (Xt = j|Xt−1 = i) = pij .

If the system has a finite number of states, the Markov Chain model describes a

transition probability matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 ... p1s

p21 p22 ... p2s

...
...

...
...

ps1 ps2 ... pss

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.1)

where s is the number of possible states and

s∑
j=1

pij = 1. (3.2)



47

Assume (X1, X2, . . . , Xt) gives a time-series representation of a given event se-

quence, where Xt denotes an event occurring at time t. We compute the transition

probability matrix as follows:

pij =
Nij

Ni
(3.3)

where

• Nij is the number of observation pairs Xt and Xt+1 with Xt in state i and Xt+1

in state j;

• Ni is the number of Xt in state i.

Normal profiles are used to characterize the normal behavior of the system. One

of the difficulties using the Markov Chain to construct the normal profile is to define

the states. Here we define the from-state as the previous N ordered values of the

statistical measure and the to-state as the current statistical feature value. That

is, we define the from-state as {Xi, Xi+1, . . . , Xi+w−1}, and to-state as {Xi+w} (w

is a parameter that characterizes the Markov Chain.). If the transition probability

P [Xn+1 = j|Xn = i] of the Markov Chain is the same for every n, we say that

the Chain has stationary transition probabilities or has the homogeneity property

[75] [76]. Therefore, we can consider the routing changes as a random process with

stationary transition probabilities.

d. Construction of the Markov Chain Model

Before we describe how to construct the Markov Chain model, we first describe some

related notations. Let ξ denote the set of symbols. A trace over ξ is a finite sequence

of symbols. The set of finite traces over ξ is denoted as ξ∗ and the set of traces
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Table II. Variable Notations

ξ the set of symbols ξ∗ the set of finite traces over ξ

ξw the set of traces of length w |ψ| the length of trace ψ

ζ trace of test/anomalous data ψ a trace of training data

M the set of traces formatted w the window size

from raw audit data

of length w is denoted as ξw. Given a trace ψ over ξ, |ψ| denotes its length. We

summarize the notations of variables in Table II.

The size of ξ (the number of different symbols) is determined by the number of

codevectors. Each codevector is represented by one symbol. Each from-state in the

Markov Chain model is associated with a sequence of symbols, which is defined on

ξ ∪ {φ} and its length is w. Each tuple (s, s′) is a state pair that represents the state

transition from s to s′. All states are stored in one hash table H . The use of the

hash table is to speed up the processing and is not crucial to the description of the

algorithm. Each state and transition is associated with a counter, which indicates

how many times this state or transition has occurred.

Each training trace is converted into a sequence of symbols over ξ. All of the

sequences of symbols construct M ∈ ξ∗. The algorithm used to construct the Markov

Chain model from M is illustrated in Fig. 7.

In Fig. 7, the initial from state of the Markov Chain model is associated with a

symbol sequence of length w consisting of the first w symbols of ψ. w is window size,

which indicates the number of symbols associated with from state. For each trace ψ,

it sets from state and to state. If the from state is not in hash table H , it is inserted

into H and associated with a counter 1. If the from state is already inserted into hash
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Procedure Construct_Markov() 
 
Input   D: raw data set; 
Output  H: hash table that stores the states and the associated counters; 
 
Begin 
 
Use VQ algorithm to preprocess D; 
Generate rare symbols, and convert D to a set of traces, denoted as M; 
 
For each ψ ∈ M  
{ 

from_state is set to the first w symbols of ψ; 
shift ψ left by w positions; 
 
While (not reaching the end of ψ) 

 { 
  to_state is set to the first symbol in ψ; 
  shift ψ left by one position; 
 
  If (from_state ∉ H) 
  { 
   from_state → H; 
   the counter of from_state in H is set to 1; 
  } 
  Else 
   increase the counter of from_state by 1; 
  
  If (transition(from_state, to_state) ∉ H) 
  { 
   (from_state, to_state) → H; 
    
   the counter of (from_state, to_state) is set to 1; 
  } 
  Else 
   increase the counter of (from_state, to_state) by 1. 
 
  shift from_state left by one position; 
  append to_state to the end of from_state; 
 
 } /*for While*/ 
} /*for For*/ 
 
End. 

Fig. 7. Pseudocode to Construct the Markov Chain Model.
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table H , its associated counter is increased by 1. If the transition(from state, to state)

is not in hash table H , it is inserted into H and associated with a counter 1. If the

transition(from state, to state) is already inserted into hash table H , its associated

counter is increased by 1. We can imagine H is constructed using a window of size w

sliding through the trace ψ, each time by one position.

After all the traces in the training set have been processed, hash table H are

constructed. They store the possible normal states and their transitions respectively.

Each state and transition are associated with a positive integer. The probability of

the transition (s, s′) in H is calculated as:

P ((s, s′)) =
N((s, s′))
N(s)

where N((s, s′)) is the counter associated with the transition (s, s′), and N(s) is

the counter associated with the state s. The higher probability the transition (s, s′),

the more likely this transition is normal. An intrusive transition is expected to receive

a low probability of support from the Markov Chain model of the normal profile.

Because from-state is denoted as {Xi, Xi+1, . . . , Xi+w−1}, and to-state is denoted

as {Xi+w}, we can see that the probability transition matrix is the same if we denote

the to-state as {Xi+1, . . . , Xi+w−1, Xi+w}. We can then depict a simple example in

Fig. 8 to illustrate how the Markov Chain model is constructed from the training

traces. Here we assume the window size is 3 and the set of input training traces are

{xxxyz, xxxzy}

Fig. 8 also shows the counters associated with the states and the transitions.

Based on the algorithm described in Fig. 7, the Markov Chain model can be

denoted using a tuple {S, P, s0}, where S is the set of all possible states, P : (S×S) →
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xxx
�

xxy

xxz

xyz

xzy

�

�

�

�

�

�

�

�

 

Fig. 8. A Simple Example to Illustrate How to Construct Makov Chains.

�+ is the set of transition probabilities, s0 ∈ S is the initial state of the constructed

Markov Chain model and �+ denotes the set of non-negative real numbers. It is

obvious that P satisfies the following:

∑
s′∈Next(s)

P ((s, s′)) = 1, ∀s ∈ S.

where Next(s) denotes the set of to state associated with s.

e. Constructing Classifiers Using the Markov Chain Model

Suppose ζ ∈ ξ∗ is a trace converted from the raw system audit data. lζ = {δ1, δ2, . . . ,
δm−w+1} is the sequence of symbols corresponding to ζ , where δ1 = [ζ1, ζ2, . . . , ζw]︸ ︷︷ ︸

w

,

δk = (ζk, ζk+1, . . . , ζk+w−1), δk ∈ ξw, m = |ζ |. The algorithm using the Markov Chain

model (MC) to construct the classifier is described in Fig. 9.

The algorithm first initializes two real numbers A and B to 0. δi, the from state,

is obtained after repeatedly shift ζ left by one position from its beginning. If the tran-

sition (from state, to state) exists inMC, A is increased by 1 and B increases by F =

1−P (from state, to state). Therefore, F sums up all of the probabilities of the tran-

sitions from the from state that are not equal to the current (from state, to state).

If the transition does not exist in MC, A is increased by 1 and B is increased by
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Procedure Markov_to_Classifier(MC, ζ) 
 
Input:  MC: constructed markov chain; 
  ζ: a trace; 
Output:  Normal or Anomalous; 
 
Begin 
 
i = 1; A = 0; B = 0; µ (ζ) = 0; 
 
While ( i < the length of ζ) 
{ 
 from_state is set to sequence δ[i] = (ζ[i], ζ[i+1], …ζ[w+i-1]);  

to_state is set to ζ[w+i]; 
 If (transition(from_state, to_state) is in MC) 
 { 

     A = A + ∑
∈ )_(

),_(
statefromNexts

sstatefromP  = A + 1; 

    /*Next(from_state) indicates all the to_state associated with the current 
from_state*/ 

B = B + ∑
≠∧∈ )_()_(

),_(
statetosstatefromNexts

sstatefromP  

= B + 1 - )_,_( statetostatefromP  
 } 
 else      

/* (from_state, to_state) is not the transition of MC */ 
 { 
     A = A + 1; 
     B = B + z; 
 } 
 
           Adjust A and B over the past locality frame; 
 
 i++; 
 µ(ζ) = B / A; 
 If (µ(ζ) >= r) 
  Return Anomalous; 
 
} /*for While*/ 
 
Return Normal; 
 
End.  

Fig. 9. Pseudocode of Using the Markov Chain Model to Build the Classifier.
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the penalized value z. After each calculation, if B/A exceeds a preset threshold value

r, ζ is considered containing malicious activities (return Anomalous). A and B are

also updated after each calculation to accommodate the locality frame scheme. This

requires the deletion of the oldest value, and the addition of the newest value. The

usage of the hash table here could speed up the state and transition searching. A

well designed hash table takes O(1) time on average. Therefore, this algorithm can

be executed efficiently.

Several parameters, such as the penalized value z and the alert threshold r, will

be determined later through experiments. Here, a simple analysis of this algorithm

is performed because it needs to be executed online in reality.

In Fig. 9, a hash table is used to maintain MC and its transition probability

matrix. We skip the description of hash table and its hash function here. Interested

readers could refer to [77]. In a hash table in which collisions are resolved by chaining,

if the number of hash-table slots is at least proportional to the number of elements in

the table and the hash function satisfies the assumption of simple uniform hashing,

searching takes O(1) time on average. In practice, division method (a key k interpreted

as a natural number is mapped into one of m slots by taking the remainder of k

divided by m) could be used as the hash function. Therefore, the time complexity

of this algorithm depends on the length of the audit trace. We can see that given a

well-designed hash table, this algorithm can be executed efficiently.

We derive our online measure r, or the alert threshold, from the number of

mismatches occurring in a temporally local region, called a locality frame. At each

point in our test trace, we check whether the current transition exists in the Markov

Chain model, and keep track of the updated alert signal (defined as B/A) over the

past locality frame. The B/A over the past locality frame are aggregated into the

alert signal, as described in Fig. 9.
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Different selections of A, B, and the alert threshold r will result in different

detection models. Intuitively, the metric B/A measures how well the Markov Chain

model predicts the trace ζ , e.g., a lower B/A indicates that the Markov Chain predicts

the trace well. For simplicity, we will use

A = A +
∑

s∈Next(from state)

P (from state, s) = A+ 1;

B = B+
∑

s∈Next(from state)
∧

s �=to state

P (from state, s) = B+1−P (from state, to state);

whereNext(from state) denotes the set of to state associated with this from state.

In this definition, B sums up all of the probabilities of the transitions from the

from state that are not equal to (from state, to state). When analyzing the trace

as in the While statement depicted in Fig. 9, if the transition (from state, to state)

has a low probability according to the constructed Markov Chain MC, it might

be an anomaly. Since B adds up all the probabilities of the transitions from the

from state that are not equal to (from state, to state), the small occurring proba-

bility of (from state, to state) will lead to relatively large B. In other words, if a

transition with a low probability occurs, B has a high value. Given the alert thresh-

old r, this indicates the higher probability to generate an anomaly. There may exist

different definitions of A and B to derive the “distance” of the current trace. This

will be a future research question.

