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ABSTRACT 
 
 

Cascade Design of Single Input Single Output Systems Using H∞ 
 

and Quantitative Feedback Theory Methodologies. 
 

(December 2004) 
 

Mayank Lal, B.Tech., IIT Kharagpur 
 

Chair of Advisory Committee: Dr. Suhada Jayasuriya 
 

             This thesis considers the design of cascaded SISO control systems using the H∞ 

and QFT methodologies. In the first part of the thesis the actual advantages offered by 

Single Input Single Output (SISO) cascade loop structures are studied.  In Quantitative 

Feedback Theory(QFT) it is emphasized that the use of cascaded loops is primarily for 

the reduction of  bandwidth of the controllers.  This in turn helps in considerable 

reduction of the adverse effects of high frequency noise. The question that arises then is 

whether or not there are any substantial benefits to be gained by cascade loop design in 

the low frequencies. It is shown using QFT methodology that there aren’t any advantages 

gained in the low frequencies with the use of cascaded design. In effect it is concluded 

that if the design  is properly executed a single loop controller closed from the output to 

the input will be sufficient to meet the typical performance specifications.  This is shown 

using an example where the mold level of a continuous casting process is to be 

controlled.  The plant being used  has considerable uncertainty so that features of robust 

control can be highlighted. 

             In the second part the Robust Outer Loop bounds were generated analytically and 

examined for certain properties. It was compared to the bounds generated by already 

existing algorithms.        

             In the third part the inner outer QFT design was modified  with the inner loop 

being designed using H∞ with the concept of sensitivity shaping. This design was very 

similar to the pure QFT design with the added advantage of having some automation.  



 iv

            In the fourth part the H∞ methodology was used to design a two loop control 

structure. The idea was to compare this design to the QFT design. It was seen that H∞ 

generated redundant controllers and pre filters.  
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CHAPTER I 

 

INTRODUCTION 

If a plant has subsections and internal variables can be measured  then they can be used 

for feedback. This kind of control structure is called a cascaded control structure and is 

useful as it increases the number of degrees of freedom for design. This structure is 

particularly useful when there is large uncertainty in the plant, considerable sensor noise, 

nonlinearity etc. In fact in  [1] this structure is utilized to stabilize one of the inner loops 

and then carry out the rest of the design for a class of ballistic type missiles. In [2] QFT is 

used to design controllers for a three loop cascaded structure for a wind turbine 

illustrating one of the many applications of cascade design. This thesis analyzes the 

cascaded loop structure using the tools of QFT developed by Horowitz [3], [4] and H∞ 

which originated in the work done in [5].   

A. Previous Work 

             A brief review of the work done in [6] and [7] in designing a cascaded loop 

control structure using QFT is covered in this section. A linear time-invariant plant 

having  two cascaded sections is considered.  The plant  transfer functions  are P1(s), P2(s) 

and the reference input to the system is r(t) with corresponding Laplace  transform R(s).  

The plant parameters pi may have considerable uncertainty.  The outputs from each of the 

plants P1, P2 can be measured by sensors, the noise characteristics of which are known.  

The three degrees of freedom of the plants can be used to design the pre-filter F and the 

controllers G1(or L1), G2(or L2) in the case of multiple loop design while in the case of 

single loop design a single controller G is used to meet the specifications. In the multiple 

loop case feedback from the plant outputs can be allowed only to the initial plant input 

and not to any of the intermediate plant inputs as this would lead to plant modification. 

The design objective is to select F, G1, G2 or F, G such that : 

{ }
0 ( ) ( ) ( ) , ( ) ( )  ( )

, 0 ( ) ( ) , 0 ( ) ( ) ,

l u l u
y r y r y r y r y r y r

u u
y d o y d o y d i y d i

T T j T T

T j T T j T P P

ω ω ω ω φ ω ω φ ω

ω ω ω ω ω ω

≤ ≤ ≤ ∀ ≤ ≤

≤ ≤ ∀ ≤ ≤ ∀ ∀ ∈  

The journal model is IEEE Transactions on Automatic Control.  
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 Tyr denotes the closed loop transfer function from the reference to the output with φyr the 

corresponding phase. Tydo, Tydi denote the transfer function from disturbance do and di 

respectively to the output. The superscripts 1 and u denote the lower and upper limits. 

The time domain specifications can be converted into frequency domain specifications 

although there is no rigorous method of doing so.  Quite often it is enough to have the 

magnitude specifications only.  This holds good especially for minimum phase plants.  

For the case of non-minimum phase plants it sometimes becomes necessary to include the 

phase specifications too.  

