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ABSTRACT 
 

The Recombinant Expression and Potential Applications of Bacterial Organophosphate  
 

Hydrolase in Zea mays L. (May 2004) 
 

Terrence Scott Pinkerton, B.S., University of Nebraska-Lincoln 
 

Chair of Advisory Committee: Dr. James R. Wild 
 
 
 
 Organophosphate hydrolase (OPH, EC 3.1.8.1) is a bacterial enzyme with a 

broad spectrum of potential substrates that include organophosphorus pesticides, 

herbicides, and chemical warfare agents. OPH has been expressed successfully in 

bacterial, fungal, and insect cell culture systems; however, none of these systems 

produces amounts of enzyme suitable for applications outside of the research laboratory. 

Therefore, a transgenic Zea mays L. (maize) system was developed to express OPH as an 

alternate to the current OPH expression systems. The bacterial gene encoding the OPH 

protein was optimized for transcriptional and translational expression in maize. The 

optimized gene was inserted into the maize genome under the control of embryo 

specific, endosperm specific, and constitutive plant promoters. Select transformants were 

analyzed for the expression of OPH. Expression was observed in the seeds of plants 

transformed with each of the three constructs with the highest expression observed with 

the embryo specific and constitutive promoter constructs. The highest OPH expressing 

lines of transgenic maize had expression levels higher than those reported for the E. coli 

expression system. OPH was purified from transgenic maize seed and analyzed for post-

translational modification and kinetic properties. OPH was observed to undergo a 
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glycosylation event when expressed in maize that yielded at least two forms of OPH 

homogolous dimer. The glycosylated form of OPH bound tightly to the Concanavalin A 

sepharose and remained active after months of storage at room temperature. OPH 

activity was checked against a number of organophosphate herbicides. Enzymatic 

activity was observed against the herbicide Amiprophos-methyl and kinetic properties 

were measured. Enzymatic activity was also tested against the organophosphate 

Haloxon. Transgenic maize callus, leaf, and seed tissue could be screened for the 

presence of the optimized opd gene by enzymatic activity. Comparison of the growth of 

transgenic and control callus on media containing organophosphates showed that the 

transgenic callus was resistant to the herbicidal effects of haloxon. Transgenic plants 

expressing OPH were also resistant to the herbicide bensulide when compared to control 

plants. This indicates that OPH can be used as a screenable marker in plant systems and 

may be a potential scorable marker system as well.  
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CHAPTER I 
 

INTRODUCTION 
 

 

 Organophosphates are neurotoxic chemical agents widely used as pesticides and 

herbicides 1. Organophosphates inhibit the enzymatic activity of cholinesterases, thereby 

inhibiting proper nerve function. The powerful effect that organophosphates have on the 

nervous system has been harnessed not only to control insect and plant pests, but also for 

use as chemical warfare agents 2,3. Since the initial discovery of organophosphates over 

sixty years ago, their use has spread worldwide 2. Organophosphates used commercially 

are synthetic compounds not found in nature 2,3. The only example of a naturally 

occurring organophosphate neurotoxin is Anatoxin-A(S), which is isolated from certain 

strains of the cyanobacteria of genus Anabaena 4.  Concurrent with the development and 

use of these agents, several enzymes have been identified that can degrade 

organophosphates 5-21. These include mammalian serum paraoxonases (EC 3.1.8.1), 

squid DFPase (EC 3.1.8.2), organophosphate acid anhydrase (OPAA, EC 3.1.8.1), and 

organophosphate hydrolase (OPH, EC 3.1.8.1) 8-11,15,17,22. With the exception of OPH, 

the hydrolytic activity of all of these enzymes against organophosphates appears to be an 

ancillary function rather than their natural metabolic function. A natural metabolic 

function for OPH has yet to be identified 23. It is also interesting that none of the proteins 
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share sequence homology, indicating that the ability to degrade organophosphates arose 

independently in each.  

 OPH has been identified by several names in the literature including 

Organphosphorus Hydrolase and Phosphotriesterase (PTE) 23,24. OPH activity was first 

observed in bacteria isolated from rice paddies treated with the organophosphate 

herbicide diazinon 18-21. The enzyme was identified in Pseudomonas diminuta and 

Flavobacterium spp.17,20. In both organisms the gene encoding the enzyme (opd) was 

found on large plasmids; however, outside of the opd gene the plasmids were not similar 

in sequence 11,25,26. More recently a similar gene was identified in Agrobacterium 

radiobacter isolated in Australia 7. Studies with the enzyme have shown that it had the 

ability to degrade a wide range of organophosphates by hydrolyzing P-O, P-S, P-F, and 

P-CN bonds 24. This gives OPH the widest range of substrates among organophosphate 

degrading enzymes. OPH without a 29 amino acid leader sequence has also been shown 

to be a highly stable enzyme, with the highest reported conformational stability reported 

for a dimeric protein 27,28. At the heart of OPH are two active sites that contain two metal 

binding sites each 23,29,30. These metal-binding sites can bind several different divalent 

transition metals with different kinetic properties attributed to the enzyme dependent on 

which metal is bound 30,31. The highest activity against paraoxon has been observed with 

the cobalt form of the enzyme (kcat=12,000s-1). The type of metal bound can also have an 

effect on the stability of the enzyme with the zinc form of the enzyme being the most 

stable 28. Studies to determine the enzymatic mechanism of OPH indicate that the ability 

to degrade organophosphates is metal dependent and the enzymatic center of OPH 
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contains a carbamylated lysine residue that has been shown in crystal structure to be 

involved in metal binding 23,31,32. The reconstitution of OPH from metal free apo-enzyme 

is accelerated by the presence of bicarbonate, which supports the importance of the 

modified lysine for enzyme function 33. Crystal structures of the enzyme isolated from 

recombinant expression systems have shown two divalent metals per subunit of enzyme 

23,34. Questions have arisen, however, on the exact number of metals needed for 

enzymatic activity. Initial atomic absorbtion experiments measuring the metal content of 

the enzyme indicated that for enzyme produced without the addition of extra transition 

metals to the growth media the enzyme was binding 1.1 zinc atoms per subunit of the 

monomer 30. Further mechanism work indicated that OPH showed full activity against 

paraoxon was achieved only when two metals were bound per sub-unit. Turnover of 

paraoxon is extremely rapid with diffusion limited rates, which made it possible to 

conduct substrate inhibition experiments using the P-S bonded substrate demeton-S 

which has a turnover rate that is nearly 1000-fold lower than that of paraoxon 25,35. The 

substrate inhibition experiments showed that the inhibition of paraoxonase with 

demeton-S was mixed non-competitive inhibition 35. This indicates that there is might be 

a more complex mechanism for the hydrolysis of organophosphates by OPH. 

Experiments detailing the metal requirement for demeton-S activity have resulted in 

mixed results, with Shim et al. reporting that two metals are required and diSioudi et al. 

reporting only one metal is required 33,36. The one metal mechanism is also supported by 

several mutant studies done on OPH 29,36. The C59S mutant of OPH has an altered metal 

state, with only 0.86 metals bound per subunit, but the enzyme retains 33% of its 
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paraoxonase activity 30. The replacement of histidine residues involved in structural 

interactions that form the active site of the enzyme resulted in increased activity the P-S 

bonded substrate demeton-S and maximal activity for both paraoxon and demeton-S 

degrading activity at 1 metal bound per sub-unit of enzyme 24,36. The exact mechanism 

or mechanisms of OPH degradation of organophosphates remains elusive.  

 Given the broad substrate specificity and stable thermodynamic properties of 

OPH, the enzyme has been the enzyme of choice for several practical applications. 

These include enzyme engineering to increase enzymatic activity against P-S bonded 

chemical warfare agents such as the chemical warfare agent VX, for the immobilization 

of the enzyme for easier handling during remediation of organophosphates, and the use 

in biosensors to detect environmental organophosphate contamination 15,24,36. With the 

increased demand for OPH protein for use in experimental applications, new methods 

for expressing the enzyme are being explored. OPH has been expressed in several 

prokaryotic and eukaryotic expression systems 17,23,27,31,37,38,39. The workhorse of OPH 

expression to date has been the recombinant E. coli expression system 27. The current 

laboratory shake flask expression system typically yields around 10-20mg of OPH per 

liter of media. Attempts to adapt this system to large-scale fermentation have resulted in 

expression levels 100 fold below the shake flask expression rate (Dr. M. Wales, personal 

communication). Insect cell culture has also been used for OPH expression, as has 

expression in fungal systems 38,39. Neither of these two systems is ideal for scale-up to 

large-scale production of enzyme. In searching for alternative systems of expression, 
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plant based expression systems offers the ability to express OPH successfully in large 

quantities. 

 Plant based expression of recombinant proteins is increasingly becoming 

commonplace. The first transgenic plants were produced by Agrobacterium tumefaciens 

mediated transformation in the early 1980’s 40. Stable transformation was later achieved 

by particle bombardment 41. Transfer of recombinant DNA to plant cells can also be 

achieved by tissue electroporation and silicon carbide fibers 42. One of the advantages of 

the plant expression systems is the ability to target protein expression to specialized 

protein storage organs and tissues 43. Plant seed is an ideal protein expression target due 

to its low moisture and high protein content, which are similar to the environment 

encountered by lyophilized proteins. In addition, carbohydrates and protease inhibitors 

are present in most seeds 43,44. These factors serve to stabilize proteins expressed in seed 

to allow for germination at a later date, but also serve to stabilize recombinant proteins. 

Another advantage of plant expression systems is ability to quickly scale production of 

transgenic material from small to large scale 43. This coupled with the simple input 

requirements for protein production (sunlight and water) gives the plant expression 

system a great advantage over bacterial fermentation and animal cell culture systems.  

Transgenic plants have been used for applications ranging basic plant research to 

the commercial production of recombinant proteins 45-54. The DNA transfer technology 

for producing transgenic plants has also been adapted for use with almost all types of 

higher plants including monocot grasses such as Zea mays L. (maize). The 

Agrobacterium system of transformation is based on the plant pathogenic bacteria 
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Agrobacterium tumefaciens. Agrobacterium naturally infects dicotyledonous plants at 

wound sites, typically on the plant stem near the soil surface, and cause a condition 

known as crown gall. The bacterium carries a large tumor-inducing plasmid (Ti) that 

contains genes that can be transferred and integrated into the plant genome. The genes 

encoded on the plasmid are divided into two sets, those that are transferred to the plant 

host, and those that are not transferred but are necessary for the transfer. Upon the 

transfer of the genetic material to the host cell the plant cell begins the production of a 

set of compounds called opines, which only Agrobacterium can metabolize. The 

transferred genes also cause the plant cell to begin rapid division resulting in a mass of 

cells containing the transferred genes. This pathogenic system was modified for use in 

plant transformation by removing the transferred material from the Ti plasmid and 

replacing it with DNA sequences desired for transformation. Further advancement was 

made with the use of a binary vector system, where one vector carries the genes needed 

for transfer of the DNA, and another vector carries the gene targeted for transfer 55. This 

allows the system to use two smaller plasmids, which are easier to manipulate than a 

single large Ti plasmid. DNA manipulation can be carried out in E. coli and then 

transferred to Agrobacterium prior to transformation. Since the initial use of 

Agrobacterium for dicot transformation the Agrobacterium system has been modified 

and used for the transformation of monocots including maize 56-58. 

  Maize transformation resulting in fertile plants was first accomplished by 

particle bombardment with tungsten particles coated with the DNA targeted for 

integration 55,59. A major advancement in the ability to generate transgenic maize was the 
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adaptation of the Agrobacterium system to maize transformation 50,56,58. The advantage 

of this system is the control of gene copy number that it introduces, reducing the number 

of multiple gene inserts that can result in gene silencing. Maize plants have been 

genetically engineered for resistance to insect pests and herbicides 51,57,60. Maize has also 

been used to produce recombinant proteins. A wide range of recombinant proteins have 

been expressed in maize including proteins from both prokaryotic and eukaryotic 

systems. Expression levels have been reported as high as 26% in transgenic maize seed 

for the protein avidin 61. 

 Given the wide range of expression systems that have been tested for the 

expression of OPH and the limited usefulness of these systems for large-scale expression 

of OPH, the ability of a maize plant expression system to successfully express OPH was 

explored. To reach this goal, the DNA sequence of the native opd gene was 

reconstructed into a new sequence that encoded OPH using the codons most common 

used in the maize genome. This change in coding sequence eliminated potential problem 

causing mRNA sequences that would have had a negative impact on OPH expression. 

The elimination of rare codons by optimization with common codons has previously 

been shown to increase expression of the Bacillus thurengensis toxin protein and an 

insect anti-freeze protein in plant systems 60,62. The optimized gene was placed into plant 

expression vectors under three different promoters with constitutive, embryo specific, 

and endosperm specific expression patterns. The OPH protein also was fused n-

terminally to the barley α-amylase signal sequence (BAASS). This signal sequence 

causes the export of the fused protein outside of the cell to the cell wall and is removed 
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during the export process 63. By exporting the recombinant protein outside of the cell the 

protein is isolated from degradation that may be caused by internal cellular components. 

It also places the targeted protein into an environment that is high in carbohydrate, which 

can help to stabilize protein. The effect that the plant expression system had on OPH 

quality was also investigated. Plant expression systems are capable of post-translational 

modifications that are not found in bacterial systems, which can effect the quality of 

bacterial proteins expressed in a plant system.  

It is interesting to note that OPH has a wide range of possible substrates that 

include herbicides and compounds that can be visually detected. This raises the 

possibility that OPH could be used as a selectable and scorable marker gene in plant 

transgene expression systems. Currently no commonly used marker is used as both a 

selectable and scorable marker system. Scorable markers, like β-glucuronidase (GUS), 

firefly luciferase (ff-LUC), and green fluorescent protein (GFP) are used to determine if 

tissue has been successfully transformed and are detected visually by their enzymatic 

activity (GUS, ff-LUC) or fluorescent properties of the protein itself (GFP) 64-67. None of 

these proteins can be used as a selectable marker. Selectable marker genes such as PAT 

give transgenic tissue resistance to a toxic compound resulting in the ability to select 

transformants 68. However, the degradation of the selection compound does not yield an 

easily detected product limiting the ability to use the selectable marker gene as a 

scorable marker. The wide range of compounds that OPH can degrade may mean that 

OPH can act as a selectable or scorable marker depending on which compound is used. 

Organophosphates have previously been used to screen bacteria for the presence of OPH 
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activity. Parathion impregnated filters were used to screen bacterial colonies for the 

degradation of organophosphates and the pesticide coumaphos has been added to agar 

plates to detect bacterial degradation of organophosphates 69,70. The addition of a 

compound like coumaphos to plant tissue culture media may allow for the screening of 

tissue during the process of plant regeneration from transformed tissue. It may also be 

possible to use OPH substrates to screen tissue from plants after regeneration.  

Organophosphate compounds have also been identified with herbicidal activity 1. 

Among these compounds are the herbicides amiprophos-methyl, butamiphos, bensulide, 

anilofos, and piperophos 1. Amiprophos-methyl and butamiphos block microtubual 

polymerization 71-75. Bensulide blocks lipid synthesis, while Anilofos and Piperophos 

block cell division by inhibiting very long chain fatty acid synthesis 1,76. All of these 

herbicides act in a pre-emergence fashion and are active against C4 monocots like maize 

1. None of these compounds have been previously tested as OPH substrates. If OPH has 

the ability to degrade an organophosphate herbicide it raises the potential of OPH as a 

selectable marker. Currently selectable marker systems for plant transformation rely on 

either the ability to degrade a herbicide such as bialaphos, the ability to degrade a broad 

spectrum antibiotic, or the inclusion of an enzyme which is resistant to herbicides which 

are metabolic inhibitors 48,57. While the current selectable marker systems are useful as a 

selection mechanism, they do not act as a scorable marker system. If OPH has the ability 

to act as a scorable and selectable marker, it would make OPH unique among plant 

marker systems.  
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CHAPTER II 
 

OPTIMIZATION, CONSTRUCTION, AND EXPRESSION OF A  
 

BACTERIAL ORGANOPHOSPHATE HYDROLASE GENE IN  
 

Zea mays L. 
 

 Organophosphate hydrolase (OPH) from P. diminuta is a dimeric metallo-

enzyme with a broad substrate spectrum including the ability to degrade 

organophosphorus neurotoxins. The gene (opd) encoding OPH has been cloned into 

several expression systems including bacteria, insect cell culture, bacculovirus, and 

fungi. The current system of choice for the laboratory expression of OPH is E. coli. 

However, attempts to scale up production into fermentors have resulted in significantly 

lower expression of the enzyme when compared to shake flask expression levels. The 

aim of this work in maize was to develop a plant expression system, Zea mays L., as an 

alternative expression system using several different promoters. This has required the 

optimization of the opd gene sequence to avoid problem sequences within the encoding 

mRNA, integration into plant expression vectors and transfer into the maize genome by 

Agrobacterium mediated transformation. 

Introduction 

 Since the discovery of bacteria with the ability to degrade organophosphates 

during the late 1960’s, extensive work in both basic research on the enzymes that 

catalyze the degradation of organophosphates, as well as the possible applications of 

these enzyme has been preformed 15,19,23. Organophosphate hydrolyzing enzymes (E.C. 
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3.1.8) have been identified from both prokaryotic and eukaryotic systems. These 

enzymes include organophosphate hydrolase (E.C. 3.1.8.1, OPH, alternatively 

phosphotriesterase, PTE), Organophosphate Acid Anhydrase (E.C. 3.1.8.2, OPAA), the 

PON family of serum paraoxonases (E.C. 3.1.8.2), and squid DFPase (E.C. 3.1.8.1) 

8,9,15,22. Of these enzymes, OPH shows the widest range of organophosphate substrate 

specificity with the ability to hydrolyze P-O, P-S, P-F, and P-CN bonds 24. This gives 

OPH enzymatic activity against a broad range of organophosphate pesticides, as well as 

the chemical warfare agents Soman, Sarin, Cyclo-Sarin, Tabun,VR, and VX. Because of 

the wide substrate range and chemical variety of OPH catalysis, the enzyme has been 

considered an ideal candidate for practical applications involving the degradation of 

organophosphorus neurotoxins 15,24,37. OPH is a homodimeric metalloprotein that 

requires the presence of divalent transition metals, such as Zn+2, Cd+2, or Co+2, for 

enzymatic activity 29. OPH shows a remarkable thermal stability, with highest 

conformational stability reported for any dimeric protein (∆G = 40 kcal/mol) 27. The 

gene encoding OPH (opd) was originally isolated from Pseudomonas diminuta and 

Flavobacterium that contained large dissimilar plasmids 77. Subsequently, this gene was 

transferred into E. coli, insect cell culture, and fungal expression systems for the 

production of recombinant OPH 29,37,38. Currently, the E. coli expression system can 

yield up to 10-20mg of OPH per liter of culture when growth is carried out in shake 

flasks. When the same strains are used for fermentor expression the yield per liter of 

growth media is often 100 times lower than in the shake flask incubation. Given that 

OPH has been successfully expressed in several prokaryotic and eukaryotic expression 
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systems, the ability of a plant expression system, Zea mays L. (maize), to express 

recombinant OPH was tested. 

 The ability to use plants as expression systems for foreign proteins became a 

reality with the advent of plant transformation techniques in the early 1980’s 40. The 

transformation technology has been used to improve nutritional traits, add resistance to 

herbicides, increase resistance to pests, and express recombinant proteins 46-54. Plants 

provide a recombinant expression system that has several advantages over bacterial, 

fungal, and animal systems that include the ability to compartmentalize expression of the 

recombinant protein into organelles or protein storage organs 44,78. Plant seeds are ideal 

protein storage structures with an environment that is low in moisture and contains high 

concentrations of protein and carbohydrate. Protease inhibitors are also found in high 

concentrations in seeds 44. Seed expression has the added benefit of not needing cold 

storage or processing that plant green tissue, such as leaves, requires. Plant expression 

systems also have a high degree of scalability of production with minimal amount of 

required resources 49. Increasing the scale of production of a plant system is not 

dependent on specialized facilities, such as fermentors, and is only limited by the area 

being planted with the transgenic plant. 

Fertile transgenic maize was first produced in the early 1990’s by physical 

bombardment of plant tissue by tungsten particle coated in DNA containing the 

transgene (biolistic transformation) 41,59. More recently Agrobacterium tumefaciens has 

emerged as a viable maize transformation system 56,58,79. Maize has been used to 

successfully express several proteins of both prokaryotic and eukaryotic origin that 
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include the commercialized expression of avidin, β-glucuronidase, trypsin, and aprotinin 

46-54.  Given the wide range of proteins successfully expressed in maize, including 

metallo-proteins and proteins from bacterial sources, maize appears to be a capable 

system for the heterologous expression of OPH. Levels of expression of over 26% total 

soluble protein (%TSP) have been achieved for recombinant expression of avidin in 

maize 61. The high level of heterologus protein expression achieved in maize with a 

diverse set of proteins, coupled with the advantages that a multifaceted plant expression 

system has over other expression systems, led to the inquiry of whether OPH could be 

successfully expressed in a maize expression system. 

 

Results 

Assembly and Transformation of the Optimized opd Gene 

Previous studies have shown that optimization of a foreign DNA sequence can 

dramatically effect expression levels when that sequence is transformed into plant tissue 

60,62,80. In order to maximize the expression of OPH in maize tissue, the native opd gene 

was optimized by substituting for the existing codons with codons used most often in the 

maize genome. This changed the coding sequence of the gene, but left the amino acid 

sequence of the protein unchanged. The barley α-amylase signal sequence (BAASS) was 

incorporated into the design of the optimized gene. The signal sequence results in the 

transport of the targeted protein to the cell wall, and has previously been used to target 

recombinant proteins in maize 49,63. In order to generate the maize optimized opd gene, 

the entire sequence was produced as 50 base-pair oligomers, which were then  
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Figure 1.  Assembly of the optimized opd gene. 50 base-pair oligos with 10 
basepair ovelaps were used to assemble the optimized opd gene by PCR. 
Assembled fragments were trapped in Invitrogen PCR-TOPO 2.1 vectors and 
sequenced. Fragments were then sub-cloned using restriction sites indicated 
and the TOPO vector as a backbone. A summery of the changes made to the 
native opd gene and the mRNA problem sequences detected can be found in 
Appendix A. 
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   M  A  N   K  H  L   S  L  S  L   F  L  V   L  L  G   L  S  A  S   L  A  S  
    1 CCATGGCCAA CAAGCACCTG AGCCTCTCCC TCTTCCTCGT GCTCCTCGGC CTCTCCGCCT CCCTCGCCAG 
 GGTACCGGTT GTTCGTGGAC TCGGAGAGGG AGAAGGAGCA CGAGGAGCCG GAGAGGCGGA GGGAGCGGTC 
   G  T  G   D  R  I  N   T  V  R   G  P  I   T  I  S  E   A  G  F   T  L  T 
   71 CGGCACCGGC GACCGCATCA ACACCGTGCG CGGCCCGATC ACCATCTCCG AGGCCGGCTT CACCCTCACC 
 GCCGTGGCCG CTGGCGTAGT TGTGGCACGC GCCGGGCTAG TGGTAGAGGC TCCGGCCGAA GTGGGAGTGG 
  H  E  H  I   C  G  S   S  A  G   F  L  R  A   W  P  E   F  F  G   S  R  K  A  
  141 CACGAGCACA TCTGCGGCTC CTCCGCCGGC TTCCTCCGCG CCTGGCCGGA GTTCTTCGGC TCCCGCAAGG 
 GTGCTCGTGT AGACGCCGAG GAGGCGGCCG AAGGAGGCGC GGACCGGCCT CAAGAAGCCG AGGGCGTTCC 
    L  A  E   K  A  V   R  G  L  R   R  A  R   A  A  G   V  R  T  I   V  D  V  
  211 CCCTCGCCGA GAAGGCCGTG CGCGGCCTCC GCCGCGCCCG CGCCGCCGGC GTGCGCACCA TCGTGGACGT 
 GGGAGCGGCT CTTCCGGCAC GCGCCGGAGG CGGCGCGGGC GCGGCGGCCG CACGCGTGGT AGCACCTGCA 
  S  T  F   D  I  G  R   D  V  S   L  L  A   E  V  S  R   A  A  D   V  H  I 
  281 GTCCACCTTC GACATCGGCC GCGACGTGTC CCTCCTCGCC GAGGTGTCCC GCGCCGCCGA CGTGCACATC 
 CAGGTGGAAG CTGTAGCCGG CGCTGCACAG GGAGGAGCGG CTCCACAGGG CGCGGCGGCT GCACGTGTAG 
  V  A  A  T   G  L  W   F  D  P   P  L  S  M   R  L  R   S  V  E   E  L  T  Q  
  351 GTGGCCGCCA CCGGCCTCTG GTTCGACCCG CCGCTCTCCA TGCGCCTCCG CTCCGTGGAG GAGCTCACCC 
 CACCGGCGGT GGCCGGAGAC CAAGCTGGGC GGCGAGAGGT ACGCGGAGGC GAGGCACCTC CTCGAGTGGG 
    F  F  L   R  E  I   Q  Y  G  I   E  D  T   G  I  R   A  G  I  I   K  V  A  
  421 AGTTCTTCCT CCGCGAGATC CAGTACGGCA TCGAGGACAC CGGCATCCGC GCCGGCATCA TCAAGGTGGC 
 TCAAGAAGGA GGCGCTCTAG GTCATGCCGT AGCTCCTGTG GCCGTAGGCG CGGCCGTAGT AGTTCCACCG 
   T  T  G   K  A  T  P   F  Q  E   L  V  L   K  A  A  A   R  A  S   L  A  T 
  491 CACCACCGGC AAGGCCACCC CGTTCCAGGA GCTCGTGCTC AAGGCCGCCG CCCGCGCCTC CCTCGCCACC 
 GTGGTGGCCG TTCCGGTGGG GCAAGGTCCT CGAGCACGAG TTCCGGCGGC GGGCGCGGAG GGAGCGGTGG 
  G  V  P  V   T  T  H   T  A  A   S  Q  R  D   G  E  Q   Q  A  A   I  F  E  S  
  561 GGCGTGCCGG TGACCACCCA CACCGCCGCC TCCCAGCGCG ACGGCGAGCA GCAGGCCGCC ATCTTCGAGT 
 CCGCACGGCC ACTGGTGGGT GTGGCGGCGG AGGGTCGCGC TGCCGCTCGT CGTCCGGCGG TAGAAGCTCA 
    E  G  L   S  P  S   R  V  C  I   G  H  S   D  D  T   D  D  L  S   Y  L  T  
  631 CCGAGGGCCT CTCCCCGTCC CGCGTGTGCA TCGGCCACTC CGACGACACC GACGACCTCT CCTACCTCAC 
 GGCTCCCGGA GAGGGGCAGG GCGCACACGT AGCCGGTGAG GCTGCTGTGG CTGCTGGAGA GGATGGAGTG 
   A  L  A   A  R  G  Y   L  I  G   L  D  H   I  P  H  S   A  I  G   L  E  D 
  701 CGCCCTCGCC GCCCGCGGCT ACCTCATCGG CCTCGACCAC ATCCCGCACT CCGCCATCGG CCTCGAGGAC 
 GCGGGAGCGG CGGGCGCCGA TGGAGTAGCC GGAGCTGGTG TAGGGCGTGA GGCGGTAGCC GGAGCTCCTG 
  N  A  S  A   S  A  L   L  G  I   R  S  W  Q   T  R  A   L  L  I   K  A  L  I  
  771 AACGCCTCCG CGTCCGCCCT CCTCGGCATC CGCTCCTGGC AGACCCGCGC CCTCCTCATC AAGGCCCTCA 
 TTGCGGAGGC GCAGGCGGGA GGAGCCGTAG GCGAGGACCG TCTGGGCGCG GGAGGAGTAG TTCCGGGAGT 
    D  Q  G   Y  M  K   Q  I  L  V   S  N  D   W  L  F   G  F  S  S   Y  V  T  
  841 TCGACCAGGG CTACATGAAG CAGATCCTCG TGTCCAACGA CTGGCTCTTC GGCTTCTCCT CCTACGTGAC 
 AGCTGGTCCC GATGTACTTC GTCTAGGAGC ACAGGTTGCT GACCGAGAAG CCGAAGAGGA GGATGCACTG 
   N  I  M   D  V  M  D   R  V  N   P  D  G   M  A  F  I   P  L  R   V  I  P 
  911 CAACATCATG GACGTGATGG ACCGCGTGAA CCCGGACGGC ATGGCCTTCA TCCCGCTCCG CGTGATCCCG 
 GTTGTAGTAC CTGCACTACC TGGCGCACTT GGGCCTGCCG TACCGGAAGT AGGGCGAGGC GCACTAGGGC 
  F  L  R  E   K  G  V   P  Q  E   T  L  A  G   I  T  V   T  N  P   A  R  F  L  
  981 TTCCTCCGCG AGAAGGGCGT GCCGCAGGAG ACCCTCGCCG GCATCACCGT GACCAACCCG GCCCGCTTCC 
 AAGGAGGCGC TCTTCCCGCA CGGCGTCCTC TGGGAGCGGC CGTAGTGGCA CTGGTTGGGC CGGGCGAAGG 
    S  P  T   L  R  A   S  *  V  N 
 1051 TCTCCCCGAC CCTCCGCGCC TCCTGAGTTA AC 
 AGAGGGGCTG GGAGGCGCGG AGGACTCAAT TG 