The performance of the classifier constructed from the Markov Chain model

depends heavily on the parameter window size w and the alert threshold r. These

parameters need to be tuned properly in order to achieve good performance. As the

window size w increases, the algorithm depicted in Fig. 9 constructs a better model

because it considers more historical data. However, the classical overfitting problem
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will appear for a very large w because the constructed Markov Chain models the

training data “too well”. Given a hypothesis space H , a hypothesis h ∈ H is said to

overfit the training data if there exists some alternative hypothesis h′ ∈ H , such that

h has a smaller error than h′ over the training examples, but h′ has a smaller error

than h over the entire distribution of instances [78]. The possible random errors

or noise in the training data could lead to overfitting. Overfitting is a significant

practical difficulty for many learning approaches. As to the alert threshold r, the

determination of its value will also lead to different performance of the classifier. We

will have a detailed discussion of the parameter setting in Chapter IV.

We use the average distance over a locality frame to measure how well the trace

matches the Markov Chain. This finally determines the alert signal of the trace in

the near past. A locality frame is a length of a temporally local region over which

the alert signal is determined. That is, only when the average distance over the past

locality frame is larger than a predefined alert threshold at some point during the

intrusion will the IDS generate an alert.

The local detection mechanism used here could aggregate the mismatch counts

and is not sensitive to the trace length. Because of the dynamic nature of MANETs,

it is expected to have many variations involved in its activities. Our approach is

resilient to sudden abnormal changes, which is usually normal in MANET environ-

ments. Therefore our approach can avoid high false positive ratio due to the un-

expected sudden changes of the statistical measures. Because real intrusions tend

to produce anomalous sequences in temporally local clusters, our approach can still

achieve high detection ratio.

The relation among locality frame, window size and the state transition is illus-

trated in Fig. 10.
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Audit Data

Span of the past locality frame

Current from-state

Current to-state
Window size: 4
Locality frame: 15  

Fig. 10. Illustration Among Locality Frame, Window Size and State Transition.

3. Parameter Tuning

Performance tuning is detailed in the experiment part. Here we discuss the guidelines

in deciding the suitable window size w, penalized value z and alert threshold r.

Tune the window size: Intrusion detection needs to consider the history of the

subject activities because of their temporal nature. A proper window size needs to

be determined. Different statistical measures will have different regularities under

different mobility patterns. We use the conditional entropy to measure the regularity

of the training data and help us to determine w.

Regularity refers to the sequential dependencies of sequences. Conditional en-

tropy measures how much uncertainty remains for the current event given the previous

N events. High-regularity data contain redundancies that facilitate predicting future

events based on past events, while low-regularity impedes prediction.

Let X be a collection of sequences where each is denoted as (e1, e2, . . . en), and

each ei is an audit event. Let Y be the collection of subsequences where each is

denoted as (e1, e2, . . . ek), and k < n, then the conditional entropy H(X|Y ) tells us

how much uncertainty remains for the rest of audit events in a sequence x after we

have seen y, i.e., the first k events of x (since y is always a subsequence of x, we

have P (x, y) = P (x).). For anomaly detection, the smaller the conditional entropy,
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the better the detection model. For example, if we have a sequence of audit events

of the same type, e.g., X = {aaaaaa, bbbbbb, ....}, then the conditional entropy is 0

and the event sequence is deterministic. If the conditional entropy is large, the audit

sequence is not deterministic and is hard to model.

Intuitively, the more information the data model contains, the better the detec-

tion performance. However, if too much information is included, not only the data

processing time, but also the model complexities will increase. Therefore, there is a

trade-off in determining the proper window size. We choose the window size w when

the conditional entropy parameterized by w does not drop dramatically. Audit data

of different mobility scenarios will have different conditional entropy values given the

same window size. This is one of the main reasons that different performance can be

observed under different mobility scenarios in our later experiments.

Tune the penalized value and alert threshold: After deciding the window size which

parameterizes the Markov Chain, two more important parameters are the penalized

value z, which is used by the classifier when a transition is not found in the Markov

Chain model, and the alert threshold r.

Let µ(α) = B/A be the metric defined earlier. Intuitively, it measures the

discrepancy between the Markov Chain model and the current trace. Smaller µ(α)

means a better fit of the current trace. For a normal trace α = {β1, β2, . . .}, the

discrepancy Dt(α) over the locality frame with length L is:

Dt(α) =
µL(α) + µL+1(α) + . . .+ µ|α|(α)

(|α| − L+ 1)
(3.4)

where µi(α) is the average µ over the locality frame {βi+1−L, βi+2−L, . . . , βi}, i ≥
L.

For a given normal trace set Tt, its discrepancy Dt(Tt) is:
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Dt(Tt) =

∑
α⊆Tt

Dt(α)

|Tt| (3.5)

where |Tt| denotes the number of traces in Tt.

For a given trace α of intrusive activities, we define the discrepancy Da(α) over

the locality frame with length L as:

Da(α) = Max(µL(α), µL+1(α), . . . , µ|α|(α)). (3.6)

µi(α) has the same meaning as before. We use Max here because it is possible

that there are normal data mixed together with abnormal data due to the possible

intermittent trigger of the attacks.

For a given trace set Ta of intrusive activities, its discrepancy Da(Ta) is:

Da(Ta) =

∑
α⊆Ta

Da(α)

|Ta| (3.7)

where |Ta| denotes the number of traces in Ta.

We tune the penalized value z until the separation (Da(Ta) − Dt(Tt)) between

the anomalous traces and the test data is above a certain threshold. This makes the

easy distinction between a normal trace and the trace of intrusive behavior.

After determining the penalized value z, a proper alert threshold value r should be

decided. If the alert threshold is set too low, then on an intrusive trace, the classifier

will generate an alert very quickly. However, a lower threshold also generates more

false alarms on normal traces, resulting in a high false positive ratio. If the alert

threshold is set too high, we can reduce the false positive ratio. However, we may risk

failing to detect an attack and the average detection time may be high. Therefore,

the value of the alert threshold is a trade-off. We use the following formula to decide

r:
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r = ht ∗Dt(Tt) + ha ∗Da(Ta)

where ht > 0, ha > 0, and ht +ha = 1. Therefore, r is the weighted sum between

Dt(Tt) and Da(Ta). For simplicity, we set r = (Dt(Tt) + Da(Ta))/2 in our later

experiments.

Due to the nature of statistical approaches, it is difficult to provide diagnostic

information to accurately analyze an attack. Therefore, the statistical procedure must

provide necessary information that can be used to identify the reason of an alarm.

In our implementation, each node records the number of routing control packets sent

from each node and their associated probability in each period. This information

could help to identify the reason of the attack and is necessary for the aggregation

algorithm described later.

In this section, based on the attack model, we describe a Markov Chain based

anomaly detector using PCR and PCH . It is a common sense that no detection

approach is suitable to detect all penetrations. Therefore, our method is expected to

complement with other approaches to address a comprehensive set of vulnerabilities.

F. Collaboration of IDS Agents

1. Introduction

In mobile ad hoc networks, the attackers can launch attacks when they are close to

the victims. Thus, in general cases, through the local IDS agent attached to the node

itself and/or neighboring nodes, these attackers can be detected. There are other

kinds of attacks, however, which the attackers may launch far away from the victims.

What’s more, two or more attackers may collude to launch attacks that are more
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complicated. In these situations, it is very difficult for the node itself to detect the

attacks. In addition, the result based on the local IDS agent could lead to a very high

false positive ratio.

We expect different approaches for local intrusion detection developed in the

future. Due to the local nature of the audit data, they generally tend to generate

many false positives and the alerts generated are trivial. Therefore, it is desirable to

collaborate different IDS agents which aim at different attacks in different environ-

ments. Their approaches are complementary and the results could be aggregated to

derive a global diagnosis of the attack. It is thus necessary to develop a framework

to manage these alerts, analyze and aggregate the alerts in a wider area. In this sec-

tion, we describe our work in designing and analyzing a nonoverlapping zone-based

management framework that fits the requirement to aggregate the alerts in a wider

area. We describe an aggregation algorithm that uses the similarity of attributes to

aggregate the alerts.

Because we lack detailed analysis of MANET attacks in the literature and so-

phisticated attacks may make the situations very complex, we only consider the same

occurrence of attacks. Specifically, we still target at the routing disruption attack.

The main objective of the aggregation algorithm and the zone-based framework

is to reduce false positive ratio and increase detection ratio by aggregating local

alerts. Global alerts could be generated to provide more diagnostic information of

the attacks.

Alert aggregation is a new research area in intrusion detection systems. Most

existing alert management systems develop their framework based on fully developed

wired IDSs, and carry out experiments based on misused based IDS like Snort [79],

e-Trust [80], etc. Because misuse based IDSs could provide more accurate and diag-

nostic information about the attack, this could greatly facilitate the alert aggregation
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and correlation. The extensive attack database of wired network could also provide

abundant attack scenarios for analysis.

The situation is different in MANETs. Due to the lack of detailed analysis of

attacks in MANETs, alert aggregation is very challenging in MANET environment.

Potential complex attack scenarios could make the aggregation very complicated.

What’s more, there are not many efforts that have been devoted to the local detec-

tion of MANET attacks. However, the distributed nature of MANETs makes alert

aggregation an indispensable and integral part of MANET IDSs. In this section, we

provide our initial work in this respect. We use our Markov Chain based anomaly

detection model as the local detection model and the routing disruption attack as the

attack model to demonstrate our aggregation algorithm.

2. Zone-Based Framework

In our nonoverlapping zone-based framework, it is necessary to maintain the stability

of the zone connectivity for the cooperation of neighboring gateway nodes. If any

two nodes are within the communication range, a physical link exists between them.

If there is at least one physical link connecting any two zones, a virtual link between

the two zones exists. When the number of physical connections between two zones

decreases from 1 to 0 or increases from 0 to 1 due to the movement of nodes, the

zone connectivity will change correspondingly. This can be mitigated by choosing

the appropriate zone size. The selection of the suitable zone size needs to make the

number of physical connections between two neighboring zones much bigger than

zero, thus making the logical connection of two zones stable.

a. Collaboration Mechanism

There may exist two possible mechanisms for the gateway nodes to collaborate.
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One is the subscription-based mechanism. It is not necessary that the gateway

nodes collect all of the security related information from the IDSs of intrazone nodes in

order to draw some conclusions. Based on its own status, the IDS of the gateway node

can send a subscription message to its intrazone nodes to subscribe security related

information. The subscription message could contain information that is related to

the required data. The intrazone nodes can thus generate corresponding messages

to fit the subscribed requirement. This mechanism introduces low communication

overhead. However, the gateway node needs to carefully analyze the messages in

order to determine what information is needed.

The other mechanism is the local broadcast mechanism. When the IDS of the

intrazone node generates a local alert, it could locally propagate the detection results

to the gateway nodes. When nothing is suspicious in the last period, there is no need

for the local IDS to propagate security information. The neighboring gateway nodes

could further collaborate through the transmission of the security-related information

by the beacon messages. The rationale behind this mechanism is that: audit data from

other nodes cannot be trusted and should not be used because the compromised node

may send falsified data. However, the compromised nodes have no incentive to send

reports of intrusion detection because this may result in their expulsion from the

network. In this way, we avoid the use of global broadcast. It is also unnecessary

to propagate local alerts inside the zone every period. All these strategies can result

in less communication overhead. This is very desirable because message sending and

receiving is very expensive in terms of energy. This mechanism could also enable

gateway nodes to collect enough information to make final decisions. We thus adopt

the local broadcast mechanism in our implementation.

In the zone-based intrusion detection framework, only gateway nodes could gen-

erate alarms. The local IDS attached to local nodes could only generate alerts based
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on their local information and propagate these alerts inside the zone. The gateway

nodes, having gathered the alert information periodically, could make better final

decisions.

There may exist routing mechanisms enabling the intrazone node to disseminate

the locally generated alerts to its gateway nodes in a more efficient manner. However,

this is beyond the scope of this research.

