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Abstract: We study multivariate Gaussian random fields defined over d-
dimensional spheres. First, we provide a nonparametric Bayesian framework
for modeling and inference on matrix-valued covariance functions. We de-
termine the support (under the topology of uniform convergence) of the
proposed random matrices, which cover the whole class of matrix-valued
geodesically isotropic covariance functions on spheres. We provide a thor-
ough inspection of the properties of the proposed model in terms of (a)
first moments, (b) posterior distributions, and (c) Lipschitz continuities.
We then provide an approximation method for multivariate fields on the
sphere for which measures of Lp accuracy are established. Our findings are
supported through simulation studies that show the rate of convergence
when truncating a spectral expansion of a multivariate random field at a
finite order. To illustrate the modeling framework developed in this paper,
we consider a bivariate spatial data set of two 2019 NCEP/NCAR Flux
Reanalyses.
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1. Introduction

The paper deals with multivariate (or vector-valued) Gaussian random fields
defined over the d-dimensional unit sphere S

d = {x ∈ R
d+1, ‖x‖ = 1} em-

bedded in R
d+1, having a specified matrix-valued covariance function, see Ma
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(2012),Du, Ma and Li (2013),Ma (2015), Porcu, Bevilacqua and Genton (2016),
Alegŕıa et al. (2019a), Bevilacqua, Diggle and Porcu (2019) and Alegŕıa (2020)
for recent literature on this topic. Choosing the d-dimensional sphere as an in-
dex set is motivated by the increasing availability of global data, covering a big
portion of our planet, and we remind the reader of recent applications in Reinsel
et al. (1981), Di Lorenzo et al. (2014), Nychka et al. (2015), Combes, Hormázabal
and Di Lorenzo (2017), Edwards, Castruccio and Hammerling (2019). In addi-
tion to the Earth sciences, Cosmic Microwave Background (CMB) radiation
provides a natural application for Gaussian random field models over S

2 (see
Cabella and Marinucci, 2009; Marinucci and Peccati, 2011). Recently, random
fields using the circle as an index set have been used to capture temporal season-
ality (Shirota and Gelfand, 2017; White and Porcu, 2019; Mastrantonio et al.,
2019) or direction (Jona-Lasinio, Gelfand and Jona-Lasinio, 2012; Wang and
Gelfand, 2014). Additionally, spheres of dimension d > 2 are relevant in vari-
ous disciplines, such as physics, chemistry and material sciences, as discussed in
Dette et al. (2019). For other manifolds we refer the reader to Kerkyacharian
et al. (2018), Lu, Leonenko and Ma (2020) and Lu and Ma (2020).

There is a rich literature on nonparametric Bayesian approaches for scalar-
valued random fields on planar surfaces. See, for instance, Schmidt and O’Hagan
(2003); Gelfand, Kottas and MacEachern (2005); Duan, Guindani and Gelfand
(2007); Zheng, Zhu and Roy (2010); Reich and Fuentes (2012); Chopin, Rousseau
and Liseo (2013); Holbrook et al. (2018) and Müeller, Quintana and Page (2018).
In addition, there has also been some recent work on nonparametric Bayesian in-
ference for scalar-valued random fields and their covariance functions on spheres
(Porcu et al., 2019) and more general manifolds (Castillo, Kerkyacharian and
Picard, 2014). Despite the activity in this area, multivariate random fields on
spheres have not been considered so far under the Bayesian nonparametric
framework. The benefit of adopting a nonparametric Bayesian framework are
that (a) we focus on Gaussian random fields, so that the matrix-valued covari-
ance function becomes crucial for modeling, inference, and prediction, and (b)
we can exploit the simple spectral representation for multivariate covariance
functions on spheres (Hannan, 2009; Yaglom, 1987). Second, fast simulation of
multivariate Gaussian random fields over spheres has only been considered to
a limited extent, and the reader is referred to the HEALPix software (Gorski
et al., 2005), and recent contributions by Emery and Porcu (2019) and Alegŕıa,
Emery and Lantuéjoul (2020).

We focus our work on developing approaches for nonparametric Bayesian
modeling and fast simulation for multivariate random fields over spheres. Specif-
ically, our paper contributes as follows:

1. We provide a strategy to nonparametric Bayesian modeling of matrix-
valued covariance functions over d-dimensional spheres. The basic idea
is that the matrix-valued covariance function is considered as a random
matrix with a given prior probability distribution.

2. We show that our problem is well-posed in the sense that the support of
these random matrix-valued covariance functions is, under uniform topol-
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ogy, equal to the whole set of geodesically isotropic covariance functions
that are defined over d-dimensional spheres.

3. We then provide a detailed study of the posterior distributions, the first-
order moments of the so-defined random matrices, and the geometric prop-
erties of these random matrices in terms of Lipschitz continuities.

4. We propose an approximation method for k-variate random fields with
given classes of geodesically isotropic matrix-valued covariance functions.
Our method is based on truncation at a final order of a spectral expan-
sion associated with a k-variate random field defined over S

d. We assess
the accuracy of the approximation in the Lp sense, detailed subsequently.
Our findings are then supported through a simulation study on bivariate
random fields.

5. We illustrate our findings on a bivariate climate data set where we discuss
modeling details.

The plan of the paper is the following: Section 2 contains the necessary math-
ematical background that is necessary to illustrate our findings. Contributions
1.–3. above are provided in Section 3, and contribution 4. in Section 4. Section 5
presents an analysis of a bivariate global climate dataset (contribution 5.). The
paper concludes with a discussion in Section 6. Technical proofs are deferred to
the Appendix.

2. Background

2.1. Notation

We use A′ to denote the transpose of a matrix A. For a positive semi-definite
square matrix, A, a square root, A1/2, is a matrix of the same order of A
such that A = A1/2(A1/2)′. This decomposition is unique when A is (strictly)
positive definite. For the remainder of the paper, I(k) denotes the k×k identity
matrix.

Let Rk1×k2 denote the space of matrices of order k1 × k2, where k1, k2 ∈ N.
The Frobenius inner product in R

k1×k2 is defined as

〈A,B〉F := trace
(
AB′), (1)

where the trace of a square matrix is defined as the sum of the elements on its
main diagonal. The corresponding norm of a matrix takes the form ‖A‖F =

〈A,A〉1/2F . The results provided in Section 4 make use of the following Lebesgue
norms. Let (M, μ) be a measure space and p ≥ 1. The Lp(M;Rk)-norm of a
vector valued function f : M → R

k is defined as

‖f‖Lp(M;Rk) :=
( ∫

M
‖f(x)‖pF dμ(x)

)1/p

. (2)

Special emphasis is put on the case M = S
d, equipped with the spherical

measure μ. The corresponding inner product of two vector valued functions
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f ,g : Sd → R
k, takes the form:

〈f ,g〉L2(Sd;Rk) :=

∫
Sd

〈f(x),g(x)〉F dμ(x). (3)

Now, let (Ω,F ,P) be a probability space. The vector valued function f : Sd×Ω →
R

k belongs to the mixed Lebesgue space Lp
(
Ω, Lq(Sd;Rk)

)
, p, q ≥ 1, if

‖f‖Lp(Ω,Lq(Sd;Rk)) :=
(
E

(
‖f‖p

Lq(Sd;Rk)

))1/p

=

(∫
Ω

‖f(·, ω)‖p
Lq(Sd;Rk)

dP(ω)

)1/p

=

(∫
Ω

(∫
Sd

‖f(x, ω)‖qFdx
)p/q

dP(ω)

)1/p

< ∞. (4)

For the special case p = q = 2 we have

‖f‖2L2(Ω,L2(Sd;Rk)) = E
(
‖f‖2L2(Sd;Rk)

)
= E

( ∫
Sd

‖f(x)‖2F dμ(x)
)
. (5)

