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ABSTRACT 

Immunosuppressive Dietary n-3 Polyunsaturated Fatty Acids Differentially Modulate 

Costimulatory Regulation of Murine CD4+ T-cell Function.  (December 2004) 

Lan H. Ly, B.S., University of California, San Diego 

Chair of Advisory Committee:  Dr. Robert S. Chapkin 
 

 
 Consumption of fish oils (FO) enriched with the n-3 polyunsaturated fatty acids 

(PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), is beneficial to 

a variety of inflammatory disorders due, in part, to the alteration of membrane 

composition of T-lymphocytes and other immune cells.  We previously observed that 

down-regulation of proliferation and cytokine synthesis by CD4
+
 T-cells in mice fed diets 

rich in n-3 PUFA was dependent on the involvement of CD28, a co-stimulatory molecule 

necessary for T-cell activation.  Since the co-receptor homologues, CD28 and CTLA-4, 

have opposing effects on T-cell activation, we hypothesized that the balance of 

costimulatory and downregulatory properties of CD28 and CTLA-4, respectively, would 

be altered by diet.  A significant increase (p<0.05) in CD28 and CTLA-4 surface 

expression was observed in CD4+ T-cells post-stimulation with phorbol ester and calcium 

ionophore (PMA/Iono) or anti-CD3 and anti-CD28 (αCD3/CD28) antibodies in all diet 

groups.  A significant increase (p<0.01; 20%) in the number of CD28 molecules was 

observed in n-3 PUFA vs. CO-fed mice after 48 h of in vitro CD4+ T-cell activation, and 

both CTLA-4 mRNA transcript and protein levels were upregulated by 50% at 72 h post-

activation (p<0.01).  Treatment with anti-CTLA-4 mAb in vivo in Mycobacterium bovis 

(BCG)-vaccinated mice did not alter the suppressive effects of dietary n-3 PUFA on 

antigen (PPD)-induced lymphocyte proliferation or delayed hypersensitivity reactions.  
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Ligation of CD28 upregulates IL-10 receptor (IL-10R) expression on CD4+ T-cells.  

Therefore, we hypothesized that dietary n-3 PUFA would suppress T-cell function 

through the effects of IL-10.  Surprisingly, the proliferation of purified splenic CD4+ T-

cells activated in vitro with αCD3/CD28 was suppressed by dietary n-3 PUFA in both 

conventional mice (C57BL/6) and IL-10 gene knockout (IL-10-/-) mice.  Furthermore, IL-

10R cell surface expression was significantly down-regulated on CD4+ T-cells from both 

the C57BL/6 and IL-10-/- mice fed dietary n-3 PUFA after 72 h of in vitro stimulation 

with αCD3/CD28.  CD4+ T-cells from C57BL/6 mice fed DHA produced significantly 

less IFNγ and IL-10, while  CD4+ T-cells from IL-10-/- mice fed dietary n-3 PUFA 

produced significantly more IFNγ compared to the CO-fed group.   
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CHAPTER I 

INTRODUCTION 

Lipids (oils and fatty acids) are indispensable for the growth and survival of all 

organisms.  They are important structural components of membranes and, in many 

organisms, play a crucial role in energy storage.  During the past three decades, the 

interest in some specific animal oils, i.e., the long-chain polyunsaturated fatty acids 

(PUFA) present in fish oils (FO), has increased considerably, due to their beneficial 

health effects (1-6).   

Long-chain PUFA are composed of a long hydrocarbon chain (18 or more carbon 

atoms) and a terminal carboxylate group having two or more double carbon bonds.  They 

are classified according to the position of the first double bond, as counted from the 

methyl terminus.  A so-called ω-3 PUFA has its first double bond at position 3, as 

counted from the methyl terminus.  Other PUFA groups are ω-6 and ω-9, where the first 

double bond is located six and nine carbons from the methyl terminus, respectively.  As a 

synonym of ω, the symbol n is often used to classify PUFA (7).  The most prominent 

examples of dietary n-6 PUFA are linoleic acid (LA; 18:2n-6), γ-linolenic acid (GLA; 

18:3n-6) and arachidonic acid (AA; 20:4n-6).  Examples of dietary n-3 PUFA include α-

linolenic acid (ALNA; 18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), and 

docosahexaenoic acid (DHA; 22:6n-3).  The most abundant n-3 PUFA ingested with 

vegetable oils, ALNA, is not efficiently converted to EPA or DHA in humans (8).  Both 

 

__________ 
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EPA and DHA are primarily found in marine FO (7).  The position of the double bond in  

the fatty acids strongly affects the properties of its derivatives.  For example, eicosanoids 

derived from AA (n-6) have strong inflammatory properties, whereas those produced 

from EPA (n-3) are anti-inflammatory (9-12).   

Evidence for the health benefits of dietary n-3 PUFA intake was derived, in part, 

from epidemiological observations of a very low incidence of chronic inflammatory 

conditions in Eskimos (13).  Studies on the role of n-3 PUFA in inflammatory bowel 

diseases (IBD) started at the end of the 1980s.  McCall et al treated 6 patients with active 

ulcerative colitis (UC) by giving 3-4 g of EPA daily for 12 weeks, which resulted in 

improvement of clinical symptoms and histological appearance, and a decrease in serum 

leukotrienes (LTB4), an eicosanoid mediator (14).  Similarly, other studies continued to 

report these beneficial anti-inflammatory effects of n-3 PUFA (15, 16), as well as to 

demonstrate improvement in all disease activity variables (17, 18) and prolonged 

remission (19, 20).  Recent epidemiological evidence suggests that the increasing 

incidence of Crohn’s Diseases (CD) in Japan is strongly correlated with, among other 

factors, the increasing ratio of n-6: n-3 PUFA intake in the average Japanese diet.  

Increased dietary intake of n-6 PUFA with lower levels of n-3 PUFA may contribute to 

the development of CD (21).  Although some studies report no benefit (22), it has 

recently been shown that increasing dietary n-3 PUFA intake in patients with IBD may 

enhance (by 65%) the absorption and the utilization of saturated fatty acids such as 

palmitic acid, improving overall nutritional status (6).  These data strongly support the 

efficacy of dietary n-3 PUFA in the treatment of patients with IBD or other chronic 

inflammatory conditions.   
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 A variety of molecular mechanisms have been proposed to explain how n-3 

PUFA can modulate inflammation and immune cell function.  Alterations in eicosanoid 

(e.g., prostaglandins (PG), leukotrienes) synthesis have long been regarded as the primary 

anti-inflammatory mechanism of n-3 PUFA.  Eicosanoids are a group of chemical 

messengers that act within the immune system to modulate the intensity and duration of 

inflammatory responses (reviewed in (23-25)).  For example, prostaglandin E2 (PGE2) 

has a number of proinflammatory effects including inducing fever, increasing vascular 

permeability and vasodilation, and enhancing pain and edema caused by other agents 

such as bradykinin and histamine.  These compounds provide a link between PUFA, 

inflammation, and immune function.  Eicosanoids are synthesized from n-6 and n-3 

PUFA, in particular AA, di-homogamma linolenic acid (DGLA), and EPA.  The fatty 

acid precursor for eicosanoid synthesis is released from cell membrane phospholipids by 

the action of phospholipase A2 activated in response to a cellular stimulus.  AA is usually 

the principal precursor for eicosanoid synthesis due to its dominant presence over EPA 

and DGLA in the membranes of immune cells.  Therefore, the ability to produce these 

mediators is strongly influenced by the fatty acid (FA) composition of membrane 

phospholipids.  Increased consumption of FO results in increased proportions of EPA and 

DHA in inflammatory cell phospholipids, partly at the expense of AA (26, 27), thereby 

leaving less substrate for AA-derived eicosanoids.  The reduction in the generation of 

AA-derived mediators that accompany FO consumption has led to the hypothesis that FO 

is anti-inflammatory because it affects PG synthesis (12, 28).  However, it is now 

apparent that the ability of long-chain n-3 PUFA to influence production of eicosanoids 

extends beyond simply decreasing substrate availability.  For example, EPA competively 
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inhibited the metabolism of AA by cyclooxygenase enzyme-2 (COX-2), thereby reducing 

the generation of 2-series PG and thromboxanes (TX) (29).  Furthermore, n-3 PUFA 

were able to act as a substrate for COX, giving rise to derivatives that differ in structure 

from those produced from AA (i.e., 3-series PG).  Therefore, the n-3 PUFA-induced 

suppression in the production of AA-derived eicosanoids may be accompanied by an 

elevation in the production of n-3 PUFA-derived eicosanoids (27, 30).  Consistent with 

these results, PGE2 concentrations in the medium taken from lymphocytes cultured in the 

presence of a range of different fatty acids did not correlate with the inhibitory effects of 

the fatty acids upon proliferation (31).  Moreover, indomethacin, a COX inhibitor, did not 

reverse the anti-proliferative effects of the fatty acids (32).  These observations provide 

convincing evidence that the immunosuppressive effects of dietary n-3 PUFA are 

independent of the production of eicosanoids.   

In order to maintain their integrity, cells are surrounded by a plasma membrane 

composed of fatty molecules.  Molecules that make up the membrane have two long fatty 

acid chains with a head group that is H2O-soluble by virtue of being electrically charged, 

making them amphipathic.  Thus, membranes are formed because these bipartite 

molecules, called phospholipids, spontaneously orient themselves to form a double layer, 

or bilayer, with their fatty chains facing inward and their water-seeking head groups 

facing outward.  The membrane is given rigidity by the interspersion of cholesterol, 

which helps stabilize the outer membrane of all cells.  Carbohydrates, covalently bound 

either to proteins as constituents of glycoproteins or to lipids as constituents of 

glycolipids, also help stabilize the conformation of many membrane proteins.  

Sphingolipids, phospholipids that bear a sphingosine instead of a glycerol backbone, and 
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cholesterol interact to help cluster proteins into regions called microdomains.  These 

microdomains function as “rafts” or platforms for the partitioning of proteins that are 

critical for signal transduction (33, 34).  By their distinct lipid composition, lipid rafts 

concentrate lipid-modified signaling proteins within the plane of the plasma membrane to 

facilitate signal transduction and cellular response.  The importance of membrane rafts in 

immune cells will be discussed further in subsequent paragraphs. 

T-cells are lymphocytes which develop in the thymus.  They can be divided into 

two subpopulations, CD4+ or CD8+, both of which express a T-cell receptor (TCR) 

associated with a complex of transmembrane signaling proteins called CD3 (35).  Cell-

mediated immunity is the effector function of T-lymphocytes, which serves as an 

important defense mechanism against many microbes.  The CD4+ T-cells differentiate 

into helper T-cells (Th), while the CD8+ T-cells differentiate into cytotoxic T-cells 

(CTL), each performing very different effector functions in the immune system.  Two 

different subsets of Th-cells activate macrophages (Th1) or promote B-cell antibody 

production (Th2), whereas CTLs recognize and kill host cells infected with viruses or 

other intracellular microbes (36).  Despite their various effector functions following 

differentiation, all naïve T-cells require at least two distinct extracellular signals to induce 

their proliferation and transformation into effector cells.  The first signal originates from 

the ligation of the TCR complex and its co-receptors (e.g., CD4 or CD8) with a specific 

major histocompatibility complex (MHC)-peptide complex.  The second signal is 

dependent upon the ligation of cell surface molecules that provide essential costimulatory 

signals which are complementary to the TCR engagement (37).   
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 The immune system has developed powerful mechanisms to prevent unnecessary 

activation of T-cells and thus either autoimmunity, i.e., a state of responsiveness to self 

antigens, or hypersensitivity, i.e., the prolonged and intense state of responsiveness to 

foreign antigens.  One such mechanism is the intricate balance between positive and 

negative costimulatory signals delivered to T-cells after antigenic counter (38).  Positive 

costimulatory signals are pivotal in determining whether recognition of antigen by T-cells 

leads to full T-cell activation or to anergy/death.  CD28 is the principal co-receptor, 

which is expressed on more than 90% of CD4+ and 50% of CD8+ naïve T-cells (39) and 

provides the second signal.  Although it is constitutively expressed prior to T-cell 

activation, it is well documented that CD28 expression is regulated following TCR 

engagement with the MHC-peptide complex (40, 41).  The intracellular signal cascade 

generated upon CD28 ligation with CD80 (also known as B7-1) and CD86 (B7-2), which 

are expressed on activated antigen presenting cells (APC), acts in concert with signals 

from the TCR complex to fully activate the T-cells.  The CD28 costimulatory activity has 

been demonstrated in vitro and in vivo by antibody cross-linking and blocking 

experiments in normal mice and in CD28-deficient mice (42). 

In addition, recent findings indicate that regulation of immune responses may be 

achieved by the expression of inhibitory costimulatory molecules on APC and peripheral 

tissues that mediate negative costimulatory signals to the T-cell (42, 43).  The most 

prominent inhibitory receptor is cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), 

a homolog of CD28.  Expressed only on activated T-cells, CTLA-4 binds to the same 

ligands as CD28, albeit with much higher affinity, thereby leading to the termination of 

the immune response (44).  In both human (45) and murine (44) systems, cell surface 
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expression of CTLA-4 peaks 48 h after activation, returning to background levels by 96 

h.  Thus, the period of time in which CD28 is transiently downregulated and less 

responsive to signaling is the time period during which CTLA-4 expression is maximal, 

suggesting that CTLA-4 may be functionally active at a time when CD28 function has 

waned.  Studies have shown that ligation of CTLA-4 inhibits T-cell activation by 

reducing IL-2 production and IL-2 receptor expression, and by arresting T-cells at the G1 

phase of the cell cycle (44, 46).   

An increasing body of evidence indicates that T-cell activation involves the lateral 

migration of many molecules associated with TCR-mediated signaling.  When T-cells are 

stimulated with planar lipid bilayers or APC possessing antigenic peptide-MHC, a highly 

ordered macromolecular interface, termed the immunological synapse (IS), forms 

between the T-cell and the APC surface (47).  The formation of an IS correlates with the 

clustering of glycolipid-enriched microdomains known as lipid rafts which were 

introduced earlier.  By their distinct lipid composition, lipid rafts concentrate lipid-

modified proteins within the plane of the plasma membrane.  At the exoplasmic face, 

proteins attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) 

anchor are almost exclusively found in rafts, whereas acylated proteins are found at the 

cytoplasmic face of rafts.  Many proteins involved in signal transduction are modified by 

acyl moieties to be attached to the plasma membrane and/or concentrated into lipid rafts 

(48).  For example, Src-family kinases such as Lck and Fyn are acylated at the N-

terminus by myristoyl (14:0) and palmitoyl (16:0) moieties (reviewed in (49)).  The IS is 

composed of a central core containing the TCR, protein kinase C θ (PKCθ), Lck, Fyn, 

and CD28, surrounded by a ring enriched with adhesion molecules (i.e., LFA-1, CD43) 
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(50-52).  As mentioned previously, lipid rafts are enriched with signaling molecules 

critical for TCR-mediated signaling such as Lck, linker for activation of T-cells (LAT), 

and PKCθ and their biological integrity is essential for proper TCR-mediated signaling 

(53-55). 

It has been demonstrated by us (56-58) and others (59, 60) that dietary n-3 PUFA 

affect raft composition and function on T-cells through an eicosanoid-independent 

mechanism.  Treatment of lipid rafts from Jurkat T-cells with EPA markedly displaced 

Lck and Fyn content, thereby reducing subsequent downstream signaling events (61).  

Similary, we have recently demonstrated that dietary DHA suppressed PKCθ recruitment 

to lipid rafts in murine T-lymphocytes (62).  In contrast, the GPI-anchored proteins, 

CD59 and CD48, the ganglioside GM1, and caveolin remain in rafts after dietary n-3 

PUFA enrichment (63).  Protein displacement from lipid rafts could be due to altered 

protein acylation or changes in raft lipid composition.  These studies illustrate that diet n-

3 PUFA-mediated changes in membrane composition, as well as protein acylation, are 

likely to have a broad impact on lymphocyte signaling pathways (57). 

Immediately following stimulation, lymphocytes begin to transcribe genes that 

were previously silent to synthesize a variety of new proteins.  These proteins include 

secreted cytokines (in T-cells), which stimulate the growth and differentiation of the 

lymphocytes themselves and of other effector cells, and cytokine receptors, which make 

lymphocytes more responsive to cytokines.  As the principal mediators of communication 

between lymphocytes, cytokines play a critical role in mediating inflammatory and 

immune responses. 
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Although it is important for the immune system to mount a proper response to any 

foreign invader, it is even more important to inhibit it in a timely manner.  An over-

exaggerated response is potentially detrimental for the host immune system itself and to 

other tissues.  Several mechanisms are involved in regulating and balancing immune and 

inflammatory responses.  These include cytokines possessing anti-inflammatory, 

immunosuppressive activities such as interleukin-10 (IL-10) (reviewed in (64)).  IL-10 

limits and ultimately terminates inflammation by adjusting the intensity of the immune 

and inflammatory responses to the severity of destruction caused by a pathological 

condition or pathogen.  In addition, IL-10 regulates growth and death of B-cells, natural 

killer (NK) cells, cytotoxic and helper T-cells, mast cells, granulocytes, dendritic cells, 

keratinocytes, and endothelial cells.  IL-10 also plays a key role in the differentiation and 

function of the T-regulatory cell, which may assist prominently in the control of immune 

responses and tolerance in vivo (65).   

As a mechanism of maintaining immunologic tolerance to self antigens, IL-10 

induces T-cell anergy, a state of immune inactivation characterized by abolished 

proliferative and cytokine responses.  It was recently demonstrated that the unresponsive 

state of murine T-cells which had been tolerized by IL-10, was reversed by anti-CD3 

monoclonal antibody (mAb) stimulation and IL-2, a growth-promoting cytokine, but not 

by anti-CD28 mAb stimulation (66).  IL-10 inhibited tyrosine phosphorylation of CD28, 

thereby blocking its binding to phosphatidylinositol-3 kinase (PI3K).  Furthermore, CD28 

stimulation significantly enhanced IL-10 receptor (IL-10R) expression after 24 h in vitro 

activation.  Together, these results demonstrate that the suppressive effects of IL-10 

involve direct action on the CD28 co-stimulatory pathway.  In turn, CD28 ligation 
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upregulates IL-10R expression, rendering the T-cell more susceptible to IL-10 

suppression (67).   

The beneficial anti-inflammatory effects of dietary n-3 PUFA can be attributed, in 

part, to suppressed production of pro-inflammatory cytokines (TNFα, IL-1β, and IL-6) 

(68) and decreased expression of adhesion molecules (e.g. ICAM-1, VCAM-1) as shown 

in both animal and human studies (69, 70).  These effects also occur at the level of altered 

gene expression.  Recent studies have shown that n-3 PUFA can down-regulate the 

activity of the nuclear transcription factor nuclear factor kappa B (NFκB) (71), which 

plays a role in inducing a range of inflammatory genes, including COX-2, ICAM-1, 

VCAM-1, TNFα, IL-1β, and IL-6, in response to inflammatory stimuli (72).  

Animal feeding studies have shown that diets enriched with EPA and DHA 

decreased ex vivo production of TNFα, IL-1β, and IL-6 by rodent macrophages (73) and 

monocytes (74).  Feeding fish oil decreased the level of MHC II (75) and IFNγ receptor 

expression (76) on murine peritoneal macrophages and diminished ex vivo presentation 

of antigen (keyhole limpet hemocyanin: KLH) by spleen cells (77).  These studies 

suggest that dietary fish oil might impair the cell-mediated immune response by 

decreasing the activity of antigen-presenting cells and by decreasing the sensitivity of 

macrophages to T lymphocyte-derived cytokines.  

Experiments conducted by us and others revealed that fish oil decreases NK cell 

activity, cytotoxic T lymphocyte activity (78), expression of the high affinity IL-2 

receptor alpha gene in activated lymphocytes (5), lymphocyte proliferation, and the 

production of IL-2 (10).  Addition of either EPA or DHA to the diet of mice consuming a 

safflower oil diet (devoid of n-3 PUFA) decreased the delayed-type hypersensitivity 
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(DTH) response to tuberculin in mice vaccinated with Mycobacterium bovis BCG (3). 

These results suggest that fish oil may impair cell-mediated immunity, and could play a 

role in the prevention and/or therapy of chronic inflammatory diseases characterized by a 

dysregulated CD4+ T-cell response which drives the production of pro-inflammatory 

cytokines and eicosanoids.   

Animal feeding studies have often used large amounts of FO, i.e., a diet in which 

FO contributes 20% by weight will mean that DHA plus EPA comprise up to 30% of 

dietary fatty acids (79).  We and others have demonstrated that diets containing relatively 

low levels of dietary n-3 PUFA [EPA or DHA at a level of 18% of total fatty acids or less 

(~45% of total calories)] have similar effects to whole FO (3, 9, 10, 80) using a short-

term feeding paradigm.  The hypothesis that the active constituents of FO, namely DHA 

and EPA, have similar effects on the immune response has been supported by some 

studies (81-83) and rejected by others (84-86).   

 Mice are the mainstay of in vivo immunological experimentation and, in many 

respects, they mirror human biology remarkably well (reviewed in (87)).  This 

conservation of function is reflected in recent reports on the sequencing of both human 

and mouse genomes, which reveal that, to date, 99% of mouse genes are homologous to 

human genes (88).  We and others have continued to successfully use the mouse model to 

elucidate the effect of dietary n-3 PUFA on T-cell functions (3, 10, 56, 58, 78, 89).  

Moreover, the murine model has been used extensively to study T-cell activation (90, 

91), intracellular signaling pathways (92-94), and cytokine profiles (95, 96) in murine 

splenocytes.  Although caution needs to be taken in extrapolating data obtained in mice to 
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humans, mice will continue to be absolutely essential for continued progress in our 

understanding of the immune response in health and disease (87, 97).   

There is mounting evidence that CD4+ and CD8+ T-cells are affected 

differentially by diet in their immunologic responses (98, 99).  Many studies report n-3 

PUFA-mediated effects on whole splenocyte cultures and few have addressed the role of 

n-3 PUFA on T-cell subset regulation.  Our laboratory has demonstrated that these T-cell 

subsets are affected differentially by various dietary components.  Feeding dietary DHA 

to mice reduced the proportion of splenic CD8+ T-cells, but not CD4+ T-cells (9).  

Moreover, dietary n-3 PUFA principally modulated the function of CD4+ T-lymphocyte 

subsets specifically by suppressing the function of CD4+ Th1 cells which were polarized 

in vitro with a particular agonist set [phorbol-12-myristate-13-acetate (PMA) and a 

calcium ionophore, Ionomycin (Iono)] without affecting or even enhancing the function 

of CD4+ Th2 cells (10).  Enhanced activation induced cell death (AICD) or apoptosis in 

CD4+ Th1 polarized cells was also seen in mice fed FO, which agrees with the previous 

data (100).  Thus, we have chosen to further elucidate the effects of dietary n-3 PUFA on 

purified murine splenic CD4+ T-cells.   

 The effect of dietary n-3 PUFA on T-cell function appears to be dependent upon 

the in vitro stimuli used in culture.  In earlier studies, it was clearly demonstrated that the 

selective dietary effects of n-3 PUFA on CD4+ T-cells was dependent upon ligation of the 

co-stimulatory molecule, CD28, whose activation is required in addition to the T-cell 

receptor/CD3 (TCR/CD3) complex to induce a functional response for proper T-cell 

propagation (4).  Ligation of CD28 is known to upregulate CTLA-4 and IL-10R 

expression, either or both of which may be responsible for suppression of T-cell 
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proliferation and/or cytokine production (67, 89).  Therefore, to determine the precise 

role CD28 plays in diet-mediated immunosuppression, we examined the influence of 

dietary n-3 PUFA on CD28, CTLA-4, and IL-10R protein expression on the surface of 

purified CD4+ T-cells cultured in vitro with antibodies to anti-CD3 and anti-CD28 

(αCD3/αCD28).  In studies where we examined the CD28 receptor protein itself, 

activation with the PMA/Iono stimuli was used to bypass the membrane receptors.  In 

addition, we proceeded to investigate the role of the suppressive IL-10 cytokine, in the 

context of CD28, in IL-10 gene knockout mice fed dietary DHA or EPA.  Our overall 

hypothesis was that dietary n-3 PUFA would alter the regulation or function of certain T-

cell protein receptors and/or modulate the interplay between CD28, CTLA-4, and IL-10. 
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CHAPTER II 

DIETARY N-3 POLYUNSATURATED FATTY ACIDS 

MODULATE  THE BALANCE BETWEEN CD28 AND CTLA-4 EXPRESSION 

ON MURINE CD4+ T-CELLS 

Introduction 

 Activation of T-lymphocytes is thought to require at least two signals, one 

delivered by the T-cell receptor (TcR) complex after antigen (Ag) recognition, and one 

provided on engagement of co-stimulatory receptors, such as CD28.  Upon interaction 

with its ligands B7.1 (CD80) and/or B7.2 (CD86), CD28 transduces a signal which 

enhances T-cell proliferation and cytokine secretion, and sustains the T-cell response 

(101-103).  Conversely, the CD28 homologue cytotoxic T-lymphocyte-associated antigen 

4 (CTLA-4) (CD152) inhibits T-cell responses by reducing IL-2 production and IL-2 

receptor expression, and by arresting T-cells at the G1 phase of cell cycle (89, 104).  Both 

B7 ligands bind to CD28 and CTLA-4, but they differ in their binding affinity, structure 

and temporal expression (105).  CTLA-4 reportedly binds B7 with a 20-fold higher 

affinity than CD28 (106, 107) and thereby aids in the termination of immune responses 

(108-110).   

 Others have shown that blockage of CTLA-4 signals prolong T-cell activation and 

expansion both in vitro (44) and in vivo (111, 112). The importance of CTLA-4 as a 

regulator of lymphocyte homeostasis was confirmed by the generation of CTLA-4 

deficient mice, whose development of a lymphoproliferative disorder and severe 

autoimmune disease results in death by 4-5 wk of age.  When restimulated in vitro,  T-

cells from these mice secrete high levels of IL-4 and IFNγ, consistent with a role for 
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CTLA-4 in the regulation of T-cell differentiation (113, 114).  Furthermore, anti-CTLA-4 

treatment exacerbates autoimmune disease in a murine model of multiple sclerosis (115).  