3. Aggregation Mechanism

The purpose of the aggregation algorithm is to reduce false positive ratio and increase

detection ratio by aggregating local alerts and present a broad view of the reported

security issues. By grouping alerts together, aggregation will allow a better evaluation

of the progress of the attack. In order to do so, we need the definition of a data model

in the form of a class hierarchy to describe the alerts.

a. Class Hierarchy of the Alerts

The Intrusion Detection Working Group(IDWG) of the Internet Engineering Task

Force (IETF) develops the Intrusion Detection Message Exchange Format(IDMEF)[3],

which is intended as the standard to facilitate the inter-operability of commercial IDSs

and research prototypes. Intrusion detection systems can use this format to generate

the alert information. The IDMEF data model is an object-oriented representation

of the alert data and is described using the Unified Modeling Language(UML) [81].

UML defines entities as classes, which consists of class name and class attributes,

as depicted in Fig. 11. Currently, the IDMEF model uses only two of the rela-

tionship types defined by UML: inheritance and aggregation. Inheritance denotes a

superclass/subclass type of relationship where the subclass inherits all the attributes,

operations, and relationships of the superclass. Aggregation is a form of association
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in which the whole is related to its parts. The implementation of the IDMEF data

model uses the eXtensible Markup Language (XML) Document Type Definitions

(DTD). We use the definition and implementation method recommended by IDWG

to describe the alert classes used by ZBIDS.

Class Name

Attribute 1

Attribute 2

Attribute N

� � �

 

Fig. 11. Class Representation.

The IDMEF data model proposed by IDWG aims at wired IDSs. Its purpose is

to define common data formats and data exchange procedures for sharing informa-

tion of interest to intrusion detection systems. Due to the unique characteristics of

MANETs and because we focus on the intrusion detection targeted at the network

layer, we modify the IDMEF data model when designing the alert class. This includes

adding some new classes (Zone class, for example) and attributes related to MANETs,

deleting some unwanted classes (User class, Process class, etc.) and attributes, and

modifying the definition of some classes and attributes (Location attribute, etc.). The

alert class hierarchy for ZBIDS is depicted in Fig. 12 using the UML notation.

The alert class hierarchy depicted in Fig. 12 is general in ZBIDS. That is,

it can be used as both the input and output of the LACE and GACE for better

interoperability. When generating an alert, the detection engine formats it according

to the class hierarchy depicted in Fig. 12. We also implement each alert class using
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Alert

STRING ident

CorrelationAlert

Alertident

STRING
analyzerid

DetectTime

TIME time

CreateTime

TIME time

Analyzer

STRING
analyzerid

Target Source AnalyzerTime

STRING ident

ENUM decoy

STRING ident
ENUM

spoofed

Node

STRING ident
ENUM

category

Location Address Zone Name

float x

float y

STRING ident
ENUM

category
STRING address

STRING zoneId STRING name

Netmask

STRING
netmask

1..*

0..1 0..* 0..* 0..1

0..1 0..1 0..1

0..1 0..* 0..1

0..1

inheritance
aggregation

0..1:  zero or one
1..*:  one or more
0..*:  zero or more
n:  exactly "n" (left blank if n = 1)

float z

Classification

Assessment

1..*

0..1
ENUM

confidence

TIME time

 

Fig. 12. The Alert Class Hierarchy of ZBIDS.

XML DTD, as shown in Appendix B. In this section, we generate all of our local

alerts compliant with this format.

b. Aggregation Algorithm

The performance of the aggregation algorithm depends heavily on the performance of

the local detection model, the amount of information and the accuracy of the infor-

mation it provides. Existing aggregation algorithms assume the accurate information
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provided by the local IDSs, and the aggregation algorithms are alert-triggered [37]

[38] [39], i.e., the aggregation algorithms are triggered whenever a new alert is re-

ceived. Our cases are different. First, due to the lack of misuse based MANET IDSs,

we cannot assume the accurate identification of the attackers provided by the local

IDSs. Second, the gateway nodes execute the aggregation algorithm periodically. At

each time period, the aggregation algorithm aggregates the received local alerts and

makes final decisions. If there is no alert received in the last period, no action is

taken. This is computationally efficient since it avoids executing the algorithm every

time an alert is received. The possible alert burst may crash the gateway nodes.

Old gateway nodes can locally broadcast historical records. This can lead to

the quick learning of new gateway nodes and thus quick response to intrusion, but

requires more bandwidth cost. Also, a new gateway node can obtain information

quickly from local IDSs from their locally broadcasted alerts.

Each node has the LACE and GACE module. They use different sources as the

alert inputs: the input of the LACE is the local detection engines, while the input of

the GACE is either the local LACE (to intrazone nodes) or the intrazone nodes in

the same zone and the neighboring gateway nodes (to gateway nodes).

When a local node detects an anomaly, it could generate an alert based on the

proposed MANET IDMEF data model. This alert could contain the identification

of the node, the alert classification, the time information, and the information of

the routing control packets in the recent history that could contribute to the local

alerts. The routing control packets in a given time interval is not sufficient for the

intrusion detection. To our attack model, the local alert also includes the local history

of the aggregated routing control packets, i.e., how many routing control packets are

received and from which node the control packets are sent out. This could help the

gateway node make the final decision.
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Much information could be provided by the local alerts. The gateway node makes

decisions mainly based on the following information from the local alerts:

• Classification similarity: In the IDMEF format, the attack type description is

provided in the entity classification. In our context, two alerts are aggregated

only if their classification fields are the same, indicating the same occurrence

of attack. In our context, it should be “Routing Disruption”, which indicates

the routing disruption attack.

• Time similarity: Each local alert provides the information of routing control

packets in the past history. The entity DetectTime and CreateTime of IDMEF

could be used to provide time information. DetectT ime indicates the time

when the attack happens, and CreateT ime indicates the time when the attack

is detected. If the temporal difference between the CreateT ime of a newly

received local alert and the time of the gateway node exceeds some predefined

delay, this local alert is ignored.

• Source similarity: the source of the IDMEF data format indicates the possible

sources of the attack. In the context of our attack model, it is the IP address

of the attacker that actively propagates randomly constructed routing control

packets.

Source similarity plays an important role in the alert aggregation. In the normal

routing discovery procedure, if the intermediate nodes have the route to the destina-

tion, they could generate a RREP packet back to the traffic source. All nodes that

receive the route packets modify its routing cache correspondingly. For each received

or promiscuously heard RREP packet, the node records its source and destination

IP addresses. If there is no attacker in the network, the distribution of these source
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addresses in a given time period would be expected even, i.e., most of the time, there

is no bias for a given source address.

We introduce a parameter Prouting abnormal. If the proportion of routing control

packets from a certain address exceeds Prouting abnormal, it is abnormal and deserves

further investigation. We experimently set Prouting abnormal in our later experiments.

However, in normal cases, it is still possible that a node receives a high percentage

of routing control packets from some certain node in a period. This is reasonable if we

consider the route discovery procedure of DSR. This situation is enhanced by enabling

promiscuous-listening mode and is the main reason to cause the false positive alarms

of our aggregation algorithm.

When there exist attackers in the network, things are different. The attacker

would send many falsified routing control packets into the network. The local IDSs

of the victims, using the Markov Chain detection model described in the previous

section, could generate the alerts and record the source and destination distribution

of the routing control packets in the last period. The attacker’s address would dom-

inate the source distribution of the routing control packets. Having gathered this

information in the last period, the gateway nodes could know the source address

distribution of the routing control packets. If the probability of a particular source

address exceeds some predefined threshold P , this address is then identified as the

attacker’s address. Note that an attacker cannot use different IP addresses to send

out fake messages. Otherwise, it can be detected easily by its neighbors.

We now discuss how to decide P . The selection of P depends on attack intensity,

attacking time, node placement, etc. If the threshold P is low, the gateway nodes

could identify the attack more accurately, thus achieving higher detection ratios.

However, this could lead to high false positive ratios. If the threshold P is high, the

gateway nodes could miss the attack, but reduce the false positive ratio. We propose
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a simple approach to decide P in the following way.

In normal cases, for a given gateway node, if local alerts are received in a given

time period, we first pick those source addresses whose aggregated probability is larger

than Prouting abnormal. We denote these probabilities as Pti (i = 1, 2, . . . , nt).

Suppose for a given gateway node G, it has mt time periods in which it receives

local alerts, we compute the average of Pti , (i = 1, 2, . . . , nt) over these mt periods as:

PGt =
mt∑
j=1

nt∑
i=1

Pti/mt.

PGt represents, to gateway node G, the irregularity of the source address distri-

bution of the routing control packets when the system is at normal status. Given a

test trace, we compute its average over all gateway nodes:

Ptest =
∑

∀ gateway nodes

PGt

the number of gateway nodes
.

Given the trace of intrusive activities, we first compute the attack address dis-

tributions contained in the routing control packets. We denote these probabilities as

Pai
(i = 1, 2, . . . , na).

Suppose for a given gateway node G, it has ma time periods in which it receives

local alerts, we compute the average of Pai
, (i = 1, 2, . . . , na) over these ma periods

as:

PGa =
ma∑
j=1

na∑
i=1

Pai
/ma.

PGa represents the source address distribution of the routing control packets in

the gateway node G during the attack time. Given the trace of intrusive activities,

we compute the average of PGa over all gateway nodes:
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Pattack =
∑

∀ gateway nodes

PGa

the number of gateway nodes
.

We set P as:

P = ht ∗ Ptest + ha ∗ Pattack,

where ht > 0, ha > 0, and ht + ha = 1. By adjusting ht and ha, we can get

a better trade-off between the false positive ratio and detection ratio. In our later

simulation study, ht an ha are set equal.

The pseudocode of setting P could be depicted in Fig. 13.

Having decided P , we can now describe the algorithm that a gateway node uses

to determine whether it should generate alarms in a given time period. When a

gateway node receives locally broadcast alerts in some period, it first sums up the

aggregated probabilities of those source addresses whose probability is larger than

Prouting abnormal. If the resultant value is less than P , the gateway node will not

generate alarms. Otherwise, the gateway node will generate alarms and provide

attacker information based on the probability distribution of source addresses.

It is possible that the detection sensitivity of the aggregation algorithm will

decline with the increase of the size of the attack group. Especially when the attackers

collude to attack at the same time and the attack objectives overlap. In this kind

of situation, for the attack objectives, there is no single address that dominates the

probability distribution of the source addresses of the routing control packets. This

could impact the detection ratio of the aggregation algorithm. However, it is still

possible that the attack victims do not overlap completely, whose attack address

probability distributions contribute to the effectiveness of our aggregation algorithm.

One example of this is depicted in Fig. 14.
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 Procedure Determine_P() 

Input: test trace, attack trace, Prouting_abnormal 

Output: P  

Begin 

Test trace: 

For each gateway node G 

PGt = 0; 

  For each time interval of G that receives local alerts 

     For all Pti 

  If Pti > Prouting_abnormal 

  then PGt = PGt + Pti 

     End For 

End For 

/* mt is the number of time intervals of G that receives local alerts */ 

Ptest_sum = Ptest_sum + PGt/ mt 

End For 

/* Ntest is the number of gateway nodes that receive local alerts */ 

Ptest = 

testN

P
sumtest _

 

Attack trace: 

For each gateway node G 

  For each time interval of G that receives local alerts 

       Compute the sum of the probability of attacker source addresses PGa     

End For 

/* ma is the number of time intervals of G that receives local alerts */ 

Pattack_sum = PGa / ma 

End For 

/* Nattack is the number of gateway nodes that receive local alerts */ 

Pattack = 

attackN

P
sumattack _

 

P = ht * Ptest + ha * Pattack. 