Figure 2. Optimized opd gene sequence. Figure was generated with Vector NTI 
5.0 (Informax, North Bethesda, MD). Translated protein sequence appears above 
the nucleotide sequence. Sequence has been added to Genbank accession # 
AX384799. Star indicates the end of the coding sequence. 
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assembled into the optimized gene by PCR.  Assembly was carried out as visualized in 

Figure 1. The assembly process resulted in the direct change of 217 individual base 

pairs. This resulted in an overall change in the GC content of the gene from 57% to 70%. 

Analysis of the new mRNA sequence with the GCG pattern find program revealed a 

reduction in the number of potential mRNA problem sequences from 40 to 10 when 

compared to the native gene. Degradation of mRNA due to problematic sequences has 

been implicated in the low expression levels of the insecticidal protein encoded by the 

Bacillus thurigiensis gene cryIA in plant systems 60,80. Of these 10 sequences identified, 

one was a 5’ splice site, the other 9 were 3’ slice sites caused by the glutamine codon 

CAG. None of the problem sequences could be removed without the inclusion of rare 

codons, which could also have an adverse effect on expression. The final optimized opd 

sequence with the added BAASS signal sequence is presented in Figure 2. 

The assembled optimized gene was subcloned into plant expression vectors 

under the control of maize promoters with constitutive, embryo specific, and endosperm 

specific expression patterns 48,81,82.  The selectable marker gene pat under control of the 

CMV35s promoter was included for selection of transformants (Figure 3). The vectors 

were transferred to Agrobacterium and used to transform immature maize embryos. 

A summary of the transformation results is presented in Table 1. OPA, OPB, and 

OPC transformations were carried out with maize line HiII. The OPA′ transformation 

was carried out with the same vector as the OPA transformation, but in HiII/SP122 cross 

embryos. Transformed embryos were selected using bialaphos 68. Enzymatic activity 
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Figure 3. Assembled maize transformation vectors. a. OPA b. OPB c. OPC. The 
graphic maps of three maize transformation vectors used in this work were 
generated in Vector NTI. 

a. 

b. 

c. 
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Figure 4. Paraoxonase activity of transgenic callus. A second transformation 
experiment was generated using the OPA transformation vector. Expression levels 
were calculated based on enzymatic activity against paraoxon. Each bar indicates 
the expression level observed in callus from a single transformation event with 
three replicate assays. 
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Figure 5. Increase of enzymatic activity in seed extract after incubation with 
transition metal salt. OPA0403 T2 extract was incubated with each salt at 10mM 
concentration for 30 minutes. Paraoxonase activity was measured by production 
of p-nitrophenol from paraoxon Each bar represents the average of three activity 
measurements of an extract treated with each salt. NT sample had no additional 
salt added. 
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Figure 6. In gel hydrolysis of coumaphos by OPA seed extract. Control OPH was 
recombinant enzyme from an E. coli source. SP122 was an extract made from non-
transgenic control seed. Extract protein levels as measure by Bradford protein assay 
are at the top of each well. Top panel shows in gel activity detected by UV 
fluorescence. Bottom panel shows the same gel after staining with Gel Code Blue 
(Pierce). OPA411 extract showed a specific activity of 0.42 u/mg paraoxonase 
activity before activation and 5.73 u/mg after activation. 
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was observed in different callus lines expressing OPH (OPA′) under control of the 

constitutive ubiquitin promoter (Figure 4).  

 

Table 1. Transformation of Maize Embryos with OPA, OPB and OPC Vectors 

Expression Tissue Code Z.E.'s Transformed Stable Events Transformation Frequency 
Constitutive OPA 819 23 2.81% 

Embryo OPB 2137 13 0.61% 
Endosperm OPC 2000 20 1.00% 
Constitutive OPA′ 2287 52 2.27% 

 

 

Enzyme Activation 

Plants regenerated from the callus tissue were used to produce first generation 

transgenic seed (T1 seed). T1 seed was a product of the crossing of the initial transgenic 

line (T0) with an elite in-bred line. Initial analysis of T1 seed by enzymatic activity 

indicated expression levels under 0.001% TSP. It has previously been shown with fungal 

laccase expressed in corn seed that incubation with the appropriate metal co-factor could 

substantially increase the amount of observed activity 83. Seed extracts were therefore 

incubated with a range of metals known to produce active forms of OPH (Figure 5). 

The results indicated that the incubation extracts from OPH expressing lines of 

corn with various divalent transition metals resulted in an overall increase of up to 20 

fold in the observed activity. The amount of activity observed closely follows the 

previously described pattern of activity for different metal substituted forms of OPH and 

was independent of the anion of the metal salt used to increase the observed activity 30. 

Activity in callus extracts had a similar response to incubation with transition metal salts  
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Figure 7. Temperature effect on the increase of activity detected in seed extract 
incubated with 10mM CoCl2. T2 Seed Extract from line OPA0411 was incubated 
in the presence of 10mM Cobalt Chloride. Samples were assayed for paraoxonase 
activity and activity vs. time was plotted using sigma plot. Inset shows 0-96 hr. 
time frame. 
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Figure 8. Effect of bicarbonate on the incubation of seed extract with 
10mM CoCl2. OPA0411 T2 seed extract was incubated in the presence 
and absence of 100mM sodium bicarbonate at 37°C. Paraoxonase 
activity was measured spectrophometrically and plotted vs. time with 
Sigmaplot 8.0. 
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(data not shown). Similar results were obtained for cobalt when the enzymatic activity 

was visualized after native gel electrophoresis using coumaphos as a substrate (Figure 

6). 

 Incubation with cobalt chloride over a 100-hour time frame, and at four different 

temperatures, indicated that the increase in activity was a dynamic process that could be 

effected by temperature (Figure 7). Activity increased rapidly over time for extracts at 

55, 37 and 25°C. The increase in activity was much slower at 4°C. The 55°C extract 

rapidly increased in activity over a 30-minute period and then rapidly lost activity until 

no OPH activity was detected. The 37 and 25°C extracts both increased in activity with 

the maximal activity reached in 3 and 6 hours respectively. At 100 hours the 4, 25, and 

37°C extracts had similar final activity levels.  

Inclusion of bicarbonate in buffer during the reconstitution of the apo-enzyme 

form of OPH has been shown to increase the rate at which activity is recovered, but not 

alter the final overall activity recovered 33. The inclusion of bicarbonate in the buffer of 

seed extracts had the similar effect of increasing the rate of activity formation, but not 

the overall final activity observed (Figure 8). 

T1 Seed Expression 

T1 seed from all three constructs was analyzed for OPH enzymatic activity. 

Individual seeds were pulverized and extracted with buffer with added cobalt chloride 

and allowed to incubate in order to maximize the observed activity. Activity was 

determined by a micro-plate assay developed from the standard cuvette assay with a 

standard curve of purified recombinant OPH. Samples were compared to the standard 
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curve on an international enzymatic unit basis. The activity in each sample was then 

used to estimate the amount of OPH present in each sample. Expression levels of OPH 

in OPA and OPB T1 seed were similar to one another (Figure 9). Expression in OPC 

seed was below the level detectable with the plate assay system. 

When OPC reactions with paraoxon were allowed to proceed overnight, p-

nitrophenol was visually detected in half of the wells, which is the expected number of 

positive seeds generated by the initial cross. 

Internal Localization of OPH Acitivity in Seed 

 To further determine the expression pattern of OPH in OPA and OPB seed, 

transgenic seed was manually separated into endosperm and germ fractions. The 

separated fractions were then extracted and extracts assayed for OPH activity. Results 

are presented in Table 2. The majority of activity in both constructs was isolated from 

the germ fraction indicating that most of the OPH activity in both constructs is located in 

the seed embryo. 

 

Table 2. Separation of OPH Activity in Seed Fractions 

Seed % Total Seed Mass % Total OPH 
OPA0403 T2   

Embryos 14.4 91.0 
Endosperm 85.6 9.0 

   
OPB0301 T2   

Embryos 8.1 82.4 
Endosperm 91.9 17.6 
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Figure 9. Expression of OPH in individual OPA and OPB T1 seeds. Enzymatic 
activity levels were measured across a global population of individual seeds from 
all OPA and OPB lines. Amount of OPH activity was used to estimate the total 
amount of OPH present per seed. All seed extracts were incubated with 1mM 
CoCl2 overnight prior to the activity assay. The graphs show seeds that were 
positive for OPH expression by assay. Expression data can be found in Appendix 
B. 
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Figure 10. Western blot of OPA and OPB ammonium sulfate precipitates. 45% 
ammonium sulfate precipitated proteins were used for western bloting. Estimated 
OPH present by activity for OPA and OPB sample is shown in parentheses. SDS-
PAGE samples of ammounim sulfate precipitated proteins were run out on a 
NOVEX 4-12% Tris-Glycine PAGE gel (Invitrogen). Gel was transferred to PVDF 
membrane and probed using purified anti-OPH antibodies with a horse radish 
peroxidase linked secondary antibody. Detection was carried out by 
chemiluminesence using an ECL-Plus western detection kit (Amersham 
Bioscience). SP133 is a no transgenic control line. Total protein loaded per well 
was 54µg for SP133, 80.5µg for OPA(OPA0411), and 52µg for OPB(OPB0310).  
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T2 and Field Expression 

 OPA and OPB lines were used to test expression in further generations as well as 

expression under field growing conditions. OPA0403 and OPA0411 were used to 

generate T2 seed, as well as Field grown T3 seed. T2 seed was generated by a self-cross 

of greenhouse grown OPA0403 and OPA0411 T1 plants. Bulk samples of 50 seeds from 

each line were analyzed for expression level by enzyme assay. The OPA0403 bulk 

sample had an enzyme level of 0.072%TSP and OPA0411 0.142%TSP. Both OPA and 

OPB were grown under field conditions. Lines from both constructs grew well under 

field conditions and seed was analyzed for OPH expression by enzyme assay. The 

expression level of OPH in field grown samples is presented in Table 3. OPA lines were 

grown in a 0.5-acre production field and generated over 1 metric ton of grain that 

contained OPH activity. The estimated amount of OPH enzyme present in the field 

grown OPA seed was 0.45 ng/mg of ground seed. This indicates that the total production 

of the OPA field was approximately 450 mg of OPH. OPB T2 field samples showed an 

overall higher expression level of OPH compared to the OPA field-grown seed. Average 

expression in positive bulk samples of OPB T2 seed was 0.22% TSP. 

Immunological Detection 

 Extracts from OPA and OPB seed were used for immunological detection of 

OPH by western blot. Ammonium sulfate precipitates showed cross-reactivity with 

purified anti-OPH antibodies (Figure 10). A doublet band appeared in both the OPA and 

OPB samples, with molecular masses similar to that seen for standard recombinant OPH. 
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The doublet was identical for both the OPA and OPB sample and the lower band of the 

doublet was identical in mass to the bacterial OPH standard. A sample of ammonium 

sulfate precipitate from a control corn line showed no cross-reactivity with the antibody. 

It is interesting to note that the estimated OPH loaded for both transgenic samples was 

lower than the signal on the western blot compared to the OPH standards. This may 

indicates a loss in activity during the ammonium sulfate precipitation of OPH from seed 

extracts resulting in an under estimation of OPH present in the sample. 

 

Discussion 

 Prior to this work, OPH has been produced in several eukaryotic and prokaryotic 

expression systems 17,23,28,32,39,40. Organophosphate hydrolase from Psudeomonas 

diminuta has been successfully expressed in Zea mays L. Expression was successfully 

controlled by three different promoter systems. Under the control of the maize ubiquitin 

(constitutive) promoter and the maize globulin (embryo specific) promoter, highest 

expression level was nearly identical in the T1 seed generation. The performance of zein 

(endosperm specific) driven expression in seed was much lower then expression seen in 

the globulin and ubiquitin constructs, indicating that the ubiquitin and globulin 

constructs are superior for the production of OPH in corn seed when compared to the 

zein construct. This is similar to results obtained with the same promoters driving 

expression of several other proteins in maize 45,49,83. Expression levels were measured for 

the constitutive construct at both the tissue culture (OPA′) and seed (OPA) levels.  

Expression levels varied between transformation events, which is consistent with the 
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random gene insertion achieved by Agrobacterium mediated transformation. Highest 

expression in OPA′ maize callus tissue was approximately 20 fold lower than expression 

in the E. coli expression system based on %TSP (Table 3). Expression for individual 

seeds in the OPA and OPB T1 generation were higher than that of the bacterial 

expression systems, but in OPA T2 bulks expression was lower than that of the E. coli 

system. Bulk samples from OPB T2 field grown plants were close in expression level to 

E. coli, with the best expressing sample two fold higher that the bacterial system and the 

average for all positive OPB T2 seed samples being nearly identical to the E. coli 

expression level. While in general the expression level in corn is lower than the 

expression in the bacterial expression system initially, higher levels of expression can be 

selected for in later generations 49. Maize has advantages as a much more scalable 

system in terms of material that can be grown. This may give a maize expression system 

advantages over a bacterial system for the production of OPH for practical applications 

in the clean up of pesticides and defense against chemical weapons such as VX and 

Sarin. The bacterial system has also been shown not to respond well to growth in a 

fermentor, limiting the usefulness of the bacterial expression system for the large-scale 

production of OPH. OPH was expressed in a plant expression system without having an 

adverse effect on plant health and OPH expressing lines were able grow under field 

conditions. The OPH grown under the control of the constitutive promoter (OPA) and 

field conditions yielded an estimated 450mg of OPH enzyme per metric ton of grain 

produced. The same mass of the highest expressing line of the embryo specific (OPB) 

transgenic corn would yield an estimated 13kg of OPH. Both sets of field samples are 
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from early generations of transgenic plants (T2) and it has been observed that the 

expression of a transgenic protein can increase as much a 20 fold by proper selection of 

transgenic and inbred lines for further breeding 83. It will also be possible to concentrate 

produced OPH by as much as 10 fold by separating the germ portion of the seed from 

the endosperm portion of the seed. With both promoter systems used in this study, the 

majority of recombinant protein activity was located in the embryo portion of the maize 

seed. 

 

Table 3. Comparison of OPH Expression Levels in Corn Seed and Callus to Other 
Expression Systems. %TSP is estimated from the reported specific activity of extracts 
using a specific activity of 8000 units/mg protein for pure OPH. 
 

Expression System Expression Target/Location Units/mg Protein % Total Soluble Protein Ref 
P. diminuta  External 2 0.026 37 

E. coli (DH5α) Internal 18-25 0.225-0.312 37 
Sf9 Cell Culture Internal 15-20 0.188-0.250 37 

S. lividans External 1 0.012 84 

OPA′08 Callus External/Consitutive 1 0.013 - 

OPA1606 (T1 Single Seed)  External/Consitutive 49 0.617 - 

OPB0103 (T1 Single Seed) External/Embryo 125 1.569 - 

OPA0403 (T2 Bulk) External/Consitutive 6 0.072 - 

OPA0411 (T2 Bulk) External/Consitutive 11 0.143 - 

OPA0403 (T4 Bulk, Field Grown) External/Consitutive 0.3 0.003 - 

OPB0107 (T2 Bulk, Field Grown) External/Embryo 48 0.604 - 

 

 Western blots of ammonium sulfate precipitates of OPA and OPB extracts 

resulted in the immunological detection of OPH expressed in maize. The protein 

detected on the western blot was detected as a doublet, indicating that at least two 

species of cross-reacting protein are present in the transgenic plants. There was no cross 

reactivity in the control sample. This shows that the two cross-reacting bands are 

specific to the transgenic lines. The origin of the two bands may be due to incorrect 
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processing of the n-terminal BAASS sequence added to the optimized gene. It is also 

possible that doublet is due to the possible post-translational modification of the OPH 

protein as it passes through the endo-membrane system during transport to the cell wall.  

N-terminal sequencing of OPH purified from maize should identify any differences in n-

terminal processing that may result in the doublet band. 

 It is also interesting to note that OPH expressed in corn seed was “activated” 

when extracted in the presence of divalent transition metals that have previously been 

shown to form active OPH enzyme. This activation event had not been observed with 

enzyme produced in other systems. The most similar phenomena to that observed is apo-

enzyme reconstitution with divalent transition metal salts 33. The pattern of metal 

dependent reconstituted activity was similar to that seen with apo-enzyme 

reconstitution30.  

It was also observed that the addition of bicarbonate to extraction buffer 

increased the rate at which activity increased, but did not increase the overall final 

activity observed. It is possible that expression in maize or the transport of the OPH 

product through the endo-membrane system by the BAASS signal sequence may retard 

the inclusion of metals into the folded protein. The inclusion of metal into the extraction 

buffer remedies this lack of metal and results in the increase in activity observed over 

time.  

 Maize does serve as a successful expression system for OPH. While the bacterial 

system of expression remains adequate for the laboratory scale expression of OPH, the 

failure of laboratory strains to perform well in fermentors has limited the large-scale 
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production of OPH for practical applications. The maize-based expression system has 

advantages in scalability that makes lower expression levels less problematic compared 

to a bacterial or animal cell culture system. The maize-based expression system also has 

the advantage of long term storage of seed. This would mean that large amounts of OPH 

could be stored as whole seed and then processed into extracts or purified enzyme as 

needed.  

Materials and Methods  

Materials 

 All buffers were obtained from Sigma-Aldrich (St. Louis, MO). Protein A 

sepharose was obtained from Pharmacia. Paraoxon was obtained from Chemservice 

(West Chester, PA). Enhanced Chemiluminescence kit was obtained from Amersham 

Biosciences (Arlington Heights, IL). Gel Code Blue stain was obtained from Pierce. 

Anti-rabbit IgG labeled with horseradish peroxidase was obtained from Jackson 

Immunoresearch Laboratories. Bradford reagent was obtained from Bio-Rad. PCR 

TOPO vectors and NOVEX polyacrylamide gels were obtained from Invitrogen. 

Methods 

Optimization and Assembly of the Optimized opd Gene 

 Back-translating the OPH protein sequence using a maize-high codon usage table 

generated an optimized sequence of the bacterial opd gene. The sequence for the Barley 

α-amylase signal sequence was added to the 5’ end of the optimized gene. The 

optimized sequence was analyzed for restriction sites and five were chosen for the 

assembly of the full-length gene. The entire gene sequence was then split into 50 bp 
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oligos with 10 bp over-lapping sequences. The oligos were synthesized commercially 

(Gibco-BRL). DNA manipulations were carried out using standard methods 85. Oligos 

making up one of the restriction fragment were mixed with their matching pairs and 

annealed by cycling between 94°C and 25°C thirty times. Each annealed pair was then 

mixed and ligated using T4 DNA ligase. The ligated fragments were then amplified by 

PCR using primers to the end of each fragment. The amplified fragment was then 

trapped in a PCR TOPO 2.1 vector (Invitrogen). Insertions in the TOPO vector were 

analyzed by restriction digest and sequencing (Iowa State). When fragments were 

identified with the correct sequence, they were sub-cloned together using the restriction 

site previously identified and the TOPO vector as a backbone. Once the full-length gene 

had been assembled, the gene was transferred to a plant expression vectors under the 

control of the ubiquitin (OPA, OPA′, constitutive), globulin (OPB, embryo), and zein 

(OPC, endosperm) promoters 48,81,82. 

Transformation in Maize Cells 

 The completed transformation vectors were transferred to Agrobacterium 

tumefaciens by triparental mating. Maize transformation was carried out as described in 

U.S. Patent 5,981,840 58. In short, immature maize embryos were isolated and incubated 

with Agrobacterium containing a binary transformation system with the desired 

construct. Embryos were then plated and regenerated into callus that was selected using 

the herbicide bialaphos. The first 15 stable transformation events for each construct 

(OPA, OPB, and OPC) were regenerated into plants and T1 seed was collected. 
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Analysis of Callus  

 Callus from the OPX line was placed into tubes with 500µl of 10mM HEPES pH 

8.4 + 1mM CoCl2. A ball bearing was placed in each tube and the tubes were shaken for 

40 seconds in a Geno/Grinder 2000 (SPEX CentriPrep INC.). Extracts were then spun at 

3000xg for 15 minute. Extracts were incubated at room temperature overnight. Assays 

were conducted the next day using 1ml of 1mM Paraoxon in 50mM CHES buffer 

pH=9.0 and 5µl of each extract. Each sample preparation was repeated in triplicate. 

Protein assays were preformed using a microplate Bradford assay (Bio-Rad). 

Analysis of Seed 

 Five individual T1 seeds from each individual OPA plant and six seeds from 

each OPB and OPC T1 plants were analyzed for OPH activity. Single seeds were placed 

into a stainless steel vial and mechanically pulverized. Each seed was then extracted 

with 1000µl of 10mM HEPES buffer + 1mM CoCl2 by shaking with a ball bearing in the 

dental vial for 20 seconds. Extracts were then spun for 15 minutes at 3000xg. Extracts 

were incubated at room temperature overnight and assayed for OPH activity. Assays 

were conducted using a microplate assay derived from the cuvette assay used to 

determine callus activity 28. 200 µl of 1mM paraoxon in CHES buffer was added to 20µl 

of a 1/20 dilution of extract. Activity was measured over a 5-minute period and 

compared to a standard curve of recombinant OPH from bacteria on a unit/ml basis. The 

units/ml extract value was used to compute an estimate on the amount of OPH in a 

sample using a specific activity of pure bacterial OPH of 8000units/mg protein. 
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 For T2 and higher generations, bulk samples of 50 seeds were used to generate 

expression data. Samples were ground in a conventional kitchen coffee grinder. The 

ground material (meal) was then extracted overnight with buffer (same as with T1 

extractions) in a 3/1 or 5/1 ratio of buffer to meal. After extraction the extracts were spun 

in a Beckman J-25I centrifuge at 70,000xG for 30 minutes. Protein levels were 

determined by microplate Bradford protein assays. 

 OPA field grown corn was grown during the summer of 2002 in central Illinois. 

Bulk samples were analyzed as described above. A total of 0.5 acres of OPA corn was 

grown and yielded 1.005 metric tons of grain. OPB field grown corn was grown in 

Nebraska during the summer of 2002. Due to the large number of samples, 100mg 

samples of meal from each 50 seed pool were extracted with 1ml of buffer and in 

Corning clustar tubes with a ball bearing added to each tube. The tubes were then shaken 

using a Genogrinder 2000 tissue grinder/shaker and spun a 3000xg for 15 minutes. 