Thus, CTLA-4 is likely to play a critical role in the regulation of many aspects of the T-

cell response. 

 The interplay between CD28 and CTLA-4 has become more evident and more 

complex.  An increasing body of evidence indicates that T-cell activation involves lateral 

migration of many molecules associated with TcR-mediated signaling to form the 

immunological synapse (IS).  Functional and imaging experiments suggest that 

membrane microdomains, termed detergent-insoluble glycosphingolipid-enriched 

domains (or “rafts”), may play an important role in forming the structure of the IS.  It has 

been shown that the recruitment of lipid rafts to the IS is highly dependent on CD28 

costimulation (116).  Furthermore, CTLA-4 localization to the raft is necessary for 

CTLA-mediated negative signaling (117).  The physiological relevance of lipid raft-

associated CTLA-4, however, is currently unknown.  Interestingly, cell surface 

accumulation of CTLA-4 is regulated by its rapid endocytosis (104) suggesting that much 

of the “bioavailable” CTLA-4 may be intracellular.   

 Previous results from our laboratory show that T-lymphocytes from mice fed the 

n-3 polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (EPA; 20:5) and 

docosahexaenoic acid (DHA; 22:6), found in fish oil (FO) produced significantly less   

IL-2, but only when cells were activated with αCD3/CD28 and not when activated with 

αCD3/PMA (phorbol ester) (4).  Since CD28 ligation is essential for the rearrangement 

of lipid rafts at the IS (118), dietary n-3 PUFA may alter the ability of CD28 to trigger 

this event and/or modulate signal-transducing proteins that associate to the rafts upon T-
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cell activation.  Our laboratory recently demonstrated for the first time that dietary n-3 

PUFA differentially modulate T-cell raft and non-raft membrane phospholipid and fatty 

acyl composition in vivo (56).  Furthermore, we found that dietary n-3 PUFA feeding 

suppressed partitioning of the signaling molecule, PKCθ, into lipid rafts which was 

associated with a reduction in AP-1 and NF-κB activation (62).  These results suggest 

that by altering the raft membrane composition, diet may influence signaling complexes 

and modulate T-cell activation, thereby, altering the raft function/dynamics which affect 

the opposing costimulatory molecules, CD28 and CTLA-4.   

 On this background, we hypothesized that the balance of costimulatory and 

downregulatory properties of CD28 and CTLA-4, respectively, would be altered by diet.  

To investigate this hypothesis, we have determined the influence of dietary DHA and 

EPA on the regulation of both CD28 and CTLA-4 mRNA and cell surface expression in 

purified murine CD4+ T-cells.  Surprisingly, dietary n-3 PUFA feeding significantly 

upregulated both CD28 and CTLA-4 cell surface protein expression.  However, the levels 

of CD28 mRNA expression were markedly reduced, while CTLA-4 transcript levels were 

enhanced.  The role of the CTLA-4 molecule in diet-mediated immunosuppression was 

studied in vivo using anti-CTLA-4 treatment.  CTLA-4 blockade in vivo in 

Mycobacterium bovis (BCG)-vaccinated mice fed dietary n-3 PUFA did not alter the 

suppressive effects of diet.  Therefore, we demonstrate that dietary n-3 PUFA may 

downregulate T-cell function by altering co-receptor regulation. 
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Materials and Methods 

Diet and animals 

Female, pathogen-free young (12-14g) C57BL/6 mice purchased from Frederick 

National Cancer Research Facility (Frederick, MD) were assigned to one of three semi-

purified diets: 5% corn oil (CO) (control diet containing no n-3 PUFA), 1% DHA + 4% 

CO (DHA), or 1% EPA + 4% CO (EPA), for 14 days.  Diets were analyzed by gas 

chromatography prior to feeding, aliquoted, and stored at -80°C.  Fresh diet was provided 

daily to prevent lipid peroxidation.  There was no significant difference in food intake 

between dietary groups and weight gain was similar in all groups (data not shown).  The 

purified diets met National Research Council nutrition requirements and varied only in 

lipid composition as previously described (3, 10).  The vitamin E levels in the diets were 

approximately equal (mean ± SEM=169.2 ± 4.4 mg/kg diet) and exceeded the minimum 

requirement (22 mg Vitamin E/kg diet).  DHA (88.9% as 22:6, n-3) and EPA (94.1% as 

20:5, n-3) were obtained in ethyl ester form from Martek Biosciences (Columbia, 

Maryland) and Laxdale Ltd (United Kingdom), respectively.  Corn Oil (57.3% as 18:2, n-

6) was obtained from Degussa Bioactives (Champaign, IL) (4).  

 

Measurement of fatty acid composition from mouse sera 

Sera were obtained from mice after 14 d of feeding the three experimental diets.  

Fatty acid methyl esters were extracted using hexane and 0.1 M potassium chloride and 

analyzed by capillary gas chromatography as previously described (56). 
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Isolation and preparation of splenic lymphocytes 

Mice were killed by CO2 asphyxiation.  Spleens were placed in RPMI-complete 

medium [RPMI 1640 with 25 mmol/L HEPES (Irvine Scientific, Santa Ana, CA) 

supplemented with 10% fetal bovine serum (FBS; Irvine Scientific) or 2.5% FBS + 2.5% 

homologous mouse serum (HMS) (58), 1 x 105 u/L penicillin and 100 mg/L streptomycin 

(Irvine Scientific), 2 mmol/L L-glutamine and 10 µmol/L 2-mercaptoethanol].  Spleens 

were dispersed with glass homogenizers and passed through a 149-µm wire mesh filter to 

create single-cell suspensions.  Cells were subsequently washed with RPMI-complete 

medium before T-cell enrichment as previously described (10). 

 

CD4+ T-cell purification 

Total lymphocytes were initially enriched by density gradient centrifugation using 

Lympholyte-M (Cedarlane, Canada) in accordance with the manufacturer’s protocol.  

The resulting cell fraction from each spleen was incubated with an antibody cocktail 

provided by the manufacturer, loaded onto a negative-selection mouse CD4 T-cell 

purification column (R&D Systems, Minneapolis, MN), and incubated for 10 min at 

room temperature (RT).  Non-adherent cells were eluted for purity and viability analysis, 

proliferation, FACS analysis, and real-time PCR assays.  The purity of the CD4 T-cell 

population was analyzed by flow cytometry (FACSCalibur; Becton-Dickinson, Bedford, 

MA) using anti-CD4 antibody conjugated to fluorescein isothiocyanate (Pharmingen, San 

Diego, CA) and determined to be 90.3 ± 1.4% (n=3) (10). 
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T-cell proliferation 

Purified CD4+ T-cells were cultured at 2 x 105 cells per well (200 µl total) in 96-

well round-bottomed microtiter plates (Falcon, Becton-Dickinson).  Cells were cultured 

in the presence of 1 µg/ml plate-bound purified hamster anti-mouse CD3 monoclonal 

antibody (BD Pharmingen) alone, or with 5 µg/ml soluble purified hamster anti-mouse 

CD28 monoclonal antibody (BD Pharmingen).  These concentrations were determined by 

preliminary experiments to induce proliferation without compromising viability (data not 

shown).  For the in vivo anti-CTLA-4 antibody treatment study, whole splenocytes or 

inguinal lymph node cells were stimulated with 2.5 µg/ml of the polyclonal T-cell 

mitogen ConA (Sigma) or 10, 20, or 40 µg/ml of mycobacterial purified protein 

derivative (PPD; Statens Seruminstitut, Copenhagen, Denmark).  Cells were incubated at 

37°C in an atmosphere of 5% CO2 in air for 72 or 96 h.  For the final 6 h, 1.0 µCi [3H]-

thymidine/well (New England Nuclear, North Bellerica, MA) was added to the cultures.  

Cells were harvested on a 96-well cell harvester (Packard Instrument Co.) and cellular 

thymidine uptake was measured using a liquid scintillation counter (Beckman Coulter).  

Results are expressed as net disintegrations per minute (DPM).    

 

T-cell activation for flow cytometry and real-time RT-PCR 

Purified CD4+ T-cells were cultured at 1-5 x 106 cells per well (2 ml total volume) 

in 24-well flat-bottomed microtiter plates (Falcon, Becton-Dickinson).  Cells were 

cultured in the presence of 1 ng/ml PMA with 500 nM Ionomycin (Calbiochem-

Novabiochem, San Diego, CA) or 1 µg/ml anti-CD3 with 5 µg/ml anti-CD28 (BD 

Pharmingen) at 37°C in an atmosphere of 5% CO2 in air for the indicated times (4).   
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Immunofluorescence flow cytometry 

For quantitative surface receptor staining, 106 CD4+ T-cells from activated and 

control cultures were first incubated for 10 min at RT with 0.5 µg/ml CD16/32 Ab (BD 

Pharmingen) to block Fc receptors.  The addition of 7-aminoactinomycin D (7-AAD, 

Sigma) at 1 µg/ml for 10 min allowed for the exclusion of dead cells.  Cells were then 

incubated with anti-CD28 or anti-CTLA-4-phycoerytherin (PE, red) (BD Pharmingen) 

labeled mAb diluted to 4 µg/ml in 0.5% BSA solution for 30 min.  Samples were washed 

to remove unbound antibody before flow cytometric analysis.  The cells were analyzed 

on a FACSCalibur (Becton-Dickinson Immunocytometry Systems, San Jose, CA) flow 

cytometer, using CellQuest (Becton-Dickinson) acquisition software.  Phycoerythrin 

fluorescence was collected through the 585/42 nm bandpass filter, and 7-AAD 

fluorescence was collected through the 670 nm long pass filter.  List mode data were 

acquired on a minimum of 10,000 events defined by light scatter gates.  Surface protein 

expression was quantified using QuantiBrite PE Beads (Becton-Dickinson) conjugated 

with 4 levels of PE.  Data analysis was performed in CellQuest/FlowJo (Treestar, Inc., 

Ashland, OR), using forward and side light scatter to gate on the lymphocyte population 

and 7-AAD fluorescence to exclude non-viable cells from analysis.  The Calibration 

Platform in FlowJo was used to convert the fluorescence intensity scale into absolute 

number of PE molecules.  For each sample stained with a mAb, the median fluorescence 

intensity, expressed as the equivalent number of PE molecules, was determined to be the 

median antibody binding capacity (ABC) for the cell population.  By using a known ratio 

of PE to antibodies (1:1), PE molecules per cell were then converted to antibodies per cell 

or antibody binding capacity (ABC) (119).   
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For intracellular (total) detection of CTLA-4, purified splenic CD4+ T-cells were first 

incubated with CD16/32 Ab as described above, fixed in 1% paraformaldehyde at 4°C 

(Electron Microscopy Sciences) and stained with anti-CTLA-4 mAb at 4°C in the 

presence of 0.03% saponin.  Cells were then extensively washed in 0.03% saponin and 

1% BSA solution before analysis by flow cytometry (119). 

 

Real-time RT-PCR 

T-cell RNA was isolated using RNAqueous Total RNA kit (Ambion) according to 

the manufacturer’s protocol.  Total RNA was quantified using a RiboGreen RNA 

Quantitation Kit (Molecular Probes).  Real time PCR was performed using the ABI 7700 

(Applied Biosystems) and Taqman Probes as described previously (120).  Probes and 

primers for CD28 and CTLA-4 mouse genes were designed by Primer Express software, 

version 1.7. Primer and probe sequences were then checked for sequence homology 

against known genes using a BLAST search (http://www.ncbi.nlm.nih.gov/blast).  All 

data were normalized to 18S rRNA expression. 

 

In vitro treatment with anti-CTLA-4 mAb 

Mouse splenic CD4+ T-cells were cultured for cell proliferation as described 

above with the addition of 100 µg/ml purified mAb anti-CTLA-4 (clone UC10-4F10; BD 

Pharmingen) or isotype hamster IgG control (BD Pharmingen). 
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In vivo treatment with anti-CTLA-4 mAb 

UC10-4F10 (hamster anti-murine CTLA-4) hybridoma cells were obtained from 

ATCC (HB-304).  The high titered supernatant was purified over HiTrap protein G 

columns (Pharmacia) and acid eluted as per the manufacturer’s protocol.  Extracts were 

then dialyzed with 1X PBS overnight at 4°C using Slide-A-Lyzer cassettes (Pierce, 

Rockford , IL).  Antibody was subsequently concentrated using Amicon Ultra Centrifugal 

Filter Devices (Millipore).  The specificity of the Ab was checked by Western blotting 

using recombinant CTLA-4 protein (BD Pharmingen) and the bioactivity was determined 

by measuring whole splenocyte proliferation in the presence of purified Ab and anti-CD3 

(44).  The purified CTLA-4 Ab was stored at -80°C prior to use.  Modulation of CTLA-4 

function in vivo was accomplished by the daily intraperitoneal injection of 100 µg/mouse 

of purified mAb anti-CTLA-4 in 100 µl PBS or affinity purified hamster IgG (Cappel 

Research Products, Durham, NC) as a negative control for the 5 d prior to sacrifice.   

 

Immunization and footpad testing 

Mice were immunized with approximately 106 viable Mycobacterium bovis 

(BCG) organisms (Danish 1331; Statens Seruminstitut, Copenhagen, Denmark) by 

subcutaneous injection 6 wks prior to sacrifice to allow an Ag-specific immune response 

to develop.  Diets were initiated 14 d before the end of the 6 wk vaccination period as 

previously described (3).  Testing with 0.05 ml of purified protein derivative (PPD) 

containing 100 tuberculin units was performed by intradermal injection into both hind 

footpads 3 d prior to sacrifice to determine the degree of antigen-specific delayed-type 

hypersensitivity (DTH).  Footpad swelling was quantified with microcalipers and 
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compared to preinjection footpad thickness in millimeters according to our previously 

published protocol (3).   

 

Statistical analysis 

Data were analyzed using two-way ANOVA for main treatment effects using 

SuperANOVA statistical software (Berkeley, CA).  A difference between means was 

tested using Duncan’s multiple range test.  Significant and highly significant differences 

were defined as p<0.05 and p<0.01, respectively, for all tests.   

 

Results  

Dietary n-3 PUFA suppress splenic CD4+ T-cell proliferation 

 Previous results from our laboratory suggested that reduced IL-2 cytokine 

production of CD4+ T-cells in mice fed diets rich in n-3 PUFA was highly dependent on 

the involvement of the co-stimulatory molecule, CD28 (4).  To define the ability of DHA 

and EPA to modulate CD4+ T-cell function, CD4+ T-cells purified from the spleens of 

mice fed 5% (w/w) corn oil (CO; control diet containing n-6 PUFA), 1% DHA, or 1% 

EPA were stimulated for 72 h and subsequently pulsed with 3H-[TdR].  Fig. 1A illustrates 

that both experimental diets significantly reduced CD4+ T-cell proliferation when 

cultured with anti-CD3 and anti-CD28 in the presence of 10% FBS (p<0.01).  Due to the  
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length of time in culture, a parallel set of cultures were maintained in diet-matched 

homologous mouse serum (HMS) to prevent the loss of cell membrane fatty acids as we 

and others have previously reported (58, 121, 122).  Fig.1B demonstrates that 

maintaining the T-cell lipid environment in vitro by the addition of HMS sustained the in 

vivo modifications induced by diet.  The suppressive effect of dietary n-3 PUFA on 

proliferation was significantly enhanced in the presence of HMS.  We recently reported 

that diet markedly alters the fatty acid composition of sera collected from mice fed 

control and experimental diets (58).  Table 1 shows that FBS was relatively devoid of n-3 

PUFA (20:5n-3, 22:5n-3, 22:6n-3) whereas mouse sera from DHA- and EPA-fed mice 

was highly enriched in 22:6n-3 and 20:5n-3, respectively.  Therefore, most of the in vitro 

experiments presented below were performed using HMS.   
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TABLE I.  Fatty acid composition of sera used for cell culture. 
 

Fatty Acid FBS MS-CO MS-DHA MS-EPA

16:0 1.71 ± 0.02 14.20 ± 0.55

18:0 0.80 ± 0.02 7.93 ± 0.20

18:1n-9/n-7 1.63 ± 0.05 15.54 ± 0.22

18:2n-6 0.42 ± 0.01 17.72 ± 0.37 9.96 ± 0.46 7.04 ± 0.56

20:4n-6 0.53 ± 0.01 12.32 ± 0.61 1.72 ± 0.36 1.67 ± 0.15

20:5n-3 tr tr 2.07 ± 0.28 5.64 ± 0.44

22:5n-3 0.15 ± 0.00 tr tr 0.49 ± 0.01

22:6n-3 0.17 ± 0.01 2.24 ± 0.24 5.51 ± 0.65 2.40 ± 0.26

10.24 ± 0.62 10.36 ± 0.42

4.78 ± 0.112.56 ± 0.42

11.36 ± 0.21 13.65 ± 0.55

Mouse serum from CO, DHA, and EPA-fed mice were extracted and analyzed to assess 
fatty acid composition.  FBS is shown for comparison. Values are expressed as mg fatty 
acid/ml serum and represent means ± SEM, n=3.  FBS, fetal bovine serum; MS-CO, 
serum from corn oil fed mice; MS-DHA, serum from DHA fed mice; MS-EPA, serum 
from EPA fed mice; tr, trace amount (<0.1 mg/ml).   
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FIGURE 1.   Dietary DHA and EPA down-regulate murine CD4+ T-cell proliferation.  Purified splenic CD4+ T-cells 
from mice fed CO, DHA, or EPA were activated with antibodies to surface receptors CD3 and CD28 and cellular 
uptake of [3H]-thymidine was measured 72 h post-activation.  Results are expressed as mean ± SEM of the net 
disintegrations per minute (DPM), n=7.  Different letters denote highly significant differences found between diet 
groups (p<0.01).  A: cells cultured in the presence of 10% FBS; B: cells cultured in the presence of 2.5% homologous 
mouse serum (HMS) + 2.5% FBS.   
Dietary n-3 PUFA enhance surface expression of CD28 on CD4+ T-cells  

 We initiated experiments to define the role of the co-stimulatory receptor CD28 in 

diet-mediated immunosuppression.  As shown in Fig. 2A, activation of CD4+ T-cells with 

phorbol ester (PMA) and calcium ionophore (Iono) rapidly upregulated cell surface 
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protein expression of CD28 with levels peaking at 48 h post-activation.  Cells from mice 

fed DHA had significantly higher levels (20%) of CD28 molecules on a per-cell basis 

than those fed the CO (control) diet after 48 h of in vitro stimulation (p<0.01; Fig. 2A 

Inset).  These results were contrary to our hypothesis that dietary n-3 PUFA would 

reduce the levels of CD28 protein present on the cell surface, thereby leading to reduced 

cell proliferation and cytokine production (5, 10).  Real-time PCR analysis (Fig. 2B) 

indicated that dietary n-3 PUFA markedly reduced levels of CD28 mRNA expression at 

t=0 and 24 h post-activation with PMA/Iono when compared to the CO diet (p<0.05).  

Following 72 h activation, all diet groups approached maximum mRNA expression levels 

with no significant differences found. 

 

Dietary n-3 PUFA enhance both CTLA-4 protein (total and surface) and mRNA 

transcript levels on CD4+ T-cells 

It has been reported that cell surface accumulation of CTLA-4 is primarily 

regulated by its rapid endocytosis (104).  Indeed, flow cytometric analyses revealed that 

the majority of CTLA-4 protein accumulated intracellularly (total) at all time points 

following CD4+ T-cell activation with anti-CD3 and anti-CD28 when compared to cell  
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FIGURE 2.  Activated CD4+ T-cells from mice fed DHA display significantly increased surface expression of CD28.  A: Time 
course analyses of the expression of CD28 molecules were carried out in CD4+ T-cells cultured in the presence of 10% FBS from 
mice fed CO, DHA, or EPA.  The y-axis represents the antibody binding capacity (ABC) equivalent sites for CD28 after culture with 
phorbol ester (PMA) and calcium ionophore (Ionomycin).  Values represent means ±SEM of cultures from 6-10 mice. *Highly 
significant differences were found between DHA and CO-fed mice (p<0.01) Inset: Histogram represents the mean fluorescence of 
anti-CD28-PE. CO (dotted line), DHA (solid line), or EPA (dashed line)  B: CD28 mRNA quantification of CD4+ T-cells from mice 
fed CO, DHA, or EPA was performed by real-time RT-PCR.  Values for cycle threshold (Ct) were converted to “expression levels” to 
allow for fold comparisons between samples, expression level =2(40-Ct).  Data were normalized to 18S rRNA and expressed as means 
±SEM, n=6-10.  *Significant differences were found between control (CO) and experimental diet groups p<0.05.   
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surface expression (Fig. 3A and 3B).  This is consistent with previous reports 

demonstrating that anti-CD28 mAb augments anti-CD3-induced CTLA-4 surface 

expression (123, 124).  In vitro culture with PMA/Iono stimuli (used in Fig. 2) for CD28 

analysis failed to induce CTLA-4 expression (data not shown). 

Although the absolute values differed, the kinetics of both total and surface 

CTLA-4 protein expression were similar for all diet groups.  Consistent with other 

findings, mice fed the CO control diet displayed a continuous increase in CTLA-4 protein 

expression over time as antibody binding capacity (ABC) plateaued at 96 h post-

activation (Fig. 3A and 3B) (104).  However, CTLA-4 expression levels on CD4+ T-cells 

from mice fed the EPA diet reached significantly higher levels at 72 h of in vitro T-cell 

activation (p<0.01; Fig. 3A and 3B Inset).  It is noteworthy that CD4+ T-cells from mice 

fed dietary EPA had uniformly higher levels of CTLA-4 molecules than cells from mice 

fed CO, whereas cells from mice fed dietary DHA were heterogenous, with some time 

points behaving similarly to CO and others similar to the EPA-fed group.  These results 

demonstrate that dietary n-3 PUFA significantly and differentially enhance the temporal 

expression of both cell surface-expressed and total CTLA-4.   

Quantitative measurement of CTLA-4 mRNA expression showed enhanced 

transcript levels in mice fed dietary n-3 PUFA relative to CO (Fig. 3C).  Dietary DHA 

significantly enhanced CTLA-4 mRNA levels 72 h post-stimulation (p<0.05).  Unlike the 

CD28 analysis (Fig. 2), there was a direct relationship between CTLA-4 protein and 

transcript levels in CD4+ T-cells from mice fed dietary n-3 PUFA.   
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Anti-CTLA-4 mAb treatment in vivo and in vitro does not relieve the suppression of 

lymphocyte responses in mice fed dietary n-3 PUFA 

Since CTLA-4 has been implicated in down-modulating T-cell activation (89, 

106, 125, 126), and is significantly upregulated in CD4+ T-cells from mice fed dietary n-

3 PUFA, we next investigated whether CTLA-4 engagement was involved in diet-

mediated immunosuppression.  Splenic CD4+ T-cells from mice fed the experimental or 

control diets were cultured as described in Fig. 1 with the addition of anti-CTLA-4 (mAb 

clone UC10-4F10; BD Pharmingen) or IgG control.  As expected, dietary n-3 PUFA 

suppressed lymphocyte proliferation after in vitro activation (Fig. 4A).  The presence of 

CTLA-4 mAb in cultures had little effect on the T-cell proliferative responses of mice fed 

DHA and EPA (Fig. 4A).  When all diet groups were combined, the presence of CTLA-4 

mAb did, however, inhibit T-cell proliferation (Fig. 4B), although the difference was not 

statistically significant.  These results suggest that anti-CTLA-4 mAb does not enhance 

T-cell proliferation and may be suppressive when added to cultures suboptimally 

stimulated with anti-CD3 and anti-CD28 mAbs as previously observed by us (Fig. 5) and 

by Walunas et al (44).  Thus, in our  model, in vitro administration of mAb anti-CTLA-4 

appeared to deliver a positive signal through the CTLA-4 receptor to down-regulate T-

cell proliferation rather than block transduction of a negative signal. 

 To determine whether anti-CTLA-4 treatment in vivo could reverse the 

suppressive effect of diet, splenocytes from Mycobacterium bovis (BCG)-vaccinated 

mice were cultured for 96 h in the presence of HMS with purified protein derivative 

(PPD) or concanavalin A (ConA) to allow comparisons between antigenic and mitogenic 

stimulation.  Splenocytes taken from the CTLA-4 mAb treated group responded similarly  
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FIGURE 3.  Splenic CD4+ T-cells from mice fed dietary n-3 PUFA express significantly increased 
CTLA-4 protein (total and surface) and mRNA levels following in vitro activation.  Time course analyses 
of A: total and B: surface CTLA-4 expression were carried out in CD4+ T-cells from mice fed CO, DHA, 
or EPA in the presence of HMS.  The y-axis represents the antibody binding capacity (ABC) equivalent 
sites for CTLA-4 after culture with anti-CD3 and anti-CD28.  Values represent means ±SEM of cultures 
from n=6-7 mice.  *Highly significant differences were found between EPA and CO-fed mice (p<0.01).  
Inset: Histogram represents the mean fluorescence of anti-CTLA-4-PE.  CO (dotted line), DHA (solid line), 
or EPA (dashed line).  
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FIGURE 3.  Continued.  C: CTLA-4 mRNA quantification of CD4+ T-cells from mice fed CO, DHA, or 
EPA was performed by real-time RT-PCR as described in Fig. 2B.  *Significant differences were found 
between control (CO) and the experimental diet groups p<0.05. 
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FIGURE 4.  In vitro effect of CTLA-4 ligation with antibody on CD4+ T-cell proliferation.  A: Splenic CD4+ T-cells from mice fed 
diets enriched with CO, DHA, or EPA were stimulated with aCD3/aCD28 as described in Fig. 1B in the presence of either 100 mg/ml 
anti-CTLA-4 mAb (BD Pharmingen) or an isotype-matched control IgG (BD Pharmingen) (data not shown) in the presence of HMS.  
Cellular uptake of [3H]-thymidine was measured 72 h post-stimulation.  Results are expressed as the net disintegrations per minute 
(DPM), n=6.  Different letters denote highly significant differences between diet groups (p<0.01).  B: Bars represent all diet groups 
combined for each treatment in Fig. 4A.   
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FIGURE 5.  Anti-CTLA-4 antibody (Pharmingen) decreases CD4+T-cell proliferation in 
C57BL/6 mice.  Purified splenic CD4+ T-cells were obtained from C57BL/6 mice and cultured 
with αCD3/CD28 at 1 and 5 µg/ml, respectively, in the absence or presence of 100 µg/ml of anti-
mouse CTLA-4 Ab (clone 4F10; Pharmingen) or 100 µg/ml of IgG isotype (Iso; Pharmingen).  
Results are expressed as mean ± SEM of the net disintegrations per minute (DPM), n=3 mice. 
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as those obtained from the isotype control-treated group.  Anti-CTLA-4 mAb purified 

from UC10-4F10 hybridoma cells were tested for specificity (Fig. 6A) and activity (Fig. 