END 

Fig. 13. Pseudocode of How to Decide P.
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Fig. 14. One Example of Two Attackers.

In this example, node 1 and 8 are attackers, and the attack objective is node 5.

The probability distributions of 1 and 8 provided by node 5 would make it difficult for

the gateway node to detect the attackers. However, since the victims do not overlap

(the victims of node 8 are 5, 6, and 9, while the victims of node 1 are 2, 4, and 5),

they all provide information of 1 and 8. This could contribute to the detection of the

attack.

G. The Relation between Intrusion Detection and Intrusion Prevention

In MANETs, intrusion prevention and intrusion detection techniques need to com-

plement each other to guarantee a highly secure environment. They play different

roles in different status of the network.

Intrusion prevention measures, such as encryption and authentication, are more

useful in preventing outside attacks. Considerable research has been done in prevent-

ing the misbehavior at the network layer.

Once the node is compromised, however, intrusion prevention measures will have

little effect in protecting the network. At this time, the role of intrusion detection

is more important. In mobile ad hoc networks, it is much easier to gain physical
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possession of the node. When a node is compromised, the attacker owns all its cryp-

tography key information. Therefore, encryption and authentication cannot defend

against a trusted but malicious user.

Intrusion detection research assumes that subject activities are observable, and

normal and intrusive activities have distinct behavior. Therefore, by identifying the

different behavior manifested by attackers, intrusion detection systems, serving as

the second wall of defense, could provide a complementary security mechanism to

MANETs.

Intrusion detection and intrusion prevention are not totally separated. For exam-

ple, it is possible that, in ZBIDS, the local IDS encrypts the generated local alert and

broadcast them to the gateway nodes using the network-wide shared secret among

the local IDS agents. This could prevent some compromised nodes from fabricating

alerts and enable the correct functionality of GACE.

H. Summary

In this chapter, we describe a Markov Chain based anomaly detection algorithm and

an aggregation algorithm for MANETs. Based on the locally collected statistical

measures that reflect the mobility of the network, a Markov Chain is constructed to

act as the normal profile, which is then used to build a classifier. Ordering property

is considered and the transition probability is used to define the distance of the trace

and the normal profile. The aggregation algorithm could further reduce the false

positive ratio and increase the detection ratio, which are demonstrated in the next

chapter.
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CHAPTER IV

PERFORMANCE EVALUATION OF ZBIDS

In order to study the feasibility and effectiveness of our detection algorithm and

validate our detection model, we carried out extensive simulation experiments using

various mobility scenarios. In this chapter, we first describe our simulation approach

and then present the simulation results of local IDS and ZBIDS respectively.

A. Simulation Model

1. Simulation Platform and Parameter Settings

We use a simulation model based on Parsec [4] and GloMoSim [5] to investigate the

performance of the proposed approaches. We choose DSR as the routing protocol

and the parameters used in the simulation are described in Appendix III.

Specifically, in our simulation, the channel capacity of mobile hosts is set to the

same value: 2 Mbps. We assume all nodes have the same transmission range of 250

meters. A free space propagation model with a threshold cutoff is used as the channel

model. In the free space model, the power of a signal attenuates as 1/r2, where r is

the distance between mobile hosts. In the radio model, capture effects are taken

into account. We use the Distributed Coordination Function (DCF) of IEEE 802.11

for wireless LANs as the MAC layer protocol. It has the functionality to notify the

network layer about link failures. We enable the promiscuous receive mode of nodes,

which enables every received packets delivered to the network layer.

In the simulation, 30 mobile nodes move in a 1000 meter X 500 meter rectangular

region. Compared with a square region, the rectangular region can enlarge the average

route length so that we can easily observe the performance difference in different
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scenarios. We assume each node moves independently with the same average speed.

Except otherwise indicated, the mobility model we use in this chapter is the Random

Waypoint model. In this mobility model, a node randomly selects a destination

from the physical terrain. It moves in the direction of the destination in a speed

uniformly chosen between the minimal speed and the maximal speed. After it reaches

its destination, the node stays there for a pause time and then moves again. In our

simulation, the minimal speed is 3 m/s, and the maximal speed is 5 m/s. We change

the pause time from 30 seconds to 900 seconds to investigate the performance influence

at different mobilities.

8 source-destination pairs are selected randomly to generate Constant Bit Rate

(CBR) traffic as the background traffic. The interval time for data transmission is

0.25 second. The size of all data packets is set to 512 bytes. A packet is dropped

when no acknowledgement is received after seven retransmissions or when there is no

buffer to hold the packet. The buffer size is set to 128 packets. All traffic is generated,

and the statistical data are collected after a warm-up time of 300 seconds in order to

give the nodes sufficient time to finish the initialization process. When we simulated

a routing disruption attack, the attacker is uniformly chosen from the 30 nodes.

2. Data Sets

The hardware we use to collect the data sets is SGI Origin 2000 with a 32-processor,

8 GB distributed-shared-memory. The operating system of it is IRIX 6.5.

In general, three kinds of data need to be generated: training data, testing data,

and intrusion data. We execute the application in as many normal modes as possible

while tracing its behavior. Specifically, we use different pause time (30S, 150S, 300S,

600S, 900S) to represent different mobility scenarios. At each mobility level, we

randomly select 4 different seeds. For a given mobility scenario and a given random
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seed, we run the simulation 400 minutes in order to get the normal data. In this way,

we get 5 × 4 = 20 normal data traces. For each of the data trace, we collect (PCR

and PCH) feature values every 3 seconds after a warm-up time period of 300 seconds.

We mix the same-mobility normal data of different nodes and different random seeds

together to generate the normal trace for a given mobility. From each normal data

trace, we use its last 40 minutes part as the testing data. The rest of the normal data

are used as the training data, and they are used to construct the Markov Chain model

and the classifier. Thus, altogether we have 20 training data and testing data traces.

For each mobility scenario, we have 4 training data and testing data respectively.

Each training data trace has 7074 data items and each testing data trace has 786

data items.

Because this research focus on the routing disruption attacks, we also simulate

this type of attack in order to get data of intrusive behaviors. Under the same mobility

scenario, we let the simulation run 10 minutes. For each run, we let the routing attack

script start at 500S, and the attack lasts 60S.

Training data are used to construct the local Markov Chain model. Testing data

and intrusion data are used to tune the parameters of the local classifier and the

aggregation algorithm. In order to evaluate the performance of ZBIDS, we further

generate a different set of normal and abnormal data.

Due to the mobility of nodes, it is possible that a node is only a “partial” victim

during the whole intrusion session. That is, the node only receives or promiscuously

hears part of the falsified routing control packets because of mobility-caused link

breakage. We use data traces of all of the victims, including both the “partial”

victims and “full” victims, to represent the intrusive behavior.

We use the LBG-VQ algorithm [73] to discretize the raw continuous data in

order to construct the Markov Chain model. Given each mobility scenario, feature
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value PCR and PCH are used respectively to form one-dimensional vector sources.

A proper selection of the codebook size is important. If it is selected too small,

too many errors will be introduced in the data transformation process because the

bin size would be too large. If it is selected too large, the states in the constructed

Markov Chain model will be huge. Through experiments, we categorize the data

under different mobility into 32 distinct values (the size of the codebook is 32) and

find this value provides a good trade-off.

The dynamic nature of MANETs makes it possible that some categorized routing

change values have a very small probability. For example, it is possible that a node

receives many RREPs and/or RERRs in some data collection period, which in turn,

trigger an abnormal but not malicious routing cache changes. The existence of these

kinds of data is undesirable in the construction of the Markov Chain model and should

be filtered out. We deal with this problem in the following way: if the probability

of one data item is less than a very small value, such as 0.01 (this value is observed

through simulation), we convert it into a “rare” symbol. In this way, the abnormal but

not malicious routing cache change values are “aggregated” into a common symbol.

The construction of the Markov Chain model takes a few hours for each mobility

level. Generally, the higher the mobility, the longer the training time, and the more

states we will obtain. When the mobility is low, we expect less changes of the routing

cache. In fact, when the pause time is very large (900S, for example), for a long time,

the routing table changes are 0. This also speeds up the construction of the detection

model.

When constructing the classifier using the Markov Chain model, we experimen-

tally set the size of the locality frame to 40. This corresponds to the data history in

the last 120S.
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3. Performance Metrics

We use three metrics to evaluate the performance of our local detection model. In

addition to the traditional accuracy (false positive ratio and detection ratio) measure-

ments, the Mean Time to the First Alarm (MTFA) and the communication overhead

are also considered.

• False positive ratio: As to local IDSs, it is reported for normal data not used

during offline training process and is computed from dividing the total number

of false alerts by the total number of transactions in the normal data.

Traditional wired IDSs are often built using the short sequence of system calls

of priviledged programs or constructed connection information. Therefore, they

can treat one program execution or one connection as a trace, decide whether

each trace is normal or abnormal, and compute the false positive ratio corre-

spondingly.

We are focusing on the network layer and there is no concept of connection

here. Therefore, we treat the subject (here is the routing table) activities over

the past locality frame as one trace.

In the process of scanning a test trace, when the alert signal of the past locality

frame is above the tuned alert threshold, we count it as one false alert. Making

a single decision as to whether a normal trace appears anomalous or not is not

sufficient, especially for long traces. We thus define false positive ratio as the

percentage of decisions in which normal data are flagged as anomalous.

That is, for a normal trace α, its length is denoted as |α|. The length of the

locality frame is denoted as L. Let alert(α) denote the number of alerts that

the local IDS generates over α. Then false positive ratio of α is defined as:
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alert(α)

|α| − L+ 1
.

Let Tt denote the normal trace set. We compute the false positive ratio of each

trace α ∈ Tt, denoted as f1, f2, . . . , fn. n is the number of traces in Tt. Then

false positive ratio of Tt is defined as :

f1 + f2 + . . .+ fn

n
.

As to the aggregation algorithm, it is defined as the percentage of decisions in

which normal alert aggregations are flagged as anomalous. Gateway nodes need

to execute the aggregation algorithm periodically. For a gateway node, at each

ti when it receives local alerts, it needs to make a decision (whether to generate

an alarm or not). When there are no attackers in the network, suppose one

gateway node makes n decisions, and generate m alarms, its false positive ratio

is defined as m
n
. The false positive ratio of the aggregation algorithm is the

average of the false positive ratio of all gateway nodes.

• Detection ratio: As to local IDSs, it is reported for traces of intrusive behavior

and is computed from dividing the total number of correct detections by the

total number of victims in the anomalous data. Any above alert-threshold signal

anywhere in the intrusive traces counts as a correct detection of the intrusion.

Let Ta denote the intrusive trace set. The number of traces in Ta is denoted as

|Ta|. For each trace α ∈ Ta, the local IDS needs to make a decision whether it

is normal or abnormal. Let alert(Ta) denote the number of alerts that the local

IDS generates over Ta. Detection Ratio is defined as:
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alert(Ta)

|Ta| .

As to the aggregation algorithm, it is reported for traces of intrusive behavior

and is computed from dividing the total number of gateway nodes raising correct

alarms by the total number of gateway nodes which should raise alarms in the

anomalous data.

When there are attackers in the network, if a gateway node receives local alerts

from some victim’s IDS, it should generate alarms. Suppose there are n gateway

nodes which receive local alerts from some victim’s IDS, and m of them generate

alarms, detection ratio is defined as m
n
.