1. Single Loop Design 

               The uncertain plants are P1, P2.  As shown in Fig. 1 (a), the pre-filter F and the 

controller G are to be designed such that the following specifications are met: 

( ) ( ) ( )0 l u

yr yr yrT T j Tω ω ω ω≤ ≤ ≤ ∀                                (1)               

    ( ) ( )0 u

ydo ydoT j Tω ω ω≤ ≤ ∀                                              (2) 

    ( ) ( ) { }0 ,u

ydi ydiT j T P Pω ω ω≤ ≤ ∀ ∀ ∈                               (3) 

    or equivalently  1

L
µ

1+L
≤       { }P P∀ ∈                                  (4a)                                         

      and                   2

1
µ

1+L
≤        { }P P∀ ∈                        (4b)   

where L=PG    and P=P1P2 and {P} is the set of all plants possible. 

               In essence the objective is to track the reference input at low frequencies and 

achieve robust stability too. For simplicity it is assumed that P1, P2 are minimum phase 

plants so that the magnitude condition (1) is enough. 

              The above constraints  impose bounds on  Lo(jω) corresponding to  a nominal 

plant Po .These bounds are generated by first constructing the plant templates at a set of 

frequencies spread over the entire frequency range. Corresponding to each frequency a 

plant template is constructed which is the set of all plants possible at a certain frequency 

due to uncertainty. The bounds are generated for the nominal loop by sweeping the plant 
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template for the particular frequency over the Nichols chart to just avoid the M circle 

corresponding to condition (4a) or N circle corresponding to condition (4b).This is 

illustrated in Fig. 1(b). The nominal loop Lo=GPo should be outside or on each of these 

bounds.  An optimal design would be such that Lo  is on each of the bounds at various 

frequencies [6], [7] with minimum value of the gain.  Loop shaping is done on a Nichols 

chart.  The magnitude of the bounds are high at low frequencies but at high frequencies 

the bounds form the ‘Universal high ω bound (UHωB)’.  Since plant templates at high 

frequencies transform into vertical lines and the plants are of the form k(jω)-n where n is 

the excess of poles over zeros, the size of the UHωB  is dependent on the ratio 

k1maxk2max/k1mink2min  where k1max,k2max, k1min and k2min are the maximum and minimum 

values of the gain of plants P1 and P2..  

                As mentioned in [6] for minimum phase systems the required specifications can 

be met with a single loop design but in the case of plants having significant uncertainty 

the bandwidth of the controller tends to be very high. This can lead to amplification of the 

sensor noise over a significant frequency range and might result in saturation of the early 

stages of the plant. This has been the motivation for multiple loop design which is 

reviewed next. 

2.  Two Loop Design 

                Instead of feedback from only the final output we now have the output from the 

plant P2 available for feedback as shown in Fig. 2.  It is assumed that the inner loop  is  

 

Fig. 1a . Single loop control structure 
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almost a perfect one, i.e., the uncertainty in Pbe=G2P2/(1+G2P2) is zero and the outer loop 

L1 need only handle the uncertainty in P1. This results in the length of UHωB for nominal 

loop , L10 being only (k1max/k1min)dB as at high frequencies any minimum phase plant 

P(jω) transforms to k(jω)-n where n is excess poles over zeros.  Hence the bandwidth of 

the controller is much less than the single loop controller decreasing the effects of the 

outer loop sensor noise considerably.               

              The inner loop L2 is then designed such  that the uncertainty in Pbe does not 

make L10 designed above violate it’s bounds while preserving stability. 

        

 

UHωB 

M circle(3 dB) 

Lo(2j) 

T(2) 

B(2) 

 T(2)-Template of the plant P(s)=k/(s(s+a)) at 2 rad/s frequency 
 where k€[1,10],a€ [1,4] 
 B(2)-Bound for Lo(2j) corresponding to the condition |L/(1+L)| ≤ 3dB ∀  ω 

Fig. 1b. Bound generation
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B. Motivation  

In a recent paper a two loop controller was designed for the mold level control problem 

and it was claimed using the simulation results obtained that it has better disturbance 

rejection characteristics than a single loop design. In this thesis we revisit this issue and 

make a careful study of the same system from a QFT view point to evaluate and 

emphasize the merits of two loop designs vs. single loop design. The conditions for 

existence of a QFT controller is stated in [8].  It is shown using QFT that a single loop 

design would suffice for specifications in the low frequency for minimum phase systems.  

Two loops or more design can also  be used to meet the same specifications but is not a 

necessary requirement. This work has been accepted for publication [9].  

               In the second part of the research the ‘outer loop robust stability bounds’ for the 

inner loop of a two loop QFT design are generated analytically using the robust stability 

condition of the outer loop. This is to be tested only for the higher frequencies where the 

dominant bounds are the stability bounds. The assumption made while generating these 

bounds is that at high frequencies the plants templates transform into a line. In [6]  a 

manual  way to find these bounds has been described using transparent paper. This 

method uses the condition that with the design of the inner loop, the outer loop stability 

bounds are not violated for generating these bounds. This same idea is used for the 

method proposed in this thesis. 

