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ABSTRACT

Analysis, Comparison and Modi�cation of

Various Particle Image Velocimetry (PIV)

Algorithms. (December 2004)

Carlos Eduardo Estrada Pérez, B.S., Universidad Autónoma Metropolitana (UAM)

Chair of Advisory Committee: Dr. Yassin A. Hassan

A program based on particle tracking velocimetry (PTV) was developed in this work. The

program was successfully validated by means of arti�cial images where parameters such as radius,

concentration, and noise were varied in order to test their in�uence on the results. This program

uses the mask cross correlation technique for particle centroid location. The sub-pixel accuracy is

achieved using two di�erent methods, the three point Gaussian interpolation method and the center

of gravity method. The second method is only used if the �rst method fails. The object matching

algorithm between frames uses cross correlation with a non binarized image.

A performance comparison between di�erent particle image velocimetry (PIV) and PTV al-

gorithms was done using the international standard PIV challenge arti�cial images. The best

performance was obtained by the program developed in this work. It showed the best accuracy,

and the best spatial resolution by �nding the larger number of correct vectors of all algorithm

tested.

A procedure is proposed to obtain error estimates for real images based on errors calculated

with experimental ones. Using this procedure a real PIV image with 20% noise has an estimated

average error of 0.1 pixel.

Results of the analysis of 200 experimental images are shown for the two best PTV algorithms.
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INTRODUCTION

LITERATURE REVIEW

This thesis follows the style of Measurement Science and Technology.

Turbulence has been investigated for more than a century, and still there is not a complete

understanding of the phenomena governing it. Approaches adopted to study turbulence are directed

by theoretical, numerical, and experimental techniques, and considerable progress has been made

by the contribution of these techniques.

Theoretical Analysis

In the development of a theory for turbulence, there are three major approaches which have received

considerable attention, namely the statistical, phenomenological, and numerical approaches.

In the statistical theory of turbulence all quantities are decomposed into the sum of a time

averaged part and a �uctuating part and then substituted into the Navier-Stokes equations and

the mass and energy conservation laws. The equations are then averaged in order to obtain a

set of equations that describes the mean behavior of turbulent �ows (Tennekes and Lumley 1972).

Unfortunately, the nonlinearity of the equations results in more unknowns than governing equations.

Further relationships can be developed using various moments of the conservation laws, but these

additional manipulations inevitably introduce still more unknowns. This is the �Closure Problem�

of the Statistical Theory of Turbulence. To attack this problem several approaches have been

suggested: a mathematical approach, where arbitrary simpli�cations of the existing equations are

made by dropping terms or by expressing them in convenient forms suggested by analogy with

laminar �ow; a physical approach where speci�c models of turbulent activity were used to establish

new relationships; and a combined approach where both mathematical and physical arguments are

used (Frost and Mouldin 1977) .

Phenomenological or semi-empirical theories combine heuristic arguments and empirical data

to predict the gross phenomena arising from turbulent activity. The goal of the phenomenological

theories is to obtain a functional dependency for the Reynolds stress directly. Such theories are:

Boussinesq's Theory, Prandtl's Mixing Length Theory, Taylor's Vorticity-Transport Theory, Von

Karman's Similarity Hypothesis, etc.
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The phenomenological theories assume some simple mechanism for turbulence and then derive

from this the desired relation for the Reynolds stress. Unfortunately, none of them gives a complete

physical picture, nor a comprehensive mathematical model (Brodkey 1967).

Numerical Techniques

Conceptually, numerical techniques can be used to analyze almost any �ow �eld. In a turbulent

�ow �eld, where both small and large scales of motion coexist, a mesh size small enough to resolve

the smaller scales is needed. At the same time, the number of grid points has to be large enough

in order to include the large scales of motion as well. Considering that the di�erence in magnitude

between the small and large scales for high Reynolds numbers can be of the order of 104 to 105,

the resulting number of grid points needed to solve the problem is extremely large and makes this

approach unfeasible except for very low Reynolds numbers. An example of such �ow �eld is the

turbulent channel �ow studied by Mossi and Sagaut (2003). Their numerical simulation required

317,135 grid points (41 x 65 x 119 in x, y, z) for a Reynolds number of 3000. Even the best and

fastest computers today are not able to handle similar Navier-Stokes direct simulations with the

number of grid points required for engineering Reynolds numbers.

Although the recent theoretical and computational developments of turbulence have provided

many insights into its mechanisms, the majority the researchers today are still using experimental

information to validate existing theories and simulations.

Experimental Research

The shortcomings of all the methods and techniques described above has put a great deal of em-

phasis on experimental research. Researchers have been using both qualitative methods such as

�ow visualization, and quantitative methods such as hot wire anemometry, laser Doppler velocime-

try, streak photography, pulsed laser velocimetry, and various other imaging techniques, to try to

understand the mechanisms of turbulence. The next sections give a short introduction to each of

these �uid analysis techniques.

Flow Visualization Techniques Flow visualization techniques provide valuable information

about the behavior of the entire �ow �eld but are not usually intended to provide quantitative

velocity data. Using �ow visualization, the �uid in a large region can be simultaneously observed.

This allows the researcher to get a vivid, global and detailed picture of the physical process tak-

ing place in the �ow, but the interpretation of such data is very subjective. Nevertheless, �ow

visualization has been a useful tool in the hands of turbulent �ow researchers for many years and
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has brought many breakthrough discoveries. Examples of such discoveries include: the ejections

and bursts that occur locally and randomly in space and time in a turbulent wall �ows, (Corino

and Brodkey 1969), the hairpin vortices in the boundary layer (Head and Bandyophadyay 1981)

and the coherent structures which dominate the mixing layer (Brown and Roshko 1974). Other

excellent studies were done by O�en and Kline (1974) where they used two basic �ow visualization

techniques, dye injection and hydrogen bubble generation to study the turbulent boundary layer

over a �at plate, and by Nychas et al (1973) where they used high speed photography to record

the motion of very small solid particles in the outer region of a turbulent boundary layer along a

�at plate. Praturi and Brodkey 1978 used stereoscopic photography and they identi�ed the axial

vortex motions in the turbulent wall region because they were able to catch the three-dimensional

aspects of the �ow. Up until recently, very little quantitative information could be extracted from

the �ow visualization images because of the time required to manually extract the data.

Hot Wire Anemometer For more quantitative measurements, hot wires have been used in

many di�erent con�gurations by researchers for a long time. The hot wire anemometer is basically

a thermal transducer. It consists of a very thin, short, metal wire, heated by electrical current.

Its operation relies on the fact that the �owing �uid cools the wire, causing a temperature drop

and that temperature drop is related to the instantaneous velocity of the �ow �eld at the point of

the measurement (Hinze 1975). The hot wire system has two modes of operation. The �rst is the

constant current mode, where the current in the wire is kept constant and variations in the wire

resistance caused by the �ow are measured by monitoring the voltage drop variations across the hot

wire, the second is the constant temperature mode, where the metal wire is placed in a feedback

circuit which tends to maintain the wire at constant resistance and hence at constant temperature

(Perry 1982). While being widely used, hot wire anemometry su�ers from many drawbacks. The

small size of the wire (of the order of 5 µm in diameter) makes it unsuitable for use in harsh

environments such as combustion �ows (Goldstein 1983) and it can not be used to study practical

problems such as separated �ows with high turbulence intensities and �ow reversals. Hot wire

anemometers are also sometimes inaccurate to obtain measurements very close to a solid boundary.

Multiple hot wires can be used simultaneously to determine multiple velocity components but such

probes produce more disturbances in the �ow �eld and the measurement volume becomes large with

respect to the smallest turbulence scales. Furthermore, measurements are made at a single point in

space and spatial information would be useful to further understanding of turbulence. The pulsed

wire anemometry technique was developed by Bradshaw (1971). In essence, the probe consists of

three thin wires mounted short distances apart. The two �receiver� wires are mounted on either
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side of the �transmitting� wire at right angles to it. The �transmitting� wire is heated periodically

with a pulsed current and the resulting streaks of heated �uid are convected downstream by the

�ow. The �receiving� wires operate in the same manner as a normal hot wire anemometer. The

time elapsed between the release of a hot streak by the �transmitting� wire and its detection by

either of the �receiver� wires is recorded electronically and then converted into velocity. The sign

of the velocity is determined by noting which of the two �receiver� wires receives the pulse. This

technique is independent of the properties of the �uid and gives direct measurement of the velocity.

It can also be used to measure velocities in very high turbulence regions. However, it su�ers from

large probe interference, poor spatial resolution and a very poor frequency response because the

time interval between pulses can not be less than the smallest passage time between wires.

Laser Doppler Velocimetry The �rst laser Doppler velocimetry (LDV) was described by Yeh

and Cummins (1964) and since then, there have been numerous developments of both the optics and

the processing electronics of the system. The LDV technique utilizes the Doppler e�ect to measure

instantaneous velocity of small particles embedded in the �ow. When a particle passes through the

measurement volume formed by focusing two laser beams, it scatters the light. The scattering light

is at a di�erent frequency from that of the incident beam and the particle velocity can then be

determined by measuring the Doppler shift of the scattered light. LDV presents some advantages

over the hot wire anemometry techniques such as, no �ow interference (since the probing is purely

optical) and direct velocity measurement without calibration regardless of the velocity �eld.

Furthermore, the technique is quite accurate, but its spatial resolution is not very good and its

costs are high. The technique relies on seeding the �ow with small scattering particles.

To overcome the limitations of single point measurements, new techniques have been devised

which draw from the advantages of �ow visualization while providing quantitative information about

the spatial structure of the �ow. The development of relatively inexpensive digitizing cameras and

digital computers, as well as the development of elaborate software, has now allowed the researchers

to develop techniques to extract full �eld, quantitative information from �ow visualization of images.

Streak Photography Streak photography is the oldest and simplest method of experimental

multi-point velocity measurements. The �ow is seeded with particles, and the �uid velocity can

be measured as a function of time by tracking the particles down through a succession of multiple

exposure recordings or multiple frame techniques. Dimotakis et al (1981) used sawdust as tracer

particles, and using streak photography, they investigated a turbulent shear layer by measuring two

components of the velocity �ow �eld. Sheet lighting is necessary to de�ne the plane of �uid motion.
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This can present a problem due to the fact that when the particles move out of the light sheet in

a three-dimensional �eld, their streaks are wrongly interpreted as low velocities. A solution to this

problem was given by Kobayashi and Ishihara (1985). They used �uorescent particles stimulated

by a light pulse. Because of the �uorescence, the particles did not have to remain within the

light sheet, and their �uorescent tails could be observed for the complete duration of the exposure,

enabling the determination of their velocities and directions (Adrian 1986). Velocity measurements

using streak photography have a large associated error when the length of the streak is small. Also,

when the mean distance between tracers is of the same order of magnitude as the distance a tracer

particle travels during the exposure time, streak photography fails to provide accurate results.

