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ABSTRACT 
 
 

Transcriptional Regulation and Chromatin Remodeling Mechanisms at PHO5 

(May 2004) 

Christopher Dumas Carvin, B.S., Louisiana State University 

Chair of Advisory Committee: Dr. Michael Kladde 

 

Regulation of gene expression is vital for proper growth and prevention of 

disease states. In eukaryotes this regulation occurs in the context of chromatin 

which creates an inherent barrier for the binding of trans-acting factors, such as 

transcription factors and RNA polymerase. This dissertation focuses on the role 

of transcriptional activators and chromatin remodeling coactivators in the 

regulation of the repressible acid phosphatase gene PHO5. Our studies show 

that histone methylation at lysine 4 of histone H3 is required for the full 

repression of PHO5 and GAL1-10. We show that bromodomains, a domain 

conserved in chromatin remodeling coactivators, may function to stabilize 

binding. Finally, we present a strategy using DNA methyltransferases as in vivo 

probes to detect DNA-protein interactions and examine chromatin structure. We 

extend this strategy to zinc-finger proteins which can be engineered to bind to 

any desired DNA sequence as a means of targeting methylation with potential 

use in epigenetic silencing. 
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CHAPTER I* 

INTRODUCTION 

 

SCOPE 

 The primary scope of this dissertation is to explore the role of chromatin 

remodeling enzymes in transcriptional regulation using the PHO5 gene from 

Saccharomyces cerevisiae as a model. I will present evidence for a role of 

histone methylation in transcriptional repression of PHO5 and GAL1-10. Next, 

the role of bromodomains in transcriptional activation will be further 

characterized. This dissertation will also demonstrate the use of targeted 

cytosine methylation to detect protein-DNA interactions, chromatin structure and 

to introduce de novo methylation to allow for epigenetic silencing in higher 

eukaryotes.  

The first part of the introduction provides background information in the 

field of chromatin structure with an emphasis on its repressive role in gene 

expression. The middle will detail the myriad of chromatin remodeling enzymes 

which are utilized to effect transcriptional activation and repression. The last 

part will introduce the yeast repressible acid phosphatase gene PHO5 as an ideal 

model system for the study of transcriptional regulation.  

 

                                                 
This dissertation follows the style and format of Cell. 
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SIGNIFICANCE 

 The packaging of DNA into chromatin creates an inherent repressive 

environment for the binding of trans-acting factors, such as transcription factors 

and the DNA replication machinery. Hence, eukaryotes have a variety of 

chromatin remodeling enzymes which remodel local chromatin structure to make 

it more accessible. These remodeling enzymes are highly conserved throughout 

all eukaryotic organisms and defects in these complexes have been correlated 

with a variety of diseases, including cancer. This dissertation will focus on the 

roles of histone methylation and bromodomains in gene expression. It will also 

introduce the use of DNA methyltransferases to characterize chromatin structure 

and detect protein-DNA interactions in vivo. 

 

CHROMATIN STRUCTURE 

 In order for DNA to fit into the nucleus of a cell it must be heavily 

compacted. If the DNA sequence that comprises the human genome was 

stretched out end to end, it would reach three meters in length. This must be 

compressed to fit inside a nucleus that is five micrometers in diameter; thus a 

greater than 10,000-fold compaction is needed. This packaging of DNA is 

referred to as chromatin structure and is a widely-studied process with 

connections to a myriad of biological processes and diseases. 
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 While chromatin is heavily studied, there is a lot that remains unknown. 

Most of what is known is at the first level of compaction. 146 bp of DNA is 

wrapped up by a histone octamer protein complex consisting of two copies each 

of histone H2A, H2B, H3, and H4 to form the nucleosome (Fig. 1-1), the basic 

repeating unit of chromosome organization (Richmond et al., 1988). An array of 

nucleosomes separated by small stretches of histone-free regions called linkers 

make up the “beads on a string” form and it is this form that most research 

focuses on. From here on, higher forms of chromatin organization occur. In 

mitotic condensation, a DNA molecule is packaged greater than 50,000 fold. 

 

 

Figure 1-1. Crystal structure of the nucleosome core particle. 

Ribbon diagram of the crystal structure at 2.5 Å resolution of 146 bp of DNA wrapped around 
histone octamer to form the nucleosome core particle (Harp et al., 2000). Random coils 
protruding from the nucleosome represent parts of the N-terminal tails of histones that yield 
high electron density in the crystal structure.  The bulk of the N-terminal tails are not visible.  
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 This heavy compaction creates a naturally repressive environment for 

almost all proteins including transcription factors, RNA polymerase, and the DNA 

replication/repair machinery. Chromatin is classified into two types based on the 

degree of compaction: euchromatin and heterochromatin. Euchromatin is less 

compacted than heterochromatin and is considered transcriptionally active 

chromatin while heterochromatin is generally silent. Some elegant studies using 

DNA methyltransferases as probes in vivo have shown that DNA packaged into a 

nucleosome is most inaccessible near the center or dyad. Within the first two 

helical turns of the nucleosome edge, there is modest accessibility but it is still 

significantly less than that seen in the linker region (Kladde and Simpson, 1994; 

Kladde et al., 1996).  

 A large percentage of trans-acting factor binding sites, such as TATA 

boxes and upstream activating sequences (UAS) are found in nucleosome-

containing regions. This may be a result of evolutionary pressure as a means of 

controlling gene expression or just simply due to the fact that most linker 

regions are very small and the vast majority of DNA is packaged into 

nucleosomes. The actual size of linker regions is variable in different eukaryotes, 

ranging from zero to 100 bp with the shortest linker lengths in lower eukaryotes 

and the longest in animals (Wolfe, 1993). In any case, local chromatin 

remodeling is required for these sites to be utilized. Eukaryotes have developed 
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a highly conserved series of protein complexes which function to remodel 

chromatin. 

 

CHROMATIN REMODELING 

 It is still unclear as to what precise mechanism(s) are involved in 

chromatin remodeling. In some instances, nucleosomes physically slide from one 

DNA region to another. A study showed that during activation of IFN-β, a single 

nucleosome is repositioned downstream by 36 bp, which exposes the TATA box 

(Lomvardas and Thanos, 2001). Further, the same authors showed that when 

the nucleosome is artificially positioned such that the TATA box is exposed prior 

to activation, IFN-β induces at a faster kinetic rate and obviates the need for 

certain chromatin remodeling enzymes (Lomvardas and Thanos, 2002). 

Additionally, recent evidence suggests that nucleosomes may be physically 

removed from DNA (Reinke and Hörz, 2003; Boeger et al., 2003), however, this 

is difficult to distinguish from a third potential mechanism where nucleosomes 

remain fixed but instead render the DNA accessible by conformational changes 

in the nucleosome structure.  

Chromatin remodeling is an active process and requires a myriad of 

highly conserved protein complexes. There are two general classes of chromatin 

remodeling enzymes. The first class is called ATP-dependent chromatin 

remodelers (reviewed in Becker and Hörz, 2002). These complexes are defined 
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by their use of ATP hydrolysis in nucleosome remodeling. The most widely 

studied complex is the Swi-Snf complex in yeast, named for its role in mating-

type switching as well as sucrose fermentation (reviewed in Martens and 

Winston, 2003). Defects in the human Swi-Snf complex are linked to a variety of 

disorders and diseases, including cancer. There are other related ATP-

remodeling chromatin complexes in yeast, including RSC, Ino80.com, and ISWI, 

which regulate a variety of biological processes. It is important to note that 

while ATP-dependent chromatin remodelers are typically thought to remodel 

chromatin to mediate transcriptional activation, they are involved in 

transcriptional repression as well (Martens and Winston, 2002).  

A second class of chromatin remodeling enzymes involves the post-

translational modification of histones. At present, histones have been shown to 

be modified by acetylation, methylation, phosphorylation, sumoylation and 

ubiquitination. These modifications mediate a complex signaling pathway to 

distinguish between active versus inactive chromatin that is referred to as the 

“histone code” (reviewed in Fischle et al., 2003). 

Of all the known modifications, histone acetylation is by far the most 

extensively studied. Acetylation of certain lysines in the N-terminal tails of 

histones H3 and H4 is associated with transcriptional activation. During 

transcriptional activation of most genes, increased acetylation is observed in the 

promoter region (reviewed in Kurdistani and Grunstein, 2003). Histone 
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acetylation mediates chromatin remodeling by two main mechanisms. First, the 

acetylation of lysine residues neutralizes the positive charge of the N-terminal 

tails and increases the alpha-helical content which may reduce the affinity of the 

tail for DNA and/or histone-histone interactions (reviewed in Hansen et al., 

1998). Additionally, histone acetylation may serve as a target for the 

recruitment of other transcriptional activators. This concept will be explored 

further in a later section (see bromodomains). 

Histone acetylation is catalyzed by a class of protein complexes called 

histone acetyltransferases (HATs). The first such HAT, HAT A, was discovered in 

the ciliated protozoan Tetrahymena thermophila (Brownell et al., 1996). HAT A 

is homologous to the Saccharomyces cerevisiae protein Gcn5 and is highly 

conserved in higher eukaryotes. Gcn5 is the catalytic subunit of SAGA and is 

required for its transcriptional activation and the ability to acetylate histones in 

vivo (Gregory et al., 1998; Kuo et al., 1998; Wang et al., 1998; Krebs et al., 

1999; Syntichaki et al., 2000). Conversely, there are histone deacetylase 

complexes (HDACs) which counteract HAT activity to silence gene expression 

(reviewed in Kurdistani and Grunstein, 2003). The regulation of HATs and 

HDACs is key to proper gene expression. 

Another emerging histone modification is histone methylation. Like 

histone acetylation, the methylation state plays a key role in determining active 

and inactive chromatin. However, whereas acetylation is correlated strictly with 
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active chromatin, methylation is utilized to demarcate euchromatin as well as 

heterochromatin. The difference lies not in whether the nucleosome is 

methylated, but rather in which residue is methylated (Noma et al., 2001). 

In higher eukaryotes, heterochromatic silencing is mediated by histone 

methylation at lysine 9 of histone H3 (Rea et al., 2000). Defects in the histone 

methyltransferase Suv39h responsible for K9 methylation impairs proper 

heterochromatin formation and increases genomic instability (Peters et al., 

2001). The heterochromatic coating protein HP1 selectively recognizes and 

binds to K9-methylated nucleosomes (Bannister et al., 2001; Lachner et al., 

2001). 

In contrast, euchromatin is marked by methylation at lysine 4 of histone 

H3. All K4 methylation in yeast is mediated by the COMPASS complex (Miller et 

al., 2001), with the catalytic subunit being the histone methyltransferase Set1 

(Briggs et al., 2001). A recent study looking at several genes demonstrated, that 

Set1-dependent methylation primarily occurs within the promoter and 5’ portion 

of coding regions (Ng et al., 2003b) and is required for full expression of several 

euchromatic genes (Nislow et al., 1997; Santos-Rosa et al., 2002).  

Recent publications have begun to elucidate the regulation of Set1 and its 

role in transcription. Set1-dependent methylation requires histone ubiquitination 

of histone H2B at lysine 123 via the Rad6-Bre1 complex. Rad6-deficient strains 

or strains in which lysine 123 of histone H2B has been mutated to arginine 
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contain no detectable K4 methylation (Sun and Allis, 2002). This is the first 

example where a modification on one histone is required for the modification on 

another. Histone modifications can also regulate other modifications on the 

same histone, e.g. histone phosphorylation at serine 10 leads to increased 

histone acetylation of lysine 14 of histone H3 (Lo et al., 2000). Interestingly, 

loss of histone ubiquitination leads to loss of histone methylation; however, Set1 

is still recruited (Ng et al., 2003b). 

The Paf1-Rtf1 complex is required for histone ubiquitination by Rad6-Bre1 

and hence it is required for K4 methylation as well. This complex is involved in 

transcriptional elongation and interacts with the phosphorylated C-terminal 

domain of RNA polymerase II (Krogan et al., 2003a; Ng et al., 2003b). As seen 

before, loss of Paf1 prevents histone ubiquitination but Rad6 is still recruited, 

however, no recruitment of the COMPASS complex is observed. The mechanism 

which prevents enzyme activity despite factor recruitment is not known. 

Based on these observations, a model has been proposed in which K9 

methylation is the signal for transcriptional repression while K4 methylation 

signals activation; however, other evidence suggests that the true mechanism is 

more complicated. Defects in Set1 cause loss of telomeric and rDNA silencing 

(Briggs et al., 2001; Bryk et al., 2002; Krogan et al., 2002a). Likewise, the 

Rad6-Bre1 and Paf1-Rtf1 complexes also have roles telomeric silencing (Sun and 

Allis, 2002; Krogan et al., 2003a; Ng et al., 2003a). It has been shown that 
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these complexes have a repressive role on genes found in active chromatin. 

Additionally, another histone methyltransferase, Set2, which is also involved in 

transcriptional elongation, appears to have positive and negative roles in 

transcription.  

Chapter II of this dissertation will explore the role of Set1 in the 

regulation of the yeast repressible acid phosphatase gene PHO5. I will present 

evidence that Set1 can also be a repressor of genes in active chromatin regions. 

 

TRANSCRIPTIONAL ACTIVATION BY RECRUITMENT 

 In order to properly control gene expression, the cell must overcome the 

repressive structure of chromatin using an array of chromatin remodelers as 

detailed previously. The extent of chromatin remodeling must be restricted to 

localized regions of the desired gene’s promoter to minimize effects on 

expression of neighboring genes. 

The most current model is referred to as the transcriptional activation by 

recruitment model (Fig 1-2). According to this model, site-specific DNA-binding 

transcription factors initially occupy their binding site(s) in DNA. These activators 

contain activation domains which can bind to and recruit both coactivators and 

the general transcription machinery (reviewed in Fry and Peterson, 2001). 

Recruitment of the chromatin remodeling coactivators perturbs chromatin 

structure which allows increased accessibility for general transcription factors 
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and RNA polymerase. Additionally, it has been demonstrated that chromatin 

remodeling enzymes can also interact with the general machinery, such as TBP 

(Sterner et al., 1999; Dudley et al., 1999; Bhaumik and Green, 2002). Thus, the 

primary activator and the recruited coactivators both directly assist in the 

recruitment of RNA polymerase. We and others have also shown that the 

primary activator binding is also dependent on the recruited coactivators 

(Dhasarathy, Carvin, Jessen and Kladde, manuscript in preparation; Duina and 

Winston, 2004). This may be a result of the protein-protein interactions of the 

activator with its coactivators which in turn may cooperatively stabilize the initial 

DNA-protein interaction. It may also be a result of chromatin remodeling which 

increases the accessibility of DNA.  

 

 

Figure 1-2. Transcriptional activation by recruitment. 

In this model the primary activator initially binds to its cognate DNA site. Upon binding, chromatin 
remodeling coactivators are recruited by the activator’s activation domain. These coactivators may stabilize 
primary activator binding, remodel chromatin structure, and help recruit RNA polymerase. Adapted with 
permission from Archana Dhasarathy. 
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 An earlier study showed that yeast genes could be classified into three 

distinct classes based on their requirement for the chromatin remodelers Swi-

Snf and SAGA: 1) those genes which require both Swi-Snf and SAGA, 2) those in 

which either SWI-SNF or SAGA is required but not both, and 3) those which are 

independent of both Swi-Snf and SAGA (Biggar and Crabtree, 1999). The class 

where only one of the complexes is required suggests that, while these two 

complexes perform distinct functions, their overall activity is functionally 

redundant to one another. This is reinforced by the observation that 

overexpression of subunits in SAGA can compensate for Swi-Snf defects 

(Wallberg et al., 2000). One of the ongoing projects in the laboratory is 

currently investigating the differences between genes which are strictly 

dependent on chromatin remodelers versus those which are largely independent 

of individual chromatin remodelers. 

 

BROMODOMAINS 

 In the previous section, the interplay between coactivators in 

transcriptional activation was discussed. Some recent studies have begun to 

elucidate the temporal order of recruitment of factors during activation. An 

elegant study by Nasmyth and colleagues determined the temporal order of 

recruitment of chromatin remodelers at the cell cycle-regulated HO gene 

(Cosma et al., 1999). In this case, the ATP-dependent chromatin remodeler Swi-
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Snf was required for the stable association of the histone acetyltransferase 

SAGA and both complexes remained stably bound to the promoter after 

dissociation of the activator that recruited them, Swi5. However, at other genes 

such as α1 antitrypsin and IFN-β, the histone acetyltransferase precedes Swi-Snf 

recruitment (Agalioti et al., 2000; Soutoglou and Talianidis, 2002).  In vitro 

studies have shown that histone acetylation stabilizes the association of Swi-Snf 

to nucleosomal arrays (Hassan et al., 2001). 

 Several chromatin remodeling coactivator complexes, including Swi-Snf 

and SAGA, contain a highly conserved domain which was first discovered in the 

Drosophila protein brahma (Tamkun et al., 1992; Haynes et al., 1992) and 

hence named bromodomain(s) (reviewed in Jeanmougin et al., 1997). Further, 

the general transcription factor TAFII250 contains two bromodomains (Jacobson 

et al., 2000). It has been suggested that bromodomains function by recognizing 

acetyl-lysines in the N-terminal tails of histones (Dhalluin et al., 1999; Ornaghi 

et al., 1999; Hudson et al., 2000; Owen et al., 2000). The structure of the 

bromodomain has been solved and is shown in Figure 1-3. Thus, the presence 

of histone acetylation may lead to increased binding of factors necessary for 

transcription. 
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Figure 1-3. Structure of Gcn5 bromodomain complexed with acetylated H4 peptide. 