+

+ 

do 

 y

 n 

_

+

+ ++          

  G1 
   

     P2
 

 

    P1 
 

    G2 
__ 

+

           Fig. 2. Two loop control structure
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                 In the third part the inner outer sequential QFT design for cascaded loops is 

modified .For the two loop case, the inner loop was designed using H∞ and the outer loop 

using QFT. The method employed in carrying out this design is very similar to the one 

used in [10] with the inner loop QFT design being replaced by an H∞ design. As in [10] 

the resulting uncertainty after the inner loop is closed  is a design specification .This is 

done by using an appropriate weighting function. Hence the inner loop is to designed to 

be robustly stable and the sensitivity function is shaped according to the weight used. 

This can be done easily using H∞. The controller designed gave very similar results to the 

ones in [10]. The advantage of this hybrid design is that since the inner loops are to be 

designed for stability with the sensitivity function to be shaped in a certain way 

depending on the characteristics of the sensor noise, H∞ design of the inner loop will add 

automation to the design apart from the advantages stated in [10]. Also the outer loop 

being designed using QFT will ensure that the design is not too conservative. 

                 In the fourth part the two loop QFT cascade control design is compared to the 

H∞ design. H∞ designs controllers and pre filters automatically at one go but for this three 

degree of freedom control structure a number of redundant pre filters and controllers are 

designed. In total the number of controllers and pre filters designed are nine while the 

two loop control structure has only three degrees of freedom. Since the same objective 

using these nine pre filters and controllers can be met using the pre filter and two 

controllers designed using QFT, the H∞ design offers no advantage rather it introduces a 

lot of redundancy and complexity in the design. In [11] the reason for this redundancy is 

explained and shown with the example of a two degree of freedom system. It is shown 

that there can be many canonic structures corresponding to a certain number of degrees of 

freedom with each structure providing no advantage over the other.  

C. Organization 

                       The next few sections are organized in the following way. Chapter II 

compares the design of the single loop controller with two loop controllers. Chapter III 

covers the computation of ‘robust outer loop stability bounds’ for the inner loop of a two 

loop design analytically. Chapter IV describes a new method of doing inner-outer loop 

cascade design with the inner loop being designed using H∞ and the outer loop using 
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QFT. Chapter V compares the QFT and H∞ designs for a two loop cascaded structure. 

Chapter  VI summarizes the conclusions and outlines the future research directions. 
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CHAPTER II 

COMPARATIVE STUDY OF SISO SINGLE LOOP AND MULTIPLE  

LOOP SYSTEMS 

A. Single and Two Loop Design at Low Frequencies 

As has been shown in the work done in [6],[7] the inner loop design helps in significant 

reduction in the uncertainty in P2.The question then arises whether it is  important to have 

the inner loop for meeting specifications in the low frequencies. It can be shown that the 

inner loop is not required for this purpose. This is because of the property of free 

uncertainty explained next.  

              Now for the two loop design at low frequencies the uncertainty to be handled by 

L1=P1G1.(P2G2/1+P2G2) is that of P1 and Pbe=(P2G2/1+P2G2). Let us assume a line 

template for the plant P1, Γ(P1)=20 dB with the closed loop specification at low 

frequencies being |∆ Tyr|≤ 8 Db. The nominal loop L0 is designed such that the plant 

template satisfies the closed loop specification |∆ Tyr|≤ 8dB. It can be seen in Fig. 3 that 

at-1300 phase angle L0 should lie between |Tmin|=-5.7 dB and |Tmax|=2.3 dB with the value 

of L0 being -7.7 dB. It is very clear from the Fig. that L0 is satisfactory for uncertainty of 

the plant much greater than 20 dB .In fact it can handle all the uncertainty in plants P1 

and P2 without requiring the inner loop to be closed .This is the property of free 

uncertainty. For some other phase angles of L0 ,the plant template can even have semi-

infinite gain uncertainty.   

Design Example: 

Let P=P1P2  be the plant where [ ] [ ]
k k1 2P ,k 1,10  and P ,k 1,201 1 2 2s s

= ∈ = ∈  

Following are the specifications to be met: 

1. Robust Stability ( ) 6dBlTyr ω ≤ ω∀  

2. Robust Output disturbance rejection: 

            ( ) 30dB 10 /ydoT j rad sω ω≤ − ∀ ≤   
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Fig. 3. Bound generation at low frequencies 

               The nominal loop for the single loop design   Ls0 and the nominal outer loop L10 

for the two loop design are shown in Fig. 4.  Due to the availability of free uncertainty it 

can  very well be seen that the single loop design and the two loop design need not be 

different upto the frequency  ωa.  In the frequency range [ωa, ωx1] the template of P1 is 

usually a vertical line and the stability margin constraint dominates over the tracking 

constraints.  Therefore again in this range the bound on L10 is the same as that of Ls0. 

              This example again shows that multiple loop design is only necessary when the 

control objective is in the high frequency range. 

