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Highlights 

 CFD validation of the two existing models for the estimation of power density in 

oscillatory baffled devices is for the first time investigated.  

 Based on our CFD validation, the best fit would require the revision of the “quasi-steady” 

model with a power law dependency on the number-of-baffles term and an appropriate 

orifice discharge coefficient.  

 Likewise, the “eddy enhancement” model has been revised and updated with the same 

power law dependency and an empirical model to appropriately estimate “mixing length”, 

as we have demonstrated that the “mixing length” is not a constant for a given device.  

 Both models are validated for a much wider application range than originally stated and 

for both batch and continuous operations.  

 Both revised models can be used interchangeably with high confidence.  

 

ABSTRACT 

While continuous oscillatory baffled reactors (COBR) have been proven a viable alternative 

to traditional batch reactors for organic synthesis and crystallization, research into the 

estimation of power density for this type of device has largely been stagnated for the past 25 

years. This work reports, for the first time, detailed analysis and examination of the 

applicability, capability and deficiencies of two existing models using CFD methodology. 

The “quasi-steady” model (QSM) over-estimates power dissipation rates due to the 

inaccurate formulation of two of its geometric parameters for modern COBRs. By using a 

revised power law dependency on the number-of-baffles term (nx) and an appropriate orifice 

discharge coefficient (CD), we demonstrate that the updated QSM can not only be used for a 

much wider application range than previously outlined, but also for both batch and 

continuous operations. The “eddy enhancement” model (EEM) generally provides better 

predictions of power density for the conditions tested; however, its accuracy can substantially 

be enhanced by applying the aforementioned power law dependency on n and an empirical 

correlation proposed in this work to estimate EEM’s “mixing length”. After full validation, 

both models give very similar power density estimations and can be used interchangeably 

with high confidence. 
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1. Introduction 

While stirred tank reactors have been the workhorse in chemical industry, tubular plug flow 

reactors, such as continuous oscillatory baffled reactors (COBR), have emerged as a viable 

alternative. Significant process and economic benefits were reported in the utilization of 

COBR in a broad range of processes, e.g. crystallization,1-17 reactions,18-20 heterogeneous 

catalysis21-23 and fermentation processes.24,25 However, in terms of evaluation of power 

dissipation rate for this type of reactors, research has largely been stagnated for the past 25 

years.26 Essentially two published models have been used in the field of COBR and OBR 

(oscillatory baffled reactors): the “quasi-steady” model (QSM) from the work of Jealous and 

Johnson27 and the “eddy enhancement” model (EEM) by Baird and Stonestreet.28,29 The 

origin of both models was stemmed from the evaluation of pressure drop over oscillatory 

devices; while the equations were empirical, research has neither been carried out on the 

validation of the above models nor on how these models could be used in continuous 

operation where there is a net flow. In this paper, we report, for the first time, a detailed 

analysis and examination of the applicability, the capability and the deficiencies of the two 

models using a CFD methodology. 

2. Background for power dissipation models 

In order to predict power density (εv) due to pulse generation in pulsed columns, Jealous and 

Johnson in 1955 developed the QSM from pressure drop, which accounted for inertial and 

frictional effects of the flow, as well as pressure drop due to a static head that was present on 
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their experimental setup.27 QSM power density equation for oscillatory baffled reactors was 

then derived from the work of Jealous and Johnson as:28,29 

   
3 2

2

2 1 1

3

o

v

D

n x

C L

  





           (1) 

Due to the constriction of an orifice baffle, it is the frictional losses, instead of inertia, that 

resulted in the overall gain in kinetic energy. The geometric parameters taking part in eq. (1) 

include the orifice discharge coefficient (CD), usually taken as 0.6 – 0.7,27-33 the reactor’s 

length (L) in meters, the number of baffles (n) and the ratio of the area of the orifice over the 

area of the tube, known as the restriction ratio ( = Db
2 / D2), D is the diameter of the tube 

(m) and Db is the diameter of the baffle hole (m); operational parameters involve ω=2πf as 

the oscillation angular frequency (rad s-1), xo the oscillation center-to-peak amplitude (m) and 

f the oscillation frequency (Hz); physical parameter is the fluid density (ρ) (kg m-3). We note 

that a term counting for the net flow velocity was not included in eq. (1), as pulse columns 

have been operated batch-wise. 

It is generally thought that QSM works well for low frequencies (below 5 Hz) and high 

amplitudes (above 5 mm).27,28,34 However, this is not in full agreement with the work of 

Panton and Goldman, who, after investigating the derivations of QSM, reported that QSM 

was not strictly valid when     1 2
3 100ox    where υ is the kinematic viscosity (m2 

s-1);35 note that all the conditions presented in this study are within the aforementioned range. 