6B) prior to injections.  Dietary n-3 PUFA (DHA) significantly enhanced the 

proliferative response of splenocytes to mitogenic and antigenic stimuli from BCG-

vaccinated mice treated with either isotype or CTLA-4 mAb (Fig. 7A & 7B). 

 The effect of diet on the in vivo antigenic response was evaluated by footpad 

testing BCG-vaccinated mice treated with CTLA-4 mAb or isotype control with PPD 48 

h prior to sacrifice.  The difference in footpad thickness was measured with microcalipers 

before and 48 h after PPD injection.  Fig. 7C illustrates that both dietary n-3 PUFA 

significantly suppressed the delayed-type hypersensitivity (DTH) response to PPD in 

mice treated with the isotype control.  Surprisingly, treatment with the CTLA-4 mAb in 

the CO-fed group markedly reduced the DTH reaction (Fig. 7C), and further suppressed 

the response in the footpads of EPA-fed mice. 
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FIGURE 6.  Anti-CTLA-4 Ab (prepared in-house) enhances whole splenocyte proliferation in C57BL/6 
mice.  A: The specificity of the purified anti-CTLA-4 mAb from UC10-4F10 cells was determined by 
immunobloting.  The transfer blot of 0.25 µg of rmCTLA-4 Ab (R&D) was incubated with the purified 
anti-CTLA-4 Ab (no dilution) as the primary antibody.  The rmCTLA-4 protein migrates as a 55kDa 
protein.  B: Whole splenocytes were obtained from C57BL/6 mice and activated with anti-CD3 at 1 µg/ml 
or ConA 2.5 µg/ml in the presence or absence of 100µg/ml of anti-CTLA-4 Ab purchased from 
Pharmingen or prepared in-house from UC10-4F10 cells (refer to page 22) or 100µg/ml of IgG isotype Ab 
(Pharmingen).  Results are expressed as mean ± SEM of the net disintegrations per minute (DPM), n=3 
mice.  Letters denote highly significant differences found within the treatment group (p<0.01). 
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FIGURE 7.  Anti-CTLA-4 mAb treatment in vivo does not alter diet-induced changes in PPD-specific T-
cell responses of BCG-immunized mice.  Proliferative response of splenocytes from BCG-immunized mice 
to Concanavalin A (ConA; 2.5 µg/ml) and purified protein derivative (PPD; 10 µg/ml) in the presence of 
HMS after 96 h of culture.  Results are expressed as the mean ± SEM net thymidine uptake (DPM) of n=5-
6 mice per diet group.  Different letters denote highly significant differences found between diet groups 
(p<0.01). Mice were treated with, A: isotype control (IgG) or, B: anti-CTLA-4 at 100 µg/mouse daily for 5 
days prior to sacrifice.   
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FIGURE 7.  Continued.  C: DTH response to PPD in the footpads of BCG-immunized mice treated with 
isotype control or anti-CTLA-4 mAb as described above.  Results are expressed as the mean ± SEM of the 
difference in footpad thickness in millimeters (mm) as measured just before and 48 h after injection with 
PPD, n=5-6 mice per diet group.  Different letters denote highly significant differences found between 
treatment groups (p<0.01).  * Highly significant differences were found between CO vs. DHA and/or EPA-
fed mice within the treatment group (p<0.01). 
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Discussion 

Successful T-cell activation and clonal expansion, followed by appropriate  

homeostatic clonal contraction, require a delicate balance of positive and negative 

regulatory signals.  Costimulatory molecules such as CD28 are essential coactivators of 

proliferation, cytokine production, and cell migration (127-129).  To balance these 

signals, cell surface molecules like CTLA-4 inhibit T-cell responses.  We have shown 

here that dietary n-3 PUFA feeding alters CD28 and CTLA-4 co-receptor expression, 

apparently disrupting the balance between these two signals to favor reduced T-cell 

activation.   

New data have identified an important link between the co-receptors and the 

expression of lipid rafts on the surface of T-cells.  Lipid rafts segregate proteins and 

lipids into liquid-ordered domains with distinct biophysical properties (130).  Crucial 

signaling proteins reside in these domains and engagement of the TcR with antigen 

promotes the entry of receptors into rafts, in which the TcRs are likely to interact with 

kinases and adaptors (131, 132).  Viola et al (118) first showed that ligation of CD28 

promotes the cell-surface expression of lipid rafts, whereas Martin et al (133) showed that 

CTLA-4 potentially inhibits TcR-CD28-mediated raft formation.  In this model, 

costimulatory receptors would function by simply regulating the availability of crucial 

signal mediators that are required for effective TcR signaling.  We and others have 

previously reported that dietary n-3 PUFA differentially modulate the phospholipid 

membrane composition of lymphocytes, thereby attenuating T-cell function by altering 

the recruitment of critical components of the TcR signal transduction machinery (58, 61).  

Dietary n-3 PUFA feeding reduced the translocation of PKCθ into lipid rafts, and 
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inhibited both AP-1 and NF-κB activation, and IL-2 secretion (62).  On this background, 

we hypothesize that dietary n-3 PUFA will also alter the interaction of CD28 and/or 

CTLA-4 with lipid rafts to influence the development of the immunological synapse (IS) 

during T-cell-APC-conjugate formation (134).  This hypothesis will be the focus of 

subsequent studies.   

 Our results indicate that dietary n-3 PUFA feeding upregulated both CD28 and 

CTLA-4 protein expression levels (Fig. 2 and 3).  However, DHA and EPA, the active 

constituents of fish oil, exhibited somewhat different immunomodulatory properties.  

DHA significantly enhanced the cell surface expression of CD28 on CD4+ T-cells (Fig. 

2A; t= 48 h post-activation), while dietary EPA upregulated CTLA-4 protein (surface and 

total) (Fig. 3A and B; t=72 h post-activation).  Furthermore, our results indicate that 

CTLA-4 mRNA levels were significantly increased in only the DHA-fed group (Fig. 3C).  

Although both experimental diets suppressed CD4+ T-cell proliferation in a similar 

manner (Fig. 1), it is clear that EPA and DHA have unique effects on co-stimulatory 

regulation in our model.  Consistent with our findings, a recent human study (135) 

concluded that EPA and DHA differentially modulate certain immune functions.  In that 

study, the fatty acid composition of plasma phospholipids in neutrophils was 

differentially altered by supplementation with DHA or EPA.  Supplementation with DHA 

suppressed T-lymphocyte activation, as assessed by CD69 expression, whereas EPA 

supplementation had no significant effect.  The mechanisms responsible for the 

differential effects of EPA and DHA on T-lymphocyte activation are unclear.  EPA and 

DHA may conceivably have different effects on raft stability because DHA is thought to 
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adopt a more folded conformation in membranes and has been shown to exclude 

phospholipase D from lipid rafts at relatively low concentrations (136).   

 The molecular basis for T-cell inhibition by CTLA-4 has been the subject of 

much debate.  It has been proposed that CTLA-4 may: 1) antagonize CD28 by competing 

for CD80 or CD86 binding; 2) sequester intracellular enzymes that can bind to both co-

receptors; or 3) directly or indirectly reduce TcR signals by association with the 

immunological synapse (137).  The kinetics of CTLA-4 expression were dramatically 

modified by dietary n-3 PUFA feeding in our study such that the protein levels (surface 

and total) approached maximum levels 72 h post-activation in vitro (EPA >> DHA; Fig. 

3A and B).  The CO-fed group did not reach maximum CTLA-4 protein expression levels 

until after 96 h.  These results suggest that the down-regulatory CTLA-4 co-receptor may 

play a key role in diet-mediated immunosuppression (Fig. 1), i.e., dietary n-3 PUFA may 

rapidly upregulate CTLA-4 protein expression to downregulate overall T-cell function.   

 Although the cell surface levels of CD28 protein were also significantly enhanced 

by n-3 PUFA (DHA; Fig. 2) feeding, there was a dissociation with its mRNA expression 

(Fig. 2B).  In contrast, a direct relationship was observed between CTLA-4 transcript and 

protein levels (Fig. 3).  Since dietary n-3 PUFA increased the expression of CD28, which 

is inconsistent with suppressed T-cell proliferation, it is conceivable that the increased 

levels of CD28 on the cell surface may not be functional.  It is possible that by altering 

the fatty acid composition of the cellular membrane, diet may inhibit the positive 

regulatory function of CD28 on the T-cell response.  We and others have recently 

reported that conditions which modify raft structure can disrupt the earliest steps of T-cell 

activation and the function of those critical signaling components (56, 58, 61). 
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In vitro experiments have shown that the blockade of signals through CTLA-4 

augments T-cell expansion, while CTLA-4 cross-linking results in decreased T-cell 

proliferation due to decreased IL-2 production (138).  The experiments presented here 

suggest that the latter mechanism was operational in our cultures, as the presence of 

CTLA-4 mAb (4F10) in culture with CD4+ T-cells activated with αCD3/αCD28 certainly 

did not enhance, and may have reduced, cell proliferation, although the latter effect was 

not statistically significant (Fig. 4).   

 The effect of CTLA-4 blockade in vivo was first demonstrated in a tumor model 

in which an enhanced antitumor immunity was observed (139).  In other experimental 

systems, CTLA-4 blockade enhanced the severity of autoimmune diseases by increasing 

the pool of pathologic T-cells (115, 140).  Taken together, these findings indicate that 

antibody ligation of  CTLA-4 in some in vivo models leads to an enhanced T-cell 

response.  In contrast, we demonstrate that anti-CTLA-4 treatment in vivo may have had 

an agonist effect.  Both dietary n-3 PUFA significantly reduced the DTH response of 

BCG-immunized mice treated with the IgG isotype control, whereas in mice treated in 

vivo with anti-CTLA-4 mAb, no relief of this diet-mediated suppression was seen.  In 

fact, further suppression of DTH was observed in the EPA-fed group treated with 

antibody (Fig. 7C; p<0.01).  Anti-CTLA-4 mAb also markedly reduced the DTH 

response of mice fed the control diet (CO; p<0.01) suggesting that the in vivo mAb 

treatment may have had a positive, agonist effect on the lymphocytes.   

 As previously reported by our laboratory, the enhancing effect of EPA and DHA 

on mitogen-induced proliferation in the splenocytes of BCG-vaccinated mice may be 

explained, in part, by alteration in the proportions of functional T-cell subsets (e.g., Th1 
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& Th2) as well as the relative proportions of activated and/or memory T-cells populating 

the spleens of mice undergoing a vigorous immune response to an on-going BCG 

infection (3).  It has been reported that CTLA-4 protein expression is much higher in Th2 

than in Th1 clones (141).  Therefore, it may not be surprising that CTLA-4 ligation in 

vivo with mAb in BCG-vaccinated mice with a predominantly Th1 cell response did not 

affect the mitogen and antigen-induced proliferative response of splenocytes from mice 

fed dietary n-3 PUFA (Fig. 7A & 7B).  Moreover, the presence of CTLA-4 mAb in vitro 

did not significantly alter [H3]-thymidine uptake of αCD3/αCD28-stimulated CD4+ T-

cells from naïve mice fed dietary n-3 PUFA (Fig. 4).  The presence of anti-CTLA-4 mAb 

in vitro and in vivo did, however, have differential effects on lymphocyte proliferation in 

mice fed dietary n-3 PUFA (Fig. 4 & 7).  This may be explained, in part, by the presence 

of accessory cells in whole splenocyte cultures from mice treated in vivo with mAb (Fig. 

7) and the lack thereof in the purified CD4+ T-cell cultures (Fig. 4).  Although there is 

evidence that dietary n-3 PUFA affect accessory cell membrane lipid composition and 

cytokine production (142-145), we and others have shown that the diet-mediated T-cell 

immunosuppression is mediated principally through direct effects on T-cells (3, 4, 10, 

146). 

 The suppressive effect of dietary n-3 PUFA can also be attributed to a 

subpopulation of CD4+ T-cells known as regulatory T-cells (Tregs; CD4+ CD25+), which 

are immunosuppressive in vivo and in vitro (147, 148).  Thymic-derived Tregs have been 

shown to regulate autoimmune disease via active suppression of self-reactive T-cells in 

various models of autoimmunity (149).  It has recently been demonstrated that CD28 

maintains a stable pool of peripheral Tregs by both supporting their survival and 
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promoting their self-renewal (150).  CD28 engagement promotes survival by regulating 

IL-2 production by conventional T-cells and CD25 expression on Tregs.  Since CD28 

protein expression is upregulated on the surface of CD4+ T-cells (Fig. 2), from mice fed 

dietary n-3 PUFA, it would be of interest to determine whether the CD4+ CD25+ 

subpopulation play a role in mediating diet-induced T-cell suppression.  

Our data suggest that the enhanced CTLA-4 cell surface protein expressed on the 

CD4+ T-cells of mice fed EPA may not be functional, and that factors other than CTLA-4 

may be responsible for diet-mediated immunosuppression.  It seems likely that the 

complex interplay between functional CD28 and CTLA-4, and their association (or the 

lack thereof) with plasma membrane microdomains (“raft”) may be responsible, in part, 

for the downregulatory effect of diet on T-cell function in this model.  Characterization of 

the co-receptors in relation to lipid rafts following T-cell stimulation will allow a 

determination of the precise role that altered levels of CD28 and CTLA-4 play in the diet-

mediated regulation of T-cell function.   
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CHAPTER III 

DIETARY N-3 POLYUNSATURATED FATTY ACIDS 

SUPPRESS SPLENIC CD4+  T-CELL FUNCTION IN IL-10(-/-) MICE* 

Introduction 

 IL-10 is a major regulatory cytokine of inflammatory responses.  It was originally 

described as a mouse Th2 cell factor, inhibiting cytokine synthesis by Th1 cells (151).  

However, increasing evidence suggests that IL-10 acts as a general inhibitor of 

proliferative and cytokine responses of both Th1 and Th2 cells in vitro and in vivo (152-

154).  IL-10 is released by mononuclear phagocytes (152, 153), natural killer cells and by 

both Th1 and Th2 type lymphocytes (154).  Its production is tightly regulated, as excess 

IL-10 leads to the inability to control infectious pathogens, while insufficient IL-10 leads 

to the pathology secondary to tissue injury.  The immunosuppressive potency of IL-10 

depends on the timing of IL-10 and IL-10 receptor (IL-10R) expression, and the IL-10 

suppressive activity can diminish during immune and inflammatory responses (155, 156). 

 The co-stimulatory signal induced by complexing CD28 with specific monoclonal 

antibodies (mAbs) or by interaction with B7 counter-receptors enhances the antigen-

dependent T-cell proliferation and cytokine production (102, 157).  It has been proven 

that IL-10 elicits tolerance in T-cells by selective inhibition of the CD28 co-stimulatory 

pathway and thereby controls suppression and development of antigen specific immunity.  

IL-10 only inhibits T-cells stimulated by the engagement of low numbers of T-cell  

 
 
__________ 
*Reprinted with permission from “Dietary n-3 Polyunsaturated Fatty Acids Suppress 
Splenic CD4+  T-cell Function in IL-10(-/-) mice” by Ly, L.H., et al, 2004. Clinical and 
Experimental Immunology (accepted).  2004 by Blackwell Publishing. 
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receptors, i.e., conditions which require CD28 co-stimulation (66, 67).  IL-10 inhibited 

CD28 tyrosine phosphorylation, the initial step of the CD28 signaling pathway, and  

consequently the phosphatidylinositol 3-kinase p85 binding to CD28 (67).  In addition, 

Akdis et al demonstrated that stimulation of CD45RO+ memory T-cells from healthy 

human subjects up-regulated IL-10 receptor (IL-10R) expression, rendering the cells 

more susceptible to IL-10-mediated suppression.  The IL-10-induced selective inhibition 

of the CD28 co-stimulatory pathway acts as a decisive mechanism in determining 

whether a T-cell will contribute to an immune response or become anergic. 

  Previous results from our laboratory show that T-lymphocytes from mice fed the 

predominant n-3 polyunsaturated fatty acids (PUFA), docosahexaenoic acid (DHA; 22:6) 

and eicosapentaenoic acid (EPA; 20:5), found in fish oil (FO) produced significantly less 

IL-2, but only when cells were activated with αCD3/CD28 and not when activated with 

αCD3/PMA (phorbol ester) (4).  Furthermore, dietary n-3 PUFA significantly enhanced 

the expression of CD28 on the surface of CD4+ T-cells (Chapter II). 

 On this background, we hypothesized that the suppressive effects of diet would be 

mediated by IL-10 and its relationship with CD28.  To investigate this hypothesis, we 

have determined the influence of dietary DHA and EPA on the proliferative response, 

kinetics of IL-10R expression, and anti-inflammatory cytokine production of purified 

splenic CD4+ T-cells from conventional C57BL/6 and IL-10 gene knockout (IL-10-/-) 

mice.  Surprisingly, all responses were similar in both mouse groups with the exception 

of cytokine production.  Dietary n-3 PUFA significantly reduced IFNγ production in 

conventional mice while dramatically upregulating extracellular IFNγ in IL-10-/- mice.  

Therefore, we conclude that dietary n-3 PUFA suppress CD4+ T-cell functions through 
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mechanisms which do not involve IL-10.  Furthermore, our results suggest that dietary n-

3 PUFA may elicit the normally pro-inflammatory cytokine, IFNγ, to serve as an 

immunosuppressive cytokine in IL-10-deficient cells. 

 

Materials and Methods 

Diets and animals 

Female, pathogen-free, young (12-14g) C57BL/6 mice were purchased from the 

Frederick National Cancer Research Facility (Frederick, MD).  IL-10-/- mouse breeder 

pairs (129SvEv background) were a generous gift from Dr. Daniel Berg (University of 

Iowa).  The colony is maintained at the Laboratory Animal Resources and Research 

facility at Texas A&M University where all breeders were genotyped according to 

protocol (Jackson Laboratory, Bar Harbor, ME) (Fig. 8).  Female and male IL-10-/- (1-2 

months of age) and C57BL/6 mice were assigned to one of three semi-purified diets: 5% 

corn oil (CO) (control diet containing no n-3 PUFA), 1% DHA + 4% CO (DHA), or 1% 

EPA + 4% CO (EPA), for 14 days as described on page 17. 

 

Isolation and preparation of splenic lymphocytes  

Refer to page 18. 

 

CD4+ T-cell purification 

Refer to page 18. 
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T-cell proliferation 

Refer to page 19. 

 

T-cell activation for flow cytometry  

Refer to page 19. 

Immunofluorescence flow cytometry 

For quantitative surface receptor staining, 106 CD4+ T-cells from activated and 

control cultures were labeled with anti-IL-10R1 (PE, red) (BD Pharmingen) labeled mAb 

(4 µg/ml) and processed as described previously on page 20. 

 

ELISA analysis 

Activated CD4+ T-cells from C57BL/6 and IL-10-/- mice were analyzed for IFNγ 

and IL-10 production according to manufacturer’s protocol (R&D Systems). 

 

Statistical analysis 

Refer to page 23. 
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IGURE 8.  Representative gels of IL-10 knockout mouse genotyping.  The genetic makeup of 
the IL-10 knockout mouse (129 SvEv) colony breeders were confirmed by DNA isolation from 

 

                  1    2     3    4    5    6                  
 

Lane 1: molecular weight ladder 
Lane 2: C57BL/6 mouse (tail snip) 
Lane 3: IL-10 ko breeder (tail snip)                   
Lane 4: IL-10 ko breeder (DNA from blood) 
Lane 5: IL-10 ko breeder (DNA from blood)     
Lane 6: positive control from Dr. D. Berg
     
     

                        1   2   3   4   5   6   7   8 

       Lane 1: molecular weight ladder 
       Lane 2: IL-10ko breeder male cage #1 

          Lane 3: IL-10ko breeder female cage #1
       Lane 4: IL-10ko breeder male cage #2 

          Lane 5: IL-10ko breeder female cage #2
       Lane 6: IL-10ko breeder male cage #3 
       Lane 7: IL-10ko breeder female cage #3
       Lane 8: IL-10ko breeder male cage #4 

← 450 kDa

450 kDa →

200 kDa →

 

 

F

tail snips according to protocol from www.jax.org (see Appendix B).  Positive wild-type (+/+) 
and gene knockout (-/-) DNA migrates as a 200 kDa and 450 kDa protein, respectively. 
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Results  

-3 PUFA suppress CD4+ T-cell proliferation in C57BL/6 and IL-10(-/-) mice 

splenic

O; 

sed in 

ice 

 

 

ietary n-3 PUFA suppress IL-10 receptor (IL-10R) protein expression on the 

10R expression, kinetic 

 

significantly lower levels (>40%) of IL-10R molecules on a per-cell basis than those fed  

Dietary n

To determine the role of IL-10 in diet-mediated immunosuppression, purified 

 CD4+ T-cells from conventional C576BL/6 and IL-10(-/-) mice fed diets 

containing n-3 polyunsaturated fatty acids (PUFA), DHA or EPA, or corn oil (C

devoid of n-3 PUFA) for 14 d were activated with antibodies to CD3 and CD28 

(αCD3/CD28) for 72 h.  Surprisingly, cell proliferation was significantly suppres

both the C57BL/6 (Fig. 9A) and IL-10(-/-) mice (Fig. 9B) fed dietary n-3 PUFA.  Both 

dietary n-3 DHA and EPA significantly reduced T-cell proliferation in the C57BL/6 m

(Fig. 9A), whereas only EPA had a statistically significant effect on CD4+ T-cells from 

the IL-10(-/-) mice (Fig. 9B).  Therefore, absence of IL-10 does not alter the suppressive 

effect of dietary n-3 PUFA on polyclonal T-cell activation involving costimulation 

through CD28.  These results were contrary to our hypothesis that dietary n-3 PUFA

would not reduce CD4+ T-cell proliferation in IL-10(-/-) mice, thereby demonstrating a

role for the IL-10 cytokine in the suppressive effects of diet.  

 

D

surface of CD4+ T-cells from C57BL/6 and IL-10(-/-) mice 

 To elucidate the influence of dietary n-3 PUFA on IL-

analyses were performed on purified CD4+ T-cells from conventional and IL-10(-/-) mice 

fed the 3 diets.  As expected, activation of CD4+ T-cells with αCD3/CD28 upregulated 

cell surface expression of the IL-10R (Fig. 10).  Cells from C57BL/6 mice fed DHA had
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IGURE  9.  Dietary DHA and EPA down-regulate murine CD4  T-cell proliferation in IL-10-/- 
mice.  Purified splenic CD4+ T-cells from A: C57BL/6 and B: IL-10-/- mice fed CO, DHA, or 

PA were activated with antibodies to surface receptors CD3 and CD28 and cellular uptake of 
H]-thymidine was measured 72 h post-activation.  Results are expressed as mean ± SEM of the 

 
u  

F +

E
[3

net disintegrations per minute (DPM), n=5.  Different letters denote highly significant differences
found between diet groups (p<0.01).  All cells were cultured in the presence of 2.5% homologo s
mouse serum (HMS) + 2.5% FBS.  
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the CO (control) and EPA diet after 72 h of in vitro stimulation (p<0.01; Fig. 10A inset).  

Similarly, IL-10(-/-) mice fed dietary n-3 PUFA displayed markedly reduced levels of IL-

10R molecules 72 h post-activation (~35%; Fig. 10B inset).  In this instance, both dietary

DHA and EPA significantly suppressed the expression of the IL-10R.  These results 

indicate that dietary n-3 PUFA significantly and differentially reduce the temporal 

expression of cell surface-expressed IL-10R in both conventional and IL-10

 

. 

ietary n-3 PUFA differentially modulate IFNγ and IL-10 cytokine production in 

er investigate the mechanism by which dietary n-3 PUFA suppress CD4+ 

s recently 

 

e 

0 

y  

(-/-) mice

 

D

CD4+ T-cells  

 To furth

T-cell function in conventional and IL-10(-/-) mice, the production of the anti-  

inflammatory cytokine, IL-10, in cell culture supernatants was measured.  It ha

been reported that the pro-inflammatory IFNγ cytokine possesses anti-inflammatory 

properties and actively regulates IL-10 activity (158, 159).  Thus, it was of interest to

measure IFNγ production as a potential anti-inflammatory mediator.  Purified CD4+ T-

cells were stimulated with αCD3/CD28 for 48 h and cell supernatants were collected.  

Quantitative determination of IL-10 concentrations from C57BL/6 mice revealed that th

DHA-fed group produced significantly less (>50%) IL-10 than those fed the CO diet, 

whereas the EPA-fed group secreted dramatically more (2-fold) of the suppressive 

cytokine (Fig. 11A).  These results confirm that the anti-inflammatory cytokine IL-1

does not play a role in the suppression of CD4+ T-cell proliferation by DHA from 

C57BL/6 mice (Fig. 9A).  On the other hand, the immunosuppressive EPA diet ma
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utilize IL-10 by upregulating its expression.  ELISA analysis of IFNγ production in the 

same CD4+ T-cell culture supernatants showed that both DHA (p<0.01) and EPA 

(p=0.01) diets significantly reduced IFNγ production (Fig. 11B).  This strongly suggests 

that IFNγ does not mediate the suppressive effects of dietary n-3 PUFA on the T-cell 

response in C57BL/6 mice. 