              Having highlighted the fundamentals of cascaded design we consider the mold 

level control problem. It is  claimed  in [12] that a two loop cascade control for mold 

level has better disturbance rejection properties than a single loop control structure. The 

theory 
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        -1 dB

φ
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Fig. 4 Loop shaping for single loop and two loop control structure 

 

discussed above is used to show that this is not true with the help of results obtained for 

the mold level control problem.  

 

B. Mold Level Control Problem 

Mold level control is one of the most important factors influencing surface quality of 

sheets and plates manufactured in a continuous steel casting line. It is a well known  fact 

that accurate mold level control proves to be beneficial. Therefore a lot of research work 

has been done in this area due to the significant financial stakes involved. 

                The disturbance in the mold level control processes is periodic. The exact 

source of this disturbance is not known yet and hence a lot of research has been done to  
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improve the casting process by better feedback control and better equipment. In [12] this 

has been attempted with the use of cascade control. The dynamic models for this process 

has been obtained in [13] with the use of experimental data from an actual casting line. 

This model has been used to obtain simulation results for this thesis. It has been shown 

using the above results that  cascade control as advocated  in [12] is not necessary for 

meeting the specifications, and that a  properly executed single loop design would do. 

1. Casting  Process Description 

Continuous casting is the process of directly solidifying molten steel slabs as they pass 

through a mold.  The process is schematically represented in Fig. 5.  

             A tundish acts as a reservoir and feeds molten steel to the mold. The stopper 

valve of the tundish acts as an actuator to control the steel flow into the mold. The 

hydraulic servo system and stopper rod mechanism are used to achieve this control 

objective. Depending on the position of the stopper rod molten metal is poured at a 

specific rate into the mould from the tundish.  An eddy current sensor is used to detect the 

value of the mold level which is compared to the set point to produce a corresponding 

control signal u.  

            Cooling of the cast metal occurs in two stages, primary cooling occurring in the 

mold. This cooling produces a shell around the liquid centre and then this elastic strand is 

continuously drawn onto supporting rolls where the secondary cooling occurs. The metal 

is then cut into slabs of appropriate size. 

                The general assumption is that instabilities in the mold level cause surface 

defects on the cast metal. Mold level oscillations tend to stir up flux and foreign particles 

leading to surface defects on the cast metal. These surface defects require to be removed 

by grinding and this proves to be a big economical loss for steel makers. 

                The origin of these oscillations is not well known yet. Some of the reasons to 

which this is attributed to are clogging or wear out of the stopper valve which reduces the 

effective gain; nonlinearities resulting from the valve geometry and hydraulic whirling of 

metal flowing into the mold. Another reason is thought to be the periodic changes in the 

molten metal outflow from the mold due to pressure changes in the elastic strand.  
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                                           Fig. 5. Casting process 

    

2.  Simulation model 

  The simulation model of the mold process being used is the one developed in [13]. This 

is illustrated in Fig 6. 

                 Following are the inputs and outputs to the system: 

                 u: control input (stopper position desired in %) 

                 y: controlled output (mold level(mm)) 

                 n:(Sensor noise—white noise with s.d. 1mm) 

                d: out-flow(l/s) which is a disturbance    

Stopper 

Tun Dish measurement 

Slab 

Hydraulic 
Servo Level 

Setpoint 

PID 
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Fig. 6 Simulation model 

             The outflow d comprises a constant nominal value (10.5 l/s) and a periodic 

disturbance the power spectral density of which has frequency components in the range 

of 0.05-0.1 Hz.  This is for the case when the amplitude of the disturbances are large. 

             The hydraulic servo mechanism is modeled by the second order transfer function 

ωn
2/(s2+2ζ ωns+ ωn

2).  The nominal values of the parameters are taken as  ζ=0.68 and 

ωn=6.14 rad/s [13].  The flow dynamics is represented by the transfer function K/(1+τs) 

the nominal values being K=1.1(l/s)/% and τ=0.9s.  There is a huge variation in the 

values of K (gain) of the stopper valve.  While designing the controller the value of K 

was made to vary by 400%.  The integrating effect of the mold was modeled by the 

transfer function 1/Cs where C=0.42 m2 is the area of the cross section of the mold. A 

sampling period of 0.001 s was taken for the simulation. 

3. Controller Used for Simulation 

Quantitative feedback theory was used to design a controller which could meet the 

objectives of disturbance rejection and also robustly stabilize the plant which has large 

uncertainty. Bounds were generated on the Nichols chart using the plant templates shown 

in Fig. 7. It can be very well seen that the plant templates transform into a line at high 

frequencies. The loop was shaped in a way to be above the low frequency bounds and 

outside the universal high frequency bounds as shown in Fig. 8. As the disturbance has 

frequency components in the range of 0.05-0.1 Hz at those frequencies the bound was 

 
_
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2

s2+2ςωns+ 
ω 2

         K
       1+τs 

     1 
    Cs 

         
       G 



 14

generated with the condition |1/(1+L)|≤ -40 dB so that the disturbance has little effect on 

the output. This condition was obtained from the fact that the transfer function between 

 