2.2. Multivariate random fields on spheres

We define a k-variate zero-mean Gaussian random field

Z(x) = {(Z1(x), . . . , Zk(x))
′, x ∈ S

d}

as a vector-valued stochastic process that is continuously indexed over Sd. The
components Zi, i = 1, . . . , k, are called scalar random fields. The covariance
function C : [0, π] → R

k×k, is a matrix valued mapping, whose elements are
defined as Ci,j(θ(x1,x2)) = cov{Zi(x1), Zj(x2)}, where θ(·, ·) : Sd × Sd → [0, π]
is the geodesic distance, defined as

θ(x1,x2) = arccos(x′
1x2), x1,x2 ∈ S

d,

and through the paper, we make use of the shortcut θ whenever there is no
confusion. Following Porcu, Bevilacqua and Genton (2016) and Alegŕıa et al.
(2019a), we say that C is geodesically isotropic, as it just depends on x1 and
x2 through their geodesic distance. This paper does not adopt any strategy of
covariance modeling through the chordal distance, which has received substan-
tial criticisms in the recent papers by Gneiting (2013) and Porcu, Bevilacqua
and Genton (2016), as well as an earlier paper by Banerjee (2005). Throughout,
the diagonal elements Ci,i are called marginal covariance functions, while the
off-diagonal elements Ci,j are called cross covariance functions.

For the remainder of the paper, we always assume continuity for the elements
Ci,j of the matrix-valued mapping C. This assumption is not too restrictive
because discontinuous models are rarely used in practice, with the exception
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of the nugget effect model which is regularly used as a summand in additive
covariance structures for capturing abrupt short scale variations in spatial data
applications (Chiles and Delfiner, 2009).

The mapping C is positive semi-definite; that is,

n∑
�=1

n∑
r=1

a′�C(θ(x�,xr))ar ≥ 0, (6)

for all positive integer n, {x1, . . . ,xn} ⊂ S
d and {a1, . . . ,an} ⊂ R

k. A necessary
and sufficient condition (Hannan, 2009) for the continuous mapping C to be
the covariance matrix function of a k-variate stationary and isotropic Gaussian
random field on S

d (i.e., to be positive semi-definite) is that there exists a
summable sequence of positive semidefinite k× k matrices {Bn, n = 0, 1, 2, . . . }
such that, for θ ∈ [0, π],

C(θ) =

∞∑
n=0

Bncn(d, cos(θ)), (7)

where cn(d, x) is defined as the normalized Gegenbauer polynomial, that is,

cn(d, x) =
C

(d−1)/2
n (x)

C
(d−1)/2
n (1)

=
n

(d− 1) · · · (d+ n− 2)
C(d−1)/2

n (x), x ∈ [−1, 1].

(8)

Since the Chebyshev polynomials Tn = C
(0)
n are already normalized, the last

expression is not valid for d = 1 and cn(1, x) = Tn(x). Such a result is the
extension to the matrix-valued case of the celebrated Schoenberg’s theorem
(Schoenberg, 1942). We note that we have been sloppy when writing Bn instead
of Bn,d in (7): clearly, for any dimension d, there exists a different sequence
Bn,d satisfying (7). Yet, this is not relevant for the present work, and for other
technical aspects, the reader is referred to Porcu, Alegŕıa and Furrer (2018) and
the references therein.

Representation (7) has a precise interpretation in terms of the associated
zero-mean Gaussian k-variate process, Z, which admits a uniquely determined
expansion of the type

Z(x) =

∞∑
n=0

∑
m∈Nn,d

ξn,mYn,m(x), x ∈ S
d, (9)

where Yn,m denotes spherical harmonics, an orthonormal basis for the space
of squared integrable functions (against the Lebesgue measure) on the sphere;
for more details see Dai and Xu (2013). The index set Nn,d is finite and for
details the reader is referred to Porcu, Alegŕıa and Furrer (2018). Here, {ξn,m}
is a sequence of random vectors in Rk that have zero mean and such that
Eξn,mξ′k,h = δn=kδm=hBn, where δ is the Kronecker delta function and Bn

are the non negative and summable matrices defined at (7). An alternative
expansion, with the same covariance structure, will be discussed in Section 4.
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3. A Bayesian spectral model

3.1. Random matrix covariances, and their support

For a neater illustration of the results contained in this section, a slight change
of notation is needed. We consider a stochastic process, W , being continuously
indexed over S

d × {1, . . . , k}, and such that W (x, j) = Zj(x) for x ∈ S
d and

j = 1, . . . , k, with Zj being the j-th component of the k-variate random field
Z defined at (9). The covariance function K associated with the process W is
defined as

K
(
(x1, i), (x2, j)

)
= Cov

(
W (x1, i),W (x2, j)

)
.

Clearly, K
(
(x1, i), (x2, j)

)
is the (i, j)-entry of the covariance matrix function

C(θ(x1,x2)) defined at (7). Thus,

K
(
(x1, i), (x2, j)

)
=

∞∑
n=0

(Bn)i,jcn(d, θ(x1,x2)), (10)

where (Bn)i,j denotes the (i, j)-entry of Bn. We denote by A the class of con-
tinuous covariance functions K on S

d × {1, . . . , k}, for some positive integer k,
which admit the representation (10). Apparently, any continuous function K be-
longing to the class A implies that the matrix valued function C having entries

Ci,j(θ(x1,x2)) = K
(
(x1, i), (x2, j)

)
will have a uniquely determined expansion

as in (7). This fundamental connection is made explicit several times in the
exposition of our results.

Some comments are in order. Since each matrix Bn in (7) is positive semi-
definite, by the Cholesky decomposition, there exists a lower triangular matrix
Dn such that Bn = DnD

′
n, for n = 0, 1, . . . , where the diagonal entries of Dn are

nonnegative. Cholesky decomposition is unique if Bn is positive definite, and it
is equivalent to:

Bi,j;n =
k∑

r=1

(Dn)i,r(Dn)j,r, n = 0, 1, . . . (11)

As a consequence of Schoenberg’s representations (7) and (10), the matrices Dn,
n = 0, 1, 2, . . . , satisfy

∞∑
n=0

(Dn)i,r(Dn)j,r < ∞, (12)

for every i, j = 1, . . . , k.
The primary goal here is to propose a nonparametric Bayesian model by

assigning prior distributions to the (random) matrices Bn in (7). This is equiv-
alent to assign a prior distribution to the matrices Dn, n = 0, 1, 2, . . . , which are
therefore replaced by random matrices D̃n that satisfy the following conditions:
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A.1 each matrix D̃n is a lower triangular matrix whose diagonal elements are
non-negative, namely (D̃n)i,j = 0 for 1 ≤ i < j ≤ k, and (D̃n)j,j ≥ 0, for
j = 1, . . . , k;

A.2 the random matrices D̃0, D̃1, D̃2, . . . are independent;
A.3 for each n = 0, 1, . . . , the R+-valued random variables (D̃n)j,j (j=1, . . . , k)

are i.i.d. and the real-valued random variables (D̃n)i,j (j = 1, . . . , i−1, j =
1, . . . , k) are i.i.d.;

A.4 E((D̃n)1,1)
2 = E((D̃n)2,1)

2 = dn where
∑∞

n=0 dn < ∞.

We now define

B̃i,j;n :=

k∑
r=1

(D̃n)i,r(D̃n)j,r, (13)

for i, j = 1, . . . , k. The following result shows that these conditions are indeed
sufficient to ensure almost sure convergence of the sequence of random matrices
{B̃n}∞n=0, a fundamental ingredient for the uniquely determined expansion (7)
to be well-defined.

Proposition 1. Under Conditions A.1–A.4, we have

∞∑
n=0

(D̃n)i,r(D̃n)j,r < ∞,

and therefore
∞∑

n=0

(B̃n)i,j < ∞,

almost surely, for every i, j = 1, . . . , k.

