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Running title 

Indicators of VL transmission 

Summary 

Risk of recrudescence of VL after scaling down control efforts can be monitored by means of 

population-based surveys measuring seroprevalence or antigenaemia. This study highlights the 

potential value of point-of-care diagnostic tools for sustainable VL control. 
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Abstract 

Background: Control of visceral leishmaniasis (VL) on the Indian subcontinent has been highly 

successful. Control efforts such as indoor residual spraying and active case detection will be scaled 

down or even halted over the coming years. We explored how after scale-down, potential 

recurrence of VL cases may be predicted based on population-based surveys of antibody or 

antigenaemia prevalence.  

Methods: Using a stochastic age-structured transmission model of VL, we predicted trends in case 

incidence and biomarker prevalence over time after scaling down control efforts when the target of 

three successive years without VL cases has been achieved. Next, we correlated biomarker 

prevalence with the occurrence of new VL cases within 10 years of scale-down. 

Results: Occurrence of at least one new VL case in a population of 10,000 was highly correlated with 

the seroprevalence and antigenaemia prevalence at the moment of scale-down, or one or two years 

afterwards. Receiver operating characteristic curves indicated that biomarker prevalence in adults 

provided the most predictive information, and seroprevalence was a more informative predictor of 

new VL cases than antigenaemia prevalence. Thresholds for biomarker prevalence to predict 

occurrence of new VL cases with high certainty were robust to variation in pre-control endemicity. 

Discussion: The risk of recrudescence of VL after scaling down control efforts can be monitored and 

mitigated by means of population-based surveys. Our findings highlight that rapid point-of-care 

diagnostic tools to assess (preferably) seroprevalence or (otherwise) antigenaemia in the general 

population could be a key ingredient of sustainable VL control. 
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Background 

Visceral leishmaniasis (VL), also known as kala-azar, is a vector-borne infection that can lead to long-

lasting fevers and death if left untreated, although most infected individuals will remain 

asymptomatic [1,2]. In the Indian sub-continent, where the disease is considered to only occur in 

humans, about 5-10% of those who are treated for VL develop post-kala-azar dermal leishmaniasis 

(PKDL), an infectious but self-limiting skin condition [3]. In 2005, India, Nepal, and Bangladesh 

committed to controlling VL by signing a trilateral Memorandum of Understanding. The associated 

continent-wide control measures led to a steep decrease of reported VL incidence from 32,803 in 

2005 to 3,128 in 2019, representing a 90% drop [4]. Control measures consist of vector control 

through indoor-residual spraying (IRS) of insecticide and active case detection (ACD) followed by 

prompt treatment, which is provided for free [5]. The goal is to achieve elimination of VL as a public 

health problem on the Indian subcontinent, which is defined as <1 new or recurring VL case per 

10,000 individuals per year at district or sub-district level [6]. To validate achievement of the target, 

the World Health Organization (WHO) requires that the VL incidence in a region is below the target 

for three years in a row in combination with extensive testing. After validation, control measures can 

be scaled down [7]. 

 

Many Indian sub-districts have entered or will be entering this validation phase in the coming years. 

The prospect of scaling down or even halting control measures, without complete interruption of 

transmission, poses a risk of recrudescence of infection. This highlights the need for continued 

monitoring of ongoing infection. In this study we assess the predictive power of population surveys 

employing serological tests (e.g. the direct agglutination test or DAT for antileishmanial antibody 

detection) or antigen tests to predict the occurrence of new VL cases (reported or unreported) after 

scaling down control efforts. To this end we developed a new stochastic age-structured VL 

transmission model, based on an established deterministic VL transmission model [8–11]. 

 

Methods 

Model structure and quantification 

We use an established age-structured deterministic VL transmission model that describes the 

transmission of VL between humans and sand flies on the Indian subcontinent [8–11]. To realistically 

simulate the probability of interrupting VL transmission, we developed a new stochastic version of 

the model, considering a finite and discrete number of homogeneously mixing human individuals 

while keeping the sand fly part of the model deterministic. In the model, most infected individuals 

remain asymptomatic and recover without ever having symptoms; a small fraction (~1.5%) of 

individuals become symptomatic and will require treatment or die otherwise; a small fraction (~3%) 

of symptomatic cases is assumed to recover spontaneously. Transmission is driven by exposure to 

sand flies, where sand fly abundance is assumed to peak from July to September of each year [12]. 