Crystal structure of Gcn5 bromodomain bound to histone H4 that is acetylated at lysine 16 
(Owen et al., 2000). Three conserved residues P371, M372, and Y413 which were shown to be 
important for its function (Syntichaki et al., 2000) are indicated. 
 

 A number of studies have tried to determine the extent to which 

bromodomains affect transcriptional activation. An in vitro study found that the 

bromodomains in Gcn5 of SAGA and Swi2 in Swi-Snf were essential for their 

stabile interaction with nucleosomal arrays, respectively (Hassan et al., 2002). 

In contrast, deletion of the bromodomain in the Spt7 subunit of SAGA had no 

effect on the binding of SAGA to nucleosomal arrays. Interestingly, fusion of the 

Spt7 bromodomain to Gcn5 could complement a deletion in the Gcn5 

bromodomain. The Gcn5 bromodomain was required for in vivo chromatin 

remodeling and Swi-Snf recruitment in an artificial reporter construct (Syntichaki 
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et al., 2000); however, it had no effect at the endogenous PHO5 gene which 

utilizes both Swi-Snf and SAGA for activation. 

It is difficult to determine the contribution of a bromodomain in binding in 

vivo since coactivators which do not bind DNA directly show only very modest 

enrichments in recruitment when analyzed by chromatin immunoprecipitation 

(ChIP). In Chapter III, we will present evidence that the fusion of the Gcn5 

bromodomain to the transcriptional activator Pho4 significantly enhances levels 

of PHO5 gene expression, consistent with the bromodomain increasing the 

binding affinity of Pho4 for the PHO5 promoter. 

   

PHO5 AS A MODEL SYSTEM 

 PHO5 is a stress response gene that is activated when the cell is starved 

for phosphate. It encodes the major acid phosphatase in yeast that is secreted 

to the periplasmic space to scavenge phosphate from phosphate esters that are 

present in the media. PHO5 is just one of 22 genes that are induced in 

phosphate-limiting media (Ogawa et al., 2000). PHO5 has been well 

characterized and serves as a primary model for the study of transcriptional 

activation and chromatin remodeling. 

 The pathway that regulates PHO-responsive genes has been determined 

(Fig. 1-4; reviewed in (Lenburg and O'Shea, 1996). Most PHO-responsive genes 

(21 of 22)  contain putative binding site(s) for the basic helix-loop-helix 
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transcription factor Pho4 (Ogawa et al., 2000). In high phosphate, the PHO 

cluster is repressed. This occurs by inactivation of Pho4 by phosphorylation by 

the cyclin/cyclin-dependent kinase Pho80-Pho85 (Kaffman et al., 1994). In 

phosphate-limiting conditions, the cyclin-dependent kinase inhibitor Pho81 

inactivates Pho80-Pho85 which allows for full activation of Pho4 (Schneider et 

al., 1994). Pho4 and Pho2 cooperatively bind to their cognate DNA sites to 

activate transcription (Barbaric et al., 1996; Barbaric et al., 1998). It is 

important to note that phosphate starvation also increases PHO81 expression 

through Pho4 binding (Yoshida et al., 1989b; Creasy et al., 1993), which 

provides a positive feedback loop during PHO activation. 

 

 

Figure 1-4. Regulatory pathway of PHO-responsive genes. 

The repressible acid phosphatases PHO5 and PHO8 are regulated by a signal transduction cascade. In 
repressed conditions these phosphatases are repressed by the inactivation of the primary activator Pho4 by 
the cyclin/cyclin-dependent kinase Pho80/Pho85. In activating conditions, Pho80/Pho85 is inhibited by the 
cyclin-dependent kinase inhibitor Pho81 which allows for full Pho4-dependent activation. Pho4 regulates 
Pho81 transcription which provides positive feedback on activation. 
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 O’Shea and colleagues have determined that inactivation of Pho4 occurs 

through phosphorylation of five serine residues each which regulate a different 

inhibitory mechanism. Though Pho4 is constitutively expressed (Lemire et al., 

1985; Yoshida et al., 1989a), it is regulated by cellular localization (Fig. 1-5). In 

high phosphate, Pho4 is found almost exclusively in the cytoplasm (O'Neill et al., 

1996). Newly synthesized Pho4 enters the nucleus via the Pse1/Kap121 nuclear 

importer (Kaffman et al., 1998b). Pho80-Pho85 phosphorylates Pho4 at five 

different sites; two of those sites cause Pho4 to be exported from the nucleus 

by the nuclear receptor Msn5 (Kaffman et al., 1998a). A third phosphorylation 

site prevents re-entry into the nucleus. A fourth phosphorylation site controls 

the transcriptional activation potential of Pho4 by preventing its interaction with 

Pho2, which binds DNA cooperatively with Pho4 (Komeili and O'Shea, 1999). 

When shifted to no phosphate, Pho81 inhibits Pho80-Pho85 which allows Pho4 

to rapidly become almost fully nuclear within 1 hour (Komeili and O'Shea, 1999; 

Barbaric et al., 2001).  
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Figure 1-5. Phosphorylation of Pho4 regulates its nucleo-cytoplasmic localization. 

Pho80-Pho85 regulates Pho4 nuclear import by phosphorylation. Upon phosphoryation Pho4 is 
exported from the nucleus via the Msn5 nuclear exporter and its import via Pse1/Kap121 is 
inhibited. In activating conditions, Pho81 inactivates Pho80-Pho85 which allows for constitutive 
nuclear import of Pho4. 

 

 When a cell is starved for phosphate, it induces a number of 

phosphatases which try to salvage any environmental phosphate. The two main 

repressible phosphatases are the acid phosphatase Pho5 and the alkaline 

phosphatase Pho8. Pho5 is secreted to the periplasmic space, while Pho8 is 

localized to the vacuole. There are also two minor repressible acid phosphatases 

(rAPases) Pho10 and Pho11, which have little to no effect on overall rAPase 

activity (Neef and Kladde, unpublished observations). PHO5 expression requires 

Pho4 and Pho2, while at PHO8 only Pho4 is necessary (Münsterkötter et al., 

2000). While both genes are co-regulated, their expression levels are quite 

different. PHO5 is highly expressed; rAPase levels are induced greater than 200-
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fold in no phosphate versus high phosphate media (Neef and Kladde, 2003). 

PHO8 activation is approximately 10-times weaker than PHO5 (Münsterkötter et 

al., 2000). In addition, PHO5 only requires the chromatin remodelers SAGA and 

Swi-Snf during early times of induction or when the nuclear concentration of 

Pho4 is limiting (Dhasarathy, Carvin, Jessen and Kladde, manuscript in 

preparation; (Barbaric et al., 2001; Neef and Kladde, 2003). However, PHO8 

expression is strictly dependent on both Swi-Snf and SAGA (Gregory et al., 

1999). Thus, the PHO system provides an ideal system for investigations into 

the reasons for disparate requirements of chromatin remodeling coactivators. 

 The promoter structures of PHO5 and PHO8 have been well characterized 

(Almer et al., 1986; Barbaric et al., 1992). The PHO5 promoter contains five 

positioned nucleosomes and two upstream activating sequences where Pho4 

and Pho2 bind (Fig. 1-6). UASp1 is contained in a hypersensitive site which is 

accessible in high phosphate (Almer et al., 1986; Fascher et al., 1990; Carvin et 

al., 2003a; Carvin et al., 2003b). UASp2 and the TATA box are located in 

nucleosomes -2 and -1, respectively, and are inaccessible in repressed 

conditions. Thus, chromatin remodeling is required for full activation as well as 

for recruitment of the transcription machinery. Previous work had identified 

remodeling of four nucleosomes upon phosphate starvation; however work in 

our laboratory has shown that a fifth nucleosome is remodeled as well (Jessen, 

Dhasarathy, Carvin, McKinnie, and Kladde, manuscript in preparation).  
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Figure 1-6. The promoter structure of PHO5. 

The PHO5 promoter contains six positioned nucleosomes and two Pho4-Pho2 UAS sites. Note 
that UASp2 and the TATA box are located in the center of nucleosomes and hence block binding 
of trans-acting factors. Upon activation all five nucleosomes are remodeled. Tick marks indicate 
binding sites for the DNA methyltransferases M.CviPI and M.SssI.  

 

 Another advantage in studying PHO5 is that the Pho5 protein serves as 

its own reporter. Pho5 protein levels can be measured qualitatively by a plate 

assay using α-naphthyl-phosphate (Fig. 1-7); and quantitatively by a standard 

colorimetric phosphatase assay. PHO5 expression can be modulated by growing 

cells in different concentrations of inorganic phosphate (Fig. 1-8). Work in our 

laboratory has determined that varying phosphate concentration regulates the 

nuclear concentration of Pho4 and the amount of Pho4 bound at the PHO5 

promoter (Dhasarathy, Carvin, Jessen and Kladde, manuscript in preparation).  
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Figure 1-7. PHO5 expression requires the transcription factor Pho4. 

Plate assay detects Pho5 levels. In assay cells which express Pho5 protein are stained red. Cells 
lacking Pho4 (pho4) are white while cells which contain a constitutively active mutant of Pho4 
(O'Neill et al., 1996) leads to dark red color. 

 

 

 
Figure 1-8. PHO5 expression versus phosphate concentration. 

Repressible acid phosphatase assay of wild-type cells grown in varying concentrations of 
inorganic phosphate. High phosphate (13.4 mM) shows a very low amount of rAPase activity. 
Conversely, Pho5 is induced greater than 200-fold in no phosphate. Activities are reported in 
Miller units {(A420 x 1,000)/(OD600 x volume of cells assayed in mL x 10 min)}. 

 

 In conclusion, the PHO system is an ideal system for the study of 

transcriptional regulation and chromatin structure. In this dissertation, I present 

evidence that histone methylation plays a regulatory role in the repression of 
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PHO5. I provide a more detailed study on the ability of bromodomains to affect 

transcription factor binding. Our laboratory has developed the use of DNA 

methyltransferases which allow for the in vivo probing of chromatin structure 

(reviewed in Kladde et al., 1999). This dissertation has extended the use of DNA 

methyltransferases to allow for the detection of protein-DNA interactions, called 

targeted gene methylation (TAGM). Finally, I demonstrate that TAGM can be 

applied to target methylation via engineered zinc-finger proteins which can be 

altered to bind to any desired sequence.  These chimeric proteins can be used in 

the further study of the effects of DNA methylation and/or establish heritable 

transcriptional silencing. 
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CHAPTER II 

SET1 IS A NEGATIVE REGULATOR OF PHO5 AND GAL1-10 

 

OVERVIEW 

Post-translational modifications of histone amino-terminal tails are a key 

determinant in gene expression. In most eukaryotes, histone methylation plays 

a dual role in gene regulation. Methylation of lysine 9 of histone H3 associates 

with heterochromatin while methylation of lysine 4 correlates with active 

chromatin. K4 methylation via Set1, a component of the COMPASS complex, is 

regulated by the transcriptional elongation complex Paf1-Rtf1 and is required for 

expression of a subset of genes. This suggests that K4 methylation may play an 

activating role in transcription. However, we here show that K4 methylation 

negatively regulates gene expression as well. Strains that are deficient in Set1 

show enhanced expression of PHO5. Defects in the Paf1-Rtf1 complex show a 

greater derepression than that observed in defects in COMPASS. PHO84 and 

GAL1-10 are also derepressed in set1∆ cells. These results suggest that K4 

methylation, in conjunction with transcriptional elongation, may function in a 

negative feedback pathway for basal transcription of some genes while being a 

positive effector at others. 
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INTRODUCTION 

In eukaryotes, DNA is packaged with histone proteins to form 

nucleosomes which are further condensed into higher-order chromatin structure. 

This compaction serves as a barrier for the binding of factors important in 

cellular processes such as transcription and DNA replication. Thus, genes found 

in heavily condensed regions, such as heterochromatin, are typically 

transcriptionally silent. Expression of genes located in euchromatic regions, 

which are generally less compacted is also regulated by chromatin structure. 

Post-translational modifications of the amino-terminal tails of histone 

proteins are a key determinant in defining active (accessible) and repressed 

(inaccessible) chromatin. These modifications may alter chromatin structure 

directly by affecting histone-DNA and histone-histone interactions (reviewed in 

Hayes and Hansen, 2001). Further, they also allow for the recruitment of 

transcriptional activators or repressors. Acetylation of histone H3 at lysines 9 

and 14 is strongly correlated with transcriptionally active and accessible 

chromatin. Treatment of cells with histone deacetylase inhibitors, such as 

trichostatin A, leads to active chromatin states (Yang et al., 2000). 

Phosphorylation of serine 10 of histone H3 is also observed in transcriptional 

activation (Lo et al., 2000; Cheung et al., 2000) and has an unknown role in 

mitotic condensation (reviewed in Prigent and Dimitrov, 2003).  
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Histone methylation is correlated with both active and repressed 

chromatin states. In eukaryotes other than budding yeast, heterochromatic 

silencing is marked by methylation of histone H3 at lysine 9. Conversely, 

euchromatic regions are associated with histone methylation at lysines 4 and 79 

of histone H3 by the histone methyltransferases Set1 and Dot1, respectively 

(Noma et al., 2001). Set1 is the catalytic subunit of a large complex named 

COMPASS (Miller et al., 2001) and is responsible for all K4 methylation observed 

in yeast (Briggs et al., 2001). It is required for full activation of a subset of 

euchromatic genes, including RAM2, HAS1, INO1, PPH3, and MET16 (Nislow et 

al., 1997; Santos-Rosa et al., 2002). Paradoxically, defects in the Set1 or other 

components of COMPASS also lead to loss of rDNA (Briggs et al., 2001; Bryk et 

al., 2002) and telomeric (Krogan et al., 2002a) silencing.  

Set1-dependent methylation requires histone ubiquitination of lysine 123 

of histone H2B via the Rad6-Bre1 complex (Sun and Allis, 2002). Set1 is still 

recruited to promoter regions in RAD6 deletion strains; however no resulting K4 

methylation is observed (Ng et al., 2003b). This is the first evidence where a 

modification on one histone regulates the modification of another histone. 

Recent reports have also indicated that Set1 methylation is associated with 

transcriptional elongation (reviewed in Hampsey and Reinberg, 2003). The Paf1-

Rtf1 complex, which has been observed to be associated with RNA polymerase 

II, is required for K4 methylation as well as recruitment of the COMPASS 
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complex (Krogan et al., 2003a). Deletions in Paf1 lead to loss of histone 

ubiquitination by Rad6, however, Rad6 is still recruited (Wood et al., 2003). As 

seen with set1∆ mutants, strains lacking PAF1, RTF1 or RAD6 show loss of 

telomeric silencing (Sun and Allis, 2002; Krogan et al., 2003a; Ng et al., 2003a). 

In this report, we explore the role of Set1 in the transcriptional regulation 

of the phosphate-repressible PHO cluster. We find that loss of Set1 leads to 

increased levels of expression of the repressible acid phosphatase PHO5 in both 

repressed and active conditions. The expression of the high affinity phosphate 

transporter PHO84 is also higher in set1∆ than in wild-type strains. Deletions in 

critical components of the Rad6-Bre1 and Paf1-Rtf1 complexes, which are 

required for Set1-dependent methylation, also exhibit derepression of PHO5. 

Finally, we also observe derepression of the GAL1-10 locus. Our results suggest 

that histone methylation at K4 of histone H3 may be a repressive signal at some 

euchromatic genes while an activating one at others. 

 

MATERIALS AND METHODS 

Yeast strains  

The genotypes of the Saccharomyces cerevisiae strains used are listed in 

Table 2-1. The SET1 open reading frame was completely replaced in the diploid 

strain CCY694 (Neef and Kladde, 2003) with the kanMX4 selectable marker by a 

PCR-based method using the plasmid pRS400 as described (Brachmann et al., 
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1998). Gene replacement was confirmed by PCR and the resulting diploid was 

sporulated and tetrads were dissected to obtain wild-type (CCY1467 and 

CCY1468) and set1∆ haploids (CCY1471 and CCY1472). MBY1198 and MBY1217 

are gifts from Mary Bryk and are described elsewhere (Bryk et al., 2002). Yeast 

deletion strains were obtained from the homozygous deletion panel (Research 

Genetics).  

 
Growth conditions 

For PHO5 expression experiments, strains were pregrown in minimal 

media containing 0.7 g yeast nitrogen base with ammonium sulfate, phosphate, 

and amino acids (Bio 101), 2 g glutamine (Sigma), 20 g dextrose (Fisher), and 

3.9 g 2-N-morpholino ethanesulfonic acid (JT Baker), pH 5.5, per liter 

supplemented with 13.4 mM KH2PO4. Cells were then washed and resuspended 

in minimal media containing either 13.4 mM KH2PO4 or 13.4 mM KCl and 

incubated at 30oC with shaking for 6 h. PHO5 activity was measured by either 

repressible acid phosphatase activity assays or Northern hybridization as 

described (Neef and Kladde, 2003). Cells were also grown in rich YPD medium 

supplemented with 13.4 mM KH2PO4 (YPPD) overnight at 23oC without shaking. 