• MTFA: This metric is defined over anomalous traces and measures how fast

the classifier detects the attack. It is desirable that the IDS detect the attack

as quickly as possible. Given an anomalous trace ξ, suppose the attack starts

location is La, our IDS generates its first alert after scanning the Ld-th symbol,

then the MTFA corresponding to ξ normalized by the length (denoted as L)

of the locality frame is given by MTFA(ξ) = (Ld −La)/L. We measure MTFA

over the anomalous trace set Ta as:

∑
ξ∈Ta

MTFA(ξ)

|Ta| .

• Communication Overhead: The communication overhead is computed as

the number of transmission of local alerts in a given time period for one node.

It is mainly introduced by propagating the local alerts of intrazone nodes in

ZBIDS.
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For each mobility level, if the variance of one performance metric (Detection

ratio, MTFA, for example) is small, we only calculate its average result and do not

draw its confidence interval. If its variance (false positive ratio, for example) is large,

we randomly select 10 traces - that is, 10 runs of the simulation, and calculate the

average result as well as the 95% confidence interval. The confidence interval is

determined by the following formula:

P (X̄ − bs√
n− 1

< µ < X̄ +
bs√
n− 1

) = 0.95

where X is the random variable, n is the number of running times, X̄ is the

expected value of X, s is the standard deviation of X, b is a number determined by

n and the probability distribution (we use t-distribution). Then the interval [X̄ −
bs√
n−1

, X̄ + bs√
n−1

] is 95% confidence interval.

For the detection ratio and false positive ratio, we also use different alarm thresh-

old, namely, 0.8*r, r, and 1.2*r, to watch the different performance values.

4. Parameter Tuning

We compute the conditional entropy of the normal data at different mobility levels

in order to decide the proper window size w that characterizes the Markov Chain

model. We change w from 3 to 12 in order to determine the desirable w for different

statistical measures. To compute H(X|Y ) (suppose Y is in the form (e1, e2, . . . , ew)

and X is in the form (e1, e2, . . . , ew, ew+1)) for training data at the same mobility level

and the given w, two scans of the training trace are required. The first scan records

the unique appearance of y and its probability distribution, while the second scan

computes the marginal probability distribution of x given y. In this way, we can get

the conditional probability P (y|x). Based on Definition 2 in Chapter III, we can then

compute the conditional entropy of training data. From the conditional entropy of
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Fig. 15. Conditional Entropy of Feature PCH and PCR.

different measures, we decide the value of w so that the conditional entropy does not

drop dramatically.

We use the determined w to construct the Markov Chain model. Two more

important parameters are the penalized value z when a transition is not found in the

Markov Chain model and the alarm threshold r. We experimentally determine them

in the way as we have stated in the previous chapter. We tune the parameters until

(Da(Ta) −Dt(Tt)) ≥ 1. Typical value of r is between 1 and 2.

B. Simulation Results of Local IDSs

1. Conditional Entropy

Fig. 15 illustrates the conditional entropy of feature PCH and PCR of training data

at different mobility levels when the sequence length varies from 3 to 11 with an

increase of 1. Each line here represents training data at the same mobility level.

We can see from the simulation results that audit data under different mobility has

different regularity. Audit data under high mobility is more irregular because of more
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unexpected changes, and this is the reason that will lead to high false positive ratios

in detection.

We can see that the conditional entropy drops as the window size increases. This

is because the larger the window size, the more information is included in the detection

model, thus the less uncertainty remained in the audit data. We can also observe that

the conditional entropy does not drop dramatically when the window size reaches 4

or 5. This motivates us that if we set the window size to 4 or 5, the predicted state

is highly deterministic if we consider the trade-off involved with much longer window

size values.

We also notice that when the window size is set to 4 or 5, with the decrease of

mobility (i.e., the increase of the pause time), the conditional entropy also decreases.

This implies that the data of lower mobility is more regular compared to data of higher

mobility. Actually, a closer look at the raw data shows that when mobility is very

low (the pause time is 900S, for example), the network topology is relatively stable.

Therefore many data items are 0, indicating no changes of the routing caches. This

is one of the main reasons why the performance of MANET IDSs of lower mobility

is better than that of higher mobility in terms of defined performance metrics.

Therefore, in the following, we set w to 4 and 5 respectively to build the Markov

Chain model and the classifier and watch their performance. Note that we have

performed the simulation when w is set to 6 and 7. The simulation results fit the

general trend and discussion described in the following.

a. Relative Entropy

In order to demonstrate the potential effectiveness of the adopted features, we mea-

sure the REtest and REintrusion of PCH and PCR using two different mobility models,

the Random Waypoint model and the Random Drunken model. In the Random
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Drunken mobility model, each node moves independently with the same average

speed. Each node moves continuously within the region without pausing at any

location. It changes direction, randomly chosen, after every unit of distance.

Fig. 16 and Fig. 17 illustrate REtest and REintrusion of feature PCH and PCR

using the Random Waypoint model and the Random Drunken model respectively.

We set λ of Jelinek-Mercer smoothing method to be 0.9, which is a commonly used

constant.
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Fig. 16. Relative Entropy of Feature PCH and PCR Using the Random Waypoint

Model.

We can see from simulation results that REtest is smaller than REintrusion. This

suggests that PCH and PCR are suitable features and can be used to construct

anomaly detection models.

We can also see that audit data at different mobility has different REtest. Audit

data under high mobility is more irregular, therefore, when mobility is high, REtest

is larger and the difference between REtest and REintrusion is smaller. This explains

from one aspect why the performance of anomaly detection under high mobility is

worse.
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Fig. 17. Relative Entropy of Feature PCH and PCR Using the Random Drunken

Model.

2. False Positive Ratio

False positive ratio of local IDSs using different features (PCR and PCH) is illus-

trated in Fig. 18, Fig. 19, Fig. 20, and Fig. 21. As we can see, for each plot, the false

positive ratio increases with the decrease of the alarm threshold r. This is as what we

have expected. When the alarm threshold decreases, it is easier for the alarm signal

of the normal trace to exceed r, thus generating alarms.

We can also see that in each figure, the false positive ratio decreases with the

decrease of mobility, because as we have shown in the previous section, the trace of

lower mobility demonstrates higher regularity. When mobility is low, their normal

routing table changes are less dramatic and have less unexpected values. This makes

it easier and more accurate for the Markov Chain model to characterize its normal

behavior. Due to low mobility, the testing trace also has less unexpected changes.

This would contribute to the low false positive ratio.

Comparing Fig. 18 and Fig. 19, we can see the slight increase of the false positive

ratio shown in Fig. 19, which corresponds to window size 5. This could be explained
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Fig. 18. False Positive Ratio of the Local IDS Constructed Based on Feature PCH

When Window Size Is Set to 4.
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Fig. 19. False Positive Ratio of the Local IDS Constructed Based on Feature PCH

When Window Size Is Set to 5.
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Fig. 20. False Positive Ratio of the Local IDS Constructed Based on Feature PCR

When Window Size Is Set to 4.
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Fig. 21. False Positive Ratio of the Local IDS Constructed Based on Feature PCR

When Window Size Is Set to 5.
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as: with the increase of the window size, the Markov Chain model characterizes

the normal behavior of routing cache changes more accurately because more history

information is included. This will result in a larger probability to generate false

alerts because the small fluctuation of the normal behavior could lead to false alerts

generated by the classifier with larger window size. That is, the detector with larger

window size is more sensitive to unexpected abnormal changes. The same is true

when we compare Fig. 20 and Fig. 21.

Comparing Fig. 18 and Fig. 20, we can see that the classifier constructed using

the feature PCR results in a larger false positive ratio compared to the classifier

constructed using the feature PCH. This demonstrates that PCH is better than PCR

in terms of false positive ratios. Because each entry of the DSR routing cache contains

a full path to the destination, PCH considers not only the change of the number of

routes, but also the change of the length of each routing entry. Therefore, PCH

contains more information compared to PCR. This makes it more accurate to be

utilized to characterize the normal behavior of routing behavior. The same is true

when we compare Fig. 19 and Fig. 21.

3. MTFA

Simulation results of MTFA of local IDSs are depicted in Fig. 22, Fig. 23, Fig. 24

and Fig. 25.

As we can see, with the increase of the alarm threshold r, MTFA increases.

Because with a larger alarm threshold, the detector needs a longer malicious trace in

the current locality frame to make the alarm signal exceed the alarm threshold. This

will result in a larger MTFA. However, from simulation results, the trend of MTFA

is not very obvious with respect to the change of mobility.

Comparing Fig. 22 and Fig. 23, we can see the slight increase of MTFA shown
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Fig. 22. MTFA of the Local IDS Constructed Based on Feature PCH When Window

Size Is Set to 4.
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Fig. 23. MTFA of the Local IDS Constructed Based on Feature PCH When Window

Size Is Set to 5.
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Fig. 24. MTFA of the Local IDS Constructed Based on Feature PCR When Window

Size Is Set to 4.
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Fig. 25. MTFA of the Local IDS Constructed Based on Feature PCR When Window

Size Is Set to 5.
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in Fig. 23, which corresponds to window size 5. This could be explained as: When w

increases, the Markov Chain model could characterize the behavior more accurately.

A transition which is valid in the Markov Chain model with a small window size could

become invalid when w becomes larger. This could contribute to a larger r in the

context of our parameter tuning approach. Therefore it needs a longer history for the

alert signal to exceed r. The same is true if we compare Fig. 24 and Fig. 25.

Comparing Fig. 22 and Fig. 24, we can observe that MTFA of PCR shows a

larger value compared to that of PCH. Normal profile constructed using PCH makes

the distinction between the normal behavior and the abnormal behavior easier com-

pared to that constructed using PCR. The same is true if we compare Fig. 23 and

Fig. 25.

4. Detection Ratio

Simulation results of the detection ratio of local IDSs are illustrated in Fig. 26, Fig.

27, Fig. 28 and Fig. 29.
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Fig. 27. Detection Ratio of the Local IDS Constructed Based on PCH When Window

Size Is Set to 5.

As we can see, in each figure, the detection ratio increases with the decrease of

the alarm threshold r. Because when the alarm threshold decreases, it is easier for the

alarm signal of the normal trace to exceed it, thus generating alarms. When mobility

is low, routing table changes are less dramatic and has less unexpected changes. Thus

it is easier for the classifier to identify the abnormal behavior.

We also observe that in each figure, the detection ratio increases with the decrease

of mobility. As we have shown in the previous section, the trace of lower mobility

demonstrates higher regularity. When the mobility is low, their routing table changes

are less dramatic and has less unexpected changes. Thus it is easier for the classifier

to identify the abnormal behavior.

When mobility is high, the detection ratio is relatively low. This is mainly

caused by “partial” victims. We use the data traces of all of the victims, including

the “partial” victims, as the data of intrusive behavior. Some “partial” victims only

receive a few falsified routing control packets during the whole intrusion session.
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Fig. 28. Detection Ratio of the Local IDS Constructed Based on PCR When Window

Size Is Set to 4.
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It is thus very difficult for the detector to distinguish between normalcy caused by

temporary mobility-induced errors and anomaly caused by one or two falsified routing

control packets. The situation becomes worse when mobility is high because of the

quick link breakage. When mobility is low, however, the local IDSs can achieve very

good detection ratios.

Comparing Fig. 26 and Fig. 27, when w increases, the detection ratio corre-

sponding to the same mobility also increases slightly (except at low mobility level,

when the detection ratios are already very high). However, there exist some excep-

tion points. The slight increase of the detection ratio could be explained as: When

w increases, the Markov Chain model could characterize the normal behavior more

accurately and thus detect more subtle abnormal changes of the routing caches. This

could contribute to the increase of the detection ratio. In our detection model, we

notice that an abnormal transition that is not a valid transition in the Markov Chain

model with a small window size is not a valid transition in the Markov Chain model

with larger window size either. However, note that an abnormal transition that is

not a valid transition in the Markov Chain model with a larger w could be a valid

transition in the Markov Chain with a smaller w. The slight decrease of the detection

ratio could be explained as: When w increases, the alert signal could also increase.