Conditions A.1–A.4, in concert with Proposition 1, are necessary to con-
struct a covariance function, K̃, random version of the covariance function de-
fined at (10). We define it through

K̃(x1,x2; j1, j2) =

∞∑
n=0

(B̃n)j1,j2cn(d, θ(x1,x2)), (14)

for every x1,x2 ∈ S
d and every j1, j2 ∈ {1, . . . , k}. This implicitly defines a

random matrix-valued covariance function, C̃, having expansion

C̃(θ) =

∞∑
n=0

B̃ncn(d, cos(θ)), θ ∈ [0, π], (15)

for a converging sequence {B̃n}∞n=0 with entries (B̃n)i,j determined through
(14).

Apparently, the random nature of K̃ and C̃ are ensured provided those are,
actually, a random variable, and a random matrix respectively. This is in turn
ensured by the following result.
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Proposition 2. Let A be equipped with the topology induced by the uniform (or
sup) norm and consider the sigma-algebra generated by the open sets in such
topology. Then the map K̃ : Ω → A defined in Equation (14) is measurable.
Therefore, K̃ is a random variable.

The final step in the Bayesian nonparametric construction specified through
Conditions A.1–A.4 is to establish the support of the random variable K̃ under
a specified topology. We choose to work under the topology of uniform conver-
gence. To establish our next result, an additional condition is needed:

A.5 For each n ≥ 0, let the support of (D̃n)1,1 be [0,∞) with P((D̃n)1,1 = 0) = 0

and let the support of (D̃n)2,1 be R.

With this additional assumption, we are ready to provide the core result of this
section.

Theorem 3. Let conditions A.1–A.5 hold true. Then, the support of K̃ in the
uniform topology is A.

Theorem 3 shows that the support of the random matrix-valued covariance
function, C̃, is the whole class of matrix-valued positive definite functions defined
by the series representation (7).

3.2. Moments, posteriors, and Lipschitz continuities

The previous section developed an approach for Bayesian nonparametric co-
variance matrix functions that have a well-defined support under the uniform
topology. This section provides further inspection of the properties for this pro-
posed framework. We start by exploring the first-order properties of the random
covariance functions, K̃, defined in (14).

Proposition 4. Let K̃ be the random covariance function defined through (14).
If conditions A1–A4 hold true, then

E(K̃(x1,x2; j1, j2)) =

∞∑
n=0

E((B̃n)j1,j2)cn(d, θ(x1,x2)),

for every x1,x2 ∈ Sd and j1, j2 ∈ {1, . . . , k}.
We now provide a technical result needed to establish the properties of our

proposed model’s posterior distribution.

Proposition 5. Let conditions A.1–A.5 hold true. Then, for every positive
integer n, and for every finite system of pairwise distinct points x1, . . . ,xn ∈ S

d,
for any (j1, . . . , jn) ∈ {1, . . . , k}n and constants c1, . . . , cn ∈ R, where cl �= 0,
for some l, the following holds almost surely:

n∑
r=1

n∑
l=1

crclK̃(xr,xl; jr, jl) > 0.
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Rephrased, Proposition 5 shows that K̃ is almost surely strictly positive
definite. This will be useful later on.

We are now able to study the posterior properties of the proposed model.
Suppose that we have observations z := (z(x1), . . . , z(xn)) at points x1, . . . ,xn

in S
d sampled from a k-variate Gaussian process on S

d. Therefore, z is a (k×n)-
dimensional matrix, and its (j, i)-entry, which we denote by zj(xi), is a realiza-
tion of the random variable Zj(xi), for j = 1, . . . , k, i = 1, . . . , n. The unknown

covariance function K̃ in (14) is uniquely determined through the sequence of
random matrices D̃0, D̃1, . . . defined through (11), which we denote by D̃.

Thus, conditional on D̃, Z is a k-variate stationary and isotropic Gaussian pro-
cess with covariance matrix function C̃. Specifying the probability distribution
of D̃ and the conditional distribution of Z given D̃ specifies the joint prior dis-
tribution of D̃ and Z. Because conditioning on observations (Z(x1), . . . ,Z(xn))
updates the conditional distribution of the random pair (Z, D̃), we explore the
conditional distribution of the parameter D̃ given (Z(x1), . . . ,Z(xn)), namely
the posterior distribution of D̃. To do this, we first define vec(z) as the vector-
ization of the matrix z, i.e.,

vec(z) = (z1(x1), z2(x1), . . . , zk(x1), z1(x2), . . . , zk(xn))
′,

and let mod denote the modulo operation.

Proposition 6. The posterior P
z of D̃ exists, is unique, and is absolutely con-

tinuous with respect to the prior, with uniquely determined density evaluated at
D = {D0,D1, . . . } equal to:

f(vec(z);D)

M(z)
, (16)

where f(z;D) is the kn-dimensional centred multivariate Gaussian density eval-
uated at vec(z) with covariance matrix Σn(D), where

Σ(D)r1,r2;n :=

∞∑
n=0

k∑
l=1

Dj(r1),l;nDj(r2),l;ncn(d, θ(xi(r1),xi(r2))), (17)

for

i(r) =

{
�r/k
 if r/k /∈ N

�r/k
 − 1 if r/k ∈ N
j(r) =

{
r mod k if r mod k �= 0

k if r mod k = 0

and

M(z) = E(f(vec(z);D)).

The matrix (17) is not singular thanks to Proposition 5. This ensures that
the density (16) is well defined.

Importantly, we verify that the posterior P
z distribution of the parameters

varies smoothly as a function of z. This relates to robustness to changes in
the observed data. Indeed, this property ensures that small changes in the data
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lead to small changes in the posterior distribution, and this is usually estab-
lished through continuity in the Hellinger metric. If this holds, we say that the
estimation task is well-posed (see Stuart, 2010; Dashti and Stuart, 2016).

To address well-posedness of the posterior, recall the definition of the Hellin-
ger distance between two probability measures, ν1 and ν2, dominated by the
same measure ν with Radon–Nikodym derivatives f1 and f2, respectively:

dH(ν1, ν2) =

{∫ (√
f1 −

√
f2

)2

dν

}1/2

. (18)

We are now able to illustrate our next finding.

Theorem 7. The posterior P
z given in Proposition 6 is Lipschitz continu-

ous with respect to the Hellinger distance in the data z: for any r > 0, there
exists a strictly positive constant m(r) such that for all z1, z2 ∈ R

k,n, with
max{‖vec(z1)‖, ‖vec(z2‖)} ≤ r,

dH(Pz1 ,Pz2) ≤ m(r)‖vec(z1)− vec(z2)‖. (19)

4. Approximations on Lp spaces

This section suggests a method of approximation of k-variate isotropic random
fields Z on S

d, and studies the level of its accuracy in a Lp sense.
The following Karhunen-Loeve expansion, proved in Ma (2016), see also Lu,

Leonenko and Ma (2020), plays a fundamental role in this section. Let {Vn}∞n=0

be a sequence of independent k-variate random vectors with EVn = 0 and

cov(Vn,Vn) = E(VnV
′
n) =

2n+ d− 1

d− 1
I(k) =: α2

nI(k).