For GAL1-10 experiments, strains were pregrown overnight in YPD and then 

resuspended in YPD or YP galactose (YPG) + 0.5% glucose and incubated at 

30oC with shaking for 4 h. Northern hybridization probes were generated using 
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PCR amplification using the oligonucleotides listed in Table 2-2. mRNA levels 

were quantified by Storm 860 phosphorimager analysis. 

 

Table 2-1. Yeast strains. 

Strain Parent Genotype 

CCY1467 NA MATa leu2∆0 lys2∆0 ura3∆0 pho3∆::R 

CCY1471 NA MATa leu2∆0 lys2∆0 ura3∆0 pho3∆::R set1∆::kanMX4  

MBY1198 NA MATα his3∆200 ade2∆::hisG leu2∆0 ura3∆0 met15∆0 trp1∆63 
Ty1his3AI-236 Ty1ade2AI-515 cir0 

 
MBY1217 NA MATα his3∆200 ade2∆::hisG leu2∆0 ura3∆0 met15∆0 trp1∆63 

Ty1his3AI-236 Ty1ade2AI-515 cir0 set1∆::TRP1 
 

MBY1499 NA MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 hht1-
hhf1::LEU2 hht2-hhf2::HIS3 pRS414-HHT2-HHF2 
 

MBY1500 NA MATa ura3-52 lys2-801 ade2-101 trp1∆63 his3∆200 leu2∆1 hht1-
hhf1::LEU2 hht2-hhf2::HIS3 pRS414-hht2K4R-HHF2 
 

BY4743 NA MATa/MATα his3∆1/ his3∆1 leu2∆0/ leu2∆0 MET15/met15∆0 
LYS2/lys∆0 ura3∆0/ura3∆0 
 

CCY2895 

31570 

BY4743 

BY4743 

set1∆::kanMX4 

bre2∆::kanMX4 

32773 BY4743 lge1∆::kanMX4 

33771 BY4743 bre1∆::kanMX4 

34425 BY4743 rad6∆::kanMX4 

34611 BY4743 rtf1∆::kanMX4 

35727 BY4743 paf1∆::kanMX4 
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Table 2-2. Primers used for generation of Northern hybridization probes. 
Probe Sequence Primer name 

 

ACT1 GGCATCATACCTTCTACAAC DNO455 

ACT1 CGATGTTACCGTATAATTCC 
 

DNO456 

GAL1a CTCATTCAGAAGAAGTGATTGTAC CCO369 

GAL1 AGCACTGGCAAACCTTTC CCO370 

GAL10 CTCAGTTACAAAGTGAAAGTA CCO1135 

GAL10 GCTACTTGAGCCATATATGG CCO1136 

PHO5 TCTTTCCCTGGCGA DNO425 

PHO5a GTCATCCAAGTAGGTTGTGT DNO426 

PHO84 ATGAGTTCCGTCAATAAAGAT MKO928 

PHO84 TTATGCTTCATGTTGAAGTTG MKO929 

PPH3 ATGATGGACTTAGATAAGATTATAG CCO1138 

PPH3 TAAGAAATAGTCCATTTGAGATTT CCO1139 

aPrimer contains a 5' tail with core T7 promoter sequence. 

 

Chromatin immunoprecipitation (ChIP) assay  

To analyze histone H3 K4 methylation levels, antibodies specific for di- 

and tri-methylated forms of histone H3 K4 were used to immunoprecipitate 

chromatin from MBY1198 and MBY1217 strains grown in YPD. Quantitative PCR 

amplification was performed using primers ADO236 and LFO740 as described 

(Carvin et al., 2003a). 
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Figure 2-1. Loss of Set1 leads to higher levels of PHO5 in repressed and activated conditions.  

(A) Total repressible acid phosphatase (rAPase) activities from the CCY1467 wild-type strain and 
the CCY1471 set1∆ mutant strain grown in minimal high phosphate media for 6 h. Activities are 
reported as Miller Units as described previously (Neef and Kladde, 2003). Results are 
representative of five independent experiments. Similar results are observed using two 
independent wild-type and mutant segregants.  
(B) Northern analysis of RNA internally isolated in (A) for PHO5 and ACT1 mRNA levels. For 
quantification (fold relative to WT), PHO5 transcript levels in each lane are normalized to ACT1 
mRNA levels.  
(C) Total rAPase activities of strains grown in minimal no phosphate media for 6 hours. 
(D) Northern analysis of RNA internally isolated from cells in (C). 
 

RESULTS AND DISCUSSION 

Deletion of Set1 leads to increased levels of Pho5 

To determine the role that histone H3 K4 methylation has on PHO5 gene, 

we analyzed PHO5 expression levels in wild-type and set1∆ strains under both 

repressed and activating conditions. In order to distinguish repressible acid 

phosphatase levels as well as potential cross-hybridization in Northern analysis 

from that of the constitutive acid phosphatase Pho3, we used strains in which 
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the entire coding sequence of PHO3 was deleted. In repressed conditions of 

minimal media supplemented with phosphate, set1∆ strains show significantly 

higher levels of rAPase activity than wild-type cells (Fig. 2-1A). This increased 

rAPase activity correlates with higher PHO5 mRNA levels in set1∆ cells, 

suggesting that this derepression is due to increased transcription (Fig. 2-1B). 

We also observed enhanced PHO5 expression in fully activating conditions of 

minimal media lacking phosphate (Fig. 2-1C). Although the fold-increase is 

lower, the increase by nearly 1000 Miller Units is substantial. Similarly, under no 

phosphate conditions, a modest but reproducible increase in PHO5 transcript 

was observed (Fig. 2-1D). To better quantify the level of derepression due to 

the deletion of SET1, we grew cells under conditions of higher basal expression, 

in rich medium supplemented with phosphate at 23oC.  Under these conditions 

rAPase activity is approximately 10-fold higher than when grown in minimal 

media containing phosphate at 30oC (compare levels observed for wild-type in 

Fig. 2-1A to that observed in Fig. 2-2A). PHO5 is still further enhanced in cells 

lacking Set1 (Fig. 2-2A-B). PHO5 expression is noticeably higher throughout a 

time course of phosphate starvation and is repressed slower in a set1∆ strain 

(data not shown). Additionally, yeast in which lysine 4 is mutated to arginine 

and hence cannot be methylated, show increased basal expression of PHO5 

(Fig. 2-2C). The lower fold derepression observed in this H3 K4R strain is likely 

due to the high basal expression that results from expression of the histone on a 
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plasmid. Nevertheless, K4 methylation contributes to the regulation of PHO5 and 

suggests that Set1 plays a role in the repression of the euchromatic gene PHO5. 

 

 

 

Figure 2-2. Derepression of PHO5 is observed in set1∆ cells when grown in YPPD. 

(A) Total rAPase activities from two independent wild-type and set1∆ strains grown in YPPD at 
23oC. rAPase activity results are representative of three independent experiments. 
(B) Northern analysis of RNA internally isolated from cells in (A). For quantification (fold relative 
to WT), PHO5 transcript levels in each lane are normalized to ACT1 mRNA levels. 
(C) rAPase activities of MBY1499 wild-type and MBY1500 histone H3 K4R mutant strains. 
 
 
Methylation of K4 of histone H3 is present at the PHO5 promoter  

In order to see if Set1 is regulating PHO5 directly, we investigated the 

methylation state of histone H3 at the PHO5 promoter. Chromatin 

immunoprecipitation (ChIP) was performed using antibodies specific for di- and 
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tri-methylated lysine 4 of histone H3 (Santos-Rosa et al., 2002). When cells are 

grown in YPD, which is limiting for inorganic phosphate and hence leads to 

significant PHO5 expression (Neef and Kladde, 2003), considerable amounts of 

both di- and tri-methylated forms of K4 are present at the PHO5 promoter (Fig. 

2-3). This enrichment is abolished in a strain that lacks Set1. This is consistent 

with results reported previously (Reinke and Hörz, 2003) and suggests that Set1 

is directly associated with PHO5.  

 

 

Figure 2-3. Set1-dependent K4 methylation is enriched at the PHO5 promoter. 

Chromatin immunoprecipitation analysis of wild-type MBY1198 and set1∆ MBY1217 strains 
grown in YPD media using antibodies specific for di- and tri- methylated forms of histone H3 K4. 
PCR amplifications of input and immunoprecipitated DNA samples using primers specific for the 
PHO5 promoter region are shown.  
 
 
Upstream regulators of Set1 also regulate PHO5  

 Histone ubiquitination of histone H2B at lysine 123 by the Rad6-Bre1 

complex is required for Set1 to methylate histone H3 K4. Additionally, recent 

reports have linked Set1-dependent methylation to transcriptional elongation via 

the Paf1-Rtf1 complex. Defects in Paf1 or Rtf1 lead to loss of K4 methylation. 

Since these complexes are necessary for K4 methylation, we surmised that 

defects in these complexes should have a similar phenotype to that observed in 
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set1∆. Deletions of both RTF1 and PAF1 cause significant increased expression 

of PHO5 with paf1∆ having a larger effect than rtf1∆ (Fig. 2-4A). This is 

consistent with previous results that have shown that a paf1∆ strain has a larger 

transcriptional effect than rtf1∆ (Squazzo et al., 2002). Further, PAF1 null strains 

reduce the association of Set1 with coding regions more than does a deletion of 

RTF1 (Ng et al., 2003b). Deletions in RAD6, BRE1 or LGE1, encoding 

components of the Rad6-Bre1 complex (Hwang et al., 2003), lead to increased 

PHO5 levels (Fig. 2-4B). Finally, deletions of SET1 or BRE2 of the COMPASS 

complex (Miller et al., 2001) also show enhanced rAPase expression (Fig. 2-4C).  

It is interesting to note that the Paf1-Rtf1 complex, which is genetically 

upstream of the Rad6-Bre1 and COMPASS complexes, has the largest effect on 

derepression. This suggests that Paf1-Rtf1 may recruit other components that 

regulate PHO5 expression. 
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Figure 2-4. Upstream regulators of Set1 also regulate PHO5 expression. 

(A) rAPase activities of wild-type, paf1∆, and rtf1∆ strains grown in minimal high phosphate 
media. The means ± 1 standard deviation from three independent experiments are shown.  
(B) rAPase activities of wild-type, bre1∆, lge1∆, and rad6∆ strains. 
(C) rAPase activities of wild-type, bre2∆, and set1∆ strains. The means ± 1 standard deviation 
from three independent experiments are shown.  
 

Set1 is a negative regulator of PHO84 expression  

 To test if other genes of the PHO cluster are regulated by Set1, we 

examined the expression of PHO84, which codes for the high affinity phosphate 

transporter. Like PHO5, PHO84 is only minimally expressed in high phosphate 

conditions and is highly expressed in media where phosphate is limiting. PHO84 

mRNA levels were studied in wild-type and set1∆ cells grown in YPPD. As seen 
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previously for PHO5, the strain lacking Set1 shows higher expression of PHO84 

than wild-type (Fig. 2-5A). Conversely, a reduction in the mRNA levels of the 

constitutive protein phosphatase PPH3 is observed in set1∆ (Fig. 2-5B) as has 

been shown previously (Santos-Rosa et al., 2002). The PHO84 results confirm 

the above-mentioned PHO5 results and demonstrates that Set1 is a repressor of 

other PHO genes while is required for full expression at others. 

 

 
Figure 2-5. Set1 regulates other PHO-responsive genes. 

(A) Northern analysis of PHO84 expression of wild-type and set1∆ strains grown in YPPD. For 
quantification (fold relative to WT), PHO84 transcript levels in each lane are normalized to ACT1 
mRNA levels. 
(B) Northern analysis of PPH3 expression in minimal media normalized to 18S RNA. 
 

GAL1-10 is also negatively regulated by Set1 

To determine if Set1 is involved in the repression of other genes not 

under phosphate control, we examined the GAL1-10 locus. Wild-type and set1∆ 

strains were grown in repressed conditions, YPD, and semi-activating conditions 
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YPG + 0.5% glucose and GAL1 and GAL10 mRNA expression was measured. No 

detectable GAL1 or GAL10 transcript was observed in YPD; however, both GAL1 

and GAL10 are expressed more in a set1∆ strain in YPG + 0.5% glucose (Fig. 2-

6). These data are consistent with two previous microarray analyses which also 

indicated that GAL1 has increased mRNA levels in a set1∆ deletion strain 

(Bernstein et al., 2002; Boa et al., 2003). A recent study has also shown that 

GAL10 is expressed significantly higher in a rad6∆ null as well as in set1∆ at 

early times of induction (Daniel et al., 2004). Thus, Set1 may negatively 

regulate a myriad of genes with different functions and regulatory mechanisms.  
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Figure 2-6. Set1 represses GAL1-10 expression. 

(A) Northern analysis of GAL1 expression of wild-type and set1∆ strains grown in YPD or YPG + 
0.5% glucose. For quantification (fold relative to WT), GAL1 transcript levels in each lane are 
normalized to ACT1 mRNA levels. 
(B) Northern analysis of GAL10 mRNA levels. For quantification (fold relative to WT), GAL10 
transcript levels in each lane are normalized to ACT1 mRNA levels. 
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CHAPTER III 

THE ROLE OF BROMODOMAINS IN TRANSCRIPTIONAL ACTIVATION 

 

OVERVIEW 

Post-translational modifications of histones are key regulatory events in 

transcription coordination. During transcriptional activation, the primary 

activator recruits a variety of coactivators which function to remodel chromatin 

as well as to recruit the transcriptional machinery. Histone acetylation is a 

determinant of transcriptionally active chromatin regions; however, its functional 

role has not been clearly defined. A number of chromatin remodeling 

coactivators contain a highly conserved bromodomain which selectively 

recognizes acetylated histones. Since chromatin remodeling coactivators do not 

bind DNA directly, it is difficult to quantify the promoter association accurately, 

and it is even harder to determine the individual contributions of each subunit in 

promoter interaction. In order to determine the function that the bromodomain 

motif may contribute in transcriptional activation, we fused the Gcn5 

bromodomain up to the transcriptional activator Pho4. This fusion leads to 

significant enhancement of PHO5 expression. Mutations in essential residues of 

the bromodomain alleviate this effect. We can use this strategy to measure 

accurately the effect of individual bromodomains on promoter binding and 

transcriptional activation. 
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INTRODUCTION 

 In eukaryotes, the process of transcription requires the interplay of DNA-

binding transcriptional activators, chromatin remodeling coactivators, and RNA 

polymerase. The primary activator is able to independently recruit all of these 

activities (reviewed in Fry and Peterson, 2001). At the yeast HO gene, the 

primary activator Swi5 recruits Swi-Snf and SAGA in a temporal manner and 

Swi-Snf and SAGA remain associated with the promoter after Swi5 has 

dissociated. An in vitro system using nucleosomal arrays has shown that histone 

acetylation stabilizes the binding of Swi-Snf (Hassan et al., 2001). This suggests 

a connection between the activity of one chromatin remodeling enzyme and the 

recruitment of another. 

 A number of chromatin remodeling complexes in yeast contain subunits 

which contain a highly conserved bromodomain which has been shown to be an 

acetyl-lysine binding domain (Dhalluin et al., 1999). Since histone acetylation 

usually increases at promoters during activation, the bromodomain may provide 

a functional link in the recruitment and stabilization of transcriptional 

coactivators. However, it is difficult to determine the relative contributions 

particular domains may have in binding using chromatin immunoprecipitation, 

since coactivators often cross-link poorly as they do not bind DNA directly. 

 Here, we show that fusion of the bromodomain from the Gcn5 histone 

acetyltransferase to the transcriptional activator Pho4 significantly increases the 
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ability of Pho4 to activate transcription. We observe a greater than eight-fold 

enhancement of PHO5 expression in repressed conditions. This effect is not 

seen when critical residues that make up the acetyl-lysine binding pocket of the 

bromodomain are mutated. This strategy provides a convenient way to test the 

effect that individual bromodomains may have on the binding affinity of 

coactivators to promoter regions. 

 

MATERIALS AND METHODS 

Yeast strains, plasmid construction, and growth conditions 

All strains used in this study are derived from CCY880 (MATa leu2∆0 

lys2∆0 ura3∆0 pho3∆::R). All bromodomain fusions were constructed by tagging 

Pho4 with 3xHA-(his)6-GPGS(G)6(SGG)2GLGST (linker)-BD fusion at its C-

terminus with the selectable marker URA3 immediately downstream. All 

constructs were integrated at the endogenous PHO4 locus so that the chimeric 

proteins would be expressed by the endogenous PHO4 promoter (Legrain et al., 

1986). Proper integration was screened by PCR. URA3, which was flanked by 

Zygosaccharomyces rouxii recombinase sites, was then recovered by 

homologous recombination (Roca et al., 1992). Bromodomain mutants were 

created by site-directed mutagenesis using the mutagenic primers described in 

(Syntichaki et al., 2000). All plasmids were sequence-verified prior to 

integration. 
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 Strains were pre-grown in minimal media containing 0.7 g yeast nitrogen 

base with ammonium sulfate, phosphate, and amino acids (Bio 101), 2 g 

glutamine (Sigma), 20 g dextrose (Fisher), and 3.9 g 2-N-morpholino 

ethanesulfonic acid (JT Baker), pH 5.5, per liter supplemented with 13.4 mM 

KH2PO4. Cells were reseeded to OD600 = 0.2 in minimal media containing either 

13.4 mM KH2PO4 or 13.4 mM KCl and incubated at 30oC with shaking for 6 h. 