Samples were then transferred to a 96 well plate and assayed using the plate assay 

described above. 

Activation of OPH Extracts 

 Corn seed from lines expressing OPH was ground into meal using a common 

electric coffee grinder. OPH was extracted from ground meal for 3 hours with 10mM 

HEPES buffer in a 3/1 ratio of buffer to meal. The extract was then aliquoted and 

brought up to 10mM concentration of various metal salts using 1M stocks. Enhanced 

extracts were then incubated and assayed for OPH activity using a cuvette paraoxon 

assay. In short, 5 µl of extract was added to a cuvette containing 1 ml of 1mM paraoxon 
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in CHES buffer. The mixture was inverted to mix and the production of p-nitrophenol 

was monitored at 400 nm on a Beckman 7400 spectrophotometer. All samples were 

measured in triplicate. Bicarbonate activation was carried out as above with the 

exception of the addition of 1M sodium bicarbonate to bring the final concentration to 

100 mM. The control reaction included the addition of water to account for the dilution. 

In Gel Hydrolysis 

 In gel hydrolysis was carried out by a method modified from Harcourt et al. 69. 

Extracts of transgenic and control tissue were used for native gel electrophoresis on a 

Novex 12% Tris-Glycine gel as per the manufacturers instructions. After the completion 

of electrophoresis the gel was equilibrated for 5 minutes in 50mM Tris pH=8.0. After 

equilibration, the gel was moved to a reaction mixture of 8µM coumaphos in Tris buffer. 

The gel was left to react for ten minutes and then placed on a UV light box and recorded 

by digital camera. After recording the image, the gel was washed in distilled water and 

stained with Gel Code Blue stain (Pierce). The transgenic extract used for this 

experiment showed a measured specific activity of 0.42u/mg protein prior to incubation 

with 10mM CoCl2 and 5.73u/mg after incubation.  

Dissection and Extraction of Seed 

 Transgenic seed from both the OPA and OPB constructs was dissected to remove 

the embryo portion of the seed from the endosperm portion of the seed. 20g of seed from 

each line were imbibed for 3 hours with distilled water. After removal of the water the 

seed was manually de-germed by removing the embryo from the seed using a scalpel. 

The separated seed fractions were then dried for 3 hours in a 34°C oven. After drying the 
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material was ground in a consumer coffee grinder, massed, and extracted as noted above. 

The extracts were assayed for paraoxonase activity and the percentage of the total 

activity for each fraction was determined. 

 

Immunological Detection and Western Blots 

 Rabbit serum containing antibodies raised against OPH was a gift from Dr. Janet 

Grimsley. Anti-OPH IgG was purified from the anti-sera by chromatography on Protein 

A CL-4B sepharose (Pharmacia). In short, the protein-A sepharose was hydrated in 

buffer A (20mM MOPS, 150mM NaCl pH=7.4). Serum was mixed in a 1:1 

speharose:serum ratio and rotated for 90 minutes. After the incubation, the slurry was 

run onto a column and the sepharose was washed with ten column volumes of buffer A. 

Non-specific proteins were then eluted with five column volumes of buffer B (20mM 

MOPS, 1M NaCl pH=7.4). Antibodies were then eluted with buffer C (20mM Glycine, 

50mM NaCl pH=2.5). Fractions were assayed for protein content by measurement of 

absorbance at 280nm. Protein containing fractions were then dialyzed overnight into 

phosphate buffered saline (PBS, 10mM Phosphate buffer 130mM NaCl pH=6.9). 

Purified antibodies were then checked again for protein content and used for western 

blots. 

 Samples for western blots were obtained by extracting corn meal from transgenic 

and non-transgenic lines with 10mM Tris pH=8.4 buffer with 1mM CoCl2 added in a 

5:1 buffer:meal ratio. Extracts were then clarified by centrifugation and cut with 45% 

saturation ammonium sulfate for one hour at 4°C. Precipitate was collected by 
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centrifugation and resuspended in 10mM Tris buffer. Samples were then dialyzed 

against 1000 volumes of Tris buffer overnight to remove excess ammonium sulfate. 

Protein was estimated using microplate Bradford assay and enzymatic level estimated by 

activity against paraoxon. SDS-PAGE samples were then prepared and run on Novex 4-

12% gradient gels (Invitrogen). Gels were transferred to PVDF membrane (Millipore) 

overnight using a NOVEX transfer apparatus. Blotted membrane was then blocked with 

5% non-fat dry milk in PBS overnight. Blocked membrane was then incubated with 

purified anti-OPH antibody in PBS for 1 hour, washed, and then incubated with a goat 

anti-rabbit horseradish peroxidase linked secondary antibody (Jackson Immunoresearch) 

for 1 hour. Blot was then washed with tris buffered saline with tween (TBST, 100mM 

Tris 90mM NaCl 0.5% Tween pH=8.0) and detection carried out using an ECL plus 

chemiluminesence detection kit (Amersham Biosciences). Blot was recorded on Kodak 

OMAT-AR film. 
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CHAPTER III 
 

PURIFICATION AND CHARACTERIZATION OF  
 

ORGANOPHOSPHATE HYDROLASE EXPRESSED  
 

RECOMBINANTLY IN Zea mays L. 
 

 
 Organophosphate hydrolase is a dimeric metallo-protein capable of degrading a 

wide range of organophosphate pesticides and chemical warfare agents. A synthetic 

sequence derived from the bacterial sequence encoding OPH has successfully been 

transformed into the C4 monocot Zea mays L. Western analysis of ammonium sulfate 

precipitates of transgenic seed extracts showed that two distinct bands cross-react with 

anti-OPH antibodies. Studies were also undertaken to determine if the doublet-banding 

pattern seen in western blots of maize derived material were due to possible mis-

processing of the barley α-amylase signal sequence or were the result of post-

translational modification. This work requires the purification of OPH from transgenic 

seed and the analysis of the physical and kinetic properties of the recombinant proteins. 

 

Introduction 

 Organophosphate hydrolase (OPH) is a bacterially derived enzyme capable of 

degrading a wide range of organophosphate triesters 23. OPH hydrolytic activity has been 

observed against organophosphates containing P-O, P-S, P-F, and P-CN bonds 24. This 

gives OPH a broader spectrum of substrates compared to the PON family of serum 

paraoxonases, organophophate acid anhydrolase (OPAA), and squid DFPase 8,9,22,24. 
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OPH’s wide range of substrates makes it an ideal target for use in practical applications, 

such as remediation. However, OPH use in practical applications is limited by the 

amount of enzyme produced by current laboratory expression systems. The gene for 

OPH, opd, was first isolated from soil bacteria living in areas treated with 

organophosphate pesticides 10,19. The native sequence encoding the enzyme isolated 

from P. diminuta and Flavobacterium sp. contains a 29 amino acid leader sequence that 

facilitates the export of OPH outside the bacterial cell, where it is found in complexes 

associated with the bacterial cell membrane 37. Initial attempts at recombinant expression 

in bacterial and insect cell culture systems resulted in production of enzyme, but the 

levels of expression were far below the maximum for the expression system and 

promoters being used 31,39. Removal of the leader sequence resulted in a significant 

increase in the level of protein expression 37. Recombinant expression of OPH has also 

been successfully attempted in a fungal system 38. However, none of these systems has 

been adopted for large-scale production of OPH for application purposes due to low 

expression and scale-up problems. These problems include the loss of enzymatic activity 

in bacterial systems adapted to large-scale fermentation. Recently the ability of the plant 

expression system Zea mays L. (maize) to express OPH was investigated as a possible 

alternative to expression systems previously used OPH expression systems (Chapter II). 

OPH was successfully expressed in the maize expression system under the 

control of three distinct promoters. Western blotting of ammonium sulfate precipitates of 

seed extracts generated from two different constructs revealed two bands in the sample 

that cross-reacted with anti-OPH antibodies. Non-transgenic seed extract does not cross-
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react with anti-OPH antibodies leading to the conclusion that two forms of OPH 

monomer must be present in transgenic seed extracts. The optimized gene utilized for 

maize expression of OPH had the barley α-amylase signal sequence (BAASS) N-

terminally fused in order to export the protein through the endo-membrane system to the 

plant cell wall. This raises the possibility that the two bands identified are the product of 

either mis-processing of the BAASS sequence or are the result of a post-translational 

modification that takes place during transit of the endo-membrane system. Post-

translational modification was not observed in insect cell culture expression, however 

the protein did not pass through the endo-membrane system and was not exposed to the 

cell’s glycosylation mechanism. 

 In this report, the physical effects on OPH when it is expressed in corn with an 

N-terminal BAASS signal sequence are determined. To validate the plant-based system 

of expression, it is necessary to determine what effect the plant expression has on the 

quality of protein being produced. These effects could range from the exclusion of co-

factors needed for enzymatic activity to the post-translational modification of the protein 

resulting in altered enzyme kinetics or protein stability. Previously, it has been shown 

that the expression of OPH in maize seed resulted in a protein that could be activated by 

the inclusion of divalent transition metal salts during or after extraction and that 

immunological detection by western blot detected a doublet band of appropriate mass for 

OPH.  The aim of this study was to isolate and characterize OPH expressed in maize 

seed. This included the identification of possible modifications and the kinetic properties 

of the seed expressed enzyme. 
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Extract Protein from 
ground seed 

Clarify Extract by 
Filtration and 
Centrifugation 

Pass Extract over DEAE 
Sepharose, Collect Flow-

through 

Pass Follow-through over 
Green-19 Agaorse, Elute 

with Step Gradient of 0.5M 
NaCl 

Run Green-19 Fractions over 
Phenyl Sepharose, Elute with 

linear Gradient of 50% 
Ethylene Glycol 

Spin Concentrate 
to less than 1 ml 

Run Concentrate over 
Superdex 200 and 
Collect Positive 

Fractions 

Figure 11. Purification of OPH from transgenic seed 
flow-chart. Steps of the purification process is indicated 
in each box. The purification procedure is a modification 
of a procedure used to isolate OPH from bacterial and 
insect cell culture expression systems 31,86. 
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Results 

Purification 

 
Table 4. Purification of OPH from transgenic maize seed. Purification flow chart can be 
found in Figure 11. 

Step Total Activity Specific 
Activity 

Purification Recovery 

 Units units/mg fold % 
Concentrated 

Extract 
1891 0.38 1 100 

Concentrated 
DEAE 

596 0.75 2 32 

Phenyl 
Sepharose 

438 762.83 2007 23 

Superdex 200 62 881.47 2322 4 
     

 

 Purification of OPH from seed was carried out using a procedure similar to that 

for the purification of OPH from insect cell culture and bacterial expression systems 

(Figure 11)31,86. Results of the purification procedure are presented in Table 4. The 

overall purification process resulted in over a 2000 fold increase in purity as measured 

by specific activity. The purification included an affinity chromatography step using 

green-19 agarose. It was noted during the development of the purification that the level 

of activity in the fractions from the green-19 elution degraded rapidly, resulting in the 

inability to accurately measure the results of the green-19 step. This instability was not 

present in steps prior to or after the green-19 elution. The nature of this instability was  
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Figure 12. N-terminal sequencing of OPH expressed in maize. a. Lane 2 shows OPH 
purified from maize seed, lane 1 shows a molecular weight marker. Sequencing of 
both upper and lower bands that cross react with anti-OPH antibodies was carried out 
by the Protein Chemistry Laboratory at Texas A&M University. Predicted N-
terminal sequence was generated using the web-based SignalP V1.1 program 
(http://www.cbs.dtu.dk/services/SignalP/). SDS-Page Gel shown is a Novex 12% 
Bis-Tris gel (Invitrogen) run with a MOPS buffering system and stained with Pierce 
Gel Code Blue stain. b. Western blot of purified OPH from transgenic maize. 
 

T-G-D-R-I-N-T-V-R-G-P-I 

T-G-D-R-I-N-T-V-R-G-P-I 

1 2 a. 

b. 
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not identified. To reduce the effects of the instability, the green-19 fractions were 

immediately run onto a phenyl sepharose column. Comparison of the superdex-200 

elution profile of the purified maize recombinant protein to a molecular mass calibration 

kit indicates that the recombinant protein has a mass of approximately 85 kD. This is 

slightly more than the expected 72 kD of the recombinant protein from E. coli and is 

possibly due to the increased mass of the upper band observed in western blots. SDS-

PAGE and western analysis of the purification product is presented in Figure 12. The 

two bands indicated in the figure also cross-reacted with anti-OPH antibodies in a 

western blot. Comparison of the two cross reacting bands with the molecular weight 

marker using Alpha Imager 2200 analysis software (Alpha Innotech, ver. 5.04) indicated 

that the size difference between the two bands was approximately 1.5 kD. 

 

Sequencing 

 
Protein purified from ground OPB meal was used for N-terminal sequencing of 

both bands observed in western blots (Figure 12). The results indicate that the n-terminal 

sequence for both bands is identical, and that both bands have an N-terminal sequence 

nearly identical to that predicted for the cleavage product of the BAASS:OPH peptide. 

The only difference is the predicted N-terminal residue was a glycine, while the 

observed is threonine. This difference in N-terminal residue may be because the natural 

cleavage site of BAASS is cleaved after a glycine residue. 
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Sites on OPH

N-Gly = N-Glycosylation Site
PKC = Protein kinase C
Phosphorylation Site
CK2 = Casein kinase II
Phosphorylation Site
TYR = Tyrosine kinase
Phosphorylation Site

Sequence analyzed with the PIR
Pattern Search program
(http://www-
nbrf.georgetown.edu/pirwww/search/
patmatch.html)

OPH
364 aa

PKC (T3)

PKC (S 36)

CK2 (T 25)

PKC (S 77)

CK2 (T 43)

CK2 (T 52)

PKC (S 104)

CK2 (S 202)

PKC (S133)

PKC (T 170)

PKC (S 202)

PKC (S 215)

TYR (Y 102)

TYR (Y 288) PKC (T 360)

N-Gly (N 261)

Figure 13. Possible OPH post-translational modification sites. The OPH peptide 
sequence was analyzed using the web based PIR pattern search program 
(http://www.nrbf.georgetown.edu/pirwww/search/patmatch.html) 



 48 

Identification of Possible Post-Translational Modification Sites 

 
 The sequencing results indicate that the mass difference observed by SDS-PAGE 

and western of the two forms of OPH monomer is not due to the miss-cleavage of the 

BAASS sequence. Therefore, we used a web-based computer program to identify 

possible post-translational modification sites (Figure 13). Among the possible 

modification site predicted, there are several possible phosphorylation sites, as well as an 

N-glycosylation site at asparagine 261. The identification of a possible N-glycosylation 

site, along with the BAASS mediated export through the endo-membrane system and the 

difference in mass between the two forms of monomer lead us to investigate the 

possibility that the difference in mass was due to a N-glycosylation event. 

 

Binding of Corn Derived OPH to Concanavalin A 

 
 
Table 5. Binding and elution of maize expressed OPH to Concanavalin A sepharose. 

Sample Total Units OPH % Recovery 
   

Loaded 6.01 100.0 
Flow Through 0.27 4.5 

Elution 0.25 4.3 
 

 

 To identify if the modification observed by mass difference was a glycosylation, 

the ability of corn derived OPH to bind to Concanavalin A was tested. Partially purified 

protein (from phenyl sepharose fractions) was run onto a 1ml Concanavalin A sepharose  
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Figure 14. Western blot of Concanavalin A flow through and elution 
fractions. 1. Recombinant OPH standard from E. coli (100ng). 2.Loaded 
recombinant OPH from maize (90 ng). 3. Concanavalin A flow through 
(113 ng). 4. Concanavalin A elution (106 ng). Estimated OPH loaded is in 
parentheses.  Partially purified OPH from OPB corn seed was passed 
through a 1ml Concanavalin A sepharose column. Samples were run out 
on a Novex 12% Bis-Tris Gel using MOPS buffering system. Gel was 
then blotted to PVDF and probed using anti-OPH antibodies using a HRP 
linked secondary antibody (Jackson Laboratories) and ECL Plus detection 
kit (Amersham Biosciences). Estimates of OPH loaded per well were 
determined by activity against 1mM paraoxon. 
 

1 2 3 4 
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column. The column was then washed and protein eluted off using a single step gradient 

of 0.5M methyl α-D-glucopyranoside. Elution results are presented in Table 5. The vast 

majority of activity run onto the column bound to the Concanvalin A. Step-gradient 

elution only resulted in the recovery of a small amount of the loaded activity. A western 

blot was used to determine any difference between protein that flowed through the 

Concanavalin A column and material eluted from the column (Figure 14). The western 

blot revealed that there was an enrichment of the lower OPH band in the Concanavalin A 

flow through and an enrichment of the upper OPH band in the material eluted. This 

indicates that the upper band is bound preferentially over the lower band, providing 

stronger evidence that the upper band is glycosylated. It is also of note that greater than 

90% of the activity run onto the column did not run through the column or elute with 

methyl α-D-glucanopyranoside. Of the 6 units loaded onto the column, only 0.27 units 

flowed through the column and 0.25 units were eluted. To test if activity remained 

bound to the column, 1mM paraoxon in buffer was loaded onto the column. Within 10 

seconds, a noticeable yellow color was detected consistent with the production of p-

nitrophenol, the product that is produced when OPH degrades paraoxon. Three months 

after the initial loading of protein onto the column, measurement of the absorbance of a 

paraoxon reaction mixture after exposure for 10 seconds indicated that an estimated 27% 

of the OPH loaded onto the column remained bound and active despite the elution step. 
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Figure 15. Chemical deglcosylation of maize expressed OPH. 1. MW markers. 
2. Horse Radish Peroxidase (HRP) no treatment. 3. Deglycosylated HRP. 4. 
Recombinant OPH from E. coli, no treatment. 5. Deglycosylated E.coli OPH. 
6. Recombinant OPH from maize, no treatment. 7. Recombinant OPH from 
maize deglycosylated. Partially purified OPH from OPB seed was subjected to 
chemical deglycosylation using a chemical deglycosylation kit (Glyko). 
Horseradish peroxidase was used as a positive control. Purified recombinant 
OPH from E.coli was used as a negative control. Treated samples were then 
run on a Novex 12% Bis-Tris SDS-PAGE gel and blotted onto PVDF.  The 
lane numbers on the stained gel are the same lane numbers at the top of the 
western. The amount of OPH loaded per well was estimated by paraoxonase 
activity. 

4 5 6 7 

4 5 6 7 

1 2 3 

HRP OPH 

OPH Western 
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Chemical Deglycosylation 

 

 Removal of carbohydrate structures from glycoproteins is possible by enzymatic 

and chemical methods 87-89. To further determine if the observed upper band was 

glycosylated, chemical deglycosylation was used to remove any carbohydrate structures. 

A sample of purified corn derived OPH was lyophilized into a reaction vessel. Chemical 

deglycosylation was carried out with a chemical deglycosylation kit (Glyco) with 

horseradish peroxidase used as a positive control. Products of the deglycosylation were 

run out on SDS-PAGE gels and stained, as well as used for western blot analysis (Figure 

15). Results indicated the chemical deglycosylation resulted in the shifting of the upper 

band to the lower band position, which is indicative of the upper band being 

glycosylated.  

Enzyme Kinetics 

 Kinetics of paraoxon hydrolysis for corn derived OPH were determined (Table 

6). Overall kinetics for the corn-produced enzyme are similar to those of recombinant 

enzyme from E. coli. Km values for enzyme passed through the Concanavalin A 

sepharose column were also determined. Km values for the upper and lower band 

enriched fractions were very similar with values in the range of those reported for OPH 

Km in the literature. The specific activity of the protein that passed through the 

Concanavalin A column without binding was 3 fold higher than the specific activity of 

the loaded sample, while the specific activity of the eluted sample remained at nearly the 
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same value. It is important to note that the sample loaded onto the Concanavalin A 

column had been through the phenyl sepharose step of the purification and concentrated 

prior to loading, but had not been run over the superdex 200 column.   

 

Table 6. Paraoxon kinetics of OPH isolated from transgenic maize seed. 

Recombinant OPH Km Specific Activity Reference 
 µM Units/mg Protein  

Purified E. coli 58-200 1760-8120 31 
Partially Purified 

Maize 
45 ± 8 882 - 

ConA Upper Band 227 ± 87 1205 - 
ConA Lower Band 85 ± 27 427 - 

Material loaded onto the Concanavalin A column was a concentrated fraction taken from 
the phenyl sepharose step of the purification and had a specific activity of 445 units/mg 
protein. 
 

Discussion 

 OPH has been expressed in several recombinant expression systems. The aim of 

this work was to evaluate the protein produced by a plant expression system, Zea mays. 

Previously it was shown that corn transformed with expression vectors containing an 

optimized OPH gene sequence resulted in the production of a protein with paraoxonase 

activity that cross reacted with anti-OPH antibodies. The western blot showed two bands 

that reacted with the antibodies, while no reaction was detected in non-transgenic seed 

samples. To determine the cause of the two-band phenomena we n-terminally sequenced 

both bands after purification. N-terminal sequencing showed that both bands had the 

same N-terminal sequence and that the sequence was identical to that predicted for the 

cleavage of the BAASS sequence with the exception of a missing N-terminal glycine 
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residue. This eliminated the possibility that the size difference observed for the two 

bands in western blots was due to incorrect processing of the BAASS sequence. While 

the experimentally determined sequence differed from the predicted sequence, it was 

only by a single glycine residue, not a large sequence of amino acids that would be 

needed to cause the significant size difference observed in the SDS-PAGE and western 

analysis. 

 Analysis of the protein sequence of OPH revealed that the sequence contains an 

N-glycosylation signal sequence. Post-translational modification of OPH expressed in 

eukaryotic systems has not previously been observed. Both expression in insect cell 

culture, as well as expression in filamentous fungi was cytoplasmically target, 

preventing the recombinant protein from coming into contact with the glycosylation 

machinery in the endo-membrane system 37,38. The BAASS signal sequence used in corn 

expression causes the peptide to be exported to the cell wall via the endo-membrane 

system. During this transit, the peptide is exposed to the glycosylation apparatus. The 

idea that glycosylation was responsible for the doublet was re-enforced by the binding of 

the recombinant protein to Concanavalin A sepharose and the enrichment of the lower 

band in the flow through and upper band in the eluted fractions. It is also interesting that  

greater than 90% of the enzymatic activity loaded onto the column did not appear in 

either the flow through or the elution fraction. Loading paraoxon directly onto the 

column resulted in paraoxon hydrolysis, indicating that the activity remained bound to 

the column even after elution. Three months after the initial binding event, 14.5µg of 

enzyme remained bound and active on the Concanavalin A column. Results from the  
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Figure 16. Potential glycosylation site on the structure of OPH. The 
previously identified residues (Figure 13) that make up the potential 
glycosylation sequence were mapped onto the crystal structure (1DPM, 
Vanhooke et al., Biochemistry 35 pp. 6020 (1996)) of OPH taken from 
the Protein Data Bank (www.rbsc.org). The red residue indicates the 
possibly modified asparagine residue. The blue wire-frame structure is a 
bound OPH inhibitor. The figure was generated using Insight II software. 
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Concanavalin A column also indicates that OPH may exist in three forms in transgenic 

seed. The fact that protein that flows through the column is enriched for the lower band 

and protein eluted from the column is enriched for the upper band, but not purified 

entirely from the lower band, indicates that the dimeric protein may exist as 

heterodimers of upper and lower band proteins. Western blots of the partially purified 

OPH from corn show that the abundance of both bands in the sample are nearly equal, 

therefore the 90% of activity that remains bound to the Concanavalin A column is not 

due to an overabundance of the upper band protein. This does not exclude the existence 

of upper band and lower band homodimers. 

To experimentally determine if a glycosylation event is the reason for the 

doublet, chemical deglycosylation was used to remove any carbohydrate structures from 

partially purified OPH. The results indicate that the chemical deglycosylation caused the 

upper band to shift to the position of the lower band. This is consistent with the removal 

of a carbohydrate modification. The glycosylation of OPH did not seem to have an effect 

on the binding of paraoxon to the enzyme (Km). The effects of a modification on the 

overall stability of the protein, as well as on folding are still undetermined, but would be 

of interest. The site of possible modification lies on an exposed loop on the surface of 

the enzyme (Figure 16). This modification site may be ideal for further chemical 

modification. The carbohydrate structure may also serve as a new site for potential 

modification or cross-linking for application purposes. Also of interest, is the strong 

binding of the modified OPH to the Concanavalin A sepharose column. Immobilized 

enzyme has been proposed as a possible remediation technology. The use of corn 
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produced OPH bound to lectin or other column materials could provide a new source of 

immobilized enzyme for the detoxification of liquid organophosphate waste, or the 

cleaning of contaminated water.  

 

Materials and Methods  

Materials 

 Buffers, salts and other chemicals were obtained from Sigma-Aldrich. Column 

resins were obtained from Sigma-Aldrich. Pre-packed phenyl-sepharose and 

Concanavalin A sepharose columns were obtained from Pharmacia. Paraoxon was 

obtained from Chemservice. Purified recombinant OPH was produced as described by 

Grimsley et al.27. 

Methods 

Purification 

 Corn expressed OPH was purified from ground seed from construct OPB. 