Thus, the tracer concentration is usually kept small resulting in velocity measurements with poor

spatial density. Involved interpolating methods have been designed in order to increase the spatial

resolution of the technique, but their validity is questionable if the distance between the existing

data points is larger than the turbulent �ow scales (Lourenco 1986). Multiple frame techniques

such as conventional motion pictures or multiple exposures on the same frame can be used. Nishino

and Kasagi (1985) �lmed the motion of small patches of hydrogen bubbles in a turbulent boundary

layer.

Pulsed Laser Velocimetry The availability of high power laser sources together with fast digital

processors led to the development of sophisticated whole �eld velocimetry techniques such as laser

speckle velocimetry (LSV), particle image velocimetry (PIV) and particle tracking velocimetry

(PTV). These techniques provide the simultaneous visualization of the two-dimensional streamline

pattern in unsteady �ows as well as the quanti�cation of the velocity �eld over the entire plane.

LSV and PIV have been established as two operating modes of the same method (Adrian 1984)

and they di�er simply by the concentration of tracers used to seed the �uid.

The common measuring principle behind these methods is that instantaneous �uid velocities

can be evaluated by recording the position of images produced by small tracers, suspended in the

�uid, at successive time instants. The underlying assumption is that these tracers closely follow,

with minimal lag, the �uid motion. This assumption holds true for a wide variety of �ows of interest

provided that the tracers are small enough and/or that their density approaches that of the �uid.

Besides their common goal LSV and PIV, on one hand, and PTV on the other hand do not

share the same historical development and practice. An important di�erence is that in LSV and

PIV, the concentration of tracers is rather high and the measurement of the �local� �uid velocity

results from an average over many tracers contained in a measurement volume (cell). The cell is

usually regularly spaced and its size determines the spatial resolution. This is in contrast with
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PTV where the velocity is determined at random locations using the images produced by a single

tracer. PTV has evolved as a method of extracting quantitative information from conventional �ow

visualization data, such as streak photography or multiple exposure photography Kobayashi and

Ishihara (1985). While this methods excel as a means for fast and easy mapping of the �ow basic

structures, they fail in providing an accurate velocity �eld map with high spatial density.

Typically, the evaluation of the particulate displacements directly from their images, such as

evaluating streak length or spacing between successive images of the same tracer, requires processing

large amounts of data and rather sophisticated software. In addition, the measurement errors

become large when the mean distance between tracers is of the same order of magnitude of the

streak length, or the spacing between successive particle images. As a consequence, the tracer

density is kept small, resulting in velocity measurements with poor spatial resolution. The problem

of having sparse velocity information at random locations has been addressed with the introduction

of rather sophisticated interpolating schemes. However, the validity of this approach is questionable

considering that in most cases the spacing between data points is larger than the �ow scales, and

the velocity may be interpolated at best with �rst order accuracy (Riethmuller 2001).

The overall accuracy of PLV techniques depends on the accuracies which can be achieved in

the photographic procedure and the Imaging techniques to implement. Work to study and improve

the photographic procedure was done by Russ et al (1988) where parameters like illumination and

contrast were changed to obtain better images, the minimization of the obstruction of the grid used

and the visibility of the particles was investigated. Also, the color of the particles was analyzed by

digitizing the images and obtaining the average R, G and B values out of them.

Imaging techniques are used after an image has been obtained using one of the methods described

above. They are basically divided into two categories: image processing, which is concerned with the

generation of new images from already existing ones (�ltering, noise reduction, edge enhancement,

etc.) and image analysis, which is the task of obtaining useful information from the image. Image

analysis is subject to the individual interests of each researcher an it includes image enhancement,

particle detection, particle tracking, image cross correlation, velocity averaging and evaluation of

error.

Nowadays, PIV and PTV techniques have gain big popularity between turbulence researches

around the world because of their improved overall performance, several projects of cooperative

nature had been created to set standards to evaluate the accuracy and performance of di�erent

image analysis algorithms. One example of the use of the standardized evaluation is the work of

Tetsuo et al (2001). They used an iterative cross correlation PTV algorithm, and report an average
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error in the particle centroid position detection of 0.05 pixel and an average error in the velocity

vector of 0.05 pixel, using arti�cial standard images (Okamoto et al 1998).

Works to reduce the disadvantages inherent of PIV and PTV have been developed; hybrid

algorithms combine PIV and PTV characteristics to obtain the so called hi resolution particle

velocimetry (HIRES-PV) (Van der Plas and G Bastians 1998). HIRES-PV uses PIV to give a

preliminary estimate of the velocity that will be used by the PTV tracking routine to search smaller

regions for a particle match. Thus seeding density can be increased and the spatial resolution,

compared with a traditional PTV algorithm, is improved, the added noise due to interpolation

techniques is reduced, and the �nal result is better than typical PIV techniques because PTV is

inherently less a�ected by the presence of large displacement gradients.

OBJECTIVE

Several e�orts have been directed to determine the error induced by di�erent imaging techniques

with the use of arti�cial images where all objects and �uid characteristics are known and controlled,

and the error associated with calculated values such as particle size, particle centroid location and

particle velocity is easily obtained. When dealing with real experimental images this error analysis

must be indirectly calculated using, as a base, a previous error analysis of arti�cial images that

mimic the experimental ones. Di�erent arti�cial images are needed for each di�erent experiment.

Imaging technique parameters will depend on the researcher goals and interests. For example,

when working with turbulent two-phase �ow, the researcher might be interested only in the infor-

mation of the liquid phase; therefore, the parameters used to enhance the image and to obtain an

object location will di�er from the parameters used when trying to �nd information of the gaseous

phase. Therefore, di�erent algorithms of imaging techniques must be tested to obtain their optimal

parameters in order to extract real and accurate quantitative information from the images.

This work is intended to answer some of the previous questions. Several imaging techniques

will be tested, one to obtain an accurate error value of the resulting velocity �eld, secondly to

choose which imaging technique is more suitable for a given experiment and thirdly, to modify and

improve the currently used imaging techniques to satisfy a speci�c study of a turbulent two-phase

�ow. Hence, the objective of this research is summarized as:

- Use the international standard arti�cial images and the home made arti�cial images

to test and compare di�erent imaging techniques.

- Analyze the in�uence of the imaging techniques parameters on the results.
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- Analyze the in�uence of objects characteristics like size, concentration and noise on

the results.

- Develop a stand alone PTV windows application capable to obtain velocity vectors

with high accuracy.

- Suggest a systematical method in order to obtain the best statistical results from

experimental images.

- To obtain estimated experimental errors from the analysis of arti�cial images.
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PROCEDURE

This section is a step by step description of the procedure used in order to meet the objectives

of the study.

GENERATION OF IMAGES

Three types of images were used in this research: home made arti�cial images, standard arti�cial

images and experimental images. The details of the generation or acquisition of them is given in

the next sections.

Home Made Arti�cial Images

Home made arti�cial images were generated in order to mimic a broad class of real images obtained

from the actual implementation of PIV by simulating the behavior of speci�c �ow �elds to test

the performance of the di�erent imaging techniques under extreme cases likely to happen in real

experiments. Every image is computer digitized with a sampling of 500 x 500 pixels and 8 bit

depth, where the image sampling is the display area in pixels, and the gray-scale represent the

maximum number of allowed gray levels that a pixel can have; the resolution (i.e. the degree

of discernible detail) of an image is strongly dependent on image sampling and gray scale. The

more these parameters are increased, the closer the digitalized array will approximate the original

image. However, the resolution is limited by several factors. The better the resolution is, the

greater the storage space and processing requirements are. Furthermore, the resolution selected to

produce these images is such that they will mimic the output pictures from the CCD camera used

in this work, having both approximately the same average dimensions and behavior of the objects

represented in the pictures. In this array of 500 x 500 pixels, the entities represented in the image

are hypothetical particles and bubbles embedded within an ideal black background.

The specialized option of having di�erent objects within an image gives the opportunity of

creating �bubbles� that will di�er in size, gray scale distribution, shape, concentration, and velocity

from the objects representing particles. This is the only feature that the international standard

images does not have, and therefore this is one the main reasons why the home made images

generation is justi�ed, the �nal goal is to evaluate the performance of imaging techniques when

analyzing experimental images of a two phase turbulent �ow.

Object Generation As mentioned before, the objects generated within the arti�cial images are

essentially three: objects that represent solid particles, bubbles and background.
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The background is considered to be �uid, having the same size as the image, 500 x 500 pixels.

Ideally, the gray level for each pixel representing the background can be set to zero (black), but

in a real PIV picture the background will be a�ected by multiple factors: experimental set up,

photographic processes, re�ections from the �uid container, digitizers and even the environment

where the picture is taken. All these factors are �noise� that reduce the image quality. In order to

imitate a realistic background arti�cial images are modi�ed by adding Gaussian additive noise.

The gray scale intensity of pixels representing an object (particle or bubble) will follow a

�Gaussian-like� function expressed by:

I(x, y) = I0exp

(
− (x− xo)2/a2 + (y − yo)2/b2

2d2
0

)
(1)

where I(x, y) is the gray scale intensity in the position (x, y) in pixels, (xo, yo) is the object centroid

location, I0 is the maximum intensity of the object, a and b are shape modi�er parameters and do

is the particle diameter in pixels. When a pixel is part of two objects, the value of its gray scale

intensity I(x, y) is calculated as the simple average of the intensities in that pixel for each object.

The values for the previous parameters are chosen considering that arti�cial objects must be like

real objects represented in the experimental images. Therefore, an a priori study of the experimental

images must be done to obtain values for size, intensity and shape of objects. Even though real

objects may have the same size and shape, they can appear di�erently from each other depending

on their orientation on the plane where the picture is taken and the possible existence of shadows

due to other particles.

Based on this broad set of assumptions, every image is generated according to a speci�ed set of

parameters. These include the number of particle (Np), number of bubbles (Nb), minimum and max-

imum radius for particles (drmin
, drmax

), minimum and maximum radius for bubbles (drmin
, drmax

),

minimum and maximum gray scale intensity for particles (Ipmin , Ipmax), minimum and maximum

gray scale intensity for bubbles (Ibmin
, Ibmax

) and the image size in pixels on x and y direction

(Lx, Ly).

