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ABSTRACT 

 
Fluorescence Enhanced Optical Tomography on Breast Phantoms Using an Intensified  

CCD Imaging System. (December 2003) 

Anuradha Godavarty, B.Tech., University of Madras;  

M.S., University of Tennessee 

Chair of Advisory Committee: Dr. Eva M. Sevick-Muraca 

Fluorescence-enhanced optical imaging using near-infrared (NIR) light 

developed for in-vivo molecular targeting and reporting of cancer provides promising 

opportunities for diagnostic imaging.  However, prior to the administration of unproven 

contrast agents, the benefits of fluorescence-enhanced optical imaging must be assessed 

in feasibility phantom studies.   

A novel intensified charge-coupled device (ICCD) imaging system has been 

developed to perform 3-D fluorescence tomographic imaging in the frequency-domain 

using near-infrared contrast agents.  This study is unique since it (i) employs a large 

tissue-mimicking phantom (~1087 cc), which is shaped and sized to resemble a female 

breast and part of the extended chest wall region, and (ii) enables rapid data acquisition 

in the frequency-domain by using a gain-modulated ICCD camera.  Diagnostic 3-D 

fluorescence-enhanced optical tomography is demonstrated using 0.5-1 cc single and 

multiple targets contrasted from their surrounding by µM concentrations of Indocyanine 

green (ICG) in the breast-shaped phantom (10 cm diameter), under varying conditions of 

target-to-background absorption contrast ratios (1:0 and 100:1) and target depths (up to 3 



 iv

cm deep).  Boundary surface fluorescence measurements of referenced amplitude and 

phase shift were used along with the coupled diffusion equation of light propagation in 

order to perform 3-D image reconstructions using the approximate extended Kalman 

filter (AEKF) algorithm, and hence differentiate the target from the background based on 

fluorescent optical contrast. 

Detection of single and multiple targets is demonstrated under various conditions 

of target depths (up to 2 cm deep), absorption optical contrast ratio (1:0 and 100:1), 

target volumes (0.5-1 cc), and multiple targets (up to three 0.5 cc targets).  The 

feasibility of 3-D image reconstructions from simultaneous multiple point excitation 

sources are presented.  Preliminary lifetime imaging studies with 1:2 and 2:1 optical 

contrast in fluorescence lifetime of the contrast agents is also demonstrated.  The 

specificity of the optical imager is further assessed from homogeneous phantom studies 

containing no fluorescently contrasted targets.  

While nuclear imaging currently provides clinical diagnostic opportunities using 

radioactive tracers, molecular targeting of tumors using non-ionizing NIR contrast 

agents tomographically imaged using the frequency-domain ICCD imaging system could 

possibly become a new method of diagnostic imaging. 
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1. INTRODUCTION 

 

Imaging plays a major role in the diagnosis, therapy, and prognosis1 of cancer, 

with primary focus in detecting anatomical2 abnormalities in the tissue.  With the current 

emerging areas of genomics3 and proteomics,4 molecular targeting of early stage cancer 

holds a promise in contrast-enhanced diagnostic imaging, in comparison to the 

conventional, anatomical imaging that lacks sensitivity and specificity for early cancer 

detection [1].  Molecular imaging approaches foresee a promising future in improving 

cancer diagnostic imaging, thus impacting the quality of cancer patient care.  Currently, 

most of the conventional imaging modalities such as magnetic resonance imaging 

(MRI), nuclear imaging, x-ray computed tomography (CT), and ultrasound (US) attempt 

to molecularly image tissues with exogenous agents.  Typically, molecular imaging 

requires sufficient signal arising from minute quantities of the exogenous targeting 

agents in order to detect early stage and metastatic5 cancer.  However, MRI and x-ray 

CT techniques require substantial (~millimolar) amounts of the contrast agents to 

generate sufficient signal in clinical imaging, and are thus challenged by nuclear and 

optical imaging techniques, which generate sufficient signal using orders of magnitude 

smaller levels (~ nanomolar) of the contrast agents.  In addition, contrast agents 

delivered to the tissue in substantial (~ millimolar) amounts accumulate in excess at the 

                                                 
This dissertation follows the style and format of Optics Express. 
1 Prediction of the future course and likely outcome of a disease 
2 Related to morphological structure of tissues 
3 Branch of genetics that studies genomes or full DNA sequences 
4 Study of structure and function of proteins 
5 Cancer that spreads from primary tumor cells 
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cell surface during the receptor mediated molecular targeting, thus challenging the 

concept of molecular imaging in contrast-enhanced MRI and x-ray CT techniques.  

Diagnostic imaging of early stage breast cancer is essential for decreasing the 

death rate caused by cancer in the United States.  The conventional anatomical based 

screening techniques are neither comprehensive nor infallible, especially in women with 

dense breast tissues.  Molecular imaging using nuclear and optical techniques is the 

current alternative for diagnostic imaging of early stage breast cancer.  While both 

nuclear and optical techniques require only small amounts (~ nanomolar) of the contrast 

agents, near-infrared fluorescent contrast agents have a potential to generate a strong 

signal (at least 1023 events/sec) in comparison to the signal generated by the radioactive 

tracers (< 104 events/sec) in the nuclear imaging.  In addition, the use of non-ionizing 

near-infrared radiation in optical techniques holds a promise for safe human imaging, 

with emphasis on quality patient care, in comparison to the use of ionizing gamma 

radiation in nuclear techniques.   

Near-infrared (NIR) light between the wavelengths of 700-900 nm propagates 

deeply through tissues and provides a unique approach for molecularly-based diagnostic 

imaging.  Over the past 15 years, near infrared (NIR) optical imaging approaches have 

been developed for breast cancer screening based upon the endogenous absorption 

contrast owing to the non-specific process of angiogenesis6 in order to discriminate 

normal from diseased tissues [2-8].  However, for diagnostic detection of early 

metastatic lesions wherein the angiogenesis induced contrast is non-existent or 

                                                 
6 Growth of blood vessels from surrounding tissue to a solid tumor ` 
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insufficient for tomographic7 NIR imaging of the breast, exogenous contrast based upon 

targeting and reporting fluorophores will be necessary [9-12].   

In the Photon Migration Laboratories (PML), we have sought to develop 

fluorescence-enhanced optical tomography towards breast cancer diagnosis via 

molecular imaging techniques.  The approach depends upon delivering molecularly 

targeting NIR excitable fluorescent contrast agents, which specifically target metastatic 

cancer cells within the breast tissue or, for prognostic indication of the extent of disease, 

within the lymph system draining the breast.  Detection of cancer cells within the 

subsurface axillary lymph nodes, the internal mammary lymph nodes located beneath the 

medial sternum, or within the sentinel lymph node (or the lymph node closest to the 

primary breast tumor) is typically performed via biopsy following surgical resection;8 

and in the case of sentinel lymph nodes, it is performed following anatomical mapping 

using nuclear imaging and detection techniques, and prior to surgical resection and 

pathology.9   

Yet, before clinical feasibility trials involving the administration of a 

fluorescence contrast agent for diagnostic and prognostic imaging can commence, the 

efficacy of tomographic fluorescence-enhanced optical imaging must be demonstrated in 

clinically relevant phantom volumes.  In addition, owing to the current lack of 

availability of a fluorescent contrast agent with a record of non-toxicity and patient 

safety, the translation of fluorescence-enhanced optical imaging into the clinic has been 

                                                 
7 Retrieval of information about the tissue interiors from boundary surface data 
8 Removal of tissue or part or all of an organ by surgery 
9 Study of tissues and cells under a microscope 
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limited and must be preceded by tissue phantom10 studies (mimicking the breast 

geometry), which may enable the assessment of detecting the multi-focality11 of the 

disease.  To date, three-dimensional fluorescence-enhanced optical tomography has been 

limited to in-vivo measurements in small animal models [13-14] or phantoms with 

unrealistic volumes/geometries [15-17] in comparison to what would be expected 

clinically in non-compressed tissues.   

In the current work, we present the development of a fluorescence-enhanced 

optical imaging system, which interrogates clinically relevant tissue phantoms using 

rapid data acquisition schemes.  Three-dimensional tomographic imaging results 

obtained under varying experimental conditions pertinent to diagnostic breast imaging 

within clinically relevant volumes is the highlight of the present work.   

In the following background sections, we outline the various molecular-based 

imaging modalities, with emphasis on fluorescence-enhanced optical imaging, which can 

be performed using various measurement techniques and measurement geometries 

(Section 2).  The light propagation model for fluorescence-enhanced optical imaging and 

the different approaches for tomographically reconstructing the tumor location in 2-D or 

3-D tissue media are presented in the background section (Section 3). Details of the 

clinically relevant phantoms employed, the unique instrumentation involved in both 

measurement geometries, and a brief description of tomographic algorithm employed in 

the current work are described in the “Instrumentation and experimental tools” (Section 

4) and “Simulations” sections (Section 5), respectively.  The method of data analysis and 

                                                 
10 Model that mimics the required tissue or any substance of interest 
11 Multiple focal points of the spread tumor  
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a detailed experimental plan are presented in Section 6.  The experimentally obtained 

images that demonstrate the feasibility for state-of-the-art 3-D fluorescence-enhanced 

optical tomographic reconstructions on clinically relevant tissue phantoms are presented 

for various target depths and target:background optical contrast ratios (Sections 7 and 8). 

Detection of multiple small targets in the breast phantom is demonstrated in order to 

assess the ability to detect the multi-focality of lesions using tomographic imaging 

(Section 9).   

Optical imaging using fluorescent contrast agents has a unique opportunity to 

differentiate diseased lesions from normal tissue based on the changes in the lifetime of 

the fluorescing agent with respect to its environment [9].  Preliminary work towards 

fluorescence lifetime imaging is presented in Section 10.  Experimental studies 

describing the specificity of the optical imaging system are explained by performing 

homogeneous (no target present) tissue phantom studies (Section 11).  Finally, parallel 

ongoing clinical feasibility studies, performed as a group effort at PML, towards 

fluorescence-enhanced optical imaging for sentinel lymph node mapping in breast 

cancer patients is demonstrated (Section 12).  The organization of the entire dissertation 

is provided in Figure 1.1.  

 When combined with novel targeting and reporting contrast agents, NIR 

tomographic imaging has the opportunity to augment or even replace the clinically 

applied nuclear imaging technique such as gamma, PET (Positron Emission 

Tomography) or SPECT (Single-Photon Emission Computer Tomography) imaging.  

Yet the added challenge for near-infrared (NIR) fluorescence enhanced imaging over  
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Figure 1.1 Organization of the dissertation.  
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nuclear imaging is that, unlike nuclear techniques, an activating or excitation signal must 

first be delivered to the contrast agent before there is registration of the emission signal 

from the tissue.  However, since fluorescent contrast agents are not radioactive, their use 

in clinical imaging has significant advantages over radiocolloids and radionucleotides.  

Another opportunity for optical imaging is the ability for tomographic reconstruction and 

additional diagnostic information based upon the fluorescence decay kinetics of smartly 

designed probes.  The current work will demonstrate preliminary investigations using an 

FDA (Food and Drug Administration) approved fluorescent agent, which may enable 

clinical translation of tomographic NIR techniques.  
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2. BACKGROUND: MOLECULAR IMAGING MODALITIES 

 

Diagnostic imaging for assessment of breast cancer is typically based on the 

anatomical changes associated with the disease.  The classical and anatomically based 

diagnostic procedures that perform soft and bony tissue imaging include x-ray 

mammography, ultrasound (US), magnetic resonance imaging (MRI), and computed 

tomography (CT) [18].  A comparison of the different conventional imaging modalities 

is provided in Table 2.1.  Except MRI, these conventional imaging modalities are limited 

by their low contrast resolution for detecting early stage or small tumors.  Direct imaging 

of molecular changes, which truly define the molecular basis of the disease, is the next 

frontier in diagnostic imaging research involving in vivo characterization and non-

invasive mapping of cellular and sub-cellular molecular events towards early stage 

tumor diagnosis [1].    

Molecular imaging techniques use molecular probes or contrast agents in small 

quantities (~ nanomolar concentrations) to examine integrative functions of molecules, 

cells, and organs, and also examine the structure and regulatory mechanisms of their 

organized functions, by molecularly targeting the cell receptors.  Large quantities (~ 

millimolar concentrations) of the contrast agents do not molecularly target the cell 

receptors, but accumulate in the region of interest, thus challenging the concept of 

molecular imaging.   

Successful in-vivo imaging at molecular levels requires (i) development of high 

affinity probes or contrast agents that can overcome the biological barriers, 
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Table 2.1 Comparison of conventional diagnostic imaging modalities. 

Imaging 
Modality Principle Advantages Disadvantages 

X-ray 

Uses x-rays of ~ 50 KeV 
photons to detect the x-rays 

attenuated by tissues of 
differing densities 

Excellent resolution 
Good penetration depth 

Ionizing radiation 
Poor contrast among soft 
tissues 
Overlooks 10% of breast 
cancer in non-calcified 
lesions 

Computer 
Tomography 

(CT) 

Uses x-rays in different 
angles for cross-sectional 

views 

Same as x-ray technique, 
but provides more 
information 

Greater exposure to x-ray 
radiation 

Ultrasound 
(US) 

Uses high frequency sound 
waves to detect the 

reflectance and 
transmittance from 

acoustically dissimilar 
tissues 

Non-ionizing radiation 
Inexpensive 
Portable, safe, and versatile Poor imaging quality 

Poor contrast 

Magnetic 
resonance 

imaging (MRI) 

Uses strong magnetic 
fields and rf waves to 

detect the emitted rf waves 
and relaxation of spin state 

of nuclei in tissues 

Non-ionizing radiation 
Functional imaging 
Soft-tissue contrast 
Good resolution 
Good penetration depth 

Strong magnetic field 
Expensive 
Not portable 
Slow process 

 
 
 
(ii) improvement in the imageable signal for an increased contrast between normal and 

diseased cells and tissues, and (iii) development of fast, sensitive, cost-effective, and 

robust imaging systems with high resolution, specificity, and sensitivity. 

 

2.1 Molecular imaging modalities towards breast imaging 

 
Molecular imaging modalities towards breast imaging can be broadly categorized 

as (i) contrast-enhanced x-ray computed tomography, (ii) contrast-enhanced magnetic 

resonance imaging, (iii) contrast-enhanced ultrasound, (iv) radionuclide based (or 

nuclear) imaging, and (v) optical-based molecular imaging. 
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2.1.1. Contrast-enhanced x-ray computed tomography 

 X-ray computed tomography (CT) is based on the principle of launching x-rays 

(another form of electromagnetic radiation) onto the tissue surface and detecting the 

attenuated x-ray signals that geometrically propagate across the tissue volume.  A 

schematic of the x-ray CT technique is provided in Figure 2.1.  Based on the tissue type, 

tissue thickness, and its densities, different attenuation of x-rays occurs during passage 

through the tissue.  If a tissue structure contains a greater number of atoms or heavier 

atoms x-rays are preferentially absorbed, thereby differentiating the tissue structures 

from one another.  The x-rays are passed through the tissues in different angles and 

cross-sections along the path.  The resulting attenuated x-ray signals are used to locate 

the tumors using simple image reconstruction techniques.  X-ray CT is employed for 

breast imaging, but is limited by (i) its poor contrast in early stage or small tumors and 

(ii) its longer exposure to the ionizing x-ray radiation. 

 Contrast-enhanced x-ray CT has developed in the past few years towards 

improving contrast and hence detecting smaller lesions.  Typically high molecular 

weight elements such as iodine, barium or xenon are used as contrast agents for x-ray 

CT.  Due to their high molecular weight, these x-ray CT contrast agents absorb more x-

rays, thus improving the contrast in the tissue regions.  X-ray CT contrast agents are 

typically used in large concentrations (~millimolar) and are also toxic in nature.  CT 

enhanced imaging with contrast-agents was employed in the prediction of residual breast  
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Figure 2.1 Schematic of the principle of x-ray computed tomography (left) and its clinical set-up (right). 

 

 

cancer after chemotherapy [19] and for in vivo drug delivery [20], but has not been 

clinically applied towards breast cancer diagnosis. 

 

2.1.2. Contrast-enhanced magnetic resonance imaging 

Magnetic resonance imaging (MRI) is based on the principle of imaging the 

proton density and the radiofrequency (RF) waves of the spinning atomic nuclei in 

response to a magnetic field.  A schematic of the MRI technique is given in Figure 2.2.  

In the presence of a strong, uniform magnetic field, a relatively greater number of 

protons in the nuclei align with the magnetic field in comparison to that in the absence of 

the magnetic field.  This difference in alignment produces a net magnetization in the 

nucleus of the atoms, which allows them to precess (spin rotate) about the axis of the 

applied magnetic field, at a frequency depending on the strength of the magnetic field.   
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Figure 2.2 Schematic of the principle of magnetic resonance imaging (left) and its clinical set-up (right). 

 

 

Upon perturbing the precessing nuclei using a pulsed RF wave, the nuclei precess 

in phase and emit a detectable, coherent RF signal at the precision frequency (termed the 

Lamour frequency).  Gradient coils of weak magnetic field are used to provide spatial 

localization of the signal.  The strength of the response and the time until which the 

signal fades are governed by: (i) the proton density, which is a measure of the free 

hydrogen constituting the water and lipids of various tissues; (ii) the T1 and T2 relaxation 

times (physical properties), which are defined by the way protons in the nucleus revert 

back to their equilibrium states after the initial RF pulse; and (iii) the T2
*, which is a 

property of the MRI equipment and is defined as the time it takes for a real MRI signal 

to disappear.  The average T1 relaxation times for different organs in the body varies, 

thus differentiating between the normal and diseased organs based on the T1 times.  

Unlike radionuclide imaging technologies, conventional MRI provides high resolution 
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anatomical imaging [18].  However, the use of intrinsic contrast agents for detecting 

breast cancer based on the relaxation times is less helpful [21].   

Contrast-enhanced MRI is currently under development for enhanced imaging of 

breast cancer [22-24].  MRI contrast agents affect the relaxation times of the free 

hydrogen in different tissues, providing an enhanced contrast between different tissues 

based on difference in the relaxation times of the tissues.  Gadolinium III (Gd(III)) 

complexes are considered as excellent contrast agents for advanced molecular imaging 

applications, although the current technology is at its developmental research phase [25].  

The gadolinium chelates (metal Gd encapsulated within a substance that easily forms 

chemical complexes) are freely diffusible and serve as markers for detecting tumor 

angiogenesis, differentiating benign from malignant tumors, and also detecting tumors 

that were not visible in x-ray mammography [23-24].  Gadolinium chelates are less toxic 

than contrast agents used in contrast-enhanced x-ray CT, although large quantities 

(~millimolar) of the agent are still required for obtaining an enhanced-contrast during the 

imaging process.  Despite the high sensitivity of the MRI technique, its cost-

intensiveness and availability limits the clinical application of the technology.  In 

addition, there are many unresolved issues in the clinical application of the contrast-

enhanced MRI technique, which include (i) no defined standard technique or 

interpretation criteria, and (ii) unclearly defined clinical indications of applying the 

technology [22].  Recent studies involve dynamic contrast-enhanced MR imaging for 

detecting malignancies of the breast, where the tumors are evaluated with respect to their 

state of functional microcalcification [26-27].  Although the sensitivity of the technique 
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in breast imaging was the highest in comparison to mammography and ultrasound, MRI 

fails to depict every carcinoma of the breast.  

 

2.1.3. Contrast-enhanced ultrasound  

Ultrasound is based on the principle of detecting the reflected and transmitted 

acoustical impedance from the tissue medium in response to a short pulse of high 

frequency ultrasound waves between 1 to 15 MHz.  A schematic of the ultrasound 

imaging technique is given in Figure 2.3.  The high frequency sound (ultrasound) waves 

cause mechanical high frequency longitudinal vibration of the molecules, which reflect 

back the ultrasound waves in specific ways, based on the tissue type.  Transducers are 

used for transmitting as well as collecting these ultrasound waves that are assumed to be 

straight ray waves in a tissue medium.  Although conventional ultrasound is appealing 

by virtue of its low cost, portability, its millimeter-range resolution, and non-ionizing 

radiation, ultrasound is still limited in its application towards breast, heart or brain 

imaging due to its inherent low contrast and poor imaging quality [18]. 

Ultrasound imaging using microbubble contrast agents is under development for 

assessing molecular or genetic signatures for disease [28].  The microbubble contrast 

agents are tiny gas bubbles (< 10 µm in size), which are stabilized within biodegradable 

shells.   Each tiny bubble reflects sound waves and when these contrast agents are 

injected in the blood stream, the overall reflections from blood filled tissues increase 

significantly.  Currently, the technology is focused towards non-invasive pathological 

detection with molecular targeting of thrombus, endothelial cells, and leukocytes [28].   
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Figure 2.3 Schematic of the principle of ultrasound imaging (left) and its clinical application (right). 

 

 

Preliminary studies in assessing the angiogenesis in small animals such as mice have 

been performed using the microbubble contrast agents [29] and extensive studies are yet 

to be performed on human breast tissues [30] before determining the clinical 

applicability of the technology.   

 

2.1.4. Radionuclide based imaging 

Radionuclide based imaging or nuclear imaging is based on the principle of 

injecting radioisotopes and detecting the emitted gamma rays from the tissues.  Nuclear 

imaging technique includes single photon emission computed tomography (SPECT) and 

positron emission tomography (PET).  Both SPECT and PET have the ability to label 

almost any chemical species with a suitable radionuclide, enabling the development of 

radioactive probes capable of imaging at molecular levels.     
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In SPECT imaging, the injected radionuclide attains stability by the γ decay 

process, where a single high-energy photon (~ 140 keV) is emitted.  The single high-

energy photon is detected using a gamma camera (a special camera to detect radioactive 

energy emitted by a radionuclide), and a collimator is used to acquire the detected signal 

from multiple views.  A schematic of the SPECT imaging technique is given in Figure 

2.4a.  The radionuclides used in SPECT are relatively long-lived γ emitters such as 

Technitium-99m, Iodine-123, Xenon-133, Thallium-201, and Gallium-67.  However, 

these radionuclides alter the biochemical activity of the pharmaceutical compound they 

are tagged to, thus altering the uptake rate and organ specificity of the tagged compound 

with respect to the untagged compound [18].  In addition, the image quality of SPECT 

can only be improved at the expense of its resolution and vice-versa.  Thus SPECT is 

still at its developmental stages towards breast cancer imaging in human subjects.   

In PET imaging, the injected radionuclide attains stability by the β+ decay 

process, where β+ particles (or positrons) are released.  Each emitted positron from the 

proton-rich nuclei interacts with an electron and annihilates.  During this process, the 

mass of proton and electron combines to give two gamma rays (~ 511 keV each) that 

travel ~ 180o apart, that is, outwardly in opposite directions from the annihilation site.  

These two gamma rays are in turn detected using a gamma camera [18].  A schematic of 

the PET imaging technique is given in Figure 2.4b.  The radioisotopes used in PET are 

short-lived positron emitters such as 15O, 11C, 13N, and 18F.  In PET, the radionuclide is 

not tagged on to pharmaceutical compounds (as in SPECT imaging), but incorporated in  
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Figure 2.4 Schematic of the principle of radionuclide based imaging, including (a) single photon emission 
computed tomography (SPECT) (left) and its clinical set-up (right), and (b) positron emission tomography 

(PET) (left) and its clinical set-up (right). 

 

 

the chemical structure of the compound.  This helps prevent the alteration of the 

biological or biochemical activity of the compound, making it advantageous over 

SPECT imaging.  In comparison to SPECT, PET better quantifies the radionuclide 

concentration, and provides greater resolution and sensitivity due to the production of 

two gamma rays that better localize the annihilation site.   
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 Typically micro to milli- Curie quantities of radioactive material are injected into 

the whole body during nuclear imaging.  These quantities correspond to a decay rate of ~ 

106 to 108 disintegrations/sec (also termed as Bequerel) of the radioactive material 

(1µCu = 3.7×104 Bequerels).  The various radiopharmaceuticals used in PET imaging 

are based on (i) glucose metabolism (18F-2-fluoro-deoxyglucose (FDG)), (ii) amino acid 

metabolism (11C L-methionine), or (iii) progestin and estrogen receptors [31].  In the 

case of tumor diagnosis where the tumor cells have enhanced glucose metabolism, FDG-

PET imaging technique can help (i) differentiate benign from malignant lesions, (ii) 

identify biological changes in early stage cancers, and also (iii) study the metastatic 

spread of the tumor in the whole body [32-34].  Although FDG-PET has an appropriate 

application in the evaluation of distant metastases, it is limited by (i) its sensitivity to 

detect or define small breast lesions (< 4 mm diameter), and by (ii) incompletely or 

partially determined specificity [35-36].  PET technology in general is limited not only 

by its cost and imaging time but also by its inability to detect lesions in patients with 

small risk of metastases [35-37]. 

 

2.1.5. Optical-based molecular imaging 

Optical imaging is based on the principle of launching near-infrared (NIR) light 

(between the wavelengths of 700-900 nm, which corresponds to ~ 2 eV photons) on to 

the tissue surface and detecting the scattered and attenuated NIR signal.  A schematic of 

the optical imaging technique is given in Figure 2.5.  The normal tissues are  
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Figure 2.5 Schematic of the principle of optical imaging (left) and its possible clinical application (right). 

 

 

 

 

55

 

Figure 2.6 Therapeutic optical window in tissue medium.  Adapted from Ref [39]. 
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differentiated from the diseased tissues based on the inherent differences (termed as 

endogenous contrast) in the optical properties (in terms of absorption and scattering 

coefficient, as defined below) of the tissue medium [38].  Figure 2.6 shows the 

therapeutic optical window, where the blood components of oxy- and deoxy-hemoglobin 

exhibit low absorption and enhanced scattering, thus allowing deeper tissue penetration 

of the NIR light at 700-900 nm wavelength [39].  Measurements of the time-dependent 

photon density on the tissue surface (described in Section 2.3) can determine the average 

tissue absorption, which can be related to oxygenation hemoglobin saturation or blood 

volume, and the average scattering to the cell density.  In other words, physiological 

information about the tissue can be inferred from optical imaging technique (or the 

photon migration technique). 

When optical techniques using coherent light have been used for microscopic 

studies in the past, optical techniques using diffusely propagating light for deep tissue 

imaging is emerging as a new technology.  One example of diffuse optical imaging in 

deep tissues is the breast imaging performed by various researchers using the non-

invasive near-infrared light optical techniques [2-8].  The smallest detectable tumor so 

far detected through endogenous contrast mechanism was ~ 0.5 cm diameter, obtained 

by Franceschini et al. [2].  Although the endogenous contrast occurring due to the 

heterogeneous distribution of water, lipids, and hemoglobin in the diseased breast tissue 

helps in detecting late stage angiogenesis (growth of blood vessels from surrounding 

tissue to a solid tumors) in the breast, it does not help in detecting smaller tumors (i.e. < 

0.5 cm diameter) or breast cancer at its early stages.   
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Hence, recent advances in optical imaging include the development of optical 

probes or contrast agents for molecularly targeting the diseased cells, thus enhancing the 

optical contrast ratio towards improved detection.  Molecular imaging using optical 

probes or contrast agents provides: (i) high sensitivity due to the specificity of 

fluorescing molecules, (ii) cancer detection at the molecular onset of the tumor cells and 

before the tumor cells are apparent by their anatomical changes, and (iii) details of 

specific cancer types without altering the tumor environment.  Optical probes or contrast 

agents currently used in in-vivo imaging are either tumor specific receptors [40], 

protease-activatable [41-42], or activated by transferred gene expression [43].  Various 

other contrast agents are under development towards enhanced specificity to tumor cells, 

and the reader is referred to reviews focused on the developments in contrast agents [10-

11, 44-45].   

Diffuse optical imaging is limited by its poor spatial resolution relative to x-ray, 

CT, and MRI; potentially long computation times for the development of a three-

dimensional image; and instability and non-uniqueness of the image reconstruction 

problem (details of image reconstruction problem are explained in Section 3).  

Nonetheless, as a non-invasive and non-ionizing imaging technique, optical imaging 

with its high sensitivity feature can complement the conventional breast imaging 

techniques.  This is especially true with the recent developments towards contrast-

enhanced optical imaging that has generated considerable interest for breast cancer 

diagnosis and detection [10-12, 44-45].  One good example of the sensitivity feature of 

contrast-enhanced optical imaging is the work performed by Houston et al., where ~100 
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femtomoles of the contrast agent located ~ 4 cm deep generated a signal at the tissue 

surface [12].  In addition, contrast-enhanced optical imaging has the potential to compete 

with the clinically available radionuclide imaging techniques, based on its non-ionizing 

radiation as well as the enhanced contrast it can provide using minimal quantities 

(nanomolar concentrations) of the optical contrast agent.  When radionuclide imaging 

generates a maximum of 108 disintegrations/sec (or events/sec) upon injecting milli-

Curie of radionuclides, fluorescence-enhanced optical imaging can generate almost ~ 

1023 events/sec even using nanomolar concentrations of the fluorescing agents that 

exhibit a nanosecond fluorescence lifetime.  Since the radionuclides are already used in 

clinical studies towards breast imaging, the potential for fluorescence-enhanced optical 

imaging towards clinical application is high.   

With focus on fluorescence-enhanced optical imaging in the current work, the 

physics behind this emerging molecular imaging technique is discussed in the rest of the 

chapter, providing details of the various measurement techniques and measurement 

geometries employed in the current imaging process.   

 

2.2 Fluorescence-enhanced optical imaging 

 
 Fluorescence-enhanced optical imaging involves the use of fluorescent contrast 

agents in order to enhance the optical contrast between normal and diseased tissues.  The 

process of emission of a photon, when a molecule relaxes from its excited state to the 

ground state is termed as fluorescence.  In this process, a molecule of significant 

aromaticity absorbs light corresponding to a transitional energy level and becomes 
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activated into a “singlet” state, from which it can relax radiatively.  Due to the loss of 

energy associated with the fluorescence process, the released energy of the light (i.e. 

emission light) is of lower energy (or higher wavelength) than the incident light (i.e. 

excitation light) [38].  The Jablonski diagram illustrating the electronic transitions 

associated with absorption and fluorescence is given in Figure 2.7.  

The rate of radiative decay, Γ , and the rate of non-radiative decay, knr, from the 

“singlet state” to the ground state is mediated by the local environment of the activated 

dye molecule.  The fluorescent lifetime, τ (or the mean time that the fluorophore resides 

in the activated “singlet” state), is influenced by the relative rates of radiative and non-

radiative decays and is given by, 
nrk+Γ

=
1

τ .  The quantum efficiency of the fluorescent 
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Figure 2.7 Jablonski diagram illustrating the principle of fluorescence. 
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emission (φ) is the fraction of excited dye molecules, or activated fluorophores, which 

relax radiatively and is given by 
nrk

φ Γ
=

Γ +
. 

In fluorescence-enhanced optical imaging process, when NIR light at the 

excitation wavelength is launched onto the tissue surface, the photons propagate into 

deep tissues, during which they are minimally absorbed and preferentially scattered 

(Figure 2.8).  Upon encountering a fluorescent molecule, the photons excite the 

fluorescent molecules from their ground state to a higher orbital level.  After residing at 

the higher energy orbital for a period defined as the fluorescence lifetime, the fluorescent 

molecule emits fluorescent signal of greater wavelength than the incident NIR light.  The 

emitted fluorescent signal along with the perturbed excitation signal propagates in the 

tissue, before they are detected at the tissue surface.   

  

 
Figure 2.8 Schematic of the fluorescence-enhanced imaging process in a tissue medium (left) and its 

potential future clinical application (right). 
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The optical contrast in fluorescence-enhanced optical imaging can arise from 

absorption contrast or lifetime contrast.  Absorption contrast is generally expressed in 

terms of the absorption coefficient (µa), defined as the inverse of the mean distance a 

photon will travel before being absorbed.  In endogenous or intrinsic optical contrast, 

absorption occurs primarily from the tissue chromophores of oxy- and deoxy-

hemoglobin, fat, melanin, and water.  Upon using fluorescent contrast agents, the 

absorption contrast due to the fluorophore is the parameter of interest and it is based on 

the concentration of the fluorophore accumulated in the target and background.  

Scattering is typically due to refractive index differences of extracellular and 

intracellular structures causing reflection, refraction, and diffraction of photons.  For 

fluorescence-enhanced imaging, optical contrast in terms of scattering is assumed 

negligible.  Lifetime contrast is based on the difference in the lifetime of the fluorescing 

dye within the target and the background.  This is achieved by using a single fluorescing  

dye whose lifetime varies with respect to the surrounding environment, such that the 

fluorophore in diseased tissue exhibits a differing lifetime than that within the 

background.  Another method of obtaining a lifetime contrast is by using two fluorescing 

dyes of varying lifetimes, that excite and emit at similar wavelengths but each of the 

fluorescing dye has an affinity to different targets. 

In either of the optical contrast approaches, the differences in the characteristics 

of the illuminating incident light signal and the detected signal are measured using time-

dependent or time-independent measurement techniques (described in Section 2.3).  

From the collected signal the location of the fluorescent molecule, and in turn the 
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location of the diseased tissue is determined.  Details of the different measurement 

techniques employed in fluorescence-enhanced optical imaging process are described in 

the following section.  

 

2.3 Measurement techniques in optical imaging 

 
Fluorescent light is launched and detected at the tissue surface using either time-

independent techniques, such as continuous-wave (CW) imaging, or using time-

dependent techniques such as time-domain photon migration (TDPM) and frequency-

domain photon migration (FDPM).  Details of each measurement technique are 

described below. 

 

2.3.1 Continuous-wave imaging 

In continuous-wave (CW) imaging, time-invariant steady-state NIR light at the 

excitation wavelength is launched onto the tissue surface and the emitted steady-state 

fluorescent light is detected at the tissue surface (Figure 2.9a).  The NIR excitation light 

attenuates due to absorption and scattering in the tissue medium.  Upon encountering the 

fluorescent molecule, steady-state fluorescent signal is emitted, which attenuates before 

it is detected at the tissue surface.  CW imaging technique employs using photon 

multiplier tubes (PMTs) or charge coupled device (CCD) cameras for the detection of 

the time-invariant steady-state fluorescent signals.   
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Figure 2.9 Schematic of the optical imaging process using different measurement techniques (a) 
continuous-wave imaging, (b) time-domain photon migration, and (c) frequency-domain photon 

migration.  In each technique, the left hand plot represents input light intensity (Io) launched onto the 
tissue surface, and the right hand plot represents the output light intensity (I) collected from the tissue 

surface. 

 

 

Due to the highly scattering nature of the tissue medium, light travels in different 

paths between the point of illumination and the point of detection.  Since CW imaging 

employs steady-state light signals, the distribution of path lengths between the 

illumination and detection points are not detected, thus limiting the information required 

to map the interior optical properties of the tissue required in order to locate the diseased 

tissue.  In addition, the detected fluorescent signal depends on the fluorophore 

concentration, its decay kinetics, as well the optical properties of the tissue.  Yet, the CW 

technique is unable to differentiate between changes in the fluorescent intensity arising 

from the fluorophore concentration or from its decay kinetics [46-49].  However, the 
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CW technique is widely employed for fluorescence-enhanced optical imaging owing to 

the simplicity of the technique. 

 

2.3.2 Time-domain photon migration imaging 

In time-domain photon migration (TDPM), a picosecond or femtosecond impulse 

of light is launched onto the tissue surface and the intensity of the detected light is 

recorded at some distance away from the point of illumination (see Figure 2.9b).  The 

excitation light pulse broadens and attenuates as it travels through the scattering 

medium.  Upon encountering a fluorescent molecule, a fluorescent light pulse is emitted, 

which broadens and attenuates as it propagates in the tissue medium.  This broadened 

pulse of fluorescent light is further broadened and attenuated due to absorption and 

scattering in the tissue medium, before it is detected at the tissue surface.  The time span 

between the launch of an excitation pulse and the detection of the emission pulse light 

represents the photon “times-of-flight” and the fluorescence decay kinetics, and is 

measured using photon counting techniques or streak camera detectors with picosecond 

or greater resolution [9,38]. 

TDPM is performed using single-photon counting or gated integration 

techniques.  In the single-photon counting technique, the first fluorescent photon emitted 

after each incidence of excitation pulse is collected.  However, collection of statistically 

significant photon counts in a reasonable amount of data acquisition time is not feasible 

using the single-photon counting technique.  This poses a potential drawback to this 

detection technique.  In the gated integration technique, the data acquisition time is 
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enhanced by recording the total number of photons arriving at the detector (within a 

small temporal window at varying times), following an incident excitation pulse.  In 

either of these techniques, the photon collection times depend on the incident excitation 

photon “time-of-flights” associated with the kinetics of absorption and radiative 

relaxation of the fluorophore molecule, and photon “time-of-flights” of the emitted 

fluorescent pulse.  The temporal discrimination of the excited and emitted pulse helps 

differentiate between the decay kinetics, fluorophore concentration, and the tissue 

optical properties.  

Although TDPM measurements provide a wealth of information in order to map 

the optical properties of the tissues and are used by few researchers, it is still limited by 

its large dynamic range of signal-to-noise ratio (SNR), requiring significant data 

acquisition times compared to CW or FDPM techniques (as will be shown below). 

 

2.3.3 Frequency-domain photon migration (FDPM) imaging 

In FDPM, modulated excitation light at a single frequency is launched onto the 

tissue surface and the modulated fluorescent signal is detected at the tissue surface 

(Figure 2.9c).  The incident excitation light intensity is sinusoidally modulated at 

frequencies varying between 10 MHz to 1 GHz. The optimal frequencies in the 

physiological range of optical properties vary between 30-200 MHz.   

The modulated excitation light or “photon density wave” propagates as a 

spherical wave (when illuminated at a single point) (Figure 2.10).  Owing to the 

absorption and scattering properties of the tissue, the excitation wave is amplitude  
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Figure 2.10 Fluorescence-enhanced optical imaging in the frequency-domain (a) detailed schematic of the 

FDPM principle using point illumination and point collection measurement geometry, (b) detailed 
schematic of the FDPM principle using area illumination and area collection measurement geometry, and 

(c) phase shift and amplitude attenuation observed during in any FDPM process. 

 

 

attenuated and phase shifted relative to the incident wave [9,38]. Upon encountering the 

fluorescent molecules within the tissue, a fluorescent “photon density wave” is generated 

with additional amplitude attenuation and phase lag owing to the fluorescence decay 

kinetics of the fluorophore.  This fluorescent photon density wave then propagates 

throughout the tissue and during transit, experiences additional amplitude attenuation 

and phase lag owing to the tissue optical properties until it reaches the tissue boundaries 

and is detected using modulated photon multiplier tubes (PMTs) or gain-modulated 
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intensified charge coupled device (CCD) cameras.  The detected phase shift (θ) and AC 

amplitude, given by the fluence, Φ ( ( )expACI iθΦ = ), (that is, intensity of detected 

light) are related to the optical properties of the tissue and are used to map the optical 

properties of the tissues in order to locate the diseased tissues (see Section 3.1 for further 

details).    

The FDPM technique is a Fourier analog of the TDPM technique, which can 

differentiate between the decay kinetics, fluorophore concentration, and the tissue 

optical properties, similar to TDPM.  However, FDPM is preferable over TDPM due to 

its inexpensive instrumentation and improved signal-to-noise ratio (SNR).  In addition, 

the steady-state FDPM measurements in terms of amplitude and phase are minimally 

corrupted by the ambient light, since the instrument detects only modulated signals.  

Thus the FDPM instrument automatically acts as a filter for ambient light rejection, 

which is not only an advantage for FDPM over CW or TDPM techniques, but favored 

for clinical application in a non light-proof environment.  

Thus, fluorescence-enhanced optical imaging can be performed using either of 

the above measurement techniques in order to acquire surface boundary measurements.  

Measurements can be acquired at discrete points or over a given area, based on the mode 

of detection, as well as on the type of excitation illumination (point or area) of the tissue 

surface.  The different feasible measurement geometries that describe the mode of 

illumination of excitation signal and detection of emission signal are described in the 

following section. 

 



 32

2.4 Measurement geometries 

 
The incident excitation light can be launched onto the tissue surface and the 

emission light collected using various measurement geometries (see Figure 2.11) such as 

(i) point illumination and point collection, (ii) interstitial illumination and collection, (iii) 

area illumination and area collection, (iv) point illumination and area collection, and (v) 

area illumination and point collection. 

 

 

  

 
Figure 2.11 Schematic of different measurement geometries (a) point illumination and point collection 

geometry, (b) interstitial point illumination, where the point of illumination is below the tissue-like 
surface, with collection via point or area detection, (c) area illumination and area collection geometry, (d) 

point illumination and area collection geometry, (e) area illumination and point collection geometry. 
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2.4.1 Point illumination and point collection measurement geometry 

 The method of point illumination and point collection is achieved by illuminating 

at a single point using the excitation light source and detecting the emitted fluorescent 

signal at a distance away from the point of illumination.  Point illumination of excitation 

light from lasers or laser diodes is typically launched onto the tissue surface via optical 

fibers (which range from µm-mm in diameter) and the emitted fluorescent signal is 

collected via optical fibers and detected using photon multiplier tubes (PMTs) or 

avalanche photo diodes (APD).  The point of incident excitation light results in 

propagation of light that attenuates exponentially along tissue depths, thus probing 

minimal tissue volumes (Figure 2.11a).  Hence dense boundary surface measurements 

are required using this measurement geometry in order to locate a tumor in an otherwise 

unknown location.  Due to the nature of the measurement geometry illuminating and 

detecting point locations on tissue surface, the probability of missing the tumor location 

or the region of interest are high during imaging.  Yet, the point illumination and point 

collection measurement geometry has been employed by various researchers in order to 

locate tumors in 2-D and 3-D tissue phantoms [38] probably because of point 

illumination and collection are traditionally used in tomography and geophysical 

imaging.   

 

2.4.2 Interstitial illumination measurement geometry 

 The method of interstitial illumination is achieved by invasively illuminating the 

tissue medium below its surface and near the region of interest (or the tumor location).  
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Illumination is typically performed by launching the excitation source via optical fibers 

embedded in the tissue.  This illumination geometry increases the chances of exciting the 

fluorophores near the region of interest, but requires a priori knowledge of the target’s 

location.  Interstitial illumination has been used in coordination with area detection 

technique towards imaging drug distribution in tumors present in mice [50], but has not 

been applied to optical imaging towards tumor diagnosis due to the invasive nature of 

the illumination technique.  