Material used for the purification was field grown in Nebraska during the summer of 

2002. Pools of 50 seeds from each transformation event were analyzed for expression 

level by enzyme assay. Material with expression levels estimated over 0.1% TSP were 

saved. Those under 0.1% TSP were pooled and used for purification. The pooled seed 

was ground twice in a Waring blender and then separated by size using a Fischer 75-500 

micron sieve set and Ro-Tap sieve shaker (Laval Labs Inc., Laval, Quebec). Material 

was split into two pools, a fine (flour) with particles between 75 and 500 microns, and a 

coarse (meal) with particles over 500 microns. The amount of enzymatic activity per 
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gram of material was approximately two fold higher in flour compared to meal. Flour 

material was used and exhausted pioneering the purification process. Actual purification 

of enzyme was done using the meal material. Purification started with the extraction of 

OPH from meal material. Meal was mixed overnight with 50mM Tris pH=8.4 with 1mM 

CoCl2 (extraction buffer) in a 1:5 meal/buffer ratio. Stirring was accomplished with a 

magnetic stirrer for volumes under 2 liters and with a motor driven impeller for larger 

volumes. After extraction, the slurry was passed through cheesecloth or a metal sieve to 

remove large particles. The extract was then adjusted back to pH 8.4 and spun at 

16000xg for 30 minutes. For large volumes (<1L) the extract was then concentrated 

using a prep-scale 5kd cut-off membrane cartridge (Millipore). The pH of the extract 

was monitored at each step and kept at 8.4. The extract was then passed over a 30ml 

DEAE sepharose column. At pH 8.4 OPH passes through the column. The flow through 

was collected and the DEAE was then cleaned with extraction buffer + 1M NaCl. The 

DEAE flow through was then run onto a 20ml Green-19 agarose column using an 

AKTA Explorer chromatography system (Pharmacia). Green-19 agarose has previously 

been used to purify OPH from insect cell culture and bacterial sources. OPH bound to 

the green-19 and was eluted using a step gradient of 0.5M NaCl in extraction buffer. 

Identification of OPH positive fractions was by placing 5µl of each fraction in 100µl of 

1mM paraoxon in 50mM CHES buffer pH=9.0 in individual wells of a 96-well plate and 

observing the generation of p-nitrophenol by visual observation of yellow color. Due to 

instability, positive fractions eluted from the green-19 column were immediately run 

onto a pre-packed 5ml phenyl sepharose fast flow column (Pharamacia). OPH bound to 
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the phenyl sepharose was then eluted by a gradient of 0-50% ethylene glycol in 

extraction buffer over a volume of 20 columns. Positive fractions were pooled and 

concentrated to a volume of less than 1ml using centricon-3 and centriprep-3 centrifuge 

concentrators (Millipore). The concentrated sample was then passed over an 83ml 

Superdex 200 size exclusion column. The superdex column was calibrated prior to 

sample application using a Sigma molecular weight marker kit for gel filtration 

chromatography (Sigma-Aldrich). Protein eluted with a molecular mass of 

approximately 85kD. 

Protein Assays 

 Protein assays were carried out on 96 well plates using the Bradford dye binding 

method. Bradford reagent was obtained through Bio-Rad and diluted according to the 

manufacturer directions. The assay used 200µl of diluted reagent per well. Samples (1-

5µl) were added in triplicate and absorbance values read using a SpectramaxPlus 384 

plate reader (Molecular Devices). Absorbance values were used to determine protein 

levels by comparison to a standard curve made with Sigma bovine serum albumin 

standard (Sigma-Aldrich). 

Enzyme Assays 

 Paraoxonase activity was measured by spectrophotometric determination of p-

nitrophenol production. In short 1-5µl of sample was added to the side of a 1ml plastic 

cuvette containing 1ml of 1mM Paraoxon in 50mM CHES buffer pH=9.0. The cuvette 

was then inverted 5 times and absorbance at 400nm followed on a Beckman DU-7400 

spectrophotometer. Amount of enzyme present was calculated using the extinction co-
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efficient of p-nitrophenol (17000 M-1cm-1) and an estimate of the specific activity of 

purified OPH of 8000 units/mg protein. 

Concanavalin A Sepharose Chromatography 

 Partially purified OPH fractions from phenyl sepharose chromatography were 

used for ConA chromatography. The sample (300µl) was added by syringe to a pre-

packed 1ml ConA sepharose column (Pharmacia). The column was then washed with 10 

volumes of ConA binding buffer. The protein on the column was then eluted using the 

binding buffer with 0.5M methyl α-D-glucopyranoside added. 

 



 61 

CHAPTER IV 
 

ENZYMATIC DEGRADATION OF AN ORGANOPHOSPHATE  
 

HERBICIDE BY ORGANOPHOSPHATE HYDROLASE 
 

 Studies on the bacterial Organophosphate hydrolase (OPH) have focused on the 

ability of OPH to degrade neurotoxic organophosphate compounds that inhibit 

acetylcholinesterase. In this study, the ability of OPH to degrade several different 

organophosphorus herbicides, which effect life processes in plants other than 

cholinesterase activity, was explored. OPH was able to degrade the phosphoramidate 

herbicide Amiprophos-methyl. HPLC analysis with the organophosphothioate herbicides 

anilofos, bensulide, and piperophos showed that OPH failed to degrade these 

compounds. Amiprophos-methyl had Km values similar to those of paraoxon, but kcat 

numbers closer to that of demeton-s. The type of substrate competition that was 

observed for OPH activity against a P-O ester substrate was dependent on the type of 

phosphoester bond in the competitor. Substrate inhibition of the demeton-s degrading 

activity of OPH was competitive, regardless of the type of phosphoester bond in the 

competitor. The results of these experiments indicate that OPH can degrade an 

organophosphate herbicide, and inhibition patterns of paraoxon and demeton-S 

hydrolysis by these herbicides may indicate that a complex mechanism or mode of 

binding is at work during OPH catalysis. 
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Introduction 

Organophosphate hydrolase (OPH, E.C. 3.1.8.1, Aryldialkylphosphatase) is a 

dimeric metallo-enzyme capable of degrading a wide range of organophosphate 

insecticides and chemical warfare agents (Figure 17) 36. The enzyme was first identified 

in Flavobacterium isolated from diazanon treated rice paddies in the Philippines and a 

Pseudomonas diminuta strain isolated in the United States 11. The gene encoding OPH, 

opd, was found on dissimilar large plasmids in both species 77. Other enzymes that can 

degrade organophosphates (DFPase, OPAA, and Serum Paraoxonase) show no 

homology to OPH and natural substrates have yet to be identified 23. OPH has the ability 

to degrade a wide range of phosphate ester bonds including P-O, P-CN, P-F and P-S 

bonds 36. The substrates that OPH has been shown to degrade are not naturally 

occurring, however a naturally occurring organophosphate di-ester, Anatoxin-A(S), is 

produced by some cyanobacteria of genus Anabaena 4. 

 Most work to date has focused on the ability of OPH to degrade pesticides and 

chemical warfare agents. There are, however, organophosphate herbicides which effect 

plant life-processes other that cholinesterase activity (Figure 18). Amiprophos-methyl 

and a related herbicide, Butamiphos, are inhibitors of plant microtubual assembly 1,72-74. 

Amiprophos-methyl has also been shown to effect plant calcium channels at high 

concentrations and is used in the study of plant microtubuals 72,74. Piperophos and 

Anilofos are both inhibitors of cell division primarily used on transplanted and direct 

sown paddy rice for weed control, and are grouped with herbicides which inhibit very  
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long chain fatty acid synthesis 1. Piperophos also has been shown to control rice blast, a 

fungal rice disease 94. Bensulide is an inhibitor of lipid synthesis, which is commonly 

used on turf grass to control crabgrass 1. Amiprophos-methyl, Butamiphos, and 

Bensulide are used as pre-emergence herbicides, while Anilofos and Piperophos can be 

used in both a pre and post emergence fashion 1. Given the structures of these herbicides 

and their similarity to established OPH substrates, the ability of OPH to degrade these 

compounds was investigated. In this study, four organophosphate herbicides 

(amiprophos-methyl, anilofos, bensulide, and piperophos) were evaluated as substrates 

of OPH. 

 

Results 

 

Degradation of OP Herbicides 

 The ability of OPH to degrade the P-O ester organophosphorus herbicide 

amiprophos-methyl was explored (Figure 19). A reaction mixture of buffered 

amiprophos-methyl treated with OPH turned yellow in color over a period of 30 

minutes. This is consistent with the breakdown of amiprophos-methyl into1-methylethyl 

phosphoramidic acid monomethyl ester and 4-methyl-2-nitrophenol. Pure 4-methyl-2-

nitrophenol was used to determine an extinction coefficient and absorbance maximum. 

4-methyl-2-nitrophenol in solution at pH 9 is yellow with an absorbance maximum of 

435nm with a measured extinction coefficient of 1,800 M-1cm-1. Spectrophotometric 

monitoring of a 0.5 mM solution of amiprophos treated with 2µg of OPH showed an  
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Figure 20. HPLC analysis of herbicide degradation by OPH a. 0.5mM 
Amiprophos-methyl  b. 0.5mM Amiprophos-methyl + OPH c. 0.5 mM 
Piperophos d. 0.5mM Piperophos + OPH. Arrows denote the minor constituent 
degraded by OPH in piperophos reaction. 

a. 

b. 

c. 

d. 
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 increase in absorbance as time increased at an absorbance maximum around 435nm 

(Figure 19a). 

The ability of OPH to degrade P-S bonded herbicides was evaluated after a 20-

hour incubation period. Reaction mixtures containing 1mM solutions of anilofos, 

piperophos, and bensulide in HEPES buffer were treated with 5 µg of OPH. After 20 

hours of treatment, DTNB was added to detect free thiols using a modified method from 

Lai et al. 35. Absorbance readings were taken at 412nm and compared to the control 

thioate-ester demeton-S. Of the P-S herbicides tested Piperophos showed a slight 

reaction at 20 hours (Figure 19b). 

      

HPLC Analysis 

 

 HPLC analysis was carried out to confirm whether the herbicides were being 

degraded during treatment with OPH. Analysis of amiprophos-methyl reactions showed 

that the peak corresponding to amiprophos-methyl was diminished, while a peak with a 

retention time identical to that of 4-methyl-2-nitrophenol appeared (Figure 20 a&b). 

HPLC analysis of piperophos reactions showed little effect on the piperophos peak, but a 

minor peak was diminished, suggesting that the signal seen by Ellman’s reagent is due to 

the degradation of a contaminant rather than piperophos itself (Figure 20 c&d). We were 

unable to detect any change in the bensulide and anilofos reactions (data not shown). 
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Kinetics of Amiprophos-methyl Degradation 

 

 Further investigation with Amiprophos and Piperophos hydrolysis yielded 

information on the kinetics of their degradation by OPH. Enzymatic activity was 

measured at various concentrations of amiprophos-methyl. Results were plotted on 

Sigma Plot and fitted to the Michaelis-Menten equation modified to take into account 

substrate inhibition (Figure 21). Results indicate that amiprophos-methyl has a Km 

similar to that of paraoxon, but enzymatic turnover is much lower than that of paraoxon 

(Table 7). The Km for amiprophos-methyl indicates a tightly bound substrate. 

 

Table 7.  Kinetics of amiprophos-methyl degradation. 

Compound kcat(s)-1 Km (mM) kcat/Km (M-1s -1) Ki (mM) Bond Ref 

Paraoxon 15000 ± 300 0.12 ± 0.01 1.3x108 17 ± 1 P-O 24 

Demeton-S 4.2 ± 0.1 4.8 ± 0.2 8.7x102 - P-S 24 

DFP 75 ± 6 0.96 ± 0.1 7.8x104 23 ± 8 P-F 24 

Amiprophos

-methyl 

7.04 ± 0.15 0.071 ± 

0.003 

9.9x104 0.848 ± 

0.150 

P-O - 

 

 

Inhibition of OPH Activity by OP Herbicides 

 

 The ability of organophosphate herbicides to inhibit the activity of OPH against 

the P-O bonded substrate paraoxon was investigated. Anilofos, Piperophos, and  
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Bensulide, all organophosphorthioates, were  able to inhibit the Paraoxonase activity of  

OPH in a mixed non-competitive fashion (Figure 22 b,c, & d). This is similar to results 

obtained for the inhibition of paraoxon degradation by the P-S OPH substrate demeton-S 

35. Amiprophos-methyl, a P-O organophosphate, showed the ability to inhibit 

paraoxonase activity in a competitive fashion (Figure 22a).  

Similar experiments were carried out with the P-S substrate demeton-s in place 

of paraoxon. The organophosphorthioate bensulide was able to inhibit the degradation of 

demeton-S in a competitive fashion (Figure 23b). Amiprophos-methyl, a P-O ester 

substrate, also inhibited demeton-S in a competitive fashion (Figure 23a). 

 

Discussion 

 

 This work shows that organophosphate hydrolase is capable of degrading the 

herbicide amiprophos-methyl. This herbicide inhibits microtubual polymerization, and 

the ability of OPH to degrade it may make OPH a possible selectable marker gene for 

use in plant transformation. The data does not rule out the ability of OPH to degrade 

anilofos, bensulide, or piperophos. The competition studies indicate that they are able to 

influence OPH activity against paraoxon. These compounds may be similar to the 

organophosphothioate pesticide malathion, which showed less than 2% hydrolysis after 

an 18-hour incubation period with OPH 35. It is also interesting to note that a minor 

constituent of the piperophos reaction was degraded by OPH. This compound does react 

with DTNB and its appearance is enzyme dependent. It is possible  



 72 

1/[Paraoxon] mM -1

-10 0 10 20 30 40 50

1/
V

o

0

5000

10000

15000

20000

25000

No Inhibitor 
0.1mM Bensulide 
1.0mM Bensulide 
No Inhibitor Fit
0.1mM Bensulide Fit
1.0mM Bensulide Fit

1/[Paraoxon] mM-1

0 10 20 30 40 50

1/
V o

0

2e+4

4e+4

6e+4

8e+4

1e+5
No Inhibitor 
0.1mM Anilofos 
0.5mM Anilofos 
No Inhibitor Fit
0.1 mM Anilofos Fit
0.5 mM Anilofos Fit

a. b. 

1/[Paraoxon] mM-1

-10 0 10 20 30 40 50

1/
V o

0

2e+4

4e+4

6e+4

8e+4

1e+5
No Inhibitor 
 0.1mM Amiprophos-methyl 
1.0mM Amiprophos-Methyl 
No Inhibitor Fit
0.1mM Amiprophos-methyl Fit
1.0mM Amiprophos-methyl Fit

1/[Paraoxon] mM -1

0 20 40

1/
V

o

0

5000

10000

15000

20000

25000

30000
No Inhibitor 
0.1mM Piperophos 
1.0mM Piperophos 
No Inhibitor Fit
0.1mM Piperophos Fit
1.0mM Piperophos Fit

Figure 22. Substrate inhibition of the paraoxonase activity of OPH by 
organophosphate herbicides a. Amiprophos-methyl b. Anilofos c.  Bensulide 
d. Piperophos 
 

c. d. 



 73 

1/[Demeton-S] mM -1

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

1/
V

o

0

2e+5

4e+5

6e+5

8e+5

No Inhibitor 
0.05 mM Amiprophos-methyl 
0.01 mM Amiprophos-methyl 
No Inhibitor Fit
0.01mM Amiprophos-methyl Fit
0.05mM Amiprophos-methyl Fit

1/[Demeton-S] mM-1

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

1/
v o

0

10000

20000

30000
No Inhibitor 
0.1mM Bensulide 
1mM Bensulide 
No Inhibitor Fit
0.1 mM Bensulide Fit
1.0 mM Bensulide Fit

a. 

b. 

Figure 23. Substrate inhibition of demeton-Sase activity of OPH 
by organophosphate herbicides. a. Amiprophos-methyl b. 
Bensulide 



 74 

that this compound is related to piperophos and its identification would be of great 

interest. 

 Kinetic studies show that amiprophos-methyl is a substrate that tightly binds to 

the OPH active site, but has a turnover number approximately 2000 fold lower than that 

of paraoxon. It is also interesting to note that amiprophos-methyl kinetics are subject to 

substrate inhibition much like those of paraoxon and DFP 36. While substrate inhibition 

has been observed in P-O as well as P-F ester substrates, substrate inhibition with a P-S 

ester substrate has not been reported for wild type enzyme. Substrate inhibition indicates 

that P-O and P-F ester substrates can bind the OPH active site in more than one manner, 

resulting in substrate inhibition.  

The ability of these herbicides to inhibit or compete with known OPH substrates 

was also investigated. When the P-O ester  paraoxon was used, the P-O ester herbicide 

amiprophos-methyl was able to inhibit paraoxonase activity in a competitive manner. P-

S ester herbicides bensulide, anilofos, and piperophos were able to inhibit paraoxonase 

in a mixed non-competitive fashion. When reciprocal experiments were carried out with 

the P-S ester demeton-S, the P-S ester bensulide was able to inhibit in a competitive 

manner at 1mM concentration. Amiprophos-methyl, a P-O ester, also inhibited demeton-

S degradation in a competitive fashion. This difference in the ability of P-O and P-S 

esters to inhibit one another taken together with the substrate inhibition seen in P-O 

esters may indicate that there are at least two modes of binding for P-O substrate and 

possibly two different enzymatic mechanism at work. Work on the mechanism of OPH 

enzyme function has yielded two possible mechanisms involving one or two metals 
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respectively. Work with reconstituted enzyme appears to favor a two metal mechanism 

for the hydrolysis of paraoxon and demeton-S. As apoenzyme is reconstituted with metal 

it has been reported that the activity reaches a maximum near a molar ratio of 2 metals 

per sub-unit of enzyme for demeton-S and paraoxon 33,36. It has also been shown that the 

rate at which reconstitution occurs can be increased by the addition of bicarbonate, 

which is thought to coordinate the two metals during the reconstitution process 36. 

Crystallography has shown that the crystal structure of wild type OPH contains two 

divalent metals, and that the metal site can contain two different, as well as identical 

metals 34. In support of a two mechanisms model, mutant studies by diSioudi et al. show 

that mutations to histidine residues near the active site can produce enzymes that work 

optimally with only one metal bound per sub-unit of the enzyme 36. This is congruent 

with the mutants studies of Lai et al. which showed that mutant C59S, which contained 

only 0.86 metals per sub-unit when isolated, was able to degrade paraoxon with one 

third the activity of wild-type enzyme 29. Both mutant studies show that mutants with 

reduced metal contents have reduced activities, but do not lose enzymatic activity all 

together, which may indicate that more than one mechanism is involved in substrate 

turnover. diSioudi et al. also reported that when reconstituted, the activity of wild-type 

OPH against demeton-S required only one metal for full activity while the same enzyme 

required two metals per sub-unit for full activity against paraoxon, which is in 

disagreement with the results of Shim et al. 33. One important factor that has not been 

fully explored, is that enzyme produced in bacteria, without the addition of exogenous 

metals to the growth medium, contain only 1.1 zinc atoms per sub-unit when isolated 
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without additional metal added the purification buffers 30. This would seem to indicate 

that the in vivo natural state of OPH produced in a recombinant bacterial system is that 

of an enzyme whose metal binding sites are only partially filled. Previous studies using 

demeton-S to compete with paraoxon showed a mixed non-competitive inhibition 

pattern, which is unexpected if only one mechanism is at work 34. The 

competition/inhibition presented here support the results of Lai et al. that first showed 

the difference between P-O and P-S inhibition of paraoxon degradation by OPH 35. The 

ability of a P-S ester to inhibit paraoxonase activity in a mixed non-competitive fashion 

would indicate that P-S ester substrates and inhibitors affect both the binding of 

paraoxon as well as actual enzymatic activity against paraoxon. Results with P-S vs. P-S 

and P-O vs. P-O ester substrates indicate that they directly compete for the same binding 

site. The most curious result from the present work is that the degradation of Demeton-S 

by OPH is inhibited in a competitive fashion by the P-O ester amiprophos-methyl. This 

would indicate that amiprophos-methyl is capable of interfering directly with the binding 

of demeton-s. The fact that demeton-s has been shown to interfere in a mixed non-

competitive fashion with other P-O substrates, along with the competitive inhibition of 

demeton-s by amiprophos-methyl, may indicate that a complex set of mechanisms is at 

work. If P-O ester substrates are capable of being degraded by both a one metal as well 

as a two metal mechanism, while P-S ester substrates are only degraded by a one metal 

mechanism, this could possibly explain the inhibition results. The inhibition results taken 

together with the mutant studies, offer further evidence that the mechanism of 

organophosphate hydrolysis by OPH may be complex.  
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The addition of these herbicides to the spectrum of OPH substrates broadens the 

potential uses of the enzyme in both environmental detoxification, as well as potential 

use as a marker in plant biotechnology applications. The competition studies indicate 

that the mechanism of OPH action may be more complex than a single mechanism for 

all substrates. This, taken together with mutant studies and the substrate inhibition 

information, show that multiple mechanism are at work in OPH, and that the mechanism 

used is dependent on the type of substrate being degraded. 

 

 Materials and Methods  

 

Materials 

 Amiprophos-methyl(98%) and Bensulide(99.2%) were obtained from Fluka. 

Anilofos(99.5%) and Piperophos(93.5%) were obtained from Cresent Chemical. 

Demeton-S(98.5%) and Paraoxon(98.5%) were obtained from Chemservice. 100mg/ml 

stocks of all herbicides were made up in dimethyl-sulfoxide (DMSO). Ellman’s reagent 

(DTNB), 4-methyl-2-nitrophenol and all buffers were obtained from Sigma-Aldrich. 

Purified recombinant OPH was obtained as described in Chapter III. 

Methods 

Determination of 4-methyl-2nitrophenol Extinction Coefficient and Absorbance 

Maximum 

 Pure 4-methyl-2-nitrophenol was used to make up a 1mM solution in 50 mM 

CHES pH=9.0. This solution was then diluted with buffer to make 0.5mM and 0.1mM 
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solutions. One ml of each solution was placed in a 1ml disposable cuvette and the 

spectrum of absorbance was measured on a Beckman DU-7400 spectrophotometer. The 

absorbance maximum was used to determine the extinction co-efficient using Beer’s 

law. 

Enzyme Assays 

 

 Assays were carried out with purified recombinant OPH from E. coli isolated in 

the presence of cobalt 27. Paraoxon based assays were carried out in 50 mM CHES 

pH=9.0. Demeton-S based assays were done in a 50mM HEPES pH=7.2 (13). Kinetic 

studies were done in CHES buffer. Degradation of Amiprophos-methyl was measured 

by the appearance of 4-methyl-2-nitrophenol (Ec=1800 M-1cm-1). Free thiols from the 

degradation of P-S substrates was detected with Ellman’s reagent (DTNB)  (Ec=13,600 

M-1cm-1) 

 Kinetic results for amiprophos-methyl were fit with the Michaelis-Menten 

equation modified to account for substrate inhibition. All plots and curve fits were done 

with Sigma Plot. 

Substrate competition was carried out in CHES buffer for paraoxon and HEPES 

for demeton-S. 5 ng of pure recombinant OPH from E. coli was used in each paraoxon 

reaction. 5 µg of pure enzyme was used for demeton-s reactions. Inhibition of demeton-s 

degradation with amiprophos-methyl was carried out using a reaction mixture without 

added DTNB as a blank to subtract out the formation of 4-methyl-2-nitrophenol from the 

degradation of amiprophos-methyl. All spectrophotometric readings were made on a 
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Beckman DU-7400 spectrophotometer. All results are the average of three runs.  Results 

were plotted on double reciprocal plots.  

HPLC Analysis 

 0.5 mM solutions of each of the herbicides in 50mM CHES pH=9.0 were made 

up from the herbicide stock solutions and treated with 5µg of pure OPH. The reactions 

were then analyzed after 24 hours by HPLC. HPLC was carried out using a Phenomix C-

18 column with an 80/20% acetonitrile/water mobile phase. Standards for each of the 

herbicide reactions were run without added enzyme. For amiprophos-methyl a 0.5mM 4-

methyl-2-nitrophenol solution was also used as a standard. 
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CHAPTER V 
 

ORGANOPHOSPHATE HYDROLASE AS A MARKER SYSTEM FOR  
 

TRANSGENIC MAIZE 
  
 Organophosphate hydrolase (OPH) was evaluated as a scorable marker system 

for use in both plant cell culture and regenerated plant tissue. OPH has a wide range of 

substrates that create a colored or visually detectable compound when turned over by 

enzyme. The ability Organophosphate hydrolase activity expressed in the tissue of Zea 

mays to distinguish between transgenic and non-transgenic callus and plant tissue was 

investigated. In order to generate a wider range of screening compounds, haloxon was 

tested as an OPH substrate. Callus tissue was screened using the organophosphates 

coumaphos, coroxon, and haloxon. The coumaphos derivative coroxon was used to 

screen plant leaf tissue. Paraoxon was used to score seed. The use of OPH as a possible 

selectable marker system in cell culture and greenhouse settings was also investigated. 

 

Introduction 

 

 The ability to transfer genetic material into plant tissue has first appeared in the 

1980s 40. With this ability came need for marker enzymes and proteins that could be 

used to evaluate the performance of promoters and distinguish between transgenic and 

non-transgenic materials. Among the genes that have been used as scorable markers are 

β-glucuronidase (GUS), green fluorescent protein (GFP), and firefly luciferase (ff-

LUC)65. GUS is a bacterial enzyme that can be used to score tissue by enzymatic 
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activity. The disadvantage of GUS is that the tissue used for the assay is generally not 

viable after the assay has been conducted. GFP is a protein isolated from jellyfish with a 

native fluorescence that is widely used as a scorable marker for biological systems. GFP 

is a relatively simple protein that is easy to detect visually due to its fluorescent nature, 

but its fluorescent signal can be masked by the fluorescence of naturally occurring 

compounds. GFP also lacks enzymatic activity that can be used as a selectable marker. 

LUC is an enzyme involved in the generation of bioluminescence in fireflies. The light 

generated during its enzymatic activity can score for the presence of the LUC marker, 

however this enzymatic activity cannot be used as a selectable marker. Commonly used 

plant selectable marker systems, such as glyphosate, rely on a mutation to a plant protein 

or the insertion of a foreign protein with resistance to the herbicide rather than the actual 

degradation of the chemical 57,68. This limits the usefulness of these systems as scorable 

markers. 