Sand flies can pick up infection from symptomatic cases, as well as individuals with PKDL, a self-

limiting but long-lasting skin condition that occurs in a fraction of individuals treated for VL (2.5% in 

the model [3]). In addition, we distinguish the possibility that asymptomatically infected individuals 
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do (model E1) or do not (model E0) contribute to transmission. The model incorporates IRS coverage 

through a proportional reduction in the sand fly population density, and ACD through a decrease in 

the average detection delay of symptomatic cases (pre-control delay of 60 days [9,13]). In the 

model, we assume that seropositivity based on the DAT is associated with the late asymptomatic 

stage of infection (i.e. after individuals have been infected for a while), as well as the symptomatic 

stages and the early recovered stage (after which DAT positivity, and thus the humoral immune 

response, is lost again) [8]. DAT positivity was defined at the 1:800 titre cut-off, instead of the 

standard of 1:1600, which increases test sensitivity but decreases specificity. In contrast, we assume 

that antigenaemia (i.e. the persistence of antigen in circulating blood) is only associated with the late 

asymptomatic stage and the symptomatic stages when parasite loads are presumably highest. The 

model assumes that no infection can be introduced from outside the population. 

 

Model parameters were previously calibrated based on age-structured data from approximately 

21,000 individuals included in the KalaNet bednet trial in India and Nepal [8,14,15]. Age patterns in 

DAT and PCR positivity (where PCR positivity included the stage of infection that we consider antigen 

positive here, along with the early stage of asymptomatic infection) were reproduced assuming that 

exposure to bites of sand flies increase linearly from zero at birth to a maximum value at age 20, and 

plateaus thereafter (crudely reflecting change of body surface area with age). The impact of IRS was 

previously estimated using a geographical cross-validation on decreasing case incidence in Bihar 

(~6,000 VL cases in 8 districts over a period of 18 months) [9,13]. A schematic representation of the 

model structure and an overview of model parameter values are presented in the Supplementary 

Information (Figure S1 and Table S1, respectively). 

 

The model was coded in R (version 4.0.2), using the pomp package (version 3.1.1.7); the model code 

is publicly accessible at https://gitlab.com/erasmusmc-public-health/vl-serosurveys. We provided 

the Policy-Relevant Items for Reporting Models in Epidemiology of Neglected Tropical Diseases 

(PRIME-NTD) Summary in Table S2, which was previously established to set a standard and increase 

consistency among modelling studies that aim to inform policy [16]. 

 

Simulation scenarios 

With each version of the stochastic transmission model (E0 and E1), we performed 10,000 repeated 

simulations for a stable population of 10,000 people. Transmission conditions (i.e. the sand fly to 

human ratio) were allowed to vary randomly between simulations such that the pre-control VL 

incidence ranged from 2 to 15 reported VL cases per 10,000 capita per year, as expected under the 

deterministic version of the model. During the pre-control phase we assumed that only passive case 

detection was in place, leading to an average duration between the start of symptoms and the start 

of treatment of 60 days [13]. To start a stochastic simulation, we extracted the expected pre-control 

equilibrium state of the human and fly population (i.e. distribution over model compartments) from 

a deterministic simulation based on the same transmission conditions. This population state was 

used to seed 10,000 individuals across age and disease compartments via a draw from a multinomial 
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distribution. Based on this seeding, we ran the stochastic model, implementing control measures as 

recommended by WHO until zero VL cases were observed (i.e. only reported cases) for three 

consecutive calendar years (i.e. a period starting on January 1st and ending in December 31st three 

years later). Control efforts were assumed to start with a 5-year attack phase in which we assumed 

that IRS covers 67% of the population and that ACD reduces the time to treatment to an average of 

45 days. Subsequently, during the so-called consolidation phase, IRS coverage was reduced to 45%, 

but ACD efforts are further increased leading to an average duration to treatment of 30 days. 

Achievement of the target (three consecutive years with zero reported VL cases, with rigorous ACD) 

was assessed from completion of the attack phase onwards, meaning that at least eight years of 

control had been performed before any control programme was allowed to scale down. If a 

simulation did not achieve the target of three consecutive years with zero reported VL cases within 

20 years of control efforts (which happens more often if asymptomatic infections do not contribute 

to transmission [9], i.e. in model E0), it was discarded and excluded from further analysis. For those 

simulations in which the target was met, control efforts were scaled down to the pre-control 

situation (no IRS and no ACD such that the average detection delay returned to 60 days) and the 

simulation was continued for another 10 years to see if any new VL cases (reported or unreported) 

would occur. 