LetU be a (d+1)-dimensional random vector, uniformly distributed on S
d which

is independent of {Vn}∞n=0. Finally, let {An}∞n=0 be a sequence of k×k positive

definite matrices. It can be easily shown that, if the series
∑∞

n=0 AnC
(d−1)/2
n (1)

converges, then

Z(x) =

∞∑
n=0

A1/2
n VnC

(d−1)/2
n (x′U), x ∈ S

d, (20)

is a k-variate isotropic random field on S
d, with 0-mean and covariance matrix

function of the form

C(θ) =

∞∑
n=0

AnC
(d−1)/2
n (cos θ), θ ∈ [0, π],

i.e., of the form (7) with An = Bn/C
(d−1)/2
n (1).
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Observe that the realizations of the random field defined in (20) will be
constant across hyperplanes that intersect the sphere (i.e., constant across arcs
over the spherical surface). The vector U determines the orientation of these
arcs. Thus, a more flexible variant of the random field constructed above, that
preserves its mean and covariance functions, is given by

Z(x) =

∞∑
n=0

A1/2
n VnC

(d−1)/2
n (x′Un), x ∈ S

d, (21)

where U0,U1, . . . is a sequence of independent random vectors, being uniformly
distributed on S

d, and being independent of the vectors V0,V1, . . .. The proof
of this more general assertion follows the same arguments reported in Ma (2016)
(we provide more details in Appendix A.1).

Remark 8. Notice that both expansions, (20) and (21), generate random fields
with the desired covariance structure, however their finite-dimensional distribu-
tions are clearly non-Gaussian. A common strategy to achieve approximately
Gaussian random fields is to overlap several independent realizations (properly
rescaled). This procedure is justified by the central limit theorem (for more de-
tails, see Emery and Lantuéjoul, 2006 and Alegŕıa, Emery and Lantuéjoul, 2020,
and the references therein).

For R ∈ N we define the truncated series

Z
R(x) =

R∑
n=0

A1/2
n VnC

(d−1)/2
n (x′Un), x ∈ S

d, (22)

that is the truncated version of the random field, Z, whose expansion has been
defined at (21). For justifying the approximation of Z by Z

R, we have to show
that ZR converges to Z, when R → ∞ in several norms counting the risk simul-
taneously in stochastic and analytic way.

Precisely, the following result characterizes the rate of convergence of the error
Z − Z

R in Lp and P-almost sure sense in terms of the decay of the sequence{
‖An‖F

}
n∈N

.

Theorem 9. Let Z be a k-variate isotropic zero mean Gaussian random field
on S

d given by (21). Assume that the trace of the matrix A decays algebraically
with order d−1+ε; i.e., there exist c0 > 0 and N0 ∈ N such that for all n ≥ N0,

trace
(
An

)
≤ c0n

−d+1−ε, (23)

for some ε > 0. Then, the series of truncated random fields {ZR}R∈N converges
to the random field Z (either) in the following sense:

1. in L2
(
Ω, L2(Sd;Rk)

)
, and the truncated error is bounded by∥∥Z− Z

R
∥∥
L2(Ω,L2(Sd;Rk))

≤ cR−ε/2, (24)

for R ≥ N0, where c = c(d, ε) > 0;
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2. in Lp(Ω, L2(Sd;Rk)) for every p > 0. Moreover, there exists a constant
c = c(d, ε, p) > 0 such that the truncated error to be bounded by∥∥Z− Z

R
∥∥
Lp(Ω,L2(Sd;Rk))

≤ cR−ε/2, (25)

for R ≥ N0, where c = c(d, ε) > 0;
3. P-almost surely, and the truncated error is asymptotically bounded by∥∥Z− Z

R
∥∥
L2(Sd;Rk)

≤ R−γ , P-a.s., (26)

for γ < ε/2.

4.1. Numerical illustrations

The truncated expansion (22) can be used to simulate zero-mean random fields
with a prescribed second order dependency structure. The experiments devel-
oped in this section are the multivariate versions of similar numerical studies
reported by Lang and Schwab (2015) for univariate random fields.

In this section, we restrict ourselves to the bivariate case, where the (i, j)th
entry of the Schoenberg’s matrix Bn is given by

(Bn)i,j = σi,iσj,jρi,j(bn)i,j , i, j = 1, 2.

Here, for each i, j, {(bn)i,j} is a parametric sequence such that
∑∞

n=0(bn)i,j = 1
(see the examples below), whereas σ2

i,i is the variance of the ith component of
the multivariate random field, and ρi,j is the colocated correlation coefficient.
Thus, we can write ρi,j in the equation above because ρi,i = 1 by construction.
Throughout, we assume that σi,i = 1, for i = 1, 2. Thus, both components of
the random field will have unit variance. Our numerical findings are based on
the following two special examples for the sequence {(bn)i,j}.

• F family. Bevilacqua, Diggle and Porcu (2019) have recently proposed
a bivariate structure on the basis of the so-called F family of functions
(Alegŕıa et al., 2019b). Precisely, this model is defined as

(bFn )i,j =
B(αij , νij + τij)

B(αij , νij)

(τij)n(αij)n
n!(αij + τij + νij)n

, i, j = 1, 2, (27)

where τi,j , αi,j and νi,j are positive parameters, and B(·, ·) is the Beta
function. We fix τij = 1, for all i, j = 1, 2, since we are essentially interested
in the smoothness and range of the associated random field, which are
governed by the parameters νij and αij , respectively (see Alegŕıa et al.,
2019b). The technical condition

|ρ12| ≤ B(α12, ν12)/
√
B(α11, ν11)B(α22, ν22),

stated in Bevilacqua, Diggle and Porcu (2019), is fundamental to ensure
the validity of this model. We consider the following scenarios:
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– Scenario F1. A random field with each component having the same
smoothness and range: νij = 2, αij = 4, for all i, j = 1, 2. The cross
correlation coefficient is ρ12 = 0.85, which means that both fields are
strongly positively correlated.

– Scenario F2. Same scenario as in F1, but νij = 4, αij = 8, for
all i, j = 1, 2. The sample paths are expected to be smoother in
comparison to Scenario I. The cross correlation coefficient is set to
ρ12 = −0.85, which means that both fields are strongly negatively
correlated.

– Scenario F3. A random field with all components having the same
smoothness, but different values of α: νij = 4, for all i, j = 1, 2,
and α11 = 8, α22 = 4, and α12 = 6. Here, the range is smaller for
the first random field, since an increase in α corresponds to decreas-
ing the correlation range. The cross correlation coefficient is chosen
as ρ12 = 0.85. Under this choice both fields are strongly positively
correlated.

– Scenario F4. A random field with all components having the same
range: αij = 8, for all i, j = 1, 2, and different degrees of smooth-
ness: ν11 = 2, ν22 = 4, and ν12 = 3. Here, the second random field is
smoother than the first one. The cross correlation coefficient is chosen
as ρ12 = 0.85. Under this choice both fields are strongly positively
correlated.

• Multiquadric family. The bivariate multiquadric model is characterized
by the sequences (Ma, 2012; Bevilacqua, Diggle and Porcu, 2019)

(bMn )i,j = (1− ζij)ζ
n
ij , i, j = 1, 2, (28)

where ζij ∈ (0, 1) are parameters. This model is admissible provided
that (Bevilacqua, Diggle and Porcu, 2019)

|ρ12| ≤
√

(1− ζ11)(1− ζ22)/(1− ζ12).

Unlike the F family, the members of the multiquadric class are infinitely
differentiable at the origin, so they always induce random fields with
smooth realizations. For this parametric class, we look at the following
scenarios:

– Scenario M1. We consider ζ11 = 0.8, ζ22 = 0.7 and ζ12 = 0.65,
which indicates that the range of the first random field component is
smaller. The cross correlation coefficient is ρ12 = 0.65, which means
that both fields are positively correlated.

– Scenario M2. Same values for ζij as inM1, but the cross correlation
coefficient is ρ12 = −0.65, which means that both fields are negatively
correlated.

– Scenario M3. We consider ζ11 = 0.5, ζ22 = 0.4 and ζ12 = 0.35.
Again, it indicates that the range of the first random field component
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is smaller. The cross correlation coefficient is ρ12 = 0.8, which means
that both fields are strongly positively correlated.

– Scenario M4. Same values for ζij as inM3, but the cross correlation
coefficient is ρ12 = −0.8, which means that both fields are strongly
negatively correlated.