 Organophosphate hydrolase (OPH) is a dimeric metalloprotein that acts against a 

wide range of organophosphorus compounds that include pesticides, chemical warfare 

agents, and herbicides (Figure 24) 23,24. The gene encoding OPH was first isolated from  

Peusdomonas diminuta and Flavobacterium spp. and was present on large dissimilar 

plasmids in each organism 77. The enzyme has been shown to have a high affinity and  
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turnover rate for the organophosphate paraoxon, with turnover reaching a rate that is 

diffusion limited 25. One of the breakdown products of paraoxon is p-nitrophenol that is 

yellow in solution at basic pH. Coumaphos and a related compound, coroxon, break 

down to yield a coumarin derivative that fluoresces under UV illumination. The power 

of these compounds has previously been used to score bacteria for the presence of OPH 

or OPH like activity 69,70.  

 OPH has been expressed in the higher plant Zea mays L. (Chapter II). Expression 

was achieved using both constitutive and seed embryo specific promoters. Enzyme 

produced in plant tissue was shown to undergo a glycosylation event, which effected 

50% of the monomer expressed and had little effect on the overall enzymatic activity of 

the enzyme. The enzyme was shown to have increased activity after the addition of 

divalent transition metal salts and incubation. Enzymatic activity was shown in both 

tissue culture callus tissue, as well as mature seed. Given the successful expression of 

OPH in plant tissue and the wide range substrates OPH will degrade, we set out to 

determine if OPH activity could be used to score plant tissue for the presence of the 

OPH gene. 

 

Results 

 

Screening of Transgenic Seed 

 Seed derived from plants expressing OPH was tested for the ability of intact seed 
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Figure 25. Intact seed assay with OPB seed. Whole OPB0301 seeds were 
placed individually in wells of a 24 well corning cluster plate with 1ml of 
1mM Paraoxon in 50mMTris buffer pH=7.2. Absorbance readings were 
taken at 3 hours. Leaf painting results were obtained three weeks post-
germination.  
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 to turn over the OPH substrate paraoxon (Figure 25). Transgenic seed from both the 

constitutive (OPA) and embryo specific (OPB) construct were tested. The transgenic 

seed was the product of out-crossing to an elite in-bred and was expected to be 50% 

transgenic. The seed was incubated for 3 hours in 1mM paraoxon buffered at pH 7.4 in a 

12 well cell culture plate. At the end of 3 hours, the paraoxon was removed and 

absorbance of the paraoxon solution at 400nm was measured spectrophotometerically. 

The seed was transferred to soil and allowed to germinate under greenhouse conditions. 

The plants were then leaf-painted with the herbicide Bialaphos to test for the presence of 

the pat gene, which was included in the transformation vector for selection purposes. As 

is shown in Figure 25, OPB seed showed a strong correlation between OPH activity 

measured by absorbance and the resistance to bialaphos, indicating that OPH activity can 

be used to differentiate between transgenic and non-transgenic seed. Subjecting seed to 

the buffered paraoxon did not seem to have a major effect on seed germination, with 

only one seed of the total 20 failing to germinate. Similar results were obtained with 

OPA seed (data not shown). The correlation of the whole seed activity, as measured by 

the intact seed assay and the amount of activity extracted from each individual seed, was 

also tested (Figure 26). In general, seeds that showed higher activity in the intact seed 

assay showed a higher enzymatic activity in extracts. 
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Figure 26. Whole seed turnover vs. extracted OPH activity. OPA0411 seed was 
treated as described in materials and methods. After intact seed assay, seeds 
were manually crushed with a hammer and extracted. Extracts were tested for 
paraoxonase activity and plotted against the intact seed data. 
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Enzymatic Activity of OPH against Haloxon 

 

 OPH has already been shown to have activity against the insecticide coumaphos 

31. This activity has been used to screen bacteria for the presence of OPH 69. There are 

several other compounds with similar structures to coumaphos. These include coroxon, 

haloxon, and a compound patented as a herbicide (Figure 27). Haloxon is a chlorinated 

derivative of coroxon that is commonly used to treat intestinal parasites in livestock 90. 

In order to broaden the range of compounds that can be used for screening purposes, 

haloxon was tested as a potential OPH substrate. 

 Initial qualitative results indicated that addition of OPH to reaction mixtures 

containing haloxon resulted in the production of a compound that fluoresces under UV 

illumination (Figure 28). This is consistent with the production of chlorferon seen when 

OPH degrades coumaphos and coroxon. 

 Kinetic results indicate that haloxon is kinetically is similar to coroxon. Haloxon 

had limited solubility above 0.25mM, limiting the utility of Michaelis-Menten analysis. 

Results were generated using the Lineweaver-Burke treatment over eight concentration 

points (Figure 29a). Coroxon was examined with an identical set of concentrations 

(Figure 29b). Comparison of results was done using the Lineweaver-Burke analysis for 

both compounds. Results of the kinetic analysis are presented in Table 8. Michaelis-

Menten treatment of coroxon kinetics was also carried out and indicated that enzymatic 

degradation of coroxon undergoes substrate inhibition similar to paraoxon (Figure 30).  

Haloxon was not soluble at high enough concentrations to observe this effect. 
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Figure 28. Enzymatic degradation of haloxon. Each +OPH well was treated with 0.87 
µg of OPH 
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8 µM Coumaphos 8 µM  Haloxon 

Figure 31. In gel hydrolysis of haloxon and coroxon by 
OPH  
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Table 8. Kinetics of OPH degradation of haloxon and coroxon. 

Substrate Fit Km 
(mM) 

Vmax 
(nmoles/min) 

kcat (s-1) kcat/Km (M-1s-

1) 
Coroxon Lineweaver-

Burke 
0.132 38.9 537 4.07E+06 

Haloxon Lineweaver-
Burke 

0.134 47.9 660 4.93E+06 

 

 

 Haloxon was also evaluated as a substrate for in gel hydrolysis. 500 ng of 

recombinant OPH was run on a 4-12% Tris-Glycine native gel. After a five-minute 

incubation period in 8µM substrate, chlorferon production was detected by illumination 

on a UV light box (Figure 31). 

Screening of Transgenic Callus 

 To prove the utility of OPH as a scorable marker in other phases of transgenic 

plant genesis, we tested the ability to score maize callus tissue. Coumaphos, coroxon, 

and haloxon were tested as potential screening compounds. OPH degradation of these 

compounds results in a product that fluoresces under UV illumination. Previously, 

coumaphos has been used to detect OPH activity in bacteria by plate assay 69. Callus 

(OPA′) derived from a transformation with an optimized opd gene under the control of 

the maize ubiquitin promoter was used as positive test material. Callus was plated onto 

standard tissue culture media with 1mg/plate of the screening compound added. The 

plates were allowed to sit for 24 hours and then illuminated with UV light to detect any  
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Figure 32. Detection of transgenic callus with coumaphos derivatives. 
Callus (OPA′) was plated onto tissue culture plates containing 
1mg/plate coumaphos, coroxon, or haloxon. After 24 hours the plates 
were illuminated with UV light. CGE07 serves as a transgenic negative 
control, recombinant OPH from E.coli serves as a positive control. A 
total of 22 OPA′ lines were tested with similar results that can be found 
in Appendix D. 
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breakdown of the screening compound. Extracts of the tissue were then made and tested 

for OPH activity using paraoxon. Figure 32 shows the results of plate detection and  

enzyme assays. Transgenic callus was detected by all three compounds. The transgenic 

control callus, CGE07, showed no activity against any of the scoring compounds. 

Overall, a stronger reaction was seen to coroxon and haloxon when compared to 

coumaphos. In general, there was correlation between the amount of fluorescence 

observed on the plate and the amount of activity measured by paraoxonase activity in 

extracts. The coumaphos/coroxon/haloxon system for the detection of the presence of 

the OPH gene in callus tissue can be used to distinguish between transgenic and non-

transgenic material, but cannot be reliably used to predict what the actual expression 

level is in the tissue being tested. 

 

Scoring of Leaf Tissue 

 To further test the capability of OPH as a scorable marker for plant systems, the 

ability to score leaf tissue from a mixture of transgenic and non-transgenic plants was 

tested. Coroxon, the oxon derivative of coumaphos, was used to score leaf tissue from 

both plants with constitutive (OPA) and seed specific (OPB) expression. Leaf tissue was 

excised from 3-week old plants. A segment of tissue, just large enough to fill the well on 

a 24-well cluster plate, was placed in each well with 1ml of 0.1mM coroxon. The plate 

was then incubated for 20 hours and illuminated with UV light. Tissue from elite inbred 

SP133 was used as a negative control. Plants were also tested for the presence of the  
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Figure 33. Detection of OPH activity in leaf tissue with coroxon. Leaf tissue was 
incubated for 20 hours in 1ml of  0.1mM coroxon in 50mM Tris pH=7.4. Tissue 
was removed prior to the taking of the images. Positive control was 0.87 µg of 
pure OPH. Well 11 of the transgenic plate had no tissue added and serves as a 
negative control. By leaf paint 2,3,4,9,17,22, and 23 were damaged by 1% Finale. 
Well 13 and 21 had questionable resistance to Finale.  1-12 are OPB0302 T2. 13-
24 are OPA0403-1 T3 plants. 
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pat gene by leaf painting with 0.1% Finale (bialaphos). At 20 hours there was definite 

turnover of coroxon in some OPA wells. This is indicated by the glowing wells in the 

plate picture (Figure 33). The glowing wells correlate well with the results of the leaf 

painting that indicated plants 17, 22, and 23 were not transgenic. The results with OPB 

plants were not as clear, but that is expected due to the seed specific expression of the 

globulin promoter. 

Selection of Transgenic Callus 

 The ability of OPH expressing callus lines to resist organophosphate herbicides 

was tested. Transgenic callus (OPA), expressing OPH under the control of a constitutive 

promoter, was plated onto cell culture plates containing a range of concentrations of 

herbicides. The experiment included the herbicides amiprophos-methyl and piperophos, 

as well as the anthelminitic drug haloxon, which has structural similarities to a known 

herbicide (Figure 26). Growth was measured by monitoring callus mass over a six week 

period and comparing the growth in treated plants to the growth of callus on plate 

without any added herbicide. Results for the 2 to 4 week period are presented in Figure 

34. Results were similar when compared from week 4 to 6 and over the entire 6 week 

period.  Overall, no difference was observed between OPH expressing callus and for 

treatment with amiprophos-methyl. OPA′ callus did appear to show some resistance to 

piperophos when compared to non-transgenic control callus. The most dramatic results 

were obtained with haloxon. OPA′ callus was able to grow well on concentrations of 

haloxon that greatly reduced the growth of control callus. 
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Selection of Transgenic Plants 
 

 The ability to score transgenic tissue using OPH would be enhanced if a 

compound could be used to select for transgenic plants. There are a number of 

organophosphate herbicides that can be used against C4 monocot like Zea mays. The 

ability of transgenic plants expressing OPH (OPA) to resist the effects of the 

commercially available organophosphate herbicide Bensulmec-4LF (bensulide) was 

tested. Previously, it has been shown that recombinant OPH from bacteria does not show 

an activity against pure bensulide, but the bensulide was able to inhibit OPH activity 

against other OPH substrates (Chapter IV). Bensumec-4LF was added to trays of soil 

prior to planting, at both ten fold lower and ten fold higher than the recommended rate, 

as well as the recommended rate of application for the given area. Twenty seeds each of 

OPA and control were planted and allowed to germinate in the treated soil. Pictures of 

the trays at 3 weeks are shown in Figure 35. At the treatment rate of 0.35 ml/tray no 

effect was observed when compared to the control tray. At 3.5ml/plate, the 

recommended application rate, there was a noticeable difference between the OPA 

plants and the HiII/SP133 control plants. The control plants that did germinate at the 

3.5ml/tray treatment level lacked a developed root system, which is consistent with the 

mode of action of besulide. At the highest application rate, both sets of plants seemed 

equally effected. Similar results were obtained with Prefar, another commercially 

available formulation of bensulide (data not shown). 
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Figure 35. Resistance of OPA plants to Bensumec-4LF. OPA0403 T2 seed was 
used to determine resistance to besulide in the form of the formulated herbicide 
Bensumec-4LF. Control seed is of the same genetic background as the transgenic 
seed.  Pictures were taken three weeks after germination. Shoots of control plants at 
3.5ml/tray treatment level as well as all shoots at the 35ml/tray treatment level 
lacked a developed root system. 
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Discussion 

 

 Several selectable and scorable markers are available for use in plant 

biotechnology and research. To date none of these markers has been exploited as both a 

scorable, as well as selectable marker system. Organophosphate hydrolase has the 

unique ability to degrade a wide range of compounds that include chemicals used as 

herbicides. OPH has also been successfully expressed in plant tissue. Here we show that 

the wide substrate range of OPH can be harnessed to serve as a scorable marker system 

in seed, leaf, and callus tissue. 

 Intact seed from OPH producing plants was detected by the ability of that seed to 

degrade the compound paraoxon. Control tissue did not degrade paraoxon, and paraoxon 

turnover in non-transgenic seeds derived from a transgenic parent was significantly 

lower than transgenic seed. The act of subjecting the seed to the reaction mixture 

environment did not have an effect on plant germination and growth. This means that 

scoring with an OPH system results in the ability to screen out not transgenic seed, and 

that the seed that passes through the screening process remains viable. This is a great 

advantage in the generation of plants for the production of recombinant proteins. Out-

crossing to elite in-bred lines results in seed pools where only half the seed contains the 

transgene. Use of this seed for production results in fields where only half the plants are 

transgenic. OPH could be used as a marker to pre-screen the seed prior to planting, 

resulting in fields that are uniformly transgenic and yielding product seed that has a 

higher concentration of product due to the elimination of the non-transgenic material. 
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Haloxon, a compound similar in structure to coumaphos, is a substrate for OPH. 

Kinetics results indicate that as a substrate for OPH haloxon is very similar to coroxon. 

The inclusion of chlorine on the ethyl groups of haloxon did not appear to significantly 

alter the binding of substrate to the enzyme when compared to coroxon. Catalytic 

turnover was also very similar between haloxon and coroxon. Kinetics of coroxon 

hydrolysis showed substrate inhibition at high concentrations, similar to the kinetics of 

paraoxon and DFP hydrolysis 24. Coumaphos and Parathion have been used to screen 

bacteria as well as other biological materials for the presence of OP degrading activities 

69,70. Coumaphos has also been used to detect OPH activity in weakly denaturing SDS-

PAGE gels 69. Results with haloxon show that it can also be used to detect OPH activity 

in native page gels in the same manner as coumaphos.  

 Coumaphos, Coroxon, and Haloxon were used to screen plant leaf material and 

callus tissue. The use of these compounds expands the utility of OPH as a scorable 

marker by making it possible to screen callus material during the transformation and 

regeneration process. The screening of callus tissue could be of use in the production of 

transgenic plants. Typically, this is done by selection on media containing a herbicide. 

While this has the advantage of a selection system where non-transgenic material dies, it 

takes several weeks to manifest itself. The scoring system with OPH as a marker would 

yield results in as little as 24 hours and leave tissue viable for further propagation. This 

advantage would be magnified if the method were successfully adapted to freshly 

transformed embryos. Current methods for the screening of growing plant for a 

transgene involve painting the plants leaf with herbicide to which transgenic plants are 
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resistant. This system of scoring takes several days to yield results. The OPH system has 

the advantage over bialaphos leaf painting of yielding results in 24 hours, expediting the 

identification of transgenic plants. 

 OPA′ transgenic callus expressing OPH, challenged with the herbicide and OPH 

substrate amiprophos-methyl, showed no difference in growth inhibition when compared 

to control callus. The lack of resistance to amiprophos-methyl may be due to the toxicity 

of the breakdown products, or due to the slow rate at which OPH breaks down 

amiprophos-methyl. OPA′ callus did show some resistance to piperophos at 

concentrations that effected control callus growth. Piperophos has been shown not to be 

an OPH substrate in vitro, but it is possible that piperophos undergoes a 

biotransformation to another compound by the plant cell and that this new compound 

may be an OPH substrate. Plants have been shown to convert organophosphates from a 

thion to oxon form, so it is possible that piperophos could undergo a similar reaction 6. 

OPH has been shown to have different activities against the thion and oxon forms of an 

organophosphate, such as parathion and paraoxon 31. Haloxon showed the greatest 

promise as a selectable marker in tissue culture. The herbicidal activity of haloxon was 

not completely unexpected due to the structural similarity between it and the O-(2-

napthyl) phosphorothionates that have been patented as herbicides. OPX callus showed 

the ability to continue to grow at concentrations of haloxon that inhibited the growth of 

control callus. Further experimentation with haloxon, as well as coumaphos and coroxon 

as compounds for selection in tissue culture are warranted. 
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 The ability of OPH to act as a selectable marker by challenging OPH producing 

plants with a commercial preparation of the herbicide bensulide was also tested. While 

the limited scope of our study does not definitively demonstrate that OPH is a viable 

selectable marker, it does suggest that OPH producing plants have some resistance to 

bensulide. Further work needs to be done with the wide range of organophosphate 

herbicides available, including those that are not commercially available but have been 

shown to effect plant growth. Organophosphates have been shown to have adverse 

reactions with some herbicides that result in damage of plants not targeted by the applied 

herbicide 91,92. It is possible that this interaction coupled with OPH could be used as a 

selection system. 

 Overall, OPH has been shown to be a viable scorable marker for use in plant 

systems. OPH can be screened in tissue culture, leaf, and seed tissue with results that 

differentiate between transgenic and non-transgenic tissue. Screening of seed tissue 

resulted in the separation of transgenic from non-transgenic seed with no effect on the 

viability of the seed used in the screening. We also have shown initial results that OPH 

producing plants show some resistance to the OP herbicide bensulide and that OPH 

expressing callus shows resistance to piperophos and haloxon in tissue culture. This 

raises the prospect that OPH could be used as both a scorable and selectable marker, 

making it unique among the markers currently used in plant biotechnology. 

Organophosphates also have been shown to inhibit the growth of cyanobacteria and 

fungi, raising the possibility that OPH could be used as a selectable marker in those 

systems 93,94. 
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Materials and Methods  

Materials 

 All buffers, haloxon, and Bovine Serum Albumin were obtained from Sigma-

Aldrich (St. Louis, MO). Paraoxon, coumaphos, and coroxon were obtained from 

Chemservice (West Chester, PA). Bensumec-4LF was obtained from Hummert 

International. Prefar was obtained locally from Producer’s CO-OP (Bryan, TX). 

Bradford reagent was obtained from Bio-Rad. 

Methods 

Transgenic Lines 

 OPA and OPA′ callus were generated by transformation with an Agrobacterium 

expression vector containing an optimized opd gene under the control of the maize 

ubiquitin promoter. OPB lines are the result of transformation with an optimized opd 

construct under the control of the maize globulin1 promoter, which is specific for 

embryo expression of the transgene. 

Intact Seed Screening 

 Transgenic T2 seed expressing OPH were screened by incubation in a reaction 

mixture containing 1mM paraoxon in 10mM HEPES buffer pH 7.2. Individual seeds 

were placed in single wells of a corning tissue culture plate. 1ml of reaction mixture was 

added to each well and the plate was incubated with shaking for 3 hours at room 

temperature. After the incubation period the reaction mixture was removed from each 

well and absorbance at 400nm was measured on a Beckman DU-7400 
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spectrophotometer. The seeds were transferred to soil and allowed to germinate in the 

greenhouse. Three weeks post-germination, each individual plant was painted with 1% 

Liberty, a commercial formulation of bialaphos, to check for the presence of the 

selectable marker used during the transformation process. Leaf damage from the leaf 

painting was observed at 5 days. Data was plotted on Sigma Plot 8.0 (SPSS Inc.). Seed 

used for enzymatic analysis (Figure 25) was treated in the same way, with the exception 

that the seed was imbibed overnight in water prior to treatment with the reaction 

mixture. After the reaction mixture was removed, each seed was manually pulverized 

using a hammer. The seed material was then extracted with 1ml of 10mM HEPES 1mM 

CoCl2 pH=8.3. The extract was allowed to sit overnight at room temperature and assayed 

the next day with 1mM Paraoxon in 50mM CHES buffer pH=9. The extracts were also 

assayed for total protein content using a microplate Bradford assay (Bio-rad) with a 

bovine serum albumin standard curve. The assay results were used to generate results in 

units/mg protein, which were plotted against the intact seed assay results. 

Stock solutions of haloxon and coumaphos were made up to 100mg/ml in 

Dimethyl Sulfoxide (DMSO). A 100mg/ml stock of coroxon was made up in methanol. 

0.1 mM solutions of each were made in 50mM TRIS pH=7.4 with 10% methanol added 

to aid in the solubility of the compounds. 100 µl of each reaction mixture was added to a 

well of a 96 well plate. 0.87 µg of purified recombinant OPH was added to each well 

and the reaction was allowed to proceed for 5 minutes. Control reactions with buffer 

added in place of the enzyme were also allowed to sit for 5 minutes. The plate was then 
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illuminated on an ultraviolet light box and a digital photograph taken using an Alpha 

Imager (Alpha Innotech). 

Kinetics of Haloxon and Coroxon Degradation  

 Reaction mixtures containing various concentrations of coroxon and haloxon in 

50mM TRIS pH=7.4 with 10% Methanol. 1ml of reaction mixture was added to a quartz 

cuvette and blanked at 348 nm on a Beckman 7400 spectrophotometer. 87 ng of OPH in 

5 µl of 10mM Phosphate pH=6.8 was added to the top of the cuvette and mixed by 

inversion. Production of chlorferon was monitored at 348 nm. Each concentration was 

repeated in triplicate. Results were calculated using the extinction coefficient of 

chlorferon (9100 M-1 cm-1). Results were plotted and fitted with Michaelis-Menten, 

Lineweaver-Burke, or Michaelis-Menten modified for substrate inhibition equations 

using SigmaPlot 8.0 (SPSS Inc.).  

In Gel Hydrolysis of Coumaphos and Haloxon 

 In gel hydrolysis was run using a procedure similar to that of Harcourt et.al 46. 

Native gels were run with Novex 4-12% PAGE gels (invitrogen) under the 

manufacturers conditions and instructions. 500ng of recombinant OPH was loaded per 

well. After electrophoresis the gel was cut into strips and soaked for 5 minutes in 

100mM Tris pH 7.4. The gel strips were then transferred to Tris buffer containing either 

8mM Haloxon or Coumaphos for five minutes and then visualized using a UV light box. 

Images were taken with an Alpha Imager. 
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Callus Scoring 

 Lines of maize callus expressing OPH under the control of the maize ubiquitin 

promoter were used to determine if OPH activity could be used to score transgenic callus 

directly on plates. Callus was plated on standard plant tissue culture media with the 

addition of 1mg per plate coumaphos, coroxon, or haloxon. The plates were stored in an 

opaque plastic container at 27°C for 24 hours. At 24 hours the plates were placed on UV 

light box and pictures were taken using an Alpha-Imager imaging system. 100mg tissue 

of each line was then extracted in 1ml of HEPES buffer and assayed for OPH activity. 

Protein was measured by microplate Bradford assays. 

Scoring of Leaf Tissue 

 Plants of both of transgenic lines expressing OPH under the control of the maize 

ubiquitin (OPA) and maize globulin (OPB) promoters was used to test the ability to 

score transgenic leaf tissue by OPH activity. Plants were allowed to germinate and grow 

for three weeks prior to 25mm segment of leaf tissue being excised and place in a 24 

well tissue culture plate. 1ml of 0.1mM coroxon in 50mM tris buffer pH=7.4 was placed 

in each well and the plate was incubated for 20 hours at room temperature.  0.87 mg of 

purified recombinant OPH was added to a well with coroxon as a positive control. 

Tissue from non-transgenic plants was added as negative controls. The tissue was 

removed from the plate after incubation and the plate was placed on a UV light-box and 

a digital image taken. 
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Selection of Transgenic Callus 

 Transgenic callus was selected using amiprophos-methyl, haloxon, and 

piperophos. Herbicides stock solutions were made up in DMSO. The stocks were then 

added to 30ml of plant tissue culture media in a 100x25 mm petri dish during pouring. 

The plates were massed prior to the addition of callus and then massed again after the 

addition of callus. Callus was transferred to fresh plates and massed every two weeks. 

Results were graphed on Sigma Plot 8.0. Three independent plates of each treatment 

were used for each data point. 

Selection of Transgenic Plants 

 Transgenic plants expressing OPH under the maize ubiquitin promoter were 

tested for the ability to resist bensulide in commercially formulated forms Bensumec-

4LF and Prefar. The recommended application rate for each herbicide was used to 

determine the amount need to treat a standard tray of soil. The experiment was carried 

out at the recommended rate (3.5ml per tray), ten fold below (0.35ml per tray), and 10 

fold above (35ml per tray) the recommended rate. The formulated herbicide was diluted 

into 300ml of Acetone and mix by hand into the soil. The acetone was allowed to 

evaporate and twenty seeds each of control and transgenic lines were planted. The seed 

were allowed to germinate and were observed for three weeks. Pictures were taken with 

an Olympus digital camera after three weeks.  
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CHAPTER VI 
 

CONCLUSIONS 
 

 Organophosphate hydrolase is an enzyme with a broad spectrum of substrates 

and potential applications. Previous experiments dealing with recombinant expression of 

the enzyme focused on the ability to generate enough enzyme for lab-scale use. Attempts 

to adapt these lab expression systems to larger scales of enzyme production, like 

bacterial fermentation, have been problematic in the unexpected fall off in enzyme 

expression observed. In order to provide an alternative expression system, the ability of a 

plant system, Zea mays L., to express OPH was explored. A synthetic gene construct was 

designed for maize expression and inserted by Agrobacterium mediated transformation 

into the maize genome under the control of constitutive, embryo specific, and endosperm 

specific promoters.  