PHO5 activity was measured by repressible acid phosphatase activity assays 

(Neef and Kladde, 2003). 

 

RESULTS AND DISCUSSION 

Fusion of the Gcn5 bromodomain to Pho4 enhances PHO5 expression 

in repressed conditions 

 To test whether the bromodomain of Gcn5 may affect the ability of Pho4 

to activate transcription, we fused it in-frame to C-terminus of Pho4 (Pho4-

Gcn5BD). The fusion was integrated at the endogenous Pho4 locus and its 

expression was regulated by the PHO4 promoter. We analyzed PHO5 expression 

levels by acid phosphatase assays as described previously (Neef and Kladde, 

2003). The Pho4-Gcn5BD fusion showed a dramatic increase in the expression 

of the repressible acid phosphatase gene PHO5 in repressed conditions (Fig. 3-

1). Though Pho4 is mainly localized to the cytoplasm in high phosphate, some 
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transient Pho4 binding is observed (Carvin et al., 2003a) and the addition of the 

bromodomain makes Pho4 a more potent activator.  

 

 

Figure 3-1. Fusion of the Gcn5 bromodomain to Pho4 increases PHO5 expression in high 
phosphate medium. 

rAPase activity assays of wild-type (Pho4) and bromodomain fusion (Pho4-Gcn5BD) strains 
grown in high phosphate media. The means ± 1 standard deviation from seven independent 
Pho4-Gcn5BD strains are shown. 

 

 

 Under fully activating conditions, no significant enhancement of 

expression is observed in the Pho4-Gcn5BD fusion strain (Fig. 3-2). Previous 

work has shown that histone acetylation levels are lower in phosphate-limiting 

media which has been attributed to complete nucleosome displacement (Reinke 

and Hörz, 2003; Boeger et al., 2003). The loss of acetylated histones would 

prevent the bromodomain from providing an additional binding contact. 
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Alternatively, Pho4 binding at the PHO5 promoter or PHO5 expression may have 

achieved saturated. 

 

 

 

 

Figure 3-2. Pho4-Gcn5BD does not show increased expression in the absence of phosphate. 

rAPase activity assays of wild-type (Pho4) and bromodomain fusion (Pho4-Gcn5BD) strains 
grown in no phosphate media. The means ± 1 standard deviation from seven independent 
Pho4-Gcn5BD strains are shown. 

 

Bromodomain mutants cannot increase PHO5 expression 

 It is formally possible that the enhanced expression seen is a result of 

higher Pho4 concentrations in the nucleus, however, previous work has shown 

that deletion of MSN5,  which leads to constitutive Pho4 nuclear localization, 

does not lead to higher PHO5 expression (Kaffman et al., 1998a). Additionally, 

we have that other Pho4 C-terminal fusions do not lead to derepression (Carvin 
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et al., 2003a). It is also possible that the bromodomain, which contains a 

number of acidic residues, contains a cryptic activation domain. To demonstrate 

that the additional induction seen in the Pho4-Gcn5BD fusion is a true result of 

the bromodomain, we mutated the bromodomain at two essential residues 

which were shown to be required for its function (Syntichaki et al., 2000). The 

P371T and M372A mutations completely abolish the enhanced expression 

observed (Fig. 3-3). This demonstrates that the bromodomain itself and it is not 

merely the result of a fusion protein which leads to the enhanced expression.  

 

 

Figure 3-3. Mutations in the Gcn5 bromodomain impair its function. 

rAPase activity assays of wild-type (Pho4), bromodomain fusion (Pho4-Gcn5BD), and mutated 
bromodomain fusion (Pho4-Gcn5BD P371T/M372A strains grown in high phosphate media. 
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CHAPTER IV 

TARGETED CYTOSINE METHYLATION FOR IN VIVO DETECTION OF PROTEIN-

DNA INTERACTIONS† 

 

OVERVIEW 

We report a technique, named targeted gene methylation (TAGM), for 

identifying in vivo protein binding sites in chromatin. M.CviPI, a cytosine-5 DNA 

methyltransferase recognizing GC sites, is fused to a DNA-binding factor 

enabling simultaneous detection of targeted methylation, factor footprints, and 

chromatin structural changes by bisulfite genomic sequencing. Using TAGM with 

the yeast transactivator Pho4, methylation enrichments of up to 34-fold occur 

proximal to native Pho4 binding sites. Additionally, significant, selective 

targeting of methylation is observed several hundred nucleotides away, 

suggesting the detection of long-range interactions due to higher-order 

chromatin structure. In contrast, at an extragenic locus lacking Pho4 binding 

sites, methylation levels are at the detection limit at early times following Pho4 

transactivation. Notably, substantial amounts of methylation are targeted by 

Pho4-M.CviPI under repressive conditions when most of the transactivator is 

excluded from the nucleus. Thus, TAGM enables rapid detection of DNA-protein 

                                                 
† The work presented in this Chapter has been published in the following paper: Carvin, C.D., 
Dhasarathy, A., Friesenhan, L.B., Jessen, W.J., and Kladde M.P. (2003). Targeted cytosine 
methylation for in vivo detection of protein-DNA interactions. Proc. Natl. Acad. Sci. USA 100, 
7743-7748 by permission of National Academy of Sciences, Copyright 2003. 
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interactions even at low occupancies and has potential for identifying factor 

targets at the genome-wide level. Extension of TAGM from yeast to vertebrates, 

which use methylation to initiate and propagate repressed chromatin, could also 

provide a valuable strategy for heritable inactivation of gene expression. 

 

INTRODUCTION 

The interaction of proteins with chromosomal target sites, either directly or 

through recruitment by DNA-bound factors, is central to many processes, 

including transcriptional activation and repression, replication and repair of DNA, 

recombination, and chromosome segregation. Therefore, strategies are needed 

that can efficiently identify specific chromosomal sites at which factors act. Few 

techniques are capable of demonstrating these interactions in the context of 

native chromatin in living cells, and these methods have limitations (Simpson, 

1999). For example, with footprinting techniques, protection against chemical 

(e.g., dimethyl sulfate) or enzymatic probes expressed in cells, e.g., DNA 

methyltransferases (DMTases) (Gottschling, 1992; Singh and Klar, 1992; Kladde 

and Simpson, 1994; Kladde et al., 1996; Xu et al., 1998b) or DNase I (Wang 

and Simpson, 2001), requires close proximity of the interacting factor to DNA 

sites that are modified or cleaved by the footprinting agent. Footprinting 

methods also require that the factor resists displacement by the enzymatic or 

chemical probe. Moreover, as many proteins can exclude probe access, a 
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footprint does not provide an unequivocal identity of the bound protein (Rigaud 

et al., 1991). To circumvent this latter problem, proteins have been fused to an 

endonuclease (Lee et al., 1998), however, the resulting DNA damage alters 

chromatin structure and activates checkpoint controls. Another method, 

chromatin immunoprecipitation (ChIP), employs in situ fixation with 

formaldehyde followed by immunoselection of DNA-bound complexes. The 

requirements for large numbers of cells and highly specific antibodies as well as 

low fixation efficiencies (ca. 0.1-0.5%) (Tanaka et al., 1999; Reid et al., 2000) 

present distinct disadvantages of ChIP analysis. The approach of tethering 

chromatin proteins to the Dam DMTase, which methylates GATC sites near their 

sites of chromosomal association, overcomes the above problems (van Steensel 

and Henikoff, 2000). This method has been used to detect factors bound at 

chromosomal regions containing multiple factor binding sites, e.g., 14 Gal4 (van 

Steensel and Henikoff, 2000) and 112 TetR sites (Lebrun et al., 2003); however, 

it is not known if it can detect a factor bound at a single binding site. In 

addition, sensitive quantification of methylation frequencies can only be 

performed for one dam site at a time and requires real-time PCR analysis. 

We report the specific targeting of cytosine methylation to promoters in 

living eukaryotic cells. Our strategy (Fig. 4-1), named TAGM, capitalizes on 

fusing chromatin-associating factors to M.CviPI, a cytosine-5 DNA 

methyltransferase (C5 DMTase) that methylates the C of a 2-bp GC site. This 
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short specificity provides a M.CviPI recognition site, on average, once every 27 

bp, increasing the frequency of DMTase sites at least 10-fold over DMTases that 

recognize 4-bp sites. Bisulfite genomic sequencing is used to provide a positive 

display of 5-methylcytosine (m5C) levels at many GC sites on a standard 

sequencing gel. We find that fusion of M.CviPI to a DNA-binding factor leads to 

substantial increases in, or targeting of, m5C proximal to factor binding sites that 

are accessible in chromatin. Moreover, m5C is selectively targeted distal to the 

site of the bound factor, suggesting detection of higher-order chromatin 

structure. Thus, TAGM is sensitive, requiring small numbers of cells to monitor 

the interaction of a factor with a single, native binding site. Since DNA 

methylation is a primary signal for establishing and maintaining repressive 

chromatin structures in vertebrates (Bird, 2002), our demonstration of targeting 

m5C in a eukaryote is a critical step toward achieving heritable, methylation-

dependent gene silencing in such organisms. 

 

 

Figure 4-1. The TAGM strategy for identifying DNA–protein interactions in vivo. 

Hypothetical sites protected against methylation (arrowheads) or directly methylated (asterisks) 
are indicated. 
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MATERIALS AND METHODS 

Yeast strains, plasmid construction, and growth conditions 

All yeast strains used in TAGM analyses have the S288C background and 

were derived from YPH500∆L (MATα ade2-101 ura3-52 his3-∆200 leu2-∆1 trp1-

∆63 lys2-∆1)(Kladde et al., 1996). Mutated Zif268 (mut Zif), which contains a 

single amino acid mutation (H58E) (Nardelli et al., 1991) that abolishes DNA 

binding, was cloned as an in-frame fusion to M.CviPI into pMPK1 under the 

control of the GAL1 promoter and integrated at LYS2 as previously described 

(Kladde et al., 1996). M.CviPI and mut Zif are separated by a linker peptide, 

GS(G)4SG4SG3LGST (Xu and Bestor, 1997). Pho4-M.CviPI was constructed by 

tagging Pho4 with 3HA-(his)6-GPGS(G)6(SGG)2GLGST (linker)-M.CviPI at its C-

terminus under control of the constitutively-expressed, endogenous PHO4 

promoter (Legrain et al., 1986). URA3, which was flanked by 

Zygosaccharomyces rouxii recombinase sites, was then deleted by homologous 

recombination (Roca et al., 1992).  

  For ChIP analysis, strains LFY2152 (S288C; MATα leu2-∆0 lys2-∆0 ura3-

∆0 pho3∆) with the endogenous PHO4 locus tagged at its N-terminus with a 

triple myc epitope or ADY2398 with wild-type PHO4 (no tag control), were used. 

Both strains also contain a mutated copy of the PHO5 promoter (deletion of 

both UASs, from −401 to −352 and −258 to −209) integrated at the extragenic 
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CAN1 locus.  

Strains were pre-grown in minimal media (2% raffinose, 20 mM 2-N-

morpholino ethanesulfonic acid [MES], pH 5.5, 14 mM L-glutamine, and 0.7 g 

yeast nitrogen base [YNB] without (NH4)2SO4, phosphate, or amino acids 

[Bio101]) that was brought to 13.4 mM KH2PO4. Cells were then washed and 

resuspended to an OD600 of 0.2 with the same minimal media containing either 

13.4 mM KH2PO4 (+Pi, repressive conditions) or 13.4 mM KCl (−Pi, activating 

conditions) that also contained 2% galactose. 

 

Bisulfite genomic sequencing  

Genomic DNA was rapidly isolated and analyzed by bisulfite genomic 

sequencing (Frommer et al., 1992; Clark et al., 1994) as modified (Kladde et al., 

1996). PCR products amplified from bisulfite-deaminated DNA using Jumpstart 

Taq DNA polymerase (Sigma) were purified and subjected to primer extension 

as described previously (Kladde et al., 1996), except that the final 

concentrations of dNTPs (A, C, T) and ddGTP were 50 µM and 150 µM, 

respectively. Exclusion of dGTP from the PCR product primer extension reactions 

yields high termination efficiencies (>96%)(Kladde et al., 1996) at template 

cytidines (m5C residues in vivo). Absolute frequencies of site methylation are 

calculated by dividing the intensity of a given band by all summed product 

intensities, including the run-off product at the top of the gel generated by 
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extension on non-methylated templates. Oligonucleotides used for the bisulfite 

genomic sequencing analysis of m5C levels are listed in Table 4-1. 

Table 4-1. Bisulfite genomic sequencing primers. 

Primer name Sequence Figure 

Oligonucleotides for PCR amplification. 

CAR1b1-60 CCATTTaAaaaACTCaaaACAATaTaaaAC 4-2D 

CAR1b2-61 TAtGGAATTAGAGtttTtAATGGAtGAG 4-2D 

PHO5a1-22 CCAAATaaaTATATaCCTTaCCAAaTAAaaTaACC 4-3 

PHO5a2-21 TAtAtATtGGAtTGATAAGTTAtTAtTGtAtATTGG 4-3 

PHO5b1-922 TTCAATTaCTAAATACAATaTTCCTTaaT 4-2, 4-4 

PHO5b2-924 GAAAAtAGGGAttAGAATtATAAATTTAGTtT 4-2, 4-4 

PHO8b1-246 ATAACCaCACCTaCAATaACaaTA 4-5A 

PHO8b2-247 TtGAGTtAGATttAGGAAtAAGAtGT 4-5A 

PHO84a1-918 ATaTTACCACCTTCaaTAAaaTaTTCTTTATaAA 4-5B 

PHO84a2-920 AGATGAtTTtAAAtGAtTtGGTATAtTtTG 4-5B 

Oligonucleotides that were 32P-end-labeled for primer extension 

CAR1b1-60 CCATTTaAaaaACTCaaaACAATaTaaaAC 4-2D 

PHO5b1-751 TaTTTTCTCATaTAAaCaaACaTCaTCT 4-2AB (upper panel), 4-2C 

PHO5b1-969 AACaCAACTaCACAATaCCAA 4-2B (lower panel) 

PHO5a1-22 CCAAATaaaTATATaCCTTaCCAAaTAAaaTaACC 4-3 (UASp1) 

PHO5a1-20  aaCTAaTTTaCCTAAaaaAATaaTACCTaCATTaaCC 4-3 (UASp2) 

PHO5b1-768  ATATATCTCGAGGACTAATAaAAaAAAACAAaAaACTCCaT 4-4 

PHO8b1-248  AaAATCAAaTAAaACCTCAAaA 4-5A 

PHO84a1-918 ATaTTACCACCTTCaaTAAaaTaTTCTTTATaAA 4-5B 

Pairs of ‘a’ (a1 and a2) or ‘b’ (b1 and b2) are PCR amplification primers for the upper and lower DNA strands, respectively, from 
bisulfite-treated DNA. Nucleotides in lower case represent either G to a or C to t transitions. 
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Chromatin immunoprecipitation (ChIP) analysis  

Strains LFY2152 (3Myc-PHO4) and ADY2398 (PHO4) were grown for 4 h 

in the above minimal medium (2% glucose) containing the indicated 

concentrations of Pi before treatment with 1% paraformaldehyde for 15 min at 

room temperature. ChIP analysis was performed as previously described (Hecht 

and Grunstein, 1999) using 2 µl rabbit A-14 anti-Myc antibody (Santa Cruz 

Biotechnologies). Two microliters of immunoselected and input DNA (1:2000 

dilution) were amplified in the presence of 10 µCi [α32P]dCTP by quantitative, 

competitive PCR with primers ADO236 (CATGTAAGCGGACGTC) and LFO740 

(GCCTTGCCAAGTAAGGTGAC), which simultaneously amplify both the wild-type 

(298 bp product) and mutant (198 bp product) copies of the PHO5 promoter. 

Radiolabeled PCR products were analyzed by 4% native PAGE. 