                                 Fig. 7.  Plant templates at different frequencies              

the output and the output disturbance is 1/(1+L).For robust stability the condition used 

was |L/(1+L)|≤ 6 dB .This condition comes from the fact that for stability the closed 

should be bounded at the high frequencies. The loop was rolled off at high frequency by 

adding poles to avoid the adverse effects of high frequency noise. The controller designed 

was: 
2 2

2 2 2 2

3.15( / 3.13 2*0.6* / 3.13 1)
( /105.2 2*0.15* /105.2 1)* ( / 69.64 2*0.24* / 69.64 1)

s s
s s s s

+ +
+ + + +
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 Fig. 8. Loop shaping 

C. Performance Comparison with  the Two Loop Design 

In [12] the results for a two loop master slave control structure is shown and   compared 

to the disturbance rejection characteristics of a single loop controller.  It is shown there 

that the single loop PI controller has poor disturbance rejection characteristics while the 

two  loop control structure gives good results with respect to disturbance rejection. 

            As can be seen in Fig. 9 our results for a single loop controller compared with the 

results found in [12] for a two loop design. Apart from the nominal values some other 

values of k and τ were used to simulate the results. As seen in Fig. 10 the performance is 

robust with respect to disturbance, the performance being quantified by the standard 

deviation of the mould level. 
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Fig. 9.  Simulation result for single loop complex controller for nominal values of plant 
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                               Fig. 11: Closed loop and sensitivity Bode plots 
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 Robust performance is further illustrated in Fig. 11 where the closed loop and sensitivity 

Bode plots are shown. As far as robustness with respect to process noise is concerned, as 

in [12] a low-pass filter  was used to avoid the ill-effects of noise at the flow process 

input, i.e., the stopper position  thus avoiding mechanical wear of the stopper  Therefore 

it can be said that the control objective is achieved with guaranteed robust stability. 

D. Conclusions 

In conclusion it can be said that a single loop design could perform as good as a two or 

more loops design if the specifications are in the low frequency, an example being the 

disturbance rejection problem.  The primary advantage of this is that the design structure 

is simple and could have an implication on the cost of the design. A disadvantage is that  

the single loop controller could turn out to be a complex one and noise could be amplified 

in the case of huge uncertainty of individual plants.  In such a situation it would boil 

down to  weighing the advantages and disadvantages and accordingly carrying out the 

design.   
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CHAPTER III 

ANALYTICAL DESIGN OF ROBUST OUTER LOOP BOUNDS   

FOR THE INNER LOOP OF A TWO LOOP CONTROL STRUCTURE 

 

A. Inner Loop Bounds in Two Loop Cascade Design 

 In this section we discuss the two loop cascade design and analytically find the 

bounds for the inner loop which ensures robust stability of the outer loop. The 

cascade design can be carried out with closure of the inner loop first and then the 

outer loop or the outer loop first and then the inner loop. The latter is a more natural 

approach for closing the loops, the reason being that the inner loop is mainly to 

reduce the bandwidth of the outer loop controller.  If the inner loop were closed first; 

it may not be evident how much bandwidth is needed for the outer loop to meet the 

closed loop specifications with minimum bandwidth.  

1.  Computation of the Bounds for Outer-Inner Design 

 In the outer-inner design the outer loop is closed first with the assumption that G2=∞ 

which means that the uncertainty in the inner loop is zero. The robust stability 

condition for the outer loop is: 

( )1
1 1 1 2 2

1

, , , 0
1

L j P P
L

ω µ ω≤ ∀ ∈Ρ ∀ ∈Ρ ≥
+

                       (1) 

where 2 2
1 1 1 2 2

2 2

,
1

P GL PG T T
P G

= =
+

 

         Since G2=∞ , T2=1 which implies L1=G1P1 .The nominal loop  

( 20 2
10 10 1 20 20

20 2

,
1

P GL P G T T
P G

= =
+

) is designed to meet all the specifications except for the 

inner loop margin condition. 

          Then the inner loop is designed in a manner such that given L10 all the 

specifications are met. The inner loop robust stability condition is given as : 

          ( )2
2 2 2

2

, , 0
1

L j P
L

ω µ ω≤ ∀ ∈Ρ ≥
+

                           (2) 
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         Again apart from this robust stability condition G2 is to be designed to maintain 

robust stability for the outer loop too. 