 Analysis of the seed and callus tissue of transformants indicated that OPH was 

successfully expressed in tissue transformed with each of the three constructs. Highest 

expression was observed in tissue expressing OPH under the control of the constitutive 

and embryo specific promoters. The endosperm specific promoter did generate OPH 

positive tissue, but the expression levels were far below those observed for the other two 

constructs. Across plants generated from each construct, expression level varied between 

individual transformation events. This variation is consistent with the position effect 

caused by the random integration of Agrobacterium transformation. A comparison of the 

expression levels in transgenic maize to those of other expression systems indicated that 

on average maize expression levels in early generations were similar to that of the 
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original Pseudomonas diminuta strain that the gene was isolated from. Individual seed 

analysis indicated that the highest expressing individual seeds were expressing at a level 

above that of the E. coli expression system that is the laboratory workhorse of OPH 

expression. The highest expressing bulk sample of the embryo specific transgenic seed 

was also higher than E. coli expression. Manual separation seed tissues indicated for 

both the constitutive and embryo specific construct that the majority of activity in the 

seed was localized to the embryo. While maize will never replace E. coli for the 

laboratory expression of OPH, it may yield better results as an expression system for 

generating large amounts of enzyme for practical use in applications. The maize system, 

through breeding and selection of lines for out-crossing, has been shown to increase 

expression levels of a protein product from up to 20 times the initial expression level 

observed 83. If a similar increase in expression is observed in latter generations OPH 

producing lines, and this increase is coupled with the inherent scalability of a plant 

system, maize could become an ideal expression system for expression of large 

quantities of OPH for application purposes. The protein stabilizing characteristics of the 

seed also means that seed containing OPH could be produced and stored as whole seed 

until need for purified OPH product.  

 Western analysis of ammonium sulfate precipitates of seed extracts showed that a 

doublet band cross-reacted with anti-OPH antibodies at a molecular weight consistent 

with monomeric OPH. No cross-reaction was observed for control samples. Close 

comparison of the corn derived OPH to the bacterial enzyme on Western blots showed 

that the lower band of the doublet migrated the distance in the gel as the standard, 
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indicating a similar molecular mass. The presence of two bands could have indicated an 

inappropriate processing of the BAASS signal sequence or a possible post-translational 

modification of the enzyme. N-terminal sequencing of both bands produced identical 

sequence that matched the expected N-terminal sequence of the processed OPH with the 

exception of an N-terminal glycine residue. The matching n-terminal sequences 

indicated that a post-translational modification event was most likely responsible for the 

doublet pattern on the western blot. Sequence analysis of the OPH protein sequence 

identified a possible N-glycosylation site that could be modified during transit through 

the endomembrane system. Passage of the corn derived OPH over a concanavalin-A 

sepharose column resulted in the partial binding of activity, with an elution of activity 

with 0.5M methyl α-D-glucopyranoside. This is consistent with the binding of a partially 

glycosylated population of protein molecules to the column. Western analysis confirmed 

that the material that passed through the column was enriched for the lower band of the 

doublet, and that material that was eluted from the column was enriched for the upper, 

modified band. It was also noted that a large portion of the activity loaded onto the 

column was not found in either the flow through or the elution fractions. Later 

experimentation indicated that a significant amount of activity remained bound to the 

column despite the elution step. The unexpected result that a majority of activity 

remained bound to the Concanavalin A column, even after elution, indicates that the 

modified form of OPH can be strongly immobilized on a column matrix without harsh 

chemical treatments that could effect enzyme function. The binding of corn produced 

OPH to concanavalin A sepharose may provide a new, unique method for the 
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immobilization of OPH onto solid matrices.  In order to determine if a glycosylation 

event was the cause of the doublet band, corn expressed OPH was subjected to chemical 

deglycosylation. Western and SDS-PAGE results showed that the treated sample had 

been reduced from a doublet to a single band with a molecular mass identical to the 

lower band of the doublet, indicating the removal of carbohydrate from the protein 

structure. The glycosylation of OPH in the maize transformation system being used is 

unique. Other expression studies have not identified any post-translational modification 

of the recombinant product 37,38. The addition of a carbohydrate moiety to the OPH 

protein may also provide new targets for modification and immobilization for practical 

applications.  

 Previous work with the copper dependent enzyme Laccase showed that the 

addition of copper to extracts could result in an increase in enzymatic activity 83. The 

addition of divalent transition metal salts to extracts resulted in the increase of OPH 

activity of 4 to 10 fold, dependent on the sample being analyzed. The increase in activity 

was proportional to the different activity levels previously observed for enzyme 

constituted with different transition metals. Highest activity was observed for extracts 

incubated with cobalt. The increase in activity was time and temperature dependent, 

indicating a dynamic process. The addition of bicarbonate to the extracts during 

incubation resulted in an increase in the rate that activity rose, but not the final overall 

activity. This is consistent with previous results that indicated that the addition of 

bicarbonate to during the reconstitution of apoenzyme facilitated the formation of the 

metal center of the OPH active site 33. This indicates that the incubation of extracts with 



 114 

appropriate metals increases the OPH activity of the extract because of the formation of 

a metal center. The metal incubation results indicate that in order to achieve maximal 

activity when extracting OPH from transgenic maize added metal must be included in 

the extraction buffer. 

 The paraoxon kinetics of the maize produced enzyme was also explored. Enzyme 

was isolated from seed using a method originally used for the purification of enzyme 

from recombinant insect cells 31. The purification resulted in a 2000 fold increase in 

enzyme purity. The purity was sufficient to obtain the N-terminal sequencing data and 

enzyme kinetic data. The enzyme showed a paraoxon Km value similar to those 

published for enzyme derived from a bacterial expression system. Km was also 

calculated for the flow through and elution fractions from the concanavalin-A column. 

The results indicated Km values for both fractions within the range of those reported for 

enzyme expressed in bacteria. A direct comparison of the two fractions showed that the 

enzyme that was eluted from the Concanavalin A column had a significantly higher Km 

value, indicating a weaker binding of substrate to the modified enzyme when compared 

to un-separated enzyme or the column flow through. 

 One of the unique aspects of OPH is the wide range of substrates that the enzyme 

can degrade. Organophosphates are primarily thought of as neurotoxic pesticides and 

chemical warfare agents. However, there is an entire class of organophosphate 

herbicides that have never been tested as OPH substrates. After analysis of the chemical 

structures of the organophosphate herbicides, four were chosen as potential OPH 

substrates. Both spectrophotometric and HPLC analysis were used to determine if the 
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organophosphate herbicides amiprophos-methyl, anilofos, bensulide, and piperophos 

were OPH substrates. Both spectrophotometric and HPLC analysis indicated that OPH 

had the ability to degrade the phosphoramidate herbicide amiprophos-methyl. The 

kinetics of amiprophos-methyl hydrolysis by OPH was determined. Amiprophos-methyl 

was shown to have a Km value lower than that of paraoxon, but with a kcat value that was 

similar to that of dementon-S. Spectrophotometric results with the phosphothioate 

herbicides indicated that anilofos and bensulide were not degraded appreciably by OPH, 

but piperophos showed a slight reaction. HPLC analysis showed that the 

spectrophotometric result was caused by a minor contaminant of piperophos and not by 

piperophos itself. The herbicides were also used as inhibitors of paraoxon activity. 

Amiprophos-methyl, a P-O ester organophosphate, showed competitive inhibition of 

paraoxonase activity. The other herbicides, all P-S ester herbicides, showed mixed 

inhibition of paraoxonase activity. These results are consistent with those observed for 

the P-S ester substrate demeton-S inhibition of paraoxonase activity. A reciprocal 

experiment was carried out using amiprophos-methyl and bensulide to inhibit OPH 

degradation of demeton-S. Both compounds inhibited demeton-S degradation in a 

competitive fashion, regardless if the inhibitor was a P-S or P-O ester organophosphate. 

These results support the theory that OPH has a complex enzymatic mechanism. If OPH 

had only a single mechanism, we would expect all inhibition of paraoxonase activity by 

another organophosphate to be competitive, independent of the type of ester bond found 

in the competitor substrate. The competitive inhibition of demeton-S degradation by 

amiprophos-methyl indicates that it can directly compete with demeton-S for catalysis. 
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The fact that the phosphothioate herbicides showed a mixed paraoxonase inhibition 

pattern indicates that they only were able to block part of the total enzyme activity 

against paraoxon. This would indicate that the degradation of P-O ester substrates might 

be more complex than a single mechanism or mode of binding. 

 OPH activity against coumaphos has previously been used to screen bacteria for 

OPH activity 69. Coumaphos has several derivatives, one of which is the anthelmintic 

compound haloxon 90. Haloxon was investigated as a possible OPH substrate. Enzymatic 

reactions with coumaphos, coroxon (the O-analog of coumaphos), and haloxon showed 

similar results. Kinetics of haloxon hydrolysis were similar to those of coroxon, 

indicating that the chlorinated side chains of haloxon had little effect on the ability of 

OPH to degrade the compound. Haloxon was also used in a native gel in gel hydrolysis 

reaction that has previously been tested with coumaphos. Haloxon has a higher solubility 

than coumaphos, which may be an advantage in some screening applications. 

 The ability of OPH to be used as a scorable marker for bacteria has already been 

established. The ability to degrade a herbicide the raises possibility that OPH could be 

used as a scorable and selectable marker system for plants. OPH was tested as a scorable 

marker for use in tissue culture by adding coumaphos, coroxon, and haloxon to tissue 

culture media plates and plating transgenic callus expressing OPH under control of a 

constitutive promoter. One day after plating, the plates were exposed to UV light and the 

scored by the appearance of fluorescence. Positive transgenic callus showed 

fluorescence in the plates with all three compounds. Control callus showed no reaction. 

Coumaphos and its derivatives were also used to screen leaf tissue. Leaf tissue from 
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transgenic plants expressing OPH was able to turn over substrate in a reaction mixture 

that could then be screened for fluorescence. Tissue from plants with OPH under the 

control of the constitutive and embryo specific promoters were tested with the best 

results obtained with the constitutive promoter plants. Control plants showed no 

reaction. Seed was screened using paraoxon. Paraoxon turnover was observed with both 

the constitutive and embryo specific constructs. The assay was able to distinguish 

between transgenic and non-transgenic seed. The screening of seed tissue had no 

apparent negative effects on the germination of scored seeds. This is an added advantage 

to an OPH scorable marker system, in comparison to the scorable marker β-

gulcuronidase, which results in the destruction of the scored tissue.  OPH expressing 

callus was resistant to the herbicidal effect of the organophosphate haloxon in tissue 

culture. This may indicate that an OPH/haloxon selection system can be developed for 

the selection of transgenic tissue. OPH can be used to score plant tissue for the presence 

of OPH in several different tissue types and stages in the production of transgenic plants. 

Plant expressing OPH, under the control of a constitutive promoter, were tested for 

resistance to the herbicide bensulide. At the recommended application rate for 

formulated bensulide, OPH expressing transgenic plants showed greater resistance when 

compared to non-transgenic control plants. In vitro bensulide has been shown not to act 

as a measurable substrate for OPH, however bensulide can inhibit OPH activity against 

other substrates such as paraoxon and demeton-S. It is possible, that like other 

organophosphates, bensulide is converted into another compound by other cellular 

enzymes. This converted compound may then be an OPH substrate. Differences in OPH 
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activity have been observed against the oxon and thion analogs of organophosphates 

such as coumaphos/coroxon and parathion/paraoxon. The development of OPH as a 

selectable marker would make it unique among marker genes for use in plants. It would 

be the first that is both readily scorable and also can be used to select for transgenic 

material by using a compound that is phytotoxic. 

 In closing, OPH expression in a plant system has yielded not only a new source 

of recombinant protein, but also a new modified version of the OPH protein with 

potential application uses and a series of potential uses for OPH in plant expression 

systems as a marker gene. Two new compounds, amiprophos-methyl and haloxon, have 

been identified as OPH substrates. The kinetic properties of these substrates have been 

determined and compared to other known substrates. The series of organophosphate 

herbicides have been used to determine inhibition patterns against both P-O and P-S 

bonded substrates and indicate that OPH uses more than one enzymatic mechanism. 

OPH has also been used to score plant callus, leaf, and seed tissue. The scoring process 

was able to distinguish between transgenic and non-transgenic tissue. There has also 

been a promising start to establishing OPH as a selectable marker system. Further 

refinement of the plant expression system, as well as the marker systems will yield not 

only new abundant source of enzyme, but also a new technological system for use in 

plant transformation research. 
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APPENDIX A 
 

MAIZE HIGH CODON TABLE AND CHANGES TO THE NATIVE opd 
GENE 

 
 
Maize codon usage table taken from the Codon Usage Database (www.kazusa.or.jp/codon) 
 
AmAcid  Codon      Number    /1000     Fraction    
  
Gly     GGG     11275.00     15.10      0.21 
Gly     GGA     10838.00     14.51      0.20 
Gly     GGT     11380.00     15.24      0.21 
Gly     GGC     21059.00     28.20      0.39 
  
Glu     GAG     29427.00     39.40      0.64 
Glu     GAA     16250.00     21.76      0.36 
Asp     GAT     17764.00     23.78      0.44 
Asp     GAC     22752.00     30.46      0.56 
  
Val     GTG     18314.00     24.52      0.36 
Val     GTA      5370.00      7.19      0.11 
Val     GTT     12238.00     16.39      0.24 
Val     GTC     14896.00     19.94      0.29 
  
Ala     GCG     15610.00     20.90      0.23 
Ala     GCA     12429.00     16.64      0.19 
Ala     GCT     16694.00     22.35      0.25 
Ala     GCC     21904.00     29.33      0.33 
  
Arg     AGG     10527.00     14.09      0.25 
Arg     AGA      6855.00      9.18      0.16 
Ser     AGT      6219.00      8.33      0.11 
Ser     AGC     11381.00     15.24      0.21 
  
Lys     AAG     29494.00     39.49      0.70 
Lys     AAA     12567.00     16.83      0.30 
Asn     AAT     10987.00     14.71      0.40 
Asn     AAC     16252.00     21.76      0.60 
  
Met     ATG     17706.00     23.71      1.00 
Ile     ATA      7049.00      9.44      0.20 
Ile     ATT     11943.00     15.99      0.33 
Ile     ATC     17033.00     22.81      0.47 
  
Thr     ACG      7650.00     10.24      0.21 
Thr     ACA      7987.00     10.69      0.22 
Thr     ACT      8958.00     11.99      0.24 
Thr     ACC     12066.00     16.16      0.33 
  
Trp     TGG      9747.00     13.05      1.00 
End     TGA       828.00      1.11      0.45 
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Cys     TGT      4502.00      6.03      0.34 
Cys     TGC      8650.00     11.58      0.66 
  
End     TAG       568.00      0.76      0.31 
End     TAA       447.00      0.60      0.24 
Tyr     TAT      7989.00     10.70      0.37 
Tyr     TAC     13868.00     18.57      0.63 
  
Leu     TTG     10227.00     13.69      0.15 
Leu     TTA      5819.00      7.79      0.08 
Phe     TTT     10405.00     13.93      0.37 
Phe     TTC     18021.00     24.13      0.63 
  
Ser     TCG      7391.00      9.90      0.14 
Ser     TCA      8270.00     11.07      0.15 
Ser     TCT      9418.00     12.61      0.17 
Ser     TCC     11779.00     15.77      0.22 
  
Arg     CGG      6442.00      8.63      0.15 
Arg     CGA      3662.00      4.90      0.09 
Arg     CGT      4912.00      6.58      0.12 
Arg     CGC      9761.00     13.07      0.23 
  
Gln     CAG     17187.00     23.01      0.61 
Gln     CAA     11189.00     14.98      0.39 
His     CAT      7896.00     10.57      0.43 
His     CAC     10355.00     13.86      0.57 
  
Leu     CTG     17602.00     23.57      0.25 
Leu     CTA      5856.00      7.84      0.08 
Leu     CTT     12255.00     16.41      0.18 
Leu     CTC     17598.00     23.56      0.25 
  
Pro     CCG     10802.00     14.46      0.26 
Pro     CCA     10609.00     14.20      0.26 
Pro     CCT     10004.00     13.39      0.24 
Pro     CCC      9946.00     13.32      0.24 
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Table of mRNA Problem Sequences Used to Scan the Native opd Gene  
 
 
 

 
 
 
 
 
 
 
 

Summary of Changes to the Native opd Gene 
 
 

 
 
 

 

OPD Maize Optimized OPD

# Base Changes - 217

% GC 57% 70%

# of Potential Maize mRNA
Processing Problems (by
sequence analysis with GCG)

40 10

Name Sequence
Killer ATTA
mRNA Deg AAAA
mRNA Deg TTTT
mRNA Deg TTTTRTY
AT String W {5}
polyA AANNAA
5' Splice VRGTRANN
3' Splice YAGV
mRNA Deg ATTTA
mRNA Deg AATAA
polyA AATAAA
polyA AATAAT
polyA AACCAA
5' Splice ATAGCAA
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APPENDIX B 
 

OPA AND OPB T1 SEED EXPRESSION DATA 
 
 

Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
OPA0301 0.9680 1.0100 1.0434 0.0130 0.1263 0.5050 

 0.5060 0.1860 0.3676 0.0046 0.0233 0.0930 
 1.2730 0.1820 0.1430 0.0018 0.0228 0.0910 
 1.1490 0.3010 0.2620 0.0033 0.0376 0.1505 
 0.4630 1.4850 3.2073 0.0401 0.1856 0.7425 

OPA0304 2.1230 0.1230 0.0579 0.0007 0.0154 0.0615 
 1.5750 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.8140 0.2130 0.1174 0.0015 0.0266 0.1065 
 1.8590 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.9000 11.4190 6.0100 0.0751 1.4274 5.7095 

OPA0305 1.4510 4.4290 3.0524 0.0382 0.5536 2.2145 
 1.2570 0.1320 0.1050 0.0013 0.0165 0.0660 
 0.0340 0.1880 5.5294 0.0691 0.0235 0.0940 
 0.6770 0.4810 0.7105 0.0089 0.0601 0.2405 
 0.7040 0.1070 0.1520 0.0019 0.0134 0.0535 

OPA0306 6.7330 0.7310 0.1086 0.0014 0.0914 0.3655 
 0.9300 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.8180 0.0000 0.0000 0.0000 0.0000 0.0000 
 2.1220 0.1430 0.0674 0.0008 0.0179 0.0715 
 1.7570 0.5470 0.3113 0.0039 0.0684 0.2735 

OPA0307 1.4680 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.9820 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.3020 1.4300 1.0983 0.0137 0.1788 0.7150 
 0.9730 0.2390 0.2456 0.0031 0.0299 0.1195 
 1.1150 1.0530 0.9444 0.0118 0.1316 0.5265 

OPA0310 1.5060 3.9680 2.6348 0.0329 0.4960 1.9840 
 1.8700 8.4480 4.5176 0.0565 1.0560 4.2240 
 2.9820 0.1170 0.0392 0.0005 0.0146 0.0585 
 1.6110 2.5630 1.5909 0.0199 0.3204 1.2815 
 1.3460 3.7460 2.7831 0.0348 0.4683 1.8730 

OPA0101 1.3650 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.6140 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.6700 0.1800 0.1078 0.0013 0.0225 0.0900 
 1.7890 0.2100 0.1174 0.0015 0.0263 0.1050 
 1.4010 0.4060 0.2898 0.0036 0.0508 0.2030 

OPA0102 2.2020 0.2400 0.1090 0.0014 0.0300 0.1200 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
 1.3480 0.1830 0.1358 0.0017 0.0229 0.0915 
 1.5360 0.4180 0.2721 0.0034 0.0523 0.2090 
 1.1170 0.1480 0.1325 0.0017 0.0185 0.0740 
 1.3390 0.1630 0.1217 0.0015 0.0204 0.0815 

OPA0104 1.8360 0.2030 0.1106 0.0014 0.0254 0.1015 
 1.8390 0.4050 0.2202 0.0028 0.0506 0.2025 
 1.4850 1.3820 0.9306 0.0116 0.1728 0.6910 
 0.9770 0.1530 0.1566 0.0020 0.0191 0.0765 
 2.4420 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA0113 2.9090 0.2070 0.0712 0.0009 0.0259 0.1035 
 2.3020 0.2360 0.1025 0.0013 0.0295 0.1180 
 1.3020 0.1670 0.1283 0.0016 0.0209 0.0835 
 0.8630 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.6630 0.4080 0.2453 0.0031 0.0510 0.2040 

OPA0114 1.5140 0.1820 0.1202 0.0015 0.0228 0.0910 
 1.6390 0.6540 0.3990 0.0050 0.0818 0.3270 
 1.4280 0.4410 0.3088 0.0039 0.0551 0.2205 
 2.0280 0.3770 0.1859 0.0023 0.0471 0.1885 
 2.0960 1.1620 0.5544 0.0069 0.1453 0.5810 

OPA0504 2.4730 0.3390 0.1371 0.0017 0.0424 0.1695 
 1.3210 0.3930 0.2975 0.0037 0.0491 0.1965 
 1.3810 0.1040 0.0753 0.0009 0.0130 0.0520 
 2.2330 0.9950 0.4456 0.0056 0.1244 0.4975 
 1.4810 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA0515 3.4460 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.9880 0.0000 0.0000 0.0000 0.0000 0.0000 
 2.1190 0.1530 0.0722 0.0009 0.0191 0.0765 
 2.4690 0.2840 0.1150 0.0014 0.0355 0.1420 
 1.8580 0.1860 0.1001 0.0013 0.0233 0.0930 

OPA0402 2.1200 7.2960 3.4415 0.0430 0.9120 3.6480 
 1.6770 0.4380 0.2612 0.0033 0.0548 0.2190 
 0.1490 0.1330 0.8926 0.0112 0.0166 0.0665 
 1.3420 0.1540 0.1148 0.0014 0.0193 0.0770 
 1.4140 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA0403 1.9990 0.0000 0.0000 0.0000 0.0000 0.0000 
 2.0620 0.1380 0.0669 0.0008 0.0173 0.0690 
 1.9060 1.3160 0.6905 0.0086 0.1645 0.6580 
 1.1510 0.0000 0.0000 0.0000 0.0000 0.0000 
 2.0260 1.3240 0.6535 0.0082 0.1655 0.6620 

OPA0406 2.9580 12.9930 4.3925 0.0549 1.6241 6.4965 
 3.2290 8.2310 2.5491 0.0319 1.0289 4.1155 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
 2.1840 18.3230 8.3897 0.1049 2.2904 9.1615 
 3.1970 21.4130 6.6978 0.0837 2.6766 10.7065 
 3.4270 7.8880 2.3017 0.0288 0.9860 3.9440 

OPA0407 1.4500 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.6310 0.0000 0.0000 0.0000 0.0000 0.0000 
 2.1280 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.6160 0.2360 0.1460 0.0018 0.0295 0.1180 
 2.1030 0.1210 0.0575 0.0007 0.0151 0.0605 

OPA0409 1.4050 0.5050 0.3594 0.0045 0.0631 0.2525 
 1.3170 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8390 0.1070 0.1275 0.0016 0.0134 0.0535 
 1.5340 0.4130 0.2692 0.0034 0.0516 0.2065 
 1.5410 0.4790 0.3108 0.0039 0.0599 0.2395 

OPA0410 1.9210 3.1340 1.6314 0.0204 0.3918 1.5670 
 3.4450 4.7870 1.3896 0.0174 0.5984 2.3935 
 2.3990 23.3640 9.7391 0.1217 2.9205 11.6820 
 2.4340 7.9490 3.2658 0.0408 0.9936 3.9745 
 2.7430 0.3170 0.1156 0.0014 0.0396 0.1585 

OPA2102 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0050 2.5840 2.5711 0.0321 0.3230 1.2920 
 0.6560 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0170 2.5030 2.4612 0.0308 0.3129 1.2515 
 0.3060 0.6600 2.1569 0.0270 0.0825 0.3300 

OPA2103 0.4380 6.6140 15.1005 0.1888 0.8268 3.3070 
 0.4930 2.1390 4.3387 0.0542 0.2674 1.0695 
 0.6100 1.4940 2.4492 0.0306 0.1868 0.7470 
 1.6810 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.6000 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2104 0.3700 6.8410 18.4892 0.2311 0.8551 3.4205 
 0.3860 5.1760 13.4093 0.1676 0.6470 2.5880 
 0.0050 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.9900 1.7440 1.7616 0.0220 0.2180 0.8720 
 0.1470 0.2130 1.4490 0.0181 0.0266 0.1065 

OPA2105 1.7360 0.0100 0.0058 0.0001 0.0013 0.0050 
 0.1230 0.9460 7.6911 0.0961 0.1183 0.4730 
 0.1790 3.6270 20.2626 0.2533 0.4534 1.8135 
 0.9840 4.5060 4.5793 0.0572 0.5633 2.2530 
 0.6650 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2110 0.0880 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8300 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1320 0.5210 3.9470 0.0493 0.0651 0.2605 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
 0.0030 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7060 4.3700 6.1898 0.0774 0.5463 2.1850 

OPA2111 0.4550 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4330 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.6040 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8090 0.4260 0.5266 0.0066 0.0533 0.2130 
 1.1320 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2113 0.5140 0.6620 1.2879 0.0161 0.0828 0.3310 
 1.4980 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0480 0.6160 0.5878 0.0073 0.0770 0.3080 
 2.0680 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1700 0.9120 5.3647 0.0671 0.1140 0.4560 

OPA2114 0.6990 0.2720 0.3891 0.0049 0.0340 0.1360 
 0.1780 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0680 0.4770 7.0147 0.0877 0.0596 0.2385 
 0.3700 0.7400 2.0000 0.0250 0.0925 0.3700 
 0.2950 1.1050 3.7458 0.0468 0.1381 0.5525 