Shown in �gure 1 are the similitudes of arti�cial and experimental images. A Gaussian noise

of 10% was added to arti�cial images in �gure 1(a) and in �gure 1(b) to increase the realism. In

�gure 1(c) and �gure 1(d) are the results of applying image processing to diminish re�ections and

noise inherent to the experimental processes.
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(a) (b)

(c) (d)

Figure 1: (a) Arti�cial image with 2000 particles and 10% Gaussian noise, (b) arti�cial image
with 2000 particles, 200 bubbles and 10% Gaussian noise, (c) experimental single phase image, (d)
experimental two phase image

Since physically all values of the allowable x coordinates (xo) and y coordinates (yo) are �equally

likely� to occur, the object center coordinates were generated by a random number generator.

Speci�cally, the coordinates of the centers of each object are calculated as follows:

xo(i) = ξLx and yo(i) = ξLy (2)

where ξ is a uniform randomly distributed deviate which takes values between 0.0 and 1.0 , xo and

yo are the coordinates of the center of the object (i). Similarly the size of the objects do and their

maximum gray scale intensity Io are chosen from the random number generator.

Direction Field Generation One of the goals of the home made arti�cial images is to generate

velocity �elds that represent challenges for the imaging techniques. The methodology employed to

achieve this task is explained next.
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For the direction �eld generation, a graphical method is used for displaying the general shape

and behavior of solutions to y′ = f(x, y). This method uses Euler's lineal element algorithm, where

each lineal element is a short line segment centered at the initial object center (xi, yi). The ending

point (xf , yf ) of the segment is then computed by the Euler approximation:

xf = xi + t yf = yi + tf(xi, yi) (3)

A detailed example of this procedure is shown in Appendix A.

In �gure 2, examples of di�erent directional �elds are shown. Figure 2(a) is the simulation of

a single phase �ow with 1500 particles with a radius from 0.5 to 3 pixels following a directional

�eld with y′ = −x/y. Figure 2(b) is also the simulation of a single phase �ow with 1500 particles

with a radius from 0.5 to 3 pixels following a directional �eld of with y′ = y/x, and �gure 2(c) is

the emulation of a two phase �ow, with 1000 particles with a radius from 0.5 to 1 pixels and 1000

bubbles with a radius from 1 to 3 pixels, the particles follows a directional �eld with y′ = −x/y,

and the bubbles follows a directional �eld with y′ = −x/y. Three main characteristics make the

previous images a challenge to imaging techniques. First, the fact that there exists a huge di�erence

of velocities ranging from nearly 0.1 pixels per unit time to almost 18 pixels per unit time, makes

the analysis especially complicated. Previous knowledge of the behaviour of the �ow can't be

used as a basis to help decrease the searching area to match particles. Secondly, the existence of

counter-current is another factor that increases the probability of failure of the tracking algorithms.

Third, the di�erent characteristics between bubble and particle objects like directional �eld, size,

and shape tests the accuracy of object identi�cation.
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(a)

(b)

(c)

Figure 2: Examples of home made arti�cial images directional �elds (a) strong vortex with high
velocity gradient in the center, (b) explosion-like �eld (c) simulation of two phases, each phase
following di�erent directional �elds

International Standard PIV Arti�cial Images

The objective of using international standard PIV arti�cial images images is having a mean of com-

parison between the image analysis techniques studied in this work. One important characteristic

of the standard arti�cial images is the world wide recognition and distribution. They are available
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from the Internet, and the personalization of parameters for the generation of such standard images

makes them even more attractive. Two main characteristics are considered in the generation of

these images (Okamoto et al 2000):

• A two-dimensional laser-light sheet is illuminated in the transient/steady three-dimensional

�ow �eld, that is the two-dimensional measurement of the three-dimensional velocity �eld.

• The tracer particles is a micro-sphere with hypothetical scattering. The size of the particle is

large enough for one to identify the individual particles.

These assumptions mostly cover any of the two-dimensional PIV techniques.

Velocity Field The target �ow �eld should be precisely known for the standard images. The

�ow �eld should also include the three-dimensional velocity information. The velocity distribution

calculated by using the three-dimensional large eddy-simulation (LES) code has been selected as

the target �ow �eld (Tsubokura et al 1997). The two-dimensional planar jet impinges on the wall

at jet Reynolds number 6000, which corresponds to turbulence. Lots of vortexes with various scales

exist in the �ow �eld. The simulation volume is 53B x 10B x 3.9B for the x, y and z directions,

where B is the nozzle width. The volume is divided into 300 x 100 x 34 meshes with variable mesh

sizes. The �ow �eld has been solved by the LES technique. The instantaneous three-dimensional

velocity distribution at any point can be extracted from the simulation results.

The standard images were downloaded from the web site http://www.vsj.or.jp/piv, and is a

contribution of the Visualization Society of Japan (VSJ). Examples of these images are shown in

�gure 3 where a consecutive pair is shown in (a) and (b), and �gure 3(c) is the velocity �eld.

(a) (b) (c)

Figure 3: Okamoto standard images (a) t = 0, (b) t = ∆t, (c) velocity �eld

Other standard arti�cial images used in this work are the ones generated for the �rst interna-
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tional PIV challenge (Okamoto et al 2003). The �ow �eld is a strong vortex generated numerically,

using the Japanese standard image project synthetic image generator (www.vsj.or.jp/piv). The

particle distribution in the �ow was assumed to be Gaussian. The occlusion of particle images was

taken into account (the intensity of the particle images was linearly added). The camera �ll factor

was taken as 0.7. The particle diameters were randomly distributed following a Gaussian law. The

laser light sheet intensity distribution was supposed to be Gaussian. The maximum out-of-plane

velocity component was set so that the maximum displacement normal to the plane is 30% of the

light sheet thickness. The images generated were 512x512 in size with a depth of eight bits. Six

di�erent image sets were used to vary the particle image characteristics, both for PIV (small par-

ticle images: B001, B003, B005) and for PTV (large particle images: B002, B004, B006). The

second varying parameter for each set was the particle concentration, �gure 4 shows the �rst image

for two extreme cases: B001 (high concentration, small particles) and B006 (large particles, low

concentration).

(a) (b) (c)

Figure 4: PIV challenge images (a) image B001_1, small particles high concentration, (b) image
B006_1 large particles low concentration, (c) approximated velocity �eld

Experimental Images

The experimental images used in this work come from an experiment to study drag reduction in a

two-phase �ow turbulent channel. The channel is made of 12.7 mm thick plexiglas. Its dimensions

are: length 4.83 m, 20.5 cm wide and 5.6 cm height. Nozzles are placed at both ends to allow quick

production of a two-dimensional �ow. The inlet nozzle has plastic screens and �ow straighteners

(plastic straws). 175 �ow straighteners are set in this nozzle. Their diameter is 4.5 mm internal

diameter. The mesh size for the screens is about 1.5 mm2. The maximum �ow currently achievable

is 2.6x10−3m3/s. The maximum averaged cross section velocity in the channel is 22.7x10−2m/s.

The test section is located over 68 channel heights in the downstream direction ensuring fully
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developed �ow.

The illumination is given by a 350 mJ/pulse Spectra Physics Nd:Yag twin-laser with a wave-

length of 532 nm (green rage of visible light). The laser generates two 7 ns pulses with a variable

time span between them. The time between pulses was kept constant during all the experiments

at 1 msec. The laser sheet has a thickness of 1 mm. A high-resolution camera was focused onto

the light from the side, with the focusing lens of the camera at a distance of 33.5 cm from the light

sheet. For this experiments the particles used as seedings have an average diameter of 6 µm with a

density similar to the density of the water, speci�c gravity of 1.05. Its refraction index ful�lls the

PIV requirements. The particle model is Expancel 091 DU (dry-unexpanded). An example of the

experimental images is shown in �gure 1.

IMAGE PROCESSING

The image processing, or image enhancement, principal objective is to process a given image so

that the result is more suitable for a speci�c application. The word �speci�c� is important because

it establishes at the outset that the techniques discussed are very much problem-oriented. Thus,

for example, a method that is quite useful for enhancing x-ray images may not necessarily be the

best approach for enhancing PIV pictures.

In this work, the image processing techniques used are equalizing, logarithmic gama correction,

averaging, smoothing and thresholding. Details of each technique and some basic concepts are

explained next.

Histogram

The histogram of an image indicates the quantitative distribution of pixels per gray-level value. It

provides a general description of the appearance of an image and helps identify various components

such as background, objects, and noise. The histogram is a function H(k) de�ned on the gray-scale

range [0, ..., k, ..., 255] such that the number of pixels having equal gray-level value k is

H(k) = nk (4)

where k is the gray-level value, nk is the number of pixels in an image with a gray-level value equal

to k.
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Spatial Domain Methods

On the attempt of improving the original image, the histogram has to be modi�ed with speci�c

transformation functions. The characteristics of this function depends on the type of approach

selected. There are two approaches in image processing: frequency-domain methods and spatial-

domain methods. Processing techniques in the �rst category are based on modifying the Fourier

transform of an image and are not used in this study. The spatial domain, on the other hand, refers

to the image plane itself, and approaches in this category are based on direct manipulation of the

pixels in an image.

The term spatial domain refers to the aggregate of pixels composing an image, and spatial-

domain methods are procedures that operate directly on these pixels. Image-processing functions

in the spatial domain may be expressed as

g(x, y) = T [f(x, y)] (5)

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator on f , de�ned

over some neighborhood of (x, y). It is also possible to let T operate on a set of input images, such

as performing the pixel-by-pixel sum of k images for noise reduction.

The principal approach used in de�ning a neighborhood about (x, y) is to use a square or

rectangular sub-image area centered at (x, y), as shown in �gure 5, the center of the sub-image is

moved from pixel to pixel starting, say at the top left corner, and applying the operator at each

location (x, y) to yield the value of g at that location. Although other neighborhood shapes, such

as circle, are sometimes used, square arrays are by far the most predominant because of their ease

of implementation.

The neighborhood about (x, y) is sometimes called kernel. The de�nition of the kernel will

depend on the operator T , the kernel can vary in size and shape.
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Figure 5: A 3 x 3 neighborhood about a point (x, y) in an image

The simplest form of T is when the neighborhood is 1x1. In this case, g depends only on the

value of f at (x, y) and T becomes a gray-level transformation (also called mapping) function of

the form

s = T [r] (6)

where, for simplicity in notation, we use r and s as variables that denote the gray level of f(x, y)

and g(x, y) at any point (x, y).