 The production of IFNγ was also quantitated in cell supernatants from IL-10(-/-) 

mice.  Fig. 12 illustrates that dietary n-3 PUFA feeding significantly upregulated IFNγ 

production by CD4+ T-cells (>40%).  Overall, the levels of IFNγ in the supernatants of 

IL-10(-/-) CD4+ T-cells was 20-100 fold higher than those observed under identical culture 

conditions in CD4+ T-cells from conventional C57BL/6 mice (Fig. 11B).  Our results 

indicate that T-cells from IL-10(-/-) mice may utilize the anti-inflammatory properties of 

IFNγ to down-regulate T-cell function (Fig. 9B).  This may occur to compensate for the 

lack of available IL-10 within the cytokine network.   
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FIGURE 12.  Dietary n-3 PUFA enhance IFNγ production in CD4+ T-cells from IL-10-/- mice.  Purified 
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FIGURE 13.  Diagram of results obtained from C57BL/6 mice.   
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FIGURE 14.  Diagram of results obtained from IL-10-/- mice. 
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Figures 13 and 14 diagram the results of this section obtained in C57BL/6 and IL-10-/- 

ice. 

 

Discussion

m

 

 The immunosuppressive role of IL-10 has been demonstrated by several human 

and mouse studies (160-163).  Inflammatory bowel disease and other exaggerated 

inflammatory responses exhibited by IL-10-/- mice indicated that a critical in vivo function 

of IL-10 is to limit inflammatory responses (164-166).  Moreover, inhibition of graft-

versus-host disease by IL-10 and allograft rejection in human leukocyte antigen-

mismatched bone-marrow transplantation in severe combined immunodeficient patients 

gives further evidence for a key role of this cytokine in the induction and maintenance of 

anergy (167).   

 The biological effects of cytokines are mediated through cell surface receptors.  

These receptors transduce the binding of their cytokines into cytoplasmic signals that 

eventually trigger a cascade of intracellular responses.  The functional receptor complex 

of IL-10 consists of at least 2 subunits IL-10R1 and IL-10R2, both of which have been 

characterized and shown to play critical roles in determining whether cells respond to IL-

0 (168-172).   

Our data in this current study strongly suggest that the anti-inflammatory effects 

f diets enriched in n-3 PUFA are not likely mediated by IL-10.  Fig. 9 and 10 illustrate 

ontinued to suppress CD4+ T-lymphocyte responses in the 

absence of endogenous IL-10.  Conventional C57BL/6 mice fed EPA may utilize the 

hibitory IL-10 cytokine to suppress T-cell function (Fig. 9A and 11A), although the IL-

1

 

o

that dietary n-3 PUFA c

in
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10R expression levels remained unaltered (Fig. 10A).  However, in similar mice fed the

DHA d

 

iet, alternative mechanisms may explain the suppressive effect of diet as both 

FNγ and IL-10 cytokine production were down-regulated (Fig. 11).   

de the inhibitory effect of IL-10, other mechanisms acting on co-stimulatory 

  

eic 

P-

the TCR 

cells (Chapter II), thereby disrupting the balance between these two 

 

ory properties.  In this study, both EPA and DHA significantly reduced 

D4+ T

ement 

y 

I

 Besi

pathways have been demonstrated to render T-cells unresponsive to an antigenic trigger.

Blocking of the CD28-B7 interaction by CTLA-4 leads to an inhibition of xenogen

graft rejection of pancreatic islets in mice (173).  It has been shown that CTLA-4 forms a 

multimolecular complex with TCRξ and an SH2-containing tyrosine phosphatase (SH

2), leading to a direct dephosphorylation of TCRξ and a subsequent inhibition of 

signaling pathway (174).  We recently demonstrated that dietary n-3 PUFA feeding 

significantly upregulated both CD28 and CTLA-4 protein expression on the surface of 

murine CD4+ T-

signals to favor reduced T-cell activation.  These findings are relevant to elucidate the 

mechanism(s) by which diet reduces T-cell function, without the involvement of IL-10

(Fig. 6 and 7), in conventional mice.  Further studies will be needed to determine the 

extent to which CTLA-4 plays a role in diet-mediated immunosuppression.   

 Not surprisingly, dietary DHA and EPA exhibited somewhat different 

immunomodulat

C -cell proliferation in C57BL/6 mice.  EPA also suppressed this response 

significantly in IL-10-/- mice (Fig. 9).  While proliferation was suppressed to nearly the 

same level by dietary DHA, the difference was not statistically significant.  Measur

of IL-10R expression levels revealed that conventional mice fed DHA had significantl

lower levels than the CO-fed group, while both DHA and EPA significantly reduced IL-
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10R cell surface molecules in IL-10(-/-) mice (Fig. 10; t=72 h post-activation).  

Furthermore, our results indicate that the EPA diet reduced IFNγ but enhanced IL-10 

production, while the DHA diet down-regulated both cytokines in C57BL/6 mice (Fig. 

are 

 and 

l 

nd adaptive 

ch as 

e 

 

11).  Although both experimental diets up-regulated production of IFNγ in IL-10(-/-) mice 

in a similar manner (Fig. 12), it is clear that EPA and DHA have unique effects on certain 

T-lymphocyte responses in our model.  Consistent with these current findings, we 

recently reported that dietary DHA and EPA differentially altered co-stimulatory 

regulation as DHA significantly enhanced the cell surface expression of CD28, while 

dietary EPA up-regulated the expression of CTLA-4 (Chapter II).  The mechanisms 

responsible for the differential effects of EPA and DHA on T-lymphoctye responses 

unclear.  EPA and DHA may conceivably have different effects on membrane raft 

stability because DHA is thought to adopt a more folded conformation in membranes

has been shown to exclude phospholipase D from lipid rafts (136).  We have recently 

demonstrated an effect of dietary n-3 PUFA on T-cell lipid raft composition in our mode

(56). 

Production of IFNγ in response to infection is the hallmark of innate a

immunity (175).  IFNγ up-regulates a variety of pro-inflammatory mediators su

interleukin (IL)-12, IL-15, TNF-α, iNOS, and caspase-1 (176-179).  IL-10 and IFNγ hav

opposing effects during an active phase of an immune or inflammatory response,

characterized by high levels of IFNγ production and modest IL-10 activity such that 

pathogens can be effectively cleared (155, 180).  These pro-inflammatory characteristics 

of IFNγ contradict certain aspects of its biologic activity.  Treatment of rheumatoid 

arthritis with IFNγ in mouse and human studies was associated with a reduction of 
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leukocyte influx into the synovium, less synovial hyperplasia and erosion, and 

clinical status (181, 182).  Similarly, administration of IFNγ markedly reduced the 

incidence of disease in a rat model of insulin-dependent diabetes mellitus (183). In 

contrast, IFNγ has been implicated in the pathophysiology of multiple sclerosis (MS) 

patients (184).  The mechanisms by which the pro-inflammatory IFNγ may exert anti-

inflammatory properties has recently been reviewed (158).  The authors conclude t

IFNγ re-directs inflammatory responses by inhibiting production of pro-inflammat

1 and IL-8, by up-regulating the production of cytokine antagonists such as IL-1Ra and

IL-18BP, inducing expression of the suppressors of cytokine signaling (SOCS), and b

inducing apoptosis in leukocytes and local resident cells.  The biological triggers 

responsible for shifting the role of IFNγ from pro- to anti-inflammatory in response

immunologic stimuli have not been elucidated.  However, these anti-inflammatory 

properties of the principally pro-inflammatory cytokine may explain, in part, its enhan

production in suppressed T-cells from IL-10

improved 

hat 

ory IL-

 

y 

 to 

ced 

 clear indication of this compensatory role for IFNγ is the overall increase in IFNγ 

produc

(65).  

nses 

-/- mice fed dietary n-3 PUFA (Fig. 9B and 

12).  A

tion in lymphocytes from IL-10-/- vs. C57BL/6 mice (20-100-fold; Fig. 11B and 

12).  Further experiments will be necessary to examine the anti-inflammatory role of 

IFNγ in IL-10-/- mice fed dietary n-3 PUFA. 

 The dual role of IFNγ is also mimicked by the pleiotropic effects of IL-10 

Administration of IL-10 to wild-type mice can inhibit antigen-specific immune respo

in vivo (185).  In mice and humans, IL-10 can induce long-term antigen-specific anergy 

in CD4+ T-cells (64, 186).  In humans, IL-10 has a role in inducing systemic lupus 

erythematosus (187), yet counteracts psoriasis (188), and Crohn’s disease (189).  
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Intravenous administration of IL-10 to healthy donors has proinflammatory effects 

through the release of IFNγ, IFNγ-inducible protein (IP-10) and increased granzyme

levels (190).  These effects are counteracted by inhibition of the release of monocyt

inflammatory protein-1α (MIP-1α), MIP-1β and monocyte chemotactic protein-1 (MC

1) (191), TNF-α, IL-1β and IL-6 (155), and T-cell function (192).  A switch in cytokin

activity that is induced by the absence of an opposing cytokine adds an additional level

complexity to cytokine cross-regulation and cooperation pathways, especially when an 

immunosuppressive diet is involved.   
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 The 20- and 22-carbon n-3 PUFA are unique lipids in that they possess potent 

immunomodulatory activities.  In addition, dietary n-3 PUFA have effects on diverse 

physiological processes impacting normal health and chronic disease, such as the 

regulation of plasma lipid levels (193-196), cardiovascular function (197-199), insulin 

action (200, 201), and neuronal development and visual function (202).  Ingestion of n-3

PUFA results in their distribution to vir

 

tually every cell in the body affecting membrane 

composition and function, signaling, and regulation of gene expression (202-204).  

However, cell-specific lipid metabolism as well as the expression of fatty acid-regulated 

anscription factors will likely play a role in determining how the cell responds to 

hanges in n-3 PUFA composition.   

There is strong evidence for the beneficial effects of dietary FO in patients with 

hronic rheumatoid arthritis (205-208).  Animal studies, including ours, indicate that diets 

ch in EPA and DHA are anti-inflammatory and immunomodulatory in vivo.  However, 

e specific mechanisms by which these effects occur remain unclear.  The literature is 

plete with inconsistencies because many laboratories use different amounts or types of 

t in the administered diet, employ different strains of mice, and measure lymphocyte 

sponses using various cell populations and stimuli (reviewed by (209)).  In our studies, 

 is clear that the suppressive effects of n-3 PUFA on T-cell function can, in part, be 

ttributed to alterations in co-stimulatory receptor function and cytokine cross-talk.  
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Our results suggest that dieta upts the regulatory interplay 

between T-cell membrane compensate for the lack 

ed 

he 

 co-

ith CTLA-4 mAb in vivo in Mycobacterium bovis 

 

e 

 

immunosuppression, studies involving CD28 and CTLA-4 gene knockout mice (lacking a 

costimulatory signal for T-cell activation or deactivation) would be very helpful.  It is 

ry n-3 PUFA disr

 co-receptors, CD28 and CTLA-4.  To 

of functional endogenous IL-10, the anti-inflammatory aspects of IFNγ may be enhanc

in IL-10-/- mice fed dietary n-3 PUFA.  These data give us a glimpse into the possible 

mechanisms by which dietary n-3 PUFA exert their immunosuppressive effects.  T

most important conclusions of this study are summarized here: 

• Dietary n-3 PUFA (DHA>EPA) significantly reduced the in vitro 

proliferation of purified CD4+ T-cell in mice. 

• The suppressive effects of dietary n-3 PUFA were amplified by the 

presence of homologous mouse serum (HMS) in vitro. 

• The suppressive effects of diet do not appear to involve the CTLA-4

receptor, as treatment w

(BCG)-vaccinated mice did not alter the suppressive effects of dietary n-3

PUFA on antigen (PPD)-induced lymphocyte proliferation or delayed 

hypersensitivity reactions. 

• The downregulatory effects of dietary n-3 PUFA did not appear to involv

the suppressive IL-10 cytokine, as the proliferation of purified splenic 

CD4+ T-cells in n-3 PUFA fed IL-10-/- mice remained suppressed. 

• In the absence of IL-10, IFNγ may serve as an anti-inflammatory cytokine,

T-cell suppressive role in IL-10-/- mice fed dietary n-3 PUFA. 

 To confirm the role of co-stimulatory molecules in n-3 PUFA diet-mediated 
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expecte FA 

 

t 

41).  Because surface 

molecules  Th2 

cells (212, 213  differential effects of 

dietary n-3

 IL-10 p s the ability to 

control som in y 

to immune-me  

and activates r

kinases, leadin

transcription (S quired for the many anti-inflammatory effects 

of IL-10 (6  

One ke rs 

of cytokine sig ultiple 

cytokines, l

215).  Thus, SO m among 

as 

ld 

d that in the absence of these co-receptors, the suppressive effects of n-3 PU

feeding would diminish.  Since CD28 is known to play a pivotal role (129, 210, 211) in 

the induction of Th2 cytokines, it would be of interest to examine the levels of a 

prototypic Th2 cytokine (IL-4 or IL-10) in CD28 knockout mice.  Although the role of

CTLA-4 in Th1 and Th2 cells is debatable (113), recent studies have demonstrated tha

Th2 clones express higher levels of CTLA-4 than Th1 clones (1

and raft composition have been shown to behave differently in Th1 and

), further studies will be needed to delineate the

 PUFA on both CD4+ T-cell subsets. 

roduction is tightly regulated, as excessive IL-10 impair

e fectious pathogens, while insufficient IL-10 leads to pathology secondar

diated tissue injury.  Like many other cytokines, IL-10 binds to its receptor

eceptor-associated Janus kinase 1 (Jak1) and tyrosine kinase 2 (Tyk2) 

g to the phosphorylation of signal transducers and activators of 

TAT) proteins which are re

4).   

y mechanism that inhibits Jak-STAT signaling is induction of suppresso

naling (SOCS) proteins.  SOCS are rapidly induced in response to m

inc uding cytokines that activate the Jak-STAT pathway themselves (214, 

CS proteins play an important role in cross-talk and antagonis

different cytokines.  Recently, it was reported that IL-10 signaling on lymphocytes w

suppressed by IFNγ-induced SOCS1 (159).  Since dietary n-3 PUFA feeding suppressed 

CD4+ T-cell proliferation in IL-10-/- mice and enhanced the production of IFNγ, it wou
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be of interest to investigate the role of SOCS-induced switching of the normally pro-

inflammatory IFNγ to become anti-inflammatory.  These issues are complex and more 

research will be needed to understand and to elucidate the precise molecular mech

by which dietary n-3 PUFA modulate T-cell functions. 

 

 

 

 

 

anisms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



 68

REFERENCES 

1. Stulnig, T. M. 2003. Immunomodulation by polyunsaturated fatty acids: 

mechanisms and effects. Int Arch Allergy Immunol 132:310. 

2. Calder, P. C. 2003. N-3 polyunsaturated fatty acids and inflammation: from 

olecular biology to the clinic. Lipids 38:343. 

3. owler, K. H., R. S. Chapkin, and D. N. McMurray. 1993. Effects of purified 

ietary n-3 ethyl esters on murine T lymphocyte function. J Immunol 151:5186. 

4. rrington, J. L., D. N. McMurray, K. C. Switzer, Y. Y. Fan, and R. S. Chapkin. 

001. Docosahexaenoic acid suppresses function of the CD28 costimulatory 

embrane receptor in primary murine and Jurkat T cells. J Nutr 131:1147. 

5. lly, C. A., D. N. McMurray, and R. S. Chapkin. 1998. Effect of dietary n-3 fatty 

cids on interleukin-2 and interleukin-2 receptor alpha expression in activated 

urine lymphocytes. Prostaglandins Leukot Essent Fatty Acids 58:289. 

6. rench, M. A., A. M. Parrott, E. S. Kielo, R. V. Rajotte, L. C. Wang, A. B. 

homson, and M. T. Clandinin. 1997. Polyunsaturated fat in the diet may improve 

testinal function in patients with Crohn's disease. Biochim Biophys Acta 

360:262. 

7. mp, D. B. 2002. The biochemistry of n-3 polyunsaturated fatty acids. J Biol 

Chem 277:8755. 

. Zampelas, A., G. Paschos, L. Rallidis, and N. Yiannakouris. 2003. Linoleic acid 

to alpha-linolenic acid ratio. From clinical trials to inflammatory markers of 

coronary artery disease. World Rev Nutr Diet 92:92. 

m

F

d

A

2

m

Jo

a

m

F

T

in

1

Ju

8

   



 69

9. Jolly, C. A., Y. H. Jiang, R. S  N. McMurray. 1997. Dietary (n-3) 

kin-2 

. 

 rray. 

odulate purified murine T-cell 

11. 

12. 

:470. 

 

 eutic 

15. . F., D. Cort, J. Rodgers, R. Burakoff, K. DeSchryver-Kecskemeti, T. 

Ann Intern Med 116:609. 

  

 of 

pective 12 month 

randomised controlled trial. Gut 33:922. 

. Chapkin, and D.

polyunsaturated fatty acids suppress murine lymphoproliferation, interleu

secretion, and the formation of diacylglycerol and ceramide. J Nutr 127:37

10. Arrington, J. L., R. S. Chapkin, K. C. Switzer, J. S. Morris, and D. N. McMu

2001. Dietary n-3 polyunsaturated fatty acids m

subset activation. Clin Exp Immunol 125:499. 

Gill, I., and R. Valivety. 1997. Polyunsaturated fatty acids, Part 1: Occurrence, 

biological activities and applications. Trends Biotechnol 15:401. 

Gill, I., and R. Valivety. 1997. Polyunsaturated fatty acids, Part 2: 

Biotransformations and biotechnological applications. Trends Biotechnol 15

13. Kromann, N., and A. Green. 1980. Epidemiological studies in the Upernavik 

district, Greenland. Incidence of some chronic diseases 1950-1974. Acta Med 

Scand 208:401. 

14. McCall, T. B., D. O'Leary, J. Bloomfield, and C. A. O'Morain. 1989. Therap

potential of fish oil in the treatment of ulcerative colitis. Aliment Pharmacol Ther 

3:415. 

Stenson, W

L. Gramlich, and W. Beeken. 1992. Dietary supplementation with fish oil in 

ulcerative colitis. 

16. Hawthorne, A. B., T. K. Daneshmend, C. J. Hawkey, A. Belluzzi, S. J. Everitt, G.

K. Holmes, C. Malkinson, M. Z. Shaheen, and J. E. Willars. 1992. Treatment

ulcerative colitis with fish oil supplementation: a pros

   



 70

17. Salomon, P., A. A. Kornbluth, and H. D. Janowitz. 1990. Treatment of ulcerative 

colitis with fish oil n--3-omega-fatty acid: an open trial. J Clin Gastroenterol 

12:157. 

 

 J 

lapse of 

20. 

21. tsueda, S. Yamato, and N. Umeda. 1996. Epidemiologic analysis 

. 

23. an. 1990. Leukotrienes and other 

18. Aslan, A., and G. Triadafilopoulos. 1992. Fish oil fatty acid supplementation in 

active ulcerative colitis: a double-blind, placebo-controlled, crossover study. Am

Gastroenterol 87:432. 

19. Loeschke, K., B. Ueberschaer, A. Pietsch, E. Gruber, K. Ewe, B. Wiebecke, W. 

Heldwein, and R. Lorenz. 1996. n-3 fatty acids only delay early re

ulcerative colitis in remission. Dig Dis Sci 41:2087. 

Belluzzi, A., C. Brignola, M. Campieri, A. Pera, S. Boschi, and M. Miglioli. 

1996. Effect of an enteric-coated fish-oil preparation on relapses in Crohn's 

disease. N Engl J Med 334:1557. 

Shoda, R., K. Ma

of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty 

acids and animal protein relates to the increased incidence of Crohn disease in 

Japan. Am J Clin Nutr 63:741

22. Belluzzi, A. 2002. N-3 fatty acids for the treatment of inflammatory bowel 

diseases. Proc Nutr Soc 61:391. 

Lewis, R. A., K. F. Austen, and R. J. Soberm

products of the 5-lipoxygenase pathway. Biochemistry and relation to 

pathobiology in human diseases. N Engl J Med 323:645. 

   



 71

24. Tilley, S. L., T. M. Coffman, and B. H. Koller. 2001. Mixed messages: 

modulation of inflammation and immune responses by prostaglandins and 

thromboxanes. J Clin Invest 108:15. 

ne cells: an overview. Nutrition 6:24. 

tty 

nteers. Eur J Clin Nutr 

27.  D. 

-3 polyunsaturated fatty acids inhibit 

28. r 

. 

tation with n-3 polyunsaturated fatty acids on the 

 Engl 

g cyclo-

gy 29:1129. 

30. Lee, T. H., R. L. Hoover, J. D. Williams, R. I. Sperling, J. Ravalese, 3rd, B. W. 

Spur, D. R. Robinson, E. J. Corey, R. A. Lewis, and K. F. Austen. 1985. Effect of 

25. Kinsella, J. E., B. Lokesh, S. Broughton, and J. Whelan. 1990. Dietary 

polyunsaturated fatty acids and eicosanoids: potential effects on the modulation of 

inflammatory and immu

26. Gibney, M. J., and B. Hunter. 1993. The effects of short- and long-term 

supplementation with fish oil on the incorporation of n-3 polyunsaturated fa

acids into cells of the immune system in healthy volu

47:255. 

Sperling, R. I., A. I. Benincaso, C. T. Knoell, J. K. Larkin, K. F. Austen, and

R. Robinson. 1993. Dietary omega

phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 91:651. 

Endres, S., R. Ghorbani, V. E. Kelley, K. Georgilis, G. Lonnemann, J. W. van de

Meer, J. G. Cannon, T. S. Rogers, M. S. Klempner, P. C. Weber, and et al. 1989

The effect of dietary supplemen

synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N

J Med 320:265. 

29. Obata, T., T. Nagakura, T. Masaki, K. Maekawa, and K. Yamashita. 1999. 

Eicosapentaenoic acid inhibits prostaglandin D2 generation by inhibitin

oxygenase-2 in cultured human mast cells. Clin Exp Aller

   



 72

dietary enrichment with eicosapentaenoic and docosahexaenoic acids on

neutrophil and monocyte leukotriene generation and neutrophil function. N

Med 312:1217. 

 in vitro 

 Engl J 

f T-

n of 

 

f 

 by the fatty acids. J Clin Invest 85:424. 

34. . 

35. 

36. 

ture 383:787. 

low-

 

31. Calder, P. C., S. J. Bevan, and E. A. Newsholme. 1992. The inhibition o

lymphocyte proliferation by fatty acids is via an eicosanoid-independent 

mechanism. Immunology 75:108. 

32. Santoli, D., P. D. Phillips, T. L. Colt, and R. B. Zurier. 1990. Suppressio

interleukin 2-dependent human T cell growth in vitro by prostaglandin E (PGE)

and their precursor fatty acids. Evidence for a PGE-independent mechanism o

inhibition

33. Simons, K., and E. Ikonen. 1997. Functional rafts in cell membranes. Nature 

387:569. 

Simons, K., and W. L. Vaz. 2004. Model systems, lipid rafts, and cell membranes

Annu Rev Biophys Biomol Struct 33:269. 

Norcross, M. A. 1984. A synaptic basis for T-lymphocyte activation. Ann 

Immunol (Paris) 135D:113. 

Abbas, A. K., K. M. Murphy, and A. Sher. 1996. Functional diversity of helper T 

lymphocytes. Na

37. Kersh, G. J., E. N. Kersh, D. H. Fremont, and P. M. Allen. 1998. High- and 

potency ligands with similar affinities for the TCR: the importance of kinetics in

TCR signaling. Immunity 9:817. 

38. Rothstein, D. M., and M. H. Sayegh. 2003. T-cell costimulatory pathways in 

allograft rejection and tolerance. Immunol Rev 196:85. 

   



 73

39.  

40. . C. Brandes, C. M. Weyand, and J. J. Goronzy. 1999. Modulation 

41.  J. J. Goronzy. 2001. Functional disruption of 

42. 

ory pathways in regulating autoimmunity. Immunity 20:529. 

ne. 1994. CTLA-4 can function as a 

45. . Urnes, L. Grosmaire, and J. A. Ledbetter. 1993. 

onsiveness to CD28 signaling. J Immunol 

46. 

to stimulation. J Exp Med 182:459. 

Lenschow, D. J., T. L. Walunas, and J. A. Bluestone. 1996. CD28/B7 system of T

cell costimulation. Annu Rev Immunol 14:233. 

Vallejo, A. N., J

of CD28 expression: distinct regulatory pathways during activation and 

replicative senescence. J Immunol 162:6572. 

Vallejo, A. N., C. M. Weyand, and

the CD28 gene transcriptional initiator in senescent T cells. J Biol Chem 

276:2565. 

Chambers, C. A., and J. P. Allison. 1999. Costimulatory regulation of T cell 

function. Curr Opin Cell Biol 11:203. 

43. Khoury, S. J., and M. H. Sayegh. 2004. The roles of the new negative T cell 

costimulat

44. Walunas, T. L., D. J. Lenschow, C. Y. Bakker, P. S. Linsley, G. J. Freeman, J. M. 

Green, C. B. Thompson, and J. A. Bluesto

negative regulator of T cell activation. Immunity 1:405. 

Linsley, P. S., J. Bradshaw, M

CD28 engagement by B7/BB-1 induces transient down-regulation of CD28 

synthesis and prolonged unresp

150:3161. 

Krummel, M. F., and J. P. Allison. 1995. CD28 and CTLA-4 have opposing 

effects on the response of T cells 

   



 74

47. Bromley, S. K., W. R. Burack, K. G. Johnson, K. Somersalo, T. N. Sims, C. 

Sumen, M. M. Davis, A. S. Shaw, P. M. Allen, and M. L. Dustin. 2001. The 

48. fic. Ann 

50. ., H. Kupfer, I. Tamir, A. Barlow, and A. Kupfer. 1997. Selective 

51. r, N. Sciaky, and A. Kupfer. 1998. Three-

re 

 

54. s 

le in membrane microdomain targeting and tyrosine phosphorylation 

55. donk, and 

A. Altman. 2001. Antigen-induced translocation of PKC-theta to membrane rafts 

is required for T cell activation. Nat Immunol 2:556. 

immunological synapse. Annu Rev Immunol 19:375. 

Fullekrug, J., and K. Simons. 2004. Lipid rafts and apical membrane traf

N Y Acad Sci 1014:164. 

49. Pizzo, P., and A. Viola. 2004. Lipid rafts in lymphocyte activation. Microbes 

Infect 6:686. 