In addition, selection of the CD value in the QSM also affects the accuracy of the model. 

Furthermore, the assumption made by Jealous and Johnson that there is a linear relationship 

between the number of baffles in the device and the frictional pressure losses due to their 
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orifice constriction is yet to be proven for OBRs/COBRs. This argument is further examined, 

developed and addressed in section 5.2 of this paper. 

Braid and Stonestreet developed an empirical EEM model to predict overall power 

dissipation rates, coupling acoustic behavior with local eddy turbulence,28 based on the 

prediction of frictional pressure drop as the acoustic resistance of a single orifice plate: 

3 21.5 o
v

n x

L





            (2) 

While similar geometric, physical and operational parameters are involved in this model, 

“mixing length” (m) is an additional parameter and has a value similar to a characteristic 

length scale of the reactor, e.g. a value of 7 mm was selected in previous research with a tube 

diameter of 12 mm.28 This model was proposed for higher frequencies (above 5 Hz) and 

lower amplitudes (below 5 mm), hence filling the gap left by the QSM.  However, the 

dependence of power dissipation rate on mixing length casts doubts, as mixing length is often 

unknown and has not accurately been predicted in OBR. Furthermore, it was unclear whether 

this model is suitable for continuous operation. The EEM, similarly to the QSM, also 

assumes a linear relationship between the number of baffles and frictional pressure losses. 

Accompanying the EEM, the phase shift between velocity and pressure waves was given 

as:28 

1tan
3

iLK

n
   
  

 
           (3) 

ACCEPTED M
ANUSCRIP

T



6 

 

where Ki is a geometry-dependent inertial corrector factor (a value of 0.9 was selected by 

Braid and Stonestreet in their work). Although the two empirical models mentioned above, 

QSM in particular, have commonly been used by researchers in order to compare 

performances of oscillatory baffled reactors with other types of devices, no validation has yet 

been conducted. 

3. Validation approach 

The targeted device is a NiTech DN15 COBR reactor (DN15 for short) with the design 

details provided by the manufacturer, Alconbury Weston Ltd (http://www.a-w-l.co.uk/); 

Figure 1 shows the geometric dimensions of the DN15, the overall length is 752 mm 

containing 32 baffled cells. 

 

Figure 1. Dimensions of the NiTech DN15 straight section used in CFD simulations; all 

quotes are in mm  

Table 1 lists the conditions for our parametric CFD study covering a wide range of both 

geometric and operational parameters such as baffle hole diameter (Db), baffle spacing (Lb), 

volumetric flow rate (Q), oscillation frequency (f) and center-to-peak amplitude (xo). The net 

flow Reynolds numbers (Ren = unetρD/μ) and oscillatory Reynolds numbers (Reo = ωxoρD/μ) 

are given in the last two columns of Table 1.  

1
5

7

23.5

10.5

752
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Table 1. Parametric study list of conditions simulated 

Run # Q (ml/min) f (Hz) xo (mm) Db (mm) Lb (mm) Ren Reo 

1 50 0.5 14 7 23.5 70.5 657 

2 50 1 14 7 23.5 70.5 1313 

3 50 2 14 7 23.5 70.5 2626 

4 50 4 14 7 23.5 70.5 5253 

5 50 8 14 7 23.5 70.5 10505 

6 50 1 5 7 23.5 70.5 469 

7 50 1 23 7 23.5 70.5 2157 

8 50 1 14 5 23.5 70.5 1313 

9 50 1 14 9 23.5 70.5 1313 

10 50 1 14 7 47 70.5 1313 

11 50 1 14 7 94 70.5 1313 

12 100 2 5 7 23.5 141 938 

13 100 2 7 7 23.5 141 1313 

14 100 2 10 7 23.5 141 1876 

15 100 2 14 7 23.5 141 2626 

 

In oscillatory flow devices, both inlet velocity and pressure drop follow sinusoidal wave 

forms, separated by a phase shift (δ), as represented in Figure 2. The time-averaged power 

density, referred to as power density (εv) from this point onwards, in a COBR can be 

calculated by solving: 