 

RESULTS AND DISCUSSION 

Targeting of cytosine methylation by Pho4 in vivo 

m5C has been selectively targeted to oligonucleotides in vitro by fusing C5 

DMTases to heterologous DNA-binding factors (Xu and Bestor, 1997; McNamara 

et al., 2002). To date, however, attempts to reproduce this capability in vivo 

have been unsuccessful (McNamara et al., 2002). As a first step toward 

targeting C5 DNA methylation in vivo, we tested whether a native yeast protein 

could specifically target a C5 DMTase and hence increase m5C levels at 
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promoters in the tractable eukaryote, S. cerevisiae (Fig. 4-1). Yeast does not 

have detectable endogenous m5C and foreign expression of C5 DMTases is 

neither deleterious nor has known effects on gene expression (Kladde et al., 

1996; Xu et al., 1998b). The sequences coding M.CviPI (Xu et al., 1998a) were 

integrated at the end of the PHO4 gene, such that the DMTase is fused to the C-

terminus of Pho4 and the fusion protein is constitutively expressed from the 

endogenous PHO4 promoter (Legrain et al., 1986). Pho4 is a basic helix-loop-

helix transactivator that induces expression of the PHO gene cluster after 

binding as a homodimer to E boxes (CACGTG or CACGTT) when Pi is limiting 

(Oshima et al., 1996). The factor to which M.CviPI is fused is designated the 

targeting factor. Acid phosphatase activity is increased in PHO4-M.CviPI strains 

at least 25-fold after 6 h Pi starvation, as has been observed for wild-type 

strains and those expressing other Pho4 C-terminal fusions (O'Neill et al., 1996; 

Komeili and O'Shea, 1999). Since fusing foreign proteins to DMTases can 

decrease the affinity of the DMTase for its recognition site (Xu and Bestor, 

1997), as a control, we expressed M.CviPI tethered to a mutated version of the 

zinc-finger protein, Zif268, that is severely impaired for DNA-binding activity 

(mut Zif). This ‘free’, non-targeted DMTase controls for the extent of GC 

methylation due to DMTase site preferences in protein-free DNA and 

accessibility in chromatin (Gottschling, 1992; Singh and Klar, 1992; Kladde and 

Simpson, 1994; Kladde et al., 1996; Xu et al., 1998b). 
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 We investigated the Pho4-dependent targeting of M.CviPI to the PHO5 

promoter, a well-studied locus of Pho4 binding, in a PHO4-M.CviPI/PHO4 strain. 

The use of a heterozygote rigorously tests whether Pho4 can target the DMTase 

in the presence of wild-type Pho4, and more closely approximates the 

experimental conditions likely to be employed if TAGM were used in vertebrate 

cells. Relative methylation frequencies at multiple GC sites were determined by 

bisulfite genomic sequencing (Frommer et al., 1992; Clark et al., 1994; Kladde 

et al., 1996), where the extent of primer extension termination is directly 

proportional to the level of m5C at a given GC site. PHO4 expression is 

constitutive (Legrain et al., 1986); in high Pi medium, Pho4 is phosphorylated by 

the nuclear cyclin-CDK Pho80-Pho85 and is exported to the cytoplasm thereby 

leading to the repression of PHO genes (O'Neill et al., 1996). Consistent with the 

predominantly cytoplasmic localization of Pho4 under conditions of high Pi, on 

the lower DNA strand of the nucleosome-free region of the PHO5 promoter 

(Almer et al., 1986), C5 methylation by Pho4-M.CviPI of six GC sites (sites 1, 4, 

19, 26b, 41, and 43) is at background levels (Fig. 4-2A, lanes 8 and 9). 
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Figure 4-2. Pho4 specifically targets M.CviPI to the PHO5 promoter. 

(A) Cultures expressing Pho4-M.CviPI and Pho4 or mut Zif-M.CviPI as a free DMTase control were grown 
under repressive conditions in high Pi medium then washed and transferred to Pi-free medium to activate 
PHO genes. Genomic DNA isolated from cells removed at the indicated times was analyzed for m5C levels 
at GC sites on the lower strand of the PHO5 promoter by a bisulfite genomic sequencing. The locations of 
the two known Pho4-binding sites (filled bars), the UASp1 E box, and UASp2 E box, as well as positioned 
nucleosome –2 (partial ellipse), are shown. The distance (base pairs) of each GC site from the respective 
proximal edge of UASp1 in the nuclease hypersensitive region (GC sites from –405 to –331 relative to the 
PHO5 ATG) or UASp2 (GC sites from –290 to –241) are also indicated on the right. The same number of 
total counts was loaded in each lane. In strains expressing either DMTase fusion, the ratios of m5C 
between several sites ( ) in a given lane were similar, identifying sites to which methylation is nontargeted 
or targeted indirectly. Normalization of m5C levels to an accessible histone-free site remote from UASp1, 
site 43 ( ), enables lane-to-lane comparisons and demonstrates protection against methylation ( ) as 
well as efficient targeting of M.CviPI to three GC sites (*) by bound Pho4. Selective targeting of m5C to 
these latter three sites is highly reproducible, as evidenced in lanes 9–17 and in five additional experiments 
analyzing one +Pi and a 4-h -Pi sample. Note that, after 2 h, high levels of methylation in the Pho4-M.CviPI 
samples lead to considerable departure from single-hit kinetics and underestimation of signal intensity.  
(B) Quantitative scans of bisulfite genomic sequencing data. (Upper) Selected lanes (as indicated) in (A) 
are scanned (PHO5 UASp1). Methylation levels can be normalized to that at site 43. (Lower) Scans (PHO5 
UASp2) were obtained by re-extension of the same PCR products used in the analysis in (A) with primer 
PHO5b1–969 that anneals between sites 26b and 37. 
(C) Initial rates of methylation are linear. Quantification of absolute m5C frequencies (percentage of total 
summed product intensities) of the indicated sites from the data in (A), lanes 10–13.  
(D) M.CviPI is specifically targeted by Pho4 to PHO5 and not to CAR1 at early times after PHO activation. 
CAR1 sequences (+159 to +558) were amplified from a subset of the bisulfite-treated samples analyzed in 
(A) and analyzed for m5C levels. The ratios among eight additional sites are also identical. 
(E) TAGM detects Pho4 binding more sensitively than ChIP analysis. Immunoselected (lanes 2–5) and 
nonimmunoselected (lane 1, input) samples from either wild-type PHO4 (lane 5, no tag) or 3Myc-PHO4 
(lanes 2–5) strains that contain a wild-type PHO5 promoter and a mutated promoter (pho5 UASs) were 
analyzed by competitive PCR. The folds of enrichment, normalized to the input ratio, are given. 
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During a time course of PHO transactivation (Fig. 4-2A, –Pi, lanes 11-17), 

methylation at most nucleosome-free sites (sites 13, 19, 26a, 26b, 41, and 43) 

in the PHO5 promoter increased over time in the Pho4-M.CviPI strain, in 

agreement with the well-known nuclear accumulation of Pho4 under these 

conditions (O'Neill et al., 1996). In contrast, in the mut Zif-M.CviPI control strain 

(Fig. 4-2A, lanes 1-7), methylation remained rather constant at most of these 

sites in this histone-free region, except at sites 1 and 4 adjacent to UASp1, 

which are probably protected against methylation by bound Pho4 (Kladde et al., 

1996; Xu et al., 1998b). Closer analysis of m5C levels during 0-2 h after 

activation (Fig. 4-2A, lanes 10-13) indicates that Pho4 predominantly targets 

M.CviPI to PHO5 sites 13 and 26a (asterisked), achieving enrichments of up to 

20- and 34-fold, respectively, over mut Zif-M.CviPI. Directly targeted 

methylation is readily identifiable by inspecting for peak areas that are altered 

relative to other peaks in a given lane with Pho4-M.CviPI as compared to mut 

Zif-M.CviPI (Fig. 4-2B). Further, in the PHO4-M.CviPI strain, methylation 

frequencies of sites 13 and 26a increase linearly from 7 to 23% between 0 and 

2 h (Fig. 4-2A, lanes 10-13; Fig. 4-2C), and plateau at 4 h after induction (Fig. 

4-2A, lane 14). By comparison, from 0-2 h activation, m5C accumulates at an 8-

fold slower rate at site 43 than at sites 13 and 26a (Fig. 4-2C). In addition, 

similar ratios of m5C levels among GC sites in a given lane at an extragenic locus 
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(CAR1), which lacks Pho4 sites, demonstrate that the enhanced methylation of 

sites 13 and 26a at PHO5 is due to site-specific DNA binding by Pho4 (Fig. 4-

2D). These results suggest that the frequency of targeted m5C parallels the 

increase in Pho4 binding to UASp1 that occurs when cells are starved for Pi 

(Svaren et al., 1994; Venter et al., 1994). We conclude that M.CviPI is efficiently 

and directly targeted (see Fig. 4-1) to C residues of GC sites 13 and 26a on the 

lower strand of the PHO5 promoter, which agrees well with the optimal distance 

range of 10-40 bp observed for targeting DNA DMTases to oligodeoxynucleotide 

substrates in vitro (Xu and Bestor, 1997; McNamara et al., 2002). It is likely that 

the DMTase can reach sites within this distance range when the targeting factor 

(i.e., Pho4) is specifically bound to its UAS. Interestingly, other sites, e.g., site 

19, are not selectively modified by Pho4-M.CviPI (Fig. 4-2A-B). 

Indirect targeting of M.CviPI, Pho4-dependent accumulation of m5C that 

occurs locally when Pho4 dissociates from its UAS, is also observed (see Fig. 4-

1). For instance, methylation at sites 41 and 43 increases abruptly at 4 h –Pi and 

continues to rise for the remainder of the time course (Fig. 4-2A, lanes 14-17). 

Moreover, while m5C amounts introduced by Pho4-M.CviPI at PHO5 (e.g., sites 

41 and 43) surpass those attained with the free DMTase (Fig. 4-2A, compare 

lanes 14-17 to 3-7), the converse occurs at the extragenic CAR1 locus at all 

times until 16 h post-induction (Fig. 4-2D, compare lanes 3-4 to 6-10). This 

demonstrates that, at early times after induction, Pho4 preferentially targets 
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M.CviPI to PHO5, and, at extragenic loci, at least 4 h more is required to 

accumulate high levels of m5C. Therefore, at ≥4 h in Pi-free medium (Fig. 4-2A, 

lanes 14-17), the significant increases in methylation at PHO5 sites 41 and 43 

are due to indirect targeting of M.CviPI; Pho4-M.CviPI dissociating from either 

UAS creating a local region of m5C. 

Between 2-16 h induction, Pho4-M.CviPI also increased m5C levels 

substantially at PHO5 sites 7a, 7b, and 37 located in positioned nucleosome –2 

(Almer et al., 1986) (Fig. 4-2A, lanes 13-17). Since nucleosomes block 

accessibility of DMTases (Kladde and Simpson, 1994; Kladde et al., 1996; Xu et 

al., 1998b), the increased methylation of these sites by both M.CviPI fusion 

proteins is indicative of nucleosomal disruption concomitant with PHO5 

activation (Almer et al., 1986). Methylation by mut Zif-M.CviPI at site 37 in the 

presence of Pi (Fig. 4-2A, lane 1) occurs because DMTases can access two 

helical turns of DNA that enter and exit nucleosomes (Kladde and Simpson, 

1994; Kladde et al., 1996; Xu et al., 1998b). Note that methylation levels at 

sites 7a, 7b, and 37 in the Pho4-M.CviPI samples (Fig. 4-2A, lanes 13-17) are 

substantially underestimated due to high levels of primer extension termination 

at sites closer to the primer (i.e., the analysis does not satisfy single-hit kinetics 

at the most primer distal sites). Thus, extension with a primer annealing just 

downstream of site 26b demonstrates that Pho4-M.CviPI methylates sites 7a, 

7b, and 37 more efficiently than mut Zif-M.CviPI (Fig. 4-2B, lower panel). The 
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extensive methylation of these sites by Pho4-M.CviPI is consistent with the high 

level of indirect targeting of methylation to the UASp1 region that occurs ≥4 h Pi 

starvation. In addition, the marked increase in m5C at site 7a relative to 7b with 

Pho4-M.CviPI, and not with mut Zif-M.CviPI, strongly suggests that Pho4 targets 

the DMTase to site 7a after binding UASp2 and/or from a distance when bound 

at UASp1. Therefore, m5C is targeted to the central region of nucleosomes, 

which is inaccessible to DMTases, only when they have been disrupted. 

Strikingly, methylation is targeted directly to several GC sites when the 

majority of Pho4-M.CviPI is expected to be excluded from the nucleus (O'Neill et 

al., 1996). This is evidenced by the significant level of methylation that is 

present at sites 13 and 26a in the presence of Pi (Fig. 4-2B, PHO5 UASp1, 

compare the scan 8 to scans 1 and 6). After normalization of m5C levels to a 

histone-free site, site 43, greater than 20-fold enrichments in targeting of 

M.CviPI to sites 13 and 26a by Pho4 is observed, as compared to the free 

DMTase, mut Zif-M.CviPI. Significant methylation is also targeted under 

repressive conditions to the opposite strand of the PHO5 promoter (Fig. 4-3, 

scan 3). A possible explanation for targeted methylation under repressive 

conditions is that the DMTase fusion impairs the ability of Pho80-Pho85 to 

phosphorylate Pho4, and hence increases the nuclear retention of Pho4-M.CviPI. 

This is unlikely as acid phosphatase expression is not derepressed in the Pho4-

M.CviPI strain. Nevertheless, we tested this possibility further by comparing the 
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rate at which PHO5 transcript levels decrease in wild-type and Pho4-M.CviPI 

strains after adding Pi back to cultures subjected to 10 h Pi starvation. For both 

strains, PHO5 transcript levels decreased by 90% within 20 min of Pi addition, 

indicating that Pho4 and Pho4-M.CviPI are regulated similarly (data not shown). 

Thus, TAGM detects Pho4 binding, even under repressive conditions where its 

nuclear concentration is low (O'Neill et al., 1996), and therefore, promoter 

occupancy by Pho4 is very low. Repeated attempts to detect Pho4 binding in the 

presence of Pi by ChIP analysis were unsuccessful (Fig. 4-2E, lane 2); significant 

immunoselection of Pho4 crosslinked to PHO5 was only detected upon 

transactivation (Fig. 4-2E, lanes 3 and 4). 

 

 

Figure 4-3. Targeting of C5 methylation by Pho4-M.CviPI to the upper strand of the PHO5 promoter. 

The same bisulfite-treated samples used in the analysis in Figure 4-2A were used in the PCR amplification. 
Scans of the phosphorimage of the gel that was loaded with the same number of total counts per lane are 
shown. (Left) The brackets above scans 1 and 3 (PHO5 UASp1) indicate a nonspecific primer extension 
pause that occurred in samples 1–5 or only sample 3, respectively. 
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We also analyzed m5C levels on the upper strand of the PHO5 promoter 

(Fig. 4-3). After transactivation, methylation is enhanced at several GC sites 

near UASp1 (site 87) and UASp2 (sites 7a, 52, 58, 154, 156, and 167), as 

expected with the increased access of both DMTase fusion proteins that 

accompanies nucleosome disruption (Almer et al., 1986). Methylation amounts 

are significantly altered at sites 13, 26b, 7b, and 93 (asterisked) relative to other 

sites in cells expressing Pho4-M.CviPI (scans 3-5) as compared to the control, 

mut Zif-M.CviPI (scans 1 and 2), indicating Pho4-dependent targeting of 

M.CviPI. Interestingly, despite the high level of m5C targeted to sites 7a and 26a 

on the lower strand (Fig. 4-2), M.CviPI is not directly targeted to these sites on 

the upper strand. The reason for this strand-specific, targeting of m5C to pairs of 

GC sites that symmetrically flank each Pho4 binding site (7 or 26 bp away) is not 

understood. 

 

Pho4 targets M.CviPI at a distance  

In Figure 4-3, the marked methylation of site 93 as compared to other 

sites on the upper strand of the PHO5 promoter suggests that M.CviPI is 

targeted at distances (93 bp from UASp2 and 202 bp from UASp1) well beyond 

the optimal targeting distance of 10-40 bp observed in vitro (Xu and Bestor, 

1997). To investigate this possibility further, we determined methylation levels 

at GC sites farther upstream in the PHO5 promoter (Fig. 4-4). m5C levels at a 
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number of GC sites increased at the positions of two additional nucleosomes (−3 

and −4) that are known to be perturbed upon promoter activation (Almer et al., 

1986) (Fig. 4-4A, compare lane 2 to 1 and lanes 6-9 to 3). m5C was reproducibly 

enriched at a GC site located 335 bp from UASp1, in the PHO4-M.CviPI as 

compared to the mut Zif-M.CviPI strain, suggesting the formation of long-range 

interactions stemming from higher order chromatin folding (Fig. 4-4A-B, 

compare lanes 7-9 to 2). A DNA-bound homodimer of Pho4 similarly targets 

M.CviPI distally (60, 78, and 91 bp) to a low affinity Pho4 binding site (UAS E) in 

the PHO84 promoter (Ogawa et al., 1995) (Fig. 4-5B). The Gal4 DNA-binding 

domain- and TetR-Dam DMTase bound at 14 and 112 sites, respectively, can 

also distally target a tethered Dam DMTase (van Steensel and Henikoff, 2000). 

Thus, in comparison to a free DMTase control, TAGM can discern activation-

dependent perturbations in nucleosome structure and preferential DMTase 

targeting at a distance. 
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Figure 4-4. Pho4 targets M.CviPI at a distance. 