This would make it more difficult to detect the attackers. Therefore, we observe a

trade-off here. The same is true if we compare Fig. 28 and Fig. 29.

Comparing Fig. 26 and Fig. 28, the classifier constructed using PCH results in

a larger detection ratio compared to the classifier using PCR. This demonstrates

that PCH is better than PCR in terms of detection ratios. The reason is similar to

when we come to the issue of false positive ratios. Normal profile constructed using

PCH contains more information of DSR routing caches, and is thus more accurate to

characterize routing activities. The same is true if we compare Fig. 27 and Fig. 29.
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5. Discussion

Simulation results of the local IDSs demonstrate that it is viable to construct a Markov

Chain model to characterize the normal behavior of routing cache changes and build

a classifier based on the data model. This classifier works well in environment with

low mobility.

The detection algorithm aggregates the mismatch counts in the recent locality

frame and thus is not sensitive to a single mismatch. This is important in MANET

environment because of the variations involved in MANET activities due to its dy-

namic nature. In this way, we could avoid high false positive ratios, especially in

environment with low mobility.

We could also see that the feature PCH is better than PCR. Simulation results

show that classifier constructed using PCH demonstrates better performance than

that constructed using PCR in terms of both false positive ratios and detection ratios.

This is because feature PCH considers not only the number of routing entries, but

also the content of each routing entry. Therefore it is easier and more accurate to

characterize the normal behavior of routing cache changes.

A Receiver Operating Characteristic (ROC) [82] curve plots pairs of false positive

ratio and detection ratio as points when various signal thresholds are used. We do

not plot the ROC curve of the local IDSs as most researchers have done ( [24], [25],

[23], [22], [?]) when describing the performance of wired IDSs, because we find the

performance of the local IDSs is sensitive to mobility. Actually, at the same mobility,

there is a gradual trade-off between false positive ratios and detection ratios: the false

positive ratios increase with the increase of detection ratios.
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C. Simulation Results of ZBIDS

We notice in the previous section that local IDSs constructed using feature PCH

demonstrates better performance results than those constructed using feature PCR.

Therefore, in this section, we use the classifier constructed using PCH as the local

IDS to evaluate the performance of ZBIDS. The window size of the local IDS is set

to 4.

1. False Positive Ratio

We can see that the performance of local IDSs at high mobility level is not desirable.

In particular, its false positive ratio is still high. For a realistic detection system, it is

important that the false alarm ratio remains low. Simulation results of ZBIDS in this

section illustrate that ZBIDS and the aggregation algorithm are effective in reducing

false positive ratios.

We compute the false positive ratio of the aggregation algorithm based on the

same test data used by the local Markov detection model for the purpose of compar-

ison. If in the last time period, the gateway node receives no local alerts, it will take

no action. The false positive ratio is then computed from dividing the total number

of false alarms by the total number of decisions made by the gateway node.

As shown in Fig. 30, the aggregation algorithm achieves much lower false positive

ratios compared to that of the local IDS. The local detection module could only use

the information of local communication activities to detect possible intrusions. Due

to mobility, it is very often that there could be unexpected changes of the routing

activities, which will lead to the generation of false alerts by local IDSs. The gateway

nodes, on the other hand, by aggregating the local alerts and routing control packets

in the zone, could know what is happening in a wider area of the network. By
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Fig. 30. False Positive Ratio of Local IDS and ZBIDS.

analyzing the probability of aggregated routing control packet source addresses, it

could effectively eliminate the sudden unexpected yet normal activities of MANETs.

In this way, many false alerts could be suppressed.

2. Detection Ratio

We compute the detection ratio of the aggregation algorithm based on the same

attack data used by the local detection model. We measure the detection ratio from

dividing the number of gateway nodes that actually generate alarms by the number

of gateway nodes that should generate alarms. The result is illustrated in Fig. 31.

As we can see, the aggregation algorithm achieves better detection ratios com-

pared to that of local IDSs. This is because the existence of “partial” victims is the

main reason leading to the degradation of the detection ratio of local IDS. However,

it is possible that in the same time period, the “partial victims” and some “full vic-

tims” of the same attacker coexist in the same zone, the information provided by the

“full victims” could make the gateway nodes detect the attackers. In this way, the
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Fig. 31. Detection Ratio of Local IDS and ZBIDS.

detection ratio is improved.

The arbitrary mobility could cause the routing control packets generated in an

unexpected way. The routing control packets generated by the attacker may dominate

in some time period. In the mean time, it is still possible that the routing control

packets caused by the attacker only have a lower portion, for example, other routing

control packets caused by the normal routing discovery procedure could cause a burst.

This could depress the generation of true alarms. We can see that this phenomenon

is more obvious with the increase of the mobility.

The existence of many attackers may lead to the decrease of the detection ratio

because this may lead to the decrease of the probability of the attacker source address.

This situation is worse when several attackers attack the same victims at the same

time. However, if the attackers do not collude, it is likely that different attackers have

different victims and their attack time does not overlap. In this case, our ZBIDS can

still achieve high detection ratio.
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3. Communication Overhead

The extra communication overhead introduced by ZBIDS is caused by propagating

the local alerts of intrazone nodes. We measure the communication overhead as the

number of transmission of local alerts in a given time period for one node. For a given

local alert, it will be transmitted once by all nodes in the same zone.
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Fig. 32. Communication Overhead of ZBIDS.

As shown in Fig. 32, we can see that, when there are attacks in the network,

the communication overhead is higher because of the increased number of generated

local alerts. We can also see that, when there are no attacks in the network, the

communication overhead decreases with the decrease of mobility. This is because

when the mobility is low, local IDSs demonstrate better performance in terms of false

positive ratios, thus reduces the number of alerts locally propagated in the zone.

Although extra communication overhead is unavoidable, Fig. 32 shows that the

overhead is trivial. In average, each node only needs to send about 2 to 3 alerts per

second when there are attacks in the network.
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4. Global View of Attacks

Due to the adoption of ZBIDS, the gateway nodes could provide a wider view of the

attack that is happening in the network. Expressed in our modified MANET class

hierarchy, an example of one possible aggregated alert is depicted in Fig. 33.

CorrelationAlert
name

Routing_Disruption_Attack
alertident

analyzerid        1

alertident

analyzerid        6

alertident

analyzerid        4

source
22

END
 

Fig. 33. An Example of One Aggregated Alert.

This example shows that the local IDSs attached to node 1, 4 and 6 generate

local alerts and these alerts are aggregated into an CorrelationAlert by the gateway

nodes. We can conclude from the CorrelationAlert that these nodes are the victims

of the routing disruption attack. Source indicates the identification of the attacker:

node 22. This makes it easier to track the offending mobile node.

5. Discussion

Simulation results of the aggregation algorithm demonstrate that ZBIDS could achieve

better performance compared to that of local IDSs. Specifically, it could reduce false

positive ratios at high mobility, which is desirable in practical environment. We can
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also conclude from the simulation that our aggregation algorithm can further improve

the detection ratio and provide a global view of the attacks.

D. Summary

Based on the simulation results, we can say that the normal routing behavior can be

established and used to construct the detectors.

First, the Markov Chain based local anomaly detection model works well in low

mobility environment. In fact, when the mobility is low, we observe less dynamic rout-

ing behavior in terms of the utilized features. This makes the simple Markov Chain

model accurate to characterize its behavior and demonstrate effective performance.

Second, we observe from our simulation that different classifiers should be con-

structed under different mobility level. This implies that training data of all mobility

levels should be collected in order to achieve desirable performance.

Third, using the aggregation algorithm under the zone based framework, we

could reduce the false positive ratio to an acceptable level, especially at high mobility

levels. Therefore, the Markov Chain based local anomaly detection model and the

aggregation algorithm under the zone based framework complement each other to

make a complete MANET IDS.
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CHAPTER V

TOWARDS ADAPTIVE INTRUSION DETECTION IN MOBILE AD HOC

NETWORKS

One of the main difficulties in building anomaly-based MANET IDSs is how to con-

sider mobility impacts when we design detection engines. This is especially important

because most dynamics in MANETs are caused by mobility. MANET IDSs without

properly considering mobility are prone to cause high false positive ratio, rendering

the IDSs useless. Most previous work on MANET IDSs adopts mobile speed or node

pause time to capture the influence of mobility on detection algorithms. We have

observed that mobile speed alone is not an accurate measurement. The extraction

of a common feature among different mobility models is necessary for tuning system

parameters in detection engines.

In this chapter, utilizing different mobility models, we first demonstrate that

moving speed, a common parameter in measuring the performance of MANETs, is

not desirable in measuring the performance of local MANET IDSs when we consider

different applications. We then propose an effective feature for IDSs, link change

rate, to dynamically reflect different mobility environment. Suitable normal profiles

and proper threshold can then be adaptively selected by each local IDSs through pe-

riodically measuring its local link change rate. Utilizing the Markov Chain anomaly

detection model as an exemplary MANET IDS described in Chapter III, we demon-

strate the effectiveness of our proposed adaptive mechanisms under different mobility

models.

The main contribution described in this chapter is to propose a unified mea-

surement to capture the impact of mobility on intrusion detection engines and an

effective adaptive mechanism to integrate the above measurement into local MANET
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IDSs for the purpose of abstracting normal/abnormal profiles. Most previous work

on building IDS for MANETs adopts mobile speed to evaluate the performance of

IDS and to tune parameters for feature selection. However, we observe that without

taking into account particular mobility models, mobile speed alone cannot tell IDS

how fast the link changes are and the parameters setting based on mobile speed will

not be accurate. At the end of this Chapter, detailed simulation study is provided.

The rest of the chapter is organized as follows. In Section A, we study the be-

havior of the local IDS under different mobility models and demonstrate that mobile

speed, which is a commonly used metric for most existing IDSs, is not a good measure-

ment for deciding system parameters of IDSs. Based on this observation, we propose

an accurate and unified metric. Section B presents adaptive mechanisms which can

be integrated into MANET local IDS agent. Section C provides the simulation model

and the detailed simulation results.

A. IDS Behavior under Different Mobility Models

1. Different Mobility Models

Two mobility models, the Random Waypoint model and the Random Drunken model,

were simulated. In the Random Waypoint mobility model, each node randomly selects

a destination in the simulated area and a speed from a uniform distribution of specified

speeds. The node then travels to its selected destination at the selected speed. The

transit from one position to another position is called a movement epoch. On arriving

at the destination, it is stationary for a given pause time. After that, a new movement

epoch begins: the node resumes its movement to a newly selected destination with a

newly selected speed.

In the Random Drunken mobility model, each node moves independently with
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the same average speed. Each node moves continuously within the region without

pausing at any location. It changes direction, randomly chosen, after every unit of

distance.

2. Simulation Platform and Parameter Settings

We use a simulation model based on GloMoSim [5]. The simulations parameters are

the same as described in Table III. The same simulation platform is used through-

out the simulation process for the purpose of comparison. In the Random Waypoint

model, the pause time was set to 0 seconds. In each movement epoch, the speed

was uniformly chosen between the minimum speed and the maximum speed. The

{minimum speed, maximum speed} pair is set to different values in order to mea-

sure the impact of speed on IDS performance. In the Random Drunken model, the

movement granularity was set to 1 meter, that is, each node randomly re-selects a

direction every meter. The node’s speed is controlled by the mobility interval time,

which indicates how long it takes for a node to travel 1 meter. For example, a mobility

interval time of 0.1S is equivalent to 10m/s.