Monks, C. R

modulation of protein kinase C-theta during T-cell activation. Nature 385:83. 

Monks, C. R., B. A. Freiberg, H. Kupfe

dimensional segregation of supramolecular activation clusters in T cells. Natu

395:82. 

52. Delon, J., K. Kaibuchi, and R. N. Germain. 2001. Exclusion of CD43 from the 

immunological synapse is mediated by phosphorylation-regulated relocation of

the cytoskeletal adaptor moesin. Immunity 15:691. 

53. Xavier, R., T. Brennan, Q. Li, C. McCormack, and B. Seed. 1998. Membrane 

compartmentation is required for efficient T cell activation. Immunity 8:723. 

Zhang, W., R. P. Trible, and L. E. Samelson. 1998. LAT palmitoylation: it

essential ro

during T cell activation. Immunity 9:239. 

Bi, K., Y. Tanaka, N. Coudronniere, K. Sugie, S. Hong, M. J. van Stip

   



 75

56. Fan, Y. Y., D. N. McMurray, L. H. Ly, and R. S. Chapkin. 2003. Dietary (n-3

polyunsaturated fatty acids remodel mouse T-cell lipid rafts. J Nutr 133:1913

Switzer, K. C., McMurray, D. N., and Chapkin, R.S. 2

) 

. 

57. 004. Effects of Dietary n-3 

ids Submitted for publication. 

4. 

lyunsaturated fatty acids promote activation-induced cell death in 

59.  

60. ., A. Nazarian, H. Erdjument-Bromage, W. Bornmann, P. Tempst, and 

 

 

62. urray, D. N., and Chapkin, R. S. 2004. 

Polyunsaturated Fatty Acids on T-cell Membrane Composition and Function: A 

Unifying Hypothesis. Lip

58. Switzer, K. C., Y. Y. Fan, N. Wang, D. N. McMurray, and R. S. Chapkin. 200

Dietary n-3 po

Th1-polarized murine CD4+ T cells. J Lipid Res 45:1482. 

Webb, Y., L. Hermida-Matsumoto, and M. D. Resh. 2000. Inhibition of protein

palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and 

polyunsaturated fatty acids. J Biol Chem 275:261. 

Liang, X

M. D. Resh. 2001. Heterogeneous fatty acylation of Src family kinases with 

polyunsaturated fatty acids regulates raft localization and signal transduction. J 

Biol Chem 276:30987. 

61. Stulnig, T. M., J. Huber, N. Leitinger, E. M. Imre, P. Angelisova, P. Nowotny,

and W. Waldhausl. 2001. Polyunsaturated eicosapentaenoic acid displaces 

proteins from membrane rafts by altering raft lipid composition. J Biol Chem

276:37335. 

Fan, Y. Y., Ly, L. H., Barhoumi, R., McM

Dietary docosahexaenoic acid suppresses T-cell protein kinase C-theta lipid raft 

recruitment and interleukin-2 production. J Immunol Submitted for publication. 

   



 76

63. Stulnig, T. M., M. Berger, T. Sigmund, D. Raederstorff, H. Stockinger, and W. 

Waldhausl. 1998. Polyunsaturated fatty acids inhibit T cell signal transduction by 

64. 

 Immunol 19:683. 

66. 00. IL-10 directly acts 

67. nterleukin-10-mediated 

68. 

9. 

70. 

 phospholipase C-gamma in lymphocytes. Biochim Biophys Acta 

71. 

modification of detergent-insoluble membrane domains. J Cell Biol 143:637. 

Moore, K. W., R. de Waal Malefyt, R. L. Coffman, and A. O'Garra. 2001. 

Interleukin-10 and the interleukin-10 receptor. Annu Rev

65. Mocellin, S., M. C. Panelli, E. Wang, D. Nagorsen, and F. M. Marincola. 2003. 

The dual role of IL-10. Trends Immunol 24:36. 

Joss, A., M. Akdis, A. Faith, K. Blaser, and C. A. Akdis. 20

on T cells by specifically altering the CD28 co-stimulation pathway. Eur J 

Immunol 30:1683. 

Akdis, C. A., and K. Blaser. 2001. Mechanisms of i

immune suppression. Immunology 103:131. 

Yaqoob, P., and P. Calder. 1995. Effects of dietary lipid manipulation upon 

inflammatory mediator production by murine macrophages. Cell Immunol 

163:120. 

69. Sanderson, P., and P. C. Calder. 1998. Dietary fish oil diminishes lymphocyte 

adhesion to macrophage and endothelial cell monolayers. Immunology 94:7

Sanderson, P., and P. C. Calder. 1998. Dietary fish oil appears to prevent the 

activation of

1392:300. 

Xi, S., D. Cohen, and L. H. Chen. 1998. Effects of fish oil on cytokines and 

immune functions of mice with murine AIDS. J Lipid Res 39:1677. 

   



 77

72. Chen, F., V. Castranova, X. Shi, and L. M. Demers. 1999. New insights into the

role of nuclear factor-kappaB, a ubiquitous transcription factor in the initiation of 

diseases. Clin Chem 45:7. 

 

he 

rine 

74. . Wilker, and K. Schwemmle. 

75.  Misfeldt, and K. L. Fritsche. 1992. Dietary fat influences Ia 

d 

. J 

 Cytokine Res 19:41. 

n 

78.  on 

tastasis, fatty acid profile and prostaglandin production of two murine 

79. ra, M. A. De 

Pablo, and G. Alvarez De Cienfuegos. 2004. Changes in the immune functions 

73. Wallace, F. A., E. A. Miles, and P. C. Calder. 2000. Activation state alters t

effect of dietary fatty acids on pro-inflammatory mediator production by mu

macrophages. Cytokine 12:1374. 

Grimm, H., A. Tibell, B. Norrlind, C. Blecher, S

1994. Immunoregulation by parenteral lipids: impact of the n-3 to n-6 fatty acid 

ratio. JPEN J Parenter Enteral Nutr 18:417. 

Huang, S. C., M. L.

antigen expression and immune cell populations in the murine peritoneum an

spleen. J Nutr 122:1219. 

76. Feng, C., D. H. Keisler, and K. L. Fritsche. 1999. Dietary omega-3 

polyunsaturated fatty acids reduce IFN-gamma receptor expression in mice

Interferon

77. Fujikawa, M., N. Yamashita, K. Yamazaki, E. Sugiyama, H. Suzuki, and T. 

Hamazaki. 1992. Eicosapentaenoic acid inhibits antigen-presenting cell functio

of murine splenocytes. Immunology 75:330. 

Fritsche, K. L., and P. V. Johnston. 1990. Effect of dietary alpha-linolenic acid

growth, me

mammary adenocarcinomas. J Nutr 120:1601. 

Puertollano, M. A., E. Puertollano, A. Ruiz-Bravo, M. Jimenez-Vale

   



 78

and susceptibility to Listeria monocytogenes infection in mice fed dietary lipids. 

Immunol Cell Biol 82:370. 

Peterson, L. D., F. Thies, P80. . Sanderson, E. A. Newsholme, and P. C. Calder. 1998. 

f 

81. 997. N-3 polyunsaturated fatty acids modulate 

82. 1993. Fatty acid modulation of 

83. 

eotides differentially regulate the synthesis of tumour 

cells. 

84. . R. Powell, P. Yaqoob, E. A. Newsholme, and P. 

t 

5 y. Am J Clin Nutr 73:539. 

es. Clin Immunol Immunopathol 

Low levels of eicosapentaenoic and docosahexaenoic acids mimic the effects o

fish oil upon rat lymphocytes. Life Sci 62:2209. 

Hughes, D. A., and A. C. Pinder. 1

the expression of functionally associated molecules on human monocytes and 

inhibit antigen-presentation in vitro. Clin Exp Immunol 110:516. 

Baldie, G., D. Kaimakamis, and D. Rotondo. 

cytokine release from human monocytic cells. Biochim Biophys Acta 1179:125. 

Endres, S., H. J. Fulle, B. Sinha, D. Stoll, C. A. Dinarello, R. Gerzer, and P. C. 

Weber. 1991. Cyclic nucl

necrosis factor-alpha and interleukin-1 beta by human mononuclear 

Immunology 72:56. 

Thies, F., G. Nebe-von-Caron, J

C. Calder. 2001. Dietary supplementation with eicosapentaenoic acid, but no

with other long-chain n-3 or n-6 polyunsaturated fatty acids, decreases natural 

killer cell activity in healthy subjects aged >5

85. Spika, S., I. Dey, C. Buda, J. Csongor, G. Szegedi, and T. Farkas. 1996. The 

mechanism of inhibitory effect of eicosapentaenoic acid on phagocytic activity 

and chemotaxis of human neutrophil granulocyt

79:224. 

   



 79

86. 

, a major constituent of fetal serum and fish oil diets, 

87. ture and function of the immune 

88. l, 

narakis, J. 

, 

 

. Cutts, 

. Davies, K. D. Delehaunty, J. Deri, E. T. Dermitzakis, C. 

l, 

T. 

 M. Jones, T. A. Jones, A. Joy, M. Kamal, E. K. Karlsson, et al. 2002. 

Khair-el-Din, T. A., S. C. Sicher, M. A. Vazquez, W. J. Wright, and C. Y. Lu. 

1995. Docosahexaenoic acid

inhibits IFN gamma-induced Ia-expression by murine macrophages in vitro. J 

Immunol 154:1296. 

Haley, P. J. 2003. Species differences in the struc

system. Toxicology 188:49. 

Waterston, R. H., K. Lindblad-Toh, E. Birney, J. Rogers, J. F. Abril, P. Agarwa

R. Agarwala, R. Ainscough, M. Alexandersson, P. An, S. E. Anto

Attwood, R. Baertsch, J. Bailey, K. Barlow, S. Beck, E. Berry, B. Birren, T. 

Bloom, P. Bork, M. Botcherby, N. Bray, M. R. Brent, D. G. Brown, S. D. Brown

C. Bult, J. Burton, J. Butler, R. D. Campbell, P. Carninci, S. Cawley, F. 

Chiaromonte, A. T. Chinwalla, D. M. Church, M. Clamp, C. Clee, F. S. Collins,

L. L. Cook, R. R. Copley, A. Coulson, O. Couronne, J. Cuff, V. Curwen, T

M. Daly, R. David, J

Dewey, N. J. Dickens, M. Diekhans, S. Dodge, I. Dubchak, D. M. Dunn, S. R. 

Eddy, L. Elnitski, R. D. Emes, P. Eswara, E. Eyras, A. Felsenfeld, G. A. Fewel

P. Flicek, K. Foley, W. N. Frankel, L. A. Fulton, R. S. Fulton, T. S. Furey, D. 

Gage, R. A. Gibbs, G. Glusman, S. Gnerre, N. Goldman, L. Goodstadt, D. 

Grafham, T. A. Graves, E. D. Green, S. Gregory, R. Guigo, M. Guyer, R. C. 

Hardison, D. Haussler, Y. Hayashizaki, L. W. Hillier, A. Hinrichs, W. Hlavina, 

Holzer, F. Hsu, A. Hua, T. Hubbard, A. Hunt, I. Jackson, D. B. Jaffe, L. S. 

Johnson,

   



 80

Initial sequencing and comparative analysis of the mouse genome. Nature 

420:520. 

Alegre, M. L., K. A. Frauwirth, and C. B. Thompson. 2001. T-cell regulation b

CD28 and CTLA-4. 

89. y 

Nat Rev Immunol 1:220. 

or-CD3 complex. Mol Immunol 40:1295. 

92. g 

93. 

94.  

95.  B. 

ity. 

96. 

97. 

mouse and human immunology. J Immunol 172:2731. 

90. Call, M. E., and K. W. Wucherpfennig. 2004. Molecular mechanisms for the 

assembly of the T cell recept

91. Thomas, S., A. Preda-Pais, S. Casares, and T. D. Brumeanu. 2004. Analysis of 

lipid rafts in T cells. Mol Immunol 41:399. 

Krogsgaard, M., J. B. Huppa, M. A. Purbhoo, and M. M. Davis. 2003. Linkin

molecular and cellular events in T-cell activation and synapse formation. Semin 

Immunol 15:307. 

Sommers, C. L., L. E. Samelson, and P. E. Love. 2004. LAT: a T lymphocyte 

adapter protein that couples the antigen receptor to downstream signaling 

pathways. Bioessays 26:61. 

Schmitz, M. L., S. Bacher, and O. Dienz. 2003. NF-kappaB activation pathways

induced by T cell costimulation. Faseb J 17:2187. 

Stetson, D. B., D. Voehringer, J. L. Grogan, M. Xu, R. L. Reinhardt, S. Scheu,

L. Kelly, and R. M. Locksley. 2004. Th2 cells: orchestrating barrier immun

Adv Immunol 83:163. 

O'Garra, A., and D. Robinson. 2004. Development and function of T helper 1 

cells. Adv Immunol 83:133. 

Mestas, J., and C. C. Hughes. 2004. Of mice and not men: differences between 

   



 81

98. Shen. 

ing edge: CD4 and CD8 T cells are intrinsically different in their 

99. J. Geginat. 2003. T cell fitness 

100. . (n-3) 

 . 

 

ultiple T-cell-derived lymphokines/cytokines. Proc Natl Acad 

102. 

he B cell activation antigen B7 to CD28 costimulates 

103.  and C. B. Thompson. 1989. 

104. el, B. J. Eisfelder, E. Chuang, M. R. Clark, S. L. Reiner, 

of 

mmunol 157:4762. 

Foulds, K. E., L. A. Zenewicz, D. J. Shedlock, J. Jiang, A. E. Troy, and H. 

2002. Cutt

proliferative responses. J Immunol 168:1528. 

Gett, A. V., F. Sallusto, A. Lanzavecchia, and 

determined by signal strength. Nat Immunol 4:355. 

Switzer, K. C., D. N. McMurray, J. S. Morris, and R. S. Chapkin. 2003

Polyunsaturated fatty acids promote activation-induced cell death in murine T 

lymphocytes. J Nutr 133:496. 

101. Thompson, C. B., T. Lindsten, J. A. Ledbetter, S. L. Kunkel, H. A. Young, S. G

Emerson, J. M. Leiden, and C. H. June. 1989. CD28 activation pathway regulates

the production of m

Sci U S A 86:1333. 

Linsley, P. S., W. Brady, L. Grosmaire, A. Aruffo, N. K. Damle, and J. A. 

Ledbetter. 1991. Binding of t

T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med 173:721. 

Lindstein, T., C. H. June, J. A. Ledbetter, G. Stella,

Regulation of lymphokine messenger RNA stability by a surface-mediated T cell 

activation pathway. Science 244:339. 

Alegre, M. L., P. J. No

and C. B. Thompson. 1996. Regulation of surface and intracellular expression 

CTLA4 on mouse T cells. J I

   



 82

105. Carreno, B. M., and M. Collins. 2002. The B7 family of ligands and its receptors: 

new pathways for costimulation and inhibition of immune responses. Annu R

Immunol 20:29. 

 

ev 

 

 events of T cell proliferation. 

107.  

l responses by inhibition. Cold Spring Harb Symp 

108. 

109. no, E. Rouvier, M. G. Mattei, M. F. Luciani, and P. Golstein. 

d in 

. 

-receptor in B7-deficient mice. Science 

111. 

endent clonal expansion of a 

trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 

costimulation and inhibited by CTLA-4. J Immunol 155:1032. 

106. Brunner, M. C., C. A. Chambers, F. K. Chan, J. Hanke, A. Winoto, and J. P. 

Allison. 1999. CTLA-4-Mediated inhibition of early

J Immunol 162:5813. 

Chambers, C. A., and J. P. Allison. 1999. CTLA-4--the costimulatory molecule

that doesn't: regulation of T-cel

Quant Biol 64:303. 

June, C. H., J. A. Bluestone, L. M. Nadler, and C. B. Thompson. 1994. The B7 

and CD28 receptor families. Immunol Today 15:321. 

Harper, K., C. Balza

1991. CTLA-4 and CD28 activated lymphocyte molecules are closely relate

both mouse and human as to sequence, message expression, gene structure, and 

chromosomal location. J Immunol 147:1037. 

110. Freeman, G. J., F. Borriello, R. J. Hodes, H. Reiser, K. S. Hathcock, G. Laszlo, A

J. McKnight, J. Kim, L. Du, D. B. Lombard, and et al. 1993. Uncovering of 

functional alternative CTLA-4 counter

262:907. 

Kearney, E. R., T. L. Walunas, R. W. Karr, P. A. Morton, D. Y. Loh, J. A. 

Bluestone, and M. K. Jenkins. 1995. Antigen-dep

   



 83

112. Krummel, M. F., T. J. Sullivan, and J. P. Allison. 1996. Superantigen responses 

and co-stimulation: CD28 and CTLA-4 have opposing effects on T cell expansio

in vitro and in viv

n 

o. Int Immunol 8:519. 

 A. 

ction, revealing a critical negative regulatory role of 

114. 

, H. Griesser, and T. W. Mak. 1995. Lymphoproliferative 

115.  D. Miller, and J. A. 

116. 

mulation in the immunological 

117. nd J. 

s 

d rafts and relocates to the immunological synapse under conditions of 

118. yte 

113. Tivol, E. A., F. Borriello, A. N. Schweitzer, W. P. Lynch, J. A. Bluestone, and

H. Sharpe. 1995. Loss of CTLA-4 leads to massive lymphoproliferation and fatal 

multiorgan tissue destru

CTLA-4. Immunity 3:541. 

Waterhouse, P., J. M. Penninger, E. Timms, A. Wakeham, A. Shahinian, K. P. 

Lee, C. B. Thompson

disorders with early lethality in mice deficient in Ctla-4. Science 270:985. 

Karandikar, N. J., C. L. Vanderlugt, T. L. Walunas, S.

Bluestone. 1996. CTLA-4: a negative regulator of autoimmune disease. J Exp 

Med 184:783. 

Burack, W. R., K. H. Lee, A. D. Holdorf, M. L. Dustin, and A. S. Shaw. 2002. 

Cutting edge: quantitative imaging of raft accu

synapse. J Immunol 169:2837. 

Darlington, P. J., M. L. Baroja, T. A. Chau, E. Siu, V. Ling, B. M. Carreno, a

Madrenas. 2002. Surface cytotoxic T lymphocyte-associated antigen 4 partition

within lipi

inhibition of T cell activation. J Exp Med 195:1337. 

Viola, A., S. Schroeder, Y. Sakakibara, and A. Lanzavecchia. 1999. T lymphoc

costimulation mediated by reorganization of membrane microdomains. Science 

283:680. 

   



 84

119. Salazar-Fontana, L. I., E. Sanz, I. Merida, A. Zea, A. Sanchez-Atrio, L. Villa, A.

C. Martinez, A. de la Hera, and M. Alvarez-Mon. 2001. Cell surface CD28 levels 

define four CD4+ T cell subsets: abnorm

 

al expression in rheumatoid arthritis. 

120. 

iated 

. 

 

 A. 

pon serum and tissue lipid composition in the rat. Int J Biochem 

123. nd 

on of T lymphocytes with integrin ligands 

124. 

ray, and et al. 1993. 

Clin Immunol 99:253. 

Davidson, L. A., J. R. Lupton, E. Miskovsky, A. P. Fields, and R. S. Chapkin. 

2003. Quantification of human intestinal gene expression profiles using exfol

colonocytes: a pilot study. Biomarkers 8:51

121. Yaqoob, P., E. A. Newsholme, and P. C. Calder. 1995. Influence of cell culture

conditions on diet-induced changes in lymphocyte fatty acid composition. 

Biochim Biophys Acta 1255:333. 

122. Yaqoob, P., E. J. Sherrington, N. M. Jeffery, P. Sanderson, D. J. Harvey, E.

Newsholme, and P. C. Calder. 1995. Comparison of the effects of a range of 

dietary lipids u

Cell Biol 27:297. 

Damle, N. K., K. Klussman, G. Leytze, S. Myrdal, A. Aruffo, J. A. Ledbetter, a

P. S. Linsley. 1994. Costimulati

intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 induces 

functional expression of CTLA-4, a second receptor for B7. J Immunol 152:2686. 

Lindsten, T., K. P. Lee, E. S. Harris, B. Petryniak, N. Craighead, P. J. Reynolds, 

D. B. Lombard, G. J. Freeman, L. M. Nadler, G. S. G

Characterization of CTLA-4 structure and expression on human T cells. J 

Immunol 151:3489. 

   



 85

125. Oosterwegel, M. A., R. J. Greenwald, D. A. Mandelbrot, R. B. Lorsbach, and A. 

H. Sharpe. 1999. CTLA-4 and T cell activation. Curr Opin Immunol 11:294. 

Greenwald, R. J., M. A. Oosterwegel, D. van der Woude, A. Kubal, D. A. 

Mandelbrot, V. A. Bou

126. 

ssiotis, and A. H. Sharpe. 2002. CTLA-4 regulates cell 

127. 

129. e, T. M. Kundig, K. Kishihara, A. Wakeham, 

130. 

. 

132. 

133. 

eir 

unction. J Exp Med 194:1675. 

cycle progression during a primary immune response. Eur J Immunol 32:366. 

Dustin, M. L., and A. S. Shaw. 1999. Costimulation: building an immunological 

synapse. Science 283:649. 

128. Bluestone, J. A. 1995. New perspectives of CD28-B7-mediated T cell 

costimulation. Immunity 2:555. 

Shahinian, A., K. Pfeffer, K. P. Le

K. Kawai, P. S. Ohashi, C. B. Thompson, and T. W. Mak. 1993. Differential T 

cell costimulatory requirements in CD28-deficient mice. Science 261:609. 

Simons, K., and D. Toomre. 2000. Lipid rafts and signal transduction. Nat Rev 

Mol Cell Biol 1:31

131. Magee, T., N. Pirinen, J. Adler, S. N. Pagakis, and I. Parmryd. 2002. Lipid rafts: 

cell surface platforms for T cell signaling. Biol Res 35:127. 

Dykstra, M., A. Cherukuri, H. W. Sohn, S. J. Tzeng, and S. K. Pierce. 2003. 

Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 

21:457. 

Martin, M., H. Schneider, A. Azouz, and C. E. Rudd. 2001. Cytotoxic T 

lymphocyte antigen 4 and CD28 modulate cell surface raft expression in th

regulation of T cell f

   



 86

134. Rudd, C. E., and H. Schneider. 2003. Unifying concepts in CD28, ICOS and 

CTLA4 co-receptor signalling. Nat Rev Immunol 3:544. 

135. Kew, S., M. D. Mesa, S. Tricon, R. Buckley, A. M. Minihane, and P. Yaqo

2004. Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on 

immune cell composition and function in healthy humans. Am J Clin Nutr 79:6

ob. 

74. 

 F. Prigent. 2002. The mechanism of docosahexaenoic 

es 

id rafts. J Biol Chem 277:39368. 

138. ction 

139. rummel, and J. P. Allison. 1996. Enhancement of antitumor 

140. ovett-Racke, and M. 

ation. Int Immunol 11:1881. 

ression 

136. Diaz, O., A. Berquand, M. Dubois, S. Di Agostino, C. Sette, S. Bourgoin, M. 

Lagarde, G. Nemoz, and A.

acid-induced phospholipase D activation in human lymphocytes involv

exclusion of the enzyme from lip

137. Chikuma, S., and J. A. Bluestone. 2002. CTLA-4: Acting at the synapse. Mol 

Intervent 2:205. 

Walunas, T. L., and J. A. Bluestone. 1998. CTLA-4 regulates tolerance indu

and T cell differentiation in vivo. J Immunol 160:3855. 

Leach, D. R., M. F. K

immunity by CTLA-4 blockade. Science 271:1734. 

Ratts, R. B., L. R. Arredondo, P. Bittner, P. J. Perrin, A. E. L

K. Racke. 1999. The role of CTLA-4 in tolerance induction and T cell 

differentiation in experimental autoimmune encephalomyelitis: i.p. antigen 

administr

141. Alegre, M. L., H. Shiels, C. B. Thompson, and T. F. Gajewski. 1998. Exp

and function of CTLA-4 in Th1 and Th2 cells. J Immunol 161:3347. 

   



 87

142. Chapkin, R. S., C. C. Akoh, and C. C. Miller. 1991. Influence of dietary n-3 fa

acids on macrophage glycerophospholipid molecular spec

tty 

ies and 

143. 

144. 

 macrophage function by dietary enrichment with 

tolerance 

lling 

ansplantation tolerance. Immunol Rev 

148. s than 

answers. Nat Rev Immunol 2:389. 

peptidoleukotriene synthesis. J Lipid Res 32:1205. 

Chapkin, R. S., and S. L. Carmichael. 1990. Effects of dietary n-3 and n-6 

polyunsaturated fatty acids on macrophage phospholipid classes and subclasses. 

Lipids 25:827. 

Lokesh, B. R., H. L. Hsieh, and J. E. Kinsella. 1986. Peritoneal macrophages from 

mice fed dietary (n-3) polyunsaturated fatty acids secrete low levels of 

prostaglandins. J Nutr 116:2547. 

145. Somers, S. D., R. S. Chapkin, and K. L. Erickson. 1989. Alteration of in vitro 

murine peritoneal

eicosapentaenoic and docosahexaenoic acids in menhaden fish oil. Cell Immunol 

123:201. 

146. Calder, P. C. 1997. n-3 polyunsaturated fatty acids and cytokine production in 

health and disease. Ann Nutr Metab 41:203. 

147. Sakaguchi, S., N. Sakaguchi, J. Shimizu, S. Yamazaki, T. Sakihama, M. Itoh, Y. 

Kuniyasu, T. Nomura, M. Toda, and T. Takahashi. 2001. Immunologic 

maintained by CD25+ CD4+ regulatory T cells: their common role in contro

autoimmunity, tumor immunity, and tr

182:18. 

Shevach, E. M. 2002. CD4+ CD25+ suppressor T cells: more question

   



 88

149. Chatenoud, L., B. Salomon, and J. A. Bluestone. 2001. Suppressor T cells--they're

back and critical for regulation of autoimmunity! Immunol Rev 18

Tang, Q., K. J. Henriksen, E. K. Boden, A. J. Toole

 

2:149. 