(A) Determination of m5C levels upstream of PHO5 UASs. PHO5 sequences were amplified from a 
subset of the bisulfite-treated samples analyzed in Fig. 4-2A to assay for m5C levels. The two 
asterisks at the top of the gel indicate sites 13 and 26a that are directly targeted by Pho4-
M.CviPI near UASp1. Symbols are as in Fig. 4-2A, except that double ( ) and triple GC sites (

) that did not resolve during electrophoresis are also indicated. Site 319 used for 
normalization in (B) is marked as well ( ). 
(B) Quantification of preferential targeting of M.CviPI by Pho4 to site 335, but not to site 278. 
The mean ± standard error of m5C levels for the indicated sites (normalized to site 319) for mut 
Zif-M.CviPI (n = 3) and Pho4-M.CviPI (n = 6) is shown. 
 

Pho4 targets M.CviPI to additional PHO promoters  

Pho4 targeted M.CviPI directly to several GC sites at the PHO8 and 

PHO84 promoters (Fig. 4-5). For example, in contrast to mut Zif-M.CviPI cells, 

yeast expressing Pho4-M.CviPI exhibited significantly higher levels of m5C at 

PHO8 sites 13, 51, and 54 as compared to site 17, and at PHO84 sites 19 and 

36 relative to site 11 (compare the relative peak areas of scans 3 and 4 in (A) or 

3-5 in (B) to those of 1 and 2). Pho4 also significantly targets M.CviPI to each of 

these sites under repressive conditions when Pho4 binding is very low (scan 3). 
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In addition, after starving PHO4-M.CviPI cells for Pi (scan 4 in (A)), amounts of 

methylation at PHO8 sites 24 and 34 in disrupted nucleosome –4 surpass those 

at site 17. While M.CviPI targeting was evident near UASp2 of PHO8, none of 

four GC sites located 11-42 bp from the putative UASp1 is targeted in the 

repressed or activated promoter (data not shown). This indicates further that 

UASp2 is the only functional Pho4 binding site in the PHO8 promoter 

(Münsterkötter et al., 2000). After 2 h activation, methylation at PHO84 sites 60, 

78, and 91 exceeds that at neighboring sites 118, 140, and 221 with Pho4-

M.CviPI, but not mut Zif-M.CviPI (Fig. 4-5B, compare scan 5 to 2). This suggests 

that bound Pho4 directly targets M.CviPI to distal PHO84 sites 60, 78, and 91. 

We conclude that the native transcription factor Pho4 can efficiently target 

M.CviPI to each of the endogenous, single-copy PHO promoters that we have 

tested. 
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Figure 4-5. M.CviPI is targeted by Pho4 to the PHO8 and PHO84 promoters. 
 m5C levels were determined at PHO8 (A) and PHO84 (B) from cells expressing either mut Zif- or 
Pho4-M.CviPI grown in the presence (+) and absence (-) of Pi, as indicated. Shown are the 
quantitative scans of the phosphorimage obtained from the gel (same total counts per lane). GC 
sites to which M.CviPI directly targeted methylation (*), GC sites protected against methylation 
( ), and Pho4-binding sites (filled bars), are labeled. m5C levels can be compared with the sites 
marked with arrows. The positions of nucleosomes (nuc -3 and nuc -4, partial ellipses), 
previously mapped at PHO8 (41), are shown. From the data in (B), we infer the disruption of 
two nucleosomes in the analyzed PHO84 region (increased methylation on activation at seven 
GC sites, 36–221 bp from UAS E; compare scan 2 to scan 1 in (B)). To augment peak heights, 
quantification of the run-off products has been omitted. A region in scan 5 where the signal is 
underestimated due to departure from single-hit kinetics is bracketed. 
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CHAPTER V 

SITE-SELECTIVE IN VIVO TARGETING OF CYTOSINE-5 DNA METHYLATION BY 

ZINC-FINGER PROTEINS‡ 

 

OVERVIEW 

Cytosine-5 DNA methylation is a critical signal defining heritable 

epigenetic states of transcription. As aberrant methylation patterns often 

accompany disease states, the ability to target cytosine methylation to 

preselected regions could prove valuable in reestablishing proper gene 

regulation. We employ the strategy of Targeted Gene Methylation (TAGM) in 

yeast, which has a naturally unmethylated genome, directing de novo DNA 

methylation to select genomic sites via the fusion of C5 DNA methyltransferases 

to heterologous DNA-binding proteins. The zinc-finger proteins Zif268 and Zip53 

can target DNA methylation by M.CviPI or M.SssI 5-52 nucleotides from single 

zinc-factor binding sites. Modification at specific GC (M.CviPI) or CG (M.SssI) 

sites is enhanced as much as 20-fold compared to strains expressing either the 

free enzyme or a fusion protein with the zinc-finger protein moiety defective for 

DNA binding. Interestingly, methylation is also selectively targeted as far as 353 

nucleotides from the zinc-finger protein binding sites, possibly indicative of 

                                                 
‡ The work presented in this Chapter has been published in the following paper: Carvin, C.D., 
Parr, R.L., and Kladde, M.P. (2003). Site-selective in vivo targeting of cytosine-5 DNA 
methylation by zinc-finger proteins. Nucleic Acids Res. 31, 6493-6501 by permission of Oxford 
University Press, Copyright 2003. 
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higher-order chromatin structure. These data demonstrate that methylation can 

be targeted in vivo to a potentially broad range of sequences using specifically 

engineered zinc-finger proteins. Further, the selective targeting of methylation 

by zinc-finger proteins demonstrates that binding of distinct classes of factors 

can be monitored in living cells. 

 

INTRODUCTION 

Methylation of the C5 atom of cytosine in DNA (m5C) plays an important 

role in establishing correct patterns of gene expression in vertebrates, usually 

through repression of transcription. Mechanistically, one way DNA methylation 

can lead to transcriptional silencing is by decreasing the binding affinity of a 

transcriptional activator for its site (Attwood et al., 2002). The introduction of 

m5C at sites adjacent to a factor binding site can also interfere with binding (Zhu 

et al., 2003). Perhaps more importantly, symmetrical methylation of CpG 

sequences (CG) serves as a signal for the recruitment of a family of methyl-CpG 

binding domain (MBD) proteins, such as MeCP2 and MBD2 (Wade, 2001). In 

turn, MBDs, either by themselves or as components of complexes, are known to 

recruit a variety of co-repressors, such as histone deacetylases (Jones et al., 

1998; Nan et al., 1998; Wade et al., 1999; Zhang et al., 1999), histone H3 

lysine-9 methyltransferases (Jackson et al., 2002), and heterochromatin coating 

factors like HP1 (Fuks et al., 2003), which can function to establish a local, 
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repressed region of chromatin (Pikaart et al., 1998; Schubeler et al., 2000; 

Lorincz et al., 2001; Lorincz et al., 2002; Mutskov et al., 2002; Irvine et al., 

2002). This silencing mechanism is also conserved in plants, as the DNA 

chromomethyltransferase CMT3, which methylates CNG residues, interacts with 

HP1 to facilitate heterochromatin formation (Jackson et al., 2002).  

 While regions of m5C are often associated with hypoacetylation of 

histones H3 and/or H4 and altered chromatin structure (Pikaart et al., 1998; 

Schubeler et al., 2000; Lorincz et al., 2001; Lorincz et al., 2002; Mutskov et al., 

2002; Irvine et al., 2002), recent evidence suggests DNA methylation- and 

histone deacetylase-independent modes of silencing. First, trichostatin A (TSA), 

a specific inhibitor of histone deacetylation, fails to reactivate transcription from 

densely methylated DNA (Cameron et al., 1999a; Schubeler et al., 2000; Lorincz 

et al., 2001; Magdinier and Wolffe, 2001; Mutskov et al., 2002; Zhu et al., 

2003). Additionally, mbd2-null mice are viable and fertile (Hendrich et al., 2001) 

and Mecp2-null mice only display neurological abnormalities (Guy et al., 2001), 

questioning their global role in m5C-mediated silencing and cellular 

differentiation. Moreover, purified MeCP2 itself compacts reconstituted 

chromatin in the absence of DNA methylation (Georgel et al., 2003). 

 Although the mechanisms are not yet fully understood, there is a strong 

correlation between promoter methylation and gene silencing (Robertson, 2001; 

Jones and Baylin, 2002; Attwood et al., 2002; Bird, 2002). Moreover, once a 



   

 

70

 
 
 

methylation state is established, it is maintained heritably after many 

generations of replication (Stein et al., 1982) by the maintenance DMTase, 

DNMT1 (Bestor, 2000). An exception includes enhancer sequences that can be 

passively demethylated on replication and subsequent blockage of DNA 

methyltransferase (DMTase) access by factor binding (Kladde et al., 1996; Xu et 

al., 1998b; Hsieh, 1999; Lin et al., 2000; Lin and Hsieh, 2001). However, this 

enhancer-specific loss of DNA methylation does not lead to derepression (Kladde 

et al., 1996). 

 Proper regulation of gene expression is essential for normal cellular 

functions and the avoidance of disease states. DNA methylation, which occurs 

almost exclusively at CG dinucleotides in non-diseased cells, is localized to 

precise regions of the genome, usually in transposons and retroviral elements 

(Bestor, 2000). In contrast, CG sites in euchromatic regions, most notably when 

concentrated in CpG islands, are generally unmethylated and are correlated with 

transcriptional activity. However, in cancer and other diseases, patterns of DNA 

methylation are frequently aberrant. For instance, the DNA in tumor cells is 

generally hypomethylated relative to that in normal cells (Feinberg and 

Vogelstein, 1983), which may lead to genomic instability (Jones and Baylin, 

2002). In contrast, a number of tumor-suppressor genes, including BRCA1 and 

retinoblastoma (Rb), become hypermethylated and transcriptionally inactive 

(Robertson, 2001). The presence of a single methylated CG site in a gene’s 
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promoter is sufficient to repress its activation (Robertson et al., 1995), although 

higher m5C density increases the probability of establishing gene repression 

(Boyes and Bird, 1991; Boyes and Bird, 1992; Hsieh, 1994; Cameron et al., 

1999b; Lorincz et al., 2002). Thus, DNA methylation can be critical in defining 

the expression state of a gene. 

 Therefore, directing DNA methylation to improperly regulated loci could 

be used to reestablish proper gene expression through silencing. Previously, 

targeting of C5 methylation has been demonstrated in vitro (Xu and Bestor, 

1997; McNamara et al., 2002), however, selective enrichment of m5C was not 

observed in vivo (McNamara et al., 2002). Recently, in yeast, using the 

dinucleotide-specificity DMTase M.CviPI (Xu et al., 1998a) fused to the basic 

helix-loop-helix activator Pho4, we demonstrated specific targeting of cytosine 

methylation to promoters containing Pho4 binding sites (targeted gene 

methylation; TAGM) (Carvin et al., 2003a). Methylation was efficiently targeted 

to GC sites in nucleosomes that were disrupted on promoter activation, as well 

as to histone-free regions. 

In its present form, targeting DNA methylation is limited to known factors 

that bind to well characterized DNA binding sites, which are often present in 

multiple copies in the genome. Toward achieving the ability to methylate one or 

a small subset of chromosomal regions, herein, we target M.CviPI (GC 

methylation) and M.SssI (CG methylation) by their fusion to zinc-finger proteins, 
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Zif268 and its engineered derivative Zip53, which binds p53 sites (Greisman and 

Pabo, 1997). We detect de novo methylation that is enriched at specific CG or 

GC sites both near and several hundred nucleotides away from their respective 

binding sites. The ability to use zinc-finger modules, which, in principle, may be 

selected to recognize any desired DNA sequence, greatly enhances the range of 

sequences to which m5C can be directed and could lead to novel therapeutic 

approaches. 

 

MATERIALS AND METHODS 

Plasmids, yeast strains and growth conditions 

All yeast strains used in this study were derived from the S288C 

background strain YPH500∆L (MATα ade2-101 ura3-52 his3-∆200 leu2-∆1 trp1-

∆63 lys2-∆1) (Kladde et al., 1996). Zinc-finger coding sequences were PCR 

amplified using the primers MKO46 

5'-GCACTAGTTAGGCCAGCTGGGCCATGGCTGATATCGGATCTGG-3' and MKO47  

5'-GAATAATTCGAGCGCTTTCAAGGTCATGGTGGATCCTAGGCCACCTCCACTCC-3' 

and cloned between SfiI and AfeI restriction sites as in-frame fusions to either 

M.CviPI or M.SssI in pMPK1. The fusion proteins are expressed under control of 

the GAL1 promoter after integration at LYS2 as previously described (Kladde et 

al., 1996). Each N-terminal zinc-finger protein is separated from the DMTase by 

a G(SGGGG)2SGGGLGST (GS linker) peptide (Xu and Bestor, 1997). As a free 
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DMTase control, mutated Zif268 (mut Zif), which contains a single amino-acid 

substitution (H58E) (Nardelli et al., 1991) that ablates DNA binding, was 

constructed by overlap site-directed mutagenesis using the primers MKO72 5'-

CAGTCGTAGTGACgAgCTTACCACCCAC-3' and MKO73 

5'-GTGGGTGGTAAGcTcGTCACTACGACTG-3' (mutated residues in lower case). 

Cells were pre-grown in yeast extract (Difco)/peptone (Difco)/2% dextrose 

(YPD) medium and then washed and resuspended at an OD600 of 0.5 in YP/ 

2% galactose (YPG). After resuspension in YPG, cells were incubated at 30° C 

for 16 h, or for the indicated times. 

 

Bisulfite genomic sequencing 

Total genomic DNA was rapidly isolated by the phenol/chloroform lysis 

method (Adams et al., 1997) and analyzed by bisulfite genomic sequencing 

(Frommer et al., 1992; Clark et al., 1994) as previously modified (Kladde et al., 

1996). PCR amplification from bisulfite-treated genomic DNA with the indicated 

primer pairs was performed with Jumpstart Taq DNA polymerase (Sigma) and 

the resulting products were subjected to primer extension using a 32P-labeled 

oligonucleotide as described previously using final concentrations of 5 µM dATP, 

dCTP, and dTTP (dGTP omitted) as well as 50 µM ddGTP (Kladde et al., 1996) 

(Figs. 5-1 and 5-2), or with dNTPs (A, C, T) and ddGTP increased to 50 µM and 

150 µM, respectively (Figs. 5-3-5) as recently reported (Carvin et al., 2003a). 
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Product intensities were determined by ImageQuaNT software (Molecular 

Dynamics) after subtracting the local background average. Absolute frequencies 

of cytosine methylation were obtained by dividing the intensity of a given band 

by all summed product intensities in a given lane, including the run-off product 

at the top of the gel generated by primer extension on templates lacking 

cytosine residues (i.e., templates not methylated in vivo). Oligonucleotides used 

for PCR amplification of bisulfite-treated DNA are described in Table 5-1 using 

the original naming conventions of Frommer et al. (Frommer et al., 1992). 

 

RESULTS AND DISCUSSION 

In vivo targeting of C5 DMTases near single, Zif268 binding sites 

m5C has been selectively targeted in vitro by fusing C5 DMTases (M.HhaI, 

M.HpaII, and M.SssI) to zinc-finger DNA-binding factors (Xu and Bestor, 1997; 

McNamara et al., 2002). However, attempts to use zinc-finger proteins as 

targeting entities in vivo have been unsuccessful (McNamara et al., 2002). As a 

first step toward targeting DNA methylation in vivo using zinc-finger proteins, 

we tested whether we could increase cytosine methylation levels adjacent to 

zinc-finger protein binding sites (ZBS) in the genetically tractable eukaryote, 

S. cerevisiae. Yeast genomic DNA does not contain detectable levels of 

endogenous methylated residues (Proffitt et al., 1984) enabling unambiguous 

detection of de novo DNA methylation. Also, low-level expression of C5 DNA  
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methyltransferases in yeast has no known effects on gene expression or growth 

(Singh and Klar, 1992; Kladde et al., 1996; Xu et al., 1998b). 

 Since chromatin blocks access of DMTases to their target sites 

(Gottschling, 1992; Singh and Klar, 1992; Kladde and Simpson, 1994; Kladde et 

al., 1996; Xu et al., 1998b), our efforts to target m5C in vivo focus on the use of 

enzymes that methylate dinucleotide sites. This substantially increases the 

probability that DMTase target sites located in accessible, histone-free regions 

will be modified. Either of two C5 DMTases, M.CviPI (GC specificity) (Xu et al., 

1998a) or M.SssI (CG specificity) (Renbaum et al., 1990), was tethered to the 

archetypal zinc-finger protein, Zif268 (Chavrier et al., 1988) and expressed as a 

single-copy, integrated gene under control of the galactose-inducible GAL1 

promoter. The DNA-binding factor that is fused to the DMTase is designated the 

targeting factor. As a control, we expressed either the untethered DMTase or a 

fusion protein in which the DNA-binding activity of Zif268 was severely impaired 

(Nardelli et al., 1991). Strains expressing these ‘free’ DMTase controls establish 

the level of nontargeted methylation due to enzyme site preferences and 

accessibility in protein-free DNA and chromatin (Gottschling, 1992; Singh and 

Klar, 1992; Kladde and Simpson, 1994; Kladde et al., 1996; Xu et al., 1998b). 

 Endogenous yeast Zif268 binding sites (5'-GCGTGGGCG-3') were 

identified by the PatMatch search engine (Dolinski et al., 2003). We determined 

the relative methylation frequencies at multiple GC (M.CviPI) and CG (M.SssI) 
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sites at the CAR1 locus containing a single, consensus binding site for Zif268 by 

bisulfite genomic sequencing (see Materials and Methods) (Carvin et al., 2003a). 