3. Performance Metrics

We use the following metrics throughout the simulation in order to investigate the

impact of different mobility models on the performance of local IDSs.

• False positive ratio: It is defined as the percentage of decisions in which

normal data are flagged as anomalous.

• Detection ratio: It is reported for traces of intrusive behavior and is computed

from dividing the total number of correct detections by the total number of

victims in the anomalous data.
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• MTFA: It is defined over anomalous traces and measures how fast the classifier

detects the attack. Given an anomalous trace ξ, if we suppose the attack start

location is La and our IDS generates its first alarm after scanning the Ld-th

symbol, then the MTFA corresponding to ξ normalized by the length (denoted

as L) of the locality frame is given by MTFA(ξ) = (Ld − La)/L.

They are the same as the performance metrics of local IDS described in chapter

IV.

4. Speed Is Not a Good Metric

In order to investigate the impact of different mobility models on the performance

of local MANET IDSs, we use the same parameters (the same number of discretized

output of VQ algorithm, “rare symbol” conversion threshold, window size, length

of short-term subject activity, penalized value, etc.) to tune alert threshold of IDSs

under different mobility models. Given a mobility model, the same amount of training

data, test data, and abnormal data at different mobility levels are collected using the

same procedure in order to build the classifier. A different set of data is collected to

evaluate the performance of the classifier. Detailed procedure is described in previous

chapters.

a. False Positive Ratio

When using moving speed as the parameter, false positive ratio of the Random Way-

point model and Random Drunken model is shown in Fig. 34. We use relatively

larger speed (small mobility interval time) in the Random Drunken model because

we observe that when speed is small in the Random Drunken model, the link changes

are very small and the routing tables are quite stable [83].
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Fig. 34. False Positive Ratio When Using Moving Speed as the Parameter.

In both Fig. 34, we can see that with the increase of speed, the false positive

ratio increases. This is more obvious for Random Waypoint model. With the increase

of moving speed, no matter what mobility models we use, the node routing tables

will have more changes. Therefore, the trace will demonstrate lower regularity, which

results in the higher false positive ratio.

We can see that although the moving speed of the Random Drunken model is

larger compared to that of the Random Waypoint model, its false positive ratio is

much smaller. This is because given the same moving speed, Random Drunken model

will not generate as many link breakages as Random Waypoint model does. However,

routing table changes are impacted directly by link changes, not node moving speed.

If a group of nodes move in the same direction, it is possible that although they move

at a very high speed, their routing tables experience small changes. This demonstrates

that speed is not a good metric in measuring false positive ratio when we consider

different mobility models. Setting IDS parameters based solely on moving speed is

likely to be incorrect.
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Fig. 35. Detection ratio When Using Moving Speed as a Parameter.

b. Detection Ratio

When using moving speed as the parameter, detection ratio of the Random Waypoint

model and Random Drunken model is shown in Fig. 35. From Fig. 35, we can see

that in both mobility models, detection ratio decreases with the increases of speed.

When mobility is low, routing table changes are less dramatic and has less unexpected

changes. Therefore, abnormal behavior tends to have a larger distance from normal

profiles, and it is easier for the classifier to identify the abnormal behavior. Also, the

phenomenon of “partial victims” is more obvious at high mobility, resulting in the

decrease of the detection ratio.

We observe that the overall detection ratio of the Random Drunken model is

higher than that of the Random Waypoint model, even if the nodes’ moving speed

is higher in the Random Drunken model. The reason is similar: network topology

is much more stable in the Random Drunken model than in the Random Waypoint

model at the same moving speed. This demonstrates that speed is not an accurate

metric in measuring detection ratio.
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c. MTFA
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Fig. 36. MTFA When Using Moving Speed as a Parameter.

The results of MTFA of the Random Waypoint model and the Random Drunken

model are shown in Fig. 36. For Random Waypoint model, its MTFA increases with

the increase of nodes’ moving speed. This is because larger moving speed could lead

to a larger alert threshold, therefore leading to larger MTFA. We can also see that

although the nodes’ moving speed is larger in Random Drunken model, its MTFA

is smaller than that of the Random Waypoint model. This again demonstrates that

speed is not a good metric in measuring the performance of IDS.

5. A Unified Metric

We have illustrated that node moving speed is not a good parameter in measuring

the performance of MANET IDSs. Our purpose is to find a unified metric which

is independent of mobility models and could be used to measure MANET IDS per-

formance. Because routing table changes are directly impacted by link changes, we

further measured the link change rate of different mobility models under the same

scenarios.
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We now define link change rate. Suppose for a given node, at time t1, its neighbor

set is N1; at time t2, its neighbor set is N2. Link change rate is defined as:

(|N2 −N1| + |N1 −N2|)/|t2 − t1|

|N2−N1| means the number of new neighbors during the time interval of (t2−t1),

and |N1 −N2| means the number of neighbors that moved away during the interval

of (t2 − t1). They together represent the number of neighbor changes in (t2 − t1).

Link change rate can be locally collected by each node.

For a given mobility model and a given mobility level represented by {minimum

speed, maximum speed} pair, we compute the average node link change rate. Using the

computed link change rate, we combine the MANET IDS performance over different

mobility models. The result is illustrated in Fig. 37, Fig. 38, and Fig. 39.
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Fig. 37. False Positive Ratio When Using Link Change Rate as a Parameter.

As shown in Fig. 37, with the increase of link change rate, the false positive ratio

and MTFA increase, and the detection ratio decreases. Fig. 37 demonstrates that

if parameter settings of IDS are based on the link change rate, the performance of

IDS will be less independent of mobility model. Compared with nodes moving speed,
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Fig. 38. Detection Ratio When Using Link Change Rate as a Parameter.

link change rates can be used more accurately to measure routing table changes. A

larger link change rate implies a more dynamic environment, which makes it more

difficult to differentiate normal and abnormal behavior. From Fig. 38, we can see

that for the same link change rate, the differences of detection ratio among different

models do not have big gap. From Fig. 39, we can that the MTFA increases with

the increase of link change rate. All these suggest that the performance of IDS will

be less independent of mobility model.

B. Adaptive IDS

1. Adaptive Mechanism

The fact that link change rate can be used to reflect MANET dynamics independent

of mobility models motivates us to investigate adaptive mechanisms that utilize link

change rate as a security feature and integrate it into our IDS model. For an effective

anomaly-based intrusion detection system, an important requirement is that the con-

structed profiles should be adaptive. Adaptive profiles can account for normal network
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Fig. 39. MTFA When Using Link Change Rate as a Parameter.

changes to avoid raising false alarms. This is especially important in MANETs given

its dynamic environments, where different mobility levels will need different normal

profiles.

We introduce adaptive mechanisms into our systems by adjusting the transition

matrix characterized by Markov Chain and the detection threshold through learn-

ing its environments locally. Each node measures its link change rate periodically,

based on the measured link change rate in the recent history, each local IDS can

adjust the parameter settings of Markov Chain and the detection threshold. We have

demonstrated that different mobility scenarios will need different profiles and different

thresholds. Link change rate could provide a unified metric independent of different

mobility models and can be used to adjust the behavior of intrusion detection systems.

We take the following procedures to construct our adaptive MANET IDS, as

illustrated in Fig. 40.

• Offline training: Using different mobility models, we first collect the rout-

ing activities at different mobility levels. Following our existing offline training

approach to construct the Markov Chain based anomaly detection model, we
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Fig. 40. Adaptive Mechanism.

compute the detection threshold at different mobility levels. We further com-

pute the average link change rate at each mobility level.

• Online selection: The data collection module of each IDS agent periodically

collects its local link information and computes its link change rate over the

recent history, denoted as LCRrecent. Based on LCRrecent, the data preprocess

module discretizes the raw data and selects the corresponding codebook whose

link change rate has the smallest Euclidean distance to LCRrecent. LCRrecent

is also reported to detection engine, which can select the normal profile whose

link change rate has the smallest Euclidean distance to LCRrecent. This process

is summarized in Fig. 41.
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Procedure Select_Adaptively() 

Input: periodically calculated link change rate 

Output: normal profile adaptive to mobility 

Begin 

For each local IDS at time t 

Compute the link change rate over the recent history, 

denoted as LCRrecent; 

 

Compute the Euclidean distance between LCRrecent and 

each link change rate stored in normal profiles; 

 

Select the normal profile whose link change rate has the 

smallest Euclidean distance to LCRrecent; 

 

Use the adaptively selected Markov Chain to calculate the

alert signal of recent routing activities.  

 

Based on calculated alert signal and adaptively selected 

alert threshold, decide whether to generate alert or not. 

END For 

END 

Fig. 41. Pseudocode to Adaptively Select Normal Profiles.

2. Measurement of Link Change Rate

The effective implementation of our proposed adaptive IDS depends greatly on the

accurate measurement of link change rate. Link change information may be obtained

directly from some routing protocols, such as Ad hoc On Demand Distance Vector

(AODV) routing, that use beacon messages to detect neighbors as well as link break-

age. In this case, our proposed IDS can re-use this information to save bandwidth.

In case there is no existing mechanism to provide link change information, we

utilize periodical beacon signal sent by each node to measure link changes. The

bandwidth cost of beacon messages is small. Nevertheless, introducing additional

bandwidth cost may not be desirable in building an effective IDS. Hence we need

to minimize this communication cost without degrading the measurement accuracy
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largely. The accuracy of the measurement relies on how fast each node sends out

beacon messages. The shorter the interval time of beacon messages, the more accurate

the measurement. But sending out beacon messages too often may consume too much

energy even if beacon messages are very short.

Although mobile speed is not an accurate metric for tuning IDS parameters

as stated before, mobile speed provides us with good heuristics on estimating link

change rate: high speed causes more link changes in general. Therefore, a fast node

should send out beacon messages more frequently than a slow node. By differentiating

beacon messages interval time based on nodes’ moving speed, communication cost can

be reduced.

Nevertheless, we should make the above measurement strategy independent of

mobility models. In order to achieve this goal, we propose a learning approach in

adopting beacon message interval time. Initially, a short beacon interval time is used

for each node in order to obtain accurate link change information. If a node observes

that there is no link change during several beacon interval times, it can increase the

beacon interval time to a larger value. When a node increases its moving speed or finds

too many link changes within one beacon interval time, it should decrease its interval

time. Since our IDS does not require link change information in a very small time

granularity (for example, providing link change rate every 50 ms is meaningless), the

above learning strategy can reduce communication cost effectively without degrading

the detection performance of our IDS.

Based on the above consideration, our local detection agent is energy efficient

because it requires very small communication cost. Although our IDS needs to calcu-

late feature values, the calculation is neither complex nor intensive. Also, compared

to communication, calculation usually consumes much less energy. For example, the

ratio of energy spent in sending one bit versus executing one instruction ranges from
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220 to 2290 in different architectures [84].

C. Simulation Study of Adaptive IDSs

We use the same simulation model, as described in Section 2, to perform simulation

study for the purpose of comparison. The result is illustrated in Fig. 42, Fig. 43,

and Fig. 44.
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Fig. 42. False Positive Ratio of Adaptive Local IDS.
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Fig. 44. MTFA of Adaptive Local IDS.

From Fig. 42, we can see that at the same link change rate, the false positive ratio

of adaptive IDS is comparable to that of IDS not using adaptive mechanism. Adaptive

mechanisms take into consideration mobility-caused dynamics and can change normal

profiles correspondingly. We can also see that detection ratio of adaptive mechanisms

and non-adaptive mechanisms does not show much difference, as illustrated in Fig.