150. y, J. Ye, S. K. Subudhi, X. X. 

s 

151. ., M. W. Bond, and T. R. Mosmann. 1989. Two types of mouse T 

152. . Mosmann, M. Howard, and A. O'Garra. 1991. 

153. 

rleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an 

154. . G. Giudizi, R. Biagiotti, and S. 

 

155. . 

G. Rikken, T. van der Poll, J. W. ten Cate, and S. J. van Deventer. 1997. 

an 

combinant human IL-10 administration. J 

Immunol 158:3971. 

Zheng, T. B. Strom, and J. A. Bluestone. 2003. Cutting edge: CD28 control

peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348. 

Fiorentino, D. F

helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by 

Th1 clones. J Exp Med 170:2081. 

Fiorentino, D. F., A. Zlotnik, T. R

IL-10 inhibits cytokine production by activated macrophages. J Immunol 

147:3815. 

de Waal Malefyt, R., J. Abrams, B. Bennett, C. G. Figdor, and J. E. de Vries. 

1991. Inte

autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209. 

Del Prete, G., M. De Carli, F. Almerigogna, M

Romagnani. 1993. Human IL-10 is produced by both type 1 helper (Th1) and type

2 helper (Th2) T cell clones and inhibits their antigen-specific proliferation and 

cytokine production. J Immunol 150:353. 

Pajkrt, D., L. Camoglio, M. C. Tiel-van Buul, K. de Bruin, D. L. Cutler, M. B

Affrime, 

Attenuation of proinflammatory response by recombinant human IL-10 in hum

endotoxemia: effect of timing of re

   



 89

156. Avdiushko, R., D. Hongo, H. Lake-Bullock, A. Kaplan, and D. Cohen. 2001. IL-

10 receptor dysfunction in macrophages during chronic inflammation. J Leukoc 

157. 92. 

158. 

t Immunopharmacol 3:1247. 

mma. J 

1:5034. 

 W. 

 Med 

161. 

Biol 70:624. 

Harding, F. A., J. G. McArthur, J. A. Gross, D. H. Raulet, and J. P. Allison. 19

CD28-mediated signalling co-stimulates murine T cells and prevents induction of 

anergy in T-cell clones. Nature 356:607. 

Muhl, H., and J. Pfeilschifter. 2003. Anti-inflammatory properties of pro-

inflammatory interferon-gamma. In

159. Herrero, C., X. Hu, W. P. Li, S. Samuels, M. N. Sharif, S. Kotenko, and L. B. 

Ivashkiv. 2003. Reprogramming of IL-10 activity and signaling by IFN-ga

Immunol 17

160. Go, N. F., B. E. Castle, R. Barrett, R. Kastelein, W. Dang, T. R. Mosmann, K.

Moore, and M. Howard. 1990. Interleukin 10, a novel B cell stimulatory factor: 

unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp

172:1625. 

MacNeil, I. A., T. Suda, K. W. Moore, T. R. Mosmann, and A. Zlotnik. 1990. IL-

10, a novel growth cofactor for mature and immature T cells. J Immunol 

145:4167. 

162. Rousset, F., E. Garcia, T. Defrance, C. Peronne, N. Vezzio, D. H. Hsu, R. 

Kastelein, K. W. Moore, and J. Banchereau. 1992. Interleukin 10 is a potent 

growth and differentiation factor for activated human B lymphocytes. Proc Natl 

Acad Sci U S A 89:1890. 

   



 90

163. Chen, W. F., and A. Zlotnik. 1991. IL-10: a novel cytotoxic T cell differentiation 

factor. J Immunol 147:528. 

Kuhn, R., J. L164. ohler, D. Rennick, K. Rajewsky, and W. Muller. 1993. Interleukin-

165. 

-10 is a central regulator of the 

n 

nd 

ory responses. J Exp Med 182:99. 

 with HLA mismatched hematopoietic stem cells. J Exp Med 

168. 1993. A 

 interleukin 10 is related to interferon receptors. Proc Natl Acad Sci U 

169. 

10-deficient mice develop chronic enterocolitis. Cell 75:263. 

Berg, D. J., R. Kuhn, K. Rajewsky, W. Muller, S. Menon, N. Davidson, G. 

Grunig, and D. Rennick. 1995. Interleukin

response to LPS in murine models of endotoxic shock and the Shwartzma

reaction but not endotoxin tolerance. J Clin Invest 96:2339. 

166. Berg, D. J., M. W. Leach, R. Kuhn, K. Rajewsky, W. Muller, N. J. Davidson, a

D. Rennick. 1995. Interleukin 10 but not interleukin 4 is a natural suppressant of 

cutaneous inflammat

167. Bacchetta, R., M. Bigler, J. L. Touraine, R. Parkman, P. A. Tovo, J. Abrams, R. 

de Waal Malefyt, J. E. de Vries, and M. G. Roncarolo. 1994. High levels of 

interleukin 10 production in vivo are associated with tolerance in SCID patients 

transplanted

179:493. 

Ho, A. S., Y. Liu, T. A. Khan, D. H. Hsu, J. F. Bazan, and K. W. Moore. 

receptor for

S A 90:11267. 

Liu, Y., S. H. Wei, A. S. Ho, R. de Waal Malefyt, and K. W. Moore. 1994. 

Expression cloning and characterization of a human IL-10 receptor. J Immunol 

152:1821. 

   



 91

170. Kotenko, S. V., C. D. Krause, L. S. Izotova, B. P. Pollack, W. Wu, and S. Pestka. 

1997. Identification and functional characterization of a second chain of the 

171. er, A. M. Ryan, B. 

 

172. . S. 

tical role in IL-10-

173. 

erm survival of 

174. aus, 

 

175.  1996. Interferon-gamma: biology and role in pathogenesis. Adv 

176. 

RNA expression by a murine macrophage cell line, J774. 

177. 

enhances LPS-induced TNF production by augmenting both 

transcription and MRNA stability. Cytokine 7:427. 

interleukin-10 receptor complex. Embo J 16:5894. 

Spencer, S. D., F. Di Marco, J. Hooley, S. Pitts-Meek, M. Bau

Sordat, V. C. Gibbs, and M. Aguet. 1998. The orphan receptor CRF2-4 is an

essential subunit of the interleukin 10 receptor. J Exp Med 187:571. 

Ding, Y., L. Qin, D. Zamarin, S. V. Kotenko, S. Pestka, K. W. Moore, and J

Bromberg. 2001. Differential IL-10R1 expression plays a cri

mediated immune regulation. J Immunol 167:6884. 

Lenschow, D. J., Y. Zeng, J. R. Thistlethwaite, A. Montag, W. Brady, M. G. 

Gibson, P. S. Linsley, and J. A. Bluestone. 1992. Long-t

xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 257:789. 

Lee, K. M., E. Chuang, M. Griffin, R. Khattri, D. K. Hong, W. Zhang, D. Str

L. E. Samelson, C. B. Thompson, and J. A. Bluestone. 1998. Molecular basis of T

cell inactivation by CTLA-4. Science 282:2263. 

Billiau, A.

Immunol 62:61. 

Yoshida, A., Y. Koide, M. Uchijima, and T. O. Yoshida. 1994. IFN-gamma 

induces IL-12 m

Biochem Biophys Res Commun 198:857. 

Hayes, M. P., S. L. Freeman, and R. P. Donnelly. 1995. IFN-gamma priming of 

monocytes 

   



 92

178. Xie, Q. W., and C. Nathan. 1993. Promoter of the mouse gene encoding calcium-

independent nitric oxide synthase confers inducibility by interferon-gamma a

bacterial lipopolysaccharide. Trans Assoc Am Physi

nd 

cians 106:1. 

iophys Res 

180.  

eukin-4 on synovial fluid 

181. 1. IFN-

182. bbiani, and S. L. Friedman. 

mma. 

6. 

alori, 

nic 

 Diabetes 47:32. 

185. mor T 

9. 

179. Tamura, T., S. Ueda, M. Yoshida, M. Matsuzaki, H. Mohri, and T. Okubo. 1996. 

Interferon-gamma induces Ice gene expression and enhances cellular 

susceptibility to apoptosis in the U937 leukemia cell line. Biochem B

Commun 229:21. 

Hart, P. H., M. J. Ahern, M. D. Smith, and J. J. Finlay-Jones. 1995. Comparison

of the suppressive effects of interleukin-10 and interl

macrophages and blood monocytes from patients with inflammatory arthritis. 

Immunology 84:536. 

Wahl, S. M., J. B. Allen, K. Ohura, D. E. Chenoweth, and A. R. Hand. 199

gamma inhibits inflammatory cell recruitment and the evolution of bacterial cell 

wall-induced arthritis. J Immunol 146:95. 

Rockey, D. C., J. J. Maher, W. R. Jarnagin, G. Ga

1992. Inhibition of rat hepatic lipocyte activation in culture by interferon-ga

Hepatology 16:77

183. Nicoletti, F., P. Zaccone, R. Di Marco, G. Magro, S. Grasso, F. Stivala, G. C

L. Mughini, P. L. Meroni, and G. Garotta. 1998. Paradoxical antidiabetoge

effect of gamma-interferon in DP-BB rats.

184. Link, H. 1998. The cytokine storm in multiple sclerosis. Mult Scler 4:12. 

Rohrer, J. W., and J. H. Coggin, Jr. 1995. CD8 T cell clones inhibit antitu

cell function by secreting IL-10. J Immunol 155:571

   



 93

186. Cavaillon, J. M. 2001. Pro- versus anti-inflammatory cytokines: myth or reality. 

Cell Mol Biol (Noisy-le-grand) 47:695. 

Llorente, L., Y. Richaud-Patin, C. Garcia-Padilla, E. Claret, J. Jak187. ez-Ocampo, M. 

ects of anti-

hritis Rheum 43:1790. 

. 

189. dorak, O. H. Nielsen, G. Wild, C. N. Williams, S. Nikolaus, 

 10 in chronic active Crohn's disease. 

190. 

lammatory effects of IL-10 during human endotoxemia. J 

191. 

uring human 

. A. Dinarello. 1995. A 

H. Cardiel, J. Alcocer-Varela, L. Grangeot-Keros, D. Alarcon-Segovia, J. 

Wijdenes, P. Galanaud, and D. Emilie. 2000. Clinical and biologic eff

interleukin-10 monoclonal antibody administration in systemic lupus 

erythematosus. Art

188. Asadullah, K., W. Sterry, K. Stephanek, D. Jasulaitis, M. Leupold, H. Audring, H

D. Volk, and W. D. Docke. 1998. IL-10 is a key cytokine in psoriasis. Proof of 

principle by IL-10 therapy: a new therapeutic approach. J Clin Invest 101:783. 

Schreiber, S., R. N. Fe

M. Jacyna, B. A. Lashner, A. Gangl, P. Rutgeerts, K. Isaacs, S. J. van Deventer, J. 

C. Koningsberger, M. Cohard, A. LeBeaut, and S. B. Hanauer. 2000. Safety and 

efficacy of recombinant human interleukin

Crohn's Disease IL-10 Cooperative Study Group. Gastroenterology 119:1461. 

Lauw, F. N., D. Pajkrt, C. E. Hack, M. Kurimoto, S. J. van Deventer, and T. van 

der Poll. 2000. Proinf

Immunol 165:2783. 

Olszyna, D. P., D. Pajkrt, F. N. Lauw, S. J. van Deventer, and T. van Der Poll. 

2000. Interleukin 10 inhibits the release of CC chemokines d

endotoxemia. J Infect Dis 181:613. 

192. Chernoff, A. E., E. V. Granowitz, L. Shapiro, E. Vannier, G. Lonnemann, J. B. 

Angel, J. S. Kennedy, A. R. Rabson, S. M. Wolff, and C

   



 94

randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory 

cytokine production and immune responses. J Immunol 154:5492. 

194. 

 effect of 

. 

196. . 

197. 

199. nd sudden cardiac death. J Nutr Health Aging 5:173. 

Acids 57:379. 

193. Harris, W. S. 1997. n-3 fatty acids and serum lipoproteins: human studies. Am J 

Clin Nutr 65:1645S. 

Rambjor, G. S., A. I. Walen, S. L. Windsor, and W. S. Harris. 1996. 

Eicosapentaenoic acid is primarily responsible for hypotriglyceridemic

fish oil in humans. Lipids 31 Suppl:S45. 

195. Harris, W. S., B. E. Hustvedt, E. Hagen, M. H. Green, G. Lu, and C. A. Drevon. 

1997. N-3 fatty acids and chylomicron metabolism in the rat. J Lipid Res 38:503

Mori, T. A., V. Burke, I. B. Puddey, G. F. Watts, D. N. O'Neal, J. D. Best, and L

J. Beilin. 2000. Purified eicosapentaenoic and docosahexaenoic acids have 

differential effects on serum lipids and lipoproteins, LDL particle size, glucose, 

and insulin in mildly hyperlipidemic men. Am J Clin Nutr 71:1085. 

Nordoy, A. 1999. Dietary fatty acids and coronary heart disease. Lipids 34 

Suppl:S19. 

198. Sellmayer, A., N. Hrboticky, and P. C. Weber. 1999. Lipids in vascular function. 

Lipids 34 Suppl:S13. 

Leaf, A. 2001. Diet a

200. Storlien, L. H., A. D. Kriketos, G. D. Calvert, L. A. Baur, and A. B. Jenkins. 

1997. Fatty acids, triglycerides and syndromes of insulin resistance. 

Prostaglandins Leukot Essent Fatty 

   



 95

201. s, 

esity. Curr 

202. an, H. Y. Kim, and K. Gawrisch. 2001. Mechanisms of 

203. t. 

206. 

ds and 

207. . Kaklamanis, A. Kontomerkos, Y. Koumantaki, S. Gazi, G. 

heumatoid arthritis--a case control study. Scand J 

 arthritis 

rrant seed oil. Br J Rheumatol 

32:1055. 

Storlien, L. H., A. J. Hulbert, and P. L. Else. 1998. Polyunsaturated fatty acid

membrane function and metabolic diseases such as diabetes and ob

Opin Clin Nutr Metab Care 1:559. 

Salem, N., Jr., B. Litm

action of docosahexaenoic acid in the nervous system. Lipids 36:945. 

Jump, D. B., and S. D. Clarke. 1999. Regulation of gene expression by dietary fa

Annu Rev Nutr 19:63. 

204. Duplus, E., M. Glorian, and C. Forest. 2000. Fatty acid regulation of gene 

transcription. J Biol Chem 275:30749. 

205. James, M. J., and L. G. Cleland. 1997. Dietary n-3 fatty acids and therapy for 

rheumatoid arthritis. Semin Arthritis Rheum 27:85. 

Leslie, C. A., W. A. Gonnerman, M. D. Ullman, K. C. Hayes, C. Franzblau, and 

E. S. Cathcart. 1985. Dietary fish oil modulates macrophage fatty aci

decreases arthritis susceptibility in mice. J Exp Med 162:1336. 

Linos, A., E

Vaiopoulos, G. C. Tsokos, and P. Kaklamanis. 1991. The effect of olive oil and 

fish consumption on r

Rheumatol 20:419. 

208. Watson, J., M. L. Byars, P. McGill, and A. W. Kelman. 1993. Cytokine and 

prostaglandin production by monocytes of volunteers and rheumatoid

patients treated with dietary supplements of blackcu

   



 96

209. Calder, P. C. 2001. omega 3 polyunsaturated fatty acids, inflammation and 

immunity. World Rev Nutr Diet 88:109. 

Seder, R. A., R. N. Germain, P. S. L210. insley, and W. E. Paul. 1994. CD28-mediated 

. 

differentiation by human CD4+ cells. Eur J 

212.  Dutton, P. Rogers, L. Bradley, T. Sato, J. 

1 

go rapid Fas/FasL-mediated 

213. me. 

induced cell 

214. 

215. . Tarcsafalvi, R. Su, L. Qin, and J. S. Bromberg. 2003. 

s. J 

 

 
 

costimulation of interleukin 2 (IL-2) production plays a critical role in T cell 

priming for IL-4 and interferon gamma production. J Exp Med 179:299

211. King, C. L., R. J. Stupi, N. Craighead, C. H. June, and G. Thyphronitis. 1995. 

CD28 activation promotes Th2 subset 

Immunol 25:587. 

Zhang, X., T. Brunner, L. Carter, R. W.

C. Reed, D. Green, and S. L. Swain. 1997. Unequal death in T helper cell (Th)

and Th2 effectors: Th1, but not Th2, effectors under

apoptosis. J Exp Med 185:1837. 

Varadhachary, A. S., S. N. Perdow, C. Hu, M. Ramanarayanan, and P. Salga

1997. Differential ability of T cell subsets to undergo activation-

death. Proc Natl Acad Sci U S A 94:5778. 

Yasukawa, H., A. Sasaki, and A. Yoshimura. 2000. Negative regulation of 

cytokine signaling pathways. Annu Rev Immunol 18:143. 

Ding, Y., D. Chen, A

Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune response

Immunol 170:1383. 

   



 97

APPENDIX A 

OTHER DATA 

 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 
 

   



 98

CD3/28 ConA RPMI

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Stimuli

a

b

Fish Oil

Corn Oil

H
3 -

T
hy

m
id

in
e 

up
ta

ke
 (D

PM
)

 
 
 
FIGU

57BL/6 mice. 
 

bjective:

RE A-1.  Dietary fish oil enhances proliferation of whole Peyer’s Patches in 
C

O  To determine the effect of 4% dietary fish oil (FO) + 1% corn oil (CO) vs. 5% 
O on the proliferation of whole Peyer’s Patches (PP) in C57BL/6 mice. 

ethodology:

C
 
M   Peyer’s patches were excised from the small intestines and placed in a 

etri dish containing complete tissue culture (TC) medium (10% heat-inactivated FBS 
rvine Scientific), 1% L-glutamine (Gibco), 1% Penicillin-Streptamycin (Gibco), 10 µM 
-mercaptoethanol (Sigma), and 50 µg/ml gentamicin sulfate (Gibco)).  The PP were 
en teased apart using 2 curved end forceps ver a wire filter (Fisher) and transferred to 
esh complete TC medium with gentamicin.  A syringe barrel was used to push 
mainder of matter through the mesh.  Using a pasteur pipet, the suspension was passed 

ver the wire filter once again before washing once by centrifugation at 200 x g  for 5 
inutes at RT.  Cells were resuspended in 1 ml complete TC medium containing 

entamicin and were passed through a sterile Nylon wool fiber (scrubbed and combed 
om Polysciences) column (~1 inch of cotton wool was packed loosely into the end of a 
asteur pipet) to remove adherent cells.  The column was then rinsed with 5 ml of the 
omplete TC medium containing gentamicin.  Viable cell numbers were determined by 
ypan blue exclusion and counting on a hemocytometer.  Cells were cultured as 
escribed on page 19.  Results are expressed as mean ± SEM of the net disintegrations 
er minute (DPM), n=2-3.  Different letters denote highly significant differences found 
etween diet groups (p<0.01).  All cells were cultured in the presence of 10% FBS. 
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IGURE A-2.  Dietary fish oil enhances interleukin-2 (IL-2) production oF
from C57BL/6 mice. 
 
Objective: To determine the effect of 4% dietary fish oil (FO) + 1% corn oil (CO) vs. 5% 
CO on the IL-2 production of CD3+ T-cells from C57BL/6 mice. 
 
Methodology: Mouse CD3+ T-cells were purified, cultured, and analyzed by ELISA for 
IL-2 production as described previously (4).  Values from n=5 mice represent the mean ± 
SEM in pg/200,000 cells.  Different letters denote highly significant differences found 
between diet groups (p<0.01).  All cells were cultured in the presence of 10% FBS. 
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IGURE A-3.  Analysis of the protein expression of PLCγ-1 in activated CD3+ T-cells 

bjective:

F
from chow-fed mice. 
 
O  To validate the assay procedures to be used to determine the influence of 
dietary n-3 PUFA on the protein expression of PLCγ-1. 
 
Methodology: 30 x 106 purified CD3+ T-cells from 3-4 chow-fed C57BL/6 mice were 
activated with αCD3/CD28 for the specified time (0-10 min).  Cells were then gently 

sed and analyzed for protein content.  200 µg of cell lysate protein was incubated with 
0 µl of anti-phosphotyrosine (4G10) agarose conjugate overnight at 4°C.  Samples were 
luted using spin filters (Cytosignal) according to the manufacturer’s protocol and 
nalyzed by western blots using anti-mouse PLCγ-1 antibodies (1:1000; Upstate).  
esults are expressed as mean ± SEM of the relative band intensity after normalizing to 
0 min, n=3 pooled cultures. 
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FIGURE A-4.  Analysis of the protein expression of Zap-70 in activated CD3+ T-cells 
from chow-fed mice. 
 
Objective: To validate the assay procedures to be used to determine the influence of 
dietary n-3 PUFA on the protein expression of Zap-70. 
 
Methodology: 30 x 106 purified CD3+ T-cells from 3-4 chow-fed C57BL/6 mice were 
activated with αCD3/CD28 for the specified time (0-10 min).  Cells were then gently 
lysed and analyzed for protein content.  200 µg of cell lysate protein was incubated with 
20 µl of anti-phosphotyrosine (4G10) agarose conjugate overnight at 4°C.  Samples were 
eluted using spin filters (Cytosignal) according to the manufacturer’s protocol and 
analyzed by western blots using anti-mouse Zap-70 antibodies (1:1000; Upstate).  R
are expressed as mean ± SEM of the relative band intensity after normalizing to t=0 min,
n=3 pooled cultures. 

esults 
 

 
 
 
 

   



 102

 

   

 
 
FIGURE A-5.  Dietary fish oil (FO) does not alter protein expression of Zap-70 or PLCγ-1 in activated murine CD3+ 
T-cells.  
 
Objective: To determine the influence of 4% dietary FO on the protein expression of phosporylated Zap-70 and PLCγ-1 
in activated CD3+ T-cells from C57BL/6 mice.   
 
Methodology: : 30 x 106 purified CD3+ T-cells from 3-4 C57BL/6 mice fed the 5% corn oil (CO) or 4%  FO + 1% CO 

iets were activated with αCd
p

D3/CD28 for the specified time (min).  Cells were then gently lysed and analyzed for 
rotein content.  200 µg of cell lysate protein was incubated with 20 µl of anti-phosphotyrosine (4G10) agarose 
onjugate overnight at 4°C.  Samples were eluted using spin filters (Cytosignal) according to the manufacturer’s 
rotocol and analyzed by western blots using anti-mouse PLCγ-1 or anti-mouse Zap-70 antibodies (1:1000; Upstate).  
esults are expressed as mean ± SEM of the relative band intensity after normalizing to t=0 min, n=5 pooled cultures. 
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FIGURE A-6.  Th1-polarized CD4+ T-cells upregulate IFNγ production.  
 
Objective: To validate the Th1 polarization protocol on purified CD4+ T-cells from 
C57BL/6 mice. 
 

ethodology:

IFNγ IL-4
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Real-time PCR analysis

M  Splenic CD4+ T-cells from C57BL/6 mice were activated as previously 
escribed (58).  Values from n=5 mice represent the mean ± SEM in pg/200,000 cells. 

 using probes and primers designed for T-bet and GATA-3 mouse genes.   

d
T-cell RNA was obtained from similar cultures at day 5 post-activation as described on 

age 21p
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FIGURE A-7.  Dietary fish oil (FO) does not suppress whole splenocyte prolferation in 

-10(-/-) mice. IL
 
Objective: To determine the effect of dietary FO on whole splenocyte proli

(-/-)
feration in IL-

0  mice. 1
 
Methodology: W (-/-)hole splenocytes were obtained from IL-10  (129 SvEv) or 129 SvEv 

ontrol) mice fed the 5% corn oil (CO) or  4% FO + 1% CO diets for 5 or 10 weeks from 
d 
s 
 

(c
their date of arrival.  Cells were cultured as described on page 19.  Results are expresse
as mean ± SEM of the net disintegrations per minute (DPM), n=7 mice.  Different letter
denote highly significant differences found between diet groups (p<0.01).  All cells were
cultured in the presence of 10% FBS. 
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IGURE A-8.  Dietary fish oil (FO) reduces whole Peyer’s patches proliferation in IL-
0(-/-) mice. 

F
1
 
Objective: To determine the effect of dietary FO on whole Peyer’s patch proliferation in 
L-10(-/-)I  mice. 

 
Methodology: Whole Peyer’s patches were obtained (see A-1) from IL-10(-/-) (129 SvEv) 

r 9 SvEvo 12  (control) mice fed the 5% CO or 4% FO + 1% CO diets for 5 or 10 weeks 

 
 

from their date of arrival.  Cells were cultured as described on page 19.  Results are 
expressed as mean ± SEM of the net disintegrations per minute (DPM), n=2-3 pooled 
cultures.  Different letters denote highly significant differences found between diet 
groups (p<0.01).  All cells were cultured in the presence of 10% FBS. 
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9.  The presence of exogenous rIL-10 does not alter CD4+ T-cell 
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FIGURE A-

proliferation in C57BL/6 mice fed dietary n-3 PUFA. 

 

Objective: To determine if the presence of rIL-10 will enhance the suppressive effect of 

diet. 

 
Methodology: Splenic CD4+ T-cells from C57BL/6 mice fed dietary n-3 PUFA (1% ethyl 
ster + 4% corn oil (CO)) were cultured with αCD3 antibody at 0.5 µg/ml (CD3 low) or 
 µg/ml (CD3 high) in the presence or absence of 50 ng/ml of mouse rIL-10 (R&D 
ystems) for 72 h.  Results are expressed as mean ± SEM of the net disintegrations per 
inute (DPM), n=7 mice.  Different letters denote highly significant differences found 

etween diet groups (p<0.01).  All cells were cultured in the presence of 10% FBS. 

e
1
S
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FIGURE A-10.  Exogenous rIL-10 enhances CD4+ T-cell proliferation in IL-10(-/-) mice. 

 

 

 
Objective:  To determine the concentration at which recombinant mouse IL-10 (rIL-10) 
suppresses CD4+ T-cell proliferation in IL-10(-/-) mice. 
 