Averaging One example of a gray-level transformation that is very common between PIV re-

searches is the simple average. It is used to subtract the background noise from a set of images.

In this procedure, a model of the background that has to be removed is obtained from the average

of the acquired sequence of frames. The net e�ect is that rapidly moving particles contribute little

to the pixels along their path on average, and therefore, do not appear on the background model.

Only stationary noise is kept into account because it is present in every frame. The background

model is then subtracted to every frame before any further processing. Sometimes the illumination

or other causes of this kind of noise are slowly changing with time. In this case a moving average

is performed in order to obtain a time dependent background model to be subtracted. Consider

a noisy image gi(x, y) that is formed by the addition of noise η(x, y) to an original image fi(x, y);

that is,

gi(x, y) = fi(x, y) + η(x, y) (7)
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If the previous assumptions of rapidly moving particles and a common noise for the whole set of

images, then

ḡ(x, y) =
1
M

M∑
i=1

gi(x, y) (8)

it follows that

E{ḡ(x, y)} = η(x, y) (9)

where E{ḡ(x, y)} is the expected value of ḡ, and ḡ is the average; the next step in the procedure is

to subtract the average to obtain a �clean� image. Subtracting equation 9 to equation 7, we obtain:

gi(x, y)− E{ḡ(x, y)} = fi(x, y)

therefore gi(x.y)− E{ḡ(x, y)} will represent an image without the common noise of fi(x, y) of the

set.

Two major problems occur in this procedure: �rst, slowly moving particles can contribute to the

model and thus may be erroneously eliminated from the images; second, rapidly moving particles

can appear if the number of averaged images is not large enough. However, it is desirable to keep

the image sequence as small as possible to minimize the computational cost and to keep the model

proximate to the real background when moving average is performed.

Histogram Equalization This image enhancement procedure uses a transformation function

that alters the gray-level value of pixels so they become distributed evenly in the de�ned gray-scale

range (0 to 255 for an 8-bit image). The function associates an equal amount of pixels per constant

gray-level interval and takes full advantage of the available shades of gray.

The goal of histogram equalization is to obtain a uniform histogram. This technique can be

used on a whole image or just on a part of an image. Histogram equalization will not ��atten� a

histogram. It redistributes intensity distributions. If the histogram of any image has many peaks

and valleys, it will still have peaks and valley after equalization, but peaks and valley will be shifted.

Because of this, �spreading� is a better term than ��attening � to describe histogram equalization.

In mathematical sense, to explain histogram qualization, consider the transformation function

s = T (r) =
∫ r

0

pr(w)dw 0 ≤ r ≤ 1 (10)
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where w is a dummy variable of integration. The right side of equation10 is recognized as the

Cumulative Distribution Function (CDF) of r. The foregoing development indicates that using a

transformation function equal to the cumulative distribution of r produces an image whose gray level

have a uniform density. This procedure is better explained with �gure 6. The original histogram

of the image is shown in �gure 6(a), where the transformation function to be used is shown in

�gure 6(b). Figure 6(c) represents the output histogram after the transformation. As can be

noticed, the distribution of the histogram is more uniform, but with a reduction of the possible

gray scale values within the image after histogram equalization process, the number of gray scale

values can be reduced but never increased.

(a) (b) (c)

Figure 6: Illustration of the histogram-equalization method. (a) original histogram. (b) transfor-
mation function. (c) equalized histogram

The reason why histogram equalization is used in this work is that detailed information within

the image will be lost when processing raw pictures because the value of gray scale level of this

detailed information is sometimes below a chosen threshold. Therefore by using histogram equal-

ization the gray scale level will be modi�ed, showing the hidden information. As can be seen in

�gure 7(a) much of the information within the image is below a certain value of gray scale, but in

�gure 7(b) more information is available for those image analysis techniques based on gray scale

thresholding.
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(a) (b)

Figure 7: Illustration of the histogram-equalization method. (a) original image. (b) equalized
image

It's important to note that if a previous noise reduction technique is not used before histogram

equalization, the noise will also increase its gray scale value, giving as a result an image impossible

to analyze due to the complexity of distinguishing noise from particles.

Gaussian Smoothing Filter A smoothing �lter attenuates the variation of light intensity in

the neighborhood of a pixel. It smooths the overall shape of objects, blurs edges, and remove

non desired details. Speci�cally, the Gaussian �lter attenuates the variations of light intensity in

the neighborhood of a pixel. It smooths the overall shape of objects and attenuates details. The

Gaussian �lter is an averaging �lter; therefore the transformation function T will be the average.

The kernel is de�ned with the next model

a d c

b x b

c d a

where a, b, c and d are integers, and x > 1.

Because all the coe�cients in a Gaussian kernel are positive, each pixel becomes a weighted

average of its neighbors. The stronger the weight of a neighboring pixel, the more in�uence it

has on the new value of the central pixel. Unlike a smoothing kernel, the central coe�cient of a

Gaussian �lter is greater than 1. Therefore, the original value of a pixel is multiplied by a weight

greater than the weight of any of its neighbors. As a result, a greater central coe�cient corresponds

to a more subtle smoothing e�ect. A larger kernel size corresponds to a stronger smoothing e�ects.

One problem of using this procedure is the loss of detailed information. However it will ensure

that noise will be e�ectively removed, and the redistribution of the gray scale of the pixels that
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form a particle to having a Gaussian distribution, will help the centroid location procedure on those

image analyses that search for such distribution within the particles.

Logarithmic Gamma Correction This image processing expands low gray-level ranges while

compressing high gray-level ranges. It increases the overall brightness of an image and increases

the contrast in dark areas at the expense of the contrast in bright areas. This can be explained

also with �gure 6. But in this case, instead of having the transformation function represented by

�gure 6(b), it will be a logarithmic function.

It's important to note that to have a better result from the image processing techniques, a

combination of the previous discussed algorithm must be carried out. The reduction of noise by

averaging is one procedure that will be always used. If not, the subsequent processes will modify

the noise information constructively, making the discrimination of it harder. For example, a typical

process will follow the next steps:

1. Obtain the average of the whole set of images using averaging technique.

2. Subtraction of the average image (noise) from the original images.

3. Application of the Gaussian smoothing �lter.

4. Application of the logarithmic gamma correction.

Thresholding Thresholding is the process of discriminating pixels depending on the gray scale

value. It is included just before the image analysis processes because it categorizes the pixels of the

image into two main objects: pixels that belong to the background, and pixels belonging to interest

objects such as particles or bubbles. The correct selection of this parameter will help separate

particles that are closely together and get rid of the image inherent noise.
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IMAGE ANALYSIS

The goal of image analysis algorithms is to extract quantitative information from the image

that will describe in detail some characteristics of the �ow. This procedure is commonly applied

just after the images have been processed with an image enhancing technique which is compatible

or helpful to the analysis in question. The �nal result obtained at the end of this procedure is

a velocity �eld that will represent with high accuracy the motion of the �ow. This procedure

can be classi�ed in two major sub-procedures, object identi�cation and object matching, and are

di�erent depending on the program used. The programs analyzed in this work are the home made

programs �MskPTV� and �Fspots and Tracking�, and programs from outside sources �PIV Sleuth�

and �AkaPTV�. These programs are described next.

MASKPTV PROGRAM

MaskPTV is a PTV program for Windows, developed using VB.net. This language was chosen

for its simplicity and versatility which helps in the use of modularized codes from public domain

that can be downloaded from the Internet. This program arises from the fact that in the multiphase

�ow laboratory there is not a friendly and easy to use software capable of extracting information

directly from PIV images. The development of this program is one of the objectives of this work.

Therefore, it will be described in detail in the following sections.

MaskPTV Object Identi�cation and Centroid Location

The object identi�cation procedure classi�es every pixel of the image into objects, each object

having di�erent characteristics assigned by the program user. If a pixel gray scale level is greater

than the threshold, a correlation coe�cient is assigned to it. This correlation coe�cient is calculated

using the mask cross correlation technique. Once a correlation value is assigned to each one of the

pixels, they must be gathered together in groups of pixels that will form an object. Each object

will store information that describes its characteristics, such as the number of pixels belonging to

the object, their positions, gray scale, and correlation value. Once the objects are identi�ed their

centroids are calculated using sub-pixel interpolation. If the interpolation fails, the center of gravity

method is used to locate the center with sub-pixel accuracy. The main algorithms are explained

next.
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Mask Cross Correlation Algorithm

In the MaskPTV program the mask cross correlation algorithm is used not only to locate the central

pixel of the objects, but also to identify pixels that belong to the object. In other words, it can

be used as a �lter by using a threshold for the cross correlation value calculated. The mask cross

correlation coe�cient is going to be identi�ed as C1.

De�nition of an Object Mask An object mask is a typical brightness pattern of a particle

image. It is known as a template in pattern matching. Generally, the brightness pattern of a

particle image has a peak near the center of the image, and the brightness concentrically decreases

as the distance from the peak location increases. In the proposed algorithm, the particle mask is

assumed to have a shape of the two-dimensional Gaussian distribution. Many particle masks have

been proposed, and in this work a two-dimensional Gaussian distribution is used and is expressed

as follows:

I(x, y) = I0exp

(
− (x− x0)2/A2 + (y − y0)2/B2

2r2
0

)
(11)

where I(x, y) is the gray scale intensity in the position (x, y), (x0, y0) is the object centroid location,

I0 is the maximum intensity of the object (positioned almost always in the center), A and B are

shape modi�er parameters, and r0 is the particle radius in pixels. The in�uence of the shape

parameters on the brightness pattern is shown in �gure 8, where r0 = 5. In �gure 8(a), the

Gaussian shape is not modi�ed, having a maximum gray scale value located at the center of the

object. The shape modi�er parameters are set both to A = B = 1. In �gure 8(b), the shape modi�er

parameters are both set to A = B = 0.5. This is useful when the object is represented by few pixels

with high gray scale value, and most of the area will have low gray scale values. In �gure 8(c), both

parameters are set to A = B = 2, useful when highly illuminated particles are being searched. In

�gure 8(d) and (e) the parameter values are A = 0.5, B = 1.0, and A = 1.0, B = 0.5 respectively.