 

2.4.3 Area illumination and area collection measurement geometry 

 The method of area illumination and area collection is achieved by illuminating a  

given area of the tissue surface and detecting the same or different area of the tissue 

surface.  Area illumination is achieved using an expanded beam of excitation source 

light attained from lasers or laser diodes, and the area detection is typically achieved 

using charge coupled device (CCD) cameras or by photography.  In in-vivo 

fluorescence-enhanced optical imaging of small animals, area detection is accomplished 

using incident powers typically ranging from µW/cm2 – mW/cm2 (review of this work is 

provided in reference [38]).  The area illumination and area collection technique not only 

increases the density of acquired boundary surface measurements, but also enhances the 

data acquisition rates, since a greater area of the tissue is scanned in a given time in 

comparison to the area scanned using point illumination and point collection geometry.   
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In general, CCD cameras are used for area detection, along with or without 

image intensifiers for enhancing the weak fluorescent signal, and along with or without a 

spectrograph for spectral discrimination.  In either of the different combinations of area 

detection, the SNR depends not only on the sensitivity of the photodetector, but also on 

its integration time and the amount of fluorescent signal emitted and collected.  In spite 

of using a very sensitive detector, the imaging system is usually limited by excitation 

light leakage.  The excitation leakage occurs if the difference between the excitation and 

emission wavelength maxima (obtained from the absorption and emission spectra) of the 

fluorescence contrast agent is very small.  The excitation leakage problem is also due to 

the inefficiency of the optical filters to reject the excitation light completely and 

detecting only the weak fluorescent signal.  In the case of area illumination and area 

detection geometry, apart from the excitation leakage problem, the specular reflection 

from the tissue surface further enhances the difficulty in collecting the weak fluorescent 

signal.  The method of area illumination and area detection is widely used for optical 

imaging in small animal models [38], where the tumor is qualitatively located from 2-D 

images which are acquired from the animal’s tissue surface.  However, this measurement 

geometry has not been employed in quantifying the 2-D images in order to locate the 

tumors in 3-D tissue medium.  Work is currently performed at PML employing area 

illumination and area collection measurement geometry for locating tumors in 3-D tissue 

phantoms [51-52].  Some of this work is presented as a portion of the current project in 

Section 12.   
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2.4.4 Point illumination and area collection measurement geometry 

 The method of point illumination and area collection is achieved by illuminating 

the excitation light at a single point and collecting the emitted fluorescent signal over a 

given area on the tissue surface.  Point illumination is achieved by launching the 

excitation light from laser or laser diodes via optical fibers, and area detection is 

achieved using CCD cameras or by photography.  A few fluorescence imaging studies 

have been performed using point illumination and area collection geometries, with 

modifications to the mode of illumination (fiber optics through an endoscope [53], or 

fiber optics on the surface [54]) and detection (fiber bundles interfaced to be detected by 

a CCD [54] or area detection by photography [53]).   

Detection geometry employing intermediate fiber bundles that are imaged using 

CCD camera or by photography is effectively a point collection geometry, where the 

data acquisition rates are enhanced by detection of multiple collection points on the 

tissue surface simultaneously.  Hence, the measurement geometry can be considered as a 

hybrid measurement geometry that is based on point illumination and point collection 

measurement geometry, with improvement in data acquisition rates achieved by 

performing area detection over the multiple collection points. 

In recent years, Ntziachristos et al. has employed this hybrid measurement 

geometry in small animal studies, in order to quantitatively locate the 3-D tumor location 

using CW imaging technique [13-14].  Most of the currently available mathematical 

tools to quantitatively estimate the 3-D tumor location are based on the point 

illumination and point collection geometry.  By employing the hybrid measurement 
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geometry, not only is the tumor located in 3-D, but the data acquisition rates are also 

enhanced.  The current work also employs this hybrid measurement geometry, by 

interfacing multiple collection points for area detection using a CCD camera.  

Implementation of this measurement geometry for our current research using time-

dependent techniques is described in Section 4.   

 

2.4.5 Area illumination and point collection measurement geometry 

 The method of area illumination and point collection is achieved by illuminating 

the excitation light as an expanded beam of given area and collecting the emitted 

fluorescent signal at a given point on the tissue surface.  Although this measurement 

geometry is theoretically feasible, there is no practical application for this measurement 

geometry and it has not been employed in optical imaging studies. 

 In summary, fluorescence-enhanced optical imaging can be performed using 

various measurement techniques and measurement geometries.  Each of these 

geometries have their respective advantages and disadvantages as described above.  

Using either of these methods, boundary surface measurements of the emitted 

fluorescence signal are acquired and used in tomographic reconstructions of the target’s 

location and size.  The different methods of tomographic reconstructions are described in 

detail in the following chapter. 
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3. BACKGROUND: FLUORESCENCE-ENHANCED OPTICAL 

TOMOGRAPHY 

 
 
 In any imaging modality, mathematical tools are applied to the acquired 

boundary surface measurements, in order to obtain a 2-D or 3-D image of the interior 

tissue medium.  The process of solving this boundary-value problem in imaging 

techniques is termed as tomography.  Tomography is performed in every imaging 

modality using mathematical tools that are based on the physics of the imaging process.  

Imaging modalities such as x-ray CT, ultrasound, MRI, and nuclear imaging generating 

x-rays, ultrasound waves, magnetic waves, and gamma rays, respectively are assumed to 

minimally scatter in a tissue medium.  Hence the incident and detected signals in all 

these imaging modalities are assumed as straight-ray signals, thus simplifying the 

mathematics behind the imaging process.  Two-dimensional or three-dimensional 

images can be generated by performing simple back-projection techniques.   

 The technique of backprojection is typically applied through Fourier transforms 

in reconstructing images from the given imaging modality.  In this method of 

backprojection, it is assumed that there is a single definite path between the source and 

the detector, along which the radiating signal attenuates.  By changing the orientation of 

the source-detector pair along different angles on the domain surface, or by using 

multiple source-detector pairs located in different orientation angles, the tissue densities 

can be mapped and the target location backprojected.  However, the backprojection 

technique becomes erroneous when scattering increases in a tissue medium.  Hence, the 



 39

technique cannot generate accurate 2-D or 3-D images in optical imaging of large 

tissues, since optical imaging is based on the principle of minimal absorption and 

preferential scattering, where the assumption of straight-ray signals is incorrect.  

Tomographic reconstruction of NIR light in optical imaging is thus performed by 

employing mathematical formulations, which describe the principle of light propagation 

in a highly scattering tissue medium.    

 

3.1 Light propagation model using diffusion equation 

 
Propagation of light can be modeled using either a microscopic (discrete) 

approach or a continuum approach [55].  In a microscopic approach, which uses 

Maxwell equations, the approach is more fundamental and exact.  However, modeling 

light propagation in a biological tissue at microscopic levels becomes computationally 

expensive. 

Alternately, the continuum approach describes the light propagation using the 

transport phenomenon of light and is given by the radiative transport equation [56].  

Several assumptions have been made to this transport equation for computational ease in 

biological media and to obtain the photon diffusion equation.  These assumptions are: (i) 

the source is isotropic in nature (in other words, the source emits light with uniform 

angular distributions); (ii) the scattering length is much smaller than the mean free 

absorption length or µs
’ >> µa in the medium; and (iii) the distance between the point of 

illumination and collection is at least ten times the scattering length.  With these 

assumptions, the photon diffusion equation can be derived and used to predict the light 
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propagation in random media as well as in tissues [56].  To predict the fluorescent light 

generation and its propagation in tissues, we employ a coupled diffusion equation to 

predict the fluence, or the concentration of the photons times the speed of light.  The 

coupled diffusion equation for light propagation at a given modulation frequency of 

light, f (ω=2πf radians) is given by [57-59]: 
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In the above equations, Φx and Φm are the AC components of the excitation and 

emission fluence (photons/sec.cm2) respectively; µaxi is the absorption coefficient due to 

the chromophores (cm-1) (i.e. the endogenous chromophores in tissues); µaxf is the 

absorption coefficient due the fluorophores or the exogenous fluorescing agents (cm-1); 

µam represents the absorption coefficient of the emission light due to the chromophores 

(cm-1); and φ and τ denote the quantum efficiency and lifetime (nsec) of the fluorophore, 

respectively.  The terms cx and cm represent the velocity of light at excitation and 

emission wavelengths (cm/sec); ω corresponds to the modulation frequency of 

propagating light (=2πf radians); and r and rs are the positional vectors at a given point 

and source illumination point, respectively. The excitation fluence, Φx, couples the 
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diffusion equations (3.1) and (3.2).  In the frequency-domain, fluence at excitation and 

emission wavelengths are given by ( )xxACx iI θexp,=Φ  and ( )mmACm iI θexp,=Φ , 

respectively.  Here IAC is the amplitude and θ is the phase shift at excitation(suffix ‘x’) 

and emission (suffix ‘m’) wavelengths, respectively. 

The optical diffusion coefficients, Dx and Dm for the excitation and emission light 

(cm) are given by 
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where µsx and µsm are the scattering coefficients at excitation and emission wavelengths 

(cm-1), respectively.  Here, g represents the anisotropy coefficient, which is defined as 

the average cosine of the scattering angle, and varies from 0 for an isotropic medium to 1 

for a forward scattering medium (typically, g > 0.9 for biological tissues).  The term 

( )gs −1µ  is also defined as the reduced scattered coefficient µs
’. 

 Simulated studies have been performed comparing the accuracy of the diffusion 

approximation with respect to the full radiative transport equation [60].  It was observed 

that the diffusion equation was not accurate near boundaries of the medium and near 

source locations.  Also, when the anisotropy coefficient, g was greater than 0.85 

(typically observed in biological tissues), the errors were large in a CW imaging system 

[61].  However, when the source detector distance was maintained at least ten times the 

transport length, the effect of anisotropy coefficient on the errors in the diffusion 
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approximation was minimal [62].  The coupled diffusion equations are solved using one 

of the boundary conditions described in the following section. 

 

3.2 Boundary conditions 

 
 Several boundary conditions have been suggested to represent the tissue 

boundaries (Figure 3.1), including, (i) the partial current boundary condition, (ii) the 

extrapolated boundary condition, and (iii) the zero-boundary condition.   

 

3.2.1 Partial current boundary condition 

The partial current boundary condition, which is representative of the physics, 

states that the photon leaving the tissue surface never returns and the Fresnel reflections 

at the air-tissue interface are determined using a reflection parameter [63-64].   
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where γ is the index-mismatch parameter, which is a function of the effective refractive 

index (Reff) at the boundary surface.  
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Figure 3.1  Schematic of tissue boundary surface. n1 is the refractive index of the tissue medium, n2 is the 

refractive index of the outside medium, and $n  is the normal to the tissue surface. 
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Reff is determined directly from Fresnel’s reflections, Rj and RΦ and is in turn related to 

relative refractive index, nrel [59]. 
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and RFresnel is the Fresnel reflection coefficient for light incident upon the boundary at an 

angle of incidence, Θ [63].   
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( ) 1FresnelR Θ =                     when  Θc ≤ Θ ≤ π/2 (3.10) 

 

where n1, n2  are the refractive index of the turbid (or tissue) medium and the outside 

medium ( 12 / nnnrel = ), respectively; Θ  and Θ ‘ are the angle of incidence within the 

turbid medium and the refracted angle in the outside medium, respectively, which 

satisfies '
1 2sin sinn nΘ = Θ .  The critical angle Θc for total internal reflection is given by 

1 2sin cn nΘ = .  The value of Reff varies for different interfaces.  Consequently the γ term 

varies within the partial current boundary condition.    

 

3.2.2 Extrapolated boundary condition 

The extrapolated boundary condition is a simplified form of the partial current 

boundary condition [65-67].  Here, the fluence rate is set to zero at an extrapolated 

boundary located at a distance, zb outside the domain. 
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( ) 0,, =Φ ωrmx   at z = zb     (3.11) 
 

An approximate value for zb was estimated to include the Fresnel reflection at the 

surface and is given in terms of the index mismatch parameter and diffusion coefficient 

as [63] 
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3.2.3 Zero fluence boundary condition 

In the zero fluence boundary condition, the fluence Φ is set to zero on, as well as, 

outside the boundary.   

 

( ) 0,, =Φ ωrmx   at z = 0    (3.13) 
 

Although the zero fluence boundary condition is mathematically simpler and 

yields an analytical solution to the diffusion equation in homogeneous scattering media, 

it does not represent the real system accurately [63,65].  

 The coupled diffusion equations are used along with one of the above boundary 

conditions, in order to solve for the parameter of interest.  In any feasibility studies, the 

optical tomography problem is solved in three steps.  As a first step in optical 

tomography, the interior optical property map of the tissue medium is assumed known 

and the coupled diffusion equations are solved for the fluence at either wavelengths 
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(termed as forward problem) (Figure 3.2).  As a second step, the fluence obtained from 

the forward model is compared to the acquired boundary surface measurements, in order 

to validate the light propagation model employed for fluorescence-enhanced optical 

tomography; in other words, model validation is performed on known phantoms.  As a 

third and final step, the acquired boundary surface measurements are used in the coupled 

diffusion equations in order to estimate the interior optical property map (termed as 

inverse problem); in other words, inversions are performed assuming that the phantom 

properties are unknown.  In a practical situation containing unknown phantoms, the 

acquired boundary surface measurements are used along with the light propagation 

model in order to solve the inverse problem (third step in feasibility studies) directly.  

Details of the forward and inverse problem in fluorescence-enhanced optical 

tomography are described in the following sections. 

   

3.3 Forward problem in fluorescence-enhanced optical tomography 

 
 In the forward problem of fluorescence-enhanced optical tomography, the optical 

properties are assumed known for the entire tissue medium (or domain) and the fluence 

is evaluated using analytical or numerical methods over the entire tissue medium (Figure 

3.2).  Analytical methods are employed for infinite or semi-infinite media by making 

suitable assumptions and approximations.  For a finite medium, it is difficult to solve the 

coupled equations analytically, and hence numerical methods such as the finite 

difference or the finite element methods are employed.   
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Figure 3.2  Schematic of the forward problem (left) and the inverse problem (right) in optical tomography.   

 
 
 

 In the finite difference (FD) method, the entire 2-D or 3-D domain is discretized 

into square or cubic elements, respectively and the unknown parameter is estimated at 

each node of every element.  The mesh is finely resolved in order to minimize the 

discretization error at the cost of increasing in the dimensionality of the problem.  

Hence, the forward problem becomes computationally intense in the case of large 3-D 

domains.  This problem can be overcome by using multigrid finite difference methods 

over single grid methods [68-71].  In the multigrid FD method, the problem is solved 

initially on a coarse mesh and the results are used as an initial guess on successive finer 

meshes.  The process is continued until the desired resolution is reached.  Not only is the 

multigrid method faster than the single grid method, but also reduces the discretization 

errors while maintaining resolution [68, 72-73].   
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 The finite element (FE) method involves the discretization into triangle elements 

in 2-D domains, or tetrahedral, pyramidal, and hexahedral elements in the 3-D domain.  

In this method, if the mesh is not finely discretized, then errors in the numerical solution 

of the coupled equations result.  However, unlike the finite difference methods, FE 

methods can be employed on curvilinear domains, such as the physiological tissue 

shapes, with minimum discretization errors and better computational efficiency in the 

inverse problem upon appropriate coding [74-76], and applicable to the coupled 

diffusion equations in both the time- and frequency-domain.  Typically, the finite 

element method is formulated using the Galerkin approximation, where the second-order 

coupled diffusion equation is converted to first-order differential equations.  The 

solution of these first-order differential equations are in turn approximated as a linear 

function in space within each finite element.  Details of this method are discussed in 

Section 5.  

 Using either the analytical or numerical methods, the forward problem has a 

unique solution even for large 3-D domains, since the number of unknown variables 

(that is, fluence at each point) is less than or equal to the number of known parameters 

(that is, optical properties at each point) in the 3-D discretized domain.  The fluence 

obtained at both the wavelengths is thus compared to the boundary surface 

measurements acquired at both the respective wavelengths in a known 3-D domain.  

Having validated the light propagation model with respect to the acquired boundary 

surface measurements, the inverse problem can be tackled. 
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3.4 Inverse problem in fluorescence-enhanced optical tomography 

 
In the inverse problem of fluorescence-enhanced optical tomography, the 

boundary surface measurements are used along with the coupled diffusion equations in 

order to reconstruct the optical property map of the entire 3-D domain, using analytical 

or numerical techniques.  Unlike the forward problem, where the number of unknowns 

(fluence at each node of the discretized) is less than or equal to the number of known 

parameters (optical properties at each node) in the system of equations to be solved, the 

inverse problem is a more complicated problem to solve.  Here, the boundary surface 

measurements (represented in terms of amplitude and phase shift of the fluence,Φ) are 

the known quantities that are sparsely obtained on the boundary surface of the 3-D 

domain.  These sparse numbers of known boundary surface measurements are used to 

reconstruct the unknown parameters or optical properties (that is, µa,τ, or φ) at every 

point of the entire 3-D domain.  Typically the number of unknown parameters far 

exceeds the number of known parameters.  Hence, the solution to the inverse problem is 

not unique and may also be unstable, especially in the presence of measurement error.  

In other words, the inverse problem is highly ill-posed.   

Various approaches are attempted to solve the inverse problem in optical 

tomography, although none of them have been proven to be very effective or consistent 

for actual systems.  Techniques employed by various researchers are quite varied, but 

they can be broadly categorized as analytical methods and numerical methods.  Based on 

whether an analytical solution or a numerical method was employed to solve the system 
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of equations, the various approaches are classified into: (i) localization or analytical, (ii) 

backprojection, and (iii) numerical approach.  

 

3.4.1 Localization or analytical approach  

In the localization or analytical approach, the inversion is based on the analytical 

solutions of the homogeneous semi-infinite and infinite tissue medium.  Here, the 

position and size of the tumor are predetermined and the difference between the acquired 

raw measurements and the analytical solutions of the semi-infinite or infinite medium is 

minimized using non-linear least squares optimization routines, such as Levenberg-

Marquardt method.    

The optical properties of the background can be roughly determined a priori, but 

the optical properties of the tumor are not known in reality, making it difficult to 

predetermine the tumor position and size.  In the case of perfect uptake of the 

fluorescing agent into the tumor (that is, no fluorescence in the background tissue), the 

strength of the re-radiating fluorescent target can be used to determine the centroid of the 

tumor.  However, in the case of imperfect uptake of the fluorescing agent into the tumor 

(that is, fluorescence is also present in the background), detection of the tumor using 

localization schemes becomes difficult.  In addition, modeling of human tissues as semi-

infinite or infinite medium geometries is also not accurate.  Yet, the simplicity of the 

localization approach with its reduced computational speed as well as computational 

intensiveness pose as an advantage to this inversion approach.   
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Hull et al. [77] and O’Leary et al. [78] have employed localization schemes to 

reconstruct 2-D images in large phantoms, using CW and FDPM fluorescence 

measurement techniques, respectively.  When Hull used Monte-Carlo simulations to 

minimize the model mismatch and locate the target, O’Leary used the power of the re-

radiating photon density waves from the fluorescing target in order to locate the target.  

Unlike the 2-D studies, Wu et al. [79] and Chernomordik et al. [80] performed 3-D 

reconstructions on phantoms using TDPM and CW measurements, respectively in order 

to locate up to two fluorophore targets.  

 

3.4.2 Backprojection   

In the backprojection approach, Fourier transforms are applied to the boundary 

surface measurements in order to obtain 2-D or 3-D image reconstructions.  However, 

representing the attenuating signal as a single path in a highly scattering tissue medium 

is erroneous.  Yet, the backprojection approach is advantageous due to its simplified 

formulation (without incorporating the coupled diffusion equations), thus increasing the 

computational speed and reducing the computational intensiveness of the inverse 

problem.  Schotland developed an analytical solution using Radon transforms (or Fourier 

transforms) in order to backproject the target’s location in a CW imaging system [81].  

However, the backprojection approach has not been applied so far in fluorescence-

enhanced optical tomography. 
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3.4.3 Numerical approach  

In the numerical approach, the coupled diffusion equations are solved using 

numerical techniques in order to reconstruct the optical property maps.  Small changes in 

the predicted measurements (Z) are directly expressed in terms of small changes in the 

optical properties (Y) using a Jacobian sensitivity matrix, J, which is in turn used to 

update the estimates of the optical properties in the entire domain typically using 

gradient-based inversion approaches such as Newton’s method.   

The computationally intense Jacobian sensitivity matrices can be evaluated using 

a first-order finite-difference method, a second-order finite difference method, or an 

approximate adjoint method.  The matrix is termed computationally intense since in 

large 3-D geometries the unknown parameter is spatially resolved in three dimensions 

and needs to be evaluated at each location coordinate of the 3-D geometry.  Typically a 

first-order approximation is computed as a backward difference, 

 

( ) ( )
p

ppp
p δ

δ Φ−+Φ
≅

∂
Φ∂     (3.14) 

 

or a forward difference approach.  Although computationally intense, finite-difference 

methods are easy to implement and obtain accurate results.   

The integral formulation of the Jacobian matrix, J is based on the organization of 

the diffusion equation to represent an inhomogeneous differential equation and 

analytically solving for the fluence Φm using the Green’s function. In a physical sense, 
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small perturbations in the optical properties of the tissue cause small perturbations on the 

boundary surface measurements as well.  These perturbations are additive in nature, thus 

contributing to an integrated effect on the signal acquired on the surface.  Initially, the 

background optical properties are assumed to be known a priori from homogeneous 

measurements.  The change in the background optical properties (p) due to the presence 

of a tumor, causes a perturbation (δ) in the fluence at both the wavelengths 

 

Φ+Φ→Φ⇒+→ δδppp      (3.15)  

 

By reorganising the emission diffusion equation (equation (3.2)) to represent an 

inhomogeneous differential equation, the emission fluence can be solved analytically 

using the Green’s function, Gf.  
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where the complex diffusion wave number can be expressed as 
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The source term, Sm is the excitation fluence lumped with the decay kinetic parameters 

of the fluorescing dye and is given by  
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 ∇  in Equation (3.18) is assumed negligible, since there is little 

or no variation of the isotropic scattering coefficient, the component that 

overwhelmingly contributes to the diffusion coefficient at the emission wavelength (Dm) 

(termed as Born approximation).  The corresponding Green’s function consequently 

satisfies 
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By using Green’s theorem, 
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Equation (3.16) can be re-written as a spatial convolution of the Green’s function, Gf and 

the source term (Equation (3.18)), in order to analytically solve for the emission fluence, 

Φm.   
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where, Ω is the volume of integration in a three-dimensional domain; dr
v  is the point of 

collection (i.e. detector); and sr
v  is the point of illumination (i.e. source).  In a discretized 

2-D or 3-D domain, the emission fluence in Equation (3.21) is given by 

 

( ) ( ) ( ) ( )
( )1

, , ,
( ) 1

N
axf j

m d s f j d x j s
j m

r
r r G r r r r

D r i
φ µ

ωτ=

∆
Φ = Φ

−∑
r

r r r r r r
r                        (3.22) 

 

where N is the total number of nodes in the 2-D or 3-D domain, and the term ∆  is the 

area or the volume of each element in the 2-D or 3-D domain, respectively.  The integral 

formulation is thus discretized by linearizing the perturbation term (containing the 

unknown optical properties) and hence obtaining a matrix of equations of the form 

m JYΦ = , when multiple source-detector measurements are acquired.  Here the Jacobian 

matrix, Jj, and the unknown optical parameters, Yj, at each node, j, are given by 
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Thus, the boundary surface measurements of fluence are used to solve for the unknown 

optical properties contained in the perturbation term.  The inversions are carried out 

iteratively under the chosen objective function is minimized (as described at the end of 

the current section) and the system has converged. 

During the iterative inversion scheme, when the Green’s function solution is kept 

a constant (i.e. Gf is not updated in each iteration in Equation (3.21)), the integral 

method becomes Born Iterative Method (BIM); and when the Green’s function is 

updated after each iteration (i.e. Gf is updated constantly in Equation (3.21)), the integral 

method becomes Distorted Born Iterative Method (DBIM).  In both the cases, by 

applying the Born approximation in the above integral formulation of the Jacobian 

matrix in the inverse problem, the ability to detect more than one target in a tissue 

medium becomes difficult [82].   

 In fluorescence-enhanced optical tomography, the above described Jacobian 

formulation for solving the inverse problem has been used by O’Leary et al.[83], 

Hawrysz et al. [15], Eppstein et al. [16], Lee et al. [17, 84], and Ntziachristos et al. [13-

14].  Unlike the 2-D simulated studies performed by O’Leary, Ntziachristos et al. 

performed experimental studies using a CW imaging system and modifying O’Leary’s 

integral formulation for obtaining 3-D image reconstructions.  However, Ntziachristos et 

al.’s studies were limited to measurements obtained from small volume cylindrical 

phantoms (~76 ml), which were clinically irrelevant, although the work is significant as 

a first step towards 3-D reconstructions using experimental data.  Three-dimensional 

reconstructions on large tissue phantoms (256 ml) were first demonstrated by Hawrysz 
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et al. [15], Eppstein et al. [16], and Lee et al. [17, 84] using FDPM measurements and 

employing the DBIM integral approach.   

The objective functions, chosen differently by various researchers, aer minimized 

during the iterative inversion scheme as described above.  For example, using the least-

squares objective function (E) 
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where, fi is referred to as a residual, superscript s is the simulated data from the forward 

model and superscript superscript m correspond to the measured data from experiments.  

The gradient of the error function with respect to the optical properties (Y) is given by  
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Expanding the function E as a Taylor’s series expansion around a small perturbation of 

the optical properties, Y∆ , we obtain 
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The function to be minimized, )( Y∆Φ , can thus be written as 

 

0)()(
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1)()()()( 2 ⇒∆⋅∇⋅∆+∆⋅∇=−∆+=∆Φ YYFYYYEYEYYEY T       (3.29) 

 

In the case of first order Newton’s methods, the second order term in Equation 

(3.29) is neglected, whereas in the case of gradient based Truncated Newton’s method, 

the second order term is retained.  The optical property map is iteratively updated until a 

minimum error is obtained, or in other words, until the function )( Y∆Φ  approaches zero 

or a small pre-described value.  Some of the common updating techniques employed in 

fluorescence-enhanced optical tomography include Newton-Raphson, truncated 

Newton’s, conjugate gradient descent, and approximate extended Kalman filtering 

methods.   

A great deal of work has been performed using various updating techniques on 

synthetic data, both in 2-D and 3-D domains, using CW and FDPM measurement 

techniques [69, 71, 85-92].  Chang et al. performed 2-D studies on large phantoms using 

CW techniques and employing differential approach (conjugate gradient descent 

method) [85, 93-94] as well as integral approach [93-94], as mentioned earlier.  

However, three-dimensional image reconstructions on phantoms were first presented by 

Hawrysz et al. [15], and Eppstein et al. [16] using FDPM measurements and 

approximate extended Kalman filter (AEKF) inversion algorithms.   
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To summarize, a listing of literature studies that contribute to fluorescence-

enhanced tomography using synthetic data (Table 2.1) and experimental data (Table 2.2) 

and employing one of the inversion approaches is tabulated [13-17, 69, 71, 77-80, 83-

96].  Based on the fluorescence-enhanced tomographic studies performed to date, the 

context of the current research is described in the following section. 

 

3.5 Context of current research 

 
Various investigators have demonstrated fluorescence-enhanced optical 

tomography in 2-D and 3-D synthetic or real domains using CW, TDPM, and FDPM 

measurement techniques as described above.  Of all these studies, only a few employ 

actual experimental data to reconstruct three-dimensional images [13-17, 79-80, 84].  

Furthermore, the experimental studies with 3-D reconstructions performed to date are 

limited either to (i) smaller volume phantom models (< 100 cm3) or in vivo studies on 

small rodent models that are not clinically relevant [13-14]; (ii) compressed tissue-

mimicking phantom geometries of large volumes (~260 cm3) [15-17, 84], where 

information at the nipple region and the chest wall may be lost; (iii) large volume studies 

employing simplified localization schemes for reconstructing the targets [79]; or (iv)  

phantom studies with shallow target depths (1-6 mm from the surface) [80].   

In addition, previous studies at PML involved slow and laborious data acquisition and 

calibration procedures owing to single source-detector detection schemes that employ 

multiplexed or individual detectors [15-17, 84].  Recently a CCD scanner was used by 

Ntziachristos et al., [13-14] for rapid acquisition of CW measurements in order to 
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Table 3.1 Fluorescence-enhanced optical tomography: Literature of image reconstructions using synthetic 
data. 
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O’Leary et al. 
(1996) [83] 

0.1 o in θ, 
1% in AC ICG 1:0, 

20:1 FDPM 2D Analyt
ical SIRT 

Paithankar 
DY et al. 

(1997) [69] 

0.1-1o in θ, 
0.01 in 

log(AC) 
(Gaussian) 

ICG 20:1 FDPM 2D MFD Newton-
Raphson 

Chang J et al.  
(1998) [85] 

1-10% 
white noise N/A 100:1 CW/FDP

M 
2D/
3D NS Conjugate 

gradient 

Jiang H 
(1998) [86] 0-5 % N/A 2:1 φ, τ FDPM 2D FEM 

Newton's 
iterative 
method 

Eppstein MJ 
et al. (1999) 

[71,87] 

0.1o in θ, 1 
% in log 

AC 
(Gaussian) 

N/A 

1:0, 
100:1     
10:1 

in φ, τ, 
µa 

FDPM 2D/
3D MFD AEKF 

Roy R & 
Sevick– 

Muraca EM 
(1999, 2000) 

[88-89] 

0.1o in θ, 1 
% in log 

AC 
(Gaussian) 

N/A 2.5:1 
5:1 FDPM 2D FEM 

Gradient –
Based & 

Truncated 
Newton 

Roy R & 
Sevick– 

Muraca EM 
(2001)  
[90-91] 

55dB in 
excitation; 
35 dB in 
emission 

N/A 10:1 FDPM 2D/
3D FEM 

Gradient-
Based 

Optimizatio
n & 

Truncated 
Newton's 
method 

Roy et al. 
(2003) [[92] 

55dB in 
excitation; 
35 dB in 
emission 

N/A 100:1 FDPM 3D FEM 

Constraine
d 

Truncated 
Newton’s 

 
Abbreviations 
AEKF: Approximate extended Kalman filter 
CW: Continuous-wave imaging 
FDPM: Frequency-domain photon migration 
FEM: Finite Element Method  
MFD: Multi-grid Finite Difference 
N/A: Not Applicable 
NS: Not Specified 
SIRT or SART: Simultaneous algebraic reconstruction techniques 
TDPM: Time-domain photon migration 
φ, τ: Quantum efficiency and lifetime of the contrast agent 
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Table 3.2 Fluorescence-enhanced optical tomography: Literature of image reconstructions using 
experimental data. 
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O’Leary et 
al. (1994) 

[78] 

Phantom 
(large glass 
fish tank) 

Yes ICG 1:0 TDPM 
 

2D 
 

None Localization 

Wu et al. 
(1995) 

[79] 

Phantom 
(7-cm dia. 

glass 
beaker) 

Yes 
Diethylth
iatricarb
ocyanine 

1:0 TDPM  
3D None Localization 

Chang et 
al.  (1995) 

[93] 

Phantom 
(8-cm dia. 
cylinder) 

Yes Rhodami
ne 6G  

1:0, 
1000:1 CW  

2D NS POCS, CGD, 
SART 

Wu et al. 
(1997) 

[95] 

Phantom 
(6.4-cm 

dia. glass 
beaker) 

Yes 
HITCI 
iodide 

dye 
1:0 TDPM  

2D NS Laplace 
transform 

Chang J et 
al. (1997) 

[94] 

Phantom 
(8-cm dia. 
cylinder) 

Yes Rhodami
ne 6G 500:1 CW 2D NS POCS, CGD, 

SART 

Hull et al. 
(1998) 
[77] 

Phantom 
(6630.125 

cm3) 
Yes Nile 

Blue A 1:0 CW 2D 
 

Monte
-Carlo Localization 

Chernomor
dik et al. 
(1999) 

[80] 

Phantom Yes Rhodami
ne 1:0 CW 2D/ 

3D 

Rando
m 

Walk 
theory 

Analytical 

Yang et al. 
(2000)  
[96] 

In vivo 
(rats) Yes ICG & 

DTTCI 

1:0 & 
imperf

ect 
uptake 

FDPM 
2D 
ima
ges 

FEM 
Marquardt & 

Tikhonov 
regularization 

Hawrysz et 
al. (2001) 

[15]; 
Eppstein et 
al. (2002) 

[16] 

Phantom 
(256cm3) Yes ICG 50:1, 

100:1 FDPM 

 
 

3D 
 
 

MFD AEKF 

Ntziachrist
os et al. 
(2001, 
2002) 

[13-14] 

Phantom 
(74 cm3) Yes 

ICG in 
backgrou

nd; 
Cy5.5 as 
contrast 
tumor 

1:0 CW 

 
3D 
alon
g z-
plan
es 

FD 
Normalized 

Born 
expansion 

Lee et al. 
(2001, 
2002) 

[84,17] 

Phantom 
(256cm3) Yes ICG 100:1 FDPM 

 
3D 

 
MFD Distorted 

BIM 

Abbreviations 
CGD: Conjugate Gradient Descent, FD: Finite Difference, POCS: Projection onto convex sets 



 62

reconstruct images of small cylindrical volumes (~ 74 cm3) containing a rodent.   

Nonetheless to date, there remains a need for a time-dependent fluorescence imaging 

measurement approach that can interrogate large volumes that mimic female breast 

geometries with appropriately fast data acquisitions while maintaining sufficient signal 

to noise for 3-D tomographic reconstructions.  Time-dependent measurement techniques 

such as frequency- and time-domain approaches provide enhanced optical contrast over 

time-independent continuous-wave (CW) imaging techniques [12, 97].  

In the current work, a 3-D frequency-domain (time-dependent) imaging system is 

developed for imaging large clinically relevant phantom models, which mimic the 

female breast geometry.  Enhanced data acquisition rates were achieved using an ICCD 

(image-intensified charge coupled device) camera to simultaneously detect all the 

signals collected by the fiber optics surrounding the phantom surface.  This work is 

unique in that it not only enables a rapid data acquisition scheme, but it also uses 

clinically relevant phantom volumes.   
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4. INSTRUMENTATION AND EXPERIMENTAL TOOLS 

 

Fluorescence-enhanced optical imaging studies were performed using large 

tissue-mimicking phantoms and rapid data acquiring intensified CCD detection system.  

In this chapter, details of the breast-shaped phantom, instrumentation set-up, and data 

acquisition procedures using frequency-domain measurement techniques will be 

described in detail.  

 

4.1 Breast phantom 

 
A 3-D tissue-mimicking hollow cup-shaped model was constructed (at Riverside 

Campus, Texas A&M University) using white PVC (refractive index = 1.5 to 1.55 as 

obtained from manufacturer) in order to mimic the shape of the breast tissue.  The model 

consists of a hemispherical portion (10-cm inner diameter) representing the breast 

geometry and a cylindrical portion (10-cm inner diameter and 10-cm height) 

representing the extended chest wall region and the underlying tissues around the breast 

(see Figure 4.1a).  A wall thickness of 0.5 cm of the hollow phantom was used to enable 

the firm placement of source and collection fibers.  Holes of 1 mm diameter were drilled 

symmetrically at various points on the surface of the hemisphere, in order to pre-fix the 

location of the multimode optical fibers [(model FT-1.0-EMT, Thorlabs Inc., NJ) of 

1000 µm diameter and numerical aperture (NA) of 0.39], which illuminate and collect 

the light signal from the phantom’s boundary surface.  
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Figure 4.1 (a) Tissue-mimicking phantom, (b) Actual phantom set-up with optical fibers for illumination 
and collection of light signal, (c) x-y location of all 27 point illumination (red asterisks) and 128 collection 
locations (black hollow circles) on the hemispherical portion of the phantom, (d) targets of varying size (i) 
1x1x1 cc cube, (ii) 1x1x0.5 cc cuboid, and (iii) 0.5 cc spherical target, suspended into the phantom using 

the support of optical fibers. 

 

In the current work, the hemispherical portion of the phantom model was the 

region of interest, and hence no optical fibers were pre-fixed on the cylindrical portion of 

the phantom model for incident illumination and collection measurements from the 

cylindrical region.  The optical fibers were polished on either ends using 5 µm lapping 
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film (LFG5P, Thorlabs Inc., NJ) and placed in a protective sheath (FT038, Thorlabs Inc., 

NJ) in order to prevent any light loss from the cladding of the fiber.   

 

4.1.1 Collection optical fibers 

A total of 128 optical fibers (each of ~ 1.3 m length) that collect the acquired 

signal (collection fibers) were symmetrically positioned along alternate concentric rings 

on the hemispherical portion of the phantom as shown in Figures 4.1b and 4.1c.  The 

other end of the collection fibers were positioned on a 2-D interfacing plate in an array 

for facilitating simultaneous data acquisition from multiple collection fibers using the 

ICCD imaging technique described in Section 4.2.3).   

 

4.1.2 Source optical fibers 

Between the concentric rings of the collection fibers, a total of 27 fibers (each of 

~ 1 m length) that illuminated the phantom (source fibers) were positioned on the same 

hemispherical surface.  The free end of the source fibers were fitted with SMA 

connectors (SMA 11040A, Thorlabs Inc., NJ) in order to align the input laser light onto 

the source fibers via a fiber holder that was affixed with SMA couplings. The 

coordinates of the source and collection fibers in the 3-D phantom are given in Appendix 

A. 

Unlike studies involving phantom geometries mimicking a compressed breast or 

a conical-shaped tissue [15-17, 84, 98], the use of the cup-shaped phantom enables 

assessment of imaging information around the nipple and chest-wall regions.  The use of 
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a liquid phantom (1% Liposyn solution, Abbott Laboratories, North Chicago, IL) to fill 

the hollow phantom structure enabled ease in handling target positioning.  Solid or gel-

like phantoms are disadvantageous in that the target geometry is permanently fixed for 

each phantom. 

 

4.1.3 Target 

 A target represents a tumor or diseased tissue targeted by fluorescent contrast 

agents.  Here, the targeted diseased tissue was mimicked using acrylic cuvettes or glass 

spheres of varying sizes (see Figure 4.1d) that were filled with 1% Liposyn solution and 

the fluorescent contrast agent in required concentrations.  The acrylic cuvette allowed ~ 

82.5% light transmission and the glass spheres allowed ~ 90% of light transmission, and 

these values were accounted in the mathematical models to predict the forward and 

inverse problems (see Section 4).  Two 1 mm fibers of equal length were glued to the 

cubical target or a single 1 mm optical fiber was glued to the spherical target in order to 

suspend them into the inverted breast phantom (Figure 4.1d).  A plastic lid with 1 mm 

drilled holes on its x-y plane facilitated the positioning of the target accurately in the 1% 

Liposyn phantom. 

 

4.2 Instrumentation 

 
 The main components of the instrumentation include: (i) a laser diode, (ii) an 

image intensifier, (iii) a CCD camera, and (iv) frequency synthesizers (or oscillators).  

The accessories include temperature and power controller for the laser diode, laser diode 
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mount, fiber holder, power supply to laser diode and image intensifier, interfacing plates, 

Nikon lens, lens assembly, and amplifiers.  A schematic of the instrumentation set-up is 

given in Figure 4.2 and the principle of the ICCD imaging system is given in Figure 4.3.  

Details of the instrument are described based on the principle of the imaging technique, 

highlighting the major components and the corresponding accessories at each stage.  

 

4.2.1 Light source 

Near-infrared light at 785 nm excited the fluorophores, which emit a 

fluorescence signal at 830 nm (details in Section 2.2).  A high power laser diode was 

used in these studies in order to improve photon budget in large phantoms with greater 

penetration depths (up to 10 cm), and because the final sensitivity of the detector was 

uncertain.  The phantom was illuminated using modulated light (~ 783 nm), which was 

delivered at a point on the phantom surface through a 1 mm diameter multimode optical 

fiber.  The high power laser diode (HPD1105-9mm-D-78505 model, High Power 

Devices Inc., NJ) of ~783 nm wavelength and maximum power of 530 mW was 

mounted onto a customized laser diode mount (model TCLDM9, Thorlabs Inc. NJ).  

Unlike the regular laser mounts whose maximum RF input (or AC) was 200 mW, the 

laser mount for the current study was customized to incorporate an RF input of ~ 1.7 W, 

such that a greater modulation depth (AC/DC) can be achieved using the high power 

laser diode having a DC power.  The laser mount was driven using a laser diode driver 

(LDC500, Thorlabs Inc., NJ) and its temperature was controlled at 150C using a 

temperature controller (TEC500, Thorlabs Inc., NJ).   
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Figure 4.2 Schematic of the instrumentation set-up of the ICCD imaging system. 
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Figure 4.3 Schematic of the principle of ICCD detection technique. 
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The source light was modulated at 100 MHz by superimposing the RF 

(radiofrequency) signal from a frequency synthesizer (model 2022D, Marconi 

Instruments, UK) onto the constant DC bias from the laser diode at its RF input.  Based 

on the required modulation depth (AC/DC) at the illuminating fiber end, the electrical 

power requirements of the high power laser diode were estimated along with the optical 

power of the modulated light from the laser diode (see Appendix B).  The modulated 

light source from the laser mount was collimated using a collimating aspheric lens 

(Model C240TM-B, NA=0.5, Thorlabs Inc., NJ), and focused onto the fiber mount, 

which held a coupling/collimation package (Model F220SMA-B, Thorlabs Inc., NJ) (see 

Figure 4.4).  The source illumination fiber was SMA coupled to the collimation package 

of the fiber mount, and the fiber launched the modulated light onto the tissue phantom’s 

surface.   

 

4.2.2. Tissue phantom 

The modulated NIR light at ~783 nm was launched onto the phantom surface 

through the source optical fibers.  The phantom details are described in Section 4.1.  The 

emitted fluorescence signal and the attenuated excitation signal generated from the 

phantom volume were collected from different locations on the hemispherical surface of 

the phantom using the 128 collection fibers, which were interfaced onto two interfacing 

plates.  
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Figure 4.4 Set-up of the laser diode mount and the fiber holder for input laser light.  

 

4.2.3. Interfacing plates 

An interfacing plate was used to couple all the collection fibers as 2-D arrays, 

such that multiple collection fibers could be imaged simultaneously using the intensified 

CCD (ICCD) camera. The interfacing plate was made of black nylon of 7x7 cm2 surface 

area and 0.5 cm thickness.  The collection fibers were permanently fixed (using a five-

minute epoxy) into the 1 mm diameter holes that were drilled 1 cm apart from each other 

on the interfacing plate (see Figure 4.5).  All the fibers were not spatially accommodated 

onto one plate as the current ICCD system had lower resolution when a larger area was 

focused.  Hence, the 128 collection fibers were evenly distributed between two 

interfacing plates and separate images were acquired of each interfacing plate.  In the 

future clinical work, the CCD camera of the ICCD imaging system will be replaced with  
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Figure 4.5 Phantom set-up including collection fibers, which are interfaced to the hemispherical surface of 

the phantom on one end, and to either of the two interfacing plates on the other end. 

 

the latest generation cameras, which can image all the collection fibers accommodated 

onto one interfacing plate or within a fiber bundle without losing the image resolution.   

The two interfacing plates were aligned with respect to the ICCD camera in order 

to acquire the excitation and emission signal from the phantom surface.  The signal at 

the surface of the interfacing plate was not collimated, which could possibly cause a loss 

in the detected signal.  However, future clinical studies may incorporate collimating lens 

at the end of the interfacing plate, or the optical fibers may be directly coupled via a 

fiber bundle onto the ICCD camera in order to minimize any loss in the detected signal.   
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4.2.4. Intensified CCD detection system 

The intensified CCD (ICCD) detection system primarily consisted of an image 

intensifier (FS9910C, ITT Night Vision, VA), which is optically coupled to the 12-bit 

CCD camera (TE/CCD-512-EFT Photometric CH12, Roper Scientific, Trenton, NJ).  A 

lens assembly containing a Nikon lens and optical filters was used to focus and filter the 

excitation and emission signal.  Accessories included in the detection system were the 

focusing lens and lens assembly, power supplies, frequency synthesizers that were used 

to drive and modulate the image intensifier, respectively, and amplifiers and attenuators 

to control the RF power at the detection end.  Details of each component are described 

below. 