 

To see if the occurrence of at least one new VL case could be predicted based on prevalence of 

biomarkers in the population, we saved model-predicted trends in age-specific prevalence of DAT 

and antigenaemia prevalence. Receiver operating characteristic (ROC) curves as well as positive 

(PPV) and negative predictive values (NPV) of thresholds for biomarker prevalence were calculated 

for three different time points: at the moment of scaling down control efforts, and one and two 

years after the scale-down. For the last two time points, we excluded simulations in which one or 

more VL cases were already detected before the time of the survey, assuming that this observation 

alone would already lead to policy action. For each survey, we assumed that a random subset of 500 

individuals in the population is tested, simulating 100 random surveys for each time point in each 

simulation. Simulated surveys sampled either only pre-school age children (ages 0-4), school-age 

children (ages 5-14), or adults (ages ≥15). Threshold values were expressed in terms of the number 

of biomarker-positive individuals among this sample of 500 at or above which we expect recurrence 

of at least one VL case in the 10 years following scaling down of control efforts. 

  

Results 

Out of the 10,000 repeated stochastic simulations that were performed with each model variant, in 

8,011 (model E1) and 4,705 simulations (model E0) the target of three consecutive years of zero 

reported VL cases was achieved within 20 years of control and control could be scaled down to 

passive case detection only. The probability of at least one new VL case occurring within 10 years 

after scaling down control was higher in model E0 (2,936 / 4,705 = 62.4%) than in model E1 (3,028 / 

8,011 = 37.8%). If one or more new VL cases occurred, the first case typically occurred within the 

first year after scaling down (96.5% of simulations in model E1 and 69.3% in model E0), but with a 

very long right tail (up to 5 years for model E1 and 10 years for model E0) (Figure S2). The timing of 
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the first detected case was slightly later, although still typically within one year after scaling down 

(93.7% of simulations in model E1 and 60.3% in model E0). 

 

If a new VL case occurred after scaling down control, model E1 predicted that DAT prevalences were 

above 0% for at least two years after scale down (100% of simulations, Table S3) and fluctuated and 

rose over time (Figure 1). DAT prevalences reached higher values in adults (age 15+) than in pre-

school (age 0-4) and school-aged children (age 5-14), reflecting the assumed age patterns in 

exposure to sand fly bites. If no new VL cases occurred and DAT prevalences were above 0% at the 

moment of scale-down (45% of the simulations), the DAT prevalence quickly declined to values close 

to zero within one to two years. Trends in antigenaemia prevalence followed a similar pattern, 

although with overall lower prevalences compared to DAT (Figure S3), reflecting that the duration of 

antigen-positivity is shorter than that of seropositivity. If no new VL case occurred after scale-down, 

antigenaemia prevalence was rarely above 0% at the moment of scale-down (13% of simulations); if 

a new VL case did occur, antigenaemia prevalence was almost always above 0% (99% of simulations; 

Table S4). Predicted trends in biomarker prevalence and the differences in trends between 

simulation outcomes (absence vs. occurrence of new VL cases) were qualitatively similar between 

model E1 (Figure 1 and Figure S3) and model E0 (Figures S4 and S5). DAT prevalences in children < 15 

were slightly lower at the turn of each year due to the fact that at that moment in the simulation, for 

efficiency, all individuals were assumed to simultaneously age by one year. This modelling artefact is 

not visible for antigenaemia prevalence due to the higher level of stochastic noise associated with 

overall lower prevalences. 

  

Sensitivity and specificity of different thresholds for biomarker prevalence as predicted by model E1 

for samples of 500 individuals are illustrated as ROC curves in Figure 2. Because biomarker 

prevalences were generally higher in adults (age 15+) and thus suffered less from stochastic noise, 

sensitivity and specificity of thresholds were highest when applied to prevalences in that particular 

age group. This pattern was qualitative similar for model E0 (Figure S6), although sensitivity and 

specificity were lower overall than in model E1 and the difference in ROC curves based on biomarker 

prevalences in adults (age 15+) and school-aged children (age 5-14) was somewhat larger. Still, the 

two model variants agreed that a threshold of 1 to 3 biomarker-positive cases in a sample of 500 

was optimal to achieve both high sensitivity and specificity, and that DAT prevalence was a more 

informative predictor of recurrence of VL cases than antigenaemia prevalence. Furthermore, the 

model variants agreed that when biomarker prevalence was measured one or two years after scaling 

down control (excluding simulations in which a new VL case had already been detected before that 

time), sensitivity decreased strongly and specificity increased slightly. 