Figures 1 and 2 show simulated bivariate random fields on S
2, from the F and

multiquadric families, respectively, over a grid of size 600× 300, with R = 200.
The simulations match the theoretical aspects in terms of smoothness, ranges,
and cross-correlation.

We turn to a numerical validation of the truncation error derived above. We
simulate random fields over 450 sites (these locations were generated through
a uniform sampling over the spherical surface), under scenarios F1–F4. We
focus on the F family since it has a parameter that controls the asymptotic
decay of the Schoenberg’s sequence. Indeed, the asymptotic behavior (bFn )i,j ∼
n−(1+νi,j) (Alegŕıa et al., 2019b) implies that the condition (23) is satisfied with
ε = min{ν1,1, ν2,2}. We take as the “true” random field the truncated expansion
(22) with R = 500. We gradually truncate the expansion at different values of
R and measure the L2 discrepancy between the truncated and true fields. For
each scenario, we repeat this experiment 100 times. Observe that the uniformly
distributed spatial locations together with the independent repetitions of the
experiment allow us to approximate the integrals involved in the L2 error by
means of a Monte Carlo argument. Figure 3 displays the results. We observe
that the empirical error matches the theoretical one for each scenario (the error
decays algebraically with order R−min{ν1,1,ν2,2}/2).

Although we have paid attention to the two parametric models described
above, additional parametric families of Schoenberg’s coefficients can be em-
ployed, (see, e.g., Ma, 2012 and Guinness and Fuentes, 2016).

5. NCEP/NCAR bivariate flux reanalysis

In this section, we apply the proposed modeling framework presented in Sec-
tion 3 to a bivariate meteorological dataset. Recent climatic changes have af-
fected various atmospheric constituents and downward solar radiation flux (see,
e.g., Forster et al., 2007; Wild, 2009). Downward solar radiation flux (DSRF
throughout) is an important component of the Earth’s climate system, affect-
ing, among other things, surface temperature and the hydrologic cycle. DSRF is
affected by atmospheric pressures at various levels because these directly affect
cloud cover.

In this data illustration, we consider a bivariate spatial data set from two 2019
NCEP/NCAR Flux Reanalyses (Kalnay et al., 1996): atmospheric pressure at
high cloud bottom and DSRF averaged over 2019. Of course, by averaging over
time, we average over possibly important temporal patterns in these data. We
plot these data in Figure 4. These data show apparent negative correlation and
strong spatial patterns.
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Fig 1. Simulated bivariate random fields on S2, over a grid of size 600× 300, with R = 200,
for Scenarios F1–F4 (from top to bottom).
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Fig 2. Simulated bivariate random fields on S2, over a grid of size 600× 300, with R = 200,
for Scenarios M1–M4 (from top to bottom).
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Fig 3. Convergence rates in terms of R in a logarithmic scale, for Scenarios F1–F4 (from
top-left to bottom-right). The average empirical convergence rates, based on 100 independent
realizations, are given by the red squares, whereas the theoretical convergence rates are given
by the solid blue lines.

For scalability, we thin these data to ns = 1568 locations such that each
remaining observation represents approximately the same area. Thus, we thin
more aggressively in polar regions than in equatorial regions. For simplicity
in modeling our data, we subtract off the mean and divide by the standard
deviation of each quantity so that the sample mean and variance are 0 and 1,
respectively.

To specify a covariance matrix function of the form (7), we use independent
prior distributions for the elements of D̃n that follow assumptions A.1–A.5. We
assume a prior distribution of the form

D̃n =

(
σ1n 0
an σ2n

)
, (29)
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Fig 4. Annual average of two NCEP/NCAR reanalysis data sets from 2019: (Left) Atmo-
spheric pressure at high cloud bottom (Right) DSRF.

where

σ1n ∼ Gamma

(
1,

√
2(n+ 1)

s1

)
,

an ∼ N
(
0,

s21
(n+ 1)2

)
,

σ2n ∼ Gamma

(
1,

√
2(n+ 1)

s2

)
,

(30)

for n = 0, 1, 2, . . . and where N denotes normal distribution. Here, we as-
sume that all parameters are a priori independent; thus, Assumptions A.2 and
A.3 are met. Assumption A.1 is met because D̃n is lower triangular. Because
E(σ2

1n) = E(a2n) = s21/(n + 1)2 with
∑∞

n=0 s
2
1/(n + 1)2 = s21π

2/6, Assumption
A.4 is satisfied. Given the prior distributions proposed, Assumption A.5 is also
satisfied, although the Gamma is not always defined at 0.

Intuitively, the prior distribution provides increased shrinkage or penalization
for higher-order terms, effectively pushing these parameters to 0. This type of
prior distribution allows us to fit models with many Gegenbauer polynomial
terms without many of the issues associated with including many parameters
in a model (e.g., overfitting and high parameter uncertainty). Moreover, this
prior distribution on D̃n yields positive definite B̃n which, when combined with
Gegenbauer polynomials of cos(θ), yield positive definite matrix functions with
the great-circle distance as a metric.

We add two practical considerations. First, to account for variation over a
very short distance in each outcome, we include nugget effects τ21 and τ22 . Second,
although this model is only guaranteed to be positive definite using all terms
in (7), for practical reasons, we focus on finite truncations of (7). We explore
model fit as a function of the truncation number (i.e., the number of included
Gegenbauer polynomials included n = 0, . . . , N). The nugget effects τ21 and τ22
ensure positive definiteness. We assume a priori that these nugget terms come
from a uniform distribution between 10−4 and 1. The lower bound of 10−4

assures that the joint covariance matrix is positive definite. The upper bound
of 1 is set because we have scaled both variables to have a variance of 1.
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Let Y 1 be atmospheric pressures at high cloud bottom and Y 2 be downward
solar fluxes. The joint model for Y 1 and Y 2 is(

Y 1

Y 2

)
∼ N

(
0,

N∑
n=0

B̃n ⊗ Cn + diag(τ21 , τ
2
2 )⊗ I(ns)

)
, (31)

where ⊗ is the Kronecker product, Cn is a ns × ns matrix of the nth order
Gegenbauer polynomial evaluated at the cosine of great circle distances between
locations on the sphere, and diag(τ21 , τ

2
2 ) is a 2× 2 diagonal matrix. Because of

the clear trends in latitude, the absolute value of latitude could be incorporated
as a covariate in this model. In this illustration, however, we present a simple
model featuring our nonparametric covariance model.

We fit the model using adaptive Markov chain Monte Carlo (MCMC) (see
Roberts and Rosenthal, 2009, for a discussion on adaptive MCMC). Specifi-
cally we do multivariate adaptive Metropolis-Hastings updates on the log-scale
for σ1n and σ2n, and on the untransformed scale for an (Haario, Saksman and
Tamminen, 2001). We update each of these as a unique step. We jointly propose
candidate σ1n for n = 0, 1, . . . , N from a multivariate log-normal distribution
using the natural log of the current values of σ1n as μ. We propose values for
σ2n similarly. For an, we sample candidate values from a multivariate Normal
centered at its current value. We tune the proposal covariance using the covari-
ance of previous samples of an and the natural log of σ1n and σ2n, as well as
adding a small number to the diagonal of these covariance matrices (Haario,
Saksman and Tamminen, 2001). We update τ21 and τ22 univariately using an
adaptive Metropolis-Hastings algorithm using a log-Normal random walk, where
the candidate variance is turned to obtain an acceptance rate between 0.2 and
0.5, a rule presented in Roberts, Gelman and Gilks (1997).

We fit the model using N = 2, 4, 6, 8, 10, 15, 20, 30 Gegenbauer polynomials
using s1 = s2 = 1 or s1 = s2 = 100 as prior distributions, giving 16 models in
total. For each model, we calculate the mean log-likelihood and deviance infor-
mation criterion (DIC). Using these values, we explore how model fit changes
with the number of Gegenbauer polynomials included and depending on the
variance of the prior distribution (i.e., the degree of shrinkage or penalization).