 

4.2.4.1. Focusing lens and lens assembly 

The light signal from each interfacing plate was focused onto the 18 mm 

diameter image intensifier tube (see next section for details on the image intensifier), 

using a variable focal length Nikon lens (80-200mm f/2.8D AF-S model, Nikon, NY).  

The diameter of focus in each plate was adjusted to ~ 4.6 cm, such that all the 64 fibers 

in each plate were within the image plane. 

 A lens assembly made of anodized aluminum housed various optical filters in 

order to separate light the excitation and emission signals.  The lens assembly was 

placed between the variable focal length Nikon lens (80-200mm, f/2.8D AF-S model, 

Nikon, NY) and the image intensifier.  The weak fluorescent signal was acquired using a 

combination of (i) a holographic notch filter (HNPF-785.0-2.0 model, Kaiser Optical 



 73

Systems Inc., Ann Arbor, MI), and (ii) an 830-nm interference filter (F10-830.0-4-2.0 

model, CVI Laser Corp., NM) of 53% average transmission, in order to minimize the 

excitation light leakage as well as reject light outside the bandwidth of the 830 nm 

emission wavelength [12].  For acquisition of the strong excitation signal, absorptive 

neutral density filters (FSQOD series, Newport Corp., CA) of varying optical density 

(OD) were employed in order to attenuate the excitation signal and hence prevent any 

damage to the image intensifier, which is sensitive to strong light.  During the 

acquisition of excitation signal, a 785-nm interference filter was not used in order to 

filter the emission signal, since the emission signal was at least 3-4 orders of magnitude 

smaller than the excitation signal [12].  More details on the characteristics of different 

filters used and their transmission dependence with wavelength are described in 

Appendix C.  

 

4.2.4.2. Image intensifier 

The image intensifier is considered the heart of time-dependent measurements 

acquired by the ICCD imaging system.  The image intensifier used in the current studies 

was a Generation III type device of 18 mm diameter and was made of three main 

components namely, the photocathode (PC), multichannel plate (MCP), and the 

phosphor screen.  The Gen III image intensifier uses gallium arsenide (Ga As) as the 

photocathode, allowing for a more efficient conversion of light energy to electrical 

energy at extremely low levels of light [99].   
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A detailed schematic of the image intensifier along with the bias-T circuit that 

aids in modulation of the image intensifier is given in Figure 4.6 [51, 100].  A resistor-

capacitor based circuit was built to modulate the image intensifier at its photocathode 

using a ~ -65 V of DC voltage and 53 dBM of RF signal.  The multichannel plate 

operated at a variable voltage of 0 to 1000 V between its input and output leads and the 

phosphor screen was maintained at a constant voltage of 4000 V.  A GBS Micro Power 

Supply (model PS20060500, San Jose, CA) provided the required DC voltages to the 

photocathode (PC), multichannel plate (MCP), and phosphor screen of the image 

intensifier.  The GBS Micro Power supply also provided DC voltage to a phosphor 

screen current limiting protection circuit, which would shut down the image intensifier 

when the incident light reached potentially damaging levels [100].  The DC voltages at 

each component of the image intensifier increased from the photocathode to the 

phosphor screen, in order to control the direction of current flow.   

A sinusoidally modulated ± 22V RF signal at 100 MHz that was generated using 

a PTS-310 frequency synthesizer (Programmed Test Sources model 10M201GYX-53, 

Littleton, MA) was superimposed along with the DC voltage supplied to the 

photocathode of the image intensifier, in order to modulate the intensifier at ~ 50% 

modulation depth.  The 13 dBM RF power generated by the frequency synthesizer (or 

oscillator) was amplified to 53 dBM or ± 22V RF voltage using a 40 dBM amplifier 

(ENI model 604L-01, Rochester, NY) (see Figure 4.2).  The oscillators driving the laser  
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Figure 4.6 Resistor-capacitor circuit for modulating the photocathode of the image intensifier.  Adapted 

from reference [100].  

 

diode and the photocathode of the image intensifier were phase locked with a reference 

phase of 10 MHz in order to operate these oscillators at a consistent phase difference.   

The principle behind the operation of the image intensifier in the ICCD imaging 

system is shown in Figure 4.3.  At the photocathode, the diffuse light signal collected 

through the 80-200 mm Nikon lens and the lens assembly is converted into electrical 

energy (or electrons). This electrical signal is amplified at the MCP by varying the gain 

setting on the power supply of the image intensifier.  The amplified signal is converted 

back to a light signal of ~ 500 nm wavelength at the phosphor screen and is imaged onto 

the CCD camera.  Thus, the modulated light signal at the photocathode is converted to a 

steady-state signal (with no modulation) at the phosphor screen and is thus imaged onto 
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the CCD array, which is optically coupled to the phosphor screen using an optical 

couplant (Q2-3067, Dow Corning, Midland, MI), in order to minimize the refractive-

index mismatch between the two surfaces.   

Mathematically, the collected fluorescent light signal reaching the photocathode 

of the image intensifier, from the interfacing plate via the Nikon lens and optical filters, 

has an amplitude intensity of LAC(r), average intensity of LDC(r), and phase delay of ρ(r), 

which vary with respect to the location of the collection fiber on the phantom surface 

and consequently with respect to its corresponding location on the photocathode face.   

 

( ) ( ) ( ) ( )( )[ ]rtrLrLrL ACDC ρωα ++= cos     (4.1) 
 

Here, α represents the coupling efficiency of the fibers from the phantom surface to the 

interfacing plate and from the lens to the image intensifier; ω is the frequency at which 

both the phase-locked oscillators are modulated; and t is the time.  Similarly, the gain of 

the image intensifier has an amplitude, GAC; an average amplitude, GDC; and a possible 

phase delay owing to the instrument response time, θinstr, at the same modulation 

frequency as the source.  

 

( )instrACDC tGGG θω ++= cos                                         (4.2) 
 

The modulated photocathode converts the NIR photons from the interfacing plate into 

electrons, which are multiplied to more electrons at the MCP before they are focused 
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onto the phosphor screen (Figure 4.7).  The resulting signal at the photocathode is a 

mixed homodyne signal, Smixed, which is a product of the above two signals, L(r) and G.  

The mixed signal contains all the amplitude, DC, and phase information of the optical 

signal collected by the collection fiber. 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

cos cos

           cos cos 2
2 2

DC DC AC DC instr DC AC

mixed AC AC AC AC
instr instr

G L r G L r t G L r t r
S G L r G L r

r t r

ω θ ω ρ
αβ

θ ρ ω θ ρ

 + + + +
 =  

+ − + + +  

 (4.3) 

 

Here, β represents the quantum efficiency of the phosphor screen of the image 

intensifier, which is a function of the wavelength of the light signal (see Appendix C for 

details on wavelength dependency of the image intensifier).   

The phosphor screen has response times on the order of sub milliseconds, and 

hence acts as a low pass filter [101] by eliminating the high frequency components of 

equation (4.3).  In other words, the decay rate of the phosphor screen is much slower 

than the rate at which electrons are bombarded from the MCP onto the phosphor screen, 

knocking down the high frequency terms to reduce the equation to the form 

 

( ) ( ) ( )( )cos
2

AC AC
mixed DC DC instr

G L r
S G L r rαβ θ ρ

 
= + − 

 
                       (4.4) 
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Figure 4.7  Schematic of the homodyne detection technique in the ICCD imaging system. 

 

 

The time-invariant, phase-sensitive image on the phosphor screen is then imaged by the 

CCD camera (512x512 pixelated array), which is optically coupled to the phosphor 

screen of the image intensifier.     

 

4.2.4.3. CCD camera 

A 512 × 1024 frame transfer array (TE/CCD-512-EFT Photometric CH12, Roper 

Scientific, Trenton, NJ) CCD camera that was thermoelectrically cooled to –35oC and 

had a 12-bit A/D (analog-to-digital) converter was coupled to the phosphor screen of the 

image intensifier.  Details of the architecture of the CCD camera used are provided in 

Appendix D.   

The steady-stage phase sensitive images from the phosphor screen of the image 

intensifier was imaged by the CCD camera, where the photons were converted to 

electrons, and the electrons were multiplied based on the exposure time of the CCD 
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camera and the efficiency of the photon-to-electron conversion (termed as the quantum 

efficiency of the CCD camera).  The 512 × 512 pixelated images were binned twice to 

128x128 pixelated images during charge read out and before signal digitization, and the 

output intensity signal from the CCD camera obtained as a 128 × 128 pixelated image is 

given by 

 

( )







−+= ),(cos

2
),(

),(),( ji
jiLG

jiLGjiI instr
ACAC

DCDC ρθαβγ
                   (4.5) 

 

where γ represents the quantum efficiency of the CCD camera and gain of the CCD 

output amplifier (ratio of digitized units per electron received).  The magnitude of these 

steady-state phase-sensitive signals depended on the introduced phase delay, ηd 

introduced between the two phase-locked oscillators, as described in the following 

section.  

 

4.3.  Data acquisition and processing technique 

 
Rapid multipixel FDPM data acquisition was carried out using the homodyne 

detection technique.  The phase of the photocathode modulation was stepped, or delayed 

with respect to the laser diode modulation, at regular intervals varying from 0 to 2π.  The 

phase delay introduced between the two oscillators (PTS-310 and Marconi-2022D) was 

digitally controlled using the Labview via an IEEE-488 GPIB instrument control bus 

(National Instrumentations Corp. Austin, TX).  At each phase delay, ηd the phosphor 
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screen and eventually the CCD camera captured the phase-sensitive steady-state (or 

time-invariant) image for a given exposure time of the camera, using a Labview data 

acquisition program (National Instruments Corp., Austin, TX) at each phase delay for 

the given exposure time.  The introduced phase delay caused a difference in the phase-

sensitive intensity at each pixel on the CCD camera (see Figure 4.8).  Upon varying the 

phase delay (ηd) over the entire cycle of 0 to 2π, the phase-sensitive intensity at different 

pixel locations on the image varied in a sinusoidal manner.  The phase sensitive images 

were stacked as a function of the phase delay in their third dimension, creating sine-

curves at each pixel along the dimension of the varying phase delay (see Figure 4.8).   

A Matlab (version 6.1, The Mathworks, Inc., Natick, MA) routine was used to 

extract the modulated amplitude (AC) and phase information from the sinusoidal data 

obtained at each pixel by performing a Fast Fourier Transform (FFT) of the phase-

sensitive images that were arranged in the order of their phase delay. Thus, rapid FDPM 

measurements in terms of amplitude and phase can be obtained from phase-sensitive 

steady-state images using the homodyne technique in our ICCD imaging system, by 

carrying out the following steps in the Matlab routine.  

(i) Stacking of the 128 × 128 pixelated images with respect to the number of phase 

delays (Nη) in its third dimension. 

(ii) Computing the mean intensity, IDC, at each pixel (i,j) 

 

∑
=

=
η

η

N

k
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                                              (4.6) 



 81

arrange phase -sensitive images in
order acquired at phase delay η

d

η1 ηN
ph

as
e-

se
ns

iti
ve

 in
te

ns
ity

η

arrange phase -sensitive images in
order acquired at phase delay η

d

η1 ηN
ph

as
e-

se
ns

iti
ve

 in
te

ns
ity

ηPhase delay,
d

ηd

arrange phase -sensitive images in
order acquired at phase delay η

d

η1 ηN
ph

as
e-

se
ns

iti
ve

 in
te

ns
ity

η

arrange phase -sensitive images in
order acquired at phase delay η

d

η1 ηN
ph

as
e-

se
ns

iti
ve

 in
te

ns
ity

ηPhase delay,

arrange phase -sensitive images in
order acquired at phase delay η

d

η1 ηN
ph

as
e-

se
ns

iti
ve

 in
te

ns
ity

η

arrange phase -sensitive images in
order acquired at phase delay η

d

η1 ηN
ph

as
e-

se
ns

iti
ve

 in
te

ns
ity

η

ph
as

e-
se

ns
iti

ve
 in

te
ns

ity

ηPhase delay,
d

ηd

 

Figure 4.8 Data acquisition technique in a homodyned frequency-domain imaging system.  Reproduced 
with permission from reference [51]. 

 

 

 

(iii) Subtracting the mean DC intensity, IDC(i,j) at each pixel from the phase sensitive AC 

intensity at each pixel, I(i,j,k) in order to normalize the sine curve.  This process of 

subtraction reduced the number of unknowns from AC, DC, and phase shift to only AC 

and phase shift, during the FFT. 
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(iv) Performing FFT to the phase sensitive intensity data (after subtracting the DC 

component), in order to obtain the modulated intensity, IAC(i,j), and phase,θ(i,j) at each 

pixel [100]. 

 

2 2 1/ 2
max max[{Im[ ( ) ]} {Re[ ( ) ]} ]

( , )
/ 2

ij ij
AC

I f I f
I i j

Nη

+
=    (4.7)     
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ijmax      (4.8) 

 

where, Im[I(fmax)ij] and Re[I(fmax)ij] are the imaginary and the real components of the FFT 

output (power spectrum), respectively, of the modulated intensity that best describes the 

sinusoidal data at each pixel (i,j).   

Typically, five to ten frames of I(i,j,ηd)  were obtained at each phase delay and 

averaged across the total number of phase delays (Nη) and evaluated in order to obtain a 

mean value of amplitude, IAC(i,j) and phase shift, θ(i,j).  Based on the prior work 

performed at PML, introducing 32-phase delays equally spaced between 0 and 2π 

provided greater measurement precision and accuracy of the phase-sensitive detected 

signal in terms of their amplitude and phase [51,102].   

Image acquisition rate by the ICCD system can be controlled by the integration 

time of the CCD camera.  The overall data acquisition rate during measurements can 

also be controlled by choosing the number of repeated steady-state images acquired at 
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each phase delay, and the number of phase delays introduced during the acquisition of 

frequency-domain data.  The weak fluorescent signal collected from the phantom surface 

can be amplified by the ICCD imaging system by using one or all of the different 

methods: (i) adjusting the aperture (i.e. F-stop) of the Nikon lens at the cost of image 

resolution, (ii) increasing the gain setting on the power supply to the image intensifier 

(GAC and GDC), and/or (iii) increasing the exposure time of the CCD camera. 

The detected fluorescent signal in terms of amplitude (IAC) and phase shift (θ) do 

not reflect the actual fluorescent signal collected at the phantom surface due to various 

instrument effects (described in Equations (4.1), (4.2) and (4.5)), in terms of the 

coupling efficiency of the optical fibers, quantum efficiency of the image intensifier and 

the CCD camera.  Hence, the acquired FDPM measurements are referenced in order to 

eliminate the instrument effects, as described in the following section.   

 

4.4 Referencing techniques 

 
The measured IAC(i,j) is proportional to the actual intensity signal, LAC, 

originating from the phantom surface (as shown in Equation (4.1)).  The proportionality 

constant is a function of (i) the individual fiber lengths that are interfaced onto the 

interfacing plate, (ii) the coupling efficiency of the Nikon lens, (iii) the transmission 

efficiencies of the optical filters used, (iv) the gain and quantum efficiency of the image 

intensifier, (v) quantum efficiency of the CCD camera, and (vi) the gain of the CCD 

output amplifier.  Normalizing or referencing the measured signal eliminates the effect 

of most of the factors mentioned above.  In other words, referencing of the measured 
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data was performed in order to account for the instrument effects and the effect of 

unknown source strength.  

Two different methods to eliminate the instrument effects include: (i) referencing 

the fluorescent signal with respect to the excitation signal at each pixel; and (ii) 

referencing the fluorescent signal at each pixel with respect to the fluorescent signal at a 

reference pixel at the same wavelength.  Apart from the two referencing schemes 

employed in the current study, various other referencing schemes have been employed 

by other researchers during their experimental or simulated studies in fluorescence-

enhanced optical tomography [13-14, 17, 84, 92] (see Table 4.1).     

 

 

Table 4.1 Different referencing schemes employed in fluorescence-enhanced optical tomography. 

Referencing scheme Description Reference Study 

m

x i

 Φ
 Φ 

 Emission fluence with respect to 
excitation fluence at each pixel (i) Current study Experimental 

,

,

m i

m ref

Φ
Φ

 
Emission fluence at each pixel (i) with 

respect to emission fluence at a particular 
location (ref) 

Hawrysz et 
al.[15] 

Eppstein et 
al.[16] 

Experimental 
 

Experimental 

,

,

m i

x ref

Φ
Φ

 
Emission fluence at each pixel (i) with 

respect to excitation fluence at a 
particular location (ref) 

Lee et 
al.[17,84] 

Roy et al.[92] 

Experimental 
Simulated 

fluorescence

incidence excitation i−

Φ 
 Φ 
 

Emission or fluorescence fluence at each 
pixel (i) with respect to fluence obtained 

before fluorescence injection. 

Ntziachristos et 
al.[13-14] Experimental 
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4.4.1 Referencing emission signal with respect to excitation signal m

x

Φ
Φ

 

In the first referencing method, the fluorescent signal was referenced with respect 

to the excitation signal at each corresponding pixel (i) (Figure 4.9a).  The referenced 

fluence at each pixel or collection fiber location (i), is given by m

x i

Φ  Φ 
 where 

, , ,exp( )x m ACx m x mI iθΦ = .   In terms of amplitude and phase shift,  

 

iACx

ACm
i I

IACR 







=      (4.9) 

 

( )i m x i
RPS θ θ= −      (4.10) 

 

where, ACRi is the referenced AC or AC ratio at each pixel (i), and RPSi is the 

referenced phase shift or relative phase shift at each pixel (i).  It was assumed that the 

amplitude loss and phase shift in each of the fibers remain constant and independent of 

the wavelength of the detected signal.  The coupling efficiency of the Nikon lens was 

also assumed independent of the wavelength of the signal.  However, in order to employ 

this referencing technique, the wavelength dependency of the filters, image intensifier 

and the CCD camera need to be accounted for (for details, refer to Appendix C).   
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Figure 4.9 Schematic of different referencing schemes used in the current study (a) referencing emission 
signal with respect to excitation signal at each pixel (i), (b) referencing emission signal at each pixel (i) 

with respect to emission signal acquired at a fixed location (ref). 

 

 

 

4.4.2 Referencing emission signal with respect to emission signal at a given location 

,

m

m ref

Φ
Φ

 

In the second referencing method, the fluorescent signal obtained at each pixel (i) 

was referenced with respect to the fluorescent signal at a particular pixel chosen as the 

reference location (ref), considering it an arbitrary location for present (Figure 4.9b).  

The referenced fluence at each pixel location (i) is given by 
,

m

m ref i

 Φ
 Φ 

, and in terms of 

referenced AC and phase shift, 
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( ) ,
,

, ,

AC i
i x m

AC ref x m

I
ACR

I
 

=   
 

     (4.11) 

 

( ) ( ), ,i i refx m x m
RPS θ θ= −      (4.12) 

 

where the suffix ‘x’ and ‘m’ correspond to excitation and emission wavelength.  In this 

case, since the measurements in terms of amplitude and phase shift are referenced with 

respect to the measurement acquired at the same wavelength, the instruments effects that 

arise due to the wavelength-dependency of the acquired signal (that is, the effect of 

wavelength on the quantum efficiency of the image intensifier, on the transmission 

efficiencies of the filters used) are eliminated.  In addition, since the measurements were 

acquired under similar settings on the ICCD imaging system (such as the gain settings 

on the image intensifier and the CCD camera, and the coupling efficiency of the Nikon 

lens), all the instrument effects are automatically accounted for in the current referencing 

scheme.  The only parameter of concern was the differing fiber lengths that need to be 

accounted for since fluorescence signal collected by each collection fiber was referenced 

with respect to the fluorescence signal collected at a particular reference fiber of possibly 

varying fiber length.  However, the referencing scheme was employed in experimental 

studies based on the assumption that the collection fibers were of the same length, such 

that the differences in time-dependent light propagation arose within the random 

medium, and not due to the transit within the fibers.  
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 The absolute (non-referenced) measurements do not truly reflect the fluence, 

which is described in the light propagation model given by the coupled diffusion 

equations (Equations (3.1) and (3.2)), but are in turn related to the reflectance of the 

diffuse light signal collected at the phantom surface.  However, referencing the absolute 

measurements of amplitude and phase shift (as described above) helps in comparing the 

reflectance with respect to fluence as presented in the following section. 

 

4.5. Reflectance versus fluence data 

 
The measured phase-sensitive intensity (I) acquired by the ICCD imaging system 

corresponds to the diffuse reflectance of the signal collected at the phantom surface, 

rather than the fluence or flux.  The phase-sensitive intensity at each pixel (i,j) was in 

turn used to determine the amplitude attenuation (IAC) phase-shift (θ) of the diffuse 

excitation and emission reflectance.   

The diffuse reflectance, R(r,ω), is a function of the distance, r, between the 

detected area and the incident beam and includes contributions from the fluence as well 

as flux at the boundary surface of the phantom.  The diffuse reflectance also depends on 

the numerical aperture of the detector and contributions arising from the refractive-index 

mismatch at the interface.  For FDPM reflectance measurements, R(r,ω) is given by the 

following empirical equation [103]: 

 

),(),(),( ωωω r
n

BrArR Φ
∂
∂

+Φ=     (4.13) 
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where A, B are constants that vary depending on the numerical aperture of the detector 

and the Reff value at the interface, and are wavelength independent. The terms Φ(r,ω) and 

∂Φ(r,ω)/∂n are the fluence and the flux at the surface boundaries respectively, and are 

related by the partial current boundary condition applied at the phantom or tissue 

boundary surface.     

 

( , )( , ) 2 ( ) 0rr D r
n

ωω γ ∂Φ
Φ + =

∂
    (4.14) 

 

The diffusion coefficient, D(r) in the above equation is given by  

 

( ) '

1
3 s

D r
µ

≅  when '
s aµ µ>>      (4.15) 

 

where '
sµ  is the isotropic scattering coefficient (cm-1) and aµ  is the absorption 

coefficient (cm-1).  In a given tissue medium, '
sµ  is assumed constant with respect to 

distance, but a function of wavelength.  Combining equations (4.13) and (4.14), we 

obtain 

 

( )
( , ) ( , ) ( , )

2
BR r A r r
D r

ω ω ω
γ

= Φ − Φ     (4.16) 
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In other words, 

 

 
( )

( , ) ( , )
2

BR r A r
D r

ω ω
γ

 
= − Φ  

 
�     (4.17) 

 

stating that the diffuse reflectance, R(r,ω) is directly proportional to the fluence.  Upon 

referencing the measured diffuse reflectance, R(r,ω) to that measured at a reference point 

R(rref,ω), that is assuming the referencing scheme 
,

m

m ref

Φ
Φ

, the term 
( )2

BA
D rγ

−  cancels 

out leaving behind the relationship 

 

),(
),(

),(
),(

ω
ω

ω
ω

refref r
r

rR
rR

Φ
Φ

=      (4.18) 

where, the suffix ref refers to the location of the reference measurement [104].  Thus, 

referencing the measurements not accounts for the instrument effects (described earlier), 

but also accounts for the coefficients, A and B given in Equation (4.13).  In terms of 

amplitude attenuation and phase shift,  

 

( )
( ) ( )

,

, ( , )exp
( , ),

AC

AC ref refref

R r I r
I rR r

ω ωθ
ωω

Φ
= ∆ =

Φ
    (4.19) 

 

where, IAC/IAC,ref is the referenced AC (AC ratio, ACR) and ∆θ is the referenced or 

relative phase shift (RPS) (∆θ=θ-θref) at each location r, and modulation frequency ω.   
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In summary, although diffuse reflectance data in terms of amplitude and phase 

shift is acquired using the frequency-domain ICCD imaging system, the acquired data is 

equivalent to fluence (or amplitude and phase corresponding to the fluence term) upon 

referencing.  The referenced measurements in terms of amplitude and phase shift under 

obtained varying experimental conditions are compared to the simulated amplitude and 

phase shift, which are obtained by solving the forward problem of the coupled diffusion 

equations (described in the next major section).  
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5. FORWARD AND INVERSE FORMULATIONS 

 

In this chapter, the mathematical details of the solution to the forward and 

inverse imaging problem are discussed.    

 

5.1 Forward problem 

 
 To solve the forward problem, the interior optical property map of the 3-D 

phantom is assumed known and the fluence (at both the emission and excitation 

wavelengths) of the entire phantom is predicted using numerical techniques to solve the 

coupled diffusion equations in finite volume domains.  Details of the coupled diffusion 

equations and the boundary condition used have been described earlier (Section 3.5).  

The fluence data determined from the forward model simulations is compared to the 

measured fluence data (in terms of AC and phase shift), in order to validate the light 

propagation model that is employed in the current studies.  

A finite-element based approach (using Galerkin approximation) was employed 

to solve the forward problem of the coupled diffusion equations [76, 105-106].  A three-

dimensional finite-element mesh of the phantom consisting of tetrahedral elements (see 

Figure 5.1) was generated using GAMBIT 2.0.4 software (Fluent Inc, New Hampshire), 

prefixing nodes corresponding to the actual source and collection fiber locations.  The 

mesh consisted of 34413 tetrahedral elements and 6956 nodes distributed along the 

entire phantom. 
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Figure 5.1 Three-dimensional finite element mesh (constituting of tetrahedral elements) of the breast-
shaped phantom. 

 

 

5.1.1 Galerkin finite-element based formulation of the forward problem 

The Galerkin formulation of the finite-element method is employed to solve for 

the fluence, Φex and Φem over the finite element domain, Ω using the coupled diffusion 

equations (Equations (3.1) and (3.2)) and the partial current boundary condition 

(Equation (3.4)) [105-106].  The formulation for the diffusion equation at excitation is 

described in detail here, and a similar procedure is employed to obtain the formulation of 

the diffusion equation at the emission wavelength. 

 In the Galerkin formulation of the finite element method, the first equation of the 

coupled diffusion equation (Equation (3.1)) is multiplied with a weighting function, wj, 

and integrated over the entire 3-D domain, Ω. 

 

( ) 0x x axi axf x j
x

iD w d
c
ωµ µ

Ω

  
−∇ ⋅ ∇Φ + + + Φ Ω =  

   
∫    (5.1) 

Tetrahedral  
element
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where, wj {wj: j = 1,…,N} is a set of linearly independent weighting functions and N is 

the number of unknowns.  Upon applying Green’s theorem to the above equation and 

employing the chain rule, which is given by 

 

( ) ( )'' '''' wDwDwD Φ−Φ=Φ−     (5.2) 

we obtain, 

 

( ) ( ) 0x
x x j axi axf x j x j

x

iD w w d D w d
c n
ωµ µ

Ω Γ

   ∂Φ
∇Φ ⋅ ∇ + + + Φ Ω − Γ =   ∂   

∫ ∫  (5.3) 

 

The first term in Equation (5.3) is the volume integral over the domain, Ω; the second 

term is the surface integral along the external boundary; and wj is assumed to be 

continuous over the entire domain, Ω.  Applying the partial current boundary condition 

at excitation wavelength to the surface integral term of Equation (5.1), 

 

( )1
2

x
x j x jD w d S w d

n γΓ Γ

∂Φ
Γ = Φ + Γ

∂∫ ∫     (5.4) 

 

and upon simplifying Equation 5.3 using Equation 5.4, we obtain 

 

( ) ( ) 1 1
2 2x x j axi axf x j x j j

x

iD w w d w d Sw d
c
ωµ µ

γ γΩ Γ Γ

  
∇Φ ⋅ ∇ + + + Φ Ω − Φ Γ = Γ  

   
∫ ∫ ∫  (5.5) 

 



 95

The phantom domain, Ω in our studies is divided into M tetrahedral elements and the 

elemental form of the above equation can be represented as 

 

( ) ( )
1

1

1
2

1
2

el el

el

el el el el el elM
x x j axi axf x j x j

x
el

M

j
el

iD w w d w d
c
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ωµ µ
γ

γ

Ω Γ
=

= Γ

   
∇Φ ⋅ ∇ + + + Φ Ω − Φ Γ =   

     

 
Γ 

  

∫ ∫∑

∑ ∫
    (5.6) 

 

Assuming that the Φx
el, Dx

el, and µaxf
el vary linearly within each tetrahedral element, el, 

and µaxi is constant over the whole domain, Ω, the above terms can be expressed in their 

nodal forms, shown here for Φx
el as an example.  

 

( )
4

1

el
x j x j

j
L

=

Φ = Φ∑      (5.7) 

 

where, Lj are the natural coordinates of the tetrahedron.  According to Galerkin’s 

method, the weighting function, wj’s are chosen such that these are similar to the 

approximation function used to represent the elemental form of terms such as Φx
el, Dx

el, 

and µaxf
el.  In other words, 

 

jj Lw =
   for j =  1, 2, …, N  (5.8) 
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Equation 5.6 can now be represented as 
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           (5.9) 

 

Upon integrating Equation 5.9 and rearranging the terms, the resulting elemental 

stiffness equation is represented as 

 

,1 ,2 ,3
1 1

M M
el el el el el

stiff stiff stiff x stiff
el el= =

 + + Φ = ∑ ∑K K K r    (5.10) 

 

where, Kstiff,i
el and rstiff

el are the elemental stiffness matrices and the local vector, 

respectively, constituting of complex numbers.  A global stiffness matrix Kstiff is formed 

by combining these local elemental stiffness matrices (shown in the above equation).  

The forward solution is obtained by solving the complex equation given by  

 

,stiff x m stiffbΦ =K      (5.11) 

 

where bstiff is the global vector corresponding to the global stiffness matrix formulation.  

The excitation and emission fluence data obtained at each node of the phantom is 
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converted to phase and AC data and further referenced using one of the referencing 

schemes ( m

x

Φ
Φ

 or 
,

m

m ref

Φ
Φ

) that was described in (Section 4.5). 
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,

,

( )
tan

( )
X M

X M
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IMAG
REAL

θ −  Φ
=   Φ 

     (5.12) 
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, MXMXAC REALIMAGI
MX

Φ+Φ=    (5.13) 

 

The simulated referenced phase shift (also termed as relative phase shift or RPS) 

and referenced AC (also termed as AC ratio or ACR) for all the source-detector pairs are 

compared to the measurements acquired from the various experimental conditions 

(described in the forthcoming chapters).   

Two different implementations of the FE method are employed in the current 

studies.  The first implementation is the finite-element based forward simulator, 

programmed in Fortran language, which was initially developed by Dr. Roy in order to 

perform simulated tomographic studies [76, 105-106].  The simulator was modified for 

the current experimental studies, in order to incorporate the actual phantom optical 

properties and also account for the boundary condition parameters (i.e. the refractive-

index mismatch parameter).  The computational efficiency of the forward simulator was 

also improved significantly using HSL2000 package (AEA Technology Engineering 

Software, Oxon, UK) and optimized BLAS (Basic Linear Algebra Subprograms) 

routines, which were employed to perform large matrix factorizations.  The current 
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Fortran-based forward model was developed at PML in order to verify the model match 

between measurements and simulations obtained using the light propagation model, 

which is further employed during image reconstructions.   

The second implementation is the finite-element based forward simulator, 

programmed in Matlab V. 6.1, which was developed and employed by our collaborators 

at the University of Vermont, along with their image reconstruction algorithm. The 

computational efficiency of the forward solver was improved by employing a high 

degree of vectorization in the code, often at the expense of added memory requirements 

(Section 5.3.4).  The source code for the inverse problem or image reconstructions was 

developed by Dr. Eppstein’s laboratory and applied for the current measurements in 

order to reconstruct the target location and size.  Details of the inverse problem and the 

technique employed to solve the inverse problem are described in the following section.   

 

5.2 Inverse problem 

 
The inverse problem involves the estimation of the optical property map of the 

three-dimensional phantom, in order to determine the location and size of the target, 

using surface measurements.  Various analytical and numerical approaches are attempted 

by researchers in order to solve for the inverse problems (Section 3.7).  Usually, in all 

these approaches, the number of unknowns is much greater than the total number of 

surface measurements acquired during experimentation, reducing the inverse problem to 

a solution of an underdetermined system of linear equations (Ax=b).  The problem is 

also ‘ill-posed,’ meaning that the solutions are non-unique and inconsistent.  In addition, 
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the measurement error arising either from random sampling uncertainties or from model 

mismatch makes the inverse problem non-trivial.   

Solution to any inverse problem requires the usage of appropriate mathematical 

models that represent the physics of the process (here, the optical imaging process).  The 

optical tomography problem in general is highly non-linear and attempts to linearize the 

problem results in solution instabilities and often intractably long computational times, 

especially if the update step is to remain within the range of accuracy of the 

linearization.  In our studies, the fluorescence-enhanced optical tomography problem is 

solved using the approximate extended Kalman filter (AEKF) algorithm, where the 

problem is linearized in order to perform computationally expensive calculations.  

Details of the image reconstruction formulation and the AEKF algorithm are thus 

described herein. 

 

5.2.1 Formulation of the inverse problem 

Before attempting to solve the inverse problem, four steps are involved in 

formulating the measurements and the coupled diffusion equations.  These steps include: 

(i) measurement type, (ii) reconstructing parameter, (iii) Jacobian sensitivity matrices by 

adjoint formulation, and (iv) inversions using the approximate extended Kalman filter 

algorithm. 
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5.2.1.1 Measurement type 

The first step in the formulation of the inverse problem is to determine the nature 

of the measurements (termed as measurement type) that will be incorporated into the 

inversion algorithm.  One method is to choose the logarithm of fluence, Φ 

( ( )expACI iθΦ = ), which would directly reflect the IAC and θ obtained from the 

measurements.  An alternate method for measurement type is to employ the real and 

imaginary components of the fluence.  Here, the acquired measurements are not directly 

reflected in the measurement type used during inversions, but are embedded as 

( )cosACI θ  and ( )sinACI θ , the real and imaginary components of fluence.  

Mathematically representing the two methods,  

 

Method 1:   ( ) ( ) θiI AC +=Φ lnln       (5.14) 

 

Method 2:    ( ) ( )θθ sincos ACAC iII +=Φ      (5.15) 

 

In both the cases, the measurement type needs to be referenced for maintaining 

consistency with respect to the referenced measured data.  In the current studies, the first 

method of the data type, that is the IAC and θ, is used in the inverse algorithm since it 

reflects the actual measured data.  The second method was not attempted in the current 

reconstruction studies. 
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5.2.1.2 Reconstructing parameter  

The second step in the formulation of the inverse problem is to determine the 

unknown (or reconstructing) parameter to be reconstructed using the coupled diffusion 

equations.  The unknown optical parameter, p can be one of the following optical 

parameters or a transformation of the parameter 

 

{ }mxsmamiamfsxaxiaxf RRp ,,,,,,,,, '' φτµµµµµµ∈    (5.16) 

 

where, Rx and Rm are the reflection coefficient at excitation and emission wavelengths, 

respectively; and range from 0 (no reflectance condition) to 1 (total reflectance 

condition) at the phantom surface.  In our studies, the two important parameters that 

were considered for reconstruction include the absorption coefficient due to the 

fluorophore at excitation wavelength (µaxf) and/or the lifetime (τ) of the fluorescing 

agent.  The absorption coefficient due to the fluorophore at emission wavelength (µamf) 

can be determined from the absorption coefficient due to the fluorophore at excitation 

wavelength (µaxf), upon relating the two terms based on their extinction coefficients (εam 

and εax).  
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amf

××
××
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ε
ε
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µ

3.2
3.2      (5.17) 
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where, C is the concentration of ICG, εam = 22,000 M-1cm-1, and εax = 130,000 M-1cm-1.  

The isotropic scattering coefficient at either wavelength (µ’
sx and µ’

sm) is obtained from 

FDPM measurements on infinite-medium phantoms [107].   

In general, µaxf is the reconstruction parameter when optical contrast studies are 

performed using a single fluorescing contrast agent at a constant fluorescence lifetime, 

but with varying concentrations in the target and background.  During the reconstruction 

of the absorption coefficient due to the fluorophore at excitation wavelength (µaxf), the 

non-fluorescing optical properties, namely the absorption coefficient due to the 

chromophores (µaxi and µami) and the isotropic scattering coefficients (µ’
sx and µ’

sm) can 

be considered homogeneous for the entire phantom, since µaxf is insensitive to the 

variation in the non-fluorescing optical properties [108]. 

 Fluorescence lifetime, τ is the reconstructing parameter when the lifetime of a 

single fluorescing dye varies with the local environment of the tissue medium, thus 

providing an optical contrast in the fluorescence lifetime between the target and the 

background tissue.  Fluorescence lifetime, τ is the reconstructing parameter also when 

two different fluorescing contrast agents of varying fluorescence lifetime have an 

affinity to either the target or the background tissue medium, thus providing an optical 

contrast in the fluorescence lifetime.  Reconstruction of τ is usually coupled with the 

reconstruction of the quantum efficiency, φ since both these parameters are 

characteristics of a given fluorescing contrast agent that vary with the tissue 

environment, and thus they cannot be evaluated independently. 
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 In the current study, the reflection coefficient (Rx and Rm) are assumed known 

(described in Section 3.2.1) and if required, these parameters can be reconstructed using 

the same algorithm with modifications to incorporate the new reconstructing parameter.  

Reconstructions assuming the reflection coefficient as an unknown parameter have been 

demonstrated by other researchers in the field of optical tomography [109-110]. 

 

5.2.1.3 Jacobian sensitivity matrices by adjoint formulation  

The third step in the formulation of the inverse problem is to relate the 

measurements to the unknown optical parameters algebraically via a system of linear 

equations (Ax=b), instead of using partial differential equations.  This is obtained by 

generating Jacobian sensitivity matrices that are used to quantify the effect of local 

changes in the optical properties on the detected or measured fluence.  The Bayesian 

AEKF inversion approach is based on regularized nonlinear least-squares optimization, 

which involves the repeated computation of these large Jacobian matrices (~ order of 

magnitude of 103×103).  Various researchers have used a first-order finite-difference 

method [71], a second-order finite difference method [108], or an approximate adjoint 

method [16-17, 84] in order to evaluate these computationally intense Jacobian matrices.  

Here, the complete adjoint formulation of the complex coupled diffusion equations is 

incorporated in order to evaluate the sensitivity matrix [111].  Adjoint method for 

coupled diffusion equations has been used earlier by Lee at al. [17, 84], incorporating 

approximations to the formulation (described in Section 3.4.3).  The adjoint formulation 
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of the coupled diffusion equations is published by Fedele et al. [111] and described here 

for completeness. 

  The adjoint formulation is performed using tensor and vectorized notations of the 

coupled diffusion equations.  Representing the coupled diffusion equations and the 

partial current boundary conditions in a matrix form (in tensor and vector notations): 

 

( ) SkDT =+∇∇− ΦΦ      (5.18) 

 

( ) 0=+∇ ΦΦ bDnT      (5.19) 
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Each of the individual terms in the matrix is defined as 

 

[ ]msxmxfamiax
mxD

,
'

,,
, 3

1
µµµ ++

=  (Diffusion coefficient at either wavelength) (5.20) 

 

mfaxmiaxmx c
ik ,,, µµω

++=    (Decay coefficient at either wavelength) (5.21) 
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1
axf

mS
i

φµ
ωτ

=
−

 (Emission source term)     (5.22) 

 

( )mx
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mx R

R
b

,

,
, 12

1
+
−

=  (Boundary term at either wavelength)   (5.23) 

 

An infinitesimally small perturbation in the unknown parameter, p will cause a 

perturbation in the fluence (δΦ) at both the wavelengths 

 

ΦΦΦ δδ +→⇒+→ ppp     (5.24) 

 

This variation in fluence reflects in Equations (5.18) and (5.19) as 

 

( ) ( )( ) ( )( ) SppkppDT =++++∇+∇− ΦΦΦΦ δδδδ   on  Ω      (5.25) 

 

( ) ( )( ) ( )( ) 0=++++∇+ ΦΦΦΦ δδδδ ppbppDnT           on  ∂Ω      (5.26) 

 

The above equations can be expanded using Taylor’s series and approximated to their 

first order terms.  However, even after performing the first order approximations the 

computation becomes cumbersome if Equation (5.25) has to be solved for each spatially 

discretized parameter, p.  Hence, the adjoint method is applied to solve for the unknown 
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parameter.  Here, a matrix Ψ is chosen as the adjoint or Green matrix of the coupled 

system such that it satisfies the adjoint system of equations that are defined as 

 

( )
d

TTT kD ∆=Ψ+Ψ∇∇−                        on  Ω           (5.27) 

 

( ) 0=+∇ ΨΨ TTT bDn     on Γ  (5.28) 
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and  the Dirac-delta function is 
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∆
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d

d
d 0

0      (5.30) 

 

Equation (5.25) is multiplied by TΨ and integrated over the entire domain Ω, followed 

by integration by parts and applying the boundary condition given in Equation (5.26).  

Integrating by parts was performed the second time and Equations (5.27) and (5.28) are 

applied.  Upon rearranging the terms, the variation in fluence (that is, fluence sensitivity) 

can be represented by three integral terms,  

 

( )T T Tk bD
p p p

p p p
δ δ δ δ

Ω Ω Γ

∂ ∂∂     
Φ = − ∇Ψ ∇Φ − Ψ Φ − Ψ Φ    ∂ ∂ ∂     

∫ ∫ ∫     (5.31)  
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The above equation can be separated into sensitivity equations for excitation and 

emission fluence.  The sensitivity of the excitation fluence is given by 

 

∫∫∫
ΓΩΩ

Φ
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∂

Ψ−Φ
∂
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Ψ−Φ∇
∂

∂
Ψ∇=Φ∂ x

x
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x
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x
xxx p

p
bp

p
kp

p
D δδδ   (5.32) 

 

and the sensitivity of the emission fluence is given by 

 

m m m
m mm m mm m mm m
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xm x xm x xm x mm x

D k bp p p
p p p

D k b Sp p p p
p p p p

δ δ δ

δ δ δ δ

Ω Ω Γ

Ω Ω Γ Γ

 ∂ ∂ ∂
∂Φ = − ∇Ψ ∇Φ − Ψ Φ − Ψ Φ ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂
+ − ∇Ψ ∇Φ − Ψ Φ − Ψ Φ + Ψ Φ   ∂ ∂ ∂ ∂   

∫ ∫ ∫

∫ ∫ ∫ ∫
 (5.33) 

 

 The sensitivity of the excitation fluence depends on the sensitivity of the 

diffusion coefficient (Dx), decay coefficient (kx), and the boundary term (bx) at the 

excitation wavelength.  However, the sensitivity of the emission fluence is contributed 

by three different terms, each given in a square bracket in Equation (5.33).  The first 

term reflects the sensitivity of the diffusion coefficient (Dm), decay coefficient (km), and 

boundary terms (bm) at the emission wavelength that contribute to the sensitivity of Φm.  