Specific binding by the Zif268 moiety of each fusion protein is supported by 

protection of multiple CG and GC sites against methylation at the Zif268 site in 

strains expressing a wild-type Zif268 fusion as compared to its respective free 

DMTase (filled bar; Fig. 5-1A-C; compare lane 1 to 2 and lane 3 to 4). Ratios of 

m5C among several sites in a given lane were similar, identifying sites at which 

nontargeted methylation occurs (filled circles), which enable normalization for 

differences in methylation activity between strains. By this criterion, the mut Zif- 

M.CviPI strain has approximately 2-fold more methylation activity than cells 

expressing Zif-M.CviPI. The reason for this activity difference is unclear. DNA 

methylation increased substantially at several sites (asterisks) in cells expressing 

Zif-M.CviPI and Zif-M.SssI versus mut Zif-M.CviPI and M.SssI, respectively, 

demonstrating enhanced targeting of both DMTases by DNA-bound Zif268. 

Targeted modification sites (asterisks) are readily identifiable by normalizing to 

sites of nontargeted methylation (filled circles). Methylation preferentially 

accumulates at four GC sites (asterisks) over a time course of Zif-M.CviPI 

induction by galactose (Fig. 5-1C, lanes 1-6). Our data suggest that m5C accrues 

with increasing synthesis of Zif-M.CviPI from the GAL1 promoter, and 

presumably increased occupancy of the Zif268 site. 
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Figure 5-1. Targeting C5 DMTases near a single Zif268 site. 

(A) Determination of m5C levels targeted by Zif268–DMTase fusions. Genomic DNA isolated from strains 
expressing wild-type Zif268–M.CviPI (Zif–M.CviPI, lane 2), Zif268–M.SssI (Zif–M.SssI, lane 3), or ‘free’ 
DMTase controls, a mutated Zif268 fused to M.CviPI (mut Zif–M.CviPI, lane 1) or M.SssI by itself (lane 4), 
was analyzed by modified bisulfite genomic sequencing of CAR1 from +558 to +159. Distances (bp) of a 
subset of sites from the proximal edge of the Zif268 ZBS (filled bar; +438 to +446) are indicated at left 
and right of the gel. Sites of non-targeted methylation (filled circles). Sites 46 (M.CviPI strains) and 25 
(M.SssI strains) (arrows) were chosen for normalization to enable lane-to-lane comparisons [see (B)]. Each 
DMTase was preferentially targeted to several CG and GC sites (asterisks) by Zif binding as compared with 
its respective control (compare lanes 1 with 2 and 3 with 4). For site 19, 41% (of all summed intensities) of 
the templates in the population are methylated. Lanes T, G and A (left) contain sequencing reactions with 
ddATP, ddCTP and ddTTP, respectively.  
(B) Quantitative scans of the phosphoimage in (A). See (A) for definitions of symbols. 
(C) Time course of targeting M.CviPI by Zif268. Expression of Zif–M.CviPI (lanes 1–6) and Zif–M.SssI (lanes 
7–9) from the GAL1 promoter was initiated by transferring cells from YPD (dextrose) to YPG (galactose) 
medium. Genomic DNA was isolated at the indicated times and analyzed as in (A). Symbols are defined in 
(A). 
(D) Quantification of preferential targeting of M.CviPI by Zif268. Ratios of m5C for the indicated sites 
(normalized to site 46) for Zif–M.CviPI to mut Zif–M.CviPI are given (mean ± standard error; n = 3). 
Similar values are obtained if the ratios for each site are normalized to other sites of non-targeted 
methylation (filled circles) or calculated using absolute frequencies of methylation (see Materials and 
Methods). 
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M.CviPI is targeted most efficiently to a site located 19 bp from the Zif268 

binding site (Fig. 5-1D), which correlates well with the optimal range of 10-

40 bp observed when methylating oligonucleotides with other DMTase fusion 

proteins in vitro (Xu and Bestor, 1997; McNamara et al., 2002) and in yeast 

(Carvin et al., 2003a). This optimal distance for introducing m5C is likely related 

to the length and amino acid sequence of the flexible peptide separating Zif268 

and the DMTase (McNamara et al., 2002). However, targeting methylation distal 

to the Zif268 binding site (e.g., sites 163 and 183) is as or more efficient than to 

some proximal sites (e.g., sites 41, 43, and 52) (Fig. 5-1A-D). Significantly, 

preferential methylation by M.CviPI and M.SssI at sites 163-183 nucleotidesfrom 

the Zif268 binding site (Fig. 5-1A-D) suggests that m5C can be targeted distally, 

perhaps due to the formation of higher-order chromatin structure. A single, 

DNA-bound monomer of Zif268 similarly targets both DMTases close to (5-30 

bp) and at a considerable distance from (353 bp) a second consensus Zif268 

binding site in YBR108W (+2067 to +2075; Fig. 5-2A-B). For a third Zif268 

binding site (–397 to –389 of YOL019W), two GC sites are protected against 

methylation by Zif-M.CviPI bound at the ZBS, and m5C is targeted to an 

additional GC site 39 bp away from the ZBS (Fig. 5-2C). In contrast, the relative 

levels of CG or GC site methylation at the PHO5 promoter, which lacks Zif268 

sites, show no significant differences between the wild-type Zif268 fusion and its 

respective free DMTase control (Fig. 5-3, compare lane 1 to 2 and 3 to 4). We 
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conclude that the targeted methylation is due to site-specific DNA binding by 

Zif268.  

 

 
Figure 5-2. Zif268 targets M.CviPI and M.SssI to additional ZBS. 

(A) Determination of m5C levels. A region of YBR108W (+1564 to +2163) spanning a single 
Zif268 site (+2067 to +2075; filled bar) was PCR amplified from the same bisulfite-treated 
samples analyzed in Figure 5-1A. Sequencing ladders (A, T) are at the right. Symbols are 
defined in the caption to Figure 5-1. 
(B) Scans of the phosphoimage in (A). The scanned lanes are indicated at the left. 
(C) Methylation targeted to a third Zif268 site (filled bar) near YOL019W (–397 to –389). Only 
scans of the phosphoimage resulting from the bisulfite genomic sequencing of the region from –
509 to +254 are shown. 
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Figure 5-3. Absence of site-selective methylation at unlinked loci. 

The PHO5 promoter (–1009 to –205), lacking Zif268 sites, was PCR amplified from the same 
bisulfite-treated samples analyzed in Figures 5-1 and 5-2A to determine levels of m5C. The 
positions of the two known Pho4 transactivator binding sites, UASp1 and UASp2 (open bars), 
localized to a histone-free, DNase I-hypersensitive region and positioned nucleosome –2 (partial 
ellipse), respectively, are indicated. GC (lanes 1 and 2) and CG (lanes 3 and 4) sites (filled 
circles). Note that, relative to the mut Zif–M.CviPI control (lane 1), the lower methylation 
frequencies in the Zif–M.CviPI strain (lane 2) at each GC site is consistent with the conclusion 
that it has reduced overall methylation activity. However, the similar ratios of site intensities 
within lanes 1 and 2 (M.CviPI) as well as within lanes 3 and 4 (M.SssI) demonstrate that m5C 
accumulates independent of the Zif (or mut Zif) fusion moiety. 
 

Targeting M.CviPI via phage display-selected Zip53 

The enginereed zinc-finger protein Zip53, which specifically binds to a 

p53 consensus site (5'-GGGACATGT-3'; hereafter Zip53 binding site) (Greisman 

and Pabo, 1997), was previously fused to M.SssI and used in vitro to target 

methylation next to a Zip53 binding site in an oligonucleotide substrate (Xu and 

Bestor, 1997). To corroborate further our initial methylation targeting studies 
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using Zif268, we tested if Zip53 could direct methylation by M.CviPI to regions 

containing a single Zip53 site in vivo. The Zip53-M.CviPI fusion protein was 

integrated as a single copy at LYS2 and expressed from the GAL1 promoter. 

First, we analyzed C5 methylation levels near the consensus Zip53 binding site 

located in the DED1 coding sequence (Fig. 5-4; +284 to +276). As expected, 

since yeast do not have endogenous cytosine DMTases, no modified cytosines 

are evident in a strain that does not contain a functional copy of M.CviPI (Fig. 5-

4A, lane 4). Normalizing to site 141, relative to the “free” DMTase control 

(mut Zif-M.CviPI), on expression of Zip53-M.CviPI, targeted methylation is 

detected 30 bp from the DED1 consensus Zip53 site (Fig. 5-4A; compare lanes 2 

and 3 to lane 1). Further, long-range methylation at sites 162 and 178 bp from 

the ZBS is substantially enhanced. Lastly, there is reproducible low-level 

protection of a GC site located 3 bp from the ZBS, indicative of Zip53 binding 

(Fig. 5-4A-B). 
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Figure 5-4. The engineered zinc-finger protein, Zip53, targets a DMTase to DED1. 

(A) Determination of m5C levels at DED1 (+475 to +67). Targeted methylation (asterisks), 
normalized to site 141 (arrow), is detected at GC sites 30, 162 and 178 bp away from the Zip53 
binding site (hatched bar) in two Zip53–M.CviPI strains (lanes 2 and 3) that are representative 
of four independent strains containing the integrated Zip53–M.CviPI fusion gene. Filled circles 
indicate remaining CG and GC sites of non-targeted methylation (not selectively methylated) on 
expression of Zip53–M.CviPI. Lanes 1 and 4 contain bisulfite genomic sequencing results from 
the mut Zif–M.CviPI strain and a Zip53–M.CviPI transformant that contains a non-functional 
DMTase, respectively. Sequencing ladders (T, G, A) are at the right. 
(B) Quantitative scans of the phosphoimage in (A). Symbols are defined as in (A). 

 

We also observed long-range targeting of m5C at a second consensus 

Zip53 site located in the YLR016C coding sequence (+298 to +306; Fig. 55-B). 

Methylation was enhanced 5.5-fold at site 184, and somewhat less but 

significantly (~2.2-fold), at sites 157 and 190 in strains expressing Zip53-
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M.CviPI relative to mut Zif-M.CviPI. Protection against DNA methylation could 

not be observed because no GC sites are adjacent to or within the Zip53 binding 

site. To examine the specificity of the Zip53-DMTase fusion protein, we analyzed 

m5C levels at the CAR1 locus (cf. Fig. 5-1), which contains a Zif268 site, but no 

Zip53 site (Fig. 5-5C). In each lane of the gel in Figure 5C, little to no change 

exists in the relative methylation levels of 13 GC sites at CAR1. In particular, 

methylation at site 19 of the CAR1 region, which shows >20-fold enrichment 

following expression of Zif-M.CviPI (Fig. 5-1), is not increased in the presence of 

Zip53-M.CviPI. This result demonstrates that Zip53 specifically binds its site, but 

not that of Zif268 (the two binding sites have 22% identity). We conclude that, 

as for Zif268, Zip53 is able to target M.CviPI and thereby significantly increase 

cytosine methylation at select GC sites near and distal to a cognate ZBS. The 

use of Zip53 to deliver m5C selectively further demonstrates that zinc-finger 

proteins engineered to recognize pre-determined sequences can be used to 

introduce de novo methylation essentially to any region of interest. 
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Figure 5-5. Zip53-mediated targeting of m5C to YLR016C. 

(A) Determination of m5C levels at YLR016C (+418 to +28). Targeted methylation (asterisks), as 
normalized to site 40 (arrow), is detected at GC sites 157, 184 and 190 bp away from the Zip53 
site (hatched bar) in two independent transformants (lanes 3 and 4) relative to mut Zif–M.CviPI 
(lanes 1 and 2). T, G and A sequencing ladders are at the right. Non-targeted methylation (filled 
circles). The sample in lane 5 was obtained from a Zip53–M.CviPI transformant harboring a non-
functional DMTase. 
(B) Quantitative scans of the phosphoimage in (A). 
(C) Determination of m5C levels at the CAR1 locus (+558 to +159) that has a Zif268 binding site 
(filled bar) but no consensus Zip53 binding site. The PCR products analyzed in lanes 1–4 were 
amplified from the bisulfite-treated genomic analyzed in lanes 1–4, respectively, in (A). Lane 5 
contains a sample from a parental strain that was not transformed with M.CviPI. Non-specific 
primer extension pauses that do not correspond to GC sites are marked with brackets. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

SET1 AS A NEGATIVE REGULATOR OF GENE EXPRESSION 

Histone methylation at lysine 4 by Set1 via COMPASS is a prominent 

histone modification in yeast. Approximately 35% of nucleosomes contain K4 

methylated histone H3. Recent evidence has demonstrated that Set1-dependent 

methylation requires the monoubiquitination of histone H2B and the Paf1-Rtf1 

complex, which has been implicated in transcriptional elongation through the 

interaction of the C-terminal domain of RNA polymerase II. The fact that K4 

methylation is primarily associated with euchromatic genes while K9 methylation 

is correlated with heterochromatin suggests that each may play an integral role 

in the establishment of active and inactive regions, respectively. In fact, recent 

evidence has shown that K9 methylation via the histone methyltransferase 

Suv39h leads to the recruitment of HP1 (Bannister et al., 2001; Lachner et al., 

2001). Artificial targeting of histone methylation or HP1 via chimeric fusion 

proteins to euchromatic regions leads to local gene silencing (Snowden et al., 

2002; Li et al., 2003). Though K4 methylation via Set1 is associated with active 

chromatin, it is not known if this modification leads to recruitment of other 

factors or what function it may serve. Although it is associated with 

transcriptional elongation and appears to be prominent throughout the promoter 
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regions of euchromatic genes, K4 methylation has been shown to required for 

the full expression of only a few genes (Nislow et al., 1997; Santos-Rosa et al., 

2002). We present evidence that Set1 is involved in the repression of a subset 

of genes in active chromatin regions. We show that the loss of Set1 leads to 

higher levels of the repressible acid phosphatase PHO5 in both repressing and 

activating conditions. This is evidence to demonstrate that K4 methylation may 

have a repressive role in gene expression as well as the previously characterized 

activating role. Our results go further, demonstrating that PHO84 and GAL1-10 

are also expressed higher with the loss of Set1. We confirm that a general 

derepression effect by the set1∆ mutant is not observed since PPH3 is down-

regulated, as has been shown previously (Santos-Rosa et al., 2002). 

 Deletions in components of complexes which regulate Set1 methylation 

also show similar phenotypes as that observed with a SET1 null strain. A strain 

deleted for PAF1, the most upstream regulator, exhibits the largest derepression 

on PHO5, suggesting that other factors are recruited in addition to Set1. It was 

previously reported that a paf1 mutant caused both transcriptional defects as 

well as increased expression, which demonstrates a dual role in gene regulation 

(Shi et al., 1996). Interestingly, in that study, GAL10 and GAL7 were two of the 

genes that required Paf1 for full expression, which again suggests that Paf1-Rtf1 

may recruit additional proteins that might affect gene expression positively or 

negatively. Similarly, a deletion of the carboxyl-terminal domain kinase (CTK1) 
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also had both a positive and negative role in transcription of various genes 

(Patturajan et al., 1999). More recently, the histone methyltransferase Set2, 

which methylates histone H3 at lysine 36, has also been associated with active 

chromatin, transcription elongation via the Paf1-Rtf1 complex and is required for 

full expression of a GAL1-lacZ reporter (Krogan et al., 2003b). However, when 

the Set2 protein is tethered to a heterologous promoter via LexA, it serves as a 

repressor lowering transcription greater than 20-fold (Strahl et al., 2002). 

Consistently, Set2 is responsible for the repression of the basal expression of 

GAL4 (Landry et al., 2003). Taken together, this demonstrates that despite their 

association with transcription elongation, regulators may be positive in a subset 

of genes while negative at others. The mechanism for this remains unclear. 

Histone monoubiquitination of histone H2B at lysine 123 via the Rad6-

Bre1 complex also negatively regulates PHO5. GAL10 is expressed at much 

higher levels in a rad6∆ null; however, the corresponding histone mutant did not 

show the same effect (Daniel et al., 2004). This mutant was also used in 

another study to show that histone ubiquitination is present at GAL1 and PHO5 

and had less than a two-fold effect in transcriptional activation but was 

synergistic with gcn5∆ (Kao et al., 2004). It is unclear why different phenotypes 

are seen between a rad6∆ and histone H2B K123R mutant strains. This may be 

a result of strain differences or because the histone mutant is present on an 

episome, which has inherent expression differences than when integrated. 
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A recent study has identified a potential regulator which links histone 

ubiquitination of histone H2B and histone methylation of histone H3.  Ezhkova 

and Tansey have demonstrated that the proteosomal ATPases Rpt4 and Rpt6 

are required for K4 methylation (Ezhkova and Tansey, 2004).  Rpt4/6 

recruitment is dependent on Rad6 suggesting that histone ubiquitination is 

required.  Further, they showed that a mutation in Rpt6 lead to increased levels 

of GAL10.  The authors state that a strain lacking Set1 also showed a “similar 

phenomenon”, however, the relative effects are not known since the data was 

not shown. These results are consistent with our observations at GAL10.  Future 

studies should examine if similar effects are seen at PHO5.  