These settings are useful when in some region of the image there exists optical deformation due

to lenses or wall defects, leading to elliptical instead of circular particle images. These parameters

were useful when analyzing experimental images close to the wall, where optical deformation was

found.
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(a) (b) (c)

(d) (e)

Figure 8: Shape modi�er parameters in�uence on the object mask (a) A=1, B=1. (b) A=0.5,
B=0.5. (c) A=2.0, B=2.0. (d) A=1, B=0.5. (e) A=0.5, B=1

Procedure of the Particle Mask Correlation Method In the calculation of the particle

mask correlation method, the brightness pattern of the object mask is �xed (see �gure 8). The

peak brightness, I0, and the representative radius, r0, values are �xed. The center of the object

mask, (x0, y0), scans all pixels in the image plane. The particle mask correlation method has the

following steps.

(1) Calculation of cross correlation coe�cients

The cross correlation coe�cient between the object mask and the interrogation area in the image

plane is calculated with the following equation:

C1(x0, y0) =

x0+a∑
i=x0−a

j=y0+a∑
j=y0−a

(
I (i, j)− Î

) (
Im (i, j)− Îm

)
√√√√ x0+a∑

i=x0−a

y0+a∑
j=y0−a

(
I (i, j)− Î

)2

√√√√ x0+a∑
i=x0−a

y0+a∑
j=y0−a

(
Im (i, j)− Îm

)2

(12)

Here C1(x0, y0) is the cross correlation coe�cient at (x0, y0), I(i, j) is the brightness value of

particle image plane at (i, j), and Im(i, j) is the brightness value of the particle mask at (i, j).

The interrogation area, a x a, is chosen by the user. Î and Îm are brightness averages of the

interrogation area and the object mask image, respectively. The particle mask scans all pixels on
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Figure 9: Cross correlation coe�cient plane

the image plane, which produces a correlation coe�cient plane. This is better explained in �gure 9.

Every pixel receives a cross correlation coe�cient value, from -1 to 1, depending on how closely the

pixel in the (i, j) location represents the center of a Gaussian distribution, which is similar to the

center of the object mask.

(2) Extraction of object area

Two thresholds are considered in this procedure. The gray scale threshold, (GST), and mask cross

correlation coe�cient threshold, (C1T). Pixels having gray scale values and correlation coe�cients

larger than these thresholds are candidates to be part of an object. The values of these thresholds

will depend on the application. If the researcher is interested only on the centroid location of

objects, the only necessary threshold is the C1T. On the other hand, if the researcher is interested

in the size of the objects, a good GST value must be selected. An example of the application where

both thresholds are used is shown in �gure 10, where di�erent colors are used to represent the C1

value of the pixels, where blue pixels range from 0.0 to 0.2, green from 0.2 to 0.4, yellow from 0.4 to

0.6, and red form 0.6 to 1.0. White color represents pixels with a higher gray scale value than the

GST, but a C1 value lower than 0.0. Black color represents pixels with a gray scale and C1 values

lower than the thresholds.

When using both thresholds in the same analysis, a pixel will be considered as part of an object

only if its values are larger than the thresholds, after �rst using the GST as a �lter. Pixels with

lower gray scale values are not considered and will receive automatically a C1 value of -1.0. This

helps because the mask cross correlation technique is inherently slow, therefore reducing the number
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of pixels needing to be analyzed will reduce the computational costs. Once the pixel passes through

the GST �ltering successfully, the cross correlation coe�cient is calculated for that particular pixel,

by using the calculation all its neighbour pixels inside the interrogation area.

Figure 10: Thresholding in�uence in object area detection. Colors white = pixels with a gray
scale value larger than GST and C1 lower than 0.0, blue = pixels with C1 value from 0.0 to 0.2,
green = pixels with C1 value form 0.2 to 0.4, yellow = pixels with C1 value from 0.4 to 0.6 and red
= pixels with C1 value from 0.6 to 1.0

After a pixel is classi�ed to be part of an object, the next step is to determine to which object

this pixel belongs, this procedure is done with the top-left algorithm. By making a sweep from left

to right and top to bottom a identi�cation number is assigned to each pixel as follows:

1. A pixel whose left and top neighbours does not belong to an object becomes the �rst pixel of

a new object (�gure 11(a)).

2. A pixel whose top neighbour belongs to an object and the left neighbor does not belong to

any object becomes part of the top neighbour object (�gure 11(b)).

3. A pixel whose left neighbor belongs to an object and the top neighbor does not belong to any

object becomes part of the left neighbour object (�gure 11(c)).

4. A pixel whose left and top neighbours belong to the same object becomes part of that object

(�gure 11(d)).

5. A pixel whose top and left neighbours belong to di�erent objects becomes part of the top

neighbour. Also, all pixels that belong to the same object as the left neighbour will be

reassigned as part of the top neighbour object (�gure 11(e)).
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(a)

(b)

(c)

(d)

(e)

Figure 11: Top-left assignment algorithm, the numbers represent the object identi�cation

(3) Estimation of object centroid location

It is well known that most of the PIV error derives from the object centroid location. The mask

cross correlation technique gives only the pixel position where the object centroid is located. In

other words, it uses integer pixel units, with an average error within 0.5 pixels for the centroid's

location. In order to reduce the error, the Gaussian three point sub-pixel interpolation method

and center of gravity method are used. These methods have sub-pixel accuracy; therefore, the �nal

result of this procedure is the object centroid pixel position plus or minus a sub-pixel correction,

which is explained in the next paragraph.

Consider (x0, y0) to be the pixel position with a higher C1 value within an object. Determine

with sub-pixel accuracy the centroid location of the object by means of adding the sub-pixel correc-

tion εx for the x coordinate and the sub-pixel correction εy for the y coordinate. Using the Gaussian

three point sub-pixel interpolation, these corrections are expressed with

εx =
log (I(x0 − 1, y0))− log (I(x0 + 1, y0))

2 log (I(x0 − 1, y0)) + log (I(x0 + 1, y0))− 2 log (I(x0, y0))
(13)
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and

εy =
log (I(x0, y0 − 1))− log (I(x0, y0 + 1))

2 log (I(x0, y0 − 1)) + log (I(x0, y + 1))− 2 log (I(x0, y0))
(14)

The particle centroid position with sub-pixel accuracy (xc, yc) will be calculated using:

xc = x0 + εx (15)

and

yc = y0 + εy (16)

Some reasons that cause the three point sub-pixel interpolation to fail are:

- Saturation of pixels close to the center of the object, i.e. the pixels used for the

interpolation have the same gray scale value.

- The pixel with highest C1 value is not the one with the largest gray scale value between

the three points needed for the interpolation.

When the calculated sub-pixel corrections εx or εy are greater than 1.0 or smaller than -1.0, the

sub-pixel interpolation is considered a failure, and the center of gravity method is used instead.

This method is expressed with:

εx =

K∑
k=1

xkI(xk, yk)

K∑
k=1

I(xk, yk)

(17)

and

εy =

K∑
k=1

ykI(xk, yk)

K∑
k=1

I(xk, yk)

(18)

where K is the total numbers of pixels belonging to the object.

MaskPTV Object Matching or Particle Tracking

After objects represented in the PIV pictures have been correctly located, they are labeled following

a di�erent nomenclature where, Oi,j(xj , yj) represents object i with position (xj , yj) in time interval
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or picture frame j. For example, the object O1,1(35, 150) represents object 1 with center position

x1 = 35, y1 = 150, in frame or time interval 1. In this work two-frame single exposure pictures

were used. This means that a given object will be represented in two di�erent frames, frame j with

label Oi,j(xj , yj), and in frame j + 1, with label Oi,j+1(xj+1, yj+1). The procedure which relates

the representations of the same object in di�erent frames is described in the following sentences.

Candidate Window Considering all objects found in frame j + 1 as candidates to be a pair of

objects in frame j, is a tedious and slow process. Therefore, if possible, some previous knowledge

of the �ow is used to reduce the searching area to the most probable region where this object could

have been moved in the time interval ∆tPIV . This region is called the candidate window. The

area and position of the candidate window depends on the �ow characteristics. All objects inside

this candidate window will be considered as pair candidates for the selected object in frame j. In

�gure 12 the red object is represented in frame j with initial position (xj , yj) (yellow lines), and in

frame j + 1 with �nal position (xj+1, yj+1) (red lines); the candidate window is represented by the

blue square, and pair candidate objects are represented inside the search window as black objects.

Figure 12: Search window

An important characteristic of the candidate window in MaskPTV program is its �exibility.

Size and position of the rectangular area can be chosen as follows:



31

Candidate window right size CWr

Candidate window left size CWl

Candidate window up size CWu

Candidate window down size CWd

Candidate window initial x position CWxi
= xj − CWl

Candidate window �nal x Position CWxf
= xj + CWr

Candidate window initial y Position CWyi = yj − CWu

Candidate window �nal y Position CWyf
= yj + CWd

It is important to note that the previous parameters for the candidate window depends entirely

on the user experience. If a candidate window area is too big, there will be a larger probability of

�nding spurious vectors because of the excess of candidates. If the candidate window area is too

small, the selection of candidates will be erroneous because the correct object will not be considered

as a candidate.

Tracking Cross Correlation Coe�cient or Tracking Coe�cient The tracking coe�cient

(TC) is a measure of how closely related, or how similar an object in frame j is to an object in frame

j+1. The pairing procedure using the TC is as follows: First, an object located in frame j is selected.

This object will have as many candidates as there are objects within the candidate window in frame

j + 1. Second the TC value between each of the candidates and the selected object is calculated.

Finally, the candidate that possesses the largest TC is considered to be the most probable pair for

the selected object in frame j + 1. The previous procedure is repeated for all the objects in frame

j. The main di�erence between obtaining the TC by using MaskPTV and the former binarization

tracking routine is the use of all the information within the image by MaskPTV program (all the

256 gray-scale levels), while in the binarization tracking routine, a binarized image (black and

white) resulting from the gray scale thresholding is used for the calculation. Consequently, a lot of

information is lost.

To obtain the TC, two windows must be de�ned per each calculation, one at the position

surrounding the selected object in frame j, and the other surrounding the selected candidate object

in frame j + 1. Both windows must have the same area and geometry. This windows are called

the tracking coe�cient windows (TCW). For each object in frame j it will exist nc + 1 TCW's,

where nc is the number of candidates in frame j + 1 corresponding to that selected object. In a

typical experimental image the average number of objects (no) found is around 4500, each having

on average 7 candidates. The number of TCW's in this case is (nc + 1)(no) = 8 x 4500 = 36000
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and the number of TC's calculated is (nc)(no) = 7 x 4500 = 31500 TC's. This example is for

medium density PIV images. Working with higher density images the TC calculations increase

exponentially, making this process very expensive computationally.