   
0

1 T

v Q t p t dt
VT

             (4) 

where V is the volume of the system (m3), T the oscillation period (s), Q(t) the volumetric 

flow rate (m3 min-1) defined as    Q t A u t  , A being the cross-sectional area (m2), the 

velocity profile  ( ) sinnet ou t u x t    and unet is the inlet net velocity (m s-1). The 

temporal pressure drop profile across the device p(t) (Pa) has often been assumed to have a 

sinusoidal wave form similar to that of the flow motion, defined as 
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   sinnet op t p p t      ,28,29,36 where po is the maximum center-to-peak pressure 

drop fluctuation, pnet the net pressure drop and  the phase shift. Making use of this 

hypothesis, the integration of eq. (4) over an oscillatory cycle results in: 

 

 

 

 

cos 2 cos

2 2

o o net net o o

v

x p u p x p

V A V A

   


   
     (5) 

The volume to cross-sectional area ratio in eq. (5) is often substituted by the reactor’s length 

(L); however, while this is true for sharp-edged disk-like baffles, it is far from reality for 

smooth-edge baffles as observed in Figure 1, e.g. the percentage difference between V/A and 

L is 25% for all runs, except for runs #8 – 11 where this difference ranges from 5 to 30%. For 

this reason, V/A was used in equations (1), (2) and (5) as opposed to L throughout this study. 

Our validation work starts by generating data of pressure drop p(t) over a fixed length 

(752 mm) of the DN15 using CFD for 10 cycles of oscillation. In order to minimize the effect 

of boundary conditions, the first and the last two baffle cells were discarded. The area-

weighted average static pressure was monitored for two cross-sectional planes placed at 47 

mm from the inlet, marked as Plane 1 (p1), and 47 mm from the outlet as Plane 2 (p2), from 

which pressure drop profiles were obtained using p(t) = p1(t) – p2(t) over the remaining 28 

baffled cells (0.658 m). For each run, the simulated time-dependent pressure drop profile, 

p(t), was extracted and utilized in the numerical integration of eq. (4) for the calculation of 

power density. The simulated power density of a particular condition is then compared with 

the estimated power densities from the QSM and the EEM, which are directly calculated 

using eq. (1) and  eq. (2) respectively, where a mixing length of 7 mm is used in EEM as 

proposed by previous work.28 In this way, the simulated power density values are compared 
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to those provided by QSM and EEM, enabling a detailed examination and validation of these 

two models for a wide range of geometric and operational conditions.  

 

Figure 2. Inlet velocity and pressure drop wave forms illustrating phase angle; cycle-

averaged simulated data from run #2 

The averaged absolute error (AAE) (%) between the simulated and model predicted power 

densities was quantified as: 

 
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where i is a single case/run, n the total number of cases in this study and ɸ the property under 

evaluation (εv).  

4. Computational simulations set-up 

4.1. Mesh 

Table 2 shows the mesh characteristics used for the simulations.  

Table 2. Mesh characteristics of the DN15 used in CFD simulations except runs #8 – 11 

Baffle cells in reactor (#) 32 

Computational nodes per baffle cell (#) ~ 117 k 

 

4.2. Numerical model 

The ANSYS® Fluent 16.0 CFD package was used for all the numerical simulations of this 

work. Three-dimensional incompressible time-dependent Navier-Stokes equations were 

solved: 

0u              (7) 

2u
u u p u

t
 

 
      

 
         (8) 

All the simulations were performed using the pressure-based segregated solver together 

with the SIMPLE pressure-velocity coupling algorithm. A second order upwind scheme was 

utilized for the spatial discretization of the momentum equation; a second order scheme for 
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the interpolation of pressure at the faces of the grid and a first order implicit scheme for the 

time discretization. 

The time-step was set to 2 ms throughout all simulations, except for run #5 (f = 8Hz) 

where a time-step of 0.5 ms was selected. This ensured that the convergence criteria 

(residuals of 10-3 and 10-4 for continuity and momentum equations respectively) were met 

and the number of time-steps per oscillation cycle was above 125, which is higher than others 

reported in recent literature for these types of oscillatory baffled devices.37,38 The average 

value of the Courant–Friedrichs–Lewy (CFL) coefficient was consistently maintained below 

6 and the maximum CLF value below 50.  

In order to minimize the impact of inlet boundary conditions on the main flow, the inlet 

oscillatory velocity was imposed with a fully developed parabolic profile, 

2

2
( , ) 2 ( ) 1inlet

r
u r t u t

R

 
    

 
, where  ( ) sinnet ou t u x t   . The outlet boundary conditions 

were set at constant gauge pressure of 0 Pa. Incompressible water (ρ = 998.2 kg m-3, μ = 

1.003∙10-3 kg m-1 s-1) was the selected fluid for this study. 