 

The PPV and NPV of thresholds for biomarker prevalence, as predicted by model E1, depended on 

both the biomarker as well as the time of measurement (Figure 3). In general, NPVs (i.e. the 

probability of no more VL cases if the biomarker prevalence was under the threshold) were higher 

for DAT (up to 99%) than for antigenaemia prevalence (up to 95%), as the latter were limited by the 

fact the prevalence of antigen positivity is relatively low compared to DAT prevalence. For DAT 
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prevalence, a threshold value of 6 positive individuals in a sample of 500 corresponded to a ≥95% 

probability that no further VL cases could occur, if DAT prevalence was measured at the moment of 

scale-down. For antigenaemia, this NPV of 95% could only just be achieved by allowing at most 1 

positive individual. The corresponding PPVs (i.e. the probability of recurring VL cases if biomarker 

prevalence is above or equal to the threshold) were ≥94% for both biomarkers. For both biomarkers, 

when prevalence was measured one or two years after scale-down, the PPV decreased and the NPV 

increased and flattened as a function of threshold value (i.e., if no new VL case had been detected by 

then, the a priori probability of recurrence had already strongly declined). Alternatively, when 

assuming that asymptomatic infections do not contribute to transmission (model E0), in general, 

NPVs were lower for DAT (80% to 90% for a threshold of 1 case) and particularly lower for 

antigenaemia (60% to 70% for a threshold of 1 case), although PPVs were still high (≥90%) (Figure 

S7). In contrast to model E1, in model E0, measuring biomarker prevalence one or two years after 

scaling down only marginally affected the PPV, yet still increased the NPV. Last, PPVs were robust to 

variation in pre-control endemicity both model E1 and E0 (Figures S8 and S9), provided that the 

biomarker and associated threshold prevalence are chosen aiming at a PPV and NPV ≥90%. Overall, 

NPVs were slightly higher for settings with high pre-control endemicity, reflecting that achieving a 

prevalence under the threshold despite more intense transmission conditions was highly indicative 

of successful control. 

 

Discussion 

We show that occurrence of new VL cases (reported or unreported) after achieving three years of 

zero reported VL cases and scaling down control efforts is highly correlated with the seroprevalence 

(based on DAT) and antigenaemia prevalence. Biomarker prevalence in adults (ages ≥15) provides 

the most predictive information on prospects of resurgence, and DAT prevalence appears to be a 

more informative predictor than antigenaemia prevalence. Thresholds for biomarker prevalence to 

predict occurrence of new VL cases with high certainty were robust to variation in pre-control 

endemicity, allowing thresholds to be applied without exact knowledge of transmission conditions. 

 

For an area covering a population of 10,000 people, having no DAT-positive individuals in a sample 

of 500 (i.e. a threshold of <1 case) at the moment of scale-down is a conservative approach to 

predicting whether or not new VL cases will occur. However, the predictive power of such a criterion 

does depend on whether or not asymptomatic individuals do (NPV ≥99%, PPV ≥79%) or do not 

contribute to transmission (NPV ≥80%, PPV ≥92%). In general, the predictive value could be further 

boosted by sampling more individuals (and adapting the threshold criterion accordingly) or by 

performing repeated surveys over time (e.g. annually). Of course, as this is a modelling study and 

given that no monitoring programme exists as suggested here, predictions should be validated based 

on field data, ideally longitudinal data of biomarker prevalence from areas that have implemented 

the control measures as recommended by the WHO. 
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A major strength of this study is that the calculated threshold values for the number of biomarker-

positive cases in a sample of 500 individuals can be readily used for interpretation of field data 