The selection of the shape and size of the TCW is also dependent on the user experience, but

normally the TCW is smaller then the candidate window, in �gure 13, ten TCW's are shown.

The �rst one (bottom left of �gure 13) determines the gray-scale pattern to be correlated, with

the characteristic of being centered on the object selected in frame j. The other nine windows

are centered on each one of the objects inside the candidate window in frame j + 1, and every

candidate window is correlated with the pattern window. The correlation coe�cient obtained from

this calculation is shown on the right side of �gure 13. Candidate number �ve is the one with a

higher correlation coe�cient, therefore it is concluded that the selected object in frame j is the

same object as candidate �ve, but in a di�erent position and time.

The method used to calculate the tracking coe�cient is the mask cross correlation technique. In

this case, instead of having a single image pattern like a Gaussian distribution used on the particle

centroid location algorithm, there will exist as many image patterns as objects found in frame j.

We can call this a dynamic mask cross correlation.

Iterative Pairing Procedure In this procedure, each particle in frame j have selected their

probable particle candidates in frame j + 1, and have a TC for each candidate; the selection of the

most probable candidate is easy -it is the one with the largest TC. Most of the time the TCW of an

object overlaps with other objects TCW's, therefore some objects in frame j +1 are pair candidates

for more than one object in frame j. To avoid spurious pairing an iterative checking is used. If a

candidate is the �best candidate� for two objects, it will be assigned to the object with higher TC

and will be erased from the list of candidates of the other object, allowing the next candidate from

the new list to become its �best candidate�.

Velocity Field Calculation After the pairing of objects is successful, the position of all the

objects in frame j and in frame j + 1 is known. Recalling that the time interval between these

frames is also known, the velocity components are computed with:

ui =
dxi

dt
=

xi2 − xi1

∆PIV
(19)

vi =
dyi

dt
=

yi2 − yi1

∆PIV
(20)
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Figure 13: Example of tracking coe�cient windows (TCW) and object matching procedure

where ui and vi represent the velocities in the stream-wise and normal �ow directions of object i,

xi1 and xi2 represent the x coordinate position of object i in frame j, and j + 1 respectively, and

yi1 and yi2 represent the y coordinate positions of object i in frame j and j + 1.

FSPOTS & TRACKING PROGRAM

This program was developed in Fortran 77, and it runs in Unix system. To �nd the centroid

location of the objects, the subprogram Fspots employs the center of gravity method described

before (equation 17), and for the calculation of the particle displacement the subprogram Tracking

uses the binarization cross correlation method (Hassan et al 1992).
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AKAPTV PROGRAM

This software for Windows was developed by Dr. Tomomasa Uemura (Uemura and Yamamoto

1993), and is a PTV based algorithm based on the similarity of particle distribution patterns.

In order to identify each particle motion in a short time interval, a cross correlation method is

employed after the pictures of particle images are binarized. The merits of the technique are (1)

simple and very high speed algorithm for particle tracking, (2) computer memory size required is

small, and (3) the image analysis system is cheap and simple. AkaPTV program uses the center of

gravity technique for the centroid locations of objects and the binary cross correlation method to

track particles.
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RESULTS AND DISCUSSION

The results section will be divided in four main parts. The �rst part will cover the algorithms

validation of the MaskPTV program using the home made arti�cial images. The second part will

deal with the comparison of the di�erent programs analyzed in this study by using the PIV challenge

standard images. In the third part, experimental results are presented as examples of the use of

these programs. The last part of the results section will compare the in�uence of di�erent image

processing techniques over the results of analyzing experimental images.

HOME MADE ARTIFICIAL IMAGES

The home made arti�cial images were created in order to have a way to completely validate the

algorithms of the MaskPTV program. A sensitivity analysis was developed and is explained in the

next sections.

Di�erent Object Radius

Images with di�erent object sizes were generated in order to see how the accuracy of the particle

centroid location algorithm changes. The radii of the objects considered were 1, 2, 3, 4, and 5

pixels. Samples of the images and the results are shown in �gure 14. The �gures on the right of

the arti�cial images represent the displacement errors (∆x, ∆y) = (xreal−xcalc, yreal− ycalc), and

the root mean square value for centroid location (RMS) is also shown. The RMS is de�ned by:

RMS =
1
K

K∑
k=1

√
(xreal − xcalc)

2 + (yreal − ycalc)
2

(21)

More information is displayed in �gure 15 where the yield, reliability, and RMS of objects located

are functions of the particle radius. The de�nition of yield and reliability are:

yield =
number of objects located

total number of objects
(22)

reliability =
number of objects correctly located

total number of objects located
(23)
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Figure 14: Di�erent particle radius images and related RMS error
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Figure 15: Yield, reliability, and RMS as a function of object radius

As expected, the lower the object radius, the better, in general, are the results of the analysis.

This is due to several reasons. First, the concentration of objects was kept the same for all cases.

As can be seen from �gure 14, big objects overlap each other making it virtually impossible to

discern individual particles from the chunks shown in the picture. What MaskPTV does is obtain

a centroid location for a group of closely positioned objects, and that is why the RMS increases

so much. Also, the reliability decreases because less particles are identi�ed even if there exists the

same quantity of particles in all sets.

Di�erent Concentrations

A radius value of 1 pixel was selected to ensure little overlapping over a wide range of concentrations.

Di�erent cases where the concentration of objects varies from 500 objects per image to 10000 objects

per image were considered. An example of these arti�cial images and its related displacement errors

are shown in �gure 16.
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Figure 16: Di�erent concentration images and the resulting centroid error
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The plots of the centroid deviations in �gure 16 indicate there is a small peak locking. This is

expected to happen with PTV when using objects that are too small. The sub-pixel interpolation

and the center of gravity algorithms allow the �nding of centroid locations with high accuracy.

From �gure 17, it's noticeable that the yield decreases with the concentration; this result is normal

because, as mentioned before, there exists object overlapping. The RMS also increases with the

concentration, but only until a maximum value of 0.003 which is still very low.

Figure 17: Yield, reliability and RMS of object centroid estimation as a function of object con-
centration

In order to gain more information in �gure 18 plots the population of objects and RMS as a

function of C1. A �tted equation of RMS was obtained to be used later in order to estimate an

RMS value for the centroid location of objects with real images. This is possible because on the

analysis of any image (experimental or arti�cial) one of the output values is the value of the C1 for

each object detected.

From �gure 18 it can be concluded that most of the objects are detected with a C1 value from

0.6 to 0.8, The higher the correlation value, the lower the error.
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Figure 18: Population of objects and RMS depending on the C1

Di�erent Noise Percentage

Choosing a �xed value for the number of particles per image (1500), a Gaussian noise was introduced

ranging from 0 to 100 percent. The resulting RMS for the centroid location as a function of

C1 for di�erent noise percentage is shown in �gure 19, where the maximum error obtained was

0.4 for a noise percentage of 100%. Again, the results from �gure 19 will help relate the errors

with parameters commonly obtained on the analysis of both arti�cial and real images. From this

analysis �ve more curves were obtained that can be used later with arti�cial images in similar noisy

situations.

Figure 20 shows the population plots vs C1, and it's clear that most of the objects found in the

analysis report a C1 value between 0.6 to 0.7 for the cases with a noise percentage greater than

zero.
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Figure 19: RMS depending on the C1 and noise percentage

Figure 20: Population depending on C1 and noise percentage
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To obtain an estimate of the error on the �nal vector location, the RMS, yield, and reliability

are re-di�ned:

RMS =
1
K

K∑
k=1

√
(ureal − ucalc)

2 + (vreal − vcalc)
2

(24)

yield =
number of vectors located

total number of vectors
(25)

reliability =
number of vectors correctly located

total number of vectors located
(26)

Note that equations (21), (22) and (23) are di�erent.

The yield, RMS, and reliability plots for vectors are shown in �gure 21, where the RMS increases

from almost zero for 0% noise to a value of 0.3 for 100% noise. Reliability also decreases from 95%

to a 10% .This is due to the large quantity of spurious vectors found when the noise was set to

100%.

Figure 21: RMS, yield, and reliability of vectors location estimation for di�erent noise percentage

To make more clear the applicability of �gure 21 to real cases, assume that the estimated noise

percentage of a real experimental image is similar to a 20% Gaussian noise. From the RMS curve,

the value of the average error of the velocity �eld is 0.1. A 20% noise is elevated considering that

it can theoretically be removed by means of the average image processing.
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PIV CHALLENGE RESULTS

As explained before, the images used in this section are the same images provided by the �rst

international PIV challenge. The images were not modi�ed by any image enhancing technique

because they were generated without noise source. Any pixel with a gray level intensity greater

than zero is considered to be part of a particle. The image analysis procedure was performed

with four di�erent programs: MaskPTV, PIVSleuth, AkaPTV, and FspotsPTV. The details of the

results of each of these programs are given next:

Figure 22 summarizes the number of vectors found by the image analysis programs for each of the

cases considered, recalling that there are small particle images (B001, B003, B005) and large particle

images (B002, B004, B006) with di�erent concentrations. Figure 23 shows the RMS calculated for

the same images. It clearly shows the in�uence of the algorithm, the particle concentration, and

the diameter on both the number of detected vectors and in the error.

Figure 22: Number of vectors found by di�erent image analysis techniques using PIV challenge
images
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Figure 23: RMS of vectors located by di�erent image analysis techniques using PIV challenge
images

To clarify the di�erences observed, the cumulative histogram is used and it's given by:

p(ε) =

∫ ε

0
p(e)de∫∞

0
p(e)de

where

p(ε) is the population of vectors having an error lower than ε and

ε is the di�erence between the real displacement value and the calculated one.

The cumulative histogram or probability density function is a good representation of the accu-

racy of the vectors found. Lines which approach the top left corner indicate a good accuracy, and

the ones going toward the bottom right indicate a bad accuracy.

A comparison of the in�uence of the di�erent cases (B001-B006) over the accuracy of each

algorithm is given. Also presented are �gures where the accuracy of the algorithms for each case

is compared. From the previous �gures MaskPTV clearly shows the best results are obtained with

low concentration almost independently of the particle size, but that medium concentration does

fairly well too.
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PIVSleuth Results

In this program, the iterative interrogation technique was used, which follows three steps: First, a

preliminary analysis was done using an initial FFT size of 128 pixels, and an initial and �nal search

window area of 64 pixels. Second, The results of the �rst analysis was used as a base for the second

iterative interrogation, using a FFT of 64 pixels and an initial and �nal search window area of 32

pixels. Third, the results of the second analysis were used as a base for the third interrogation,

using smaller window sizes of 32 pixels for the FFT, and 16 pixels for the initial and �nal search

window. A window overlapping of 50% and a search mean particle diameter of 3 pixels were used for

the three steps. This procedure was done to increase the amount and accuracy of the velocity �eld

obtained. Figure 24 shows the population of the error for the PIVSleuth program. The best results

are obtained with the low density-small particles (case B005). This result is unusual because PIV

techniques are supposed to behave better with the high concentration-big particles (case B002).