All simulations were performed using a laminar solver; this is consistent with literature, as 

this solver has extensively been used during the past39-41 and present decade37,38,42-44 when 

modelling fluid flow through oscillatory baffled reactors using CFD, including flows at 

relatively high Reo (up to 8043).45,46 

4.3. Mesh sensitivity test  

The number of computational nodes per baffle was selected through a mesh sensitivity 

analysis undertaken on a 5-baffle-cell tube geometry, illustrated in Figure 3, considering 
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global mesh refinement. This analysis was performed at the same operating conditions of run 

#5 (Table 1), as it presents the most adverse conditions of this study, proving the highest axial 

velocities (Reo = 10505) and the most rapid changes of flow direction (f = 8 Hz), hence 

requiring a finer mesh. Simulations were run for 24 oscillatory cycles. Pressure drop vs time 

profiles, p(t) = p1(t) – p2(t), and velocity magnitude vs time profiles extracted at lines 1 & 2 

and planes 1 & 2 (as shown in Figure 3), were cycle-averaged.  The resulting pressure drop 

and velocity profiles (duration of an oscillatory cycle) were compared for meshes of five 

different resolutions, using the coefficient of determination (R2): 

 

 

2

, 1,2 1

2

1, 1,1

1 1

n

j i iires

n
tot

i ii

SS
R

SS

 

 






   






         (9) 

where SStot is the total sum of squares of the target profile (that from mesh #1) and SSres is the 

sum of squares of residuals between the profile under evaluation (from mesh #j) and the 

target profile, the subscripts i and n represent, respectively, a single data point and the total 

number of data points of a certain profile, j is the index of a certain mesh and ɸ the property 

under evaluation.  
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Figure 3. Five-baffle-cells geometry, lines and planes where variables were monitored 

during mesh independency test 

The results from each subsequent mesh were compared to those from mesh #1. Table 3 

summarizes the results of the mesh independency analysis; mesh #2 was chosen for this study 

on the balance of accuracy and efficiency, and its density is above the norm reported in 

literature.39,41,43,45-48 All meshes were O-grid structured containing only hexahedral elements 

and were created on ANSYS ICEM. 

Table 3. Mesh sensitivity analysis results (Q = 50ml/min, f = 8Hz, xo = 14mm) 

   
Velocity Magnitude at 

Mesh # Nodes* Δp** Line 1 Line 2 Plane 1 Plane 2 

1 236 k – – – – – 

2 117 k 0.978 0.990 0.997 0.995 1.000 

3 64 k 0.940 0.984 0.996 0.984 0.999 

4 31 k 0.922 0.984 0.996 0.980 0.999 

5 7 k 0.670 0.911 0.989 0.825 0.997 
* Number of nodes per baffle cell.  
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**Pressure drop profile between planes 1 and 2:      1 2p t p t p t   . 

5. Results 

In previous CFD simulations of OBR and COBR,49 a quasi-steady state, indicating the flow 

was fully developed and cycle-repeatable, was achieved in 5-7 cycles of oscillation. Applying 

the same methodology, Figure 4 (left) shows the change of the volume-weighted averaged 

strain rate with time; a quasi-steady state is seen after cycle 5. Being conservative, all the data 

presented on this study were taken from the cycle 7 (included) onwards. Furthermore, Figure 

4 (right) plots Δp(t) at different oscillatory cycles, visually confirming the repeatability of the 

results after cycle 7. 

 

Figure 4. Convergence of strain rate with time (left) and pressure drop wave forms for cycles 

7 to 10 (right) (Q = 50ml/min, f = 1Hz, xo = 14mm) 

Mazubert et al. predicted po and εv for different types of baffle configurations using CFD 

simulations,42 their results were the basis for comparison with ours. For a single orifice plate, 

D = 15 mm, Db = 8 mm, Lb = 26 mm, f = 1.05 Hz, xo = 16.5 mm, unet = 14.05 mm s-1, they 

reported a maximum center-to-peak pressure drop fluctuation per length and a power density 
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of 0.73 kPa m-1 and 23.8 W m-3 respectively. The baffles utilized by Mazubert et al. were 

sharp-edged with a width (Wb) of 2 mm, in the axial direction, as opposed to the 10.5 mm of 

the smooth-edged baffles used in the present work (Figure 1). While a direct comparison is 

not possible due to different geometric and operational parameters, since po and εv are 

proportional to θ, where θ = (xoWb)/(αLb), the maximum center-to-peak pressure drop 

fluctuation per length and the power density reported by Mazubert et al. can be compared 

with those obtained in #2 of our work (2.3 kPa m-1 and 88.1 W m-3) by multiplying 

Mazubert’s data by a ratio of Ours Mazubert  . In doing so, the data of Mazubert et al. become 

2.5 kPa m-1 and 81.8 W m-3 respectively, which are very similar to our results obtained from 

run #2. Note that to compensate for the shape difference in baffles, i.e. smooth vs sharp 

edges, Wb = 5.6 mm was used in the calculation of θOurs; this is the baffle width a sharp-edged 

baffle (Db = 7 mm) should have in order for the area under its curve to be equal to that of the 

smooth-edged baffle of the DN15 used in this investigation.  