Upon PHO5 activation, histone ubiquitination increases only transiently 

for the first 90 minutes of induction (Kao et al., 2004), presumably due to the 

presence of the histone deubiquitination activity of Ubp8 of SAGA (Henry et al., 

2003; Daniel et al., 2004). It is possible since K4 methylation is strictly 

dependent on H2B ubiquitination that its levels will also be transient as well, 

however, no histone demethyltransferase has been discovered. Lower amounts 

of K4 methylation are observed in phosphate-free media than in YPD (Reinke 

and Hörz, 2003), but this may be a result of histone loss.  

We believe that Set1 regulates gene expression positively and negatively. 

The evidence that its methylation activity fully depends on the transcriptional 

elongation complex Paf1-Rtf1 as well as the fact that paf1∆ and rtf1∆ mutants 
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also derepress PHO5 suggests that K4 methylation may serve as a negative 

feedback loop on basal transcription. Future studies should focus on elucidating 

how Set1 mediates this repression. It is likely that K4 methylation may serve as 

a signal to recruit additional co-repressors. HP1, a heterochromatin-associated 

coating factor, can bind to methylated K9 residues via its chromodomain 

(Nielsen et al., 2001; Bannister et al., 2001). In Saccharomyces cerevisiae, there 

is no detectable K9 methylation, however, there is at least one protein which 

actually contains a chromodomain, Chd1 (Woodage et al., 1997). Chd1 is a 

subunit of an ATP-dependent chromatin remodeling complex which has both 

positive and negative roles in transcription (Tran et al., 2000). Additionally, like 

Set1, it is associated with transcriptional elongation (Krogan et al., 2002b) and 

interacts directly with Rtf1 (Simic et al., 2003). Conversely, one study showed 

using yeast two-hybrid and in vitro pull-down assays, that human Chd1 interacts 

with the transcriptional co-repressor NCoR and co-immunoprecipitates with 

HDAC activity (Tai et al., 2003). Alternatively, other co-repressors such as Ssn6-

Tup1 or HDACs may be targeted by Set1. PHO5 expression was increased 

greater than three-fold in a strain lacking TUP1 (Carvin and Kladde, unpublished 

observations), however, other experiments are needed to determine if Set1 and 

Tup1 are part of the same genetic pathway. Delineating what factors are 

involved in dictating this dual regulation of histone methylation will be important 

in characterizing its function. 



   

 

91

 
 
 

BROMODOMAINS CAN INCREASE THE ACTIVATION ABILITY OF 

TRANSCRIPTION FACTORS 

 In this study, we have shown that fusing the bromodomain to a primary 

activator can increase the ability of the activator to increase transcription. In 

high phosphate, fusion of the Gcn5 bromodomain increases PHO5 transcription 

greater than 8-fold. Mutations in essential residues of the bromodomain 

alleviated this effect. This control rules out the possibility that the addition of the 

bromodomain causes mis-regulation of Pho4 or that the bromodomain may 

contain a cryptic activation domain. 

The fact that we see this enhancement of transcription in repressed 

conditions demonstrates that Pho4 must bind at least transiently in high 

phosphate conditions, as seen previously (Carvin et al., 2003a). The PHO5 

promoter contains significant levels of background histone acetylation that may 

serve as a binding surface for the Gcn5 bromodomain (Vogelauer et al., 2000). 

This additional binding contact could increase the overall binding affinity of the 

fusion factor. Ongoing studies will determine how the promoter occupancy of 

the PHO5 promoter by Pho4 changes in the bromodomain fusion strain. If 

promoter occupancy is increased, this will demonstrate that the bromodomain 

functions to stabilize the recruitment of chromatin remodeling coactivators. The 

interaction of bromodomains with acetylated lysines, a modification correlated 
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with transcriptionally active regions, provides an elegant positive feedback loop 

for the recruitment of coactivators and the transcription machinery.  

 We did not detect significant enhancement of PHO5 expression via the 

bromodomain fusion under fully activating conditions (Fig. 3-2). This could be 

either because the promoter is fully occupied or that gene expression of PHO5 is 

already at its maximum. Overexpression of Pho4 by regulating PHO4 by the 

GAL1 promoter shows that PHO5 expression saturates at very low levels of 

galactose, indicating that PHO5 expression reaches a maximum expression level 

(Hoose and Kladde, unpublished observations). It may also be a result of loss of 

histone acetylation upon activation due to physical removal of the nucleosomes 

(Reinke and Hörz, 2003; Boeger et al., 2003). 

 Ongoing studies will elucidate what contributions the bromodomain 

makes to promoter occupancy. It is difficult to determine the contributions that 

the bromodomain may make to coactivators recruitment in vivo due to 

limitations of the ChIP technique. Enrichments of factors that do not bind DNA 

directly are very poor, usually around 2-fold, making quantification very difficult. 

However, proteins which bind DNA directly are immunoprecipitated rather 

efficiently. For instance, we achieve greater than 25-fold enrichment of Pho4 in 

activating conditions (Dhasarathy, Carvin, Jessen, and Kladde, manuscript in 

preparation). Using our novel BD fusion strategy we expect to be able to obtain 

quantifiable measurements of effect(s) that the bromodomain may have on 
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promoter binding. We will also test the effectiveness of various other 

bromodomains in yeast, including those from the Spt7 subunit of SAGA and 

Swi2 ATPase of the Swi-Snf complex. Previous work using an in vitro system has 

shown that the Spt7 bromodomain can complement loss of the Gcn5 

bromodomain, but only when it is fused to Gcn5 (Hassan et al., 2002). The 

authors argue that bromodomain function may be determined by the subunit it 

is in, and our system should allow us to test this hypothesis.  

 In budding yeast, all of the proteins that contain bromodomains are 

contained in either chromatin remodeling coactivators or the general 

transcription machinery. However, in higher eukaryotes, there are a number of 

site-specific transcription factors that contain putative bromodomains. Also, in 

two different cancer cell lines, there is a fusion of a bromodomain with another 

transcription factor to form oncogenes (Lavau et al., 2000; French et al., 2003). 

There has very little work in determining how the bromodomain may assist the 

transcriptional activity of the factor. Thus, our study will be the first such study 

in characterizing how bromodomains may affect transcription factor binding. By 

constructing myriad of bromodomains fusions (e.g., Swi2, Spt7) to the same 

factor, Pho4, we can determine the relative strength of each bromodomain.  By 

making fusion to a site-specific DNA binding factor, we expect to obtain 

quantifiable measurements on increases in promoter occupancy.  This work 

should elucidate key information into how bromodomains may affect 
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transcriptional activation with potential connections to temporal order of 

chromatin remodeling enzymes and cancer biology. 

 

USING DNA METHYLTRANSFERASES TO SIMULTANEOUSLY DETECT 

DNA-PROTEIN INTERACTIONS AND PROBE CHROMATIN STRUCTURE 

We have demonstrated that TAGM is a highly effective and sensitive 

technique for detecting DNA-protein interactions and activation-dependent 

changes chromatin structure in vivo. The method provides several distinct 

advantages over other available approaches (Simpson, 1999), including: 1) 

identification of sites of factor interaction at relatively high resolution in living 

cells; 2) high sensitivity, requiring only small amounts of cells and detecting 

factor binding even at single, native sites; and 3) the ability to monitor 

nucleosomal rearrangements kinetically. In vitro, the ability to target m5C is 

primarily related to the distance between a particular DMTase site and the factor 

binding site, which is likely related to the length and nature of the peptide 

separating the targeting factor and the DMTase (Xu and Bestor, 1997; 

McNamara et al., 2002). In addition to these constraints, our results 

demonstrate that, in chromatin, the efficiency of targeting m5C to a given site is 

determined by its accessibility, its rotational orientation relative to the factor 

binding site, and/or higher order chromosome structure. 

Taken together, at PHO5, our data suggest that a homodimer of Pho4, 
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initially binding to the accessible UASp1 E box, preferentially targets M.CviPI to 

sites 13 and 26a (Venter et al., 1994). Subsequently, disruption of nucleosome  

–2, presumably mediated by the recruitment of coactivators, such as histone 

acetyltransferases (Gregory et al., 1998; Galarneau et al., 2000) and ATP-

dependent remodelers (Santisteban et al., 1997; Sudarsanam et al., 2000; 

Steger et al., 2002) to PHO5, facilitates Pho4 binding at the high affinity UASp2 

site (Svaren et al., 1994; Venter et al., 1994). Increases in the local DMTase 

concentration due to cooperative binding of Pho4-M.CviPI that accompanies 

chromatin perturbation may account for the accumulation of high levels of 

methylation at sites to which the DMTase is indirectly targeted (e.g., sites 41 

and 43). In that Pho4 targets M.CviPI at a distance, it is interesting to speculate 

that it can also do so with recruited coactivators and hence disrupt distal 

nucleosomes (Kim and Clark, 2002). 

Previous studies have suggested that residual levels of Pho4 are present in 

the nucleus in high Pi (Han et al., 1988; Han and Grunstein, 1988; Wechser et 

al., 1997), despite its predominant cytoplasmic localization under these 

conditions (O'Neill et al., 1996). The presence of marked targeted m5C at PHO5, 

PHO8, and PHO84 provides direct evidence of a low level of Pho4 binding in the 

presence of Pi. This binding occurs either before phosphorylation of Pho4 by 

Pho80-Pho85 or after its modification and prior to subsequent nuclear export. 

The sensitivity of TAGM is underscored by this result because, in the presence of 
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Pi, Pho4 binding is not detectable by ChIP analysis (Steger et al., 2002) or 

genomic footprinting (Venter et al., 1994). Thus, TAGM is a powerful and 

complementary alternative to existing technologies.  

 In addition to the use of TAGM with Pho4 fused to M.CviPI presented 

here, we have also targeted M.CviPI as well as M.SssI, acting on CG sites, both 

near and several hundred nucleotides from single Zif268 as well as p53 binding 

sites (Carvin et al., 2003b). Thus, the successful application of TAGM for these 

three factors tested thus far, each at different loci, validates its efficacy in 

targeting C5 methylation and hence detection of factor interactions. We are 

currently extending TAGM to additional transcription factors and coactivators. 

Currently, detection of coactivators which do not bind to DNA directly is often 

difficult by ChIP. However, we were able to detect targeted methylation 

indicative of Pho4 binding in repressed conditions where we were unable to 

detect such binding by ChIP. I believe this is due to the fact that ChIP is 

technique that can only detect what is bound at the promoter at the time of 

cross-linking while targeted methylation is an accumulation of multiple binding 

events over time.  

Our observation that substantially more methylation by Pho4-M.CviPI at 

PHO5 vs. CAR1 occurs at early times following PHO activation is promising for 

using TAGM in genome-wide identification of targets for Pho4 and other 

transcription factors. McrBC is a restriction enzyme which digests Rm5C sites 
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specifically. We could use this enzyme to digest genomic DNA and purify the 

smaller fragments (methylated) from the larger fragments (nonmethylated) by 

sucrose centrifugation. The enriched DNA fragments could then be fluorescently 

labeled with Cy3 or Cy5 dyes by random priming and hybridized to a DNA 

microarray containing spotted intergenic regions of DNA in order to identify 

other regions where Pho4 may be binding. It is important to note that this 

analysis must be done at early times of activation since significant background 

methylation is observed at later times. I believe this is due to the continual 

build-up of Pho4 in the nucleus when the cells are grown in phosphate limiting 

conditions. Basically, at later times the concentration of Pho4 leads to its 

maximal binding at bona fide Pho4 binding sites and then significant 

nontargeted methylation begins to accumulate. A previous work using the Dam 

DMTase fused to TetR showed that they could only achieve significant 

methylation targeting at TetR binding sites when their concentration of TetR-

Dam fusion was very low (Lebrun et al., 2003). 

Our analysis of Pho4-M.CviPI vs. mut Zif-M.CviPI (Fig. 4-4) showed a site 

of targeted methylation in nucleosome -4, some 335 bp away from the nearest 

UAS. When normalized to nearby site, this site showed nearly three-fold more 

methylation in the Pho4-M.CviPI strain than the free DMTase control. Another 

site that was also contained in nucleosome -4 (site 278) did not show any 

enhanced methylation over the free DMTase. While more analysis is needed to 
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confirm this, the observation of distal targeted methylation could be indicative of 

higher-order chromatin structure. Since chromatin remodeling enzyme 

recruitment is dependent on the primary activator Pho4, this could also explain 

why the distal nucleosomes -4 and -5 are remodeled.  

Our analysis has also provided preliminary evidence regarding another 

question pertinent to our laboratory studies. One of the ongoing projects is to 

determine the temporal order of nucleosome remodeling at the PHO5 promoter. 

Analysis of chromatin remodeling during a time course of phosphate starvation 

using the mut Zif-M.CviPI probe showed that a spreading of nucleosome 

remodeling occurs with nucleosome -3 being fully remodeled earlier than 

nucleosomes -4 and -5 (Jessen, Dhasarathy, Carvin, McKinnie, and Kladde, 

manuscript in preparation). This is being studied in much greater detail by 

another graduate student in the laboratory. 

    

TARGETING CYTOSINE METHYLATION BY USING ENGINEERED ZINC-

PROTEINS 

We extend the ability to target cytosine methylation in vivo using two 

zinc-finger proteins, Zif268 and its artificially engineered derivative Zip53. First, 

significant targeting of cytosine methylation is observed both adjacent (5-52 bp) 

and distal (>150 bp) to the cognate ZBS, whereas DNA methylation is not 

enriched at control loci lacking the ZBS. Proximal and distal targeting of C5 
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methylation was also observed in our previous studies using Pho4 as the 

DMTase targeting factor (Carvin et al., 2003a). The reasons for selective 

targeting of m5C to some sites as opposed to others in the same region are not 

currently understood. At least locally, presumably the length of the peptide 

linker separating the DMTase and the targeting factor, the helical face of a 

particular CG or GC site relative to the DNA-bound targeting factor, and 

accessibility in chromatin each contribute to the preferential targeting. In 

addition, the occurrence of targeted C5 methylation beyond distances of 40 

nucleotides suggests that two sites well-separated in protein-free DNA are 

juxtaposed in the nucleosome or by higher-order chromatin structures (e.g.,  

Fig. 5-2A, 353 bp away from the ZBS). Second, since DNA-bound factors often 

impair access of DMTases to their target sites (Kladde et al., 1996; Xu et al., 

1998b; Hsieh, 1999; Lin et al., 2000; Lin and Hsieh, 2001; Carvin et al., 2003a), 

the protection against methylation of CG or GC sites next to or within the ZBS 

provides further evidence of specific ZBS binding by each zinc-finger-DMTase 

fusion protein. Taken together, in addition to demonstrating selective 

enrichment of m5C near ZBS, TAGM provides a highly sensitive means for 

detecting protein-DNA interactions (Carvin et al., 2003a). Third, accumulation of 

m5C at select sites during a time course of Zif-M.CviPI induction suggests that 

the extent of targeted methylation parallels the cumulative amount of factor 

binding over time. Thus, optimizing occupancy of the targeting factor at regions 
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of interest will likely increase the efficacy of specific m5C targeting in vivo as well 

as lessen nontargeted methylation. The experimental system used herein 

provides a useful assay for pursuing such further investigations. 

 The design of multiple zinc-finger modules with desired specificities is 

proving a versatile platform for targeting a variety of protein moieties to 

accessible sites in vivo (Urnov and Rebar, 2002). For instance, engineered zinc-

finger proteins have been fused to the catalytic domain of FokI endonuclease to 

direct site-specific double-stranded DNA cleavage, and hence homologous 

recombination, of desired regions (Bibikova et al., 2001). Designed zinc-finger 

proteins have also been used to target the catalytic domains of the histone 

methyltransferases G9A and SUV39H1 (Snowden et al., 2002) as well as the 

VP16 activation domain (Zhang et al., 2000; Liu et al., 2001; Rebar et al., 

2002), leading to repression and activation, respectively, of expression of the 

endogenous human erythropoietin (EPO), vascular endothelial growth factor A 

(VEGF-A), and other mammalian genes (Urnov and Rebar, 2002). This 

technology has also recently been extended to the regulation of gene expression 

in plants (Sanchez et al., 2002). 

 The targeting of DMTases by zinc-finger proteins selected to bind specific 

ZBS might provide an additional way to down-regulate the expression of desired 

genes. Moreover, since the DNA methylation state of a given promoter is 

maintained heritably through DNA replication by endogenous cellular 
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mechanisms, an initial targeting event may be sufficient to establish stable 

silencing of improperly expressed genes. Therefore, heritable repression could 

also reduce the amount of treatment necessary to establish the proper 

regulation of a particular gene. In addition to providing a potentially powerful 

therapeutic tool, methylation-mediated repression of specifically targeted genes 

could yield an alternative to transgenic knockouts for studying loss-of-function 

phenotypes. Silencing genes through DNA methylation would be particularly 

valuable in the case of essential genes where tissue-specific knockouts of 

function are needed. Finally, the ability to target m5C specifically in vivo is likely 

to prove valuable in basic investigations of the biological roles and mechanistic 

consequences of DNA methylation. 
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