OPA1606 0.6750 19.8990 29.4800 0.3685 2.4874 9.9495 
 0.6260 14.3360 22.9010 0.2863 1.7920 7.1680 
 1.7000 29.2190 17.1876 0.2148 3.6524 14.6095 
 0.8620 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2970 14.6560 49.3468 0.6168 1.8320 7.3280 

OPA1609 1.5040 26.9730 17.9342 0.2242 3.3716 13.4865 
 1.2770 54.1430 42.3986 0.5300 6.7679 27.0715 
 0.7790 3.7100 4.7625 0.0595 0.4638 1.8550 
 0.0340 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7310 4.1900 5.7319 0.0716 0.5238 2.0950 

OPA1610 1.7480 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.6800 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.5500 0.2630 0.4782 0.0060 0.0329 0.1315 
 0.9150 13.5020 14.7563 0.1845 1.6878 6.7510 
 1.1200 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2505 2.4700 0.0000 0.0000 0.0000 0.0000 0.0000 
 2.0440 6.5970 3.2275 0.0403 0.8246 3.2985 
 1.2510 5.2320 4.1823 0.0523 0.6540 2.6160 
 0.2890 4.2810 14.8131 0.1852 0.5351 2.1405 
 1.8000 20.9900 11.6611 0.1458 2.6238 10.4950 

OPA2503 0.6520 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.3320 0.5550 0.4167 0.0052 0.0694 0.2775 
 1.1560 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3780 16.2310 42.9392 0.5367 2.0289 8.1155 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
 1.0550 19.2870 18.2815 0.2285 2.4109 9.6435 

OPA2506 0.7880 1.4500 1.8401 0.0230 0.1813 0.7250 
 1.9730 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.2950 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.9910 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7080 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2510 0.7700 1.9040 2.4727 0.0309 0.2380 0.9520 
 0.6960 2.2590 3.2457 0.0406 0.2824 1.1295 
 0.7930 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8460 0.9450 1.1170 0.0140 0.1181 0.4725 
 0.3840 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2515 0.3480 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.2230 1.9800 1.6190 0.0202 0.2475 0.9900 
 0.2840 1.0170 3.5810 0.0448 0.1271 0.5085 
 0.8250 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0010 21.0790 21.0579 0.2632 2.6349 10.5395 

OPA1203 1.1640 6.7550 5.8033 0.0725 0.8444 3.3775 
 0.4940 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1920 2.0840 10.8542 0.1357 0.2605 1.0420 
 0.0070 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.9870 1.4170 1.4357 0.0179 0.1771 0.7085 

OPA1205 0.6960 2.9070 4.1767 0.0522 0.3634 1.4535 
 0.3990 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8450 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.2920 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.3240 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA1207 0.4030 6.5660 16.2928 0.2037 0.8208 3.2830 
 0.4450 2.1360 4.8000 0.0600 0.2670 1.0680 
 0.7210 2.7060 3.7531 0.0469 0.3383 1.3530 
 0.7750 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2180 6.0420 27.7156 0.3464 0.7553 3.0210 

OPA1402 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2560 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3410 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4500 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3790 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA1210 0.6290 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4850 1.9960 4.1155 0.0514 0.2495 0.9980 
 0.5910 1.4540 2.4602 0.0308 0.1818 0.7270 
 0.4860 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8200 0.0000 0.0000 0.0000 0.0000 0.0000 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
OPA2602 0.4930 0.0000 0.0000 0.0000 0.0000 0.0000 

 0.2500 2.0510 8.2040 0.1026 0.2564 1.0255 
 0.4260 0.6010 1.4108 0.0176 0.0751 0.3005 
 0.5060 0.3890 0.7688 0.0096 0.0486 0.1945 
 0.1690 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2603 0.3050 0.8420 2.7607 0.0345 0.1053 0.4210 
 0.6130 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2260 8.1320 35.9823 0.4498 1.0165 4.0660 
 0.6220 8.7160 14.0129 0.1752 1.0895 4.3580 
 0.1490 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2604 0.2650 0.2680 1.0113 0.0126 0.0335 0.1340 
 0.1630 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1820 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1060 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2760 0.0840 0.3043 0.0038 0.0105 0.0420 

OPA2607 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4520 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1070 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4290 1.7600 4.1026 0.0513 0.2200 0.8800 
 0.0950 0.0000 0.0000 0.0000 0.0000 0.0000 

OPA2610 0.0720 0.0370 0.5139 0.0064 0.0046 0.0185 
 0.0090 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1600 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0650 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1600 0.1620 1.0125 0.0127 0.0203 0.0810 

OPA2611 0.4620 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4530 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0320 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1730 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1360 0.0720 0.5294 0.0066 0.0090 0.0360 

OPA2613 0.2630 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3280 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1080 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1810 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.5330 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0102 0.0710 2.0610 29.0282 0.3629 0.2576 1.0305 
 0.3550 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0620 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0740 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0680 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4290 8.2840 19.3100 0.2414 1.0355 4.1420 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
OPB0103 0.1680 0.0000 0.0000 0.0000 0.0000 0.0000 

 0.1030 12.9310 125.5437 1.5693 1.6164 6.4655 
 0.3870 7.3100 18.8889 0.2361 0.9138 3.6550 
 0.1220 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2350 7.9700 33.9149 0.4239 0.9963 3.9850 
 0.1310 4.6270 35.3206 0.4415 0.5784 2.3135 

OPB0104 0.2560 8.6840 33.9219 0.4240 1.0855 4.3420 
 0.2150 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4460 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3110 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1390 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1190 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0202 0.0720 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1990 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1440 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1930 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0900 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0760 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0203 0.3760 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4610 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2740 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4200 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2280 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3080 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0204 0.1340 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2610 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0760 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0910 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3350 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0209 0.4860 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2970 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3900 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4140 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4440 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0210 0.4870 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3670 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.2140 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1100 0.0000 0.0000 0.0000 0.0000 0.0000 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
 0.3070 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0303 1.4110 3.7830 2.6811 0.0335 0.4729 1.8915 
 0.9440 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.4480 4.1650 2.8764 0.0360 0.5206 2.0825 
 2.0220 3.5520 1.7567 0.0220 0.4440 1.7760 
 1.4870 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.7780 4.0550 2.2807 0.0285 0.5069 2.0275 

OPB0305 0.3460 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.1970 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.3250 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.9630 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.1490 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.1240 3.3990 3.0240 0.0378 0.4249 1.6995 

OPB0306 0.6890 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8890 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3520 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7860 2.0310 2.5840 0.0323 0.2539 1.0155 
 0.7640 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0705 0.6940 0.2480 0.3573 0.0045 0.0310 0.1240 
 1.3980 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.5040 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8350 0.7820 0.9365 0.0117 0.0978 0.3910 
 1.1160 2.2630 2.0278 0.0253 0.2829 1.1315 
 0.5310 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0706 1.2110 7.6430 6.3113 0.0789 0.9554 3.8215 
 0.7660 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8220 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8100 5.0650 6.2531 0.0782 0.6331 2.5325 
 1.9450 5.4810 2.8180 0.0352 0.6851 2.7405 
 1.3480 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0709 0.3560 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7290 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8400 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7110 2.5390 3.5710 0.0446 0.3174 1.2695 
 1.3120 0.9270 0.7066 0.0088 0.1159 0.4635 
 1.0250 1.7490 1.7063 0.0213 0.2186 0.8745 

OPB0712 1.1850 6.3610 5.3679 0.0671 0.7951 3.1805 
 0.6510 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.1180 2.8190 2.5215 0.0315 0.3524 1.4095 
 1.2660 0.0000 0.0000 0.0000 0.0000 0.0000 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
 0.8280 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0860 7.4120 6.8250 0.0853 0.9265 3.7060 

OPB0714 0.9530 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.4860 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8270 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0050 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8830 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.1640 2.4900 2.1392 0.0267 0.3113 1.2450 

OPB0715 0.7540 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8770 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.1930 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7750 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.6140 2.2710 3.6987 0.0462 0.2839 1.1355 
 2.0950 5.7230 2.7317 0.0341 0.7154 2.8615 

OPB0716 2.2330 10.8140 4.8428 0.0605 1.3518 5.4070 
 0.9290 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.1440 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.3860 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.3250 6.5790 20.2431 0.2530 0.8224 3.2895 
 1.0030 4.7100 4.6959 0.0587 0.5888 2.3550 

OPB0803 1.3520 2.3240 1.7189 0.0215 0.2905 1.1620 
 0.5220 3.7270 7.1398 0.0892 0.4659 1.8635 
 1.3820 1.9530 1.4132 0.0177 0.2441 0.9765 
 0.3940 0.9750 2.4746 0.0309 0.1219 0.4875 
 0.5330 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0150 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0804 0.8700 6.4940 7.4644 0.0933 0.8118 3.2470 
 0.6750 5.8420 8.6548 0.1082 0.7303 2.9210 
 1.2830 8.8360 6.8870 0.0861 1.1045 4.4180 
 1.7840 12.4470 6.9770 0.0872 1.5559 6.2235 
 1.7440 2.8260 1.6204 0.0203 0.3533 1.4130 
 1.3130 9.6100 7.3191 0.0915 1.2013 4.8050 

OPB0805 1.1570 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.9000 10.6630 11.8478 0.1481 1.3329 5.3315 
 1.6050 9.8340 6.1271 0.0766 1.2293 4.9170 
 0.5660 0.0000 0.0000 0.0000 0.0000 0.0000 
 4.7860 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.3470 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0806 0.3990 4.9080 12.3008 0.1538 0.6135 2.4540 
 0.8840 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7660 0.0000 0.0000 0.0000 0.0000 0.0000 
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Event Protein Units/ml Units/mg %TSP µg OPH total ng/mg Seed 
 0.5800 5.3440 9.2138 0.1152 0.6680 2.6720 
 1.3050 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7610 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0809 1.0440 11.2930 10.8170 0.1352 1.4116 5.6465 
 0.7880 4.9960 6.3401 0.0793 0.6245 2.4980 
 0.9650 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.6830 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7580 8.6670 11.4340 0.1429 1.0834 4.3335 
 0.7260 10.0450 13.8361 0.1730 1.2556 5.0225 

OPB0813 0.8580 6.2590 7.2949 0.0912 0.7824 3.1295 
 0.5620 6.1230 10.8950 0.1362 0.7654 3.0615 
 0.3210 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.8550 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.1800 4.6320 3.9254 0.0491 0.5790 2.3160 
 1.8170 0.0000 0.0000 0.0000 0.0000 0.0000 

OPB0901 1.7930 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.2660 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.0190 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7410 0.0000 0.0000 0.0000 0.0000 0.0000 
 0.7940 13.8030 17.3841 0.2173 1.7254 6.9015 
 1.0870 34.1080 31.3781 0.3922 4.2635 17.0540 

OPB0905 1.0950 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.4910 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.8100 31.0580 17.1591 0.2145 3.8823 15.5290 
 1.1660 0.0000 0.0000 0.0000 0.0000 0.0000 
 1.3630 10.8400 7.9530 0.0994 1.3550 5.4200 
 0.9100 11.0250 12.1154 0.1514 1.3781 5.5125 
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APPENDIX C 
 

OPH EXPRESSION IN T2 AND HIGHER SEED 
 
 

T2 Greenhouse Grown Expression 
OPA0403-2          

Sample dABS/min Volume Protein Units/ml Total 
Units 

Average  Total Units Units/mg 
Protein 

% TSP 

T2 Extraction 1 0.3394 31 1.5820 4.0129 124.4001 129.3849 162.6492 2.5366 0.0317 
 0.3565 31  4.2151 130.6677     

 0.3631 31  4.2931 133.0868     
T2 Extraction 2 0.0998 27 1.4280 1.1800 31.8597 33.2643  0.8263 0.0103 

 0.1134 27  1.3408 36.2013     
 0.0994 27  1.1753 31.7320     

          
  Units/g Seed ng O PH/mg Seed       

T2 Total 
Extraction 

10.1529 1.2691        

          

          
          
          

 T2 Bulk Sample of 16.02g (50 Seeds)       
 First extration was 1 Hour at Room Temp with 3ml buffer/g seed    

 Second Extraction was 30 min with same buffer/seed ratio      
 Protein measured by Bradford and expressed in mg/ml     

          
OPA0411-2          

Sample dABS/min Volume Protein Units/ml Total 
Units 

Average  Total Units Units/mg 
Protein 

% TSP 

 1.1923 31 3.3380 14.0972 437.0130 410.6840 410.6840 3.9688 0.0496 

 1.0936 31  12.9302 400.8366     
 1.0755 31  12.7162 394.2024     

 Units/g Seed ng OPH/mg Seed       

 27.4705 3.4338        
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T3 Greenhouse Grown Expression 
 

OPA0411 Plant Protein Units/ml Units/mg Protein %TSP Total µg OPH ng/mg Seed 
6 0.604 1.191 1.971 0.025 2.977 0.475 
8 1.267 5.064 3.997 0.050 12.661 2.022 
12 2.550 15.409 6.043 0.076 38.523 6.153 
16 2.146 0.341 0.159 0.002 0.852 0.136 
18 0.390 4.025 10.320 0.129 10.062 1.607 
21 1.836 12.069 6.573 0.082 30.172 4.819 
44 1.085 3.976 3.665 0.046 9.941 1.588 
47 0.288 4.272 14.833 0.185 10.680 1.706 
49 1.964 10.766 5.481 0.069 26.914 4.299 
51 1.866 18.198 9.752 0.122 45.494 7.266 
       

OPA0403 Plant       
1 1.133 1.479 1.305 0.016 3.698 0.591 
4 1.112 2.265 2.037 0.025 5.663 0.904 
5 1.046 0 0.000 0.000 0.000 0.000 
8 0.692 0.382 0.552 0.007 0.955 0.153 
10 0.957 1.909 1.995 0.025 4.773 0.762 

      

 
T2 and T3 Field Expression 

 
OPA Field 

Illinois Summer 2002 
 

Plant Protein dABS Units/ml Units/mg Average 
(Units/mg) 

%TSP ng/mg 
protein 

ng/mg Seed 

OPA04-3079-IL02-06 2.7450 0.0444 0.5250 0.1912 0.1707 0.00213% 23.9055 0.3281 
  0.0366 0.4327 0.1576     
  0.0379 0.4481 0.1632     

OPA04-3081-IL02-06 3.2660 0.0744 0.8797 0.2693 0.2528 0.00316% 33.6677 0.5498 
  0.0713 0.8430 0.2581     
  0.0638 0.7543 0.2310     

OPA04-4030-IL02-06 3.0540 0.0632 0.7472 0.2447 0.2386 0.00298% 30.5848 0.4670 
  0.0604 0.7141 0.2338     
  0.0613 0.7248 0.2373     
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OPB Field 

Nebraska Summer 2002 
 

Extraction 
1 

         

Plate 
Position 

Ear Event Protein 
mg/ml 

Units/
ml 

Units/
mg 

%TSP Total 
Units 

µg OPH ng/mg seed 

1 NE021334-3 OPB0109 0.480 2.975 6.198 0.077 1.488 0.186 1.859 
2 NE021334)1 OPB0109 0.463 8.055 17.397 0.217 4.028 0.503 5.034 
3 NE021333-A2 OPB0107 0.461 0.597 1.295 0.016 0.299 0.037 0.373 
4 NE021333-3 OPB0107 0.587 0.000 0.000 0.000 0.000 0.000 0.000 
5 NE021333)2 OPB0107 1.212 18.330 15.124 0.189 9.165 1.146 11.456 
6 NE021333)1 OPB0107 0.543 4.288 7.897 0.099 2.144 0.268 2.680 
7 NE021332-5 OPB0107 0.538 0.000 0.000 0.000 0.000 0.000 0.000 
8 NE021332-4 OPB0107 0.588 1.351 2.298 0.029 0.676 0.084 0.844 
9 NE021332-3 OPB0107 0.561 0.174 0.310 0.004 0.087 0.011 0.109 
10 NE021332)2 OPB0107 0.321 0.000 0.000 0.000 0.000 0.000 0.000 
11 NE021332)1 OPB0107 0.897 7.795 8.690 0.109 3.898 0.487 4.872 
12 NE021331-5 OPB0107 0.481 0.000 0.000 0.000 0.000 0.000 0.000 
13 NE021331-4 OPB0107 0.504 0.000 0.000 0.000 0.000 0.000 0.000 
14 NE021331-3 OPB0107 0.762 0.316 0.415 0.005 0.158 0.020 0.198 
15 NE021331)2 OPB0107 1.009 13.282 13.164 0.165 6.641 0.830 8.301 
16 NE021331)1 OPB0107 0.497 6.072 12.217 0.153 3.036 0.380 3.795 
17 NE021330-5 OPB0107 1.016 0.000 0.000 0.000 0.000 0.000 0.000 
18 NE021330-4 OPB0107 0.746 0.000 0.000 0.000 0.000 0.000 0.000 
19 NE021330-3 OPB0107 0.897 5.325 5.936 0.074 2.663 0.333 3.328 
20 NE021330)2 OPB0107 1.182 0.753 0.637 0.008 0.377 0.047 0.471 
21 NE021330)1 OPB0107 0.586 1.850 3.157 0.039 0.925 0.116 1.156 
22 NE021328-6 OPB0107 0.433 20.858 48.171 0.602 10.429 1.304 13.036 
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Plate 
Position 

Ear Event Protein 
mg/ml 

Units/
ml 

Units/
mg 

%TSP Total 
Units 

µg OPH ng/mg seed 

23 NE021328-5 OPB0107 0.966 0.000 0.000 0.000 0.000 0.000 0.000 
24 NE021328-4 OPB0107 0.862 0.000 0.000 0.000 0.000 0.000 0.000 
25 NE021328-3 OPB0107 0.533 12.464 23.385 0.292 6.232 0.779 7.790 
26 NE021360-5 OPB0302 0.908 4.822 5.311 0.066 2.411 0.301 3.014 
27 NE021360-3 OPB0302 1.153 13.771 11.944 0.149 6.886 0.861 8.607 
28 NE021358-6 OPB0116 0.430 1.332 3.098 0.039 0.666 0.083 0.833 
29 NE021358-5 OPB0116 1.104 3.884 3.518 0.044 1.942 0.243 2.428 
30 NE021358-A3 OPB0116 0.427 6.109 14.307 0.179 3.055 0.382 3.818 
31 NE021358-A2 OPB0116 0.172 0.000 0.000 0.000 0.000 0.000 0.000 
32 NE021358)1 OPB0116 0.301 6.408 21.289 0.266 3.204 0.401 4.005 
33 NE021357-7 OPB0111 1.309 3.711 2.835 0.035 1.856 0.232 2.319 
34 NE021357-5 OPB0111 0.160 3.892 24.325 0.304 1.946 0.243 2.433 
35 NE021357-4 OPB0111 0.590 8.157 13.825 0.173 4.079 0.510 5.098 
36 NE021357-3 OPB0111 0.285 4.461 15.653 0.196 2.231 0.279 2.788 
37 NE021338-3 OPB0111 0.792 10.404 13.136 0.164 5.202 0.650 6.503 
38 NE021338)2 OPB0111 0.780 14.775 18.942 0.237 7.388 0.923 9.234 
39 NE021338)1 OPB0111 0.491 0.000 0.000 0.000 0.000 0.000 0.000 
40 NE021337-6 OPB0111 0.609 6.213 10.202 0.128 3.107 0.388 3.883 
41 NE021337-4 OPB0111 1.136 4.557 4.011 0.050 2.279 0.285 2.848 
42 NE021337-3 OPB0111 0.822 9.207 11.201 0.140 4.604 0.575 5.754 
43 NE021337)1 OPB0111 0.235 9.814 41.762 0.522 4.907 0.613 6.134 
44 NE021336-6 OPB0111 0.672 7.736 11.512 0.144 3.868 0.484 4.835 
45 NE021336-5 OPB0111 0.746 0.000 0.000 0.000 0.000 0.000 0.000 
46 NE021336-4 OPB0111 0.360 4.333 12.036 0.150 2.167 0.271 2.708 
47 NE021336)2 OPB0111 1.059 3.700 3.494 0.044 1.850 0.231 2.313 
48 NE021336)1 OPB0111 0.551 0.608 1.103 0.014 0.304 0.038 0.380 
49 NE021334-5 OPB0109 1.086 0.671 0.618 0.008 0.336 0.042 0.419 
50 NE021334-4 OPB0109 0.560 3.803 6.791 0.085 1.902 0.238 2.377 
51 NE021369-4 OPB0309 0.550 5.692 10.349 0.129 2.846 0.356 3.558 
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Plate 
Position 

Ear Event Protein 
mg/ml 

Units/
ml 

Units/
mg 

%TSP Total 
Units 

µg OPH ng/mg seed 

52 NE021369-3 OPB0309 1.371 7.268 5.301 0.066 3.634 0.454 4.543 
53 NE021368-5 OPB0308 1.183 6.276 5.305 0.066 3.138 0.392 3.923 
54 NE021367-3 OPB0307 0.956 0.000 0.000 0.000 0.000 0.000 0.000 
55 NE021367)2 OPB0307 1.314 16.887 12.852 0.161 8.444 1.055 10.554 
56 NE021364-7 OPB0306 0.736 17.813 24.202 0.303 8.907 1.113 11.133 
57 NE021364-6 OPB0306 1.181 13.299 11.261 0.141 6.650 0.831 8.312 
58 NE021364-5 OPB0306 0.053 0.000 0.000 0.000 0.000 0.000 0.000 
59 NE021363-6 OPB0305 0.621 0.000 0.000 0.000 0.000 0.000 0.000 
60 NE021363-5 OPB0305 0.602 9.782 16.249 0.203 4.891 0.611 6.114 
61 NE021363)2 OPB0305 0.807 18.640 23.098 0.289 9.320 1.165 11.650 
62 NE021363)1 OPB0305 1.556 12.948 8.321 0.104 6.474 0.809 8.093 
63 NE021362-A0 OPB0304 0.683 16.302 23.868 0.298 8.151 1.019 10.189 
64 NE021362-9 OPB0304 0.445 0.000 0.000 0.000 0.000 0.000 0.000 
65 NE021362-3 OPB0304 1.189 12.886 10.838 0.135 6.443 0.805 8.054 
66 NE021362)2 OPB0304 1.170 14.581 12.462 0.156 7.291 0.911 9.113 
67 NE021362)1 OPB0304 0.889 7.077 7.961 0.100 3.539 0.442 4.423 
68 NE021361-7 OPB0303 0.406 0.000 0.000 0.000 0.000 0.000 0.000 
69 NE021361-5 OPB0303 0.566 2.193 3.875 0.048 1.097 0.137 1.371 
70 NE021361-4 OPB0303 0.543 7.022 12.932 0.162 3.511 0.439 4.389 
71 NE021361-3 OPB0303 1.381 8.738 6.327 0.079 4.369 0.546 5.461 
72 NE021361)2 OPB0303 0.662 16.463 24.869 0.311 8.232 1.029 10.289 
73 NE021360-8 OPB0302 0.581 8.073 13.895 0.174 4.037 0.505 5.046 
74 NE021360-7 OPB0302 1.193 12.005 10.063 0.126 6.003 0.750 7.503 
75 NE021360-6 OPB0302 1.008 15.159 15.039 0.188 7.580 0.947 9.474 
76 NE021315-3 OPB0103 0.767 0.000 0.000 0.000 0.000 0.000 0.000 
77 NE021314-3 OPB0103 0.946 14.547 15.377 0.192 7.274 0.909 9.092 
78 NE021314-4 OPB0103 0.623 0.000 0.000 0.000 0.000 0.000 0.000 
79 NE021314-5 OPB0103 0.813 0.000 0.000 0.000 0.000 0.000 0.000 
79 NE021315)1 OPB0103 0.652 11.612 17.810 0.223 5.806 0.726 7.258 
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80 NE021315)2 OPB0103 0.774 0.000 0.000 0.000 0.000 0.000 0.000 
81 NE021313-4 OPB0102 0.515 1.779 3.454 0.043 0.890 0.111 1.112 
82 NE021313-5 OPB0102 1.458 3.411 2.340 0.029 1.706 0.213 2.132 
83 NE021313-6 OPB0102 0.925 0.000 0.000 0.000 0.000 0.000 0.000 
84 NE021314)1 OPB0103 0.553 6.060 10.958 0.137 3.030 0.379 3.788 
85 NE021314)2 OPB0103 0.398 0.000 0.000 0.000 0.000 0.000 0.000 
86 NE021312-3 OPB0102 1.171 0.000 0.000 0.000 0.000 0.000 0.000 
87 NE021312-4 OPB0102 0.858 0.000 0.000 0.000 0.000 0.000 0.000 
88 NE021312-5 OPB0102 0.917 0.000 0.000 0.000 0.000 0.000 0.000 
89 NE021313)1 OPB0102 1.199 11.796 9.838 0.123 5.898 0.737 7.373 
90 NE021313-3 OPB0102 1.157 13.755 11.889 0.149 6.878 0.860 8.597 
91 NE021311)2 OPB0102 0.544 11.752 21.603 0.270 5.876 0.735 7.345 
92 NE021311-3 OPB0102 1.040 0.654 0.629 0.008 0.327 0.041 0.409 
93 NE021311-4 OPB0102 0.973 0.002 0.002 0.000 0.001 0.000 0.001 
94 NE021311-5 OPB0102 2.124 8.693 4.093 0.051 4.347 0.543 5.433 
95 NE021312)1 OPB0102 0.646 8.277 12.813 0.160 4.139 0.517 5.173 
96 NE021320-4 OPB0104 0.720 2.578 3.581 0.045 1.289 0.161 1.611 
97 NE021320-5 OPB0104 0.707 2.220 3.140 0.039 1.110 0.139 1.388 
98 NE021319-3 OPB0104 0.306 0.000 0.000 0.000 0.000 0.000 0.000 
99 NE021319-4 OPB0104 0.674 0.000 0.000 0.000 0.000 0.000 0.000 
100 NE021320)1 OPB0104 1.557 17.166 11.025 0.138 8.583 1.073 10.729 
101 NE021320)2 OPB0104 1.912 0.000 0.000 0.000 0.000 0.000 0.000 
102 NE021320-3 OPB0104 1.263 0.000 0.000 0.000 0.000 0.000 0.000 
103 NE021318-3 OPB0103 0.980 3.713 3.789 0.047 1.857 0.232 2.321 
104 NE021318-4 OPB0103 0.700 0.000 0.000 0.000 0.000 0.000 0.000 
105 NE021318-5 OPB0103 0.746 5.599 7.505 0.094 2.800 0.350 3.499 
106 NE021319)1 OPB0104 1.714 4.812 2.807 0.035 2.406 0.301 3.008 
107 NE021319)2 OPB0104 1.535 12.838 8.364 0.105 6.419 0.802 8.024 
108 NE021317)1 OPB0103 0.778 17.094 21.972 0.275 8.547 1.068 10.684 
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109 NE021317)2 OPB0103 0.737 17.475 23.711 0.296 8.738 1.092 10.922 
110 NE021317-3 OPB0103 0.878 10.284 11.713 0.146 5.142 0.643 6.428 
111 NE021317-4 OPB0103 0.389 0.000 0.000 0.000 0.000 0.000 0.000 
112 NE021318)1 OPB0103 1.147 9.998 8.717 0.109 4.999 0.625 6.249 
113 NE021311)1 OPB0103 0.964 9.977 10.350 0.129 4.989 0.624 6.236 
114 NE021371)2 OPB0411 0.545 7.090 13.009 0.163 3.545 0.443 4.431 
115 NE021360-1 OPB0302 0.897 27.590 30.758 0.384 13.795 1.724 17.244 
116 NE021376-4 OPB0420 0.582 2.719 4.672 0.058 1.360 0.170 1.699 
117 NE021376-3 OPB0420 0.759 6.266 8.256 0.103 3.133 0.392 3.916 
118 NE021376)2 OPB0420 0.778 1.533 1.970 0.025 0.767 0.096 0.958 
119 NE021375)1 OPB0419 1.796 19.737 10.989 0.137 9.869 1.234 12.336 
120 NE021371-4 OPB0411 0.679 5.322 7.838 0.098 2.661 0.333 3.326 
121 NE021370-6 OPB0311 1.839 6.582 3.579 0.045 3.291 0.411 4.114 
122 NE021370-5 OPB0311 1.670 11.247 6.735 0.084 5.624 0.703 7.029 
123 NE021370-4 OPB0311 1.087 8.871 8.161 0.102 4.436 0.554 5.544 
124 NE021370-3 OPB0311 2.415 6.896 2.855 0.036 3.448 0.431 4.310 
125 NE021369-9 OPB0304 0.733 0.000 0.000 0.000 0.000 0.000 0.000 
126 NE021369-5 OPB0304 0.759 12.038 15.860 0.198 6.019 0.752 7.524 
127 NE021321)1 OPB0104 1.279 19.794 15.476 0.193 9.897 1.237 12.371 
128 NE021321-3 OPB0104 1.324 3.164 2.390 0.030 1.582 0.198 1.978 
129 NE021321-4 OPB0104 0.666 2.430 3.649 0.046 1.215 0.152 1.519 
130 NE021324)1 OPB0104 0.783 13.307 16.995 0.212 6.654 0.832 8.317 
131 NE021324)2 OPB0104 0.873 17.933 20.542 0.257 8.967 1.121 11.208 
132 NE021324-6 OPB0104 0.661 0.000 0.000 0.000 0.000 0.000 0.000 
133 NE021324-8 OPB0104 0.504 8.479 16.823 0.210 4.240 0.530 5.299 
134 NE021324-A0 OPB0104 0.295 0.000 0.000 0.000 0.000 0.000 0.000 
135 NE021325)1 OPB0104 1.136 22.322 19.650 0.246 11.161 1.395 13.951 
136 NE021325)2 OPB0104 1.568 22.878 14.591 0.182 11.439 1.430 14.299 
137 NE021325-3 OPB0104 0.736 0.000 0.000 0.000 0.000 0.000 0.000 
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µg OPH ng/mg seed 