 Substituting for L1 in (1) we get the outer loop margin condition is : 

( )1 1 2
1

1 1 21
PG T j

PG T
ω µ≤

+
                                                        (3) 

Since L10 is already designed ( )10 2 20
1

10 2 20

1L G P
G

P G P
+

= can be substituted in (3). Also 

substituting the definition of T2 into (3) yields the following inequality which is the 

robust stability condition for the outer loop to be maintained while designing the 

inner loop: 

( ) ( )
( ) ( )

10 1 2 10 20 1 2 2
1 1 1 2 2

10 20 10 1 2 10 20 2 10 20 1 2 2

, , , 0
L PP L P PP G

P P
P P L PP P P P L P PP G

µ ω
+

≤ ∀ ∈Ρ ∀ ∈Ρ ≥
+ + +

  (4) 

            Using the above inequality bounds for the inner loop can be generated 

analytically as given below: 

            Dividing numerator and denominator of (4) by L10P1P2 we get 

1 20 2 , , , 01 1 1 2 2
10 20 10 201 20 210 1 2 10 1

P G
P P

P P P P
P GL P P L P

µ ω
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

+
≤ ∀ ∈Ρ ∀ ∈Ρ ≥

+ + +

 

           Let the inner nominal loop  L20=P20G2 be written as ( ) ( )2
20 2

j
L e

φ ω
ρ ω= . 

Since these bounds are dominant at frequencies where the P1 and P2 templates 

transform into a line we can safely assume that 1 2,1 210 20

P P
k kP P= = at the frequencies 

of interest where k1 and k2 are constant gains. Also let us write   

( ) ( )1
10 1

j
L e

φ ω
ρ ω= .Therefore the above inequality transforms to  
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( ) ( )

( ) ( ) ( ) ( ) ( )
( )

,12

21 2 , ,1 ,1 1 1min
1 2 1 21 1 21 1

1 1
, 02min

j
e

k k
k k k j

ej j
e e

k k

φ ω
ρ ω

µ
φ ω

ρ ωφ ω φ ω
ρ ω ρ ω

ω

⎡ ⎤
⎢ ⎥⎣ ⎦⎛ ⎞

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥⎣ ⎦

+
≤ ∀ ∈

+ + +

∀ ∈ ≥

 

⇒  

( )
,12

21 2 , ,1 ,1 1 1min 2 min
2 11

1 2 1 2 21 21 1

j
e

k k k k
jj

k k e k e j
e

φ
ρ

µ
φ φφ

ρ φ
ρρ ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+
≤ ∀ ∈ ∀ ∈

−−

+ + +

 

     ⇒  

1 cos sin2 2 2 ,1cos sincos sin 1 2 2 1 2 11 2 1 1 1 cos sin2 2 21 1
,1 , ,11 21min 2min

j

k jk k j
j

k k k k

ρ φ φ
µ

ρ φ φ φ φφ φ
ρ φ φρ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞⎝ ⎠ ⎝ ⎠

⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ +
≤

− + −+
+ + + +

∀ ∈ ∀ ∈

 

Since the bound corresponds to equality we can say that the equation  below will help in 

giving us the values of the bound: 

( )

( )

( )

coscos 1 2 2 11 2 11 cos2 21 1
1 cos sin ,2 2 2 1 sinsin 1 2 2 11 sin2 21 1

,1 , ,11 21min 2min

kk k

j
k

j

k k k k

ρ φ φφ
ρ φρ ρ

ρ φ φ µ
ρ φ φφ

ρ φρ ρ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−
+ + + +

+ + =
−

+ +

∀ ∈ ∀ ∈

⇒  
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( )

( )

( )

2

2
2

2

1

,12

coscos 1 2 2 11 2 1 cos2 2
1 1

1 cos sin , ,1 ,2 2 2 1 1 1min 2min
sinsin 1 2 2 11 sin2 2

1 1

kk k

k k k k
k

ρ φ φφ
ρ φ

ρ ρ
ρ φ φ µ

ρ φ φφ
ρ φ

ρ ρ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟+ + + +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟ ⎡ ⎤ ⎡ ⎤+ = ⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎣ ⎦ ⎣ ⎦⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

−

+ ∀ ∈ ∀ ∈
−

  

If we let 1 2 1,
1 1

k k k
A B

ρ ρ
= =  

the above equation becomes: 

( ) ( ) ( )

( )( )

2 2 2
1 1 2 1 2 1 1 22 2 2 2 2

1 1 1 1 2 22
1 2 2

2 2
1 1

2 cos 2 cos 2 cos
2 cos 1

2 cos 2cos

2 cos 1 1 0

B AB A
B B

A A

µ φ φ µ φ µ φ φ
µ µ φ µ ρ ρ

µ φ φ

φ µ

⎛ ⎞− + + + +
+ + − +⎜ ⎟⎜ ⎟−⎝ ⎠

+ + + − =  

Since ( )1ρ ω , ( )1φ ω , 1k , 2k  are all known, 2ρ can be solved using the above quadratic 

equation at each 2φ  

Let us denote 

( )2 2 2 2
1 1 1 12 cos 1B B Xµ µ φ µ+ + − = ,

( ) ( )( )2 2 2 2
1 1 2 1 2 1 1 2 1 2 22 cos 2 cos 2 cos 2 cos 2cosB AB A Yµ φ φ µ φ µ φ φ µ φ φ− + + + + − = ,

( )( )2 2
1 12 cos 1 1A A Zφ µ+ + − =  

Then the above equation becomes: 
2

2 2 0X Y Zρ ρ+ + =  

and 

2

2
4

2
Y Y XZ

X
ρ − ± −

=  

Since  

2

2
4

2
Y Y XZ

X
ρ − − −

=  is not permissible as 2ρ  is a positive quantity, 

2

2
4

2
Y Y XZ

X
ρ − + −

=  
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The bound at a particular frequency can be found out by first finding the value of 1ρ and 

1φ using the already known L10 and using it to calculate the maximum  2ρ at each phase 

angle when k1 and k2 are varied between [k1min,1and [k2min,1] respectively. 