The second term reflects the sensitivity of diffusion coefficient (Dx), decay coefficient 

(kx), and boundary terms (bx) at the excitation wavelength, and the third term reflects the 

contribution from the sensitivity in the emission source term (Sm).  If Dm, km, and bm are 

assumed to be insensitive to the unknown parameter, p then the first term in Equation 
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(5.33) goes to zero.  Similarly the second term goes to zero when Dx, kx, and bx are 

assumed to be insensitive to p.  Also assuming that Dm is spatially smooth, we have 

∇Dm=0, and the third term of Equation (5.33) can be simplified into an identical form of 

the approximate adjoint method (see Equation (3.21)) that has been employed by other 

researchers [16-17, 84].   

 When the unknown parameter, p is µaxf, then the derivatives of the boundary 

terms with respect to the µaxf are neglected.   

 

     0&0 ≈
∂

∂
≈

∂
∂

p
b

p
b mx     (5.34) 

 

The sensitivity of the fluence at either wavelengths, given by Equations (5.32) and 

(5.33), is solved by employing the Galerkin formulation of the finite element method, 

similar to that employed for the forward model (Section 5.1).  Having formulated the 

Jacobian sensitivity matrices in the finite-element domain, the sensitivity matrices are 

used along with the measurements in order to compute the unknown parameter, p, using 

the AEKF numerical inversion technique. 

 

5.2.1.4 Inversions using the approximate extended Kalman filter algorithm 

The fourth and last step in the formulation of the inverse problem is to develop 

the approximate extended Kalman filter (AEKF) algorithm required to solve for the 
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reconstructing parameter, employing acquired measurements and the Jacobian sensitivity 

matrices.   

The Kalman filter is a linear state estimator used in process control for estimating 

a state recursively, based on its previous observations.  This Bayesian estimator assumes 

that the state variables and the observations are normally distributed random variables 

and the estimator determines the mean value of the conditional probability function of 

unknown parameters Y, using the given measurements Z, p[Y|Z].  The advantages of 

this Bayesian estimator include (i) use of measurement error (error between 

measurement repetitions) and model error (due to the mathematical simplifications of the 

diffusion equation) to weight the updates in each iteration and regularize the matrix 

inversion, and (ii) estimation of parameter error values (or the confidence in the 

parameter value), apart from the estimation of the parameter value itself, and using these 

parameter error values to damp and regularize the inversions.  In a clinical perspective, 

the second feature may help determine the confidence in a reconstructed image apart 

from just reconstructing an image.   

The approximate extended Kalman filter (AEKF) is a stochastic method based on 

the statistically stronger criterion of minimizing the variance of the parameter error, 

given estimates of measurement, model, and initial parameter estimation errors, rather 

than simply minimizing the output error.  It offers several advantages for inverting low 

SNR data, including (i) physically-based weighting of parameter updates that explicitly 

accounts for spatially variant measurement and model error covariances (R and Q, 

respectively), (ii) co-estimation of the spatially variant parameter error covariance (P) 
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that can be used as a measure of final parameter uncertainty, and (iii) enhanced 

convergence by damping on the inverse of the evolving parameter error covariance.  The 

measurement error covariance matrix (R) is estimated from repeated measurements from 

each individual source-detector pair, such that R is spatially variant.  Model error may 

arise due to the simplifications in the forward model formulation, and unlike the 

unbiased portion of the measurement error variance, it is not possible to empirically 

determine the model error covariance Q for unknown domains.  The parameter error is 

defined as the error in the spatially distributed (unknown) parameter values and it is also 

difficult to determine the parameter error covariance P for unknown domains.  The 

details of how the measurement error covariance (R), model error covariance (Q), and 

parameter error covariance (P) are evaluated in the current studies will be described in 

Section 6.2.3.  Prior studies with the AEKF have verified that the use of actual spatially 

variant measurement errors and recursively updated parameter errors increase the 

accuracy and stability of reconstructions of fluorescence absorption from noisy data 

[16].  While the AEKF is a first-order approximation of the full extended Kalman filter 

for time-series estimation [112], it is the exact minimum variance estimation for 

linearized estimation in steady-state 3-D tomography problems. 

This minimum-variance AEKF algorithm regularizes the inversion using 

estimates of measurement error covariance R, model error covariance Q, and recursively 

updated co-estimates of parameter error covariance P, as shown in the following pseudo-

code: 
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AEKF algorithm

Loop
1. ( )

2.

3.
4. ( )
5.

Until Convergence

sf

− − − −

←
∂

←
∂

← ⋅ + ⋅ + ⋅ ⋅ +
← + ⋅ −
← − ⋅ ⋅

T 1 1 1 T 1

x y
xJ
y

K (J (Q R) J P ) J (Q R)
y y K z x
P P K J P

 

 

Here, x represents distributed predictions of the measurable state variables (that is, 

logarithmic AC ratio, ln(ACR) and relative phase shift, RPS), and z represents a vector 

of the corresponding measurements, for all source-detector fiber pairs used in the 

reconstruction.  The forward simulator fs is as described in Section 5.1.  The Jacobian J 

is calculated using the full-coupled adjoint sensitivities as described in Section 5.2.1.3 

[111].  The discrepancies between measurements and predictions (z - x) are weighted by 

a gain matrix K in order to update the uncertain parameters y and the parameter error 

covariance P.  The AEKF algorithm is carried out recursively, meaning that each batch 

of measurements are used to continuously update the unknown parameter y and the 

parameter error covariance P, without storing individual batch of measurements in each 

loop (shown in the above pseudo-code).  This recursive AEKF algorithm is carried out 

iteratively till the reconstructions converge.  Details of the convergence criterion are 

described in Section 5.4. 

 Thus the four aspects involved in the formulation of the inverse problem (apart 

from solving the forward problem) include the choice of the measurement type, the 
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choice of the reconstructing parameter, the adjoint formulation of the Jacobian 

sensitivity matrices, and the performance of the AEKF algorithm.  These four aspects are 

implemented accordingly, in order to obtain the spatial distribution of the unknown 

parameter (here, optical property maps) in the 3-D tissue volumes.  Apart from the four 

aspects described in the above section, various other aspects include the choice of 

measurement error covariance (R), model error covariance (Q), and parameter error 

covariance (P).  These aspects are embedded in the image reconstructions presented in 

the result sections. Details of the implementation of the formulated inversion technique 

are described in the following section. 

 

5.3 Implementation of the inversion methodology 

 
  Implementation of the inversion technique involves various a priori steps in 

order to organize the data in the desired format and consider the sources of error at each 

step of the AEKF implementation.  In this section, the steps incorporated to successfully 

solve large 3-D tomography problems using the AEKF algorithm are described. 

 

5.3.1 Parameter distribution using pseudo-beta transforms  

  Distribution of parameters is given by the probability distribution function of the 

parameters.  One assumption of the AEKF is that the parameters are normally 

distributed.  In the absence of a priori information about the tissue or medium of 

interest, one can assume the parameters to be independently and identically distributed 

(i.i.d.) random variables.  But, when a priori information of the tissue is available in 
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terms of the distribution of parameters, then the information can be used to initialize the 

parameter covariance matrix, P.  However, a normally distribution implies that there are 

infinite lower and upper bounds for the parameter values.  This is unrealistic for the 

parameter distribution in a real tissue.  In order to overcome this problem, the 

probability-distributed functions can be transformed from a normal distribution to a 

pseudo-beta distribution [71].  Unlike the normal distribution, the pseudo-beta 

distribution has a lower bound, upper bound, and a skew factor that captures the skew in 

the mode of the distribution of the actual parameter of interest in the tissue medium.   

  The equations representing the transformation from normal distribution of 

parameter, Y, to pseudo-beta distribution of parameter, ξ and vice-versa are given by 

 

( )
ln upper lower skew

skew
lower

B B F
F

Y B
ξ

 −
 = −

−  
    (5.35) 

 

( ) ( )1

skew upper lower skew lowerY e F B B F Bξ −
= + − +   (5.36) 

 

where, Bloweri, Bupper are the lower and upper bounds of the pseudo-beta distribution, 

respectively, and the term Fskew determines its skewness.  In a typical case of a real 

tissue, when the absorption coefficient due to the fluorophore (µaxf) is the unknown 

parameter to be reconstructed, the skewness in the pseudo-beta transform is typically 

towards the lower bound.  This is due to the fact that µaxf has a small value for normal 



 114

tissue and a higher value at the diseased tissue region, due to the enhanced absorption 

optical contrast in the diseased tissue region with respect to the normal background 

tissue region.  Hence, for the current studies Fskew is chosen to be 0.2 when the unknown 

parameter was µaxf.  In the case of lifetime studies, where τ is the unknown parameter, 

the skew factor could be towards the upper bound or lower bound depending on the 

nature of the dye.  In other words, when the dye exhibits a greater lifetime in the target 

over the background (i.e. in the diseased site over the normal tissue), the distribution of 

parameters skews towards the lower bound, and vice-versa.  

 

5.3.2 Jacobian sensitivity matrix for referenced measurements 

  In the case of absolute unreferenced measurements, the Jacobian sensitivity 

matrix can be used directly without further modifications.  However, absolute 

measurements are impractical in optical tomographic studies, since the unknown source 

strength and instrument effects (Section 4.4) need to be accounted for.  Hence, the 

Jacobian matrix needs to be calculated for referenced measurements, which are obtained 

using either of the two referencing schemes ( m

x

Φ
Φ

 or 
,

m

m ref

Φ
Φ

), as described in Section 

4.4.  Also, the Jacobian matrix should be modified in order to account for the pseudo-

beta transformation of the unknown parameter, Y.   

  Initially, the Jacobian matrix at each wavelength is evaluated using Equations 

(5.32) and (5.33), respectively.  Assuming that the unknown parameter is µaxf, the 

Jacobian (J) at either wavelength (x or m) is defined as 
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axf

mx
mxJ

µ∂

Φ∂
= ,

,
      (5.37) 

 

The measurements can be incorporated as fluence or logarithm of fluence, where the 

latter better reflects the acquired measurements in terms of amplitude (IAC) and phase 

shift (θ) acquired from actual experiments.  Hence the Jacobian formulation is modified 

accordingly in order to incorporate ln(Φ) for the measurement type.  Also, since the 

Kalman filter uses the beta-transformed parameter, ξ over the normally distributed 

parameter, Y, the Jacobian is re-evaluated to determine how Φm (fluence at emission 

wavelength) changes with respect to ξ (beta-transformed parameter), instead of how Φm 

changes with respect to Y (normally distributed parameter).  Finally, referencing of 

emission measurements using either of the two referencing schemes ( m

x

Φ
Φ

 or 
,

m

m ref

Φ
Φ

), is 

included in the Jacobian matrices.  All these modifications are carried out in three steps 

as shown below. 

Step 1: Re-defining the Jacobian for logarithmic measurements 
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Step 2: Converting the Jacobian to determine the change of measurements with respect 

to ξ,  

 

( ) ( )

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




∂

∂
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
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µξ

axf

axf

mm lnln     (5.40) 

 

where, the derivative of µaxf with respect to ξ is obtained by solving Equation (5.36) 

(Section 5.3.1). 

Step 3: Incorporating the referenced measurements obtained using either of the 

referencing schemes.  When the first referencing scheme ( m

x

Φ
Φ

) is employed, where the 

measurements at emission wavelength are referenced to the measurements at excitation 

wavelength, the final Jacobian matrix is derived as 

 

( ) ( ) ( )
ξξ ∂
Φ∂

−
∂

Φ∂
= xm

refmJ
lnln

ln
     (5.41) 

 

Using the second referencing scheme (
,

m

m ref

Φ
Φ

), where the emission measurements are 

referenced with respect to the emission measurement obtained at a reference location, 

the final Jacobian matrix is derived as 

 

( ) ( ) ( )
ξξ ∂

Φ∂
−

∂
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== refmm
refmJJ ,

ln

lnln     (5.42) 
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The Jacobian matrix calculated from the above equation is a matrix of complex numbers, 

containing a real and imaginary part and is used in the AEKF algorithm as shown in the 

pseudo-code in Section 5.2.1.4.  However, the final estimated parameter (which is either 

absorption coefficient or lifetime) is required to be a real number, which may not be the 

case upon solving the complex equation, ( )m function J Y∆Φ = ∆ .  The problem can be 

overcome by separating the real and imaginary parts of both the Φm and J to form a 

composite matrix for ( ) ( )m reimreim
function J YΦ = ∆ , where  

 

( )
Re
Im

m
m reim

m

∆Φ 
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 and 
Re
Imreim

J
J

J
 
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 

   (5.43) 

 

or      
( )ln

reim

ACR

J
RPS

ξ

ξ

 ∂
 ∂ =
 ∂
 ∂ 

    (5.44) 

 

Separation of the real and imaginary terms has an advantage, in that the amplitude and 

phase information are preserved when the logarithm of fluence is used as the 

measurement type.  Based on the estimated measurement precision and accuracy of the 

amplitude (IAC) and phase shift (θ) data, either both the amplitude (IAC) and phase shift 

(θ) or one of them can be used as known measurements during image reconstructions 

without any major modifications to Equation (5.44), in order to solve for the unknown 

parameter distribution Y. 
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5.3.3 Computationally efficient version of the AEKF algorithm 

  The AEKF algorithm (Section 5.2.1.4) has been successfully implemented for 3-

D optical tomographic fluorescence measurements using different phantom geometries 

[16].  However, high memory requirements, computational overhead, and sub-optimal 

updates due to the non-linearities in this AEKF recursive estimation technique, limit the 

algorithm in terms of the resolution of discretization in large 3-D geometries.  Zhang et 

al. modified the AEKF algorithm by using data decomposition such that the memory 

requirements are reduced [113].  Of the three modified versions of the AEKF algorithms 

proposed in Zhang’s work, one of the algorithms proved efficient and is employed in our 

current inversion algorithms.  It is described briefly in this section.  

In the AEKF algorithm applied to all measurements as a batch to solve large 3-D 

tomographic problems [16], the pseudo-code is as shown in Section 5.2.1.4.  The current 

modified version of AEKF algorithm is a variation of the full AEKF pseudo-code 

involving decomposed data sets.  Here, the Jacobian sensitivity matrix, Ji is updated 

using parameters from the previous measurement subset, such that the bias in the 

measurement subsets reflected in the overall sensitivity of emission fluence at the end of 

each measurement subset update.  In addition, the parameter updates (yupdate) are 

calculated for each measurement subset, I; the parameter error covariance, P is also 

updated recursively for each data subset; and the parameter, y is updated as a summation 

of the individual and independent updates from all the data subsets.  However, in the 

modified version of AEKF algorithm (shown below), the estimation of P was such that it 

was forced to remain uncorrelated unlike the formulation of P in Section 5.2.1.4.  This is 



 119

reflected in the pseudo-code (shown below) as the full diagonal of the parameter error 

covariance, P.  During the actual computations, only the diagonal elements of P were 

stored and manipulated in the modified AEKF implementation.  The modified variation 

of the actual AEKF pseudocode is as shown below: 

 

( )

Modified version of  AEKF (data decomposed into subsets)
loop
1.

for all subsets  of measurements

2.

3.
4.
5. ( ( ))
end

6.
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i i i i

i i
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∂

⋅ ⋅ ⋅ ⋅
⋅
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x y

xJ
y

K = P J (R + Q + J P J )
yupdate = K (z - x )
P = P - K J P

y y + yupdate

until convergence

i
i

∑

 

 

  Based on studies performed by Zhang et al. [113] where actual experimental data 

was reconstructed, the above hybrid AEKF algorithm was not only computationally 

efficient and required less memory, but also gave equivalent qualitative image 

reconstructions.  Hence, the above mentioned modified version of the AEKF algorithm 

is employed in the current studies. 
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5.3.4 Vectorization of the inverse formulation 

  The forward and inverse algorithm is coded using a highly vectorized method 

that is coded in Matlab (Mathworks Inc., Natick, MA).  Vectorization improved the 

computational efficiency of the 3-D inversions at the expense of memory requirements.  

However, the memory requirements are optimized by decomposing the data into subsets 

[111].  Details of the vectorization implementation are beyond the scope of the current 

work and interested readers are encouraged to read the work published by Fedele et al. 

[111]. 

    

5.4 Flowchart of the optical tomography process 

 
  The entire optical tomography process, beginning from data acquisition until 

image reconstructions is presented as a flowchart in Figure 5.2.  The flowchart depicts 

the actual process by which 3-D image reconstructions are carried out in the current 

work.  Although the full AEKF algorithm is shown as an option in the flowchart, all the 

reconstructions were performed using the hybrid AEKF algorithm.  

 Three-dimensional image reconstructions are carried out iteratively until the 

inversions converged.  In the current study, the reconstructions are determined to have 

converged when there was less than 1% additional decrease in root mean square output 

error (RSME).  Based on the reconstruction details provided in the current major section 

and the experimental tools described in Section 4, the results obtained from various 

studies are described in the following major sections. 
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Figure 5.2 Flowchart of the image reconstruction algorithm. 
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6. DATA ANALYSIS AND EXPERIMENTAL PLAN 

 

 In the previous chapters, instrumentation set-up and details of the finite-element 

based forward and inverse problems towards 3-D fluorescence-enhanced optical 

tomography have been explained.  Using the current imaging set-up and the AEKF 

inversion algorithm, experiments were performed under various conditions.  Details of 

the general experimental parameters employed and an overall sketch of the experimental 

plan for the current studies are described herein. 

  

6.1 Experimental parameters 

 
Experiments were performed using 1% Liposyn solution filled in the large breast 

shaped phantom, in order to mimic the normal breast tissue.  The 1% (by volume) 

Liposyn solution was prepared from a 20% (by volume) Liposyn stock solution (Abbott 

Laboratories, North Chicago, IL), by diluting the stock solution with de-ionized ultra-

filtered water.  The optical properties in terms of absorption and scattering coefficient of 

each batch of 1% Liposyn solution prepared was determined from FDPM measurements, 

which were performed using a point illumination\point collection measurement 

geometry in an infinite medium of Liposyn solution. Measurements acquired in terms of 

amplitude (IAC), phase (θ), and DC values (IDC), at both the excitation (~785 nm) and 

emission wavelengths (~828 nm), were used along with analytical solutions for diffusion 
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equation in infinite medium in order to evaluate the optical properties of the 1% Liposyn 

solution at both the wavelengths [107]. 

 

6.1.1 Fluorescence contrast agents 

 A fluorescing contrast agent was used to provide an enhanced absorption optical 

contrast in the target with respect to the background phantom.  In the current 

experimental studies, one of the two fluorescing contrast agents were used, namely 

Indocyanine green (ICG) or 3-3’ Diethylthiatricarbocyanine iodide (DTTCI).   

ICG is a blood-pooling agent that was approved by the United States FDA (Food 

and Drug Administration) for systemic administration to investigate hepatic function 

[114] and retinal angiography [115].  ICG is soluble in water, but aggregates and quench 

over a period of 10 hours, reducing its fluorescence intensity.  Sodium polyaspartate 

(MW 3000-8000) (Sigma-Aldrich Chemical Co., St. Louis, CO) stabilizes the dye by 

non-covalent interactions, thus prolonging the working time of ICG in water and 

Liposyn solution, without affecting its fluorescing optical properties [116].  The 

absorption and emission spectra of ICG (mol. wt. 775) diluted in de-ionized water was 

evaluated using the spectro-fluorometer (SPEX Fluorolog, Jobin Vyon, Edison, NJ) and 

is shown in Figure 6.1.   

In general, the optical properties of any diluted fluorescing agent can be 

determined using the following relation: 

 

Cmaxfmax ××= ,,, 3.2 εµ     (6.1) 
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Figure 6.1 Excitation and emission spectra of ICG dissolved in water, plotted as normalized intensity 
versus the wavelength range.  The excitation peak (between 600 nm to 800 nm) was obtained for a 

constant emission wavelength of 850 nm, and the emission peak (between 800 nm and 900 nm) was 
obtained for a constant excitation wavelength of 780 nm.   

 

 

where, µax,m,f is the absorption coefficient due to the fluorescing agent (suffix ‘f’) at the 

excitation (suffix ‘x’) and emission (suffix ‘m’) wavelengths, respectively; εax,m is the 

extinction coefficient at the excitation and emission wavelengths, respectively; and C is 

the concentration of the fluorescing agent (mol/lt).  The fluorescent properties of ICG 

are provided in Table 6.1 [117]. 

DTTCI was the other fluorescing agent that was used in our experimental studies.  

DTTCI is insoluble in water, but soluble in reagents such as ethanol, dimethyl sulfoxide 

(DMSO), and diethylene glycol.  Based on the reagent it is dissolved in, the absorption 

and fluorescence spectra of the dye shift.  The absorption and emission spectra of 

DTTCI  
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Figure 6.2 Excitation and emission spectra of DTTCI dissolved in DMSO, plotted as normalized intensity 

versus the wavelength range.  The excitation peak (between 650 nm to 780 nm) was obtained for a 
constant emission wavelength of 800 nm, and the emission peak (between 750 nm to 900 nm) was 

obtained for the constant excitation wavelength of 730 nm.   

 

Table 6.1 Fluorescent properties of ICG and DTTCI. 

Fluorescing 
dye 

Mol. 
wt. Solubility λex 

(nm) 
λem 

(nm) 
τ 

(nsec) φ ε780 
(Mcm) -1 ε830 (Mcm) -1 

ICG 775 Water 780 830 0.56 0.016 130000 22000 

DTTCI 544.52 DMSO, 
Ethanol 780 830 1.18 0.034 43000 5500 

 

 

 

dissolved in DMSO was obtained using the spectro-fluorometer and is shown in Figure 

6.2.  The absorption coefficient at excitation and emission wavelengths was determined 

using Equation (6.1), using the appropriate extinction coefficient of DTTCI at both the 

wavelengths.  The fluorescent properties of DTTCI are also provided in Table 6.1 [117]. 

 



 126

6.2 Data analysis methodology 

 
Experiments were performed under various conditions of target volume, target 

depth, target:background optical contrast ratio, and number of targets.  For all the 

different experimental cases, the data was analyzed and 3-D images of the phantom were 

reconstructed in a similar fashion.  The various steps involved in the data analysis 

process include:  

(i) Acquiring excitation and fluorescence measurements using the ICCD detection 

system. 

(ii) Determining the model match between experiments and simulations 

(iii) Estimating the measurement error covariance (R), model error covariance(Q),  

and parameter error covariance (P) that was used in the AEKF inversion algorithm 

(iv) Performing 3-D image reconstructions using the hybrid version of the AEKF 

algorithm. 

These four steps are described in the following section and a schematic of the entire data 

analysis process is given in Figure 6.3. 

 

6.2.1 Acquisition of excitation and fluorescence measurements 

 Experiments were performed using the 3-D breast phantom filled with 1% 

Liposyn as the tissue-mimicking agent and using ICG or DTTCI for enhanced optical 

contrast.  One or more targets of a given volume (based on the set experimental 
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Figure 6.3 Schematic of the data analysis process (a) acquiring repeated measurements at each pixel (i), 
(b) averaging the data from repeated measurements at each pixel (i), (c) referencing the averaged data 

using either of the two referencing schemes at each pixel (i), (d) determining the model mismatch error 
between experiments and simulations at each pixel (i), (e) determining the measurement error from the 
repeated measurements at each pixel (i), and (f) performing image reconstructions using all the required 

input parameters as shown. 

 

 

condition) were filled with 1% Liposyn and a greater concentration of the fluorescing 

agent in comparison to that present in the background.  Fluorescence and excitation 

measurements were acquired using the ICCD detection system from different points of 

illuminations.  The total data acquisition time for each experimental case was a function 

of (i) the exposure time of the camera (varying between 0.2 to 1 sec), (ii) the number of 
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repeated measurement acquired (5 in our case), (iii) the number of interfacing plates 

imaged (i.e. 1 or 2), and (iv) the number of point illuminations (sources) that were used 

to acquire fluorescence measurements from the interfacing plates (varying between 1 to 

27).  In comparison to our earlier imaging system employing PMTs for detecting single 

source-detector pair individually [15-17, 84], the current imaging system detecting 

multiple source-detector pairs using the ICCD camera is at least 4-7 times faster (based 

on the exposure time set on the CCD camera).  Hence, rapid data acquisitions achieved 

using the ICCD imaging system is an added advantage during the clinical translation of 

the fluorescence-enhanced optical imaging technology.   

 
6.2.2 Determination of model match and model mismatch errors 

 Five or ten sets of repeated FDPM measurements were acquired at each of the 

source-detector pairs (that is, at each collection fiber for a given point illumination of the 

excitation source) and at both the excitation and emission wavelengths. The means of 

ln(ACR) (logarithmic AC ratio) and RPS (relative phase shift) obtained from these 5 or 

10 sets of repeated measurements at each given source-detector fiber pair were used in 

the reconstruction vector z, and are hereafter simply referred to as the ‘measurements.’  

The referenced measurements obtained employing either of the two referencing schemes 

( m

x

Φ
Φ

 or 
,

m

m ref

Φ
Φ

) was compared to the simulated data obtained from the forward model 

for initial data sets (described in Section 7.3).  The difference between the measurements 

and simulated data is thus an assessment of what is termed as “model mismatch error,” 
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which is determined in terms of the error in relative phase shift (RPSerror) and AC ratio 

(ACRerror) between measurements and simulations. 

 

( ) ( )
simt

ACRACRACRerror lnln
exp

−=     (6.2) 

 

simterror RPSRPSRPS −= exp      (6.3) 

 

where, ACR and RPS are the referenced AC and phase shift obtained using one of the 

two referencing schemes ( m

x

Φ
Φ

 or 
,

m

m ref

Φ
Φ

).  The suffix expt represents experimental 

data, and sim represents simulated data obtained from the forward problem.   

 In addition to errors introduced by the computational forward model itself (e.g., 

discretization error, simplifications in the physics, errors in parameters and boundary 

conditions considered known, etc.), here the definition of model mismatch error also 

includes any biased portion of the measurement error.  There is no method to evaluate 

the biased portion of the measurement error for unknown domains.  Hawrysz et al. 

developed statistical correlations to estimate the biased measurement errors and 

incorporated these errors during 3-D image reconstructions [15].  However, in the 

current work, the biased portion of measurement error was assumed zero during 

reconstructions, although bias may exist in the current imaging system. 
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6.2.3 Estimation of measurement error covariance, model error covariance, and 

parameter error covariance 

The measurement error covariance R was estimated as a diagonal matrix from 

the variances of the means of 5 or 10 sets of repeated measurement from each individual 

source-detector fiber pair, so each Ri is spatially variant and distinct.  Measurement error 

variances (used on the diagonal of R) were calculated for each source-detector pair as  

 

( )
rep

Error i
itmeasuremen

2σ
=      (6.4) 

 

where  σ is the sample standard deviation in AC and phase shift of the ‘rep’ sets of 

repeated measurements from each source-detector pair (i), using the appropriate 

referencing method.  The average measurement error variance for both AC and phase 

shift was determined for each experimental condition.  The current assessment of 

measurement error did not include possible bias in measurement errors, and the biased 

portion was considered as a component of the model mismatch error.  

Unlike the unbiased portion of the measurement error variance, it is not possible 

to accurately determine the model error covariance Q for unknown domains.  In 

previous work [16], the model error variance was approximated to be spatially invariant 

based on the average estimates of model error variance of both ln(ACR) and RPS, where 

the model error variance of both ln(ACR) and RPS was determined by comparing 

measurements with predictions from the forward model on several known phantoms.  In 

some of the (preliminary) work presented here, the model error variance was 
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approximated to be spatially variant by scaling the inverse of the modulation depth (i.e. 

DC/AC) for ln(ACR) and for RPS, in accordance with ranges of model errors observed 

on these and other data sets, so each Qi was also spatially variant and distinct.  However, 

for most experimental studies, the model error variance Q was empirically chosen to be 

one-fourth the mean of the measurement error covariance, R.       

 

( )1
4 imean=Q R      (6.5) 

 

 The initial values of the parameter error covariance (P) were arbitrarily set to 

constant value along the diagonal entries of the P matrix. 

 

P = constant     (6.6) 

 

where the constant was typically set to 0.001, 0.01, or 0.1.  The measurement error 

covariance, R and the model error covariance, Q, were used along with the parameter 

error covariance, P in the AEKF algorithm in order to perform 3-D image 

reconstructions in the current studies.  Work is in progress to determine a more general 

method for estimating the parameter error covariance matrix as well as the model error 

covariance matrix.   
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6.2.4 Performance of image reconstructions using modified version of AEKF algorithm 

Image reconstructions were performed using a finite-element based discretized 

breast phantom containing 6956 nodes and 34413 tetrahedral elements.  Referenced 

measurements (obtained using one of the two referencing schemes) were used along 

with the estimates of measurement error covariance R and model error covariance Q (or 

model error variance), in order to reconstruct the 3-D optical property map of µaxf, using 

the hybrid AEKF algorithm (Section 5.3.3).  Reconstructions were performed using 

different initial guesses of µaxf distribution and the parameter error covariance, P.  

During all these reconstructions, the phantom was initially assumed to be homogeneous, 

and a constant value was set to the initial µaxf distribution.  Note that in all the 

reconstructions performed under varying experimental conditions, the reconstruction 

parameter was assumed constant and equal to the initial guess value of µaxf in the 

cylindrical portion of the breast phantom, and reconstructions were only performed in 

the hemispherical portion of the breast phantom (3857 unknowns). 

Inversions were carried out iteratively and the reconstructions were determined 

to have converged when (i) there was less than 1% additional decrease in root mean 

square output error (RSME), or when (ii) iterations had reached the maximum set limit 

(typically set to 50).  The reconstructed unknown parameter’s distribution was plotted in 

three-dimensional Tecplot 9.0 (Amtec Engineering Inc., Bellevue, WA), in order to 

determine the location of the target based on the µaxf  distribution.  Quantitative analysis 

was also performed in order to determine the target size and location with better 

accuracy over the qualitative estimation from 3-D images. 
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 To summarize the various parameters that were empirically chosen during 3-D 

image reconstructions, they included: (i) initial parameter error covariance matrix, P, (ii) 

model error covariance matrix, Q, and (iii) initial guess of the unknown reconstructing 

parameter.  

 Thus, employing the above described steps of the data analysis process, 

experiments were performed under various conditions.  Details of the experimental plan 

in the current studies are described in the following section. 

 

6.3 Experimental plan 

 
 The entire experimental plan is categorized into “preliminary studies” and “major 

studies” as shown in the flowchart (Figure 6.4).  As a first step in the preliminary 

studies, the measurement precision and measurement accuracy were estimated, along 

with the effect of each referencing scheme ( m

x

Φ
Φ

 or 
,

m

m ref

Φ
Φ

) as described earlier 

(Section 4.4).  The feasibility of fluorescence-enhanced optical tomography using 

experimentally acquired measurements was demonstrated for the experimental cases 

when the target was present within the large phantom volume (Section 7), as a part of the 

preliminary studies.  Feasibility studies were initiated using large target volumes of 1 cc 

and higher concentrations (micromolar) of the fluorescing agent (ICG).  Having 

demonstrated the feasibility of performing fluorescence-enhanced optical tomography 

studies on large breast phantoms, further studies using smaller target volumes and lower 

ICG concentrations can be carried out.  Following the feasibility studies on optical 
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Figure 6.4 Outline of the broad research experimental plan. 

 
 
 

tomography, experiments were performed under varying conditions, which are 

categorized as “major studies.”   

The major studies in the experimental plan are divided into four categories.  The 

first category involved absorption contrast studies, where the target:background optical 

contrast was based on the contrast in µaxf.  The second category involved lifetime 

contrast studies, where the target:background optical contrast was based on contrast in τ 

along with the contrast in µaxf.  Experiments were conducted under varying conditions of 

target volume, target depth, number of targets, and/or optical contrast ratios in each 

category.  The third category involved homogenous phantom studies, where no target 
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was present within the large phantom and experiments were performed using uniformly 

distributed fluorescing agent in the entire phantom volume.   

Apart from experimental studies performed using the current ICCD imaging 

system, studies were also performed on a parallel ICCD imaging system, which was 

based on the area illumination and area detection measurement geometry (fourth 

category), as a group effort.  Details of each major study in the experimental plan are 

discussed below. 

 

6.3.1 Absorption contrast studies 

In the absorption contrast experiments, the varying parameters include the 

absorption contrast ratio (1:0 and 100:1), target depth (1-3 cms), target volume (0.5-1 

cc), and number of targets (1-3) (see Figure 6.5).   

In the target depth studies, the target depth was varied from 1 to 3 cms deep and 

experiments were performed under varying absorption optical contrast ratios of 1:0 and 

100:1 (Section 8).  Target depth studies were carried out using a single 1 cc volume 

target and micromolar concentrations of ICG, since these were the initial studies to 

determine how deep a large 1 cc volume target can be detected, before attempting to 

experiment using smaller volume targets and lower concentrations of the fluorescing 

agent (ICG).  During the target depth studies, the feasibility of employing multiple 

simultaneous (dual, in our study) point illumination/point collection measurement 

geometry towards target detectability was also assessed. 
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Absorption contrast experiments

Target depths Target volumes # of targets

1,2,3 cm deep 
1:0 optical contrast

1 cc target

1,2,3 cm deep
100:1 optical contrast

1 cc target 

0.5,1 cc target
1:0 optical contrast

~2.0 cm deep

3 targets
1:0 optical contrast

0.5 cc, 1.2~1.4 cm deep

Absorption contrast experiments

Target depths Target volumes # of targets

1,2,3 cm deep 
1:0 optical contrast

1 cc target

1,2,3 cm deep
100:1 optical contrast

1 cc target 

0.5,1 cc target
1:0 optical contrast

~2.0 cm deep

3 targets
1:0 optical contrast

0.5 cc, 1.2~1.4 cm deep

 
Figure 6.5 Experimental plan for absorption contrast studies. 

 

 

 

Based on the results obtained from the target depth studies, the next parameter of 

interest was the target volume.  In the target volume studies, the target volume was either 

0.5 cc or 1 cc and was located up to 2 cm deep from the phantom surface, with an 

absorption optical contrast ratio of 1:0 (Section 9).  The target depth and target volume 

studies focused on single 0.5 cc to 1 cc targets, and further studies involved the use of 

multiple targets.   

In the multiple target studies, three targets of small volume (~ 0.5-0.6 cc) were 

located ~ 1.2-1.4 cm deep from the phantom surface, under an absorption optical 

contrast ratio of 1:0 (Section 9).  Each study is explained in the following results and 

discussion sections (Sections 8 and 9).  In all the absorption contrast studies, the lifetime 

contrast between the target and the background was maintained 1:1 or 1:0 based on the 

presence or absence of fluorescing agent in the background. 
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6.3.2 Lifetime contrast studies 

In the lifetime studies, two fluorescing agents (ICG and DTTCI) that excite and 

emit fluorescent signals at similar wavelengths but differ in their lifetime and quantum 

efficiency were used.  In these studies, the target volume and depth were fixed to 1 cc 

volume and 1 cm deep, respectively, with an absorption optical contrast ratio of 150:1 

between the target and the background containing DTTCI and ICG or vice-versa (see 

Figure 6.4).  A single target was used with a lifetime contrast of 2:1 and 1:2.  Lifetime 

studies were preliminary in this work and were focused to demonstrate the extent of 

model match between experiments and simulations and not lifetime-based 3-D image 

reconstruction (Section 10).  Future work will involve 3-D image reconstructions based 

on lifetime contrast along with more lifetime-based experiments with varying target 

volumes, depths, and number of targets (similar to the absorption contrast studies).   

 

 

 

Lifetime contrast experiments
 

2:1 lifetime contrast 
150:1 optical contrast

1:2 lifetime contrast 
150:1 optical contrast  

Figure 6.6 Experimental plan for lifetime contrast studies.  
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6.3.3 Homogenous phantom studies 

Studies were also performed on homogeneous phantoms, containing no targets, 

in order to assess the ability of the optical imager and the reconstruction algorithm to 

locate no false targets (Section 11). 

 

6.3.4 Area illumination and area detection studies 

 Unlike the experimental studies performed using point illumination and point 

detection measurement geometry in the current ICCD optical imager, experiments were 

performed by Thompson et al. using the area illumination and area detection geometry 

[51-52].  In his work, Thompson et al. demonstrated the model match between 

experiments and simulations, which were obtained by solving the forward problem using 

finite difference schemes (Section 12).  In this study, the finite-element based forward 

problem of the coupled diffusion equations was developed for the area illumination and 

area detection ICCD imaging system, in order to demonstrate the model match between 

referenced measurements and simulations and eventually perform 3-D image 

reconstructions (performed by Dr. Roy). 

Thus, the remaining major sections present the various studies described in the 

experimental plan and summarize the results obtained in each study. 
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7. MEASUREMENT PRECISION, ACCURACY, AND PRELIMINARY IMAGE 

RECONSTRUCTIONS 

  

Determination of measurement precision and accuracy is important in 

understanding the quality of data that is generated using the current ICCD imaging 

system and also in verifying the mathematical model employed to predict the the light 

propagation in a scattering medium.  In this chapter, measurement precision and 

accuracy of the fluorescence measurements are analyzed.  The effect of both the 

referencing schemes (described in Section 4.4) with respect to the measurement 

accuracy is also assessed for determining a better way of referencing for all the future 

experimental studies.  Finally, preliminary 3-D image reconstructions for two different 

experimental conditions with differing target:background absorption optical contrast is 

presented. 

 

7.1 Measurement precision 

 
  Measurement precision assesses the repeatability or reproducibility of 

experimental data using the ICCD system under similar operating conditions.  There are 

two approaches in determining the measurement precision, which include: (i) repeating 

an entire experiment performed under identical conditions and evaluating the precision 

with which the data was reproduced; or (ii) acquiring repeated data for a few point  
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Figure 7.1 Schematic of the measurement precision analysis (a) acquiring repeated measurements and 
averaging the data at each pixel (i), (b) repeating the complete data acquisition procedure of (a) using the 

same point of illumination, and (c) determining the measurement precision between the two data sets (1,2) 
at each pixel (i). 

 

 

source illuminations from different experimental studies.  By employing the latter 

technique, a wide range of data sets at different experimental conditions can be obtained 

for evaluating the measurement precision of the ICCD detection system.  In our case, the 

latter method was chosen for ease of acquiring the data, as well as using varied sample 

data sets.  A schematic of the measurement precision analysis is given in Figure 7.1.  

Experiments performed absorption contrast studies were chosen as different data sets in 

order to determine the measurement precision. As a first step, fluorescence 
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measurements at each collection fiber location, i from the corresponding interfacing 

plate were acquired for different points of illumination, as repeated data sets of 5 or 10 

(that is, rep = 5 or 10).  The mean of these measurements in terms of AC and phase shift, 

or combined as fluence data [(Φm,average)i]1, were estimated from the 5 or 10 repeated 

data sets (Figure 7.1a).  After acquiring measurements for different point illuminations, 

fluorescence measurements were also acquired the second time at one or two chosen 

points of illumination (Figure 7.1b), in order to repeat the data acquisition (5 or 10 

repeated data sets) for these excitation sources.  The means of measurements in terms of 

AC and phase shift, or combined as fluence data [(Φm,average)i]2, were also estimated for 

these measurements.  The measurement precision was thus evaluated as the variance (σ2) 

of the error (or difference) between the two average (or mean) fluence data at each 

measurement location (i), as  

 

( ) ( ) ( ){ }
iaveragemaveragemiprecisionError

2,1,
2 lnln Φ−Φ= σ    (7.1) 

 

Measurement precision in terms of ln(AC) and phase shift (θ) is given by 

 

( ) ( ) ( ){ }
iaverageaverageiprecision ACACAC

21
2 lnln −= σ     (7.2) 

 

 ( ) ( ) ( ){ }
iaverageaverageiprecision 21

2 θθσθ −=      (7.3) 
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where, suffix 1 and 2 correspond to the first and second time that the same point of 

illumination was used to acquire the fluorescence measurements.  In the measurement 

precision analysis, the data was not referenced, since the entire experiment was 

performed under similar conditions, with similar instrument effects during each 

experimental run.  However, only those average measurements at each location (i) were 

considered whose modulation depth was > 0.05.  The measurement precision in ln(AC) 

and phase shift (in degrees) for different detector measurements is shown in Figure 7.2 

and 7.3 respectively.  The mean (µ) and variance (σ2) in the measurement precision of 

ln(AC) and phase shift are provided in Figures 7.2 and 7.3, respectively.   

 

 
Figure 7.2 Measurement precision as variance between repeated AC measurements.  Frequency (on y-
axis) is defined as the probability distribution of the data points, µ is the mean and σ2 is the variance of 

precision in AC. 

 



 143

 
Figure 7.3 Measurement precision as variance between repeated phase measurements.  Frequency (on y-

axis) is defined as the probability distribution of the data points, µ is the mean (in deg) and σ2 is the 
variance of precision in phase. 

 

 

From the above figures, we observe that the mean of error in ln(AC) and phase 

shift are minimal.  Here, only measurements with modulation depth > 0.05 were 

considered, since for very low modulation depths, the signal was at the noise floor and 

did not correspond to amplitude or phase data.  Phase is a very sensitive parameter and 

fluctuates more than AC data.  The variance of error was high for phase, since the 

deteriorating ICCD system started to show inconsistency in its performance upon its 

repeated used for various experiments. The range of modulation depths of acquired 

signal from the interfacing plate varied significantly, and this variation had a greater 

impact on the repeatability of the phase shift data over the AC data.  The current ICCD 

imaging system lost its robustness during the course of the experimental studies, and 
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future work involves replacing the imaging system with a more robust and sensitive 

ICCD camera as a part of the future work. 

 

7.2 Measurement accuracy (or model mismatch error) and effect of referencing 

schemes 

 
 The accuracy of the measurements with respect to a true model representing the 

light propagation is difficult to assess and hence the measurement accuracy in our case 

was in fact the “model mismatch error” that was determined by evaluating the difference 

between acquired referenced measurements and referenced simulated data (that is, model 

mismatch error), which was predicted from solving the forward problem (see Figure 

7.4).  The schematic provided in Figure 7.4 summarizes the model mismatch error 

analysis, which has been described in Section 6.2.2.  The model mismatch error in terms 

of logarithmic AC ratio (ln(ACR) and relative phase shift (RPS) are given by 

( ) ( )
simt

ACRACRACRerror lnln
exp

−=  and 
simterror RPSRPSRPS −= exp

, respectively.  Here, ACR and 

RPS are the referenced AC and phase shift obtained using one of the two referencing 

schemes ( m

x

Φ
Φ

 or 
,

m

m ref

Φ
Φ

).   

For the model mismatch error study, experiments were performed under 

conditions of imperfect uptake (100:1) and perfect uptake (1:0) of 1 µM ICG in the 1 cc 

target, which was located ~ 1 cm deep from the phantom’s hemispherical surface.  Table 

7.1 lists the optical properties of the target and the background, consisting of 1%  
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Figure 7.4 Schematic of the measurement accuracy analysis (a) acquiring repeated measurements 
(typically 5) at each pixel (i), (b) averaging the repeated measurements at each pixel (i), (c) referencing the 
averaged data at each pixel (i), and (d) determining the model mismatch errors between experimental and 

simulated data at each pixel or location (i). 