In Figure 5, we plot the log-likelihood averaged over all post-burn-in itera-
tions of our MCMC sampler. While adding additional Gegenbauer polynomials
increases the log-likelihood, the improvements diminish as the number of terms
increase. We also plot the improvement in DIC (smaller is better) using the
lower variance prior distribution in Figure 5. We find that lower variance prior
distribution has lower (better) DIC for all models. However, the relative im-
provement decreases as the number of terms increases, likely because the higher
variance model still has heavy shrinkage for high-order polynomials. Here, we do
not make any claims about how the number of Gegenbauer polynomials affects
predictive performance.

For the model with N = 30 Gegenbauer polynomials with higher prior shrink-
age s1 = s2 = 1, we summarize the behavior of the resulting covariance matrix
function. At the estimated posterior mean, we plot C11(θ), C12(θ), and C22(θ)
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Fig 5. (Left) Mean log-likelihood as a function of the number of Gegenbauer polynomial terms
used. (Right) Improvement in DIC using low variance (high shrinkage) prior distribution.

Fig 6. Covariance matrix function of θ at the posterior mean.

in Figure 6. Defining the effective range as the distance at which the covariance
(or cross-covariance) is 0.05% its most extreme level, we find that the estimated
effective ranges of C11(θ), C12(θ), and C22(θ) are 7250, 6880, and 8060 km.
These long effective ranges are unsurprising given the relatively smooth maps
we observe in Figure 4.

In this section, we model two negatively correlated NCEP/NCAR reanalysis
datasets, downward solar flux and atmospheric pressure and high cloud bottom,
using a Bayesian nonparametric covariance matrix function constructed through
Gegenbauer polynomials to model spatial cross-covariance. In our analysis, we
focus on the degree of shrinkage imposed by our prior distribution and the
number of Gegenbauer polynomials in the cross-covariance function. We only
considered models with a fixed and finite number of Gegenbauer polynomials.
While it is not possible to use an infinite number of Gegenbauer polynomial,
future extensions of this model could allow the number of terms to be random. If
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the number of components comes from a Poisson prior distribution, then model
fitting would require reversible jump MCMC (Green, 1995) or a point process
representation of the Poisson prior distribution (Stephens, 2000). Alternatively,
scaling the prior distributions of D̃n using stick-breaking weights (Sethuraman,
1994) may be a possible route to learning the number of polynomials needed.

One of the most fundamental limitations of our analysis is that our covari-
ance model is isotropic and stationary. Therefore, the estimated bivariate cross-
covariance function represents the estimated global covariance pattern as func-
tion of distance, not accounting for regional differences. However, because global
meteorological data over the Earth often exhibit anisotropies (Sahoo, Guinness
and Reich, 2019), the estimated covariance functions may not be representative
of local covariance patterns. Thus, the results must be interpreted with this
limitation in mind. We discuss some extensions of this framework in Section 6
that may extend the model presented here.

6. Conclusion

We have provided a Bayesian nonparametric modeling framework for estimating
matrix valued covariance functions. Practical implementation of the estimation
techniques proposed in this paper require truncation of the Schoenberg expan-
sion. Thus, we studied approximations of k-variate isotropic random fields and
their accuracy in a Lp sense, both theoretically and through simulation. In ad-
dition, we have explored the effect of the prior distribution and truncation on
the model fit using a global climate reanalysis dataset.

We have worked under the assumption of geodesic isotropy, which might be
questionable for some global data sets where local geographic conditions lead
to anisotropy. In future analyses, we could explore approaches for incorporating
anisotropy or nonstationarity within our proposed framework. Climate data also
typically exhibit axial symmetry; that is, the covariance function is stationary by
longitude and nonstationary by latitude (Jones, 1963; Stein, 2007). Extending
this paper to the case of axial symmetry will require considerable technical
work, as spectral representations for the axially symmetric case are extremely
complicated.

In Section 5, we focus our analysis on the how the number of Gegenbauer
polynomial terms and prior shrinkage affect fit and model complexity. In fu-
ture work, one could explore more thoroughly the various prior formulations
on matrices Bn in (7) and their resulting posteriors. As a part of this study, it
is possible that there are some analogs between specific prior distributions on
Bn and some closed-form representations presented in Guinness and Fuentes
(2016) and Ma (2012) with prior distributions dependent on the specification
of Bn. In addition, we suggest exploring this framework in non-Gaussian set-
tings (as in Terdik, 2015) and for tensor-valued quantities (see, e.g., Leonenko
and Malyarenko, 2017).

One very promising application for this modeling framework is the study of
Cosmic Microwave Background (CMB) radiation, including temperature (often



Nonparametric multivariate random fields on spheres 2381

called T) as a function of redshift and polarizations (both electric and mag-
netic modes, called E and B modes) (see, for example, Fixsen, 2009; Durrer,
2020). These data provide an application where the flexible models presented
here could provide insight into early universe cosmology (Cabella and Marin-
ucci, 2009; Marinucci and Peccati, 2011). However, because these datasets are
generally large, one would likely need to consider low-rank (see, e.g., Higdon,
1998; Banerjee et al., 2008; Cressie and Johannesson, 2008) or directed acyclic
graphical models (see Katzfuss and Guinness, 2021, for a recent review).

Appendix A: Proofs

A.1. An alternative Karhunen-Loeve expansion

The goal of this appendix section is to justify that the expansion (21) produces
a random field with the covariance function (7). Firstly, it is clear that such a
random field has zero-mean (see Ma, 2016 for details). Secondly, observe that the

convergence of the series
∑∞

n=0 AnC
(d−1)/2
n (1) is fundamental to ensure that the

random field (21) has finite variance, so the covariance function is well-defined.
We proceed to calculate the covariance function of the random field defined in
(21):

E(Z(x1)Z(x2)
′)

= E

( ∞∑
n=0

∞∑
m=0

A1/2
n VnV

′
m(A1/2

m )′C(d−1)/2
n (x′

1Un)C
(d−1)/2
m (x′

2Um)

)

=

∞∑
n=0

∞∑
m=0

A1/2
n E(VnV

′
m)(A1/2

m )′E
(
C(d−1)/2

n (x′
1Un)C

(d−1)/2
m (x′

2Um)
)

=
∞∑

n=0

α2
nAnE

(
C(d−1)/2

n (x′
1Un)C

(d−1)/2
n (x′

2Un)
)

In the previous equalities, we used the independence between the Vn’s and
Un’s, as well as the fact that E(VnV

′
m) = δn=mα2

nI(k). Finally, the integral
equation (Ma, 2016)

1

ωd

∫
Sd

C(d−1)/2
n (x′

1u)C
(d−1)/2
m (x′

2u)du =
δn=m

α2
n

C(d−1)/2
n (x′

1x2), (32)

where ωd = 2π
d+1
2

Γ( d+1
2 )

is the surface area of Sd, implies that

E(Z(x1)Z(x2)
′) =

∞∑
n=0

AnC
(d−1)/2
n (x′

1x2),

as expected.
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A.2. Proof of Proposition 1

If j = l, by condition A.4 we have that

∞∑
n=0

E((D̃n)j,r)
2 < ∞.

By the monotone convergence theorem, series and expectation can be swapped
and therefore:

E

{ ∞∑
n=0

((D̃n)j,r)
2

}
< ∞, (33)

which in turn implies that
∑∞

n=0((D̃n)j,r)
2 < ∞ almost surely since any random

variable with finite expectation is finite almost surely. If j �= l, for the same
reason, it is sufficient to verify that

∞∑
n=0

E

{∣∣∣(D̃n)j,r(D̃n)l,r

∣∣∣} < ∞. (34)

By condition A.3, (D̃n)j,r and (D̃n)l,r are independent, and therefore it is suf-
ficient to verify that

∞∑
n=0

E

{∣∣∣(D̃n)j,r

∣∣∣}E

{∣∣∣(D̃n)l,r

∣∣∣} < ∞.