(based on the same sample size) without the need for calculating confidence bounds around 

prevalence estimates. This is possible because stochastic as well as statistical uncertainty are both 

captured in our calculations: stochastic uncertainty via many repeated simulations of the population 

dynamics over time, and statistical uncertainty via 100 repeated survey simulations within each 

transmission simulation. In addition, the methodology employed in this paper can be easily adapted 

to other population sizes and survey sample sizes. However, for much larger population sizes, model 

predictions should ideally be based on a metapopulation model that accounts for the fact that 

individuals live in subpopulations and do not mix homogeneously. Such a model would also address 

the most important limitation of this study that we assume a closed population without the 

possibility of introduction of infection from outside. Recrudescence of VL transmission through 

introduction via human mobility is a real risk, unless the strategy is successfully rolled-out at a very 

large scale. As such, the threshold for biomarker prevalence proposed here should be interpreted as 

an indicator of recurrence of VL transmission through local transmission. The metapopulation model 

that is needed to relax this assumption is current being developed. 

 

Our finding that thresholds for biomarker prevalence were quite robust to variation in pre-control 

endemicity is extremely convenient for policy development and implementation of monitoring in 

field settings. This robustness is in stark contrast with, for example, thresholds for Ov16-

seroprevalence to evaluate progress towards elimination of onchocerciasis, for which threshold 

values for a particular target predictive value strongly change with pre-control endemicity [17]. This 

is not the case for VL because of the precondition of three consecutive years of zero cases before 

scaling down control efforts. This ensures that if the target is met despite a high transmission 

potential, it is indicative of having interrupted transmission with high probability. Of course, this is 

conditional on meeting the target through high detection effort rather than low detection effort 

(causing fewer cases to be reported), for which we previously showed that it can lead to a 

“confirmatory” drop in case rates while true case numbers are rising [18]. Then again, if the 

monitoring strategy developed in this study would be applied to a situation where the target was 

met due to poor case detection, we expect that this would most likely be immediately reflected by a 

high biomarker prevalence. 

 

According to our findings, measuring biomarker prevalence at one or two years after scaling down 

control efforts (as long as no new VL cases have been detected in the meanwhile) increases the 

predictive power for absence of new VL cases (i.e. NPV), which was already very high when 

biomarker (especially DAT) prevalence was assessed at the moment of scale-down. This finding was 

mostly driven by the fact that if VL transmission resurged, it did so mostly within one year after 

scale-down; in other words, if no new VL cases were reported in the first year after scale-down, the 

probability of resurgence was very low to begin with, which drove up the NPV (and lowered the 

PPV). It is therefore important to note that the benefit of this higher NPV comes at the cost of 

delayed information, giving the infection more opportunity to be transmitted further throughout the 

population in case of resurgence. Given that in case of VL recurrence, this typically happened within 
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one year of scaling down, we recommend that a biomarker survey is performed at the moment of 

scale-down or slightly before. However, if the biomarker survey is performed much earlier than the 

3-year benchmark (say, one year before), threshold values for the number of positive cases would 

have to be adapted and might even depend more on pre-control endemicity. 

  

It is important to note that for the sake of illustrating the potential predictive value of biomarkers, in 

our simulations, we assumed that diagnostic tests for antibodies or antigens are 100% sensitive and 

specific at the individual level. However, in reality, false positive and false negative results should 

certainly be expected to occur, adding noise to observations and lowering the PPV and NPV of 

biomarker prevalence for recurrence of VL cases, compared to what we estimate here. Also, it 

should be noted that our model predictions for DAT prevalence are quantified based on the 

diagnostic techniques and titre thresholds used to calibrate our model to data from the KalaNet 

study [14,15]. For a more sensitive monitoring strategy (i.e., a higher chance of correctly identifying 

settings where new VL cases will occur), it might be advantageous to use a lower titre threshold for 

DAT positivity, although this would come at a cost of lower specificity (i.e., a higher risk of continuing 

control efforts longer than strictly necessary). An added benefit would be that the use of a lower 

titre threshold would result in higher prevalences overall, which would allow for a higher threshold 

of DAT prevalence in the survey sample and thus requiring a smaller sample size to conclude that the 

prevalence is statistically significant under the threshold. It is possible to capture this in our model 

but requires further model development and calibration using more detailed data on actual DAT 

titres. Data from the follow-up KalaNet study [19] will be particularly valuable here, as it would also 

allow us to further validate model predictions over time. Antigenaemia on the other hand was not 

found to be as good a predictive marker as DAT. This is presumably because individuals have a high 

detectable antigen load for a short period of time, especially when compared to the duration of 

detectable antibodies, and therefore the cycle of surveillance may not capture positive cases, 

especially with low numbers of participants surveyed. Antigen tests could instead be used to confirm 

findings of these population surveys, as a highly specific test.  