138 NE021325-4 OPB0104 0.574 0.000 0.000 0.000 0.000 0.000 0.000 
139 NE021326)1 OPB0106 0.781 22.764 29.147 0.364 11.382 1.423 14.228 
140 NE021326)2 OPB0106 0.713 7.262 10.185 0.127 3.631 0.454 4.539 
141 NE021326-3 OPB0106 2.827 13.326 4.714 0.059 6.663 0.833 8.329 
142 NE021326-4 OPB0106 0.703 14.591 20.755 0.259 7.296 0.912 9.119 
143 NE021326-5 OPB0106 0.747 11.377 15.230 0.190 5.689 0.711 7.111 
144 NE021327)1 OPB0106 4.386 0.000 0.000 0.000 0.000 0.000 0.000 
145 NE021327)2 OPB0106 6.734 12.872 1.911 0.024 6.436 0.805 8.045 
146 NE021327-3 OPB0106 3.768 0.000 0.000 0.000 0.000 0.000 0.000 
147 NE021327-4 OPB0106 4.583 6.213 1.356 0.017 3.107 0.388 3.883 
148 NE021327-5 OPB0106 6.653 2.625 0.395 0.005 1.313 0.164 1.641 
149 NE021327-6 OPB0106 4.374 0.000 0.000 0.000 0.000 0.000 0.000 
150 NE021327-7 OPB0106 4.937 2.717 0.550 0.007 1.359 0.170 1.698 
151 NE021328)2 OPB0107 4.484 25.425 5.670 0.071 12.713 1.589 15.891 
152 OPA0411T2 OPA0411 3.429 17.142 4.999 0.062 8.571 1.071 10.714 
153 OPB0310GH OPB0310 6.997 0.769 0.110 0.001 0.385 0.048 0.481 
154 LH244 LH244 3.639 0.000 0.000 0.000 0.000 0.000 0.000 
155 LH244 LH244 3.463 0.000 0.000 0.000 0.000 0.000 0.000 

 
 
Extraction 

2 
         

Plate 
Position 

Ear Event Protein 
mg/ml 

Units/
ml 

Units/
mg 

%TSP Total 
Units 

ug OPH ng/mg seed 

1 NE021334-3 OPB0109 0.436 0.000 0.000 0.000 0.000 0.000 0.000 
2 NE021334)1 OPB0109 0.666 5.637 8.464 0.106 2.819 0.352 3.523 
3 NE021333-A2 OPB0107 0.262 0.000 0.000 0.000 0.000 0.000 0.000 
4 NE021333-3 OPB0107 0.375 0.000 0.000 0.000 0.000 0.000 0.000 
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µg OPH ng/mg seed 

5 NE021333)2 OPB0107 0.974 15.367 15.777 0.197 7.684 0.960 9.604 
6 NE021333)1 OPB0107 0.883 9.897 11.208 0.140 4.949 0.619 6.186 
7 NE021332-5 OPB0107 0.527 0.000 0.000 0.000 0.000 0.000 0.000 
8 NE021332-4 OPB0107 0.365 1.309 3.586 0.045 0.655 0.082 0.818 
9 NE021332-3 OPB0107 0.924 3.168 3.429 0.043 1.584 0.198 1.980 
10 NE021332)2 OPB0107 0.994 0.000 0.000 0.000 0.000 0.000 0.000 
11 NE021332)1 OPB0107 0.891 8.163 9.162 0.115 4.082 0.510 5.102 
12 NE021331-5 OPB0107 0.632 3.680 5.823 0.073 1.840 0.230 2.300 
13 NE021331-4 OPB0107 0.399 0.000 0.000 0.000 0.000 0.000 0.000 
14 NE021331-3 OPB0107 1.630 4.592 2.817 0.035 2.296 0.287 2.870 
15 NE021331)2 OPB0107 0.973 11.254 11.566 0.145 5.627 0.703 7.034 
16 NE021331)1 OPB0107 0.532 3.454 6.492 0.081 1.727 0.216 2.159 
17 NE021330-5 OPB0107 0.736 0.598 0.813 0.010 0.299 0.037 0.374 
18 NE021330-4 OPB0107 0.693 0.000 0.000 0.000 0.000 0.000 0.000 
19 NE021330-3 OPB0107 0.286 0.376 1.315 0.016 0.188 0.024 0.235 
20 NE021330)2 OPB0107 1.141 3.531 3.095 0.039 1.766 0.221 2.207 
21 NE021330)1 OPB0107 0.828 3.537 4.272 0.053 1.769 0.221 2.211 
22 NE021328-6 OPB0107 0.964 13.346 13.844 0.173 6.673 0.834 8.341 
23 NE021328-5 OPB0107 0.647 0.000 0.000 0.000 0.000 0.000 0.000 
24 NE021328-4 OPB0107 0.796 0.000 0.000 0.000 0.000 0.000 0.000 
25 NE021328-3 OPB0107 0.476 8.478 17.811 0.223 4.239 0.530 5.299 
26 NE021360-5 OPB0302 0.548 0.000 0.000 0.000 0.000 0.000 0.000 
27 NE021360-3 OPB0302 0.409 10.786 26.372 0.330 5.393 0.674 6.741 
28 NE021358-6 OPB0116 0.599 0.000 0.000 0.000 0.000 0.000 0.000 
29 NE021358-5 OPB0116 1.055 3.681 3.489 0.044 1.841 0.230 2.301 
30 NE021358-A3 OPB0116 0.237 8.207 34.629 0.433 4.104 0.513 5.129 
31 NE021358-A2 OPB0116 0.213 0.000 0.000 0.000 0.000 0.000 0.000 
32 NE021358)1 OPB0116 0.764 4.442 5.814 0.073 2.221 0.278 2.776 
33 NE021357-7 OPB0111 0.858 0.000 0.000 0.000 0.000 0.000 0.000 
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34 NE021357-5 OPB0111 0.328 0.000 0.000 0.000 0.000 0.000 0.000 
35 NE021357-4 OPB0111 0.309 0.000 0.000 0.000 0.000 0.000 0.000 
36 NE021357-3 OPB0111 0.181 0.000 0.000 0.000 0.000 0.000 0.000 
37 NE021338-3 OPB0111 0.803 5.920 7.372 0.092 2.960 0.370 3.700 
38 NE021338)2 OPB0111 1.394 18.650 13.379 0.167 9.325 1.166 11.656 
39 NE021338)1 OPB0111 0.382 0.000 0.000 0.000 0.000 0.000 0.000 
40 NE021337-6 OPB0111 0.850 0.455 0.535 0.007 0.228 0.028 0.284 
41 NE021337-4 OPB0111 1.280 4.593 3.588 0.045 2.297 0.287 2.871 
42 NE021337-3 OPB0111 0.550 5.533 10.060 0.126 2.767 0.346 3.458 
43 NE021337)1 OPB0111 0.462 12.842 27.797 0.347 6.421 0.803 8.026 
44 NE021336-6 OPB0111 0.760 6.403 8.425 0.105 3.202 0.400 4.002 
45 NE021336-5 OPB0111 0.712 0.000 0.000 0.000 0.000 0.000 0.000 
46 NE021336-4 OPB0111 1.358 9.896 7.287 0.091 4.948 0.619 6.185 
47 NE021336)2 OPB0111 0.267 0.000 0.000 0.000 0.000 0.000 0.000 
48 NE021336)1 OPB0111 0.415 0.000 0.000 0.000 0.000 0.000 0.000 
49 NE021334-5 OPB0109 0.417 0.000 0.000 0.000 0.000 0.000 0.000 
50 NE021334-4 OPB0109 0.096 0.285 2.969 0.037 0.143 0.018 0.178 
51 NE021369-4 OPB0309 0.441 9.398 21.311 0.266 4.699 0.587 5.874 
52 NE021369-3 OPB0309 1.430 9.600 6.713 0.084 4.800 0.600 6.000 
53 NE021368-5 OPB0308 0.418 3.683 8.811 0.110 1.842 0.230 2.302 
54 NE021367-3 OPB0307 0.725 0.587 0.810 0.010 0.294 0.037 0.367 
55 NE021367)2 OPB0307 1.197 14.903 12.450 0.156 7.452 0.931 9.314 
56 NE021364-7 OPB0306 0.951 20.797 21.869 0.273 10.399 1.300 12.998 
57 NE021364-6 OPB0306 1.399 17.493 12.504 0.156 8.747 1.093 10.933 
58 NE021364-5 OPB0306 0.706 4.650 6.586 0.082 2.325 0.291 2.906 
59 NE021363-6 OPB0305 0.569 3.809 6.694 0.084 1.905 0.238 2.381 
60 NE021363-5 OPB0305 0.701 8.902 12.699 0.159 4.451 0.556 5.564 
61 NE021363)2 OPB0305 0.661 15.447 23.369 0.292 7.724 0.965 9.654 
62 NE021363)1 OPB0305 0.733 9.706 13.241 0.166 4.853 0.607 6.066 
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63 NE021362-A0 OPB0304 0.687 17.936 26.108 0.326 8.968 1.121 11.210 
64 NE021362-9 OPB0304 0.976 2.530 2.592 0.032 1.265 0.158 1.581 
65 NE021362-3 OPB0304 0.469 5.559 11.853 0.148 2.780 0.347 3.474 
66 NE021362)2 OPB0304 1.058 12.205 11.536 0.144 6.103 0.763 7.628 
67 NE021362)1 OPB0304 0.576 1.472 2.556 0.032 0.736 0.092 0.920 
68 NE021361-7 OPB0303 0.473 0.000 0.000 0.000 0.000 0.000 0.000 
69 NE021361-5 OPB0303 1.410 10.356 7.345 0.092 5.178 0.647 6.473 
70 NE021361-4 OPB0303 1.036 11.636 11.232 0.140 5.818 0.727 7.273 
71 NE021361-3 OPB0303 1.298 7.244 5.581 0.070 3.622 0.453 4.528 
72 NE021361)2 OPB0303 1.259 19.134 15.198 0.190 9.567 1.196 11.959 
73 NE021360-8 OPB0302 0.878 5.214 5.938 0.074 2.607 0.326 3.259 
74 NE021360-7 OPB0302 1.420 10.329 7.274 0.091 5.165 0.646 6.456 
75 NE021360-6 OPB0302 0.546 9.453 17.313 0.216 4.727 0.591 5.908 
76 NE021315-3 OPB0103 0.416 0.000 0.000 0.000 0.000 0.000 0.000 
77 NE021314-3 OPB0103 1.138 15.128 13.293 0.166 7.564 0.946 9.455 
78 NE021314-4 OPB0103 0.913 1.857 2.034 0.025 0.929 0.116 1.161 
79 NE021314-5 OPB0103 1.006 0.000 0.000 0.000 0.000 0.000 0.000 
79 NE021315)1 OPB0103 0.793 10.892 13.735 0.172 5.446 0.681 6.808 
80 NE021315)2 OPB0103 1.331 0.000 0.000 0.000 0.000 0.000 0.000 
81 NE021313-4 OPB0102 1.390 1.415 1.018 0.013 0.708 0.088 0.884 
82 NE021313-5 OPB0102 0.707 0.000 0.000 0.000 0.000 0.000 0.000 
83 NE021313-6 OPB0102 0.796 0.000 0.000 0.000 0.000 0.000 0.000 
84 NE021314)1 OPB0103 1.121 8.344 7.443 0.093 4.172 0.522 5.215 
85 NE021314)2 OPB0103 0.466 0.000 0.000 0.000 0.000 0.000 0.000 
86 NE021312-3 OPB0102 1.738 0.000 0.000 0.000 0.000 0.000 0.000 
87 NE021312-4 OPB0102 1.856 0.000 0.000 0.000 0.000 0.000 0.000 
88 NE021312-5 OPB0102 0.659 0.000 0.000 0.000 0.000 0.000 0.000 
89 NE021313)1 OPB0102 1.345 6.623 4.924 0.062 3.312 0.414 4.139 
90 NE021313-3 OPB0102 0.840 0.000 0.000 0.000 0.000 0.000 0.000 
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Plate 
Position 

Ear Event Protein 
mg/ml 

Units/
ml 

Units/
mg 

%TSP Total 
Units 

µg OPH ng/mg seed 

91 NE021311)2 OPB0102 2.107 13.620 6.464 0.081 6.810 0.851 8.513 
92 NE021311-3 OPB0102 1.037 2.297 2.215 0.028 1.149 0.144 1.436 
93 NE021311-4 OPB0102 1.568 2.437 1.554 0.019 1.219 0.152 1.523 
94 NE021311-5 OPB0102 1.941 8.606 4.434 0.055 4.303 0.538 5.379 
95 NE021312)1 OPB0102 0.951 9.281 9.759 0.122 4.641 0.580 5.801 
96 NE021320-4 OPB0104 0.102 0.000 0.000 0.000 0.000 0.000 0.000 
97 NE021320-5 OPB0104 0.636 4.588 7.214 0.090 2.294 0.287 2.868 
98 NE021319-3 OPB0104 0.000 0.000 #DIV/0

! 
#DIV/0! 0.000 0.000 0.000 

99 NE021319-4 OPB0104 0.332 0.000 0.000 0.000 0.000 0.000 0.000 
100 NE021320)1 OPB0104 0.699 18.191 26.024 0.325 9.096 1.137 11.369 
101 NE021320)2 OPB0104 0.604 14.522 24.043 0.301 7.261 0.908 9.076 
102 NE021320-3 OPB0104 0.559 16.746 29.957 0.374 8.373 1.047 10.466 
103 NE021318-3 OPB0103 0.686 4.851 7.071 0.088 2.426 0.303 3.032 
104 NE021318-4 OPB0103 0.468 0.476 1.017 0.013 0.238 0.030 0.298 
105 NE021318-5 OPB0103 0.570 4.229 7.419 0.093 2.115 0.264 2.643 
106 NE021319)1 OPB0104 1.000 6.300 6.300 0.079 3.150 0.394 3.938 
107 NE021319)2 OPB0104 1.503 17.263 11.486 0.144 8.632 1.079 10.789 
108 NE021317)1 OPB0103 0.957 16.829 17.585 0.220 8.415 1.052 10.518 
109 NE021317)2 OPB0103 0.556 10.362 18.637 0.233 5.181 0.648 6.476 
110 NE021317-3 OPB0103 1.200 5.943 4.953 0.062 2.972 0.371 3.714 
111 NE021317-4 OPB0103 0.262 0.000 0.000 0.000 0.000 0.000 0.000 
112 NE021318)1 OPB0103 0.871 4.502 5.169 0.065 2.251 0.281 2.814 
113 NE021311)1 OPB0103 0.723 11.086 15.333 0.192 5.543 0.693 6.929 
114 NE021371)2 OPB0411 0.208 2.513 12.082 0.151 1.257 0.157 1.571 
115 NE021360-1 OPB0302 0.981 19.607 19.987 0.250 9.804 1.225 12.254 
116 NE021376-4 OPB0420 0.980 16.066 16.394 0.205 8.033 1.004 10.041 
117 NE021376-3 OPB0420 1.661 11.691 7.039 0.088 5.846 0.731 7.307 
118 NE021376)2 OPB0420 1.216 5.337 4.389 0.055 2.669 0.334 3.336 



 

 

153

Plate 
Position 

Ear Event Protein 
mg/ml 

Units/
ml 

Units/
mg 

%TSP Total 
Units 

µg OPH ng/mg seed 

119 NE021375)1 OPB0419 0.806 15.217 18.880 0.236 7.609 0.951 9.511 
120 NE021371-4 OPB0411 0.720 6.226 8.647 0.108 3.113 0.389 3.891 
121 NE021370-6 OPB0311 1.557 8.970 5.761 0.072 4.485 0.561 5.606 
122 NE021370-5 OPB0311 1.877 14.001 7.459 0.093 7.001 0.875 8.751 
123 NE021370-4 OPB0311 1.445 7.528 5.210 0.065 3.764 0.471 4.705 
124 NE021370-3 OPB0311 2.032 0.000 0.000 0.000 0.000 0.000 0.000 
125 NE021369-9 OPB0304 0.558 0.000 0.000 0.000 0.000 0.000 0.000 
126 NE021369-5 OPB0304 0.349 3.858 11.054 0.138 1.929 0.241 2.411 
127 NE021321)1 OPB0104 1.754 19.189 10.940 0.137 9.595 1.199 11.993 
128 NE021321-3 OPB0104 1.148 7.804 6.798 0.085 3.902 0.488 4.878 
129 NE021321-4 OPB0104 0.890 4.471 5.024 0.063 2.236 0.279 2.794 
130 NE021324)1 OPB0104 1.157 21.812 18.852 0.236 10.906 1.363 13.633 
131 NE021324)2 OPB0104 0.925 9.451 10.217 0.128 4.726 0.591 5.907 
132 NE021324-6 OPB0104 0.998 3.414 3.421 0.043 1.707 0.213 2.134 
133 NE021324-8 OPB0104 0.672 10.721 15.954 0.199 5.361 0.670 6.701 
134 NE021324-A0 OPB0104 1.170 0.527 0.450 0.006 0.264 0.033 0.329 
135 NE021325)1 OPB0104 0.804 21.449 26.678 0.333 10.725 1.341 13.406 
136 NE021325)2 OPB0104 1.763 22.102 12.537 0.157 11.051 1.381 13.814 
137 NE021325-3 OPB0104 0.333 0.000 0.000 0.000 0.000 0.000 0.000 
138 NE021325-4 OPB0104 0.325 0.000 0.000 0.000 0.000 0.000 0.000 
139 NE021326)1 OPB0106 1.303 21.206 16.275 0.203 10.603 1.325 13.254 
140 NE021326)2 OPB0106 1.184 16.062 13.566 0.170 8.031 1.004 10.039 
141 NE021326-3 OPB0106 1.343 18.600 13.850 0.173 9.300 1.163 11.625 
142 NE021326-4 OPB0106 0.753 13.043 17.321 0.217 6.522 0.815 8.152 
143 NE021326-5 OPB0106 0.847 10.719 12.655 0.158 5.360 0.670 6.699 
144 NE021327)1 OPB0106 0.894 5.622 6.289 0.079 2.811 0.351 3.514 
145 NE021327)2 OPB0106 0.693 2.799 4.039 0.050 1.400 0.175 1.749 
146 NE021327-3 OPB0106 0.781 0.000 0.000 0.000 0.000 0.000 0.000 
147 NE021327-4 OPB0106 0.770 7.363 9.562 0.120 3.682 0.460 4.602 
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Plate 
Position 

Ear Event Protein 
mg/ml 

Units/
ml 

Units/
mg 

%TSP Total 
Units 

µg OPH ng/mg seed 

148 NE021327-5 OPB0106 0.925 0.000 0.000 0.000 0.000 0.000 0.000 
149 NE021327-6 OPB0106 0.297 0.000 0.000 0.000 0.000 0.000 0.000 
150 NE021327-7 OPB0106 0.379 0.000 0.000 0.000 0.000 0.000 0.000 
151 NE021328)2 OPB0107 0.567 12.997 22.922 0.287 6.499 0.812 8.123 
152 OPA0411T2 OPA0411 0.996 27.521 27.632 0.345 13.761 1.720 17.201 
153 OPB0310GH OPB0310 0.824 0.000 0.000 0.000 0.000 0.000 0.000 
154 LH244 LH244 0.818 0.000 0.000 0.000 0.000 0.000 0.000 
155 LH244 LH244 1.224 0.000 0.000 0.000 0.000 0.000 0.000 
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APPENDIX D 
 

SCORING OF TRANSGENIC CALLUS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OPA′21 CGE07

OPH 5µg

Coroxon 

HaloxonCoumaphos

Coroxon

HaloxonCoumaphos

OPA′11 
OPA′01 

OPA′07 

Assayed Expression:
OPA′21- 0.27 u/mg  

Assayed Expression: 
OPA′11 – 0.15 u/mg  
OPA′01 – 0.62 u/mg  
OPA′07 – 0.001 u/mg  
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Coroxon 

Haloxon Coumaphos 

Coroxon 

Haloxon Coumaphos 

OPA′13 OPA′19 

OPA′15 

OPA′16 
OPA′18 

OPA′17 

Assayed Expression:
OPA′13 – 0.19 u/mg  
OPA′19 – 1.01 u/mg  
OPA′15 – 0.27 u/mg  

Assayed Expression:
OPA′17 – 0.03 u/mg  
OPA′16 – 0.18 u/mg  
OPA′18 – 0.04 u/mg  
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Coroxon 

Haloxon 
Coumaphos 

OPA′23 

OPX20 

OPA′25 

Coroxon 

Haloxon Coumaphos 

OPA′02 OPA′04 

OPA′06 

Assayed Expression:
OPA′23 – 0.10 u/mg  
OPA′20 – 0.03 u/mg  
OPA′25 – 0.06 u/mg  

Assayed Expression:
OPA′02 – 0.01 u/mg  
OPA′04 – 0.19 u/mg  
OPA′06 – 0.44 u/mg  

OPA′20 
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OPX17

Coroxon 

HaloxonCoumaphos

OPA′09 

OPA′03 

OPA′08 

Coroxon

Coumaphos Haloxon

OPA′05 

OPA′14 

OPA′22 

Assayed Expression:
OPA′09 – 0.18 u/mg 
OPA′03 – 0.03 u/mg  
OPA′08 – 1.06 u/mg  

Assayed Expression:
OPA′05 – 0.47 u/mg  
OPA′14 – 0.04 u/mg  
OPA′22 – 0.18 u/mg  
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