Methodology: Purified splenic CD4+ T-cells from IL-10(-/-) mice were stimulated with 
αCD3/CD28 (1 and 5 µg/ml, respectively) or ConA (2.5 µg/ml) with the specified 
concentrations of r IL-10 (ng/ml; R&D systems) for 72 h.  Results are expressed as mean 

 SEM of the net disintegrations per minute (DPM), n=4 mice.  Letters denote highly 
gnificant differences found within the treatment group (p<0.01). 

28

 (2
50

)
28

 (5
00

)

CD

+ rI

00
)

on
 A

on
 

0 (
50

)
Con

 A

 (2
50

)
Con

 A
 

10
00

)

RPM
I

0

10000

20000

0

10000

20000
H

3 -T
hy

m
id

in
e 

up
ta

ke
 (D

PM
)

a

b b

b

CD3/C
CD3/C

D
 +

rIL
-10

CD3/C
D

 +
rIL

-10
3/C

D28
 

L-10
 (1

0 C
C

A +
rIL

-1

 +
rIL

-10

+ rIL
-10

 (D28

±
si
 

   



 108

 
 
 

 
 
 
 

IGURE A-11.  Exogenous rIL-10 enhances proliferative responses of whole Peyer’s 
atches in IL-10(-/-) mice. 
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p
 
Objective: To determine the concentration at which recombinant mouse IL-10 (rIL-10) 

(-/-)suppresses whole Peyer’s patches proliferation in IL-10  mice. 
 
Methodology: Whole Peyer’s patches were obtained (se (-/-)e A-1) from IL-10  mice and 
timulated with αCD3/CD28 (1 and 5 µg/ml, respectively) or ConA (2.5 µg/ml) with the 

d 

s
specified concentrations of r IL-10 (ng/ml; R&D systems) for 72 h.  Results are 
expressed as mean ± SEM of the net disintegrations per minute (DPM), n=2-3 poole
cultures.  Letters denote significant differences found within the treatment group 
(p<0.05). 
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FIGURE A-12.  Exogenous rIL-10 enhances cell proliferation in whole splenocyte and Peyer’s patches isolated from
IL-10(-/-) mice fed dietary n-3 PUFA. 
 
Objective: To determine if the dietary effect of n-3 PUFA on the proliferative responses of whole splenocyt
Peyer’s patches from IL-10

e and 
(-/-) mice can be reversed with the addition of rIL-10. 

 
Methodology: Whole splenocytes and Peyer’s patches (see A-1) from IL-10(-/-) mice fed dietary n-3 PUFA (1
ester + 4% co

spectively) or 

% ethyl 
rn oil (CO) or 4% fish oil (FO) + 1% CO) for 14 days were stimulated with αCD3/CD28 (1 and 5 µg/ml, 

ConA (2.5 µg/ml) in the presence or absence of 100 ng/ml rIL-10 (R&D systems) for 72 h.  Results are 
pressed as mean ± SEM of the net disintegrations per minute (DPM), n=6-13 mice.  Letters denote highly significant 
fferences found within the diet groups (p<0.01).  All cells were cultured in the presence of 10% FBS. 
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FIGURE A-13.  Anti-CTLA-4 Ab (Pharmingen) does not alter CD4+ T-cell prolifer
in C57BL/6 mice fed dietary n-3 PUFA. 

Objective: To determine the effect of anti-CTLA-4 (Ab) on CD4+ T-cell proliferation in 
C57BL/6 mice fed dietary n-3 PUFA.   

Methodology:
 

 Purified splenic CD4+ T-cells were obtained from C57BL/6 mice fed 
dietary n-3 PUFA (1% ethyl ester + 4% corn oil (CO)) for 14 days and cultured with 
αCD3/CD28 at 1 and 5 µg/ml, respectively, in the absence or presence of 100 µg/ml of 
nti-mouse CTLA-4 Ab (clone 4F10; Pharmingen) or 100 µg/ml of IgG isotype (Iso; 
harmingen).  Results are expressed as mean ± SEM of the net disintegrations per minute 

 (p<0.01).  All cells were cultured in the presence of 2.5% 
BS + 2.5% homologous mouse serum (HMS). 
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FIGURE A-14.  Dietary n-3 PUFA enhance whole splenocyte proliferation in both C57BL/6 and IL-10(-/-) mice. 
 
Objective: To determine the effect of dietary n-3 PUFA on the pr

57BL/6 and IL-10(-/-)
oliferative responses of whole splenocytes from 

ethodology:

C  mice. 
 
M  Whole splenocytes were obtained from C57BL/6 and IL-10(-/-) mice fed dietary n-3 PUFA for 14 days.  

ells were activated with αCD3/CD28 at 1 and 5µg/ml, respectively, for 72 h in the presence of 2.5% FBS + 2.5% 
omologous mouse serum (HMS).  Results are expressed as mean ± SEM of the net disintegrations per minute (DPM), 
=7 mice.  Letters denote highly significant differences found within the between diet groups (p<0.01).   

C
h
n
 
 

0

5000

10000

15000

20000

25000

30000

35000

40000

IL-10ko

EPA

DHA

CO

EPA

DHA

CO

m
id

in
e 

up
ta

ke
 (D

P

a

M
)

b

b

H
3-

T
hy

CD3/28 RPMI

Stimuli



 112

 
 
 

 
 
 
 

(-/-) 

 

CD3/28 CD3/28 + rIL-10 RPMI

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

EPA

DHA

FO

CO

Stimuli

a
a a

b

b
b

H
3-

T
hy

m
id

in
e 

up
ta

ke
 (D

PM
)

FIGURE A-15.  Exogenous rIL-10 enhances whole splenocyte proliferation in IL-10
mice fed dietary n-3 PUFA. 

Objective: To determine the effect of recombinant mouse IL-10 (rIL-10) on whole 
splenocyte proliferation in IL-10(-/-) mice fed dietary n-3 PUFA. 

Methodology:
 

 Whole splenocytes were obtained from IL-10(-/-) mice fed dietary n-3 
PUFA for 14 days.  Cells were activated with αCD3/CD28 at 1 and 5µg/ml
for 72 h in the presence of 10% FBS.  Results are expressed as mean ± SEM of the net 

, respectively, 

inute (DPM), n=7 mice.  Letters denote highly significant 
ifferences found within the between diet groups (p<0.01).   
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Isolating Peyer’s Patches 

(from McGee, et al Immunology 1998 (64): 697-702 and Chapkin Lab) 
 
Materials: 
__forceps and scissors 
__PBS 

_small weigh boats (to collect and rinse intestines) 
_Complete PP media 
10% heat-inactivated FBS (Irvine Scientific), 1% L-glutamine (Gibco), 1% Penicillin-
Streptamycin (Gibco), 10 µM β-mercaptoethanol (Sigma), and 50 µg/ml gentamicin sulfate 
(Gibco)). 

_5 cc syringe 
_20 G needle 
_glass homogenizer 
_wire filter 
_nylon wool fiber column 
ack ~1 inch of cotton wool (scrubbed and combed from Polysciences, removes adherent cells) 
osely into the end of a pasteur pipet.  Sterilize 

_   1. Excise Peyer’s Patches (PP) (small, white nodules) from small intestines 

⇒ it may help to split open the small intestine and rinse out the feces in PBS to expose 

the PP.  However, most of the time the PP are noticeable without having to do this 

_   2. Transfer PP to a 15 ml. conical tube containing 5 ml. complete PP media 

_   3. Pipette PP solution into a glass-in-glass homogenizer and homogenize until completely 

broken up (~5-7 strokes) 

_   4. Assemble a 5 cc syringe, wire filter, and 20 gauge needle-unit for each PP and place on top 

of a newly labeled 15 ml. conical tube  

_   5. Remove the syringe plungers and transfer the PP suspension into the assembled unit 

_   6. Slowly reinsert the plunger to filter the suspension into the conical tube  

          ⇒ cells are fragile, so be gentle with this step 

__   7. Set up the nylon wool fiber column by placing a clothespin around the center of the 

column and ace it on an R&D T-cell column rack (the clothespin will help the column to 

stabilize on the rack) 

__   8. Place a new 15 ml. conical tube directly underneath the column to collect the eluent 

__   9. Pipette the PP solution at the top of the column and allow to flow through 

 ⇒ a bub ay develop at the top and may interfere with the flow.  Keep another aterile 

pasteur p  handy to eliminate any bubbles 

__   10. Wash the column with 5ml. complete PP media 

__   11. Spin cells own at 300 x g for 5 min. at RT 

__   12. Aspirate t pernatant and resuspend in 1ml. complete PP media 

__   13. Count cells on hemacytometer and adjust concentration if necessary 

_
_
 

_
_
_
_
_
P
lo
 
 
 
_

 

_

_

_

_

_

  

 pl

ble m
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 d
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Purifying CTLA-4 Antibody from UC10-4F10 cells 

04)) 
 

lls (as per protocol from ATCC)

(Lan Ly from Chapkin Lab (May 20

 
 
Growing UC10-4F10 ce  

  
BS, 11ml L-Glut, 5.5ml Na-Pyruvate, and 1.9µl 2-mercaptoethanol 
and pre-warm to 37C before use 

ecialty Media; S-002-D) 

edium (that has been warmed to 37C).    

_ 3. Spin at 300 x g for 5 min at RT 

_ 4. Aspirate supernatant and resuspend cells gently in 30 ml culture medium 

 at ~7-8) 

per 

n 

__ 8. R lture medium and count on hemacytometer 

__ 10. ribed above and aspirate or collect supernatant 

ic vials.   

 

Purify r manufacturer’s protocols)

 
Materials: 
 
__ UC10-4F10 cells from ATCC (HB-304) 
__ Culture medium: 

    Dulbecco’s modified Eagle’s medium (high glucose) (550ml) 
      -add 55ml F
      -store at 4C 
__ Freezing media (Sp
 
 
__ 1. Thaw frozen cells gently by rapid agitation in 37C water bath 

__ 2. Add contents of ampule to ~10 ml culture m

_

_

__ 5. Plate cells in T-75 flask for 2-3 days (medium will turn yellowish, but pH will remain

 ⇒  although this is a non-adherent cell line, ~50% of the cells will adhere to the flask as 

manufacturer 

__ 6. After 2-3 days, place contents of flask into 50 ml conical tube and spin dow

__ 7. Collect supernatant and freeze at –80C 

esuspend cells in 30 ml cu

__ 9. Maintain cultures at cell concentrations between 105 to 106 viable cells/ml 

 To freeze down cells, pellet cells as desc

__ 11. Resuspend the cells in culture freezing medium at a concentration of 107 to 108 as per 

manufacturer’s protocol 

__ 12. Freeze 1 ml of cells/ vial in appropriate cryogen

__ 13. Freeze gently and slowly to –80C using cryofreeze container 

ing Supernatants (as pe  

__ ake
    dd 
     -Add  L H20 

 

Materials: 
 
__ HiTrap Protein G HP affinity columns, 5 ml (Amersham, 17-0405-01) 

 M   20mM NaHPO4 solution (pH 7): 
 -A 1.38 g NaHPO4 (monobasic, pH 4.2, S-369) to 0.5 L H20 

 2.68 g NaHPO4 (dibasic, pH 9.2, S-373) to 0.5
     -Combine above solutions in 1L bottle and pH to ~7.0
     -Store at RT 
__ 5 ml syringe (luer-lok) 
__ Make 0.1 M Glycine solution (pH 2.7): 
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- Add 3.75 g Glycine to H20 
- Adjust pH to ~2.7 and bring up to 0.5 L 
- Store at RT 
__ Make 1 M T
 - Add 15.76 g Tris to H2

- Adjust pH to ~9.0 and bring up to 0.1 L 
Store at RT 
_ 20% EtOH 

 collected supernatants and place on ice 

 tubes) by adding 0.5 ml 1M Tris-HCl, pH 9 

onnect the column to the syringe using 

_ 5. Slowly “pump” the solution through column drop-by-drop at a rate of ~5 ml/min 

ff the syringe, remove plunger, 

lumes 

ty of ~ 25 mg human 

_ 8. Wa

__ 9. Elu lumn volumes of Glycine buffer (pH 2.7) and collect in the prepared 15 ml conical 

0C until dialysis 

 5 column volumes of 

umn 

  numerous times 

ris-HCl (pH 9) 
0 

 
- 
_
 
 

__ 1. Thaw

__ 2. Prepare collection tubes (15 ml conical

__ 3. To wash the column, fill the syringe with NaHPO4 buffer and c

the provided adaptor 

__ 4. Remove the twist-off end 

_

⇒ Important!!  To avoid introducing air into the column, twist o

reconnect it to the column, and fill with buffer 

__ 6. Wash column with ~5 column vo

__ 7. Apply the thawed supernatants, 5 ml at a time.  The column has a binding capaci

IgG/ml gel.  Therefore, ~800 ml of supernatant can be loaded onto the column before eluting.   

_ sh with ~5-6 column volumes of NaHPO4 buffer or until no material appears in the effluent 

te with ~2-5 co

tubes.   

__ 10. The eluted samples can be frozen at –8

__ 11. To continue loading more samples onto the HiTrap column, wash with

NaHPO4 buffer and proceed with steps 7-10.   

__ 12. To store the column, wash with 3 column volumes of 20% EtOH, close up both ends of col

using the provided adaptors, and store at 4C  

⇒ column can be used

 

Dialyzing, “Concentrating,” and Sterilizing Ab 

 

Lyzer Dialysis Cassettes, MWCO 10, 000, 3-12 ml (Pierce, 66810) 
ooled to 4C) (~5 L or more) 

100, 000 MWCO) 
bran (Gelman Labs, 4192) 

ace on ice 

Materials: 

__ Slide-A-
_ 1XPBS (c_

__ 20 ml syringe 
__ 18G needle 
__ Amicon Ultra-15 Centrifugal Filter Device (MilliPore, PL-100, 

fryn Mem__ Acrodisc Syringe Filter, low protein binding, 0.2µm HT Tuf
 
 

__ 1. Thaw samples and pl
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__ 2. Remove Slide-A-Lyzer cassette from its pouch and slip the longest side into the groove of a buoy 

r for ~30 sec 

ringe with needle and fill with sample 

 a syringe port at the top of the cassette 

raw back the syringe to remove the air in the pouch 

 continue inject the sample 

_ 6. Remove any air from the pouch using the syringe 

_ 7. Place membrane into 1XPBS buffer and dialyze overnight at 4C with constant gentle stirring 

 cassettes) can be dialyzed in a 5 L container of 1XPBS 

le 

Unit (up to 15 ml) 

 

__ 11. R -to-side sweeping motion with a pipetter to ensure 

 

 

 

__ 3. Immerse the cassette in 1XPBS buffe

__ 4. Attach sy

_ d sample to cassette through_ 5. Ad

 ⇒ be careful not to burst the membrane.  D

and then

_

_

⇒ As per Laurie, ~ 120 ml of sample (~10

(final Glycine concentration of sample should be < 0.0006M) 

__ 8. Remove sample from cassette by inserting the needle into the bottom syringe port and slowly 

withdrawing the samp

__ 9. Place sample in the Amicon Filter 

__ 10. Spin at 4000 x g for ~7 min at RT (use Juoan) 

⇒ volume will be ~0.5 ml at this stage 

ecover the concentrated sample by using a side

total recovery 

__ 12. Under a sterile hood, sterilize the sample using a sterile 5 ml syringe attached with 

a Acrodisc Syringe Filter (low protein binding).   

__ 13. Aliquot into sterile 0.65 ml eppendorf tubes and store at –80C. 

__ 14. Perform protein assay using Coomassie Blue  
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Immunoblot Stripping Protocol 
(from Nicole Murray, nmurray@utmb.edu) 

 
 
 Solutions: 
 1 M Tris:     Final Concentrati
 121.4 g. Tris base     1M 

on: 

 0  
 

 
 10
  

2

 n will precipitate, but should become soluble at RT) 

_   1. P re-warm to 50°C using H20 bath on “belly dancer”  

 onut” on top of dish so that it is stable in the H20 bath 

in. at RT  twice 

__  4  stripped, block membrane in 4% nonfat dry 

will be used for the next 1° antibody for at least 1 

hr. at RT  

_   6. Wash mem rane vigorously in 1XPBS/Tween for 15 min. at RT twice.  

__   7. Add substrate (Supersignal WestFemto) to membrane on acetate sheet for 5 min. 

__   8. Image blot n Fluor-S Imager to ensure that no signal is detected. 

__   9. Repeat ste 1-10 if signal is still detected. 

__   10. Once blot s properly stripped, proceed with Western Blot protocol as if you have just completed 

the membr e transfer (i.e, block membrane in milk→ incubate with 1° antibody overnight, etc.) 

 
 
 
 

 -add ~500ml. ddH20 and adjust pH to 6.7 using HCl  
-bring up to volume (1L) using ddH2

-store at 4°C    
  
 Stripping Buffer:     

To make 1L: 
6.99 ml. 2-ME (14.3 M)    100 mM 

0 ml. 20% SDS    2% 
62.5 ml. 1M Tris (pH 6.7)    62.5 mM

 -add ~200 ml. ddH20 and adjust pH to 6.7 
 -bring up to volume (1L) using ddH 0 

-store at 4°C (solutio
 
To strip membrane of its 1° and 2° antibodies: 

_ our stripping buffer in covered dish and p

__   2. Place membrane in pre-warmed stripping buffer for 30 min. with gentle rocking  

⇒ place “d

__   3. Once 30 min. are up, wash membrane vigorously in 1XPBS/Tween solution for 10 m

. . To ensure that the membrane has been properly

milk/1X PBS/0.1%Tween for 1 hr. at RT 

__   5. Incubate membrane in the secondary antibody that 

_ b

 o

ps 

 i

an

 

 

After the  time, steps 4-9 can be omitted once you are convinced that this process effectively eliminates all
non-specific signals  
**

 1st

 Note  all antibodies are different so do not assume that this protocol will be effective for all antibodies 
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Materials: 
round bottom plates 

__ ste

 
 

) 
2-ME 

 
  d 3.5µl. stock 2-ME to 1 ml. RPMI 1640 

__ Fal
__ Mu
__ ste

α

you 

tock: 1000ug/ml) to 

 __   n and using a multi-petter and a sterile solution 

n, prepare all stimuli solutions 1st  

RPMI mixture with homologous mouse serum 

 -pipette solution up and down several times to ensure proper mixing and allow to sit 

for a few minutes 

H3-Thymidine Uptake  
(from Chapkin Lab, Lan Ly) 

 
 
 __ sterile 96 well-
 rile 1XPBS 
 __ Complete RPMI mixture 
 - RPMI 1640 Irvine Scientific, cat #9159 
 - 2.5% homologous sterile filtered mouse serum 
  - 2.5% heat inactivated FBS (Irvine Scientific
  - [10µM] 
  ⇒ stock 2-ME is 14.3M 

 1) ad
   2) add 100µl. of this solution to the RPMI mixture 
  * for Peyer’s Patches, add 50ug/ml Gentamicin  
 con polypropylene tubes 
 lti-petter 
 rile solution basins 
 
Plate CD3  24 hours before day of experiment: 

 __   0. Contact Shannon Sedberry (sedberry@tamu.edu) to let her know what day(s) 

will be using the harvester 

 __   1. In a sterile hood, dilute αCD3 (Pharmingen: 553057) (s

1ug/ml in sterile 1X PBS 

 __   2. Designate and label wells of a 96-well plate (CD3/28, Con A, RPMI, etc) 

3. Mix αCD 3 solution(s) once agai

basin, pipette 50µl. of αCD 3 into each well 

 __   4. Tape lid to plate and place at 4°C overnight 

 

Day of Experiment: 

*Before proceeding with T-cell purificatio

__   1. Dilute αCD28 (Pharmingen: 553294) (stock: 1000ug/ml) to 10ug/ml in complete 

 ⇒ final concentration of CD28 in plate well will be 5ug/ml because you will 

dilute this 1:2 later 
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__   2. Place all stimuli solutions in 4°C and proceed with T-cell purification and adjust 

final concentration to 2 x 106 T-cells/ml 

 
6  Complete RPMI mixture with homologous mouse 

T 

well plate  

on basin, pipette 100ul. Of CD28 solution 

(a opriate wells  

 down and using a mult-pette and a 

st ells to the labeled wells 

id to the plate and place in 37°C incubator for 72 hours 

ake sure there is a sufficient amount of H20/ BacDown in the bottom of the incubator 

re and after 3-day incubation to check 

 

 

nsure 

 

 conical tube (this will be enough for 

1 plate) 

map” by numbering each well of each plate  

  

__   5 tor that will contain a conical tube 

of 1

           ⇒ ere or not made up, consult Shannon 

 idine + 4 ml. complete RPMI 

__   1. Obtain 2 x 10  T-cells/ml. in

serum and place at R

__   2. Aspirate CD3 antibody from the 96-

__   3. Using a multipipettor and a sterile soluti

nd her stimuli) into appr/or ot

__   4. Thoroughly mix the T-cells by pipetting up and

erile solution basin, add 100µl. of the T-c

__   5. Tape the l

M

-Make sure and check cells under microscope befo

for proper proliferation 

Day 3 

 __   1. Remove plates from 37°C incubator and check cells under microscope to e

T-cells have proliferated. 

⇒ also, observe color of media  

__   2. Pipette 4 ml. of complete RPMI into a 15 ml.

__   3. Make a “plate 

           ⇒ this will be used to help keep track of the filter discs 

__   4. Bring plates, 4 ml. RPMI and multipipettor over to McMurray Lab in Med. School

. In their tissue culture room, there is a refrigera

00µCi H3 Thymidine solution 

 if solution is not th

__   6. In the radioactive hood, dilute the 100µCi H3 Thymidine 1:5 to 20µCi 

⇒ 1 ml. of H3 Thym
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 ⇒ final concentration in wells will be 4µCi H3

__   7 olution basin, add 50µl. of 

20µCi H3 Thymidine to all wells of each plate containing cells 

__   9  plate(s) downstairs (2nd floor) where cell 

__   1 ester) to approximately the size of the 

__   1

 ensure all 

__   15. Suck up contents of plate using HOT vacuum and was plate with H20 at least 7X 

_   16. Remove top compartment with vacuum on to help dry the filter 

. Once filter looks dry, remove the template with the filter still on it 

_   18. To clean the harvester, fill the bottom platform with EtOH and run EtOH through 

  off pump when finished 

ated numbers of each filter disc (see plate map) 

propriate scint vial 

rresponds to the 

__   2  to right and place a red STOP rack behind the 

       

. Using a multipetter and the radioactive s

__   8. Allow plates to incubate in 37°C incubator for 5 ½-6 hours 

. After incubation, bring

harvester is 

__  10. Turn on vacuum pump located below the Packard cell harvester 

1. Cut a filter paper (in drawer below cell harv

96-well plate 

2. Place the filter in the top compartment of the harvester 

__   13. Run H20 through the harvester using COLD and HOT vacuum to

probes are aspirating and dispensing well (~3x) 

__   14. Place the sample plate directly underneath the probes 

_

__   17

_

the harvester.   

⇒ make sure to turn

__   19. Label scint vials with the design

__   20. Using forceps, gently remove the perforated discs of filter paper and place them 

in the ap

 ⇒ remember the orientation of the plate and how it co

perforated discs (it will be reversed) 

__   20. Then fill each scint vial with 10 ml. scintillation fluid 

__   21. Bring scint vials over to the beta/gammer counter at Kleberg rm. 423 

2. Load scint vials in rack from left

last rack 

__   23. Use Counter User #1 and AutoCount 

⇒ Vials are counted for ~ 1 min. each  
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CD4 + T-CELL ISOLATION 

 

 (From the Chapkin Lab, Jennifer Arrington) 

 

I. NECROPSY 

 

 Materials: 

 __ s terile instruments (i.e. scissors, forceps, etc.) 
  __ EtOH 

l. 

 500ml. RPMI + 55 ml. FBS + 5.5 ml. L-Glut + 5.5 ml. P/S + 100µl. 
.5µl.  

2 

 you 

on 

he spleen (dark red organ) with forceps 

leen as possible  

__ a labeled 15 ml. conical tube for each mouse group filled with 3 m
complete RPMI (10% FBS, 1% L-Glutamine, 1% Pen-Strep, and 
10µM 2-ME) 

 ⇒
of 3
2-ME diluted in 1 ml. RPMI 

  __ keys for basement 
  
   

__   1.  Sacrifice mice (_________________) by CO

__   2. Place mice on their right side so that the left side faces

__   3. Apply alcohol to the abdomen area 

__   4. Grab the skin of the abdomen with forceps and make a small incisi

__   5. With fingers, peel back the skin/fur to expose the membrane underneath 

__   6. Grab the membrane with forceps and cut the membrane to expose the 

organs 

__   7. Remove t

__   8. Carefully remove as much fat from the exterior of the sp

__   9.  Place spleen(s) in a conical tube containing complete RPMI 

 

II. CELL PREPARATION 

Materials:  

  __ sterile wire filter 
  

__   1. ch spleen and RPMI solution into a glass-in-glass homogenizer  

 (~5-7 strokes) 

__   3. Assem each spleen and place on top of a 

newly l

. Remove the syringe plungers and transfer the appropriate spleen suspension into the assembled units 

  __ sterile glass-in glass homogenizers 

__ 10 cc syringes 
  __ 20 gauge needles 
  __ RPMI mixture  
  __ 15 ml. conical tubes 
 

 

 Transfer ea

__   2. Homogenize spleens until completely broken up

ble a 10 cc syringe, wire filter, and 20 gauge needle-unit for 

abeled 15 ml. conical tube  

__   4
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__   5. Slowly reinsert the sponding conical tube  

            ⇒  cells are fr

_   6. Fill each sample tube with RPMI for washing and centrifuge at 200 x g (rcf=200, rpm=1096) for 5 

m

_   7. Meanwhile, soak all used equipment in soapy H20 

e spinning, carefully aspirate the RPMI leaving only 0.5 ml. in each sample 

, etc. 

 

III. REMOVE RE  

 plunger to filter the suspension into the corre

agile, so be gentle with this step 

_

in. at RT 

_

__   8. Once samples are don

tube 

 ⇒ the lymphocytes are now ready to be isolated from the red blood cells, plasma

D BLOOD CELLS 

Materials: 

_  Lym ed to RT 
_  R&D D4+ purification kit 

 
sh buffer (diluted from 10X) (lot #_________) 

 

__   1. Add R 3 ml RPMI for 60-80 x 106 

cells, a

  ⇒ n

__   2. Add a

⇒ i pholyte-M.   