43. When attacks happen in the network, abnormal routing table changes will not

expect to follow any normal profiles. That is, the introduce of the adaptive mechanism

will not enable the abnormal change caused by the attack to be found in any normal

profiles. This will lead to the increase of the same penalized value. Therefore, adaptive

mechanisms will not help in improving detection ratio. Because of the similar reason,

we also observe that MTFA of adaptive mechanisms and non-adaptive mechanisms

does not show much difference, as illustrated in Fig. 44. This illustrates that the main

benefit of the adaptive mechanism is to provide IDSs which are less dependent on

mobility models and keep roughly the same performance compared to non-adaptive

mechanisms in terms of false positive ratio, detection ratio and MTFA.

Because the Random Waypoint model tends to generate a link change rate which
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is larger than that of the Random Drunken model, we further generate test data with

relatively smaller link change rate of the Random Waypoint model and apply the

corresponding normal profile of the Random Drunken model to it. Simulation results

demonstrate similar performance in terms of the false positive ratio, detection ratio

and MTFA. This again shows that the adaptive mechanism provides IDSs which are

less dependent on mobility models.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the research, review the contributions, and discuss

important future work.

A. Conclusions

This research describes a nonoverlapping Zone-Based Intrusion Detection System

(ZBIDS) for mobile ad-hoc networks. It consists of the detailed description of the

local IDS agent and the nonoverlapping zone-based framework for the IDS agents

to collaborate. They complement each other to make a complete intrusion detection

system for MANETs. Because of the importance of routing protocols in MANETs, we

use the routing disruption attack as the threat model to illustrate the effectiveness of

ZBIDS. Simulation results illustrate that ZBIDS can achieve acceptable false positive

ratio and detection ratio.

The first question in intrusion detection research is what statistical features of

interest should be used to construct the model. In the history, short sequences of

system calls used by priviledged processes can be used to effectively distinguish normal

and intrusive behavior and utilized to construct host based IDSs. Tcpdump data could

be used to construct network based IDS. However, these features are not suitable to

be used to construct detection models to guard against MANET routing attacks.

Based on the experiment results, we utilize the percentage of the change in route

entries and the percentage of the change in number of hops as the features to capture

the representative behaviors of MANET network activities.

By collecting the statistical features of interest from the routing cache of mobile

nodes periodically and utilizing Vector Quantization algorithm (VQ) to convert them
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into discretized data, we utilize a Markov Chain model to capture their temporal

dependency and construct the normal profile. A classifier is then constructed based

on the probability transition matrix. Considering the dynamic activities of MANETs,

we use the average deviation over the past locality frame as the distance measure.

In the process of constructing the classifier, conditional entropy is used to determine

the proper window size, and other parameters are also properly tuned to consider the

performance trade-off.

We have conducted extensive simulations to evaluate the performance of ZBIDS.

Simulation results demonstrated that the proposed local Markov Chain based anomaly

detection algorithm could have relatively high false positive ratio when mobility is

high. Deploying local IDSs alone could also lead to alert flooding problem. Therefore,

we further propose the nonoverlapping zone-based framework and an aggregation al-

gorithm. By collecting the security related information expressed in the proposed

MANET IDMEF data model from a wider area, the gateway nodes could reduce the

false positive ratio and improve the detection ratio by utilizing the aggregation algo-

rithm. A global view of the attack happening in the network could also be provided,

which will better facilitate the diagnosis process.

MANET IDSs need to take into consideration mobility impacts in order to achieve

desirable performance. Utilizing our Markov Chain based local MANET IDS, we

first demonstrate that node moving speed, a commonly used parameter in measuring

MANET performance, is not desirable to benchmark the performance of MANET

IDSs when we consider different mobility models. We then propose the usage of a

new feature, the link change rate, to act as a unified metric in measuring MANET

IDS performance. We further demonstrate how to utilize link change rate to build

adaptive mechanisms into the detection model. Suitable normal profile and proper

detection threshold can be dynamically selected by each local IDSs through periodi-
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cally measuring its local link change rate. Simulation results show that our proposed

adaptive mechanisms are effective in lowering false positive ratio and independent of

mobility models.

B. Thesis Contributions

We recap the thesis contributions:

• We utilize the percentage of the change in route entries and the percentage

of the change in number of hops as the features to capture the representative

behaviors of the MANET network activities and construct a Markov Chain

based anomaly detection algorithm.

• We propose a nonoverlapping Zone Based Intrusion Detection System (ZBIDS)

that fits the unique requirement of MANETs. In this framework, each node is

attached an IDS agent that acts as a local detection module. ZBIDS creates alert

management points by introducing a two-tier logical hierarchy. This framework

could avoid heavy communication overhead and single point of failure. We

propose an aggregation algorithm which could further improve the detection

performance. All these local IDSs collectively form a complete MANET IDS to

protect the mobile ad hoc network.

• We propose to integrate adaptive mechanisms into local MANET IDSs. By

utilizing link change rate, a unified metric which could reflect the dynamics

of MANETs, the adaptive mechanism could dynamically select proper normal

profile and detection threshold.
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C. Future Work

Up to now, not many research efforts have been devoted to MANET IDSs. This thesis

provides our initial work in this respect. As a very new and promising research area,

there are several interesting and important future directions:

• We use DSR as the example routing protocol throughout this research to study

the performance of ZBIDS. One of the important future work is to study

MANET IDS performance under other popular routing protocols (both reactive

and proactive).

• Focusing on MANET routing protocols and using the routing disruption attack

as the threat model, we develop our ZBIDS to the full. However, because of the

difficulty to design a once-for-all security solution, we have thus far done very

little study on the protocol analysis at other MANET layers (Medium Access

Control layer, Application layer, etc.) and other attack models. We believe it is

necessary to carry out research in these aspects in order to guard against intru-

sions in a high-secure environment. For example, because of the richer semantic

information available in the application layer, a Denial-of-Service attack may

be detected earlier by the application-layer IDS. Therefore, intrusion detection

module needs to be placed at each layer of the node and coordinated to detect

the attack more accurately.

• In order to provide better detection performance, it is necessary to analyze and

categorize MANET attack models and system vulnerabilities. Existing research

work lacks the detailed analysis in this respect. However, sufficient research into

the attack scenarios is necessary in several respects.

First, this could help to identify more useful features that could be used to char-
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acterize the normal behavior of MANETs from various aspects. Defining good

features is one of the most important steps in building an effective detection

model. Possible other features may be constructed from traffic patterns and

topological changes. Their characteristics could be utilized to construct better

features.

Second, further defined features could also facilitate the construction of mis-

use based intrusion detection systems. Misuse based IDSs operate based on a

database of known attack signatures and system vulnerabilities. Their low false

positive ratios are very attractive in practice. However, misuse based IDSs are

impossible without the understanding of comprehensive attack scenarios. An

attack language needs to be defined to represent attack scenarios. Based on

these, suitable rule-based IDSs for MANETs could be constructed. It needs to

integrate with anomaly-based IDS to provide better performance.

Third, the cooperation of local IDS agents are required in MANET IDSs due

to their distributed nature. Aggregation and correlation of the security related

information are needed in order to improve the detection performance. How to

cooperate and how to design the aggregation and correlation algorithm also de-

pend on the extensive knowledge of attack scenarios. This is a really challenging

issue when the attack model becomes very complex.

• Appropriate intrusion response techniques are needed in order to protect the

network system. How to cooperate the intrusion detection and response modules

and how to respond to the identified attacks effectively deserve further research.
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APPENDIX A

SIMULATION PARAMETERS USED IN CHAPTER III

Table III. Simulation Parameters

Parameters Values

Channel capacity 2Mbps

Channel model Free space propagation

model with a threshold

cutoff

Transmission range 250m

MAC layer Distributed Coordination

Function of IEEE 802.11

Number of nodes 30

Moving region 1000m X 500m

Mobility model Random waypoint model

Minimum speed 3m/s

Maximum speed 5m/s

Traffic pairs 8 pairs with CBR traffic

Interval transmission time 0.25s

Data packet size 512bytes

Data collection interval time 3 seconds
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APPENDIX B

THE XML DTD DESCRIPTION OF THE ALERT CLASS HIERARCHY OF

ZBIDS

The occurrence indicators

? the content may appear either once or not al all

* the content may appear one or more times or not at all

+ the content must appear at least once, and may appear more than once

[none] the content must appear exactly once

(1)Alert

<!ELEMENT Alert (

DetectTime?, CreateTime, Analyzer, Source*, Target*, Assessment?, Analyz-

erTime?, Classification+, Assessment?

)>

<!ATTLIST Alert

ident CDATA ‘0’

>

(2)DetectTime

<!ELEMENT DetectTime (#PCDATA)

>

<!ATTLIST DetectTime

time CDATA #REQUIRED

>

(3)CreateTime

<!ELEMENT CreateTime (#PCDATA)
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>

<!ATTLIST CreatetTime

time CDATA #REQUIRED

>

(4)Analyzer

<!ELEMENT Analyzer (

Node?

)>

<!ATTLIST Analyzer

analyzerid CDATA ‘0’

>

(5)Source

<!ENTITY %attvals.yesno “

(unknown | yes | no )

”>

<!ELEMENT Source (

Node?

)>

<!ATTLIST Source

ident CDATA ‘0’

spoofed %attvals.yesno ‘unknown’

>

(6)Target

<!ENTITY %attvals.yesno “

(unknown | yes | no )

”>
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<!ELEMENT Target (

Node?

)>

<!ATTLIST Target

ident CDATA ‘0’

decoy %attvals.yesno ‘unknown’

>

(7)AnalyzerTime

<!ELEMENT AnalyzerTime (#PCDATA)

>

<!ATTLIST AnalyzerTime

time CDATA #REQUIRED

>

(8)Classification

<!ELEMENT Classification

(name) >

(9)Assessment

<!ENTITY %attvals.confidence “

(low | medium | high | numeric )

”>

<!ELEMENT Assessment (#PCDATA | EMPTY)*

>

<!ATTLIST Assessment

confidence %attvals.confidence ‘numeric’

>

(10)Node
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<!ENTITY %attvals.nodecategory “

(Intra-zone | Gateway)

”>

<!ELEMENT Node (

Location?, (Name | Address), Address*, Zone*

)>

<!ATTLIST Node

ident CDATA ‘0’

category % attvals.nodecategory ‘Intra-zone’

>

(11)Location

<!ELEMENT Location (#PCDATA)

>

<!ATTLIST Location

x CDATA #REQUIRED

y CDATA #REQUIRED

z CDATA #IMPLIED

>

(12)Address

<!ENTITY %attvals.addresscategory “

(unknown | ipv4-addr | ipv6-addr)

”>

<!ELEMENT Address (#PCDATA)

>

<!ATTLIST Address

ident CDATA ‘0’
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category %attvals.addresscategory ‘unknown’

address CDATA #REQUIRED

>

(13)Zone

<!ELEMENT Zone (#PCDATA)

>

<!ATTLIST Zone

zoneid CDATA #REQUIRED

>

(14)Name

<!ELEMENT Name (#PCDATA)

>

<!ATTLIST Name

name CDATA ‘0’

>

(15)Netmask

<!ELEMENT Netmask (#PCDATA)

>

<!ATTLIST Netmask

netmask CDATA ‘0’

>

(14)CorrelationAlert

<!ELEMENT CorrelationAlert (

name, Alertident+

)>

(16)Alertident
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<!ELEMENT Alertident (#PCDATA)

>

<!ATTLIST Alertident

analyzerid CDATA #IMPLIED

>
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