The erratic behaviour of these results may be due to the fact that the same initial velocity �eld was

used as a base in the iterative interrogation for all the di�erent cases.

Figure 24: RMS probability density function of the displacement for di�erent image concentration
and sizes. Analysis with PIVSleuth
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MaskPTV Results

In this program, the analysis by regions feature was used, dividing the image into 5 rectangles, each

rectangle representing one region of the image where di�erent and independent parameters can be

set. A higher searching area was set near the vortex center located in the center region (Region 5),

and a smaller searching area in the surrounding regions (Regions from 1 to 4). To help increase

the number of vectors found, the cross correlation threshold for tracking particles has a lower value

near the vortex center. There exists a higher velocity gradient that makes the matching of particles

more di�cult due to the low correlation between frames. For the same reason the cross correlation

window was smaller in the vortex center with an area of 8 x 8 pixels in contrast with an area of 12

x 12 pixels in the surrounding regions.

The parameters for detecting particle centroids depended only on the particle size. For cases

with small particles (B001, B003, B005), the particle radius parameter was set to 0.8 pixels, and

for cases with big particles (B002, B004, B006), a value of 1.5 pixels was selected. Only particules

with circular shapes were searched within the image. In other words, the shape parameters (A and

B) were set to 1. The value of the cross correlation threshold for particle centroid location was set

to 0.4, and the gray scale threshold value was set to zero. These values help ensure in the process of

classifying pixels as part of a particle, the only discrimination will be the cross correlation threshold.

Pixels touching each other and having a cross correlation value greater than the threshold will be

considered as one particle. This improves the identi�cation of particles that are too close together

rather than using only the gray scale threshold. It was shown that for case B001 the number of

vectors found by MaskPTV is greater than any other PTV program used in this work. This is

due to the fact that MaskPTV is able to identify, with high accuracy, particles that are too close

together. Figure 25 shows that the accuracy is almost inversely proportional to the concentration

of particles. For low concentration, high accuracy and for high concentration, lower accuracy, the

size of the particle showed almost no in�uence. The best case is B001, which corresponds to low

concentration and large particles with almost 77% of vectors (11976 vectors) having an error less

than 0.1.
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Figure 25: RMS probability density function of the displacement for di�erent image concentration
and sizes. Analysis with MaskPTV

FspotsPTV Results

The same analysis by regions feature used in the MaskPTV program was used with the Fspots

program, but in this case, a di�erent centroid location algorithm based on edge detection and

center of gravity is used. This procedure proved to be not as accurate as the ones used with

MaskPTV. The use of the gray-scale threshold for the determination of the pixels that belong to a

single particle seems to fail in the highly concentrated case, where only 2944 particles were detected

with an RMS of 0.86. From the vectors detected, only 10% were below the range of 0.1 error.

Figure 26 shows that FspotsPTV behaves similarly to MaskPTV. This is expected because

both programs share a similar particle tracking routine. For low particle concentration higher the

accuracy is almost independent of the particle size.
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Figure 26: RMS probability density function of the displacement for di�erent image concentration
and sizes. Analysis with FspotsPTV

AkaPTV Results

For this program, di�erent regions of the same size as the ones generated on the previous PTV

programs were used. Some of the parameters were modi�ed in each region in order to obtain the

largest quantity of vectors. The gray scale threshold was changed between the regions, depending

not only on the quantity of vectors the program can handle, but also taking into account that if

the number of particles is large, the array allocation will fail. This bug limits the performance of

the algorithm. It was found to have a higher accuracy when using small particles (B005, B003,

B001) (see �gure 27). This is explained by the fact that this algorithm is strongly a�ected by the

gray-scale threshold. Smaller particles tend to be more separated in the image than large particles,

and this helps the algorithm to classify the pixels that belong to a particle.
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Figure 27: RMS probability density function of the displacement for di�erent image concentration
and sizes. Analysis with AkaPTV

Comparison Between Algorithms

In �gure 28 and �gure 29 the results and in�uence of the algorithms are summarized; MaskPTV

together with PIVSleuth had the best results for high particle concentration images. However, for

low concentration, PIVSleuth obtain a lower accuracy in contrast to MaskPTV. PTV algorithms

are made to work with low concentration images; even with these �limitations� , MaskPTV (a PTV

algorithm) also proved a trustable tool to use with highly concentrated images. AkaPTV program

results are fairly good too. It found a large amount of vectors with high accuracy; nevertheless, it

is the second most accurate PTV algorithm for small particles. For large particles, both algorithms

AkaPTV and FspotsPTV behave almost the same, however, on the lower concentration images

FspotsPTV had a better accuracy, but the drawback of locating a small number of vectors in all

the cases remains prevalent.

The velocity �elds obtained by the di�erent programs are shown in �gure 30 and �gure 31,

case B001 (left pictures) and B006 (right pictures). These results show the di�cultly that PTV

algorithms face when dealing with high velocity gradients like the one found in the center of the

vortex. The PIV algorithm seems to resolve the vortex center a little better.
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(a)

(b)

(c)

Figure 28: RMS probability density function comparison between the di�erent image analysis
techniques for case (a) B001, (b) B003, (c) B005
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(a)

(b)

(c)

Figure 29: RMS probability density function comparison between the di�erent image analysis
techniques for case (a) B002, (b) B004, (c) B006
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(a) (c)

(b) (d)

Figure 30: Velocity �eld obtained with (a) PIVSleuth, (b) MaskPTV for B001 case and (c)
PIVSleuth, (d) MaskPTV for B006 case
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(a) (c)

(b) (d)

Figure 31: Velocity �eld obtained with (a) AkaPTV and (b) FspotsPTV for B001 case and (c)
AkaPTV and (d) FspotsPTV for B006 case

EXPERIMENTAL RESULTS

The experimental images analyses results will be shown and discussed in a step by step order

to give an idea of a �general procedure� to complete a successful and accurate PIV analysis. The

�rst results are the sensitivity analysis used when changing programs parameters and is given in

the next sections.
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Velocity Fields

Once the particles are detected correctly, the second step is to check if the velocity �elds are what

we are looking for. In the case of PTV, the beginning of the vectors must coincide with the centroid

location of the object. Sometimes this test is easy to do by overlapping the resulting velocity �eld

on the analyzed image.

Images from a two phase �ow experiment were analyzed in order to compare the performance

of the algorithms used in this study when trying to discern particles from bubbles. One important

feature that makes PTV algorithms �better� than PIV algorithms is the characteristic of identi�-

cation and tracking individual objects. Discerning bubbles from particles within the �ow is one of

the most important goals for any two phase �ow research. Commonly researchers want to know

parameters such as volumetric void fraction, void fraction distribution, relative velocity between

phases, etc. All of these parameters can be measured using PTV; PIV is limited to obtaining only

an average velocity, resulting in the lose of important detailed information contained on the travel

history of each object within the �ow. For this study, only MaskPTV and AkaPTV programs are

tested because they have shown better accuracy in the analysis of arti�cial images.

MaskPTV Results As mentioned before, the mask cross correlation technique is implemented

in the MaskPTV program to detect the centroid location of objects. It has the capability of

searching for di�erent object shapes within an image. In this section, this capability is used to

classify objects in three categories: bubbles, particles, and background. Background identi�cation

is generally easy, assuming that pixels representing the background have a lower gray scale value

than the pixels representing bubbles and particles. Applying a simple threshold on the gray scale

level will di�erentiate the background from other objects. The classi�cation of pixels that belong to

bubbles instead of belonging to particles is a little more complicated; sometimes the average gray

scale value of pixels representing bubbles is lower than the ones representing particles because of

the particles re�ective index of particles. Additionaly the size of bubbles is generally larger than

particles; the shape sometimes plays an important role as well, because bubbles will not always be

as rounded as particles. Taking all this into account, an a priori analysis must be done in order to

obtain a good search criteria.

Object Location and Matching Between Frames For the task of classifying objects, the

search criteria of MaskPTV parameters are shown in table 1. In this case, all values are subject to

the user experience; important information such as calibration (how many pixels per mm), average

size of particles and bubbles, and image enhancing techniques used are needed. Image enhancing
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algorithms tend to modify the size and gray scale values of objects.

Table 1: MaskPTV object classi�cation parameters

Object Radius A B Mask1 Area CCC1 MinPix MaxPix Min GS Max GS
Particle 1.0 1.0 1.0 3 0.3 1 20 20 255
Bubbles 4.0 1.0 1.0 1 0.3 21 200 20 255

Background � � � � � � � 0 19

For the task of matching objects between frames, the image was divided in three regions, each

region having a di�erent search area to locate matching candidates. Objects close to the wall have

lower motion than the ones far from the wall, and the parameters of each region are shown in table

2. From these parameters, only the left search area is di�erent between regions.

Table 2: MaskPTV object tracking parameters

Region Search Left Search Right Search Up Search Down CCC2 Xi Xf Yi Yf
1 6 2 2 2 0.4 0 1008 0 25
2 9 2 2 2 0.4 0 1008 25 50
3 25 2 2 2 0.4 0 1008 50 1008

Using the previous parameters for the MaskPTV program, the resulting velocity �eld for the

two phases is shown in �gure 32(a), where the red arrows represent the velocity of the particles,

and blue arrows represent the velocity of bubbles. The bubble location is represented with the blue

circles. 3384 particles and 155 bubbles were found using the previous parameters.

AkaPTV Results The parameters used for object classi�cation are summarized in table 3. The

AkaPTV program uses the gray scale level threshold and object size to classify pixels into back-

ground, particles, and bubbles. The di�erence between objects is mainly based on the object size

and is strongly in�uenced by the user criteria.

Table 3: AkaPTV object classi�cation parameters

Object MinPix MaxPix MinGS
Particle 1 20 150
Bubbles 21 200 150

Background � � < 150

Parameters for the tracking routine are summarized in table 4. In this case, 3 regions with
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di�erent searching areas were selected to reduce the number of possible candidates in order to make

a matching pair of objects between frames.