     ⇒ this s  be done slowly and carefully in order to see 2 distinct bands 

__   3. Centri

⇒  d

stop

⇒ meanwhile, begin T-cell column preparation 

 disturb sample layers when removing the samples from the centrifuge  

ne spinning, you will see 2 distinct layers (a white one on 

the bottom) and an interface band separating 

em.  Your goal is to remove this interface band.  The bottom clear layer 

contains the unwanted red blood cells, plasma, etc.   

 layer with a pipette 

__   6. d the cells in 2 ml. 1X R&D wash buffer 

 _ pholyte-M (lot #_____
_  antibody cocktail in C

____) cool
 
 __  RPMI mixture
 __  1 X column wa

PMI to the washed cells (add 2.0 ml RPMI for 30-40 x 106 cells or 

s per Chris Jolly) and resuspend 

ormally, one spleen yields 30-40 x 106 cells 

n equal amount of Lympholyte-M by layering it beneath the suspended cells 

nsert the pipet tip into the bottom of the conical tube before dispensing the Lym

tep must

fuge the cells at 500 x g (rcf=500) for 15 min. at RT 

eactivate centrifuge brake at this step (acc/dcc = 0); the centrifuge     tends to 

 too fast and this will disturb the layer produced by Lympholyte-M  

⇒ be careful not to

⇒ when samples are do

t and a clear, pinhe top k one on 

th

__   4. Carefully remove the interface band between the medium and Lympholyte-M

and dispense it into a new conical tube (should see a red pellet) 

__   5. Fill the conical tube with RPMI to wash and centrifuge the cells at 300 x g for 5 min. at RT 

 Aspirate off the RPMI and resuspen

__   7. Add 1 vial of monoclonal antibody cocktail (1 ml) to suspension and mix gently 
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__   8. Allow cells to incubate at RT for 15 min. 

__   9. Wash cells in 10 ml. 1X column buffer and spin at 300 x g for 10 min. 

__   11. Resuspend final cell pellet in 2 ml. 1X column buffer 

IV. T-  PURIFICATION 

aterial

_ R&D CD4+ T-cell columns (Cat# MCD43; 2spleens minimum on each column) (lot#__________) at RT 

 ml conical tubes 
_ waste
_ timer
_ 1 X c __) (make 75ml. per column) 
_ RPM

column FIRST to avoid drawing air into the 

__   3. A

 EtOH 

__   4. W

__   5. R

__   6. App lumn 

⇒  in 

the sterile c

__   7. A

__   8. A

__   9. Once all the T-cells have been collected (the column will stop dripping), 

centrifuge them at 300 x g for 5 min. at RT 

__   10. Aspirate off the supernatant and resuspend in 1 ml. complete RPMI 

__   10. Decant supernatant and repeat step 9.  Decant. 

  

 

CELL

M s: 

_
__ R&D column rack 
__ 70% EtOH 
__ sterile 15
_  receptacle 
_ (s) 

ted from 10X) (lot#__________ olumn wash buffer (dilu
_ I mixture 
  

__   1. Place the T-cell column(s) in the R&D column rack and place a waste receptacle directly beneath the 

column(s) 

__   2. To prepare the columns, remove the top cap of  the 

bottom of the column and then remove the bottom cap 

llow the fluid within the column to drain until it reaches the level of the top white filter 

 ⇒ column will stop dripping once it reaches the top filter 

 ⇒ meanwhile, rinse the outside of the column tip with 70%

ash column with 10ml. of  1X column wash buffer 

eplace the waste receptacle with a newly labeled 15 ml conical tube 

ly the 2 ml cell suspension to the top of the co

 the cells will enter the column and displace the wash buffer in the column, which is collected

onical tube 

llow the cells to sit within the column for 10 min. at RT 

pply 10ml. of 1X column wash buffer to the column to elute the T-cells 

⇒ the cells are now ready to be counted.  You will determine the percentage of live vs. dead cells 

and obtain a percentage of viability 
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V. TRYPAN BLUE EXCLUSION or COULTER COUNTER 

 cell counter 

e to the empty sample tubes 

e well by pipetting up and down several times 

ixture and plate in a hemacytometer 

 immediately after the cells have mixed with the Trypan Blue because Trypan Blue 

able white cells (dead cells appear blue) in at least 4 squares of the grid 

#1_______       #2_______      #3________      #4________     Total_______ 

 cells) x 10,000 x (dilution factor=20)= # cells/ml. =__________________________ 

***Fro cedure, this cell count (in step #6) should be 

**Thi

 

 

 

 

 

 

 

Materials: 

__ Trypan blue  
__ small sample tubes 
__ hemacytometer 
__
 

 

190µl. of Trypan Blu__   1. Add 

__   2. Swirl the suspended T-cells and remove 10µl. and add them to a sample tube with Trypan Blue 

__   3. Mix this mixtur

__   4. Remove 10µl. of this m

 ⇒ do this step

kills cells after long exposure 

__   5. Count the vi

 

__   6. The # of cells will be the average of the 4 squares : Avg._____  

⇒ (Avg. #  
 

m the cell count obtained prior to T-cell purification pro

~30% less) as per Jennifer Arrington. 

* s CD4+ T-cell purification yields ~4-5x 106 cells/spleen 
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WESTERN BLOT 

Solutions: 
Pyronin 5X Sample Buffer: 

ol)   
se, pH 6.8 (Roche 604 203) 

5% β-mercaptoethanol (wt) (Sigma M-6250) 
0 mM EDTA (Sigma ED4SS) 

. Heat

. Add
5. Add

. Aliq  rest at –20°C 

ilute 

1. Add ris-Glycine (Fisher, cat #BP1306-1 or GeneMATE, cat# 

 2
 

(0.1% (wt) Tween-20 in 1X PBS) 
ttle of Dulbecco’s Phosphate –Buffered Saline (Gibco, #21600-069) in 1L. of H20 

. Add 10 g. of Tween-20 (Fisher, #BP337-500) 
         ⇒ weigh the PBS/Tween on the scale while adding the Tween-20 
. Dilute the 10X PBS/Tween using H20 to make a 1X solution 

aterials: 
__ 10-0.6 ml. eppendorf tubes  

 H20  
__ Standard (_______________)  
__ 4-12% Tris-Glycine gel (Novex, EC-6025)   
__ Electrophoresis unit 
__ 2 small staining trays 
__ 1 large staining tray 
__ wet transfer membrane (Millipore Immobilon-P Transfer, #IPVH00010) 
__ Transfer cassette 
__ stir bar 

 stir plate 
__ 6 mm filter paper (Midwest Scientific, #6MW10X11) 
__ non-fat dry milk 

PBS/Tween 
 __ test tube 

Materials: 
40% glycerol (v

.31 M Tris Ba0
2
2
12% SDS (wt) (Fisher BP166-100) 
0.1% pyronin Y (wt) (Bio-Rad 16+0425) 
 
1. Add 1.5 g. of Tris base in 10 ml. of H20 
    Actual pH____ 
2. Add 4.8 g. of SDS and bring final volume up to 15 ml. with H20 
3  gently to dissolve or leave at RT overnight 
4  8.9 ml. of β-mercaptoethanol (stock =1.2 g/ml) 

 16 ml. of glycerol 
6. Add 0.37 g. of Na4EDTA 
7. Add 0.04 g. or less of pyronin and let stir at RT to dissolve 
8 uot solutions into eppendorf tubes.  Keep one at RT for current uses and store
 
Running Buffer: (Tricine SDS Running Buffer) 

the 10X Tricine SDS running buffer (Novex, #LC1675) to 1X using H20.  Store at 4°C D
 
Transfer Buffer: (Tris-Glycine Transfer Buffer) 
To make 1L: 

 140 ml. of MeOH to 100 ml. of 10X T
5560) 

2. Bring up to volume with H 0.  Store at 4°C 

PBS/Tween: 
1. Dissolve 1 bo
2
  
3
 
 
 
M
 
 __
 
 
 
 
 
 
 
 
 __
 
 
 __ 
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 __ transfer unit 
 __ antibodies (_________ ___________) 

 __ chemiluminescent super signal reagent A and reagent B (Super Signal Substrate West 
mum Sensitivity Substrate, Pierce, #99030170) 

________________________

Femto Maxi
 
 
Day 1 
 
I. GEL LOADING 
 
 __   1. Calculate the amounts needed on the Western worksheet for sample, water, and pyronin 5X 

_   2. Pipette the samples, water, and dye into 0.6 ml. eppendorf tubes labeled 1-10  

d by a quick spin in a minifuge 

tside positions tend to heat up unevenly 

inifuge to get all the condensation to the bottom of the tube 

is unit: 

rom the precast gel 

it (if only 1 gel is used, put an alumina plate to block 

_ ansfer the unit into 4°C cold room and pour running buffer into the unit 

 the gels 

ell 

(red to red and black to black) 

⇒ set voltage higher than the mAmp setting 

 check the gel the 1st 5 min. and then 20 min. thereafter 

⇒  the current between 60-120 mAmp 

the gel, turn off the power supply and take the unit out  

the col

. BLOT

_

  mix by⇒  gentle inversion followe

__   3. Heat samples at 98°C in a Thermal Reactor for 5-10 min. 

 ⇒ place samples in middle of heat rack; the ou

__   4. Quick spin on the m

__   5. Place the 4-12% Tris-Glycine gel onto the electrophores

 ⇒ mark the position of the wells with a sharpie pen and label them 1-10 

 ⇒ take off the tape and remove the comb f

 ⇒ align the 3rd grid onto the gasket of the unit 

 ⇒ use 2 clamps to fasten the gel onto the un

the other side of the unit) 

_   6. Tr

 ⇒ make sure to fill the space between

__   7. Load samples into the corresponding wells 

 ⇒ make sure there is no bubble in the pipette tip when dispensing the sample into the gel w

__   8. Place the lid on the electrophoresis unit and connect the electrodes 

__   9. Run gel at 30-60 mAmps for ~1 hour 

 

 ⇒

  if 2 gels are running together, set

__   10. Once the dye approaches the bottom of of

d room to sit beside the sink 

 

II  

_   1. Pour t

he gel from the unit; place the gel on the bench (large side down): 

use a s

 the 1st lane; cut and remove the area below the bottom dye band 

_ ransfer buffer into a clean staining tray 

_ ve the 2 clam_   2. Remo ps to loosen t

patula to unseal the plates; carefully remove the gel 

_ a cut above the gel ju_   3. Make st above
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__   4. Gently transfer the gel from the cast (grab the gel from the bottom area) to the staining tray 

co tai

 ⇒ place th

_   5. Wet the transfer membrane with MeOH for a few seconds in a separate staining tray 

ransfer the membrane into the staining tray containing the transfer buffer 

sfer cassette into a big staining tray (gray side up): open the cassette and place the thick 

sponge on the bottom (black colored grid) and then the thin sponge on the top (gray colored grid) 

_   9. W  thick sponge 

ight side) 

_   11. ubbles 

ne as well; again, 

_   13. h sides  

_   14. cing the labeled “black side’) 

_   15. 

         ⇒

          ⇒ re te by gently dropping the unit on the counter 

_   17. T fat dry milk/1X PBS/0.1%Tween in a staining tray 

_   18. A

y (gray side up).  Open the cassette, remove the thick sponge 

an  on the membrane; cut a corner above lane #1 

onds until protein bands 

 k into container (solution is re-usable) 
  to blot and swirl briefly. Repeat. 

d. leave blot in Destain solution and image 
⇒ use large lens (set at 2.7 at top aperture to let light in) 
⇒ place blot in bottom of machine (make sure tray is not in machine) 

uor-S → Select→ Densitometry→ Photograph 

 p aperture from 2.7 to 22 

 ⇒ save image on disk and print 
  e. rinse blot briefly in PBS (until blot no longer smells like MeOH) 

n ning the transfer buffer 

e gel the same side up as taken from the cast 

_

__   6. T

__   7. Place the tran

__   8. Pour the transfer buffer to cover the thick sponge 

 ⇒ pour a little extra in to cover the gel and membrane later 

_ et a 6 mm. filter paper with transfer buffer; place the paper onto the

__   10. Place the gel onto the filter (same side up; lane #1 is the r

_ Place the wet membrane onto the gel and use the side of a glass test tube to roll out any b

__   12. Wet another 6 mm. filter paper in the transfer buffer and place it on the membra

roll out any bubbles with a glass test tube 

_ Place the sponge onto the filter paper and close the transfer cassette on bot

_ Immediately, put the cassette into the transfer unit (black side fa

_ Fill the unit with transfer buffer with a stir bar 

   transfer the unit to the 4°C cold room 

lease any air bubbles in the casset

__   16. Place the unit on a stir plate and run at 400 mAmp for 90 min. 

_ owards the end of the transfer, prepare 4% non

(1.2 g. milk in 30 ml. PBS/Tween) 

_ fter transfer has completed, take the unit out of the cold room and place it near the sink 

__   19. Remove the transfer cassette from the unit using the hook attached to the outside of the unit 

__   20. Place the cassette in a big staining tra

d filter paper; use a pencil to label lanes #1-10

FAST GREEN STAIN (optional): 

 a. place blot in fast green stain solution and swirl for a few sec

are seen 

b. then dump solution bac
c. add Destain solution

 
 
 
 ⇒ select Quality One→File→Fl
 ⇒ with both lens and main door open, Position and Focus the blot without holding 

down the SHIFT key  
⇒ after blot is positioned and focused, turn to

 ⇒ close both doors and Acquire image for 10 sec. 
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 f. Proceed to step 21 as usual 
⇒ milk will turn

. Transfer the membrane into a
  green, so replace solution ½ way through blocking 
__   21  staining tray containing 4% nonfat dry milk/1X PBS/0.1%Tween 

S/0.1%Tween (0.8 g. 

__   24 d 

_   25 ake gently in the cold room 

0 ml. of 4% nonfat dry milk/1X PBS/0.1%Tween 

ur into a staining tray 

ondary antibody 

__   7. ontaining PBS/Tween for a few seconds 

__   11 orf 

_   12. Lift the top 

lane#1 on left s

_   13. Gently lowe w it to incubate for 

15 min. 

_   14. Cut out a ne

⇒ pip o that 

the me

_   15. Visualize th

hield 

⇒ make sure membrane is protein side up 

__   22. Gently shake for at least 1 hour at RT 

__   23. Towards the end of the hour, prepare 20 ml. of 4% nonfat dry milk/1X PB

milk in 20 ml. PBS/Tween) and place in a staining tray 

. Before adding the transfer membrane, add ____µl. of primary antibody (_________) to the tray an

swirl to mix 

_ . Transfer the transfer membrane to the antibody mixture and sh

overnight 

 

Day 2 

__   1. Remove the tray from the cold room and transfer the membrane into another tray containing 

PBS/Tween for a few seconds 

__   2. Pour off the PBS/Tween and add new PBS/Tween.  Shake vigorously for 10 min. 

__   3. Repeat step 2. 

__   4. Towards the end of the last 10 minutes, prepare 3

(1.2 g. milk in 30 ml. PBS/Tween) and po

__   5. Before adding the transfer membrane to the nonfat milk mixture, add ____ µl. of sec

(______________) into the tray and swirl to mix 

__   6. Gently shake for at least 1 hour 

 Transfer the membrane into a tray c

__   8. Pour off the PBS/Tween and add new PBS/Tween and shake vigorously for 15 min. 

__   9. Repeat step 8 

__   10. Drain the membrane and place it between an acetate sheet 

. Mix 0.5 ml. of chemiluminescent super signal reagent A and 0.5 ml. of reagent B in an eppend

tube 

_ acetate sheet and add the super signal reagent mix to the top of the membrane (position 

ide) 

_ r the acetate sheet back to cover the membrane/reagent mix.  Allo

_ w acetate sheet and place the membrane between the new sheet 

 ette up the supersignal from the wet sheet and add a drop or two to the dry sheet s

mbrane does not dry out too much   

_ e membrane on Fluor-S machine: 

 a. Open the top compartment and raise the bottom s
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 b. Pull out the tray under the shield and place the membrane in the center (right side 

 →Fluor-S 

embrane so that the image will be centered 

 ield 

 
 

 of 

up) 

c. Click on Quality One icon and select File

 d. Position and focus the m

 e. From bar menu, select Blot→Chemilluminescent→High Resolution 

f. Close the top compartment and lower the sh

 g. Enter an appropriate time session (usually 480 seconds) and Retrieve 

Note: An immunoblot is a 3-step process used to separate proteins and then identify a specific protein
intere tep separates the protein mixture on a polyacrylamide gel.  The proteins are then blotted 
onto a ose membrane, which binds proteins tenaciously.  The membrane is soaked in a 1° Ab 

lution specific for the protein of interest.  The membrane is then developed in a solution containing a 2° 
 binds to the 1° Ab-coated protein to form a “sandwich” of Ab molecules.  The 2nd Ab is covalently 

dded 

 

 

 

 
 

 

 
 

 

st.  The 1st s
nitrocellul

so
Ab that
linked to an alkaline phosphatase, which catalyzes a chromogenic reaction.  Finally, a substrate is a
and a deep purple precipitate forms, marking the band containing the desired protein. 
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FLOW 
EXPRESSION 

_ arrange procedur ch Bldg, Room 
114) 

aterials: 

_mouse αCD16/CD32 (Pharmingen, cat #01241D, 0.5mg/ml) 
 use 1 µl. of stock solution/ 1 x 106 cells 

tore at 4°C 
_ACK lysis buffer (from Handbook of Flow Cytometry Methods, pg. 145) 
. To make a 10X stock solution:  2. To make working 1X lyse solution: 
.2 g. NH4Cl     Dilute 1:10 (10 ml. stock + 90 ml. dH20 
.84 g. NaHCO3  
.37 g. EDTA    
ring up to volume with dH20 (100 ml. ) 
tore at 4°C for up to 6 months. 
_ Fluorescent IL-10R Ab, Pharmingen (PE) #559914); CD28-PE, Pharmingen (#553297), CTLA-4-PE, 
harmingen (#553720) 
 dilute cell Ab 1:10 (→ 20µg/ml) in wash buffer (PBS + 0.5% BSA + 0.1% NaN3)    
_ Fluorescent Isotype control (PE) (Pharmingen #554685) 
_ Quantibrite Beads (PE) Becton-Dickinson # 340495 

_   1. Resuspend cells = 2 x 106/ml. in RPMI 

_   2. Place 500µl. (or 1 x 106 cells) into each of pre-labeled 1.65 ml. tubes  

(total of 30 tubes per culture time (3 diets x 5 mice/group x 2 mouse species) 

⇒ make sure to include controls  

• Only 7-AAD 

• Only PE 

• Isotype control 

_   3. Add 1µl. of 0.5 mg/ml of αCD16/CD32 to the cells.  Gently vortex 

⇒ this process blocks the Fc receptors, which prevents nonspecific binding of the fluorescent Ab to 

the cells.  This eliminates false positive signals 

_   4. Allow the cells to sit for 10 min. at RT  

⇒ meanwhile, spin IL-10R and Isotype Ab tube at 16,000 x g for 20 min. @4°C to pellet aggregates 

__   5. Add 20µl. of 7-AAD to each sample.  Vortex gently and allow to incubate in dark at RT for 10 min. 
  ⇒ these samples can no longer be fixed with paraformaldehyde 

CYTOMETRY FOR CELL SURFACE RECEPTOR 

(from the Chapkin Lab, Lan Ly) 
 
 
_ e with Dr. Roger Smith (rosmith@cvm.tamu.edu) 845-3293; Vet Resear

 

M

 _
⇒
__7-AAD viability probe (Pharmingen, cat #555816) 
⇒ use 20 µl of stock solution/ 1 x 106 cells 
__Wash Buffer (1 XPBS + 0.5% BSA + 0.1% NaN3, pH 7.4) (for BSA, use fraction-free #100030 or 
100018 (different size) from Boehringer Mannheim) 
0.5 g. BSA  (sprinkle on top and wait for it to dissolve, do not try to stir) 
0.1 g. NaN3
Bring up to volume with PBS (100 ml) 
S
_
1
8
0
0
B
S
_
P
a.
_
_

 

_

_

 

_

 

_
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__   6. D

• 1:10 (20µg/ml) ⇒ 360µl. Ab otal of 7200ul.) 

_   7. Dilute fluorescent Isotype control Ab (stock: 200ug/ml) in wash buffer 

_   200µl. of diluted fluorescent IL-10R or Isotype control Ab to appropriate tube except “control”. 

 (Final Ab conc._4µg_) 

oil) for 30 min. at RT 

buffer from 10X 

.  Remove all but 100 µl. of supernatant 

 the 

 min. at RT.  Decant.  

bes with wash buffer and repeat step 12.   

 PE beads b  adding .5 ml. w

alues f lot #_________: 

 Mean # of PE molecules/bead 
Low  ____________ 

Med-High  _____________ 

 for analysis 

 

 in each tube and thus, the 

ilute fluorescent IL-10R Ab (stock: 200µg/ml) in wash buffer: 

 + 3240µl. wash buffer x2 (for a t

 _

• 1:10 (20ug/ml) ⇒ 30ul. Ab + 270ul. Wash buffer x2 (for a total of 600ul) 

8. Add _

Gently vortex

__   9. Allow cells to incubate in the dark (wrapped in aluminum f

 ⇒ meanwhile, prepare 1X ACK lysis 

__   10. Spin cells at 300 x g for 5 min. at RT

__   11. Add 1ml. of 1X ACK lysis buffer to lyse RBCs.  Gently vortex and allow to incubate at RT, in

dark, for 10 min. 

__   12. Spin cells down at 300 x g for 5

__   13. Fill tu

__   14. Fill tubes with 300 µl. wa  sh buffer 

__   15 Prepare y  0 ash buffer to tube and gently vortex: 

   V or 

                                               Bead level 
    
   Med-Low  ____________ 
   
    High  _____________ 
__   16. Wrap samples in foil and submit to Dr. Roger Smith

• bring zip disk to copy results file 
 

 

Notes: The flow cytometer will give the percentage of cells conjugated to FITC
percentage of each cell type. 
FACS on the light scattering 

roper cell types.  Gates are set by the technician.  A cell that binds a 
bele t does not, will not.  A histogram will show that the non-T-cells 

prod e o the left while the labeled T-cells produce a peak shifted to the right. 

 

gates (the cells that the flow cytometer actually counts for analysis) are based 
p ties which are inherent in specific 
la d Ab will fluoresce whereas one tha

uc a peak shifted t

 

   



  133  

IL-10 ko Mouse Genotyping 

__   
__   easy

__   Pl 306-016) 
__   St  #1044-01-9) 

   4% N 927) 
_   Scal

Tail sn

(Chapkin Lab, Lan Ly) 
 

Materials: 
Silver nitrate applicator (Grafco #1590) 
DN  Kit (Qiagen # 69504) 

__   PCR primers (IL10T1.4 (87), IL10AS (86), and NEO5 (88) 
atinum PCR Supermix (Invitrogen #11
rip-Ease PCR tubes (Robbins Scientific

__   0.5X TBE Buffer (for EtBr gels) 
__ uSieve 3:1 Plus agarose gel (1X TBE Buffer + EtBr) (Reliant # 54
_ pel, forceps 
__   microcentrifuge tubes 
__   LN2 
 

ips 
 Using a scalpel, sn__   1. ip ~0.5cm. of the mouse tail  

sh freeze in LN2 
is 
ld for ~20 sec until no bleeding has stopped)  

__   2. Place the tail into a labelled microcentrifuge tube and fla
 ⇒ sample can be stored at -80°C for later analys
__   3. Seal the mouse’s tail by applying silver nitrate (ho
 
DNA isolation  
__   1. Pre-heat a shaking water bath (Belly Dancer) to 55°C (use thermometer) 
__   2. Allow samples to come to room temperature 
__   3. Follow the DNeasy protocol for ro t tden ails  from the DNeasy Qiagen kit 
 ⇒ make sure to keep everything RNase Free! 
__   4. DNA samples can be stored at -80°C or proceed with PCR 
 
PCR (keep everything RNase Free) (perform in PCR hood) 
__   1. Label PCR tubes for each sample (make sure to include positive an
__   tinum Supermix into each tub

d negative controls) 
e 

e tubes 
pe samples, pipet… 

  0.4µl  86 primer (5’-GTG GGT GCA GTT GTC TTC CCG-3’) (24 bp; IL-10T 2.2 anti-sense IL-10 

__   6. Cap PCR tubes tightly using the capping tool 
__   7. Briefly spin tubes down  
__   8. Run PCR reaction (GeneAmp PCR System) 

 Program: User→ Lan→Tails (~20min) 
 Once 20min is over for this program, immediately start Tails2 (~1hr) 
 Samples can be stored at 4°C  

Southern Blot 

2. For 50µl.. reaction, pipet 45µl of Pla
NA sample to appropriat__   3. Add 2µl. D

__   4. For wild-ty

primer) 
 0.8µl. 87 primer (5’-GCC TTC AGT ATA AAA GGG GGA CC-3’) (23 bp; IL-10T 1.4 anti-sense IL-

10 primer  
__   5. For knock-out samples, add… 

 0.8µl  87 primer 
 0.4µl  88 primer (5’-CCT GCG TGC AAT CCA TCT TG-3’) (20 bp; IL-10 KO NEO 5 anti-sense 

strand 

 
(keep everything Rnase Free!) 

__   1. For each sample, pipet 10µl sample + 1.1µl dye (10 X TAE) in a microcentrifuge tube 
 Include a ladder (Hyperladder IV (Bioline, 100-1000bp): 2µl ladder + 6µl H20 + 2µl 5X loading 

buffer) 
__   2. Spin tubes down briefly
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__   3. Heat samples to 65°C for 5min in heating block 
 ⇒ in the meantime, set up gel 

• Position 4% NuSieve EtBr agarose gel in gel nit (stored in walk-in freezer) 
r gel with 0.5X TBE buffer 

gel wells 
d run gel for ~40min. 

lluminator (UV lamp) 

 

 u
• Cove

__   4. Spin tubes down briefly 
__   5. Carefully pipet samples into 
__   6. Set power source at 200V (for lid, red plug is at bottom) an
__   7. Take gel out of plastic mold and image on Transi
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