This is true by condition A.4 and Jensen inequality. Indeed,

E

{∣∣∣(D̃n)j,r

∣∣∣}E

{∣∣∣(D̃n)l,r

∣∣∣} ≤
√
E((D̃n)j,r)2 E((D̃n)l,r)2 = dn.

A.3. Proof of Proposition 2

Denote by Θ the collection of all arrays {(Dn)j,l : j, l = 1, . . . , k, n = 0, 1, 2, . . . }
such that (Dn)j,j ≥ 0 for j = 1, . . . , k and (Dn)j,l = 0 for j = 1, . . . , l − 1,

l = 2, . . . , k and n = 0, 1, . . . . Moreover, denote by D̃ the random array {(D̃n)j,l :
j, l = 1, . . . , k, n = 0, 1, 2, . . . }. Let T : Θ → A be the function defined
through (10) and (11) that maps each element of Θ into the corresponding
function K in A. By (14) and (13), K̃ = T (D̃) and by Lemma 10 in the Ap-
pendix, T is continuous and therefore measurable. Hence, measurability of D̃
implies that K̃ is in turn measurable as a function from Ω into A and therefore
a random variable.

A.4. Proof of Theorem 3

In what follows, we let denote ‖f‖∞ = supE |f | for any bounded function f :
E → R.
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Lemma 10. For every K in A, satisfying (10) and (11), and every ε > 0, there
is an integer m ≥ 1 and δ > 0 such that:{

ω ∈ Ω :
∥∥∥K̃(ω)−K

∥∥∥
∞

≤ ε
}

⊃
{
ω ∈ Ω :

∣∣∣(D̃n)j1,j2(ω)− (Dn)j1,j2

∣∣∣ ≤ δ, j1, j2 = 1, . . . , k, n = 0, . . . ,m
}
.

(35)

Proof. In the rest of the proof, let K̃, D̃n, B̃n stand for K̃(ω), D̃n(ω) and B̃n(ω),
respectively. We aim at proving that for every ε > 0 there is an integer m ≥ 1

and δ > 0 such that if
∣∣∣(D̃n)j1,j2 − (Dn)j1,j2

∣∣∣ ≤ δ for every j1, j2 = 1, . . . , k, and

every n = 0, . . . ,m then
∥∥∥K̃ −K0

∥∥∥
∞

≤ ε.

To this aim, note that:∥∥∥K̃ −K
∥∥∥
∞

≤ sup
x1,x2,j1,j2

m∑
n=0

|cn(d, θ(x1,x2))|
∣∣∣∣∣

k∑
r=1

(D̃n)j1,r(D̃n)j2,r −
k∑

r=1

(Dn)j1,r(Dn)j2,r

∣∣∣∣∣
+ sup

x1,x2,j1,j2

∣∣∣∣∣
∞∑

n=m+1

cn(d, θ(x1,x2))

k∑
r=1

(D̃n)j1,r(D̃n)j2,r

∣∣∣∣∣
+ sup

x1,x2,j1,j2

∣∣∣∣∣
∞∑

n=m+1

cn(d, θ(x1,x2))

k∑
r=1

(Dn)j1,r(Dn)j2,r

∣∣∣∣∣ (36)

The series (10) converges uniformly by the Weierstrass M-test being
‖cn(d, ·)‖∞ ≤ 1. Clearly, the same is true for K̃. Hence, there is an integer
m ≥ 1 such that:

sup
x1,x2,j1,j2

∣∣∣∣∣
∞∑

n=m+1

cn(d, θ(x1,x2))

k∑
r=1

(D̃n)j1,r(D̃n)j2,r

∣∣∣∣∣ ≤ ε/3,

sup
x1,x2,j1,j2

∣∣∣∣∣
∞∑

n=m+1

cn(d, θ(x1,x2))

k∑
r=1

(Dn)j1,r(Dn)j2,r

∣∣∣∣∣ ≤ ε/3.

Therefore, (36) implies:∥∥∥K̃ −K
∥∥∥
∞

≤ sup
j1,j2

m∑
n=0

∣∣∣∣∣
k∑

r=1

(D̃n)j1,r{(D̃n)j2,r − (Dn)j2,r}+
k∑

r=1

{(D̃n)j1,r − (Dn)j1,r}(Dn)j2,r

∣∣∣∣∣
+ 2ε/3

≤ δ max
j1,j2∈{1,...,k}

m∑
n=0

{
k∑

r=1

∣∣∣(D̃n)j1,r

∣∣∣ + k∑
r=1

|(Dn)j2,r|
}

+ 2ε/3
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≤ δ max
j1,j2∈{1,...,k}

m∑
n=0

{
k∑

r=1

|(Dn)j1,r|+
k∑

r=1

|(Dn)j2,r|
}

+ (m+ 1) k δ2

+ 2ε/3,

which is smaller than ε if δ is enough small and the proof is complete.

Proof of Theorem 3. The event appearing on the right hand side of (35) is equal
to

m⋂
n=0

k⋂
j1=1

k⋂
j2=1

{
ω ∈ Ω :

∣∣∣(D̃n)j1,j2(ω)− (Dn)j1,j2

∣∣∣ ≤ δ
}
,

where the event in the intersections are independent since the elements of the
random array {(D̃n)j1,j2 : n = 0, 1, . . . , j1, j2 = 1, . . . , k} are independent.
Thanks to Lemma 10, the proof is completed noting each event in the inter-
section has positive probability. Indeed, for each n = 0, 1, . . . , we assume that
the support of (D̃n)1,1 is the whole [0,∞) and the support of (D̃n)2,1 is the
whole R.

A.5. Proof of Proposition 4

The proof is obtained by swapping series and expectation in (14). Such swapping
is allowed since we can verify that:

∞∑
n=0

E

(∣∣∣(B̃n)j1,j2

∣∣∣) |cn(d, θ(x1,x2))| < ∞

Indeed, |cn(d, θ(x1,x2))| ≤ 1, and

∞∑
n=0

E

(∣∣∣(B̃n)j1,j2

∣∣∣) ≤
k∑

r=1

∞∑
n=0

E

(∣∣∣(D̃n)j1,r(D̃n)j2,r

∣∣∣) ,

which is finite due to (33) if j1 = j2 and due to (34) if j1 �= j2.

A.6. Proof of Proposition 5

The thesis follows combining condition A.5 with Theorem 3.5 by Guella and
Menegatto (2018).

A.7. Proof of Proposition 6

The proof is based on the application of Bayes’ theorem given in a general version
by Schervish (1995) in its Theorem 1.31. In particular, such theorem ensures
the existence of the conditional distribution of D given vec(Z(x1), . . . ,Z(xn)).
The theorem can be applied since the conditional distribution of vec(Z(x1), . . . ,
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Z(xn)) given D is dominated by a measure which does not depend on D, namely
the kn-dimensional Lebesgue measure. Indeed, such conditional distribution is
Gaussian with density f(vec(z);D) and its covariance matrix Σn(D) is positive
definite since the covariance function K̃ given in (14) is strictly positive definite
almost surely due to Proposition 5. This also ensures that the multivariate
Gaussian density f(vec(z);D) appearing in (16) is well defined. Moreover, being
the multivariate Gaussian density strictly positive and bounded, M(z) is always
positive and finite so that the posterior is always uniquely determined and well
defined.

A.8. Proof of Theorem 7

Proposition 6 reveals the form of the posterior of the parameter D̃. For conve-
nience, denote W = D̃ and w = D.