 

Table 7.1 Optical properties of the target and the background in the 1:0 and 100:1 target:background 
absorption contrast experiments.  One µM ICG was present in the single 1 cc target located 1 cm deep 

from the phantom surface  Reproduced with permission from ref [118] 

Perfect Uptake (1:0) Imperfect Uptake (100:1) 
Optical Properties 

(cm-1) 
Target Background Target Background 

µaxf + µaxi 0.300+0.023 0.000 + 0.023 0.300+0.023 0.003 +0.023 Excitat
ion µsx 10.18 10.18 10.18 10.18 

µamf + µami 0.025+0.031 0.000 + 0.031 0.025+0.031 0.00025 + 0.031 Emissi
on µsm 8.64 8.64 8.64 8.64 

µaxf, µamf – absorption coefficient due to the fluorophores at excitation and emission wavelengths, respectively 
µaxi, µami – absorption coefficient due to the chromophores at excitation and emission wavelengths, respectively 
µsx, µsm – reduced scattering coefficient at excitation and emission wavelengths 
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Liposyn solution and appropriate concentrations of ICG for both the perfect and 

imperfect uptake conditions [118].   

A total of 768 measurements (using 7 point excitation sources) and 512 

measurements (using 6 point excitation sources) were acquired at each of the excitation 

and emission wavelengths in the imperfect and perfect uptake experiments, respectively.  

On an average, the data acquisition time for the fluorescent signal was approximately 35 

minutes for the 5 repeated data sets (rep = 5) acquired in each experimental case.    

The effect of the two referencing schemes described in Section 4.4 ( m

x

Φ
Φ  or 

,

m

m ref

Φ
Φ

) on the measurement accuracy (or model match) was analyzed using both the 

experimental data sets.   

 

7.2.1 Measurement accuracy using the first referencing scheme m

x

Φ
Φ  

Model predictions poorly matched measurements when the excitation 

wavelength based referencing scheme (Equations (4.9) and (4.10)) was used for both the 

perfect (1:0) and imperfect (100:1) experimental data.  A comparison plot of ln(ACR) 

and RPS between measurements and predictions from the forward problem (for the 

imperfect uptake case) is shown in Figure 7.5a and 7.5b, respectively.  Similar model 

mismatch in both the parameters (ln(ACR) and RPS)) was observed for the perfect 

uptake experimental case as well.  The predictions of both ln(ACR) and RPS were 

highly biased (i.e. mean model mismatch error was far from zero) for both sets of  
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Figure 7.5 Comparison of model predictions with measurements for ln(ACR) and RPS, shown for a 

representative subset of source-detector pairs in the imperfect uptake case, using first referencing scheme 
m

x

Φ
Φ  (a,b) and second referencing scheme 

,

m

m ref

Φ
Φ

 (c,d). 

 

 

experimental data.  In addition, the range of simulated RPS values was lower than that of 

the measured RPS values, resulting in high model mismatch error variance for RPS.   

These large errors are believed to occur due to the unaccountable wavelength-

dependency of the image intensifier under the current operating conditions. The 

characteristics of the image intensifier provided by the manufacturer were insufficient to 

accurately characterize the wavelength dependency of the image intensifier over the 
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voltage ranges it was operated at (for more details on the wavelength dependency of the 

image intensifier, see Appendix C).  Hence, no good match was obtained between 

measurements and forward model predictions when the above referencing method, 

m

x

Φ
Φ  (given by Equations (4.9) and (4.10)) was used.  

 

7.2.2 Measurement accuracy using the second referencing scheme 
,

m

m ref

Φ
Φ  

Upon employing the second referencing scheme utilizing designated reference 

collection point at the emission wavelength, 
,

m

m ref

Φ
Φ  (Equations 4.11 and 4.12), a 

better match between model predictions and acquired measurements was observed for 

both the experimental data sets (see Figure 7.5c and 7.5d for comparison plots in the 

imperfect uptake case). Similar model match in terms of ln(ACR) and RPS was observed 

for the perfect uptake case as well.  The histograms of the model mismatch error for the 

two experiments given in Figure 7.6 show that the RPS exhibited relatively low bias and 

variance.  Model error for ln(ACR) showed larger bias and variance than RPS (Figure 

7.5c-d, Figure 7.6), but was less biased compared to that obtained when referencing to 

excitation light (Figure 7.5a).  The large model mismatch errors in ln(ACR) could 

possibly be due to an image retention effect in the image intensifier of the ICCD system 

that tended to affect the AC data but not the phase shift data.  An additional source of 

error for both ln(ACR) and RPS may arise from the assumption that the lengths of all the 

collection fibers were identical.  However, the actual lengths in the current experimental  
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Figure 7.6 Histograms of model mismatch error for the two experiments, using the second referencing 
method 

,

m

m ref

Φ
Φ

, for a) ln(ACR), imperfect uptake, b) RPS, imperfect uptake (in radians), c) ln(ACR), 

perfect uptake, d) RPS, perfect uptake (in radians). Frequency is the probability distribution of the 
measurements, µ is the mean and σ2 is the variance in ACR and RPS model mismatch errors. 

 

 

set-up varied to a small extent.  Because of the relatively unbiased model error and 

highly reduced model error variance for RPS using the second referencing method 

relative to the first referencing method, reconstructions were performed using the 

referenced data from the second referencing scheme. 

If accurate determination of the wavelength dependence of the image intensifier 

becomes available, the first referencing method, m

x

Φ
Φ

 may ultimately prove to be the 

method of choice as observed by other researchers via experimental and simulated 
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studies [17, 92].  However, because of the reduced model mismatch error, especially in 

RPS, obtained using the second referencing method (
,

m

m ref

Φ
Φ

) in comparison to the first 

referencing method ( m

x

Φ
Φ

), the remainder of the experiments reported here employed 

the second referencing scheme to determine the extent of model match as well as for to 

perform 3-D image reconstructions. 

 

7.2.3 Effect of refractive index mismatch parameter on measurement accuracy 

The refractive-index mismatch parameter in the boundary condition of the light 

propagation model, namely the diffusion equation, can possibly impact model prediction 

of measurements and therefore image recovery, as observed from earlier studies [104].     

Here, the effect of incorporating different Reff values in the partial current 

boundary condition of the forward problem was investigated in order to analyze the 

effect of Reff value on the model match between referenced fluorescence measurements 

and referenced simulated measurements.  Details of the refractive index mismatch 

parameter (Reff) and its relation to the Fresnel’s reflections and hence the boundary 

condition of the forward problem was described in Section 4.5.2.   

Herein, solutions of the coupled diffusion equations with three different values of 

γ (or Reff) in the partial current boundary conditions were used to study the effect of 

choosing refractive index parameter on forward model predictions.  The three cases 

(Figure 7.7) include: (i) Case 1 in which the value of Reff for an air-phantom interface  
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Figure 7.7 Different cases of Reff approximations in the partial current boundary condition of the coupled 
diffusion equations (a) actual phantom with air-tissue interface at circular boundary surface, and Liposyn-
PVC interface at the remaining boundary surfaces, (b) Case 1: approximating all boundary surfaces with 
air-tissue interface, (c) Case 2: approximating all boundary surfaces with Liposyn-PVC interface, and (d) 

Case 3: using the actual phantom case described in (a). 

   

 

was chosen for all the interfaces of the phantom (Reff = 0.4311) (Figure 7.7b); (ii) Case 2 

in which the value of Reff for the Liposyn-PVC interface was chosen for all six interfaces 

(Reff = 0.0282) (Figure 7.7c); and (iii) Case 3 in which the values of Reff corresponded to 

the actual phantom interfaces (Figure 7.7a and d) (used in Sections 7.2.1 and 7.2.2). 

Histograms of the errors between experiments and simulations using the three 

cases are shown for the emission data for the perfect uptake case and the imperfect 

uptake case in Figures 7.8 and 7.9, respectively.  From these histograms, we observe that 

there is a small variation in the predicted ACR and RPS values when different values of 

the refractive index parameter are considered, but the differences were not significant  
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Figure 7.8 Effect of refractive index parameter in perfect uptake data at emission wavelength. (a), (b) 
correspond to Case 1; (c), (d) correspond to Case 2; and (e), (f) correspond to Case 3 of the three different 
Reff cases.  Frequency is the probability distribution of the data points, µ is the mean and σ2 is the variance 

of ACR and RPS model mismatch errors.   

 

 
 
enough to reduce the model mismatch between experiments and simulations at both the 

excitation and emission wavelengths.  The results obtained in this study are in 

contradiction to those obtained from our phantom studies using slab geometry (4x8x8 

cm3 volume) [104].  In the slab-shaped phantom, the refractive index affected the 

simulations on transillumination side of the phantom. In other words, when the phantom 

was illuminated by a point source on the 8 × 8 cm2, the three cases of Reff values affected 

the simulations on the opposite 8 × 8 cm2 side (i.e. transillumination side) of the 

phantom (see Figure 7.10).   
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Figure 7.9 Effect of refractive index parameter in imperfect uptake data at emission wavelength. (a), (b) 
correspond to Case 1; (c), (d) correspond to Case 2; and (e), (f) correspond to Case 3 of the three different 
Reff cases.  Frequency is the probability distribution of the data points, µ is the mean and σ2 is the variance 

of ACR and RPS model mismatch errors. Reproduced with permission from reference [119]. 

 

 

 

In our current cup-shaped phantom, there is no distinct transillumination side on 

the hemispherical surface, and the maximum depth of penetration is 10 cm against 4 cm 

penetration in the slab geometry.  The illuminating source light reaches the noise floor 

before light reaches the opposite side of the illuminating point, making the refractive 

index an insignificant parameter for a noisy weak signal in a large curvilinear phantom.    

In addition, greater measurement errors could possibly mask the effect of the slight 

variations in the simulated data under the three different Reff cases [119]. 
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Figure 7.10 Model match of ln(ACR) between experiments and simulations obtained using the three cases 
of the Reff values in the slab phantom studies. Reproduced with permission from [104]. 

 

 

In summary, the effect of refractive index parameter depends on the shape and 

size of the phantom, especially in terms of its depth of penetration and sharp boundary 

edges.  The greater the depth of the phantom and lesser the number of sharp boundaries, 

the smaller the effect of Reff parameter in the boundary condition of the forward model.   



 155

Hence, for the breast phantom employed here, any reasonable choice of the Reff 

value should not impact the simulated data from the forward model significantly.   

 

7.3 Image reconstructions 

 
For image reconstructions, individual referenced measurements with modulation 

depth < 0.025 were neglected, in order to minimize the propagation of errors into the 

inversion scheme while speeding up the reconstructions.  This reduced the data sets to a 

total of 429 emission measurements for the imperfect uptake case and 207 emission 

measurements for the perfect uptake case.  These referenced measurements (using the 

second referencing method, 
,

m

m ref

Φ
Φ

) were used along with the estimates of measurement 

error covariance R and model error covariance Q in order to reconstruct the 3-D optical 

property map of µaxf, using the inversion algorithm described in Section 5.2.  The 

measurement error covariance R was evaluated from the measurement error in ln(ACR) 

and RPS, plotted as histograms in Figure 7.11 [118].  The model error variance was 

approximated to be spatially variant by scaling the inverse of the modulation depth (i.e. 

DC/AC) for ln(ACR) and for RPS, so each Qi (i measurements) is also spatially variant 

and distinct. Initial parameter error variance was empirically set to 0.1.  

Low and spatially variable signal to noise ratios (SNR) in fluorescence emission 

data were thus accommodated by filtering out low SNR data at three levels (see Figure 

7.12), as follows: (i) source level: point source locations were limited to those which 

elicit an average modulation depth greater than 0.1 for each interfacing plate, (ii)  
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Figure 7.11 Histograms of measurement error variances for all measurements (referenced as shown in 

Equation (4) with modulation depth > 0.025 for a) ln(ACR), imperfect uptake, b) RPS, imperfect uptake 
(in radians), c) ln(ACR), perfect uptake, d) RPS, perfect uptake (in radians).  Frequency is the probability 
distribution of the data points, µ is the mean and σ2 is the variance of ACR and RPS measurement errors.   

 

 

detector level: only those detected emission measurements with individual modulation 

depth greater than 0.025 were used in the inversion, and (iii) update level: parameter 

updates were weighted in a spatially-variant manner based on the observed variance and 

inverse modulation depth of each measurement.  The model mismatch was larger for 

those source-detector pairs whose modulation depth was very small (< 0.025), as shown 

in Figure 7.13 (for the AC data).  A similar trend was observed for the effect of  
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Figure 7.12 Flowchart for filtering out low signal-to-noise measurements at three levels: source level, 
detector level, and parameter update level. 
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Figure 7.13 Model plot of the effect of modulation depth on model mismatch between experiments and 

simulations of AC data. 

 
 
 

modulation depth on the model match of phase data.  Hence, only those measurements 

were included in the reconstruction algorithm whose modulation depth was greater than 

0.025 at the detector (that is, collection point) level.  The advantages of pre-filtering the 

measurements for performing reconstructions include: (i) improvement in the 

convergence of the reconstructions and generation of minimal artifacts, since 

measurements with significant errors were excluded; and (ii) improvement in the 

computational efficiency, in terms of memory requirements (small matrices) and 

computational speed (fewer calculations for the Jacobian sensitivities and smaller 

matrices to invert). 

For both the experimental data sets, the initial guess in µaxf was 0.003 cm-1 for the 

entire phantom volume.  Histograms of the differences in signal between model  
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Figure 7.14 Histograms of differences in model predictions with and without the fluorescent target, 
assuming background fluorescence absorption of 0.003 cm-1, for a) ln(ACR), b) RPS (in radians). 
Frequency is the probability distribution of the data points, µ is the mean and σ2 is the variance. 

 

 

 
Figure 7.15 Convergence curves of sum of squared prediction errors for the two reconstructions. 
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predictions with and without the fluorescent target are shown in Figure 7.14, and are a 

measure of the signal information available for reconstruction of the target.  Comparing 

these frequency distributions of the small signal change arising due to the presence of a 

target, with respect to the non-trivial model mismatch error (Figure 7.6) and 

measurement error (Figure 7.11), the overall signal-to-noise ratio (SNR) appears to be 

low for both the perfect (1:0) and imperfect (100:1) experimental data sets.  Nonetheless, 

both reconstructions converged smoothly (Figure 7.15).   

The target location was identifiable after the first iteration (4-7 minutes) and the 

inversions converged (exhibited less that a 1% decrease in model prediction error) after  

22 iterations (1.4 hours) and 18 iterations (2 hours), for the imperfect and perfect uptake 

cases, respectively, on a 2.2 GHz Pentium IV.  The iso-surfaces at 0.2 cm-1 for 3-D 

phantom containing the actual target (i.e. the known target in the actual experimental set-

up), for the 3-D reconstructed phantom in the imperfect uptake case, and the 3-D 

reconstructed phantom in the perfect uptake case are plotted in Figures 7.16a,b,c, 

respectively.  The figures are 3-D plots of the absorption coefficient due to the 

fluorophore (µaxf) in the breast phantom, where iso-surface cut-off value was set to µaxf = 

0.2 cm-1, in order to discriminate the region of interest (i.e., the target in this case) from 

the background. All nodes with estimates above the arbitrary cutoff of µaxf > 0.2 cm-1 

were considered elevated.  These nodes were then spatially clustered into distinct targets 

and each target was characterized by volume-integrated fluorescence absorption 

(volume-weighted averages of nodal µaxf within each identified target), value-weighted 

centroid locations, and Euclidean distance of the identified centroid from the location of  
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(b)

(c)

(a)

(b)

(c)

(a)

 
Figure 7.16 (a) The true fluorescence absorption distribution in the 3-D phantom containing the actual 

target.  In both experiments, the value of the absorption coefficient due to fluorophore (µaxf) in the actual 
target was 0.30 cm-1. The background µaxf value was 0.003 cm-1 and 0.000 cm-1 in the imperfect and 

perfect uptake case, respectively.  (b) The fluorescence absorption distribution in the 3-D reconstructed 
phantom for the imperfect uptake case, with iso-surface shown at µaxf =0.2 cm-1.  (c) The fluorescence 
absorption distribution in the 3-D reconstructed phantom for the perfect uptake case, with iso-surface 

shown at µaxf =0.2 cm-1. 
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Table 7.2 Centroid locations and integrated values of areas where fluorescence absorption (µaxf) was 
greater than 0.2 cm-1 for the imperfect and perfect uptake experiments using a 1 cc target located ~ 1 cm 

deep from phantom surface. 

Centroid 

Expt 
Hetero-

geneity x (cm) y (cm) z (cm) 

Distance 

off (cm) 

Integrated 

µaxf  (cm-1) 

Volume 

(cm3) 

Known 

phantom 

Actual 

target 
-2.50 -0.50 2.50 -- 0.30 1.00 

Imperfect 

uptake 

Identified 

target 
-2.04 -0.74 2.45 0.52 0.14 0.38 

Perfect 

uptake 

Identified 

target 
-2.30 -0.73 2.60 0.32 0.43 0.69 

 

 

the true centroid of the target.  A single target was identified in both the imperfect and 

perfect uptake reconstructions (Figures 7.16b,c), located only 0.52 cm and 0.32 cm, 

respectively, away from the actual target location.  These reconstructions are quantified 

in Table 7.2 for completeness.  In Table 7.2, volume is defined as the sum of volumes 

associated with each node in the target.  The volume information was used to estimate 

the volume-integrated fluorescence absorption of the reconstructed target.  The 

Euclidean distance between the value-weighted centroids of the predicted and actual 

target location was also determined and termed as distance-off.  The target volumes were 

underestimated in both cases, although this value is dependent on the arbitrarily chosen 

iso-surface value that defines the target boundary.  The quantitative estimate of 

integrated fluorescence absorption was underestimated in the imperfect case, and 

overestimated in the perfect uptake case (Table 7.2).  Choice of specific reference nodes 

affected the quantitative results and presence or absence of artifacts, although the target 
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was consistently identified.  Most of this section is reproduced with permission from our 

published work in reference [118]. 

The discrepancies between the actual target (in terms of size and location) and 

the reconstructed targets in both the experimental cases could possibly be due to (i) 

sparse and noisy experimental data, (ii) measurement and model errors due to the 

experimental set-up and discretization of the phantom mesh, respectively, (iii) 

experimental error in terms of positioning the target at the specified location, and/or (iv) 

non-optimal choices for control variables in the inversion, such as initial parameter 

variance. 

 

7.4 Summary 

 
Measurement precision, measurement accuracy, and the effect of referencing 

schemes and the refractive-index mismatch parameters were analyzed for the current 

ICCD imaging system.  Initial experiments performed using large breast-shaped tissue-

mimicking phantoms exhibited a much better model match with a finite element 

implementation of the coupled diffusion equations when emission measurements were 

referenced to specified detectors at the emission wavelength rather than when they were 

referenced to excitation measurements at each detector location.  Despite the low and 

spatially-variable signal to noise ratio (SNR), the 1 cc fluorescent target containing 1 µM 

ICG was identified in the correct location in the 3-D reconstructions of fluorescence 

absorption for both imperfect (100:1) and perfect uptake (1:0) cases, although the 

estimates were not quantitatively accurate.  
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Further experiments using the existing prototype imaging system were performed 

involving data acquisition and reconstructions using single and multiple targets at 

various depths, volumes, and levels of fluorescent contrast, in order to assess the 

robustness of the ICCD optical imager.  Lifetime studies were also performed by 

exploiting the advantages of a frequency-domain imaging system over a CW system, 

where the enhanced phase contrast due to the differences in lifetime between the target 

and the background can be measured.  Although it is encouraging that useful images can 

be reconstructed with low SNR, greater improvements in the data acquisition technology 

will be needed to further reduce the noise level. 
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8. DEPTH STUDIES USING SINGLE AND DUAL POINT ILLUMINATION 

GEOMETRIES 

 
 

Fluorescence-enhanced optical tomography is typically performed using point 

illumination and point collection measurement geometry.  For large phantoms with 

greater volumes or penetration depths, single point illumination may be insufficient to 

illuminate greater volumes and also provide a strong fluorescent signal.  In this section, 

use of multiple point illumination geometry is proposed for acquiring higher number of 

strong fluorescent measurements, due to greater volume illumination. As a preliminary 

study, use of two point illuminations was attempted, in order to acquire surface 

measurements and perform three-dimensional reconstructions.  Experiments were 

performed using different target depths (1-3cm deep) and contrast ratios (1:0 and 100:1), 

in order to evaluate the effect of using double point illumination measurement geometry 

in comparison to the widely used single point illumination measurement geometry.  

Three-dimensional reconstructions performed from measurements acquired using the 

dual point illumination geometry are presented for the first time along with the 

reconstructions performed from measurements acquired using the single point 

illumination geometry.  

The current studies performed at varying target depths will also help determine 

the maximum depth of the target which can be reconstructed accurately, and thus 

analyze the limitations of the imaging system in terms of depth reconstruction. 
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8.1 Dual point illuminating imaging system 

 
For small animal studies involving rats or for phantom studies (which are either 

small in volume or less deep), sufficient fluorescence generation and collection across 

the depth of the entire phantom is possible with sequential illumination at single 

boundary points.  Consequently three-dimensional reconstruction of the target location 

and size is feasible with the point illumination measurement geometry [13-17, 84].  

However, in studies involving large phantoms of greater volumes and penetration 

depths, single point illumination of the phantom surface may be insufficient to generate 

a fluorescent signal that arises throughout the entire phantom with a sufficient signal-to-

noise ratio (SNR).  Weak fluorescent signals are usually dominated by noise, thus 

impacting the measurement precision and accuracy, and eventually hindering the 

accurate reconstruction of the target location and size. 

Here, we explore the feasibility of using simultaneous multiple point illumination 

measurement geometry in order to increase the volume of illumination, and the total 

number of fluorescent measurements with robust SNR.  As a preliminary study towards 

applying the multiple point illumination geometry, initial studies are performed using 

dual point illumination geometry for different experimental conditions. In the past, 

researchers employed dual excitation sources that were 180o out-of-phase (destructive 

interfering photon density waves) for 2-D spatial localization of an absorbing (or 

fluorescing) target located in a 3-D phantom [120-124].  However, in the current work, 

surface fluorescence measurements obtained from dual excitation sources that are in-



 167

phase (0o phase difference between the two modulating point sources) are used to 

reconstruct the target location and size in three dimensions.  

 

8.1.1 Instrumentation for the dual point illuminating imaging system 

The instrumentation of the dual point illuminating (or dual point excitation 

source) imaging system is similar to that described in Section 4.2, with a slight 

modification that the modulated excitation light source was split into two equal intensity 

(1:1 ratio of the normalized intensities) in-phase (0o phase difference between the two 

modulating point sources) light sources, using a 50:50 beam splitter (20Q20BS.2, 

Newport Corp., CA), in order to generate constructively interfering point sources.  The 

schematic of the dual point illuminating imaging system is illustrated in Figure 8.1. 

 

8.1.2 Experimental parameters 

Experiments were performed under target:background absorption contrast ratios 

of 1:0 and 100:1 using a single 1 cc target (1x1x1 cm3) located 1 to 3 cm deep from the 

phantom surface.  Measurements were acquired using both the single point and dual 

point illumination geometry.  The list of experiments performed for the depth study are 

provided in Table 8.1, which includes the details about the total number of 

measurements acquired and the number of point illumination (or excitation source) 

combinations used for different experimental conditions.  In the case of dual point 

illumination geometry, the number of source combinations corresponded to the total 

number point source pairs that illuminated the phantom; and in the case of single point 
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Figure 8.1 Instrument setup for dual point illuminating ICCD imaging system. 

 
 
 
point illumination geometry, the number of source combinations corresponded to the 

total number of single point sources that illuminated the phantom.   

Fluorescent measurements were acquired at single and dual point illumination 

configurations, where the average fluorescent signal of each interfacing plate, quantified 

in terms of the average modulation depth (AC/DC) was greater than 0.1 (value chosen 

based on the modulation depth of noise floor observed during experimentation).  For all 

the target depth experiments, the point sources used in the single point illuminating 

imaging system were used in different combinations to obtain dual point illuminations, 

thus increasing the total number of measurements.  The optical properties of the target 

and the background for different experimental cases are provided in Table 8.2.   
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Table 8.1 Experimental conditions towards target depth studies at various absorption optical contrasts and 
using two different measurement geometries. 

Expt 
Absorption 

optical 
contrast 

Target 
depth 
(cm) 

Measurement 
geometry 

# of acquired 
measurements 

# of source 
combination

s 

# of 
measurements 

used in 
reconstructions 

1 1:0 1 Dual sources 832 13 439 

2 1:0 1 Single sources 320 5 126 

3 1:0 2 Dual sources 1408 22 773 

4 1:0 2 Single sources 512 8 188 

5 1:0 3 Dual sources 1152 18 - 

6 1:0 3 Single sources 576 9 - 

7 100:1 1 Dual sources 1216 19 964 

8 100:1 1 Single sources 704 11 401 

9 100:1 2 Dual sources 1600 25 1163 

10 100:1 2 Single sources 896 14 480 

11 100:1 3 Dual sources 1280 20 1025 

12 100:1 3 Single sources 768 12 480 

 

 

 

Table 8.2 Optical properties of target and background for different contrast ratio experiments and for all 
the target depth studies. One µM of ICG was used in the target, with 0 and 0.001 µM ICG in the 
background, for the perfect and imperfect uptake cases, respectively, and for all the target depths. 

 
Perfect Uptake (1:0) Imperfect uptake (100:1) Optical Properties 

(cm-1) Target Background Target Background 

µaxf+µaxi 0.300+0.0248 0.000+0.0248 0.300+0.0248 0.003+0.0248 
Excitation 

µsx 10.88 10.88 10.88 10.88 
µamf+µami 0.050+0.0322 0.000+0.0322 0.050+0.0322 0.0005+0.0322 

Emission 
µsm 9.82 9.82 9.82 9.82 
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The acquired fluorescence measurements of AC and phase shift from collection 

fibers mounted on each interfacing plate and for each excitation source combination 

were referenced with respect to the collection fiber location that exhibited maximum 

amplitude value (using the second referencing scheme, 
,

m

m ref

Φ
Φ

, given by Equations  

(4.18) and (4.19)).  It was assumed that the collection fibers were of equal length and 

that the two split point sources in the dual point illuminating imaging system were of 

equal intensity (in terms of amplitude and DC values) and in-phase (phase shift was 

equal for both the modulating point illuminating sources).   

 

8.1.3 Image reconstructions using single and dual point illumination geometries 

The hybrid AEKF algorithm was used to perform image reconstructions for all 

the different experimental conditions.  For the dual point illuminating imaging system, 

the excitation source term in the partial current boundary condition was modeled as two 

point excitation sources of equal amplitude and in-phase.  In other words, the two point 

excitation sources were modeled as (1,0) for (IAC,θ) at both the illuminating locations.  

For the single point illuminating imaging system, the excitation source term was 

modeled with amplitude of unity and phase delay of 0o, that is (1,0) for  (IAC,θ).   

The model match between referenced measurements and simulations from the 

forward problem of the coupled diffusion equations were determined for the dual and 

single point illuminating imaging systems and for all the experimental cases.  Here, the 

model error covariance, Q used in the AEKF algorithm was empirically chosen to be 

equal to one-fourth the mean of the measurement error covariance, R (diagonal terms of 
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the measurement error).  The parameter error covariance, P, which is used to damp the 

parameter updates of µaxf in the recursive reconstruction algorithm, was empirically 

chosen to be a constant value (= 0.001, 0.01, or 0.1).  The measurement error covariance, 

R and the model error covariance, Q, were used along with the referenced measurements 

in order to determine the unknown parameter, µaxf (absorption coefficient due to the 

fluorophore) and the parameter error covariance, P.  Only a subset of measurements 

were considered for reconstructions, after filtering the measurements at the source and 

detector level, as described earlier (Section 7.3) 

 

8.2 Results and discussion: Perfect uptake case 

 
8.2.1 Effect on volume illuminated and signal strength 

An absolute fluorescent modulation depth (AC/DC) image of an interfacing plate 

(with multiple collection fibers) is illustrated in Figure 8.2 for both the single and dual 

point excitation source cases.  From the figure, we observe that more collection fibers on 

the interfacing plate “lit up” when the phantom surface was illuminated using dual point 

excitation sources in comparison to a single point excitation source, thus increasing the 

total number of acquired fluorescence measurements.  The above observation also 

implies that the total volume illuminated within the phantom increased when dual points 

were used instead of single points for excitation illumination.  The signal strength at 

collection fibers located close to the dual points of excitation illumination was higher in 

comparison to the signal arising from a single point of excitation illumination (see  
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(a) (b)(a) (b)(a) (b)

 

Figure 8.2 Modulation depth of an interfacing plate for (a) single point illumination and (b) dual point 
illumination, for perfect uptake of 2cm deep and 1cc volume target. 

 

 

Figure 8.2).  Also, more measurements above the set noise floor were acquired in the 

dual point illumination imaging system (see Table 8.1, column 5). 

 

8.2.2 Model match between experiments and simulations 

A good match was observed between referenced measurements and simulated 

predictions of logarithmic AC ratio (ln(ACR)) and relative phase shift (RPS) for target 

depths of 1 and 2 cm in both the illumination geometries.  However, the bias and 

variance in the error between experiments and simulations was much lower when dual 

point excitation illuminations were used instead of single point excitation illuminations 

(Table 8.3).   
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Table 8.3 Model mismatch error in ln(ACR) and RPS for different target depths with 1:0 absorption 
optical contrast ratio 

ln(AC Ratio) Relative phase shift (RPS) 
(radians) 

Target 
depth 
(cm) 

Measurement 
geometry Mean Variance Mean Variance 

Dual sources -0.353 0.926 -0.272 0.277 1 
 Single sources -0.803 1.630 -0.569 0.481 

Dual sources -0.485 0.975 -0.135 0.483 2 Single sources -1.057 2.142 -0.517 0.845 
Dual sources -1.386 0.710 -0.198 1.335 3 Single sources -1.509 0.851 -0.146 0.966 

 

 

The observed mismatch for the 1 and 2 cm target depth cases could possibly be 

due to: (i) the assumption of equal source strengths in the case of dual point excitation 

sources; (ii) the assumption of equal fiber lengths for all the collection fibers in dual and  

single point illuminating imaging systems, which is an approximation of the referencing 

scheme employed; (iii) the degree of discretization in the finite element mesh; (iv) the 

experimental error in target location; and/or (v) the precision error in the normalized 

location of the source and collection fibers on the curvilinear phantom surface.   

In the case of the 3 cm deep target, the model mismatch was significantly greater 

for either of the illumination geometries.  Apart from the reasons stated above, the major 

reason for the loss in accuracy is due to excitation light leakage through the optical 

filters in the presence of weak fluorescence signal from deeply embedded targets, thus 

contaminating the measured emission signal, and hence increasing the model mismatch.  

In general, during the fluorescence-enhanced imaging process the strong excitation 

signal, which is at least 3-4 orders of magnitude greater than the fluorescent signal, 

cannot be completely rejected using a stack of optical filters without further attenuating 
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the transmission of the weak fluorescent signal.  Future work will involve employing 

customized filters for optimal excitation light rejection in order to detect deeply 

embedded targets. 

 

8.2.3 Measurement error  

The measurement error in ln(AC) (reduced when dual point illumination was 

employed over single point illumination at target depths of 1 and 2 cm (Table 8.4).  

However, the measurement error was high, particularly in phase (given in radians), for 

the 3 cm deep target case, in either of the illumination geometries.  Excitation light 

leakage limits precise measurements of weak fluorescent signal, which is reflected in the 

measurement error data when the target is 3 cm deep.   

 

8.2.4 Image reconstructions 

Reconstructions were performed for the experimental cases of 1 and 2 cm deep 

targets, using individual fluorescence measurements obtained from the dual and single 

point illumination imaging systems.  Reconstructions were not performed on the 3 cm 

deep target case, since the imaging system was limited by excitation leakage (or noise), 

as reflected from the model mismatch and measurement error data shown in Table 8.3 

and 8.4, respectively. 

The referenced fluorescence measurements were reconstructed as blind data, 

without prior knowledge of the target location, size and optical contrast with respect to 

the background although the optical properties were known during the actual  
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Table 8.4 Measurement error (in terms of mean of variance) in ln(AC) and phase shift (θ) for different 
target depths with 1:0 absorption contrast ratio. 

 
Target 
depth 
(cm) 

Measurement 
geometry Mean[σ2(ln(AC))] Mean[σ2(θ)]  

(radians) 

Dual sources 0.00154 0.237 1 Single sources 0.00217 0.098 
Dual sources 0.00221 0.007 2 Single sources 0.00302 0.042 
Dual sources 0.00436 0.896 3 Single sources 0.00466 0.603 

 

 

experiment.  As an initial guess, the unknown parameter (µaxf) to be reconstructed was 

assumed to be homogeneous with a low value of 0.003 cm-1 for the entire phantom.  The 

reconstruction process was carried out recursively (within each iteration) until the 

system converged to less than 1% root mean square output error (RMSE).  The 

reconstructions for both the single and dual point illuminating imaging systems gave 

comparable image quality for either of the two target depth cases (1 and 2 cm).  The 

convergence curves for the dual and single point illuminating imaging systems for both 

the target depths are shown in Figure 8.3. The actual image of the phantom with the 1 

cm deep target is shown in Figure 8.4a and the reconstructed images are shown in 

Figures 8.4b and 8.4c for the single and dual point illuminating imaging systems, 

respectively.  Similar reconstruction images are provided for the 2 cm deep target case in 

Figure 8.5 [125].  

The target was identified from the reconstructed spatially distributed 

fluorescence absorption coefficient µaxf. A cutoff value of fluorescence absorption 

coefficient was selected to distinguish between the background and the target based on  
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(a) (b)(a) (b)

 

Figure 8.3 Convergence curves from 3-D image reconstructions using the dual and single point 
illumination geometries for (a) 1 cm target depth, and (b) 2 cm target depth cases under 1:0 absorption 

optical contrast ratio. 

 

 

(a) (b) (c)(a) (b) (c)

 

Figure 8.4 Actual and reconstructed targets in x-y and x-z planes: (a) actual 1 cc target located 1 cm deep 
under 1:0 absorption optical contrast ratio, (b) reconstructed target using single point illumination 

measurement geometry, and (c) reconstructed target using dual point measurement geometry. All the 
reconstructions were performed with the initial guess of P=0.001, and µaxf=0.003 cm-1. 
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(a) (b) (c)
 
(a) (b) (c)

 
Figure 8.5 Actual and reconstructed targets in x-y and x-z planes: (a) actual 1 cc target located 2 cm deep 

under 1:0 absorption optical contrast ratio, (b) reconstructed target using single point measurement 
geometry, and (c) reconstructed target using dual point measurement geometry.  All the reconstructions 

were performed with the initial guess of P=0.001, and µaxf=0.003 cm-1. 

 

 

 

Table 8.5 Reconstructed image quality for the 1 cm-target depth case with 1:0 absorption optical contrast 
ratio, using both the point illumination geometries. 

Centroid 
Point 

illumination 

geometry 

µaxf cut-

off 

value 

(cm-1) 

X(cm) Y(cm) Z(cm) 

Integrated 

µaxf  (cm2) 

Volume 

(cm3) 

Distance 

off (cm) 

Actual casea -- 0.5 -2.5 2.5 0.3 1.0 -- 

Dual 0.2 0.8 -2.3 2.6 0.4 0.8 0.3 

Single 0.2 0.6 -2.3 2.5 0.3 0.6 0.2 
   aActual case: Details of actual target location 
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Table 8.6 Reconstructed image quality for the 2 cm-target depth case with 1:0 absorption optical contrast 
ratio, using both the point illumination geometries. 

Centroid Point 

illumination 

geometry 

µaxf cut-

off value 

(cm-1) 
X(cm) Y(cm) Z(cm) 

Integrated 

µaxf (cm2) 

Volume 

(cm3) 

Distance 

off (cm) 

Actual case -- 0.5 -1.5 2.5 0.3 1.0 -- 

Dual 0.4 0.8 -1.7 2.8 0.4 0.7 0.5 

Single 0.2 0.8 -1.8 3.0 0.5 0.9 0.6 

 

 

 

 

(a) (b)(a) (b)

 

Figure 8.6 (a) Histogram of the reconstructed parameter, µaxf (absorption coefficient due to the 
fluorophore) cm-1 in the experimental case containing the 1 cc target located ~ 1 cm deep with 1:0 

absorption optical contrast ratio and using single point illumination geometry, (b) Histogram of the same 
experimental case zoomed in the y-axis and plotted using 500 bins.  
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the break between modes in the histogram of the reconstructed µaxf.  A sample plot of the 

histogram obtained for the 1 cm deep target case and single point illumination geometry 

is illustrated in Figure 8.6.  Details of the reconstructed target location, target volume, 

and integrated fluorescence absorption for 1 cm and 2 cm target depth cases are 

tabulated in Tables 8.5 and 8.6, respectively.  The iso-surface cut-off value can be 

chosen at any of the breaks between the modes (see Figure 8.6), however in our case it 

was chosen from the significant break observed between modes.  In addition, since the 

current studies are focused towards assessing the feasibility of detecting deeply located 

targets and not providing quantitatively accurate reconstructed target volumes, the 

choice of the iso-surface is chosen as described above.  Future studies will involve 

evaluation of a more accurate method to determine the iso-surface cut-off values and 

also the reconstructed target details.   

 

8.3 Results and discussion: Imperfect uptake case 

 
8.3.1 Model match between experiments and simulations 

For experiments with target:background absorption contrast ratios of 100:1, 

fluorescence is also present in the background.  Hence, the overall signal strength was 

higher than that observed for the experiments containing no fluorescence in the 

background (perfect uptake case).  Thus, the differences in the signal strength between 

the dual and single point illumination was smaller compared to the overall signal 

strength, and hence effect of illumination geometry on the signal strength was not 

assessed in the imperfect uptake studies.  
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Table 8.7 Model mismatch error in ln(ACR) and RPS for different target depths with 100:1 absorption 
optical contrast ratio. 

ln(AC Ratio) Relative phase shift (RPS) 
(radians) 

Target 
depth 
(cm) 

Measurement 
geometry Mean Variance Mean Variance 

Dual sources -0.017 0.459 -0.048 0.977 1 
 Single sources 0.253 0.357 -0.026 0.910 

Dual sources -0.124 0.625 0.001 1.090 2 Single sources 0.220 0.712 -0.128 0.993 
Dual sources -0.280 0.860 -0.089 0.109 3 Single sources 0.065 0.781 -0.154 0.093 

 

 

A good model match was observed between experiments and simulations, for all 

the target depths and measurement geometries, as shown in Table 8.7.  In most cases, the 

dual point illuminating imaging system provided minimal model mismatch errors 

(computed using Equations (6.2) and (6.3)) compared to the single point illuminating 

imaging system, especially in the logarithmic AC ratio (or ln(ACR)) data.  In general it 

was observed that the dual source illumination geometry tended to degrade the model 

match in relative phase shift (RPS) data, probably due to the deteriorating ICCD camera, 

which lacks sensitivity to acquire good phase data.  Similar results were obtained from 

the measurement precision studies (Section 7.1), in which there was more error in the 

phase shift data over the acquired AC data. 

Unlike the perfect uptake case (1:0) for the 3 cm deep target, in which no model 

match was observed between experiments and simulations, a good model mismatch was 

observed in the imperfect uptake case (100:1) for the 3 cm deep target (see Figure 8.7)  
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(b)

(c)

(d)
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(b)

(c)

(d)

 
Figure 8.7 Model match between experiments and simulations of the 3 cm deep target using the single 

point illumination measurement geometry (a) ln(ACR) for 1:0 case, (b) RPS for 1:0 case, (c) ln(ACR) for 
100:1 case, and (d) RPS for 100:1 case.  The model match is plotted for a subset of the total number of 

acquired measurements.  
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although the perturbation caused by the deeply located target is probably minimal.  The 

good model match for the imperfect uptake case could probably arise from the negligible 

perturbation caused by deeply located targets even in simulated data, occurring due to 

the exponentially attenuation of the fluorescent light signal generated from the deeply 

located target.  Thus, although a good model match is observed, it is uncertain if the 3 

cm deep target can be reconstructed.  However, reconstructions will still be attempted 

using the measurements acquired from the 3 cm deep target under imperfect uptake 

conditions.  Future work may involve the assessment of the effect of perturbation from 

deeply located targets.   

 

8.3.2 Measurement error 

Measurement error for the imperfect uptake experimental cases was obtained for 

all the different target depth conditions (see Table 8.8).  Unlike the trend of 

measurement errors increasing with the increase in target depth observed for the perfect 

uptake contrast ratio case, here we observe that the measurement error was of the same 

order of magnitude in ln(AC) data at different target depths.  The reasons for such a 

varied behavior of the acquired data with and without fluorescence in the background are 

not known.  However, from the various experiments performed so far, inconsistency in 

the current deteriorating ICCD camera was observed.  Although, attempts were made to 

reconstruct the data obtained for all the target depths (1-3 cm) to observe the impact of 

such high measurement error, especially in phase shift, on the reconstructed target’s 

location and size, and on the presence of artifacts, if any. 
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Table 8.8 Measurement error (in terms of mean of variance) in ln(AC) and phase shift for different target 
depths with 100:1 absorption optical contrast ratio of a single 1 cc target located from 1-3 cm deep. 

Target depth 
(cm) 

Measurement 
geometry 

Mean[σ2(ln(AC)
)] 

Mean[σ2(θ)]  
(radians) 

Dual sources 0.00290 0.567 1 
Single sources 0.00379 0542 
Dual sources 0.00200 0.604 2 

Single sources 0.00291 0.524 
Dual sources 0.00210 0.341 3 

Single sources 0.00307 0.232 
 
 
 
 
8.3.3 Image reconstructions 

Three-dimensional reconstructions were performed under similar conditions in 

terms of modulation cut-off parameter, and initial estimate of the unknown parameter  

 (µaxf = 0.003 cm-1).  Reconstructions were performed with different initial guess in the P 

value (0.001, 0.01, and 0.1) that was chosen empirically.  Here, reconstructed images 

under varying target depths are presented for both the single and dual source systems 

only for those initial P values that gave better reconstruction target quality.    

 Convergence plots using the dual and single point illuminating imaging systems 

for various target depths (1 to 3-cm deep) are given in Figure 8.8.  The actual and 

reconstructed phantom for different target depths using dual and single point 

illuminating imaging systems is given in Figure 8.9, 8.10, and 8.11 respectively.  Details 

of the reconstructed target for all the experimental cases are provided in Table 8.9.   

From the reconstruction results for all the three target depth cases, we observe 

that the dual point illuminating imaging system consistently generated artifacts unlike 

the single point illuminating imaging system, where no significant artifacts were 

observed.  This shows that dual point illumination geometry may not be appropriate  
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(a) (b)

(c)

(a) (b)

(c)

 

Figure 8.8 Convergence plots for (a) 1-cm deep target case, (b) 2-cm deep target case, and (c) 3-cm deep 
target case with 100:1 absorption optical contrast ratios, using both the illumination geometries. 

Reconstructions were performed with initial guess in µaxf=0.003 cm-1. 