 

Our findings highlight the need for further operational research into effective monitoring to ensure 

sustained control of VL in the Indian subcontinent. First of off all, given our finding that population-

based surveys can be an extremely valuable monitoring tool when scaling down control, the 

question arises what geographical units such surveys should cover and how surveys should be 

implemented. For instance, how many communities and how many individuals should be selected 

per community? This would depend on the expected level of geographical clustering of VL 

transmission after prolonged control, which needs to be informed by field studies like the recent 

KalaNet follow-up study [19]. Second, how feasible is it to sample, say, 500 individuals per 10,000 

population? Sampling 5% of the population may be practically too demanding or too expensive, 

especially when surveys have to rely on lab facilities. Therefore, there is an urgent need for rapid 

point-of-care diagnostic tools to assess seroprevalence or antigenaemia in the general population. 

Of course, to define useful threshold values for biomarker prevalence measured by such tools, their 

sensitivity and specificity need to be carefully quantified. Third, there is a need to define more 

specific policy actions for when biomarker surveys indicate ongoing VL transmission while no VL 
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cases have been detected yet. These actions may depend on the encountered prevalence of 

biomarker positivity: if biomarker positivity is highly clustered, more in-depth follow-up surveys of 

the locations with high biomarker prevalence may be an adequate first step; if biomarker positivity is 

more homogeneously distributed over a larger area, more immediate action in terms of reinstating 

IRS and/or ACD across the entire geographical area may be more appropriate. 

 

We conclude that the risk of recrudescence of VL after scaling down control efforts can be 

monitored and mitigated by means of population-based surveys. We recommend that such surveys 

are based on biomarkers of current and recent infection, such as antibodies, as prevalences for such 

biomarkers are higher than antigen prevalences and thus provide more statistical information. Our 

findings highlight that rapid point-of-care diagnostic tools to assess (preferably) seroprevalence or 

(otherwise) antigenaemia in the general population could be a key ingredient of sustainable VL 

control. 
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Figure legends 

 

Figure 1. Model-predicted trends in age-specific DAT prevalence after scaling down control 

efforts against visceral leishmaniasis. Lines represent biomarker prevalence from a randomly 

selected subset of 500 simulations. Rows represent different age categories; columns depict 

simulations that resulted in occurrence (left) or absence of new VL cases (right), with the total number 

of simulations per outcome indicated at the top of each column (N). Predictions are based on the 

assumptions that both symptomatic and asymptomatic infections contribute to transmission (model 

E1) and that all individuals are tested. Similar predictions assuming asymptomatic infections do not 

contribute to transmission (model E0) can be found in Figure S4. 

 

Figure 2. Receiver-operator curve for predicting occurrence of new VL cases based on age-

specific prevalence of DAT or antigenaemia measured at and up to two years after scaling 

down control efforts. Columns depict receiver-operator curves (ROC) based on biomarkers 

measured on three different time points; rows depict different biomarkers. Symbols indicate 

thresholds for the number (N) of biomarker-positive cases at or above which the recurrence of at least 

one VL case was predicted. Predictions are based on the assumptions that both symptomatic and 

asymptomatic infections contribute to transmission (model E1) and that 500 individuals are tested for 

biomarker positivity. Similar predictions assuming asymptomatic infections do not contribute to 

transmission (model E0) can be found in Figure S6. 

 

Figure 3. Positive (PPV) and negative predictive value (NPV) of DAT and antigenaemia 

prevalence in adults (age 15+) measured up to two years after scaling down control efforts, 

given a choice of threshold value. Columns depict curves based on biomarkers measured on three 

different time points; rows depict different biomarkers. Note that the predictive values based on 

biomarker prevalences measured one or two years after scale-down (middle and right panels) are 

conditional on no new VL cases having been detected since scale-down. Predictions are based on 

the assumptions that both symptomatic and asymptomatic infections contribute to transmission 
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(model E1) and that 500 individuals are tested for biomarker positivity. Similar predictions assuming 

asymptomatic infections do not contribute to transmission (model E0) can be found in Figure S7. 
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Figure 1 - DAT trajectory by yes-no new VL case_model E1 
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Figure 2 - ROC by time in sample_model E1 
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Figure 3 - ppv npv in sample_model E1 
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