Mackley et al. plotted power density over a section of OBR against ωxoD (m2 s-1), 

showing a third order power law dependency.36 For the sake of comparison, the same plot 

was displayed using our simulated data (Figure 5 left) and a similar third order power law 

trend was observed here. However, ωxoD is not a dimensionless group; it has neither physical 

meaning nor importance, as it does not include all design and operational parameters. When 

plotting power density against ωxoD or the widely used oscillatory Reynolds number, see 

Figure 5 (right), multiple power density values (provided at different operation conditions) 

are obtained at the same ωxoD and Reo. There is generally a knowledge gap in the governing 

dimensionless groups in this area, because none of the existing dimensionless groups capture 

all key design and operational parameters, e.g., the oscillatory Reynolds number was directly 

derived by replacing the net flow velocity with the oscillatory velocity; the Strouhal number 
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(St = D/4πxo) only describes a ratio of tube diameter to oscillation amplitude. A revised 

oscillatory Reynolds number was proposed50 as *

o oRe Re  , accounting for the effect of 

the baffle diameter, since the smaller the Db, the higher the inertia forces of the fluid. This 

was a step forward, it however did not include the effects of baffle spacing and the net flow 

of the system; baffle spacing controls the connectivity of eddies and net flow is an essential 

part of plug flow. In order to capture the effects of all key design and operational parameters, 

a new dimensionless number is proposed in this study as: 

NEW T
o

u D
Re

 

 
                     (10) 

where Tu  is the total inlet velocity of the system covering both the net and oscillatory flows 

 T o netu x u   (m s-1) and  is defined as the ratio of the optimal to user’s baffle spacing as 

opt

b bL L  , and Lb
opt = 1.5D. The optimal Lb/D ratio was identified as 1.5 by visually 

analyzing flow patterns,51 and as 1.8 by quantitatively assessing the gas-liquid mass transfer 

coefficient in an OBR.30 Since 1.5 has most commonly been reported in 

literature;2,20,22,26,32,40,44,46,52-54 it was selected as reference in Reo
NEW. When  is greater than 

one, more baffles than the optimal would be present, increasing the inertia forces of the fluid 

and vice versa. In this work  is 0.96 for all cases, except for runs 12 and 13. This new index 

(10) is used throughout the validation work. 
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Figure 5. Power density plotted as a function of 
ox D  (left) and Reo (right) for runs #1 to 15 

5.1. Power dissipation rates (εv) 

In order to assess the validity of equation (5), where p(t) is assumed sinusoidal, values of 

pnet, po and δ were obtained from the simulated p(t) as: 

 Δpnet is calculated as the time-averaged value of the simulated pressure drop 

 netp p t    

 Phase shift is calculated by monitoring the times at which Δp(t) crosses its Δpnet 

value, e.g. every T/2 seconds, where T is the period of the oscillation. These times are 

then subtracted from the times at which velocity’s sinusoidal wave crosses its unet 

value. The resultant values are averaged among cycles 7 to 10 and converted from 

seconds into radians:        rad 2 s sT       

 The maximum center-to-peak pressure drop fluctuation, Δpo, can be obtained by 

equating the first part of eq. (5), which includes the contributions from the net flow 

(pnet and unet), to the power density obtained from the numerical integration of eq. 

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E-04 1.E-03 1.E-02 1.E-01

ε v
( W

 m
-3

)

ωxoD  (m2 s-1)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

5.E+02 5.E+03 5.E+04

ε v
( W

 m
-3

)

Reo

ACCEPTED M
ANUSCRIP

T



18 

 

(4) and by solving it for Δpo, we will call this value Δpo′. However, it can also be 

calculated by obtaining the maximum value of the cycle-averaged Δp(t) profile and 

then computing Δpo = Δpmax – Δpnet, we will call this value Δpo′′. 