 

 

 

when fluorophores are present in the background.  In the 3-cm target depth case, 

although the target’s centroid in the x-y direction was very close to the true centroid the 

reconstructed target was observed to be closer to the phantom surface in the z-axis.  In 

other words, reconstruction of deeply located targets is feasible but limited in detecting 

the true depth of the target.   
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(a) (b) (c)(a) (b) (c)

 
Figure 8.9 Actual and reconstructed targets in x-y and x-z planes for: (a) actual 1 cc target located ~ 1 cm 

deep under 100:1 absorption optical contrast ratio cases, (b) reconstructed target using single point 
illumination measurement geometry, when initial guess of P=0.01, and (c) reconstructed target using dual 

point illumination measurement geometry, when initial guess of P=0.001.   

 

(a) (b) (c)(a) (b) (c)

 
Figure 8.10 Actual and reconstructed targets in x-y and x-z planes for: (a) actual target 1 cc target located 
~ 2 cm deep under 100:1 absorption optical contrast ratio cases, (b) reconstructed target using single point 
illumination measurement geometry, when initial guess of P=0.01, and (c) reconstructed target using dual 

point illumination measurement geometry, when initial guess of P=0.001. 
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(a) (b) (c)(a) (b) (c)

 
Figure 8.11 Actual and reconstructed targets in x-y and x-z planes for: (a) actual target 1 cc target located 
~ 3 cm deep under 100:1 absorption optical contrast ratio cases, (b) reconstructed target using single point 
illumination measurement geometry, when initial guess of P=0.01, and (c) reconstructed target using dual 

point illumination measurement geometry, when initial guess of P=0.001. 

 
 

 

 
 

Table 8.9 Reconstructed targets under different target depths for 100:1 absorption optical contrast ratio 
cases. The cut-off µaxf was chosen based on the break between modes in the histogram of the reconstructed 

µaxf. 

Centroid Target 

depth 

(cm) 

Point 

illumination 

geometry 

µaxf 

cut-off 

(cm-1) 

True value 

[x y z] cm 

Reconstructed 

[x y z] cm 

Integrated 

µaxf 

(cm-1) 

Volume 

(cm3) 

Distance 

off (cm) 

Dual 0.015 [0.5 -2.5 2.5] [0.7 -2.4 2.7] 0.05 1.67 0.34 
1 

Single 0.05 [0.5 -2.5 2.5] [0.5 -2.1 2.4] 0.06 0.42 0.37 

Dual 0.1 [0.5 -1.5 2.5] [0.5 -1.8 3.2] 0.23 1.02 0.75 
2 

Single 0.05 [0.5 -1.5 2.5] [0.4 -1.5 2.9] 0.17 1.46 0.38 

Dual 0.1 [0.5 -1.5 1.5] [0.5 -1.5 3.0] 0.25 2.56 1.45 
3 

Single 0.05 [0.5 -1.5 1.5] [1.0 -1.0 2.2] 0.24 0.98 0.98 
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8.4 Summary 

  
From the perfect uptake (1:0 contrast ratio) studies performed under 1- and 2- cm 

target depth conditions using both the point illumination measurement geometries, it was 

observed that the dual point illumination system not only provided adequate signal 

strength, increased the total phantom volume illuminated and total number of 

fluorescence measurements, but it also reduced the model mismatch and measurement 

errors in comparison to the single point illumination system.  Three-dimensional 

reconstructions for the dual point illumination measurement geometry, performed for the 

first time, successfully reconstructed the target with results comparable to the 

reconstructions using the single point illumination geometry.  Thus, 3-D image 

reconstruction using the simultaneous, in-phase, dual point illumination system is 

feasible.  Future implementations will test this geometry for more than two simultaneous 

point excitation source illuminations.  Advantages of simultaneous multiple point 

illumination geometry include (i) greater volume illumination, (ii) higher signal strength, 

and (iii) increased total number of measurements in large volume phantoms. 

 In terms of depth studies under perfect uptake conditions, the ICCD imaging 

system was not sensitive in detecting weak fluorescent signals against strong excitation 

light (which is 3-4 orders of magnitude higher).  Also, the weak fluorescent signal was 

contaminated with excitation light leakage due to the inability of optical filters to 

completely reject the excitation light and efficiently transmit the weak fluorescent signal.  

The effect of various filter combinations was studied (see Appendix E) and it was 

concluded that stacking optical filters in order to achieve greater rejection of 785 nm 
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light as well as efficient transmission of 830 nm light was not possible.  Currently, there 

are no optical filters available that can provide good rejection and transmission 

efficiencies.  Future work in depth analysis will involve the use of customized optical 

filters (of blocking OD >10 at 785 nm and transmission > 90% at 830 nm) as well the 

replacement of the current CCD camera and the image intensifier. 

In the imperfect uptake contrast (100:1) studies, artifacts were observed when 

reconstructing measurements acquired at different target depths using the dual point 

illumination geometry.  The presence of fluorescence in the background as well as the 

increased measurement error in the acquired phase shift, obtained using the dual point 

illumination geometry, caused artifacts during reconstruction.  However, due to the 

inconsistent performance of the ICCD system, it may be too early to conclude the 

feasibility of dual point illumination geometry for imperfect uptake studies, where 

fluorophores are also present in the background.   

Unlike in the perfect uptake contrast studies, the limitation for detecting deeper 

targets was not excitation light leakage, but decrease in the perturbation of the 

fluorescing target due to the presence of fluorescence in the background.  The target 

volume constituted less than 1% of the total phantom volume, and perturbation from 

such a small region tended to fade with increased depth.  Thus, when the 3 cm deep 

target was located very close to the true location its x-y direction under 100:1 contrast 

conditions, the perturbation was so weak that the reconstructions failed to locate the 

depth of the target.   

 



 189

 In summary, the target depth studies demonstrated the ability of the ICCD 

imaging system to precisely detect single 1 cc targets located up to 2 cm deep under both 

perfect and imperfect uptake cases.  Hence, further absorption contrast studies were 

directed towards detecting smaller volume targets located up to 2 cm deep from the 

phantom surface.   
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9. SMALL VOLUME AND MULTIPLE TARGET STUDIES 

 

Work presented this far was focused on using single 1 cc targets located at 

various depths from the phantom surface and at different target:background absorption 

optical contrast ratios (1:0 and 100:1), in order to assess the feasibility of detecting 

deeply embedded targets.  However, for early stage tumor diagnosis in a clinical 

situation, there is a need to detect single and multiple smaller volume targets that are 

located in deep tissues of large volume.  Also, from a clinical perspective, assessment of 

the multifocality of the disease is significant, since the diseased tissues spread 

metastatically in most cases.  Hence, the current chapter is focused in determining the 

detectability of single and multiple smaller volume (0.5- 0.6 cc) targets, which mimic a 

clinically relevant scenario of small or early stage tumors as well as the multifocality of 

the disease. 

 

9.1 Experimental parameters 

 
 From our depth studies using single 1cc volume targets, we observed that the 

targets were located very close to their true location with minimal artifacts under perfect  

uptake (1:0) conditions, over the imperfect uptake (100:1) case.  Since the current ICCD 

system performed well under perfect uptake (1:0) conditions, preliminary experiments 

using single and multiple small volume (0.5-0.6 cc) targets was performed under perfect 

uptake conditions, and using ICG as the fluorescing contrast agent.  Details of the 
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Table 9.1 Experimental parameters for small volume and multiple target studies. 

Expt 
Absorption 

contrast 
ratio 

[ICG] in 
target 
(µM) 

# of 
targets 

Target 
volume 
(cm3) 

Target 
depth 
(cm) 

Target 
shape 

Illumination 
geometry 

1 1:0 1 1 0.5 2.0 Cuboid 
0.5x1x1cc 

Dual point 
& Single 

point 

2 1:0 2.5 3 0.5-0.6 
each 1.2-1.4 

Spherical 
~ 0.95 cm 

dia 
Single point 

 

 

experimental conditions are provided in Table 9.1.   

 

9.2 Single small volume target study (Experiment # 1)  

 
Here, a single 0.5 cc volume target of cuboid shape (1×1×0.5 cm3) was located 

~2 cm deep from its centroid to the hemispherical surface of the phantom.  Fluorescence 

measurements were acquired in the frequency-domain using both the single point 

illumination and dual point illumination measurement geometries.  In order to determine 

the extent of excitation light leakage, measurements were also acquired without any 

fluorescence in the entire phantom (by removing the fluorescing target from the non-

fluorescing 1% Liposyn background).  The average modulation depth of the excitation 

light leakage (averaged over an interfacing plate for each source illumination) was 

determined as 0.225 from the no-fluorescence measurements and was used to 

differentiate between measurements that correspond to true fluorescence signal 

originating from the fluorescing target and the measurements that correspond to 

excitation light leakage from the background.  Hence measurements were filtered at two 
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stages (Figure 9.1): (i) source level: point source illuminating locations were limited to 

those which elicit an average modulation depth (AC/DC) greater than 0.225 for each 

interfacing plate, and (ii) detector level: only those detected emission measurements (i) 

with individual modulation depth, (AC/DC)i, greater than 0.025 were used in the 

inversions.   
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from each interfacing plate

Point illumination of 
excitation source

Calculate (AC/DC)i at each collection 
fiber location (i) on the interfacing plate

Calculate (AC/DC)average for all collection 
fibers on the interfacing plate

Is (AC/DC)average > 0.225 ?

Is (AC/DC)i > 0.025 ?

DISGARD ALL measurements from 
this interfacing plate (for the given 
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Figure 9.1 Measurement filtration process to remove data representing excitation leakage (at source level) 
or noise (at detector level). 
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Details of the total number of measurements acquired and the actual number of 

measurements used in the inversions are provided in Table 9.2.  From the table, we 

observe that in the case of single point illumination geometry very few measurements 

remain after the two-step filtration process, in comparison to the measurements from the 

dual point illumination geometry.  Hence reconstructions were attempted only from the 

measurements acquired using the dual point illumination geometry. 

 

9.2.1 Model match and measurements errors 

 The model match between experiments and simulations for the above 

experimental case is given in Figure 9.2 and the errors in ln(ACR) and RPS were 

evaluated.  The measurement errors were also evaluated from the 5 repeated 

measurements (rep = 5), as a mean of variance in logarithmic AC and phase shift 

measurements.  The values were determined to be 0.0027 and 0.337 for logarithmic AC 

and phase shift (in radians), respectively. 

 

9.2.2. Image reconstructions 

 Image reconstructions were performed with different initial guesses of the 

parameter error covariance, P (0.001, 0.01, and 0.1) and an initial guess of the 

reconstructing parameter (µaxf = 0.001 cm-1), where the value was randomly chosen.  The 

convergence criterion remained the same (that is less than 1% root mean square output 

error (RSME) or a maximum of 50 iterations).  For all the initial guesses of P, the 

reconstructions terminated after the 2nd iteration, since the error between consecutive  
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Table 9.2 Acquired measurements for the single 0.5 cc target experimental case (Expt #1). 

Illumination 

geometry 

# of source 

combinations 

used 

# of 

measurements 

acquired 

# of source 

combinations 

after filtering 

Measurements 

used in 

reconstructions 

Dual point 16 pairs 1024 9 pairs 343 

Single point 9 single 576 2 single 68 

 

 

 

 

Figure 9.2 Model match between experiments and simulations in terms of ln(ACR) and RPS (in degrees), 
plotted for a subset of total acquired measurements.  The mean and variance of errors in ln(ACR) were 

estimated as -0.305 and 0.422, respectively, and the mean and variance of errors in RPS (in radians) were 
estimated as 0.068 and 0.149, respectively. 

 

 

iterations started to increase (see Figure 9.3).  Hence, reconstructions were performed 

using the convergence criterion of iterating until a maximum of 20 iterations were 

reached, and not based on the decrease in RMSE.  The mean output error, evaluated as  



 195

 

 

Figure 9.3 Convergence plot for the single 0.5 cc target experimental case under perfect uptake case.  
Based on the convergence criterion, the reconstructions terminated after the 2nd iteration (dotted vertical 

line) due to an increase in the errors, and the reconstructions were carried out until 20 iterations were 
reached. 

 

 

the root mean square error (RMSE) for the 20 iterations are shown in Figure 9.3 for 

different P values.   

 Reconstructed images were analyzed for the different initial P cases and both the 

convergence criteria used during reconstructions.  From all the reconstructions 

performed under varying initial P values and different convergence criteria, it was 

observed that the target volume as well the reconstructed µaxf value increased with an 

increase in the initial guess of the P value.  Based on our different experimental studies, 
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in most experiments with a perfect uptake optical contrast condition, P=0.001 provided a 

reasonably good reconstructed image of the phantom even in the current experimental 

case. Hence, contour slices of the true and reconstructed phantom obtained using both 

the convergence criteria are presented in Figure 9.4 for the initial guess of P=0.001.  

With an increase in the initial guess of P, the reconstructing parameter µaxf reached the 

upper bound value (µaxf = 0.8 cm-1) set in the pseudo-beta transforms during image 

reconstructions, although in most reconstructions, the centroid of the reconstructing 

target was close to the true centroid.  Future work will involve in determining a better 

method of choosing the initial guess of P, and thus remove the arbitrary approach that is 

employed in the current reconstructions.      

From the contour slices of the reconstructed image shown in Figure 9.4, we 

observe that the target was reconstructed successfully without any artifacts using the first 

convergence criterion, when the reconstructed terminated after 2nd iteration.  When the 

reconstructions were carried out for 20 iterations, there were artifacts around the 

reconstructed target, making it difficult to accurately locate the target from the contour 

slices.  Evaluating the target volume and centroid location from experimental data using 

an iso-surface cut-off value for µaxf based on the break between modes in the histogram 

(Figure 9.5) of the reconstructed µaxf (see Table 9.3).  Based on the results obtained, we 

observe that the choice of the convergence criterion also plays an important role in 

reconstructing the correct target volume and location.   

From the above experimental study, we observe that the reconstructed target’s 

centroid was ~ 1 cm off from the true centroid location of the target.  The excitation  
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(a)(a)

(b)(b)

(c)(c)

 

Figure 9.4 Contour slices in the y-plane of the (a) actual phantom containing a single 0.5 cc target, with no 
ICG in the background (b) reconstructed phantom using the first convergence criterion of < 1% RMSE or 

a maximum iterations of 50, and (c) reconstructed phantom using the second convergence criterion of 
maximum 20 iterations.  In both the reconstruction cases, P=0.001, µaxf = 0.001 cm-1. 
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(a) (b)(a) (b)

 

Figure 9.5 (a) Histogram of the reconstructed parameter, µaxf (absorption coefficient due to the 
fluorophore) cm-1 for the experimental case containing a 0.5 cc target at 1:0 absorption optical contrast 
ratio and located ~ 2 cm deep, (b) Histogram of the same experimental case zoomed in the y-axis and 

plotted using 500 bins. 

 

 

Table 9.3 Details of the reconstructed images using both the convergence criteria (for P=0.001) for a 
single 0.5 cc target located 2 cm deep under perfect uptake case. 

Centroid 
Convergence 

criterion 

µaxf cut-

off value 

(cm-1) 
X(cm) Y(cm) Z(cm) 

Integrated 

µaxf (cm2) 

Volume 

(cm3) 

Distance 

off (cm) 

Actual casea -- -0.5 -2.5 1.55 0.15 0.5 -- 

< 1% RSME or 

max. 50 

iterations 

0.4 -0.6 -3.0 2.4 0.35 0.57 1.0 

20 iterations 0.5 -0.6 -3.2 1.9 0.18 0.25 0.78 
     aActual case: Details of actual target location and its optical properties during experiments 

 

 

leakage of the imaging system was high, limiting the current ICCD camera from 

collecting weak fluorescent signal from small and deeply embedded targets.  Hence 
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further measurements using small volume targets located deeper than 2 cm were not 

attempted using the current ICCD imaging system. 

 

9.3 Multiple small volume target study (Experiment # 2) 

  
 In this study, three small volume (0.5-0.6 cc) targets were located between 1.2-

1.4 cm deep from the hemispherical surface of the phantom.  Only the single point 

illumination measurement geometry was applied, since the current experiment was first 

of its kind towards multiple small volume target study.  For the current study, 0.5-0.6 cc 

spherical targets (custom made from Pyrex glass at Chemistry Glass Blowing Shop, 

Texas A&M University) with an aspect ratio of one were employed, unlike the previous 

studies employing cuboid shaped 0.5 cc targets (1x1x0.5 cm3), whose aspect ratio was 

not equal to one.  For small volume targets with aspect ratio not equal to one, the 

orientation of the target with respect to the point of excitation source illumination plays 

an important role in acquiring fluorescence measurements with adequate signal strength.  

Hence, for multiple small volume target studies, spherical targets were used in order to 

avoid any possible decrease in the total number of fluorescence measurements acquired 

with adequate signal strength.  The targets used in the experiments are shown in Figure 

9.6.   
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(a) (b) (c)(a) (b) (c)

 

(d)(d)

 

Figure 9.6 Actual targets used in the experimental studies (a) 1x1x1 cm3 target made from clear plastic. It 
was used in depth studies, (b) 0.5x1x1 cm3 target made from clear plastic. It was used in single small 

volume target study, and (c) ~ 0.5 cm radius spherical target made from Pyrex glass. (d) Suspension of the 
three targets in multiple target detection experiment, using optical fibers for support.  The plate holding the 

targets helps position the targets precisely in the xyz coordinates. 

 

Table 9.4 Acquired measurements for the multiple target experimental case (Expt # 2). 

Illumination 
geometry 

# of source 
combinations 

used 

# of 
measurements 

acquired 

# of source 
combinations 
after filtering 

# of 
measurements 

used in 
reconstructions 

Single point 25 single 1728 10 single 286 

 

 

Excitation leakage was observed in the current study as well, and hence the 

fluorescence measurements were filtered at two stages, similar to that performed in the 

previous study (see Section 9.2).  Details of the total number of measurements acquired 

and that used during reconstructions after filtering are provided in Table 9.4. 
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9.3.1 Model match and measurement errors 

 A reasonably good model match was observed between referenced experiments 

and simulations.  Comparison plots of ln(ACR) and RPS between experiments and 

simulations are provided in Figure 9.7, along with the mean and variance in the model 

mismatch errors.  Measurement errors were also evaluated from the five repeated 

measurements (rep=5).  The mean of the variance in repeated measurements was 

observed to be 0.002 and 0.092 in logarithmic AC and phase shift (in radians), 

respectively. 

 

9.3.2 Image reconstructions 

 Image reconstructions were performed using the AEKF algorithm and employing 

the similar finite element mesh (6956 nodes) as in the previous reconstructions cases.  

The initial guess of the reconstructing parameter (µaxf) was chosen as 0.001 cm-1 and the 

reconstructions were performed for different initial guesses of P (0.001, 0.01, and 0.1), 

but presented for a single case of P value.  Here the upper and lower bound limits of µaxf, 

[µaxf,lower, µaxf,upper] and µamf, [µamf,lower, µamf,upper] were set to [0, 1.5] cm-1 and [0.009, 

0.21] cm-1, respectively, during the pseudo-beta transforms, since the concentration of 

the fluorophores in the targets were 2.5 times higher than their concentration in earlier 

experiments, thus increasing the upper bounds limits of µaxf and µamf above the  
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Figure 9.7 Comparison plots between referenced measurements and simulations (using coarse finite 
element mesh) in terms of ln(ACR) and RPS (in degrees), plotted for a subset of the total measurements 

acquired.  The mean and variance of errors in ln(ACR) were 0.108 and 0.558, respectively.  Similarly, the 
mean and variance of errors in RPS (in radians) were 0.062 and 0.080, respectively. 

 

 

previously set upper limits of 0.8 cm-1 and 0.11 cm-1, respectively.  The reconstructions 

converged and convergence plot is shown in Figure 9.8.  Note that in all these 

reconstructions, the reconstruction parameter was assumed constant in the cylindrical 

portion of the breast phantom and the reconstructions were only performed in the 

hemispherical portion of the breast phantom. 

Discretization of the finite element mesh affected the reconstruction of all the 

three small volume targets.  When a coarsely discretized phantom with 6956 nodes 

(termed as coarse mesh) was employed, one of the three targets was not completely  
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Figure 9.8 Convergence plots of the multiple target experiment, using coarse and fine mesh during image 
reconstructions. 

 

 

(a) (b)

(d) (e)

(c)

(f)

(a) (b)

(d) (e)

(c)

(f)

 

Figure 9.9 y-x and y-z planar views of the actual breast phantom (a,d), reconstructed breast phantom using 
coarse mesh (b,e) and reconstructed breast phantom using fine mesh (c,f).  Three targets of 0.5~0.6 cc 
volume were used in the actual breast phantom of ~1087 cc volume and illuminated using single point 

illumination geometry.  All the reconstructions were performed using initial guess of P=0.001and 
µaxf=0.001 cm-1. 
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reconstructed and appeared as an artifact (see Figure 9.9b), although the reconstructions 

converged.  However, when a fine discretized phantom with 18105 nodes (termed as fine 

mesh) was employed and reconstructions were performed under similar initial conditions 

as that used for the coarsely discretized phantom, the three targets were distinctly located 

without any artifacts, although the perturbation of the fluorescent signal originated from 

the three small targets, which contributed to less than 0.6 % of the hemispherical portion 

of the breast phantom volume (262 cm3) (see Figure 9.9c) [126].  This result could 

possibly be attributed to the level of finite element mesh discretization, wherein the 

distance between two consecutive nodes in the mesh, if equivalent to the radius of the 

target, could reduce the probability of reconstructing the target.  In addition, the 

reconstructed target that appears more as an artifact in a coarsely discretized phantom 

was located farther away from all the point illuminations (or sources), thus contributing 

towards a weaker fluorescent signal during image reconstructions in either of the 

discretized phantoms.  It is noteworthy that these breast phantom studies that attempt to 

mimic the multifocality of lesions within the breast are preliminary and future work will 

assess the significance of discretization for detecting small volume targets. 

Quantitative details of the image quality of the reconstructed images are 

tabulated in Table 9.5 and 9.6 for the coarse and fine mesh used during reconstructions, 

respectively.  Each target’s volume and location were evaluated by setting an iso-surface 

cut-off value for µaxf based on the break between modes in the histogram of the 

reconstructed µaxf (Figure 9.10), in each quadrant of the hemispherical phantom that  
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(a) (b)

(d)

(f)(e)

(d)

(a) (b)

(d)

(f)(e)

(d)

 

Figure 9.10 Histograms of reconstructed parameter, µaxf (absorption coefficient due to the fluorophores) 
for the multiple small volume target experiment, under perfect uptake conditions. µaxf distribution obtained 
in the finely discretized phantom is plotted separately for regions (a,b) x<0 & y<0, (c,d) y>0, and (e,f) x>0 
& y<0.  (b,d,f) are the same histograms of (a,c,e), respectively, but zoomed in y-axis and plotted using 500 

bins. 
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Table 9.5 Details of the reconstructed images in the multiple small volume target study, using the coarsely 
discretized phantom (for P=0.001). 

Target 
True 

centroid 
(cm) 

Region of 
interest 

 

Max  µaxf  
region 
(cm-1) 

µaxf 
cut-off 
value 

Volume 
(cm3) 

Integrated 
µaxf (cm2) 

 

Distance 
off (cm) 

Reconstructed 
centroid (cm) 

1 [-1 -3 

1.8] 

x<0 & 

y<0 

0.11 0.03 0.42 0.03 0.50 [-1.1 -3.0 

2.3] 

2 [-1 2 

2.9] 

y>0 1.07 0.22 0.30 0.25 0.28 [-1.1 2.2 2.8] 

3 [2 -1 3] x>0 & 

y<0 

1.08 0.4 0.24 0.24 0.12 [2.1 -1.1 3.0] 

 

 

 
Table 9.6 Details of the reconstructed images in the multiple small volume target study, using the finely 

discretized phantom (for P=0.001). 

Target 
True 

centroid 
(cm) 

Region of 
interest 

 

Max 
 µaxf  

region 
(cm-1) 

µaxf 
cut-off 
value 

Volume 
(cm3) 

Integrated 
µaxf (cm2) 

 

Distance 
off (cm) 

Reconstructed 
centroid (cm) 

1 [-1 -3 

1.8] 

x<0 & 

y<0 

0.41 0.02 0.13 0.02 0.61 [-1.3 3.1 2.3] 

1 [-1 -3 

1.8] 

x<0 & 

y<0 

0.41 0.05 0.07 0.02 0.59 [-1.3 -3.1 2.3] 

2 [-1 2 

2.9] 

y>0 1.48 0.2 0.15 0.18 0.35 [-1.4 2.3 3.0] 

3 [2 -1 3] x>0 & 

y<0 

1.37 0.2 0.18 0.19 0.33 [2.1 -1.3 3.2] 
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showed a possible target in the reconstructed images (see Figures 9.9b,c).  From Table 

9.6, we observe that even a small variation in the iso-surface cut-off value for µaxf 

impacted the evaluated target volume, but not the reconstructed centroid of the target 

location.   

In addition, the reconstructed images were plotted by setting the iso-surface cut-

off values based on the contour levels of the µaxf distribution, whereas the quantitative 

analysis of the target volume was based on the break between modes in the histograms 

of the µaxf distribution.  It was not possible to plot the reconstructed images based on the 

individual iso-surface cut-off values for each of the three targets, and hence the target 

size appearing in the reconstructed images (Figures 9.9b,c) do not match with the 

quantitatively evaluated target volume given in Table 9.5 and 9.6.   

 

9.4 Summary 

 
 Tomographic studies using small volume single and multiple targets have been 

demonstrated from two experimental studies performed under perfect uptake conditions.  

From these studies we infer the following:  

(i) A single 0.5 cc target located 2-cm and deeper could not be precisely reconstructed 

in terms of its location.  Although a single target was reconstructed without any 

artifacts, the target was reconstructed closer to the phantom surface (in terms of its 

depth) in comparison to its true location, similar to our observations in depth studies, 

when a 1 cc target was located 3 cm deep under imperfect uptake conditions.   
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(ii) Owing to the faint fluorescent signal collected at the tissue surface from small 

volume targets located in non-fluorescing background, the “noise” floor attributed to 

excitation light leakage through conventional optical interference filters, remains the 

limiting factor in detecting deeply embedded small volume targets.  For example, the 

excitation light that reaches the end of a fiber optic is at least 3-4 orders of 

magnitude higher than the fluorescent signal collected in our studies.  Rejection of 

excitation light with interference filters with “typical” optical densities of 4-5 will 

result in a high “noise” floor and limit the sensitivity of detecting deep or weakly 

fluorescing lesions, as observed from our depth studies (Section 8).  While FDPM 

measurements alleviate the “noise floor” owing to ambient light [12] in comparison 

to time-domain, or CW measurements, excitation light leakage remains a limitation 

of the technique. 

(iii)Discretization may be significant in locating small volume targets, as observed from 

the multiple small volume target study.  A finely discretized phantom located the 

targets more distinctly over a coarsely discretized phantom although at the cost of 

computational time and memory requirements during image reconstructions.  Hence, 

development of alternate methods such as adaptive finite element meshing and 

boundary element methods are currently in progress (at PML and University of 

Vermont), in order to overcome the discretization problems. 

(iv) The current studies performed towards detecting single small volume targets and 

multiple small volume targets that mimic the multi-focality of lesions in a clinical 

situation, were carried out under perfect uptake conditions only.  Future work will 



 209

involve similar experiments under imperfect uptake conditions, where fluorophores 

are also present in the background. 

Following the absorption contrast studies performed under varying target depths 

(1-3 cm deep), target volumes (0.5-1 cc), absorption optical contrast ratios (1:0 and 

100:1), and number of targets (1-3), fluorescence lifetime contrast experiments were 

carried out in the following major section. 
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10. PRELIMINARY LIFETIME STUDIES 

 

Studies performed so far were related to the target:background optical contrast in 

the absorption coefficient due to the fluorophore (µaxf) between the target and the 

background using a single fluorescing agent (ICG).  Here, experiments were performed 

with a contrast in the lifetime of the fluorescing dye between the target and the 

background, along with the absorption contrast.  Two different fluorescing agents with 

varying fluorescence lifetime (ICG and DTTCI) were used in the target and the 

background.  Details of the lifetime-based experiments and data analysis performed are 

described in this chapter. 

Before performing the lifetime studies, the effect of using DTTCI as the 

fluorescing contrast agent was analyzed, since the dye was unstable, unlike ICG which 

was stabilized using polyaspartic acid. 

 

10.1 Effect of the unstable DTTCI on lifetime studies 

 
The ability to acquire fluorescence measurements with adequate signal using the 

unstable DTTCI dye was assessed by performing an absorption contrast study using 

DTTCI.  Here 1 µM of DTTCI in 1% Liposyn was used in the 1cc target, which was 

located ~1 cm deep from the phantom surface, in order to perform experiments under 

perfect uptake conditions (similar to that performed using ICG as the fluorescing dye as 

described in Section 7).  Fluorescence measurements were acquired from many single 
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point excitation sources from the hemispherical surface of the phantom.  Some of 

measurements were repeated at the end of data acquisition in order to determine any 

decrease in the fluorescent intensity, which may occur due to the unstable nature of 

DTTCI.  No significant decrease in the fluorescent intensity was observed during the 

entire time of data acquisition (which was less than one hour).  Also, a good model 

match was observed between the referenced measurements and simulations from the 

forward model.  The reconstructions performed using µaxf as the unknown parameter 

converged in 30 iterations and the target was located successfully without any artifacts, 

as shown in Figure 10.1.  From this preliminary study, we can conclude that DTTCI can 

be applicable for performing absorption contrast studies and thus even the lifetime 

studies, since the dye remained stable during the entire data acquisition time.  However, 

if the total data acquisition time increases enormously, the instability in the dye may 

affect the acquired fluorescence measurements, and hence the image reconstructions. 

 

10.2 Experimental parameters for lifetime studies 

 
Experiments were performed using ICG and DTTCI, alternately in the target and 

the background, providing a fluorescence lifetime contrast along with the absorption 

contrast.  In all the lifetime-based studies, 1 cc volume target filled with either of the two 

dyes and 1% Liposyn solution was located approximated 1 cm deep from the 

hemispherical phantom surface, and the background phantom was filled with the second  
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(a) (b)

(d)(c)

(a) (b)

(d)(c)

 

Figure 10.1 x-y and x-z planar views of the actual breast phantom (a,c), and the reconstructed breast 
phantom using coarse mesh (b,d).  A single target of 1.0 cc volume was used in the actual breast phantom 
of ~1087 cm3 volume and illuminated using single point illumination geometry.  Reconstructions shown 

here are for µaxf as unknown parameter performed with initial guess of P=0.001, µaxf=0.001 cm-1.  The iso-
surface cut-off value was chosen as µaxf=0. 1 cm-1. 

 

 

 

Table 10.1 Experimental conditions in lifetime studies using ICG and DTTCI fluorescing contrast agents. 

Expt Illumination 
geometry 

φ•µaxf  
contrast 

τ 
contrast 

# of 
sources 
used 

# of 
measurements 
acquired 

# of measurements 
used in 
reconstructions 

DTTCI in 
target 

Single 
sources 

150:1 2:1 24 1856 = 
(15+14)*64 

1068 

ICG in 
target 

Single 
sources 

150:1 1:2 24 1728 = 
(15+14)*64 

1044 
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dye and 1% Liposyn solution.  Details of the measurement illumination geometry, the 

fluorescence yield (φ•µaxf) and lifetime contrast ratios used, and the number of 

fluorescence measurements acquired are given in Table 10.1.  The quantum efficiency of 

the two dyes was different and thus, by considering the optical contrast in terms of 

fluorescence yield (instead of µaxf alone), there is consistency in comparing the total 

number of fluorescence molecules emitted from the target to that from the background.  

Optical properties of the target and the background phantom in each experiment are also 

tabulated (see Table 10.2). 

 

10.3 Model match and measurement errors 

 
The referenced fluorescence measurements were compared to the simulations 

from the forward model and the comparison plots for both the experimental cases are 

provided in Figures 10.2 and 10.3, respectively. 

 

 

 
Table 10.2 Optical properties in the fluorescence lifetime contrasted experimental studies. 

DTTCI in target ICG in target Parameter Target Background Target Background 
µaxi (cm-1) 0.023 0.023 0.023 0.023 
µaxf (cm-1) 0.211 0.003 0.448 0.002 
µami (cm-1) 0.029 0.029 0.029 0.029 
µamf (cm-1) 0.027 0.0005 0.076 0.0003 
µ’

sx (cm-1) 9.99 9.99 9.99 9.99 
µ’

sm (cm-1) 9.67 9.67 9.67 9.67 
τ (sec) 1.18x10-9 0.56x10-9 0.56x10-9 1.18x10-9 

φ 0.034 0.016 0.016 0.034 
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Figure 10.2 Comparison plot of ln(ACR) and RPS (in deg)for the experiment with 150:1 absorption 
optical contrast and 2:1 lifetime optical contrast (i.e. DTTCI in target).  A random subset of the total 

number of detections is presented here. 

 
 
 

 
Figure 10.3 Comparison plot of ln(ACR) and RPS (in deg) for the experiment with 150:1 absorption 

optical contrast and 1:2 lifetime optical contrast (i.e. ICG in target).  A random subset of the total number 
of detections is presented here. 
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Table 10.3 Mean and variance of errors in the model match comparison of ln(ACR) and RPS in both the 
lifetime studies. 

ln(ACR) RPS (radians) 
Experiment  φ•µaxf  

contrast 
τ 

contrast Mean Variance Mean Variance 

DTTCI in 
target 150:1 2:1 0.132 0.686 -0.131 0.043 

ICG in 
target 150:1 1:2 0.157 0.585 -0.032 0.031 

 

 

 

Table 10.4 Measurement error (mean of variance) in ln(ACR) and RPS for both the lifetime studies. 

Experiment φ•µaxf  
contrast τ contrast Mean[σ2(ln(AC))] Mean[σ2(θ)]  

(radians) 

DTTCI in 
target 150:1 2:1 0.0026 0.022 

ICG in target 150:1 1:2 0.0021 1.231 
 
 

 

From the plots, we observe a good model match in RPS compared to the model 

match in RPS when there was no lifetime contrast.  This is due to the enhanced phase 

contrast obtained from the lifetime difference between the target and the background, 

which in turn improved the strength of the measured signal.  The mean and variance of 

errors in terms of ln(ACR) and RPS are given in Table 10.3. 

The measurement error was also evaluated and provided in Table 10.4.  In 

comparison to absorption contrast studies under imperfect uptake conditions of a target 

located ~ 1cm deep, the measurement error was relatively smaller, especially in phase.  
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The phase contrast increases due to the lifetime contrast present between the target and 

the background, probably accounting for the decrease in the measurement error as well. 

 

10.4 Image reconstructions using µaxf as the reconstructing parameter 

 
Reconstructions on lifetime studies can be performed using two different 

approaches: (i) reconstructing on both  µaxf and fluorescence parameters (τ and φ) 

simultaneously, or (ii) reconstructing on  µaxf and fluorescence parameters (τ and φ), 

sequentially.  Currently, the AEKF reconstruction algorithm is set to work using only the 

µaxf as the unknown parameter assuming that the rest of the optical parameters as known 

quantities.  Hence, as an initial step in lifetime studies, we assumed that the second 

approach of sequentially reconstruction of  µaxf and (τ+φ) is feasible and thus perform 

reconstructions on  µaxf.  In these reconstructions, with  µaxf as the unknown parameter, 

the fluorescing lifetime and the quantum efficiency was assumed constant and equal to 

the lifetime of the fluorescing agent present in the background.  Reconstructions were 

performed with an initial guess in  µaxf = 0.001 cm-1 and different initial guesses of P 

(0.001, 0.01, and 0.1).  The measurements were filtered at only at individual detector 

level, where only measurements whose modulation depth was greater than 0.025 were 

included during reconstructions (see last column of Table 10.1).  Since fluorescence was 

present in the target and the background (similar to imperfect uptake case), 

measurements could not be filtered based on the excitation light leakage.   
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The reconstructions converged in both the experimental cases and the convergence plots 

for reconstructions for initial guess of P=0.001 are presented in Figure 10.4.  In the 

experimental case, where DTTCI was located in the target, the target was reconstructed 

very close to its true location with no artifacts as shown in Figure 10.5.  However, in the 

case where ICG was present in the target and DTTCI was present in the background, 

many artifacts were observed in the reconstructed phantom, enhancing the difficultly in 

locating the target visually (see Figure 10.6).  Quantitative estimates of the target volume 

and location are provided in Table 10.5 for both the experimental conditions.  

 
 
 
 

 

Figure 10.4 Convergence plots in reconstructions performed using µaxf as the unknown parameter in both 
the lifetime studies.  During reconstructions, initial guess of µaxf and P was assumed equal to 0.001 cm-1 

and 0.001, respectively. 
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(a)(a) (b)(b)

 

Figure 10.5 Contour slices in the x-plane (between <-5, 5>cm) of the (a) actual phantom, and (b) 
reconstructed phantom when DTTCI was present in the target and ICG was present in the background.  

During reconstructions, τ =0.56  nsec, φ = 0.016 was assumed constant for the entire phantom. 

 

 

 

 

(a)(a)

 

(b)(b)

 

Figure 10.6 Contour slices in the x-plane (between <-5, 5>cm) of the (a) actual phantom, and (b) 
reconstructed phantom when ICG was present in the target and DTTCI was present in the background.  

During reconstructions, τ =1.18  nsec, φ = 0.034 was assumed constant for the entire phantom. 
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Table 10.5 Image quality of the actual and reconstructed phantoms for both the lifetime experiments, when 
P = 0.001 and  µaxf = 0.001 cm-1 are the initial guesses during reconstructions. 

Centroid Experimental 
case 

µaxf cut-
off value 

(cm-1) 
X(cm

) 
Y(cm

) Z(cm) 
Integrated 
µaxf (cm2) 

Volume 
(cm3) 

Distance 
off (cm) 

Actual case for 
2:1 τ contrast -- 2.5 -1.5 2.2 0.21 1.0 -- 

Reconstructed 
2:1 τ contrast 0.15 2.4 -1.4 2.7 0.13 0.13 0.53 

Actual  case for 
1:2 τ contrast -- 2.5 -1.5 2.2 0.45 1.0 -- 

Reconstructed 
1:2 τ contrast 0.01 0.5 -1.2 2.9 0.08 4.1 2.13 

 
 

 

10.5 Summary 

 
From these preliminary reconstructions with µaxf as the reconstructing parameter, 

we observe that when the lifetime contrast was 2:1 in the real system, the measurements 

reconstructed to locate the target very close to its true location.  Hence, using the 

reconstructed µaxf values as the initial guess for µaxf distribution, we could possibly 

reconstruct on τ and φ. Thus the second approach for reconstructing µaxf and (τ+φ) seems 

feasible when the lifetime was greater in the target over the background (2:1).  However, 

from the reconstructions with 1:2 lifetime contrast, the artifacts mask the location of the 

target, thus making the sequential reconstruction approach not feasible.  Although, more 

work needs to be performed in terms of (i) performing more experiments under varying 

experimental conditions and validating our preliminary conclusions from the current 

studies, and eventually (ii) modifying the AEKF algorithm to accommodate both the 
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reconstruction approaches required to perform reconstructions on µaxf and (τ +φ) of the 

fluorescing agents.  

Here, preliminary lifetime studies were performed in order to determine the 

model match and also evaluate the measurement errors during experimentation, for 

future reconstruction studies on lifetime.   
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11. HOMOGENEOUS PHANTOM STUDIES 

 

Experimental studies presented thus involved the presence of single or multiple 

targets of varying volume, depth, and optical contrast ratio (both in absorption 

coefficient due to the fluorophore, µaxf and fluorescence lifetime, τ).  All these studies 

were performed in order to indicate the true positive rate (that is, detect targets when 

they are actually present) of the ICCD imaging system.  In the current study, 

experiments were performed under homogeneous (or no target) conditions of the 

phantom in order to evaluate the false positive rate (that is, detect the absence of targets) 

of the ICCD imaging system. 

 Homogenous phantom studies performed under two different experimental 

conditions will be described herein in terms of their model match comparisons and 3-D 

image reconstructions. 

 

11.1 Homogeneous phantom study (Experiment # 1) 

 
 The first homogeneous phantom study (experiment # 1) was carried out in the 

absence of targets.  The entire phantom was filled with 0.01 µM fluorescing agent (ICG) 

in 1% Liposyn solution (Figure 11.1).  The optical properties of the homogeneous 

background are given in Table 11.1.  Fluorescence measurements were acquired along 

the entire hemispherical surface of the phantom using single point illumination and point 

collection measurement geometry and the details are provided in Table 11.2.  
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Figure 11.1 x-y plot of the homogeneous phantom study (Experiment # 1) in the absence of targets. 

 
 
 
 
 

Table 11.1 Optical properties of the background phantom during the homogeneous phantom study 
(Experiment # 1). 

Optical 
Properties 

 

Background 
(Expt # 1) 

µaxf+µaxi (cm-1) 0.003+0.023 
µsx (cm-1) 9.99 

µamf+µami (cm-1) 0.0005+029 
µsm (cm-1) 9.67 
τ (nsec) 0.56 

φ 0.016 
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Table 11.2 Experimental conditions of the homogeneous phantom study (Experiment # 1). 

Expt # of source 
combinations 

# of acquired 
measurements 

# of 
measurements 

used in 
reconstructions 

1 23 1472 787 

 

 

 

11.1.1. Model match and measurement errors 

 A good model match was observed between fluorescence measurements and 

simulations as shown in Figure 11.2.  The corresponding model mismatch errors and the 

measurement errors (obtained from five repeated measurements, rep=5), are provided in 

Table 11.3 and 11.4, respectively.   

 

11.1.2. Image reconstructions 

Image reconstructions were performed assuming initial guess of 0.001 cm-1 and 

0.001 for µaxf and parameter error covariance (P) constant for the entire phantom.  As 

mentioned in earlier major sections, there is no definite method yet in choosing the 

initial P, and work is continuously in progress to determine a better way to estimate the 

initial guess for parameter error covariance (P).  In these reconstructions, measurements 

whose modulation depth was < 0.025 were not included during inversions (see last 

column of Table 11.2).  The convergence curves and the reconstructed image, which is 

presented as contour slices along the y-axis, are shown in Figures 11.3 and 11.4, 

respectively. 
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Figure 11.2 Model match between experiments and simulations in terms of ln(ACR) and RPS (in deg)for 

Expt # 1 in the homogeneous studies, plotted for a subset of measurements from the total number of 
acquired measurements.  

 

 

Table 11.3 Model mismatch errors in ln(ACR) and RPS for the homogeneous phantom study  

(Experiment # 1). 

ln(AC Ratio) Relative phase shift (RPS) 
(radians) Expt Measurement 

geometry Mean Variance Mean Variance 

1 Single sources 0.126 0.590 -0.114 0.120 
 

 

 

Table 11.4 Measurement errors for the homogeneous phantom study (Experiment # 1). 

Expt 
 

Measurement 
geometry Mean[σ2(ln(AC))] Mean[σ2(θ)]  

(radians) 
1 Single sources 0.0030 0.053 
2 Single sources 0.0026 0.041 
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Figure 11.3 Convergence plot for homogeneous phantom study (Experiment # 1). 

 

From the contour-sliced plot, we observe that the reconstructed parameter, µaxf 

(absorption coefficient due to the fluorophores) was not homogeneous (or uniform) 

throughout the entire phantom, but was higher at different regions in the phantom.   