The outer-inner example in [14] was used to illustrate the method as shown below: 

 

2. Design Example 

The plants P1(s) and P2(s) have parametric uncertainty and are given as follows: 

( ) ( )( ) [ ] [ ]

( ) [ ]

1

2

1 , 1,5 , 20,30 ,

, 1,10

P s a b
s a s b

P s k k

= ∈ ∈
+ +

= ∈
 

The performance specifications are : 

1. Robust margins: 50 degree phase margin in each loop; 

2. Robust output disturbance rejection 

( )
( )

( ) ( ) ( )
( ) ( )

3 2

2

64 748 24
0.02 , 10;

14.4 169
Y j j j j
D j j j

ω ω ω ω
ω

ω ω ω

+ + +
< <

+ +
 

3. Robust inner disturbance rejection 

( )
( )

0.01, 50.
Y j
V j

ω
ω

ω
< <  

The outer loop margin bounds for the inner loop were generated using the method stated 

for two frequencies, 25 / ,50 /rad s rad sω = as shown in Figs. 12 and 13.        
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                                           Fig. 12.  Bound at 25 /rad sω =  

 
Fig. 13 Bound at 50 /rad sω =  
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B. Conclusion  

From the design example worked out it can be seen that the analytical way can be 

alternately used to compute the outer loop robust stability bounds for the inner loops. 

The inequations found could be used for finding the property of these bounds .These 

properties could be like the phase angle at which the bounds have maximum 

magnitude.    
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CHAPTER IV 

HYBRID DESIGN OF CASCADED SYSTEMS USING QFT AND H∞ 

 

A. Inner-Outer Cascade Design Using QFT AND H∞  

In [10] a new method has been proposed for the design of SISO Cascaded-Loop. This 

method is different from the conventional inner-outer and outer-inner design procedures. 

The uncertainty which results in the inner loop is made a design specification by 

introducing a weight function. This weight determines the control burden allocation 

between the inner and outer loop controllers. In fact this allocation depends on the sensor 

noise spectra of each loop.  Therefore the inner loop design becomes a sensitivity 

reduction problem whereas the outer loop design involves a plant with mixed uncertainty 

and it’s design is carried out in the usual way. In [10] both the inner loop and the outer 

loop designs are carried out using Quantitative Feedback Theory. Since the inner loop 

design is to be carried out for sensitivity reduction and robust stability it can be done 

using H∞. The algorithm used for the H∞ design has been stated in [15]. This would help 

in automating the design. The outer loop design is then carried out in the usual way using 

QFT.   

1. Design Method 

Since the  overall loop transfer function for the  cascaded control structure shown in Fig. 

14  is L1=G1T2P1=L10P1T2/P10T20 where L10=G1P10T20 , uncertainty is there in P1T2 unlike 

assumption of uncertainty only in P1 in the outer-inner design procedure while designing 

the outer loop. Therefore the plant while designing G1 is  P1T2 which can be written as 

P1T2=P1T20(1+ (T2- T20)/ T20)    

The uncertainty in T2 may be bounded by ( )l ω  at each frequency which implies : 

( ) { }2 20
2 2

20

,T T l P P
T

ω−
≤ ∀ ∈         (1) 

Hence the actual problem is embedded in the mixed uncertainty problem with equivalent 

plant: 
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                                                         Fig. 14. Cascaded control  structure 

( ) { } ( )12 1 20 1 20 1 201 , , ,P PT PT PT l Hω ∞= + ∆ ∀ ∈ ∀ ∆ ≤ ∆∈  

The standard QFT method can be then used to design L10. It is to be noted that since a 

larger class of uncertainty is being handled, conservatism creeps in at this stage. 

          To set up the bound ( )l ω  the nominal plant P20 is chosen to be at or near the center 

of the uncertainty set ( )20P jω  which can be done by observing the plant templates on the 

complex plane at certain frequencies. ( )minl ω  is then selected such that: 

( ) { }2 20 min 2 2,P P l P Pω− ≤ ∀ ∈        (2) 

or equivalently 

2 20 2 min 2, 1P P l
∞

= + ∆ ∆ ≤  

where ( )minl ω  is the smallest radius at each frequency which covers the entire structured 

uncertainty set. This way of defining the entire plant set  has been used in [7] for interval 

plants. 