Table 4 gathers all the information extracted from the simulated data for all the runs 

performed in this study. Although both the overall pressure drop and overall velocity in the 

DN15 contain a term counting for net flow, simulated results showed that the contributions of 

the net flow (pnet and unet) to power density were negligible in all conditions tested. This was 

assessed by calculating power density using eq. (4) and the simplified version of eq. (5) 

(right-hand side) for each simulated condition listed in Table 1, making use of the known 

variables unet,  and xo, as well as Δpnet, Δpo′ and δ extracted from the simulated Δp(t) profile. 

The relative percentage differences between the results provided by both equations were then 

computed, all of which were below 3.6%. However, it should be noted that the accuracy of 

eq. (5) is heavily dependent on the appropriate estimation of Δpo. Table 4 shows how 

different Δpo′ and Δpo′′ could be, reporting relative percentage differences as big as 37%. 

Figure 6 plots the cycle-averaged pressure drop profile for run #2, along with the hypothetical 

sinusoidal profile that Δp(t) would display if  Δpo = Δpo′ and if Δpo = Δpo′′. The latter 

presents a much larger area under its curve; it in turn reports a larger power density than the 

actual non-perfectly-sinusoidal profile. Note that it is advisable to act with caution when 

making use of eq. (5), as the estimation of Δpo could lead to erroneous results if the temporal 

evolution of Δp(t) is unknown.  

Table 4. Summary of results extracted from CFD simulations 

Run # Δpnet (Pa) Δpo′ (Pa) Δpo′′ (Pa) δ (rad) εv (W m−3)eq. (4) †εv (W m−3)eq. (5) 

1 35.3 395.4 502.6 0.85 11.2 10.9 
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2 58.6 1490.1 1907.7 0.79 88.1 87.6 

3 120.0 5997.1 7409.0 0.79 709.0 708.0 

4 215.9 22632.8 28169.3 0.77 5439.5 5437.5 

5 458.0 83695.5 99453.0 0.62 45503.7 45499.6 

6 15.1 352.7 356.6 0.94 6.4 6.2 

7 111.6 3189.0 4071.8 0.64 353.1 352.1 

8 232.5 3923.9 5365.2 0.54 293.8 291.6 

9 28.3 710.2 642.1 1.00 30.9 30.6 

10 54.8 1021.5 1020.4 0.72 57.7 57.2 

11 27.9 638.2 600.2 0.89 28.6 28.4 

12 100.0 1329.5 1328.1 0.91 50.4 48.6 

13 171.1 2100.8 2292.0 0.80 125.0 121.9 

14 245.4 4415.3 4185.6 0.95 309.9 305.5 

15 248.2 5907.2 7578.9 0.77 714.9 710.4 
† Calculated with the simplified version of eq. (5) (right-hand side) and Δpo = Δpo′ 

 

Figure 6. Cycle-averaged Δp(t) and its hypothetical sinusoidal form, estimating Δpo as Δpo′ 

and Δpo′′, for run #2 
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5.2. Validation of quasi-steady flow model (QSM) 

Following the described procedures, power density was calculated using the QSM for all 

conditions listed in Table 1 and compared with those predicted by CFD simulation as shown 

in Figure 7, where the power density is plotted against Reo
NEW. It is clearly observed that 

power density values predicted by the QSM for every condition were consistently higher than 

the simulated data; reporting an averaged absolute error (AAE) of 333 and 218% for CD = 0.6 

and CD = 0.7, respectively. This over-estimation is coming from two sources: 

 The orifice discharge coefficient (CD). A value of 0.6 ≤ CD ≤ 0.7 has commonly been 

used for the QSM in previous work;27-33 this is typically true for a standard orifice 

made of a sharp-edged thin plate. However, DN15 have wall baffles of smoother 

curvature as shown in Figure 1; hence CD should have a higher value.55 

 Jealous and Johnson27 modelled frictional losses as the total gain in kinetic energy due 

to baffle’s constriction. While this is true for a single orifice, consecutive resistances 

(baffles) will not necessarily increment kinetic energy linearly. Jealous and Johnson 

also made the assumption that the effect of consecutive orifice resistances on pressure 

drop was linear; there was no pressure recovery because orifices were so close to one 

another that no calming section was available. COBRs contain orifices of smooth 

curvature and optimized baffle spacing, some degree of recovery would then be 

expected; the effect of consecutive baffles on pressure drop should thus be of a power 

law relationship. 

We found that by re-adjusting the value of CD better agreement could be obtained between 

the power dissipation rates predicted by the QSM and that obtained from CFD simulations. 