Although the regions of higher µaxf values were not confined to a particular 

location, such that the confined location can be considered as a potential target, these 

higher µaxf valued regions were observed almost throughout the hemispherical portion of 

the phantom where fluorescence measurements were acquired.  However, it is not 

certain that each region of increased µaxf values (also termed as artifact) with respect to 

the background is a potential target.  In order to validate that the observed artifact may 

not be a potential target, a second experiment under different experimental conditions 

was carried out and is presented in the following section.   
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µaxf (cm-1)µaxf (cm-1)

 

Figure 11.4 Contour slices in y-plane of the reconstructed image corresponding to the homogeneous 
phantom (Experiment # 1).  

 

 

11.2 Homogenous phantom study (Experiment # 2) 

 
 Unlike the homogeneous phantom study (experiment # 1) in which no target was 

present during the experiment, the current phantom study involved a single 1 cc target 

located  in a single quadrant of the hemispherical portion of the breast phantom (~ 1 cm 

deep from the hemispherical surface with its centroid at <2.5, -1.5, 2.2>cm) (see Figure 

11.5). 
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ZONE 2 (y<0)

ZONE 1 (y>0)

ZONE 2 (y<0)

ZONE 1 (y>0)

 

Figure 11.5 x-y plot of the homogeneous phantom study (Experiment # 2), containing a single 1 cc target 
(red square) located in zone 2 (y<0) region.  Zone 1 (y>0), which is the region above the dotted line, is 

considered homogeneous. Zone 2 (y<0), which is the region below the dotted line, is considered 
heterogeneous (that is, target present case).   

 

 

Although an optical contrast was present between the target and the background, 

the fluorescence measurements acquired farther away from the target’s location did not  

include the perturbation signal generated by the fluorescently contrasted target.  The 

intensity of the perturbation fluorescent signal diminished as it propagated within deep 

tissues (maximum penetration of 10 cm in the current breast phantom), before it was 

detected at the tissue surface, because of the exponentially attenuating nature of the 

propagated light.  In other words, the fluorescence measurements acquired from zone 1 

(y > 0 cm) (see Figure 11.5) may not reconstruct the target located in zone 2 (y < 0 cm), 

because the points of illumination and detection in zone 1 were located farther away 
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from the target.  Hence, the phantom can be considered as a homogeneous phantom in 

zone 1.   

The current homogeneous study was performed in order to analyze: (i) if the 

fluorescence measurements acquired only from zone 1 reconstructed a homogeneous 

phantom or was indeed capable of locating the target located in zone 2; and (ii) if the 

fluorescence measurements acquired from both zone 1 and 2 showed any artifacts apart 

from possibly detecting the true target location.  This study may possibly help in 

differentiating between artifacts and truly reconstructed targets. 

 

11.2.1. Experimental parameters 

 Herein, the homogeneous background was filled with 0.01 µM fluorescing agent 

(ICG) in 1% Liposyn solution.  The 1 cc volume target, located in the zone 2 region (see 

Figure 11.5) was filled with a fluorescing agent (DTTCI), with an optical contrast of 

150:1 in its fluorescence yield (φ•µaxf) (same experiment as described in Section 10.2).  

The optical properties of the target and the homogeneous background are given in Table 

11.5.  Note that the background optical properties in the current experimental study 

(experiment # 2) were similar to the optical properties of the previous homogeneous 

phantom study (experiment # 1).  Fluorescence measurements were acquired using the 

single point illumination geometry.  The details are provided in Table 11.6.   
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Table 11.5 Experimental conditions of homogeneous phantom studies (Experiment # 2). 

Expt Expt type # of source 
combinations 

# of 
acquired 

measuremen
ts 

# of measurements 
used in 

reconstructions 

2 Zone 1 alone  13 832 484 

2 
Entire phantom 
(zone 1 + zone 

2) 
24 1856 1068 

 
 
 

 

Table 11.6 Optical properties of the target and the background in the homogeneous phantom study 
(Experiment # 2). 

Optical 
Properties 

 
Target Background 

µaxf+µaxi (cm-1) 0.211+0.023 0.003+0.023 
µsx (cm-1) 9.99 9.99 

µamf+µami (cm-1) 0.027+0.029 0.0005+0.029 
µsm (cm-1) 9.67 9.67 
τ (nsec) 1.18 0.56 

φ 0.034 0.016 
 

 

 

11.2.2. Model match and measurement errors  

 A good model match was observed between experiments and simulations for the 

fluorescence measurements acquired in zone 1 (Figure 11.6).  The corresponding model 

mismatch errors and measurements errors were evaluated for the fluorescence 

measurements in zone 1 and are given in Tables 11.7 and 11.8, respectively.  A good 

model match was also observed when all the fluorescence measurements acquired from  
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Figure 11.6 Model match between experiments and simulations in terms of ln(ACR) and RPS for zone 1 

of the homogeneous phantom study (Expt # 2), plotting a subset of measurements from the total number of 
acquired measurements. 

 
 
 
 

Table 11.7 Model mismatch errors in ln(ACR) and RPS for zone 1 of homogeneous phantom study 
(Experiment # 2). 

ln(AC Ratio) Relative phase shift (RPS) 
Expt Measurement 

geometry Mean Variance Mean Variance 

2 (zone 1 
only) Single sources 0.178 0.607 -0.110 0.042 

 

 

 

Table 11.8 Measurement errors for zone 1 of homogeneous phantom study (Experiment # 2). 

Expt Measurement geometry Error in ln(AC) Error in θ 
2 (zone 1 only) Single sources 0.0026 0.041 
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both zone 1 and 2 were analyzed together (see Figure 10.2), and the corresponding 

model mismatch errors and measurements errors were presented earlier (Section 10.2). 

 

11.2.3. Image reconstructions 

 Image reconstructions for experiment # 2 were performed under two different 

cases: (i) case 1, in which fluorescence measurements were acquired only from zone 1 of 

the breast phantom; and (ii) case 2, in which fluorescence measurements were acquired 

from the entire phantom (zone 1 and zone 2).  In both the cases (case 1 and 2), 

reconstructions were performed using similar initial guesses in µaxf (0.001 cm-1) and P 

(0.001) as in the reconstructions in experiment # 1.  In these reconstructions as well, 

measurements whose modulation depth was < 0.025 were not included during inversions 

(see last column of Table 11.5).   

Case 1:  Reconstructions from case 1 converged (Figure 11.7) and the reconstructed 

images are plotted as contour slices in y-axis, as shown in Figure 11.8a.  Similar to the 

artifacts observed in the previous homogenous phantom study (experiment # 1), artifacts 

(or regions of higher µaxf values) were observed in case 1 of the current homogeneous 

phantom study (experiment # 2).  In addition, the artifacts appear throughout zone 1 of 

the phantom, whose fluorescence measurements were used in case 1 of the image 

reconstructions.  

Case 2: The reconstructions for case 2 converged (Figure 11.7) and a distinct confined 

region of higher µaxf values was observed at the true location of the target (see Figure 

11.8b), unlike many regions of higher µaxf values (or artifacts) that were observed in case  
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Figure 11.7 Convergence curves for the homogeneous phantom study (Experiment # 2) for both cases 

using initial P =0.001 and initial µaxf = 0.001 cm-1.  Case 1 was reconstructed using data only from zone 1 
and case 2 was reconstructed.  

 

 

1 (see Figure 11.8a).  In addition, the maximum value of the reconstructed µaxf in case 2 

(0.4736 cm-1) was almost 10 times higher than the maximum value of µaxf in case 1 

(0.0456 cm-1).  The fluorescence measurements acquired from the boundary surface 

locations closer to the true target location in case 2 caused an enhanced perturbation of 

the fluorescence signal, thus masking the presence of any artifacts that were observed in 

case 1.  However, the enhanced perturbation does not imply that the artifacts observed in 

case 1 of the reconstructions disappeared, but were in fact masked due to the contour 

level range of the acquired image.  This can be demonstrated from Figure 11.9, where 

the reconstructed images from case 1 and case 2 were plotted with respect to their actual  
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Figure 11.8 Contour slice in y-plane of the reconstructed µaxf distribution in experiment # 2 for (a) case 1, 

where only measurements from zone 1 were used in the reconstructions, and (b) case 2, where 
measurements from entire phantom were used in the reconstructions.   

 

 

 

reconstructed contour limits ([0.001, 0.0456] cm-1 and [0.001, 0.4736] cm-1, 

respectively),   and with respect to the contour limits observed in the alternate case (that 

is, contour limits from case 1 reconstructions were applied to case 2 reconstructions and 

vice-versa).  From the contour plots in Figure 11.9, we observe that artifacts in zone 1 

appear or disappear based on the contour limits set to the reconstructed images.  Hence 

differentiation of the artifacts from truly reconstructed targets is limited by the image 

assessing technique. 
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Figure 11.9 Contour slices in y-plane of reconstructed µaxf distribution in experiment # 2 for reconstruction 

case 1 (a,c), and reconstruction case 2 (b,d).  The contour limits for (a,b) was [0.0001 0.0456] cm-1 and 
contour limits for (c,d) was [0.0001 0.4736] cm-1. 

 

 

11.3. Summary 

 
From the two different homogeneous experimental studies (experiment # 1 and 

2), we observe that artifacts (or regions of higher µaxf values) are present throughout the 

regions from where fluorescence measurements were acquired.  However, in the 
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presence of a true target, these widely spread artifacts are masked due to the enhanced 

perturbation generated by the true target.  Yet, the method of differentiating artifacts 

from true targets in a reconstructed image is an image assessment problem.  Based on 

the raw reconstructed images, it is incorrect to conclude about the target locations before 

assessing the quality of images.  In addition, in real clinical situations, it is difficult to 

compare the images using the two reconstruction cases as mentioned above.  Thus, 

image quality assessment is very crucial in differentiating between true and false targets, 

and may be implemented as a part of the future work.  
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12. PLANAR SOURCE STUDIES 

 

Fluorescence-enhanced optical tomography studies presented so far involved the 

use of large volume tissue-mimicking phantoms, where single or dual point illumination 

and multiple point collection measurement geometry was employed in order to acquire 

fluorescence measurements from the phantom surface and thus perform 3-D image 

reconstructions under varying experimental conditions.  Alternately, in this study, area 

illumination and area detection measurement geometry was employed in order to 

perform image reconstructions from reflectance fluorescence measurements acquired a 

large volume cubical phantom.   

The studies performed using the area illumination/area detection measurement 

geometry towards tomographic reconstructions was carried out for the first time at 

Photon Migration Laboratory.  The dual point illumination geometry when extended to 

multiple point illumination geometry through closely placed optical fibers mimic the 

area (or planar) illumination geometry (see Figure 12.1).  The advantages of area 

illumination/area detection measurement geometry include the following: (i) no optical 

fibers are required to illuminate or collect the light signal from the phantom surface, but 

the phantom surface can be illuminated directly via an expanded laser beam, (ii) dense 

measurements can be obtained rapidly from the region of interest via the ICCD camera, 

without the use of optical fibers that could possibly limit the density of measurements, 

and (iii) successful 3-D reconstructions using the current measurement geometry has  
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Figure 12.1 Different measurement geometries (a) Sequential point illumination of single excitation 
sources using optical fibers, (b) Simultaneous point illumination of two excitation sources using optical 

fibers, (c) Simultaneous point illumination of multiple excitation sources using optical fibers, and (d) Area 
illumination using an expanded beam of excitation source.  (c) and (d) are equivalent, if each point of 

illumination in the area illumination is assumed to be an individual optical fiber. 

 

 

greater potential for designing a hand-held probe towards clinical studies such as 

sentinel lymph node mapping, where only reflectance measurements can be acquired. 

 The current work is a group effort, with experimental work performed by Dr. A. 

Thompson [51-52], and image reconstructions performed by Dr. Ranadhir Roy [127].  

As a part of my project, the finite-element based forward model that was developed for 

our major studies using the breast phantom was modified for the current imaging system 

and the model match between experiments and simulations was assessed before image 

reconstructions were performed.   
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Herein, the instrumentation details, experimental procedure, and model match 

studies will be described.  Preliminary 3-D image reconstructions performed by Dr. Roy 

will also be provided in order to demonstrate the feasibility of the new measurement 

geometry imaging technique for future clinical applications.  

 

12.1 Phantom details and instrumentation 

 
Large cubical phantoms of 8 × 8 × 8 cm3 volume were used to perform 

fluorescence-enhanced optical tomography using fluorescence measurements from the 

top surface of the phantom using the area illumination and area detection measurement 

geometry.  Here, the measurement geometry did not involve any optical fibers to 

illuminate or collect the light signal.  An expanded beam of NIR light was launched over 

a given area on the top surface of the cubical phantom and the emitted fluorescent signal 

from the same illuminated area was imaged directly using an ICCD detection system.  

The phantom was filled with 1% Lipsoyn solution and a 1 cc cubical cuvette was used to 

represent the target.  ICG was used as the fluorescing agent and experiments were 

performed under varying conditions of target depth (1 and 2 cm deep), and 

target:background optical contrast ratios (1:0, 100:1, 50:1, and 10:1).   

 The instrumentation set-up was similar to that used for the breast-phantom 

system, with modifications to incorporate the current measurement geometry (see Figure 

12.2).  Modulated light at 100 MHz was launched from a 70-mW laser diode (Model 

DL7140-201, Thorlabs Inc., Newton, NJ) onto the top surface of the cubical phantom as  
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Figure 12.2 Instrumentation set-up for area illumination/area detection measurement geometry, using a 

cubical phantom of 8x8x8 cc volume. 

 
 

 

an expanded beam of ~ 4 cm diameter.  The emitted fluorescent signal around the area of 

illumination was acquired via a 50-mm AF Nikon lens by the photocathode of the image 

intensifier (Model FS9910C, ITT Night Vision, Roanoke, VA).  The photons at the 

photocathode were converted to electrons, amplified at the photocathode, and 

reconverted back to photons of a particular wavelength at the phosphor screen.  The 

photons were in turn imaged by the CCD camera (Model S1512B, Series AT200, 

Photometrics Ltd., Tucson, AZ), which was lens coupled to the phosphor screen of the 

image intensifier.  The laser diode and the photocathode of the image intensifier were 

modulated at same frequency of 100MHz (homodyne detection scheme) using two 
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different oscillators, which were phase locked using a 10 MHz reference signal.  Steady-

state images were acquired in a similar manner as in the breast-phantom imaging system, 

by introducing phase delays between the two oscillators and thus performing FFT in 

order to obtain amplitude and phase at each detection point.  The CCD array was 

discretized into a 128x128 pixelated 2-D array and the acquired data was stored at these 

discrete points, although the data represented the entire detected area (~ 4cm diameter).  

Detailed description of the instrumentation is provided elsewhere [51-52,100] and the 

experimental work was performed by Dr. Thompson at PML. 

 

12.2 Forward problem formulation 

 
 The coupled diffusion equations were used to represent the excitation and 

emission of the fluorescent signal during light propagation in a turbid medium.  The 

finite-element formulation for the current system was similar to that described in Section 

5, except for the formulation of the excitation source term in the coupled diffusion 

equations (Equations (3.1) and (5.9)).   

Representation of the source term in Equation (5.9) can change based on the 

measurement geometry employed.  Point illumination excitation source was represented 

as  

 

( )∑
=

−=
n

i
srrSS

1

rrδ     (12.1) 
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where, rs is the positional vector of the illuminating point, δ is the dirac delta function 

representing the excitation source as a single point and n is the total number of point 

illuminations (n=1 for single point illumination, and n=2 for dual point illumination).  

For the area illumination geometry, the area of the planar source is discretized into a 

number of triangular elements and each source element (Sel) can be represented as a 

linear approximation of the source values at the nodes corresponding to the surface 

element. 

  

i
i

iel SLS ∑
=

=
3

1
     (12.2) 

 

where, Li is the x-y-z  coordinates and Si is the source value at each node (i) of the 

triangular element.  Based on the type of elements used to discretize the phantom surface 

the number of nodes (i) corresponding to each element varies.  If the discretization were 

fine, then the source area could possibly be approximated as the summation of multiple 

point sources as shown in Equation (12.1), where n is the total number of nodes 

representing the entire discretized source area.  The effect of representing the source 

terms using either of the two methods was also analyzed and presented in Section 12.4.1. 

 

12.3 Experimental parameters 

 
Experiments were performed under varying target:background optical contrast 

ratios (1:0, 100:1, 50:1, and 10:1) and target depths (1-2 cm deep) using 1cc volume 
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target and ICG as the fluorescing contrast agent.  From all these experimental studies, 

only a single case is presented here as an example, in order to demonstrate model match 

between measurements and predictions from the finite-element based forward model, 

and hence present 3-D image reconstructions performed using the current measurement 

geometry.  The optical properties of the experiment performed under target:background 

contrast ratio of 100:1 using a single 1cc volume target located ~ 1 cm deep from the top 

surface of the phantom, is given in Table 12.1.   

 The data acquisition time varied with the integration time of the CCD camera 

(0.2 to 1 sec), number of phase delays acquired (here, 32), and the total number of 

repetitions (10 in this case) of each steady-state images.  The CCD camera used for the 

current studies was a full frame transfer system, meaning that a single 512x512 array is 

sequentially used for data acquisition and storage.  Thus the integration time set on the 

CCD camera does not reflect directly in estimating the total data acquisition time.  Also 

the data acquisition rate for each source illumination using the current 16-bit full frame 

CCD camera is slow in comparison to the data acquisition rate for a single source 

illumination using the 12-bit frame transfer CCD camera that was used in breast 

phantom studies.  However, since the focus of the current study was to demonstrate the 

feasibility of tomographically imaging using the area illumination/area detection 

geometry, the data acquisition rate was not highly significant.   
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Table 12.1 Optical parameters for imperfect uptake absorption contrast ratio (100:1) experiment using ICG 
as the contrast agent. 

Parameter Target Background 

µaxi (cm-1) 0.023 0.023 

µaxf (cm-1) 0.30 0.0030 

µami (cm-1) 0.027 0.027 

µamf (cm-1) 0.051 0.00051 

µ’
sx (cm-1) 10.5 105 

µ’
axi (cm-1) 9.7  9.7 

τ (sec) 0.56x10-9 0.56x10-9 

φ 0.016×0.68 0.016 

 

 

 

Here, fluorescent images were acquired for a single area illumination of the expanded 

excitation source and the acquired fluorescent measurements (total of 3194 

measurements) were referenced with respect to the detection pixel in the 128x128 array 

that has the maximum AC intensity.  Finite-element mesh using tetrahedral elements of 

varying degrees of discretization was generated (see Figure 12.3) and the simulated data 

from different meshes were compared to referenced measurements in order to evaluate 

the effect of discretization on the model mismatch.  Simulations using finite difference 

based forward model were performed in earlier studies [46-47,101] and its discretization 

details are provided along with the discretization details of two different finite-element 

based meshes (that vary in their degree of discretization) in Table 12.2.  A study was 

also performed to assess the effect of representing the planar area source as multiple  
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(a)(a)

 

(b)(b)

 

Figure 12.3 Discretized cubical phantom using tetrahedral finite elements (Mesh 1 of Table 12.2) (a) 
Entire phantom (b) top surface of the phantom, where the interior square is the region of area illumination 

and area detection. 

 

 

 

Table 12.2 Finite-element (FE) and finite difference (FD) mesh details for the cubical phantom (8x8x8 cc 
volume). 

Parameter Finite element  
Mesh 1 

Finite element  
Mesh 2 (fine) 

Finite difference 
mesh 

Nodes 24356 28007 4276737 
Total elements 136587 156616 4194304 

Surface elements 17578 20736 163840 
Interior elements 119009 135880 4030464 
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point sources in the finite-element formulation of the forward model (using one of the 

finite-element meshes). 

 

12.4 Results and discussion 

 
The acquired fluorescence measurements using the above described imaging 

system were compared with respect to the simulations obtained from the Fortran-based 

forward model that was developed as a part of my project.  The effect of formulating the 

excitation source term in the area illumination geometry was assessed along with the 

effect of 3-D finite element mesh discretization and the results are described in the 

following section. 

 

12.4.1 Effect of area source versus multiple point sources 

 Approximation of the area (planar) source term (given by Equation (12.2)) by 

multiple point sources (Equation (12.1)) during the finite-element based forward model 

formulation are compared with the referenced measurements in order to assess the effect 

of the source term formulation.  The results are presented for Mesh 2 of the finite-

element discretization, where the distance between adjacent nodes in the region of 

interest (region of illumination and detection) was 0.0625.  The simulated ln(ACR) and 

RPS using either of the two source formulations were compared to the referenced 

measurements, as shown in Figure 12.4.  From these plots, we observe that the model 

mismatch error in ln(ACR) and RPS was similar for either of the two source 

formulations.  The model mismatch errors are provided in the Table 12.3 (first two  
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Figure 12.4 Effect of plane source versus multiple point sources in forward model simulations, in 
comparison to the experimental data, in terms of (a) ln(ACR), (b) Relative error in ACR (%), (c) Zoomed 
ACR error plot for a subset of detectors, (c) RPS (deg), (e) Absolute error in RPS (deg), and (f) Zoomed 

ACR error plot  for a subset of detectors. 

 

 

 

rows).  There was no significant effect in model match when the area source was 

approximated by multiple point sources, probably due to fine level of discretization in 

the region of interest.  Hence, further studies on model match were performed using the 

multiple point source approximation of the area-illuminated source. 
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12.4.2 Effect of finite-element discretization on the model match  

 The referenced measurements were compared to the simulations obtained using 

the two different meshes (Mesh 1 and Mesh 2, given in Table 12.2).  In both the finite 

element meshing schemes, the level of discretization in the region of interest was 

identical and equal to 0.0625 as the distance between consecutive nodes.  The difference 

was in the level of discretization in the region around the region of interest and also 

along the depth of the phantom.  Simulations using either of the two meshes were 

compared to measurements (see Figure 12.5).  Here, the simulated data was obtained 

using multiple point source formulation in the finite-element forward solution. 

From the comparison plots, it is observed that simulations using Mesh 2 (with 

finer discretization over Mesh 1) provided a better model match with respect to the 

referenced measurements (given by ln(ACR) and RPS) over the model match using 

Mesh 1.  The mean and variance of model mismatch errors are given in Table 12.3 in 

order to quantitatively compare the effect of discretization.  Here, the model match 

errors using the FD mesh are also provided as a comparison between FE and FD 

approaches of the forward model formulation.  From these results, we observe that 

discretization of the mesh plays significant role in reducing model mismatch errors 

between experiments and simulations, although at the cost of computational time in 

solving for the forward model.  In comparison to the FD mesh (4276737 unknowns), 

which has more than 150% of unknowns compared to the fine FE mesh (Mesh 2 

containing 28007 unknowns), the model match errors are not significantly lower using a 

uniformly discretized finer FD mesh.  Thus, employing a FE mesh with lesser number of 
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Table 12.3 Model mismatch errors in ln(ACR) and RPS between measurements and simulations obtained 
using two different finite-element meshes and a finite-difference mesh. 

ln(ACR) RPS (in radians) Simulated 
mesh Source formulation 

Mean Variance Mean Variance 
FE Mesh 2 Planar source 0.16 0.02 1.43 1.78 
FE Mesh 2 Multiple point sources 0.16 0.02 1.42 1.76 
FE Mesh 1 Multiple point sources 0.26 0.04 2.17 4.03 
FD mesh Multiple point sources 0.18 0.04 1.07 0.72 
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Figure 12.5 Model match comparison plots between two finite-element meshes (of varying discretization) 
and the experimental data, in terms of (a) ln(ACR), (b) Relative error in ACR (%), (c) Zoomed ACR error 
plot for a subset of detectors, (c) RPS (deg), (e) Absolute error in RPS (deg), and (f) Zoomed ACR error 

plot  for a subset of detectors.  
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unknowns in comparison to the FD mesh, not only reduces the computational time, but 

also reduces the ratio of the number of measurements to the number of unknowns, thus 

reducing the ill-posedness of the inverse problem. 

 

12.5 Image reconstructions 

 
Three-dimensional image reconstructions were performed by Dr. Roy using 

contrained truncated Newton’s method [89-90].  The rate of convergence during the 

iterative image reconstruction scheme and the accuracy of the reconstructions were 

improved by incorporating a modified penalty/Barrier method developed by Polak [128] 

for constrained optimization problems.  The modified Barrier method was shown to have 

a finite convergence as opposed to an asymptotic one, providing expeditious recovery of 

parameter maps.  Details of the reconstruction algorithm are beyond the scope of this 

dissertation, and hence only preliminary image reconstructions are presented here to 

demonstrate the feasibility of reconstruction using the current measurement geometry. 

 Three-dimensional image reconstructions for the experimental case described in 

the Section 12.3 are given in Figure 12.6.  From the contour slices of the 3-D cubical 

phantom in the y-plane, we observe qualitatively that the 1 cc volume target was 

reconstructed close to its true location, with minimal artifacts around the target.   

 Preliminary studies using the planar illumination geometry were successful and 

demonstrated for the first time at PML [51-52,102,127].  Work is in progress in 

performing model match and 3-D image reconstructions on various data sets that were 

acquired under different experimental conditions [101,47].   
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Figure 12.6 (a) Contour slices along the y-plane of actual cubical phantom, representing the true location 
of the 1cc target located 1cm deep from the top surface. (b) Contour slices along the y-plane of the 

reconstructed phantom, representing the reconstructed location of the target. 
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13. CONCLUSIONS AND FUTURE WORK 

 

Future diagnostic and prognostic breast imaging with NIR must be focused 

towards molecular targeting of single and multiple lesions.  To realize these future goals, 

simultaneous development of (i) fluorescence-enhanced optical imaging systems using 

clinically relevant phantom systems and different possible measurement geometries, and 

(ii) reconstruction algorithms to solve for the highly ill-posed inversion problem, where 

sparse surface measurements are used to determine the 3-D interior optical property 

maps must be undertaken.   

A novel fluorescence-enhanced optical imaging system was developed using 

clinically relevant breast-shaped phantoms (~ 1087 cc) and a gain-modulated intensified 

CCD (ICCD) camera for rapid data acquisitions.  The feasibility for 3-D optical 

tomographic imaging of single and multiple, fluorescently contrasted lesions from 

boundary surface measurements of re-emitted fluorescent light generated by micromolar 

concentrations of a non-specific contrast agent (ICG) are demonstrated.   

Boundary surface referenced measurements of amplitude and phase shift in the 

frequency-domain were used along with the coupled diffusion equations in order 

tomographically reconstruct 3-D images of µaxf (absorption coefficient due to the 

fluorophores) using approximate extended Kalman filter (AEKF) algorithm.  Single 1 cc 

volume targets were located with good precision up to 2 cm deep from the phantom 

surface under absorption contrast ratios of 1:0 and 100:1.  Single and multiple small 

volume (0.5-0.6 cc) targets located ~ 1.2-1.5 cm deep under perfect uptake absorption 
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contrast ratio (1:0) were also detected in the breast phantom without any artifacts.  These 

studies demonstrate for the first time the feasibility of tomographically reconstructing 

large 3-D phantoms of clinical relevance, and using different geometries. 

Phantom studies performed using clinically relevant breast volumes (using point 

illumination/point collection geometry) foresee a direct translation into clinical 

diagnostic imaging of the breast tissue by molecularly targeting the metastatic spread of 

lesions or early stage lesions using the systemic, i.v. (intravenous) injected fluorescent 

contrast agent.  The technology also holds a promise for assessing the multi-focality of 

lesions using targeted agents.  The feasibility of employing dual point illumination 

measurement geometry in breast phantoms can be easily translated into simultaneous 

multiple point illumination geometry for clinical feasibility trials, prior to which the 

sensitivity and specificity of this imaging modality must be assessed using different 

phantom models. 

The preliminary semi-infinite phantom studies using area illumination/area 

collection geometry presented herein has paved an opportunity in performing prognostic 

imaging of the sentinel lymph and also locating nodes for surgical resection.  Although 

the initial clinical feasibility trials are undergoing using a non specific and blood pooling 

contrast agent (ICG), parallel feasibility studies are currently performed to develop and 

assess the performance of tumor-specific contrast agents through small animal studies 

[129].   

Unlike established, conventional imaging modalities such as nuclear, magnetic 

resonance imaging (MRI), positron emission tomography (PET), and computed 
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tomography (CT), NIR optical imaging with fluorescent contrast requires the 

simultaneous introduction of both the contrast agent (drug) and the imaging system 

(device) into the clinic.  Indeed, the Food and Drug Administration (FDA) requires the 

simultaneous approval of a combinational Investigational New Drug (IND) and an 

Investigational Device Exemption (IDE) application for clinical translation.  The current 

optical imaging studies using clinically relevant sized phantoms have demonstrated the 

feasibility of the fluorescence-enhanced imaging technology using ICG as the contrast 

agent, which is FDA approved for the indications of assessing hepatic function and 

retinopathy. 

However, several limitations hinder the rapid translation to the clinic.  First and 

foremost, owing to the faint fluorescent signal collected at the tissue surface, the “noise” 

floor attribute-able to propagated excitation light that leaks through conventional optical 

interference filters remains the critical factor for determining the maximum depth and 

minimal contrast required for detection of lesions.  For example, the excitation light that 

reaches the end of a fiber optic is at least 3-4 orders of magnitude higher than the 

fluorescent signal collected in our studies.  Rejection of excitation light with interference 

filters with “typical” optical densities of 4-5 will result in a high “noise” floor and limit 

the sensitivity of detecting deep or weakly fluorescing lesions.  While FDPM 

measurements alleviate the “noise floor” owing to ambient light [12], the modulated 

excitation light leakage remains a limitation of the technique.  Furthermore, 3-D 

inversion of data from large volumes remains computationally intensive, despite recent 

advances in algorithm development and implementation (16,111,118).  Finally, the 
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development of NIR excitable probes conjugated to targeting and reporting agents are 

paramount for fluorescence enhanced optical tomography.   

 Hence future work needs to be performed in overcoming the current limitations 

and modifying the current fluorescence-enhanced optical imaging system for clinical 

applications. 

 

13.1 Future work 

 
 Future work towards translating fluorescence-enhanced optical imaging into the 

clinic includes: (i) modifications in the current optical imager towards a robust imaging 

system;  (iii) improvement in reconstruction algorithm towards computationally efficient 

and arbitrary-free data analysis; (iii) analysis of specificity and sensitivity of the optical 

imager towards the evaluation of receiver operator characteristic (ROC) statistics; and 

(iv) development of non-toxic, patient-safe, tumor-specific contrast agents towards 

enhanced optical contrast and detection of early stage tumors.  A schematic of the future 

work with efforts towards the clinical translation of the fluorescence-enhanced optical 

imaging technology is given in Figure 13.1. 

 

13.1.1. Modifications in the current optical imaging system 

The current optical imager has limitations in terms of (i) excitation light leakage, (ii) 

outdated CCD camera and image intensifier models, (iii) sparse point illumination 

locations on the phantom surface, and (iv) slow data acquisition rates due to the use of 

two interfacing plates.  Since the feasibility of fluorescence-enhanced optical 
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Figure 13.1 Flowchart of the future direction of the current work towards clinical translation of the 
technology. 

 

 

tomography has been demonstrated for the first time in the current work, future work 

towards the clinical translation of the technology requires modifications in the current 

imaging set-up in order to acquire precise measurements from deeply located targets at 

further enhanced data acquisition rates.  These modifications include: 

(i) Development of alternate techniques to overcome the excitation leakage in order to 

improve the ability of detecting weak fluorescent signals generated from deeply 

located small volume targets.  Initial efforts will involve the development of 

customized interference filters, which can reject the excitation light completely, 

without affecting the transmission efficiency of the weak fluorescent signal.  The 

ability to collect signal from 100 femtomoles of ICG at tissue depths of 4 cm and 

greater [12] needs to be effectively translated to clinical breast imaging. 
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(ii) Replacement of the current 12-bit CCD camera of the ICCD detection system with a 

new latest generation 16-bit CCD camera due to its deterioration on prolonged use as 

well as its inefficiency in providing precise measurements.  The new 16-bit frame 

transfer CCD camera acquires data at the same speed as the current 12-bit bit frame 

transfer CCD camera, but with an improved resolution and precision in the acquired 

images. 

(iii)Replacement of the current Gen III image intensifier with the latest image intensifier 

(filmless tube) in order to alleviate the problem of image retention as well as 

improve the amplification of the weak fluorescent signal. 

(iv) Inclusion of more source fibers on the phantom surface, in order to increase the 

density of acquired measurements as well as the probability of detecting small 

volume targets. 

(v) Feasibility studies employing dual point illumination geometry were demonstrated in 

the current work and are encouraging towards employing multiple point illumination 

measurement geometry.  The illumination of excitation light from multiple points 

interrogates a relatively large portion of the tissue volume also increasing the 

probability of detecting small volume targets.  Dense multiple point illuminations 

mimic the area illumination geometry, whose reconstructions have already been 

demonstrated as a preliminary step.  The employment of multiple point illumination 

geometry can be achieved using different techniques: (a) custom-built optical switch 

wherein the laser diode source light is split into required number of multiple sources 

and launched onto the phantom surface (Figure 13.2a), or (b) expanded laser diode 
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light, where the expanded beam is focused onto a fiber optic bundle that launches the 

excitation light onto the phantom surface (Figure 13.2b).  Of the two multiple point 

illumination techniques, the latter technique is more practical and easy to implement, 

since the source strength can be characterized using the already development 

methods that were demonstrated in the area illumination studies [51-52]. 

(vi)  The current optical imager uses two interfacing plates to image all the 128 collection 

fibers located around the hemispherical surface of the breast phantom.  The data 

acquisition rates can be enhanced by positioning all the 128 collection fibers on to a 

single interfacing plate or by using a fiber bundle containing 128 collection fibers, 

without compensating for the image resolution.  Replacing the current 12-bit CCD 

camera with the new 16-bit CCD camera will maintain the image resolution even for 

greater areas of detection.  In addition, the use of a fiber bundle can overcome the 

problem of signal loss caused by proximity focused imaging of the interfacing plate.  

 

Based on all the suggested modifications to the current optical imaging system, 

the future imaging system could possibly resemble the schematic provided in Figure 

13.3. 
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Figure 13.2  Different methods to illuminate the phantom surface using simultaneous multiple point 
excitation sources using (a) an optical switch that splits the input laser beam into multiple optical fibers, or 

using (b) expanded laser beam focused onto a fiber bundle of optical fibers. 

 
 
 
 
13.1.2. Improvement in reconstruction algorithm 

The AEKF algorithm employed for reconstructions uses arbitrary methods to 

determine the model error covariance (Q) and the initial parameter error covariance (P).  

Work is currently in progress to determine alternate and more robust methods of 

estimating these covariance matrices and thus make the reconstruction algorithm 

applicable to various experimental conditions.  New approaches that may further 

improve computational efficiency, such as adaptive meshing and use of the boundary 

element method are also currently under investigation at PML and at University of 

Vermont (collaborators).    
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Figure 13.3 Future set-up of the ICCD imaging system towards clinical translation of the technology. 

 

 

 

13.1.3. Analysis of specificity and sensitivity of the optical imager 

The success of any imaging modality in clinic depends on its sensitivity and 

specificity, or in other words, the receiver operator characteristic (ROC) curves.  The 

accuracy and precision of the images in terms of the target location/size will be analyzed 
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under various experimental conditions and the overall sensitivity and specificity of the 

developed 3D imaging system will be evaluated in terms of the receiver operator 

characteristic (ROC) statistics.  ROC analysis will provide a means to assess the current 

imaging system and tomographic algorithm with respect to the currently available 

imaging modalities. 

 

13.1.4. Development of tumor-specific contrast agents 

With the demonstration of clinically relevant phantom studies, there is an 

increased motivation for innovations in NIR agent development.  Small animal studies 

using mice are currently carried out at MD Anderson Cancer Center as a collaborative 

effort with Photon Migration Laboratory (PML), towards development of NIR contrast 

agents that have a greater affinity to the tumor cells. 

In summary, future development critically depends upon overcoming the current 

limitations and implementing the suggested modifications in order to enable clinical 

translation of the technology for detecting early stage and small volume lesions located 

at greater depths using lower concentrations of the fluorophores.   



 261

REFERENCES 

 
1. R. Weissleder, U. Mahmood, “Molecular imaging,” Radiology 219, 316-333 

(2001).  

2. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. 

Mantulin, M. Seeber, P. M. Schlag, M. Kaschke, “Frequency-domain techniques 

enhance optical mammography: Initial clinical results,” Proceedings of National 

Academy of Science USA 94, 6468-6473 (1997). 

3. S. Fantini, S. A. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag, K. T. 

Moesta, “Assessment of the size, position, and optical properties of breast tumors 

in vivo by noninvasive optical methods,” Applied Optics 37, 1982-1989 (1998). 

4. K. T. Moesta, S. Fantini, H. Jess, S. Totkas, M. A. Franceschini, M. Kaschke, P. 

M. Schlag, “Contrast features of breast cancer in frequency-domain laser scanning 

mammography,” Journal of Biomedical Optics 3, 129-136 (1998). 

5. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, P. M. Schlag, 

“Development of a time-domain optical mammograph and first in vivo 

applications,” Applied Optics 38, 2927-2943 (1999). 

6. S. B. Colak, M. B. van der Mark, G. W. 't Hooft, J. H. Hoogenraad, E. S. van der 

Linden, F. A. Kuijpers, “Clinical Optical Tomography and NIR Spectroscopy for 

Breast Cancer Detection,” IEEE Journal of Selected Topics in Quantum 

Electronics 5, 1143-1158 (1999). 



 262

7. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. 

Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-

infrared spectroscopy: Pilot results in the breast,” Radiology 218, 261-266 (2001). 

8. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-

dimensional optical tomographic imaging of breast in a human subject,” IEEE 

Transactions on Medical Imaging 20, 1334-1340 (2001). 

9. D. J. Hawrysz, E. M. Sevick-Muraca, “Developments toward diagnostic breast 

cancer imaging using near-infrared optical measurements and fluorescent contrast 

agents,” Neoplasia 2, 388-417 (2000). 

10. K. Licha, “Contrast agents for optical imaging,” Top Curr Chem 222, 1-29 (2002). 

11. M. Gurfinkel, S. Ke, X. Wen, C. Li, E. M. Sevick-Muraca, “Near-infrared 

fluorescence optical imaging and tomography,” Disease Markers (in press) (2003). 

12. J. P. Houston, A. B. Thompson, M. Gurfinkel, E. M. Sevick-Muraca, “Sensitivity 

and depth penetration of continuous wave versus frequency-domain photon 

migration near-infrared fluorescence contrast-enhanced imaging,” Photochemisty 

and Photobiology 77, 420-430 (2003). 

13. V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence 

reconstruction of diffuse media by use of a normalized Born approximation,” 

Optics Letters 26, 893-895 (2001). 

14. V. Ntziachristos, R. Weissleder, “Charge-coupled-device based scanner for 

tomography of fluorescent near-infrared probes in turbid media,” Medical Physics 

29, 803-809 (2002). 



 263

15. D. J. Hawrysz, M. J. Eppstein, J. Lee, E. M. Sevick-Muraca, “Error consideration 

in contrast-enhanced three-dimensional optical tomography,” Optics Letters 26, 

704-706 (2001). 

16. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, E. M. Sevick-Muraca, “Three-

dimensional near-infrared fluorescence tomography with Bayesian methodologies 

for image reconstruction from sparse and noisy data sets,” Proceedings of National 

Academy of Science USA 99, 9619-9624 (2002). 

17. J. Lee, E. M. Sevick-Muraca, “3-D Fluorescence enhanced optical tomography 

using references frequency-domain photon migration measurements at emission 

and excitation measurements,” Journal of Optical Society of America A 19, 759-

771 (2002). 

18. M. R. Stytz, O. Fieder, “Three-dimensional medical imaging modalities: An 

overview,” Critical Reviews in Biomedical Engineering 18, 1-25 (1990). 

19. S. Akashi-Tanaka, T. Fukutomi, T. Watanabe, N. Katsumata, T. Nanasawa, K. 

Matsuo, K. Miyakawa, H. Tsuda, “Accuracy of contrast-enhanced computed 

tomography in the prediction of breast cancer after neoadjuvant chemotherapy,” 

Int. J. Cancer (Radiat. Oncol. Invest.) 96, 66-73 (2001). 

20. A. Szymanski-Exner, N. T. Stowe, K. Salem, R. Lazebnik, J. R. Haaga, D. L. 

Wilson, J. Gao, “Noninvasive monitoring of local drug release using x-ray 

computed tomography: Optimization and in vitro/in vivo validation,” Journal of 

Pharmaceutical Sciences 92, 289-296 (2003). 



 264

21. M. D. Schnall, “Application of magnetic resonance imaging to early detection of 

breast cancer,” Breast Cancer Research 3, 17-21 (2001). 

22. S. G. Orel, M. D. Schnall, “MR imaging of the breast for the detection, diagnosis, 

and staging of breast cancer,” Radiology 220, 13-30 (2001). 

23. W. A. Kaiser, E. Zeitler, “MR imaging of the breast: Fast imaging sequences with 

and without Gd-DTPA,” Radiology 170, 681-686 (1989). 

24. S. H. Heywang, A. Wolf, E. Pruss, T. Hilbertz, W. Eiermann, W. Permaneter, “MR 

imaging of the breast with Gd-DTPA: Use and limitations,” Radiology 171, 95-103 

(1989). 

25. S. Aime, C. Cabella, S. Colombatto, S. Geninatti, E. Gianolio, F. Maggioni, 

“Insights into the use of paramagnetic Gd(III) complexes in MR-molecular 

imaging investigations,” Journal of Magnetic Resonance Imaging 16, 394-406 

(2002). 

26. A. R. Padhani, “Dynamic contrast-enhanced MRI in clinical oncology: Current 

status and future directions,” Journal of Magnetic Resonance Imaging 16, 407-422 

(2002). 

27. A. Teifke, A. Hlawatsch, T. Beier, T. W. Vomweg, S. Schadmand, M. Schmidt, H-

A Lehr, M. Thelen, “Undetected malignancies of the breast: Dynamic contrast-

enhanced MR imaging at 1.0T1,” Radiology 224, 881-888 (2002). 

28. P. A. Dayton, K. W. Ferrara, “Targeted imaging using ultrasound,” Journal of 

Magnetic Resonance Imaging 16, 363-377 (2002). 



 265

29. H. Leong-Poi, J. Christiansen, A. L. Klibanov, S. Kaul, J. R. Lindner, 

“Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted 

to αv-integrins,” Circulation 107, 455-460 (2003). 

30. M. H. Chaudhari, F. Forsberg, A. Voodarla, F. N. Saikali, S. Goonewardene, L. 

Needleman, G. C. Finkel, B. B. Goldberg, “Breast tumor vascularity identified by 

contrast enhanced ultrasound and pathology: Initial results,” Ultrasonics 38, 105-

109 (2000). 

31. D. Gopalan, J. B. Bomanji, D. C. Costa, P. J. Ell, “Nuclear medicine in primary 

breast cancer imaging,” Clinical Radiology 57, 565-574 (2002). 