Table 4: AkaPTV object tracking parameters

Region Search Area Cluster Size Grid Xi Xf Yi Yf
1 6 15 28 0 1008 0 25
2 9 15 28 0 1008 26 50
3 25 15 28 0 1008 50 1008

Using the previous parameters for the AkaPTV program, the resulting velocity �eld for the two

phases is shown in �gure 32(b), where white arrows with red border represents the velocity of the

particles, and blue arrows represents the velocity of bubbles. The bubble location is represented

with blue circles. 55 bubbles and 1509 particles were found using the previous parameters.

(a) (b)

Figure 32: Velocity �eld of the two phases and bubble location using (a) MaskPTV algorithm,
and (b) AkaPTV algorithm

The sensitivity of the previous parameters is better explained in �gure 33, where the di�erence

between the resulting velocity �elds are shown in detail. Figure 33(b) shows the resulting velocity

�eld from AkaPTV, and �gure 33(c) shows the results from MaskPTV. The MaskPTV program

shows more bubbles, but this is only because it used a less restrictive search criteria than the used

in the AkaPTV program. The di�erence between the number of particle vectors found is because

MaskPTV has the characteristics to discern accurately two particles closely together, thus a the

greater amount of vectors.
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(a) (b) (c)

Figure 33: Comparison of the resulting velocity �elds between (b) AkaPTV program and (c)
MaskPTV program obtained with the analysis of (a) original image

Analysis of a Single Field

Once a single velocity �eld is obtained with the parameters selected, we would like to know if these

parameters are correct before analyzing the whole set of images. This can be done by checking the

information that we already have. For the experiment described in the previous sections, the most

useful distribution will be the u instantaneous velocity vs the y coordinate, and this is shown in

�gure 34.

Figure 34: Instantaneous u velocity distribution vs y coordinate

The u instantaneous velocity distribution in �gure 34 shows the three regions in which the image

was divided in order to reduce the search area to track objects. It's clear that the lowest u velocities

are found close to the wall. Spurious vectors were found, but they can be easily eliminated using a



58

�lter algorithm. In �gure 35, the results of applying a statistical �lter are shown.

Figure 35: Filtered u instantaneous velocity distribution vs y coordinate

From the �ltering procedure a considerable amount of vectors are eliminated to ensure a �nal

result without spurious vectors. As can be seen by comparing �gures 34 and 35, �good� vectors

were also erased. The quantity of images per set will determine the restrictiveness of the �ltering

algorithm. If enough velocity �elds are available and the velocity distributions seem fairly good,

the �ltering process can be omitted.

Distributions of other quantities can also be used .For example, the v velocity distribution vs x

coordinate can be plotted also, but in this particular case the information obtained was not useful.

There is not a preferred v velocity along the x coordinate. The C2 distribution can also be plotted

to give an idea in which region of the image the highest errors are found. In �gure 36(a), the

distribution of C2 vs y coordinate is plotted, and it shows that the highest errors are found close

to the wall. The area close to the wall will experience greater re�ections and intensity of the beam,

and this indicates that we must be more restrictive on the parameters used on regions close to the

wall to help reduce the amount of spurious vectors.
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Figure 36: C2 distribution over the y axis

Statistical Analysis

After a single �eld is analyzed, the next step is the use of statistical quantities to validate our

results. In order to have good statistics, a larger number of data is required; therefore, the whole

set of images from a given experiment must be used and from these results we can extract average

quantities. For example, in �gure 37(a), the in�uence of di�erent values of the C2 threshold is

tested. As can be seen, there is not a signi�cant change on the velocity pro�le. This is a good sign

that the parameters chosen for the analysis are correct. In �gure 37(b) it can be seen that the the

C2 threshold modies greatly the number of vectors found in the analysis. Assuming that the �ow

is uniformly seeded, this plot should be �at. A good value for this �atness could be 0.65, but in

doing so, the global statistics of the analysis will be compromised due to the decreasing number of

vectors.
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(a)

(b)

Figure 37: (a) In�uence of the C2 over the average in time of u velocity pro�le, (b) in�uence of
di�erent C2 over the number of vectors found on the whole set

The parameter sensitivity analysis explained in the previous paragraphs does not ensure that

we will obtain a correct result, and therefore, the rest of the statistical analysis must be done. In
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�gure 38 the velocity pro�les for the u and v velocities are shown, and they seem to be correct.

The little bumps on the results of AkaPTV program must give us a warning that something is not

right on the parameters chosen.

(a)

(b)

Figure 38: (a) Velocity pro�le u obtained from MaskPTV and AkaPTV programs, (b) velocity
pro�le v obtained from MaskPTV and AkaPTV programs

This error is more evident when calculating the u′ and v′ turbulence intensities shown in �g-
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ure 39, and the continued propagation in calculation of the Reynolds Stresses u′v′ shown in �gure 40.

(a)

(b)

Figure 39: (a) u′ turbulence intensity from MaskPTV and AkaPTV programs, (b) v′ turbulence
intensity obtained from MaskPTV and AkaPTV programs
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Figure 40: u′v′ Reynolds stresses obtained from MaskPTV and AkaPTV programs
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CONCLUSIONS

In this work, a Windows program based on particle tracking algorithms was developed, and its

accuracy was systematically investigated for a large variety of image and �ow parameters. Since

the practical use of PIV requires the processing of a large number of images, a substantial e�ort

was devoted to develop robust algorithms which provide reliable results over a wide range of inputs.

Furthermore, these algorithms were improved thanks to the knowledge gained in the laboratory

experience, which took into account the reduction of human time consuming processes which are

solved automatically by the program. The coupling of the algorithms into a single system makes

the use and input of information even easier, providing immediate visual results to help decide

whether or not the parameters entered are correct. Even if the computing time employed by the

new program is much larger for example than the high speed algorithm of AkaPTV, there are time

savings because once the program is started it will not need any human supervision. In contrast,

the AkaPTV program version is buggy and fails constantly. The capability of analysis by di�erent

regions makes MaskPTV program even better than AkaPTV, because AkaPTV has to deal with

each analysis of region one at a time, increasing the human time expenses.

On the comparison of several PIV algorithms, the use of PIV challenge standard images ensures

that there is not a preferable bias in the creation of the test images to bene�t a given algorithm.

In general, all algorithms perform fairly well, with the exception of the Fspots centroid location

algorithm that gave the lowest accuracy and quantity of vectors from all the programs. MaskPTV

proved to work as good as PIVSleuth even with images generated speci�cally for PIV algorithms,

i.e. highly concentrated �ows with large particle sizes. No other algorithm was capable of giving

as high a number of vectors with the accuracy of the MaskPTV program. It can be concluded that

the algorithms developed in this work increased the accuracy of the former Fspots and tracking

algorithms with an easy to use windows interface. Unlike other studies where the accuracy of the

results is inferred indirectly by some error analysis, the accuracy of the processing was evaluated

directly in this study by direct comparison with arti�cial values. In this fashion, the errors were

calculated instead of inferred. Statistics of the errors were compiled by processing large data sets

for good statistical convergence. The sensitivity of the results to the various image parameters were

then systematically evaluated. These extensive tests also validated the robustness of each algorithm.

The parameters included the number of particles in the image, their average size, and the noise

level in the image. Since the accuracy with which the velocity can be determined is intrinsically

related to the accuracy with which particles can be located, most of the analyses were performed

on the errors involved in locating the centroid of the objects.
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The dominating factor controlling the validity of the processing is the ability to separate the

particles from the background. To that e�ect, the most important part of the new algorithm

was to choose not one, but two threshold values, the gray scale and the centroid cross correlation

thresholds. The failure of the selection of these thresholds results in the detection of a very large

number of spurious objects. Therefore, experience and common sense helps with the determination

of these values for a given problem.

It was also found that the error increases as the mean radius of the particle increases (for a �xed

number of particles). Once again, this relates to the higher likelihood of particle overlap. In practical

PIV, particle overlap is controlled by the width of the light sheet illuminating the particles, and

it can be practically eliminated with sharply collimated laser light sheets. The concentration has

the same e�ect. The error is proportional to the object concentration but with lower consequences.

Another parameter that greatly in�uences the performance of the algorithms is the image noise,

which drastically changes the results from a clean picture. It does not a�ect only the spurious

location of particles, but also a�ects the correlation value used to match particles between frames.

Therefore, when using real images, an image processing must be selected in order to reduce the

noise.

The extension of the error estimation using arti�cial images to real experimental images can

be done by generating images that mimic the experimental ones to such an extend that even

experimental noise and re�ections can be reproduced into the arti�cial images. Following the

procedures of the analyses stated in this work, a good error estimation can be obtained even for the

two phase �ow experiments. The functional relationship between the correlation coe�cients and

the error calculated can be used to estimate experimental errors.

The follow up analysis for experimental images developed in this work can help to reduce the

time expensive trial and error procedure of selecting good parameters by �rst analyzing a single

�eld to verify the input parameters before the whole set of images is analyzed.

Future work is still needed to optimize the algorithm with an accurate high speed program

capable of the same order of accuracy, and a possible extension to 3D PTV is also feasible. Also,

the extension to high resolution PTV by means of an educated searching area based on the results

of a previous PIV analysis can be developed.
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APPENDIX A

Example of Euler's Approximation to Obtain the Directional Field

To generate a directional �eld of 11x11points for y′ = x + y(1− y) on −1 ≤ x ≤ 1,−2 ≤ x ≤ 2,

the �rst step is to let f(x, y) = x + y(1 − y), the 121 grid points are the pairs (x, y), where the

minimum distance between grid points is H = 0.2.

Generating the endpoints of the replacement line segment at xi = −0.4, yi = 1.6. It will be

shown that the �rst endpoint is (−0.341, 1.519). This point can be located from (xi, yi) by travelling

a distance H/2 at slope M = −1.36.

M = f(xi,yi) The line segment slope for Euler's rule.

M = xi + yi(1− yi) Apply f(x, y) = x + y(1− y)

M = −1.36 Use the �rst point xi = −0.4, yi = 1.6

h = H/(2
√

1 + M2) Apply the formula h = H/(2
√

1 + M2)

h = 0.0592, Use H = 0.2 and f(xi, yi) = M = −1.36

xf = xi + h Compute the x-coordinate of the second point.

xf = −0.341 Use xi = −0.4 and h = 0.0592.

yf = yi + hf(xi,yi) Compute the y-coordinate of the second point.

yf = 1.519 Use yi = 1.6, f(xi, yi) = M = −1.36 and h = 0.0592.

Automation of this process is necessary because 121 such calculations are required.
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