However, the best fit arrives when CD = 1.3, this is neither physically or practically feasible 
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as CD must have a value within a 0 – 1 range. As a result, an exponent is added to the 

number-of-baffles term in the QSM, and the best fits are obtained (as shown in Figure 8) 

when CD = 0.8 and n is replaced by n0.7, proving an AAE of 12%, as: 

   
 

30.7 2

2

2 1 1

3

o

v

D

n x

C V A

  





                    (11) 

In summary, the existing QSM returned higher power dissipation rates due to some of the 

geometric parameters of its formulation not being applicable to modern oscillatory baffled 

devices; this can be corrected by applying a power law dependency with n and an appropriate 

CD value to account for smooth-edged baffles, as show in Figure 7. In doing so, not only have 

the QSM been validated, but also done for a much wider application range than previously 

outlined. Furthermore, it can also be stated that this newly revised QSM is valid for both 

batch and continuous operations, as the contribution of net flow to power dissipation rates is 

negligible (see Table 4). 
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Figure 7. Simulated and QSM predicted power density as a function of Reo
NEW for runs #1 to 

#15 
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Figure 8. AAE (%) as a function of CD and n power law exponent; minimum reached at CD = 

0.8 and x = 0.7 

5.3. Validation of eddy enhancement model (EEM) 

Power density from the EEM is calculated using eq. (2) taking a mixing length of 7 mm, as 

suggested in previous work,28 and then compared in Figure 9 with the power density directly 

obtained from CFD simulations. The estimations of power density using the EEM show a 

better overall fit with the simulated data (AAE = 58%). However, the accuracy of EEM can 

further be improved by implementing the same power law dependency proposed earlier (n0.7) 

to the number of baffles in the system: 
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 

0.7 3 21.5 o
v

n x

V A





                     (12) 

reducing the averaged absolute error to 42%. Additionally, the accuracy of the model can 

significantly be improved by properly estimating the “mixing length”, which is dependent on 

operational and geometric characteristics. Further discussion on this very “mixing length” is 

taken-up in the next sub-section. Along with εv values obtained from eq. (2) and those 

obtained from CFD simulations, Figure 9 displays power dissipation rates obtained from eq. 

(12), inputting estimated “mixing length” values as proposed in section 5.3.1. In summary, 

we have not only validated the EEM, but also done so for a much wider application range 

than previously outlined. Again, due to the minimal effects of net flow on power density, our 

validation of the EEM is applicable for both batch and continuous operations.  
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Figure 9. Simulated and EEM predicted power density as a function of Reo
NEW for runs #1 to 

#15 

5.3.1. Discussion on mixing length 

As aforementioned, the EEM bases the prediction of frictional pressure drop on the acoustic 

resistance of a single orifice plate28 as  
0.5

3friction

op u   , arguing that kinematic 

viscosity (υ) can be substituted by an eddy kinematic viscosity, 2

e  , at high velocities. 

In this way, the “mixing length”    variable was introduced in EEM;  is however a rather 

loose term, as the former viscosity often refers to macro scales, while mixing length is 

associated with micro scale. In turbulent flows, large eddies are generated and dissipated into 

small ones, those further dissipate into smaller eddies and so on, i.e. energy cascading. There 

are generally three turbulent length scales: Kolmogorov scale, Taylor scale and integral 

length scale. The latter is comparable to the characteristic length scale of any given system, 

and sometimes referred to as the turbulent integral length scale  3 2

o
kl


  where k is 

turbulent kinetic energy and ε the turbulent dissipation rate of this kinetic energy. Turbulent 

integral length scale denotes the distance over which fluid elements are moved due to 

turbulent eddies; the determination of such a length scale for any reactor system is not a 

trivial matter, a good example of this is the work by Ni et al. where a sub-grid turbulent 

model was employed.56 It is unknown whether the “mixing length” in eq. (2) refers to the 

turbulent integral length scale; however, Baird & Stonestreet28 referred to it as “the average 

distance of travel of turbulent eddies” and gave it a value of 7 mm, which is within the same 

scale as the characteristic length of the system. Hence, thinking of it as the turbulent integral 

length scale seems appropriate. 
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By equating eq. (12) to the power density obtained from simulated results using eq. (4), 

the “mixing length” can directly be calculated for all the simulated conditions; by doing so, 

the dependency of the “mixing length” on both geometric and operational parameters can be 

examined as shown in Figure 10. Clearly, baffle diameter and oscillation amplitude are the 

key parameters affecting “mixing length”, while the rest have little impact. The influence of 

amplitude on “mixing length” discovered in our work agrees with the findings reported by 

Reis et al.,57 in which an increment in amplitude (at constant frequency) resulted essentially 

in an increment in mixing length, thus increasing mixing in the axial direction and reducing it 

radially. Similarly, when Db is small, formed eddies occupy more radial space enhancing 

radial mixing and suspension of solids (if present), while a bigger Db leads eddies to occupy 

more axial space. The values of “mixing length” found in our work range from 7.6 to 22.1 

mm, agreeing with the concept of “mixing length”, which cannot be greater than  Lb (Lb = 

23.5 mm for all runs except for #10 and 11). Baffle spacing set the maximum value mixing 

length could achieve for a given system, however Lb alone does not have an impact on 

mixing length if the rest of operating and geometric parameters are kept constant. It is the 

combination of the oscillatory amplitude and the baffle orifice diameter that determines the 

scale of the mixing length. 