32. L. Kostakoglu, H. Agress Jr.,S. J. Goldsmith, “Clinical role of FDG PET in 

evaluation of cancer patients,” Radiographics 23, 315-340 (2003). 

33. J. Dose, C. Bleckmann, S. Bachmann, K. H. Bohuslavizki, J. Berger, L. Jenicke, C. 

R. Habermann, F. Janicke, “Comparison of fluorodeoxyglucose positron emission 

tomography and ‘conventional diagnostic procedures’ for the detection of distant 

metastases in breast cancer patients,” Nuclear Medicine Communications 23, 857-

864 (2002). 

34. J. Czernin, M. E. Phelps, “Positron emission tomography scanning: Current and 

future applications,” Annu. Rev. Med. 53, 89-112 (2002). 

35. N. Avril, C. A. Rose, M. Schelling, J. Dose, W. Kuhn, S. Bense, W. Weber, S. 

Zeigler, H. Graeff, M. Schwaiger, “Breast imaging with positron emission 

tomography and fluorine-18 fluorodeoxyglucose: Use and limitations,” J. Clin 

Oncol 18, 3495-3502 (2000). 



 266

36. C. Rose, J. Dose, N. Avril, “Positron emission tomography for the diagnosis of 

breast cancer,” Nuclear Medicine Communications 23, 613-618 (2002). 

37. F. Berger, S. S. Gambhir, “Recent advanced in imaging endogenous or transferred 

gene expression utilizing radionuclide technologies in living subjects: Applications 

to breast cancer,” Breast Cancer Research 3, 28-35 (2002). 

38. E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, R. Roy, 

“Near-infrared imaging with fluorescent contrast agents” in Handbook of 

Biomedical Fluorescence, eds. Brian W. Pogue and Mary-Ann Mycek, (Marcel 

Dekker Inc., New York, 2003). 

39. H. W. Lim, N. A. Soter, Clinical Photomedicine (Dekker, New York, 1993). 

40. S. Achilefu, R. B. Dorshow, J. E. Bugaj, R. Rajagopalan, “Novel receptor-targeted 

fluorescent contrast agents for in vivo tumor imaging,” Investigation Radiology 35, 

479-485 (2000). 

41. C. H. Tung, U. Mahmood, R. Weissleder, “In vivo imaging of proteolytic enzyme 

activity using a novel molecular reporter,” Cancer Research 60, 4953-4958 (2000). 

42. R. Weissleder, C. H. Tung, U. Mahmood, A. Bogdanov, “In vivo imaging of 

tumors with protease-activated near-infrared fluorescent proves,” Nature 

Biotechnology 17, 375-378 (1999). 

43. T. A. Giambernardi, G. M. Grant, G. P. Taylor, R. J. Hay, V. M. Maher, J. J. 

McCormick, R. J. Klebe, “Overview of matrix metalloproteinase expression in 

cultured human cells,” Matrix Biol 16, 483-496 (1998). 



 267

44. E. M. Sevick-Muraca, J. P. Houston, M. Gurfinkel, “Fluorescence-enhanced, near 

infrared diagnostic imaging with contrast agents,” Current Opinions 6, 642-650 

(2002). 

45. C. Bremer, V. Ntziachristos, R. Weissleder, “Optical-based molecular imaging: 

Contrast agents and potential medical applications,” Eur. Radiol. 13, 231-243 

(2003). 

46. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. 

Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, R. 

Borestsky, “Comparison of time-resolved and –unresolved measurements of 

deoxyhemoglobin in brain,” Proceedings of National Academy of Science USA 85, 

4791-4975 (1988). 

47. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, 

“The determination of in vivo human tissue optical properties and absolute 

chromophore concentrations using spatially resolved steady-state diffuse 

reflectance spectroscopy,” Physics in Medicine and Biology 44, 967-981 (1999). 

48. S. R. Arridge, W. R. B. Lionheart, “Nonuniqueness in diffusion-based optical 

tomography,” Optics Letters 23, 882-884 (1998). 

49. G. Balgi, J. S. Reynolds, R. H. Mayer, R. Cooley, E. M. Sevick-Muraca, 

“Measurements of multiply scattered light for on-line monitoring of changes in 

size distribution of cell-debris suspensions,’ Biotechnology Progress 15, 1106-

1114 (1999). 



 268

50. R. C. Straight, R. E. Benner, R. W. McClane, P. M. N. Y. Go, G. Yoon, J. A. 

Dixon, “Application of charge-coupled device technology for measurement of laser 

light and fluorescence distribution in tumors for photodynamic therapy,” 

Photochemistry and Photobiology 53, 787-796 (1991). 

51. A. B. Thompson, E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-

enhanced imaging with intensified charge-coupled device homodyne detection: 

Measurement precision and accuracy,” Journal of Biomedical Optics 8, 111-120 

(2003). 

52. A. Thompson, D. J. Hawrysz, E. M. Sevick-Muraca, “Near-infrared fluorescence 

contrast-enhanced imaging with area illumination and area detection: The forward 

imaging problem,” Applied Optics 42, 4125-4136 (2003). 

53. S. Folli, G. Wagnieres, A. Pelegrin, J. M. Calmes, D. Braichotte, F. Buchegger, Y. 

Chalandon, N. Hardman, D. G. Heusser, J. C. Givel, G. Chapuis, A. Chatelain, H. 

van Den Bergh, J. P. Mach, “Immunophotodiagnosis of colon carcinomas in 

patients injected with fluoresceinated chimeric antibodies against 

carcinoembryonic antigen,” Proceedings of  National Academy of Science USA 

89, 7973-7977 (1992). 

54. J. C. Finlay, D. L. Conover, E. L. Hull, T. H. Foster, “Porphyrin bleaching and 

PDT-induced spectral changes are irradiance dependent in ALA-sensitized normal 

rat skin in vivo,” Photochemistry and Photobiology 73, 54-63 (2001). 

55. A. Ishimaru. Wave propagation and scattering in random media (Academic Press, 

New York, 1978). 



 269

56. A. Ishimaru, “Diffusion of light in turbid media,” Applied Optics 28, 2210-2215 

(1989). 

57. E. M. Sevick, C. L. Burch, “Origin of phosphorescence signals reemitted from 

tissues,” Optics Letters 19, 1928-1930 (1994).  

58. M .S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and 

frequency-domain fluorescence spectroscopy in biological tissues,” Applied Optics 

33, 1963-1974 (1994). 

59. C. L. Hutchinson, J. R. Lakowicz, E. M. Sevick-Muraca, “Fluorescence life-time 

based sensing in tissues: A computational study,” Biophys. J. 68, 1574-1582 

(1995).  

60. S. L. Jacques, “Light distributions from point, line, and plane sources for 

photochemical reactions and fluorescence in turbid biological tissues,” 

Photochemistry and Photobiology 67, 23-32 (1998). 

61. A. D. Kim, A. Ishimaru, “Optical diffusion of continuous-wave, pulsed, and 

density waves in scattering media and comparisons with radiative transfer,” 

Applied Optics 37, 5313-5319 (1998). 

62. K. M. Yoo, F. Liu, R. R. Alfano, “When does the diffusion approximation fail to 

describe photon transport in random media?” Phys Rev Lett 64, 2647-2649 (1990). 

63. R. C. Haskell, L .O. Scasssand, T-T. Tsay, T-C. Feng, M. S. Mc Adams, B. J. 

Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” 

Journal of Optical Society of America A 11, 2727-2741 (1994).  



 270

64. M. Keijzer, W. M. Star, P. R. M. Storchi, “Optical diffusion in layered media,” 

Applied Optics 27, 1820-1824 (1988). 

65. M. S. Patterson, B. Chance, B. Wilson, “Time resolved reflectance and 

transmittance for the non-invasive measurement of tissue optical properties,” 

Applied Optics 28, 2331-2336 (1989).  

66. A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary 

conditions on the accuracy of diffusion theory in time-resolved reflectance 

spectroscopy of biological tissues,” Physics in Medicine and Biology 40, 1957-

1975 (1995). 

67. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially 

resolved, steady-state diffuse reflectance for the noninvasive determination of 

tissue optical properties in vivo,” Medical Physics 9, 879-888 (1992). 

68. Y. Yao, Y. Wang, Y. Pei, W. Zhu, R. L. Barbour, “Frequency-domain optical 

imaging of absorption and scattering distributions by a Born iterative method,” 

Journal of Optical Society of America A 14, 325-342 (1997). 

69. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, E. M. Sevick-Muraca, 

“Imaging of fluorescent yield and lifetime from multiply scattered light reemitted 

from random media,” Applied Optics 36, 2260-2272 (1997). 

70. B. W. Pogue, M .S. Patterson, H. Jiang, K. D. Paulsen, “Initial assessment of a 

simple system for frequency domain diffuse optical tomography,” Physics in 

Medicine and Biology 40, 1709-1729 (1995). 



 271

71. M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical 

optical tomography using dynamic parameterization and Bayesian conditioning on 

photon migration measurements,” Applied Optics 38, 2138-2150 (1999). 

72. S. R. Fulton, P. E. Ciesielski, W. H. Schubert, “Multigrid methods for elliptic 

problems. A review,” on Weather Rev. 114, 943-959 (1986). 

73. J. C. Adams, “MUDPACK Muligrid portable FORTRAN software for the efficient 

solution of linear elliptic partial differential equations,” Appl. Math. Comp. 34, 

113-146 (1989). 

74. K. D. Paulsen, H. Jiang, “Spatially varying optical property reconstruction using a 

finite element diffusion equation approximation,” Medical Physics 22, 691-701 

(1995).  

75. M. Schqeiger, S. R. Arridge, D. T. Delpy, “Application of the finite element for the 

forward and inverse models in optical tomography,” J. Math. Imag. Vision. 3, 263-

283 (1993). 

76. R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for 

absorption and fluorescence optical tomography: Part I Theory and Formulation,” 

Optics Express 4, 353-371(1999). 

77. E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent 

inhomogeneities in turbid media with spatially resolved measurements of cw 

diffuse luminescence emittance,” Applied Optics 37, 2755-2765 (1998).  



 272

78. M. A. O’Leary, D. A. Boas, B. Chance, A. G. Yodh “Reradiation and imaging of 

diffuse photon density waves using fluorescent inhomogeneities,” J. of 

Luminescence 60 & 61, 281-286 (1994). 

79. J. Wu, Y. Wang, L. Perleman, I. Itzkan, R. R. Dasari, M. S. Feld, “Time-resolved 

multichannel imaging of fluorescent objects embedded in turbid media,” Optics 

Letters 20, 489-491 (1995). 

80. V. Chernomordik, D. Hattery, I. Gannot, A. H. Gandjbakhche, “Inverse method 3-

D reconstruction of localized in vivo fluorescence – application to Sjogren 

syndrome,” IEEE J. on Selected Topics on Quantum Electronics 54, 930-935 

(1999). 

81. J. C. Schotland, “Continuous-wave diffusion imaging,” Journal of Optical Society 

of America A 14, 275-279 (1997). 

82. E. M. Sevick-Muraca, D. L. Heintzelman, J. Lee, T. L. Troy, D. Y. Paithankar, 

“The role of higher order scattering in solutions to the forward and inverse optical 

imaging problems in random media,” Applied Optics 36, 9058-9067 (1997). 

83. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence 

lifetime imaging in turbid media,” Optics Letters 21, 158-160 (1996). 

84. J. Lee, E. M. Sevick-Muraca, “Fluorescence-enhanced absorption imaging using 

frequency-domain photon migration: tolerance to measurement error,” Journal of 

Biomedical Optics, 6, 58-67 (2001). 



 273

85. J. Chang, H. L. Graber, R. L. Barbour, “Improved reconstruction algorithm for 

luminescence when background luminophore is present,” Applied Optics 37, 3547-

3552 (1998). 

86. H. Jiang, “Frequency-domain fluorescent diffusion tomography: A finite-element-

based algorithm and simulations,” Applied Optics 37, 5337-5343 (1998). 

87. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-Muraca, “Three-

dimensional optical tomography,” in Optical Tomography and Spectroscopy of 

Tissue III, B. Chance, R. R. Alfano, B. J. Tromberg eds., Proc. Soc. Photo-Opt. 

Instrum. Eng. 3497, 97-105 (1999). 

88. R. Roy, E. M. Sevick-Muraca, “Truncated Newton’s optimization scheme for 

absorption and fluorescence optical tomography: Part II Reconstruction from 

synthetic measurements,” Optics Express 4, 372-382 (1999).   

89. R. Roy, E. M. Sevick-Muraca, “Active constrained truncated Newton method for 

simple-bound optical tomography,” Journal of Optical Society of America A 17, 

1627-1641 (2000). 

90. R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained 

image-reconstruction techniques applied to fluorescence, frequency-domain photon 

migration,” Applied Optics 40, 2206-2215 (2001). 

91. R. Roy, E. M. Sevick-Muraca, “A numerical study of gradient-based nonlinear 

optimization methods for contrast-enhanced optical tomography,” Optics Express 

9, 49-65 (2001). 



 274

92. R. Roy, A. Godavarty, E. M. Sevick-Muraca, “Fluorescence-enhanced, optical 

tomography using referenced measurements of heterogeneous media,” IEEE 

Transactions on Medical Imaging 22, 824-836 (2003). 

93. J. Chang R. L. Barbour, H. Graber, R. Aronson, “Fluorescence optical 

tomography,” in Experimental and Numerical Methods for Solving Ill-Posed 

Inverse Problems: Medical and Nonmedical Applications, R. L. Barbour, M. J. 

Carvlin, M. A. Fiddy, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2570, 59-72 

(1995). 

94. J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly 

scattering media,” IEEE Transactions on Biomedical Engineering 44, 810-822 

(1997). 

95. J. Wu, L. Perelman, R. R. Dasari, M. S. Feld, “Fluorescence tomographic imaging 

in turbid media using early-arriving photons and Laplace transforms,” Proceedings 

of National Academy of Science 94, 8783-8788 (1997). 

96. Y. Yang, N. Iftimia, Y. Xu, H. Jiang, “Frequency-domain fluorescent diffusion 

tomography of turbid media and in vivo tissues,” in Optical Tomography and 

Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, eds., Proc. 

Soc. Photo-Opt. Instrum. Eng. 4250, 537-545 (2001). 

97. D. T. Delpy, M. Cope, “Quantification in tissue near-infrared spectroscopy,” Phil. 

Trans. R. Soc. Lond. B. 352, 649-659 (1997). 



 275

98. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. 

Arridge, D. T. Delpy, “Three-dimensional time-resolved optical tomography of a 

conical breast phantom,” Applied Optics 40, 3278-3287 (2001). 

99. ITT Industries Night Vision, http://www.ittnv.com/military/generationgap.html, 

browsed in January 2002. 

100. J. S. Reynolds, T. L. Troy, E. M. Sevick-Muraca, “Multipixel techniques for 

frequency-domain photon migration imaging,” Biotechnology Progress 13, 669-

680 (1997). 

101. P. C. Schneider, R. M. Clegg, “Rapid acquisition, analysis, and display of 

fluorescence lifetime-resolved images for real-time applications,” Review of 

Scientific Instruments 68, 4107-4119 (1997). 

102. A. B. Thompson, Detection of a new optical imaging modality for detection of 

fluorescence-enhanced disease, PhD Dissertation, Texas A&M University, College 

Station, May 2003. 

103. A. Kienle, M. S. Patterson, “Improved solution of the steady-state and the time-

resolved diffusion equations for reflectance from a semi-infinite turbid medium,” 

Journal of Optical Society of America A 14, 246-254 (1997). 

104. A. Godavarty, D. J. Hawrysz, R. Roy, E. M. Sevick-Muraca, M. J. Eppstein, 

“Influence of the refractive index-mismatch at the boundaries measured in 

fluorescence-enhanced frequency-domain photon migration imaging,” Optics 

Express 10, 653-662 (2002). 



 276

105. O. C. Zeinkiewicz, R. L. Taylor. The Finite Element Methods In Engineering 

Science (McGraw-Hill, New York, 1989). 

106. J. N. Reddy. An Introduction to the Finite Element Method 2ed. (McGraw-Hill, 

New York, 1993). 

107. Z. Sun, Y. Huang, E. M. Sevick-Muraca, “Precise analysis of frequency domain 

migration measurement for characterization of concentrated colloidal suspensions,” 

Review of Scientific Instruments 73, 383-393 (2002). 

108. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, E. M. Sevick-Muraca, “Three-

dimensional Bayesian optical image reconstruction with domain decomposition,” 

IEEE Transactions on Medical Imaging 20, 147-163 (2000). 

109. M. A. Bartlett, H. Jiang, “Effect of refractive index on the measurement of optical 

properties in turbid media,” Applied Optics 40, 1735-1741 (2001). 

110. B. W. Pogue, S. Geimer, T. O. McBride, S. Jiang, U. L. Osterberg, K. D. Paulsen, 

“Three-dimensional simulation of near-infrared diffusion in tissue: Boundary 

condition and geometry analysis for finite-element image reconstructions,” 

Applied Optics 40, 588-600 (2001). 

111. F. Fedele, J. P. Laible, M. J. Eppstein, “Coupled complex adjoint sensitivities for 

frequency-domain fluorescence tomography: Theory and vectorized 

implementation,” J. of Computational Physics 187, 597-619 (2003). 

112. M. J. Eppstein, D. E. Dougherty, “Simultaneous estimation of transmissivity values 

and zonation,” Water Resources Research, 32, 3321-3336 (1996). 



 277

113. C. Zhang, M.J. Eppstein, A. Godavarty, and E.M. Sevick-Muraca, "A hybrid 

approach to Bayesian image reconstruction", in Optical Tomography and 

Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, E. M. Sevick-

Muraca, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 4955, 591-599 (2003). 

114. C. M. Leevy, F. Smith, J. Longueville, “Indocyanine green clearance as a test for 

hepatic function: Evaluation by dichromatic ear densitometry,” JAMA 200, 236-

240 (1967). 

115. K. Kogure, N. J. David, U. Yamanouchi, E. Choromokos, “Infrared absorption 

angiography of the fundus circulation,” Arch. Ophthalmol. 83, 209-214 (1970). 

116. R. Rajagopalan, P. Uetrecht, J.E. Bugaj, S.A. Achilefu, and R.B. Dorshow, 

"Stabilization of the optical tracer agent indocyanine green using noncovalent 

interactions." Photochemistry and Photobiology 71, 347-350 (2000). 

117. E. M. Sevick-Muraca, G. Lopez, T. Troy, J. S. Reynolds, C. L. Hutchinson, 

“Fluorescence and absorption contrast mechanisms for biomedical optical imaging 

using frequency-domain techniques,” Photochemistry and Photobiology 66, 55-64 

(1997). 

118. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, 

E. M. Sevick-Muraca, “Fluorescence-enhanced optical imaging in large tissue 

volumes using a gain modulated ICCD camera,” Physics in Medicine and Biology 

48, 1701-1720 (2003). 

119. A. Godavarty, E. M. Sevick-Muraca, M. J. Eppstein, C. Zhang, “Fluorescence-

enhanced tomographic imaging in large phantoms using gain-modulated ICCD 



 278

camera,” in Lasers in Surgery: Advanced Characterization, Therapeutics, and 

Systems XIII, L. S. Bass, N. Kollias, R. S. Malek, A. Katzir, U. K. Shah, B. J. 

Wong, E. A. Trowers, T. A. Woodward, W. T. de Riese, D. S. Robinson, H-D. 

Reidenbach, K. D. Paulsen, K. W. Gregory, eds., Proc. Soc. Photo-Opt. Instrum. 

Eng. 4949, 433-443 (2003).  

120. J. M. Schmitt, A. Knuttel, J. R. Knutson, “Interference of diffusive light waves,” 

Journal of Optical Society of America A 9, 1832-1843 (1992). 

121. A. Knuttel, J. M. Schmitt, J. R. Knutson, “Spatial localization of absorbing bodies 

by interfering diffusive photon-density waves,” Applied Optics 32, 381-389 

(1993). 

122. A. Knuttel, J. M. Schmitt, R. Barnes, J. R. Knutson, “Acousto-optic scanning and 

interfering photon density waves for precise localization of an absorbing (or 

fluorescent) body in a turbid medium,” Review of Scientific Instruments 64, 638-

644 (1993). 

123. B. Chance, K. Kang, L. He, J. Weng, E. Sevick, “Highly sensitive object location 

in tissue models with linear in-phase and anti-phase multi-element optical arrays in 

one and two dimensions,” Proceedings of National Academy of Science USA 90, 

3423-3427 (1993). 

124. Y. Chen, C. Mu, X. Intes, B. Chance, “Adaptive calibration for object localization 

in turbid media with interfering diffuse photon density waves,” Applied Optics 41, 

7325-7333 (2002). 



 279

125. A. Godavarty, C. Zhang, M. J. Eppstein, E. M. Sevick-Muraca, “Fluorescence-

enhanced optical imaging of large phantoms using single and simultaneous dual 

point illumination geometries,” Medical Physics (submitted) (2003). 

126. A. Godavarty, A. B. Thompson, R. Roy, M. J. Eppstein, C. Zhang, E. M. Sevick-

Muraca, “Progress towards diagnostic imaging of breast cancer using fluorescence-

enhanced optical tomography,” Journal of Biomedical Optics (submitted) (2003). 

127. R. Roy, A. B. Thompson, A. Godavarty, E. M. Sevick-Muraca, “Fluorescence-

enhanced optical tomography using area illumination and area detection 

methodology,” Science (2003) (manuscript in preparation). 

128. R. Polyak, “Modified barrier functions (theory and methods), Mathematical 

programming,” 54, 177-222 (1992). 

129. S. Ke, X. Wen, M. Gurfinkel, C. Charnsangavej, Z. Fan, S. Wallace, E. M. Sevick-

Muraca, C. Li, “Near-infrared optical imaging of epidermal growth factor receptors 

(EGFr) in a breast cancer xenograft,” Cancer Research (accepted) 2003. 

 

 

 

 

 



 280

APPENDIX A 

 

SOURCE AND DETECTOR LOCATIONS ON BREAST PHANTOM 
 
 

 
Table A.1 Illumination fiber x-y-z locations on the hemispherical surface of the breast phantom. 

 
Source x (cm) y(cm) z(cm) 

1 -4.91 0.48 0.78 
2 -3.13 3.82 0.78 
3 0.48 4.91 0.78 
4 3.82 3.13 0.78 
5 4.91 -0.48 0.78 
6 3.13 -3.82 0.78 
7 -0.48 -4.91 0.78 
8 -3.82 -3.13 0.78 
9 -3.44 2.83 2.27 

10 -0.44 4.43 2.27 
11 2.83 3.44 2.27 
12 4.43 0.44 2.27 
13 3.44 -2.83 2.27 
14 0.44 -4.43 2.27 
15 -2.83 -3.44 2.27 
16 -4.43 -0.44 2.27 
17 -3.52 0.35 3.54 
18 0.35 3.52 3.54 
19 3.52 -0.35 3.54 
20 -0.35 -3.52 3.54 
21 -1.44 1.75 4.46 
22 1.75 1.44 4.46 
23 1.44 -1.75 4.46 
24 -1.75 -1.44 4.46 
25 0.78 0.08 4.94 
26 -0.78 -0.08 4.94 
27 0.00 0.00 5.00 
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Table A.2 Collection fiber x-y-z locations on the hemispherical surface of the breast phantom. 

 
Detector x (cm) y (cm) z (cm) 

1 -5.00 0.00 0.00 
2 -4.90 0.98 0.00 
3 -4.62 1.91 0.00 
4 -4.16 2.78 0.00 
5 -3.54 3.54 0.00 
6 -2.78 4.16 0.00 
7 -1.91 4.62 0.00 
8 -0.98 4.90 0.00 
9 0.00 5.00 0.00 

10 0.98 4.90 0.00 
11 1.91 4.62 0.00 
12 2.78 4.16 0.00 
13 3.54 3.54 0.00 
14 4.16 2.78 0.00 
15 4.62 1.91 0.00 
16 4.90 0.98 0.00 
17 5.00 0.00 0.00 
18 4.90 -0.98 0.00 
19 4.62 -1.91 0.00 
20 4.16 -2.78 0.00 
21 3.54 -3.54 0.00 
22 2.78 -4.16 0.00 
23 1.91 -4.62 0.00 
24 0.98 -4.90 0.00 
25 0.00 -5.00 0.00 
26 -0.98 -4.90 0.00 
27 -1.91 -4.62 0.00 
28 -2.78 -4.16 0.00 
29 -3.54 -3.54 0.00 
30 -4.16 -2.78 0.00 
31 -4.62 -1.91 0.00 
32 -4.90 -0.98 0.00 
33 -4.76 0.00 1.55 
34 -4.66 0.93 1.55 
35 -4.39 1.82 1.55 
36 -3.95 2.64 1.55 
37 -3.36 3.36 1.55 
38 -2.64 3.95 1.55 
39 -1.82 4.39 1.55 
40 -0.93 4.66 1.55 
41 0.00 4.76 1.55 
42 0.93 4.66 1.55 
43 1.82 4.39 1.55 
44 2.64 3.95 1.55 
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45 3.36 3.36 1.55 
46 3.95 2.64 1.55 
47 4.39 1.82 1.55 
48 4.66 0.93 1.55 
49 4.76 0.00 1.55 
50 4.66 -0.93 1.55 
51 4.39 -1.82 1.55 
52 3.95 -2.64 1.55 
53 3.36 -3.36 1.55 
54 2.64 -3.95 1.55 
55 1.82 -4.39 1.55 
56 0.93 -4.66 1.55 
57 0.00 -4.76 1.55 
58 -0.93 -4.66 1.55 
59 -1.82 -4.39 1.55 
60 -2.64 -3.95 1.55 
61 -3.36 -3.36 1.55 
62 -3.95 -2.64 1.55 
63 -4.39 -1.82 1.55 
64 -4.66 -0.93 1.55 
65 -4.05 0.00 2.94 
66 -3.97 0.79 2.94 
67 -3.74 1.55 2.94 
68 -3.36 2.25 2.94 
69 -2.86 2.86 2.94 
70 -2.25 3.36 2.94 
71 -1.55 3.74 2.94 
72 -0.79 3.97 2.94 
73 0.00 4.05 2.94 
74 0.79 3.97 2.94 
75 1.55 3.74 2.94 
76 2.25 3.36 2.94 
77 2.86 2.86 2.94 
78 3.36 2.25 2.94 
79 3.74 1.55 2.94 
80 3.97 0.79 2.94 
81 4.05 0.00 2.94 
82 3.97 -0.79 2.94 
83 3.74 -1.55 2.94 
84 3.36 -2.25 2.94 
85 2.86 -2.86 2.94 
86 2.25 -3.36 2.94 
87 1.55 -3.74 2.94 
88 0.79 -3.97 2.94 
89 0.00 -4.05 2.94 
90 -0.79 -3.97 2.94 
91 -1.55 -3.74 2.94 
92 -2.25 -3.36 2.94 
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93 -2.86 -2.86 2.94 
94 -3.36 -2.25 2.94 
95 -3.74 -1.55 2.94 
96 -3.97 -0.79 2.94 
97 -2.94 0.00 4.05 
98 -2.72 1.12 4.05 

99 -2.08 2.08 4.05 
100 -1.12 2.72 4.05 
101 0.00 2.94 4.05 
102 1.12 2.72 4.05 
103 2.08 2.08 4.05 
104 2.72 1.12 4.05 
105 2.94 0.00 4.05 
106 2.72 -1.12 4.05 
107 2.08 -2.08 4.05 
108 1.12 -2.72 4.05 
109 0.00 -2.94 4.05 
110 -1.12 -2.72 4.05 
111 -2.08 -2.08 4.05 
112 -2.72 -1.12 4.05 
113 -1.55 0.00 4.76 
114 -1.43 0.59 4.76 
115 -1.09 1.09 4.76 
116 -0.59 1.43 4.76 
117 0.00 1.55 4.76 
118 0.59 1.43 4.76 
119 1.09 1.09 4.76 
120 1.43 0.59 4.76 
121 1.55 0.00 4.76 
122 1.43 -0.59 4.76 
123 1.09 -1.09 4.76 
124 0.59 -1.43 4.76 
125 0.00 -1.55 4.76 
126 -0.59 -1.43 4.76 
127 -1.09 -1.09 4.76 
128 -1.43 -0.59 4.76 
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APPENDIX B 

 

EVALUATION OF ELECTRICAL AND OPTICAL POWER OF THE LASER 

LIGHT 

 

B.1. Evaluation of the electrical power of the laser light (AC and DC values) 

 
The mathematics involved in determining the AC power and DC current that 

should be supplied to the laser diode in order to obtain a required modulation depth and 

a chosen maximum power for the system is described herein.  The general electrical 

signal into laser mount set-up, TCLDM9 (Thorlabs Inc, NJ) is schematically given in 

Figure B.1.  Here, Imax is the current corresponding to the desired maximum optical 

power of the laser diode; Ith is the threshold current of the laser diode; IAC is the 

amplitude of the RF signal supplied by the frequency synthesizer; and IDC is the constant 

DC supplied by the laser driver (LDC500). The depth of modulation, n of the optical 

output based on the input DC and AC intensities is given by 

 

 
Figure B.1 Electrical signal into the laser diode mount.  
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Also, from Figure B.1, we also have the following relation 

 

DCAC III +•= 2max
    (B.2) 

 

For a desired modulation depth, n, equations (B.1) and (B.2) are rearranged to obtain the 

AC current.    

 

( )
( )1
max

+
−

=
n

IInI th
AC

     (B.3) 

 

The AC current in terms of the RF input power (PRF) to the laser mount having a resistor 

of R = 50 Ω is calculated as 

 

( ) RIP ACRF
2=      (B.4) 

 

The RF power is supplied to the laser diode using a frequency synthesizer (-127 dBM to 

+ 13 dBM range) and an amplifier of +37dBM (ENI-403LA model, Rochester, NY) if 

required, in terms of decibels of power input. 
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10' ' 10log
1
RFPx dBM  =  

 
    (B.5) 

 

 

where, PRF is the RF power in mW.  In the current studies, for the given (i) threshold 

current of the laser diode (190 mA), (ii) maximum desired power (Pmax) of 467 mA (i.e. 

Imax = 600 mA), and (iii) desired modulation depth of 98%, the RF power and DC current 

were estimated as 30.6 dBM and 197.9mA, respectively.  The laser diode driver 

provided 197.9 mA current and 30.6 dBM RF power (which was achieved by amplifying 

the signal from the frequency synthesizer).  

 

B.2. Evaluation of the optical power of the laser light 

 
The actual amount of light that was launched by the laser diode is given by its 

optical power, which is different from the electrical power supplied by the laser diode 

driver and the oscillators (as DC and AC power, respectively).  The optical power was 

evaluated based on the characteristics of the laser diode and operation mode of the laser 

diode mount.  Here, the optical power (Poptical) is given by  

 

( ) slopethDCACoptical IIIP η−+= 2     (B.6) 
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where ηslope is the slope efficiency (W/A) of the laser diode that was estimated from the 

manufacturer specifications based on the formula 

 

th

th
slope II

PP
−
−

=
max

maxη      (B.7) 

 

 where Pth is the threshold power of the laser diode.  The slope efficiency for the current 

laser diode was calculated to be ~ 0.69138 W/A.  Thus the optical power (Poptical) was 

determined to be 153.63 mW.   
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APPENDIX C 

 

 WAVELENGTH DEPENDECY OF ICCD IMAGING SYSTEM 

 

Fluorescence-enhanced optical imaging studies involves data acquisition of light 

signal at two different wavelengths, the excitation light (785 nm) which is used to excite 

the fluorophores, and the fluorescent light (830 nm) which is emitted by the 

fluorophores.  The components of the imaging system, such as the optical filters, image 

intensifier, and CCD camera, are usually wavelength-dependent with variation in the 

efficiency with respect to wavelength.  Details of the wavelength-dependency of these 

components are described below. 

 

C.1 Transmission efficiencies of the optical filters 

 

Based on the kind of filter used, the transmission efficiency was evaluated as a 

function of the wavelength from the manufacturers’ specifications.   

 

C.1.1 Neutral density filters  

 The optical density (OD) of an absorptive neutral density filter varies with the 

wavelength of light that passes through it.  A typical graph of the variation of the actual 

OD of a neutral density (ND) filter of given OD at a particular wavelength is shown in 

Figure C.1.  However, in actual case, each filter is provided with a specification sheet 
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and the OD corresponding to that particular filter at required wavelength is evaluated 

accordingly.  For the experiment performed in the homogeneous phantom case, neutral 

density filters of OD=3 and OD=2 at 546nm wavelength were used to collect the  

 

 

 

Figure C.1 Typical plot of optical density as a function of wavelength for different neutral density filters. 

 

 

excitation signal and their corresponding OD values at 785nm were estimated to be 2.1 

and 1.6, respectively. 

 

C.1.2 Holographic Filter  

The transmission of the holographic filter used for collecting the emission signal 

at 830nm is about 82.2%, as provided from Figure C.2 (obtained from the manufacturer). 
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C.1.3 Interference filters  

 An 830-nm interference filter was used during the emission experiments and the 

transmission of this filter was estimated by performing a transmission trace analysis 

using an absorptive spectrophotometer (Spectroscopy Lab, Dept of Veterinary 

Physiology and Pharmacology) (see Figure C.3).  From this plot of transmission versus 

 

 

 
Figure C.2 Transmission curve of the holographic filter.  
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Figure C.3 Transmission curve for the 830 nm interference filter. 

 

wavelength, the transmission was determined to be approximately 64% at the central 

wavelength of 831nm. 

 

C.2 Compounded gain and quantum efficiency of the image intensifier 

 
It was assumed that the compounded gain of the image intensifier was 

independent of the wavelength of light detected.  The photo response of a typical 

FS9910C image intensifier was obtained from the manufacturer (ITT Night Vision) at 

wavelengths varying from 500nm to 830 nm and photocathode voltages varying from 

900 to 150V.  Quantum efficiency of the image intensifier was evaluated for the varying 

wavelengths and photocathode voltages from the photo response data provided by the 

manufacturer.  
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where, h is the Planck’s constant (6.626x10-34 joules/sec); c is the speed of light 

(2.99x108 m/sec) and ε is the charge of the electron (1.602x10-19 coulombs).  Hence, 

the quantum efficiency was plotted as a function of the wavelength at varying 

photocathode voltages in Figure B.4.  Under the operating photocathode voltage of -

65V and operating wavelengths of 785nm and 830 nm, the quantum efficiency of the 

image intensifier was extrapolated and approximated to about 30% and 27.8% 

respectively. 

 

C.3 Quantum efficiency of the CCD camera 

 
The quantum efficiency of the 12-bit CCD camera does vary with wavelength. 

However, in this case, the image from the phosphor screen of the image intensifier that 

impinges onto the CCD array is at constant wavelength and independent of the signal’s 

wavelength at the photocathode of the image intensifier.  Hence the effect of wavelength 

in this case was eliminated.  Also, since light of constant wavelength impinged the CCD 

array for either wavelength of the detected signal, the gain term of the CCD output 

amplifier was eliminated.   
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Figure C.4 Quantum efficiency of the image intensifier at varying wavelengths and photocathode voltages. 
 

 

 

Hence, the wavelength-dependent factor (F) was estimated using the above 

parameters, when the referencing scheme involving data acquired from both the 

excitation and emission signals was involved (see Section 4.4.1).  It was assumed that 

only the AC ratio would be affected by the wavelength dependent factor and phase 

remains independent of wavelength.  Hence, the factor, F that needs to be accounted for 

determining the true AC ratio and relative phase shift data from experiments, was 

defined by FAC and Fθ as  
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1=θF                    (B.4) 
 

where, the suffix em and ex correspond to the emission and excitation wavelength, 

respectively; T  is the transmission of the respective filters such as neutral density (ND), 

holographic or 830-nm interference filter.  OD represents the actual optical density of 

the ND filters; t is the exposure time of the camera while acquiring the images at either 

wavelength; and QE is the quantum efficiency of the image intensifier (II) or the CCD 

camera.  Multiplying the above F values to the experimentally obtained AC ratio and 

relative phase shift would aid in accounting for the wavelength dependency of the 

system and hence eliminate the effect of various terms as mentioned earlier. 
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APPENDIX D 

 

DETAILS OF THE CCD CAMERA 

 

A 512 × 1024 frame transfer (TE/CCD-512-EFT Photometric CH12, Roper 

Scientific, Trenton, NJ) CCD camera that was thermoelectrically cooled to -35oC and 

has a 12-bit A/D (analog-to-digital) converter was coupled to the image intensifier in the 

current ICCD imaging system.  A CC-100 coolant circulator (Princeton Instruments, 

Trenton, NJ) using water/ethylene glycol (50% solution) removed the heat from the 

thermoelectrically cooled CCD camera [1-2].  The CCD was usually N2 purged 

throughout the whole process of image acquisition in order to prevent any moisture 

condensation when operating at such low temperatures of –35oC.   

CCDs are typically composed of crystalline silica that is sensitive to light at a 

wavelength range of 400-1000 nm.  The 512 × 512 array of photosensitive detectors or 

charge potential wells present in this camera convert the incident photons to electrons.  

The total accumulated charge in these potential wells (typically on the order of µm2 area) 

is proportional to the product of light intensity and the charge integration time (or 

exposure time) of the camera.  This accumulated charge is then read out from the 

parallel register into the serial register column wise as shown in Figure D.1.  These 

charge packets are then shifted from the serial register to an output amplifier, which in 

turn generate a signal that was proportional to the charge of each pocket.  The signal 

generated is proportional to the type of A/D converter, and in this case, we use a 12-bit 
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A/D converter in which the charge is represented by 4096 (212) gray levels.  The 

computer processes the digitized signals in order to display the images.   

The rate of image acquisition depends on the architecture of the camera. Here, 

full frame transfer architecture is employed for this camera, facilitating a 512 × 512 

array for acquiring the image and a 512 × 512 array for its storage, thus comprising a 

total of 512 × 1024 array.  Actual photon exposure and exposure time occurs on the 

image array and the charge is then shifted rapidly to the storage array for readout; 

clearing the image array in order to acquire the next image and perform charge 

integration [3].   

 

 

 
Figure D.1 CCD array. 
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Noise is typically introduced into the CCD system by the charge integration time 

(i.e. exposure time) and the readout rate (which is the rate-limiting step).  This noise in 

turn affects the sensitivity of the camera.  Photon noise (or shot noise), preamplifier 

noise and dark current noise are the primary sources of noise in a CCD camera [3].  

(i) Photon or shot noise is an unavoidable inherent tendency of the photons emitted 

from a steady state source to vary in intensity over a period.  

(ii) Preamplifier or read noise is generated by the on-chip output amplifier and can 

be reduced by careful choice of the operating conditions.  

(iii) Dark current noise is the thermally generated noise, which can be measured and 

accounted for, but cannot be isolated.  However, it can be minimized by cooling the 

CCD to around –60oC. 

The effect of noise on the performance of the CCD is described in terms of 

signal-to-noise ratio (SNR).  Binning is a process, which improves the SNR and extends 

the dynamic range of the CCD imager, but at the expense of the spatial resolution.  

Binning is specified in terms of the binning factor, which is the number of pixels to be 

combined on the CCD.  In our case, the 512x512 array is binned to 128x128 CCD array, 

meaning that it is binned twice using a binning factor of 2. 

 Typically, the primary source of noise that corrupts the phase-sensitive time-

invariant measurements is identified from the SNR (signal-to-noise ratio) in the DC 

intensity and the mean DC intensity (IDC) values.  For a photon-noise-limited operation, 

SNR is proportional to the square root of the signal (DC intensity) [4].  If a linear trend 

is observed in the plot of IDC SNR and mean IDC, the operation of the ICCD homodyne 
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detection system is considered photon-noise-limited [5], stating that the system has no 

other form of noise present and the detection system has least noise arising from various 

sources.  The current 12-bit CCD camera was deteriorating in its performance during 

each experiment and hence the current noise limitation study was not performed.   
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APPENDIX E 

 

EFFECT OF OPTICAL FILTERS ON EXCITATION LIGHT LEAKAGE 

 

Optical filters such as interference, long pass, and holographic were used for 

acquiring the fluorescence measurements after rejecting the excitation light at 785 nm.  

A single filter is insufficient in most cases to effectively reject the 785nm light 

completely, although its transmission efficiency for 830 nm light is typically above 80%.  

In this study, different filter combinations were attempted to determine a better 

combination of filters that can efficiently reject the excitation light. 

 Measurements were performed in the frequency-domain of the large 

homogeneous breast phantom containing 1% Liposyn solution, without any fluorescence 

in the background.  Optical filters in different combinations in order to collect only the 

830 nm fluorescence signal.  However, since there was no fluorescence present in the 

background, the signal obtained corresponds to the excitation light leakage from the 

phantom which is illuminated using single point excitation sources.  The different filter 

combinations that were used are listed in Table E.1 below. 

 Data acquired was plotted in terms of raw dc (mean of ac) values for all the 

detector locations in a single interfacing plate, as shown in Figure E.1.  All the 

experiments using different filter combinations were performed under similar operating 

conditions, allowing the comparison of raw dc data in the current study.  Since the data 

is very dense to infer a good filter combination, a single detector was considered (given 
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Table E.1.  Filter combinations used to test for excitation leakage. 

Expt Filter combination Abbreviation 
1 1-Holographic filter + 1-830 nm interference filter 1-holo + 1-830 
2 1- 830 nm interference filter 1-830 
3 1- 830 nm interference filter + 1- 812 long pass  

filter 
1-830 + 1-LP 

4 1-Holographic filter + 1- 812 nm long pass filter 1-holo + 1-LP 
5 1- 812 nm long pass filter 1-LP 
6 1-Holographic filter + 1- 812 nm long pass filter + 

1-815 nm long pass filter 
1-holo + 2-LP 

7 1-812 long pass filter + 1-815 nm long pass filter 2- LP 
8 1-830 nm interference filter + 1-812 nm long pass 

filter + 1-815 nm long pass filter 
1-830 + 2-LP 

9 2-830 nm interference filter 2-830 
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Figure E.1 Acquired fluorescence DC data (mean of AC data in the frequency-domain) for detectors 

located in a single interfacing plate using different filter combinations.  The red vertical line represents a 
single detector location, whose DC values were considered in comparing the effect of different filter 

combinations (see Figure E.2), since the signal was strong at this detector location. 
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Figure E.2 Bar plot of the DC intensity at a single detector location (at the red line shown in Figure E.1), 

using different filter combinations. 

 

 

 

by the vertical line in Figure E.1) to show the effect of different filters (see Figure E.2).   

From Figure E.2, we observe that the filter combinations (i) 1-830 +1-LP, (ii) 1-

830-+2-LP, and (iii) 2-830 provide the least excitation leakage in terms of raw DC data.  

Although the excitation leakage was minimal in these three filter combinations, it was 

not sufficient to efficiently reject the excitation light leakage completely.  Also the 

transmission of the stacked filters dropped as the number of filters used was increased.  

This was concluded from the physics behind transmission (T) given by the formula 

 

nTxTTTT ×××= .......321      (E.1)    
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where, n is the total number of filters stacked.  Hence, a better option to overcome 

excitation leakage will be to employ customized filters that have a blocking OD > 10 for 

785 nm light, while maintaining the transmission efficiency at least 80%.  
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