Given a matrix A k× k, it is clear that the quadratic form zTAz is Lipschitz
continuous being ∣∣zTAz∣∣ ≤ ‖A‖‖z‖2, (37)

where ‖A‖ is the induced operator norm:

‖A‖ = sup{‖Az‖ : z ∈ R
k with ‖x‖ = 1} = sup{‖Az‖/‖z‖ : z ∈ R

k \ {0}}.

Taking A = Σ−1
k (W ), this implies three facts.

Fix r > 0 and let z1, z2 ∈ Mk,n with max{‖vec(z1)‖, ‖vec(z2)‖} ≤ r. First,
for some constant c1 > 0,∣∣∣√f(vec(z1);W )−

√
f(vec(z2);W )

∣∣∣ ≤ c1(r)‖vec(z1 − z2)‖. (38)

Indeed, using (37), for some constants c0, c3(r) > 0,∣∣∣√f(vec(z1);W )−
√

f(vec(z2);W )
∣∣∣

= c0e
− vec(z1)

T (Σk(W ))−1 vec(z1)/4×

×
∣∣∣1− e(vec(z1)

T−vec(z2)
T )(Σk(W ))−1(vec(z1)−vec(z2))/4

∣∣∣
≤ c3(r)(vec(z1)

T − vec(z2)
T )(Σk(W ))−1(vec(z1)− vec(z2))

≤ c3(r)‖vec(z1)− vec(z2)‖2 ≤ 2rc3(r)‖vec(z1)− vec(z2)‖.

(39)

Second, if z ∈ Mk,n and ‖vec(z)‖ ≤ r, then

M(z) > k(r) (40)

for some k(r) > 0. This is obtain applying directly (37) with A = Σ−1
k .

Third,
√
M(z) is Lipschitz as well, being∣∣∣√M(z1)−

√
M(z2)

∣∣∣ ≤ c2(r)‖vec(z1 − z2)‖, (41)
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for some constant c2(r). This can be obtained since by a similar argument used
in (39) one has that |f(vec(z1);W )− f(vec(z2);W )| ≤ c1(r)‖z1 − z2‖ so that
|M(z1)−M(z2)| ≤ c1(r)‖z1 − z2‖, and moreover by (40),∣∣∣√M(z1)−

√
M(z2)

∣∣∣ = |M(z1)−M(z2)|√
M(z1) +

√
M(z2)

≤ |M(z1)−M(z2)|
2k(r)

.

The inequalities (38), (40) and (41) allow to prove the theorem noting that
if W is equipped with its prior distribution, then:

d2H(Pz1 − P
z2)

= E

{ √
f(vec(z1);W )−

√
f(vec(z2);W )√

M(z1)
+

√
f(vec(z2);W )

(
1√

M(z1)
− 1√

M(z2)

)}2

≤ E

{ √
f(vec(z1);W )−

√
f(vec(z2);W )√

M(z1)

}2

+

(
1√

M(z1)
− 1√

M(z2)

)2

E {f(vec(z2);W )}

≤ 1

M(z1)
E

{√
f(vec(z1);W )−

√
f(vec(z2);W )

}2
+

(
(
√

M(z1)−
√

M(z2))2

M(z1)M(z2)

)
.

In order to understand the first inequality, note that f(vec(z1);W ) ≤
f(vec(z2);W ) implies that M(z1) ≤ M(z2) and therefore (

√
f(vec(z1);W ) −√

f(vec(z2);W ))(M(z2)−M(z1) ≤ 0 for any pair (z1, z2).

A.9. Proof of Theorem 9

By (2) and (3) we extract∥∥Z− Z
R
∥∥2

L2(Sd;Rk)

=
〈
Z− Z

R,Z− Z
R
〉
L2(Sd;Rk)

=
∑

n,m>R

〈
A1/2

n VnC
(d−1)/2
n (x′Un),A

1/2
m VmC(d−1)/2

m (x′Um)
〉
L2(Sd;Rk)

=
∑

n,m>R

∫
Sd

〈
A1/2

n VnC
(d−1)/2
n (x′Un),A

1/2
m VmC(d−1)/2

m (x′Um)
〉
F
dμ(x)

=
∑

n,m>R

trace
(
A1/2

n VnV
′
m(A1/2

m )′
) ∫

Sd

C(d−1)/2
n (x′Un)C

(d−1)/2
m (x′Um)dμ(x)

By Fubini-Tonelli Theorem, the mixed-norm (5) takes the form∥∥Z− Z
R
∥∥2

L2Ω,L2(Sd;Rk))
= E

(
‖Z− Z

R
∥∥2

L2(Sd;Rk)

)
=

∑
n,m>R

trace
(
A1/2

n E(VnV
′
m)(A1/2

m )′
)

× E

(∫
Sd

C(d−1)/2
n (x′Un)C

(d−1)/2
m (x′Um)dμ(x)

)
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=
∑
n>R

α2
ntrace

(
An)

)
E

(∫
Sd

C(d−1)/2
n (x′Un)C

(d−1)/2
n (x′Un)dμ(x)

)
where for the second equality we used the independence between the Vn’s
and Un’s, whereas for the third equality we used the fact that E(VnV

′
m) =

δn=mα2
nI(k). The identity (32) implies that∥∥Z− Z

R
∥∥2

L2Ω,L2(Sd;Rk))
=

∑
n>R

trace
(
An

)
C(d−1)/2

n (1).

Condition (23), coupled with the relationship C
(d−1)/2
n (1) =

(
n+d−2

n

)
∼ nd−2,

allows us to conclude∥∥Z− Z
R
∥∥2

L2(Ω,L2(Sd;Rk))
≤ c

∑
n>R

n−1−ε

≤ c

∫ ∞

R

dx

x1+ε
= cR−ε,

since ε > 0.

To show (25), we begin with the case p < 2. Applying the Hölder inequality
on a probability space for the index 2/p > 1 directly gives∥∥Z− Z

R
∥∥
Lp(Ω,L2(Sd;Rk))

≤
∥∥Z− Z

R
∥∥
L2(Ω,L2(Sd;Rk))

≤ cR−ε/2.

We consider now p > 2. We can choose ν = νp ∈ N such that 2(ν − 1) < p ≤
2ν. Similarly to the case p < 2, the Hölder inequality for the index 2ν/p yields∥∥Z− Z

R
∥∥
Lp(Ω,L2(Sd;Rk))

≤
∥∥Z− Z

R
∥∥
L2ν(Ω,L2(Sd;Rk))

. (42)

By (Da Prato and Zabczyk, 1992, Corollary 2.17) there exists a constant
c = cν > 0 such that

‖Z− Z
R
∥∥
L2ν(Ω,L2(Sd;Rk))

≤ cν‖Z− Z
R
∥∥
L2(Ω,L2(Sd;Rk))

. (43)

The combination of (42), (43) and (24) leads to (25).

For the last claim, we have to prove that

P
(∥∥Z− Z

R
∥∥
L2(Sd;Rk)

≥ R−γ , for infinity many R ∈ N
)
= 0. (44)

This will be a consequence of the Borel-Cantelli lemma (Achim, 2008, Theorem
2.7). It suffices to prove that

∞∑
R=1

P
(∥∥Z− Z

R
∥∥
L2(Sd;Rk)

≥ R−γ
)
< ∞. (45)

Let p > 0. By Chebyshev’s inequality, (25) and using the mixed-norm (4),
we derive

P
(∥∥Z− Z

R
∥∥
L2(Sd;Rk)

≥ R−γ
)
≤ Rγp

E
(∥∥Z− Z

R
∥∥p

L2(Sd;Rk)

)
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= Rγp
∥∥Z− Z

R
∥∥p

Lp(Ω,L2(Sd;Rk))

≤ cR−(ε/2−γ)p. (46)

We choose now p > 1/(ε/2− γ), this is allowed since γ < ε/2. For this choice
we obtain ∞∑

R=1

R−(ε/2−γ)p < ∞,

which together with (46) leads to (45) and completes the proof.
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