A good rough estimation for “mixing length” is  = xo, which reduced the AAE reported 

down to 18%. This study concludes that the “mixing length” is not a constant for a given 

device and should appropriately be estimated for each individual run. Figure 11 plots the 

“mixing length” as a function of the dimensionless group St*, which captures the direct and 

inverse relationship of “mixing length” with Db and xo respectively, where  * b

o

D
St

x
  is the 

revised Strouhal number proposed by Ni and Gough.50 Hence, an empirical correlation for the 

ACCEPTED M
ANUSCRIP

T



27 

 

estimation of “mixing length” is proposed:  
0.57

*0.002 St


 . This correlation for the 

estimation of , as opposed to a borrowed value of 7 mm, significantly improves the 

accuracy of EEM, reducing the averaged absolute error from 42% to 4%. 
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Figure 10. Mixing length change with f, xo, Db, Lb and Q 
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Figure 11. Mixing length as a function of St* for runs #1 to 15 

 

6. Conclusions 

In this work, we have, for the first time, provided CFD validations to the two existing models 

for the estimation of power density in oscillatory baffled devices. The existing QSM over-

estimates power dissipation rates due to the inappropriate formulation of two of its geometric 

parameters for modern OBRs/COBRs. By using a revised power law dependency on the 

number-of-baffles term (nx) and an appropriate CD, the QSM was subsequently validated for a 

much wider application range than previously outlined. The EEM generally provides better 

predictions of power density for the conditions tested; however, its accuracy can substantially 
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be improved by making use of the same power law dependency on n and an empirical 

correlation of estimating EEM’s “mixing length” that is proposed in this work; we have again 

validated the EEM for a much wider application range than originally stated. This work has 

also demonstrated that both the QSM and EEM are applicable for continuous operations, as 

net flow contribution to power dissipation rates is negligible in oscillatory baffled reactors. In 

addition, both revised models consistently predict similar power densities for every case, both 

presenting a high degree of agreement with our CFD simulations and reporting small AAE 

values for the wide range of geometric and operating conditions tested. This suggests that 

these two models can be used interchangeably with high confidence.  
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8. Nomenclature 

AAE averaged absolute error (%) 

A reactor’s cross-sectional area (m2) 

CD orifice discharge coefficient 

D tube diameter (m) 

Db baffle hole diameter (m) 

f oscillation frequency (Hz) 

g gravity (m s-2) 

k  turbulent kinetic energy (m2 s-2) 
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Ki inertial correction factor 

  “mixing length” (m)  

lo turbulent integral length scale (m) 

L reactor’s length (m) 

Lb spacing between baffles (m) 

Lb
opt optimum spacing between baffles (m) 

n number of baffles 

Q volumetric flow rate (m3 min-1) 

Reo oscillatory Reynolds number 

Ren net Reynolds number 

Reo
NEWnew oscillatory Reynolds number proposed in this work 

St Strouhal number 

St* oscillatory Strouhal number proposed by Ni & Gough50 

t time (s) 

T oscillation period (s) 

u velocity (m s-1) 

unet inlet net velocity (m s-1) 

V reactor’s volume (m3) 

xo oscillatory center-to-peak amplitude (m) 

 

α the ratio of the area of orifice over the area of tube (the restriction ratio) 

β optimal to used baffle spacing ratio  opt

b bL L  

δ phase shift angle (rad) 

Δp pressure drop (Pa) 

Δpnet pressure drop (Pa) 

ACCEPTED M
ANUSCRIP

T



32 

 

Δpo maximum center-to-peak pressure drop fluctuation (Pa) 

ε turbulent dissipation rate (m2 s-3) 

εv power density (W m-3) 

µ viscosity (kg m-1s-1) 

ρ density (kg m-3) 

υ kinematic viscosity (m2 s-1) 

υe eddy kinematic viscosity (m2 s-1) 

ɸ  property under evaluation 

ω oscillation angular frequency (rad s-1) 
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