Again, 

+

+ 

do 

 y

 n 

_

+

+ ++          

  G1 
   

     P2
 

 

    P1 
 

    G2 
__ 

+r 

di 

+

+
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2 20 2 20

20 2 2 20

1
1

T T P P
T G P P
− −

=
+

        (3) 

using (4) we get 

( )2 min2 20

20 20

S lT T
T P

ω−
≤         (4) 

where S2 is the inner loop sensitivity function. Now, depending on the sensor noise 

spectra and other design specifications a weight is introduced such that 

( ) { }2 2 2 2,S W P Pω≤ ∀ ∈         (5) 

which is equivalent to  

( ) { }2 2 2 2,S W P Pω
∞
≤ ∀ ∈         (6) 

Let ( ) ( ) ( )2 min

20

W l j
l

P
ω ω

ω =         (7) 

Using equations (4),(5) and (6) we get 

( )2 20

20

T T l
T

ω−
≤          (8) 

              As stated in [10],with the use of the weight function the design of G1 and G2 are 

effectively decoupled. W2(ω) determines the control burden of G1 and G2,their bandwidth 

and the amount of uncertainty in the inner loop. Since the inner loop is to be designed 

using H∞ the standard H∞ sensitivity reduction problem is used to determine the weight. 

The technique used in [16] can be used to set up the weight as  

( )2 , 1, 1
/

B

B

s AW A or M
s M

ω
ω

+
= ≤ ≥

+
       (9) 
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where A is the upper bound for the weight at low frequencies, M is the upper bound at 

high frequencies and Bω  is the sensitivity bandwidth(approximately).  

Therefore the inner loop H infinity problem reduces to : 

( ) ( ) { }2 2
2 2 2

1 1, ,
1

P P
G P W ω

∞

≤ ∀ ∈
+

 (Robust Performance condition) 

2 min

2 20

1
1

G l
G P

∞

≤
+

(Robust Stability condition) 

Let us denote yW =1/W2 

          The LFT formulation of the inner loop is given in Fig. 15. 

 

                                              Fig. 15. LFT formulation for the inner loop       

zy 

   
   minl  

   
   P20 

   
   G2 

   
  yW  

d 

+ 

+ 

_ 

+ 

+ 

e2 

u2 

∆
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               To solve the above H∞ problem using the software tools available the above 

LFT formulation is modified using the method used in [17] as shown in Fig. 16.  

 

                                         Fig. 16. Modified LFT formulation of the inner loop 

In Fig. 16 

 

2

y

z
z

z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

                        
2

d
w

w
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

[ ]2y e=                         [ ]2u u=  

 

where z, y, w and u are the error variables, measured variables, exogenous inputs and 

control inputs to the system respectively.   

zy 

z2 

   
  minl  

   
   P20 

   
   G2 

   
   yW  w2 

 

+

+

_

+ 

+ 

e2 

u2 

 1/c 

d

  c 
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[ ]
[ ]

min

20

20

0 0

1

zw
y y

zu

y

yw

yu

P
W cW

l
P c

P W

P c

P P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

= − −

= −

 

 

where Pzw ,Pzu, Pyw,Pyu are the open loop transfer functions from z to w, z to u, y to w and 

y to u respectively. 

  

( ) 1

zw zw zu yu ywN P P K I P K P
−

= + −  

where Nzw is the closed loop transfer function from z to w. 

Using the open loop transfer functions given above 

( ) ( )
min 2 min 2

20 2 20 2

20 2 20 2

1 1

1 1

zw
y y

l G l G
c P G P G

N
W cW
P G P G

⎡ ⎤− −⎢ ⎥+ +⎢ ⎥=
⎢ ⎥
⎢ ⎥

+ +⎢ ⎥⎣ ⎦

 

Since the H infinity methodology minimizes the infinity norm of Nzw it can be seen that 

the if 1zwN
∞
≤ condition is met then robust stability and nominal performance will be 

achieved. For robust performance c can be varied till 
( ) { }2 2

2 2

1, ,
1

yW
P P

G P
∞

≤ ∀ ∈
+

 

is satisfied. 

2. Design Example 

The example problem solved in [10] , [14] is redone here. 
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The above approach is used to solve this problem. 

The plants P1(s) and P2(s) have parametric uncertainty and are given as follows: 

( ) ( )( ) [ ] [ ]

( ) [ ]

1

2

1 , 1,5 , 20,30 ,

, 1,10

P s a b
s a s b

P s k k

= ∈ ∈
+ +

= ∈
 

The performance specifications are : 

1. Robust margins: 50 degree phase margin in each loop; 

2. Robust output disturbance rejection 

( )
( )

( ) ( ) ( )
( ) ( )

3 2

2

64 748 24
0.02 , 10;

14.4 169
Y j j j j
D j j j

ω ω ω ω
ω

ω ω ω

+ + +
< <

+ +
 

3. Robust inner disturbance rejection 

( )
( )

0.01, 50.
Y j
V j

ω
ω

ω
< <  

Since P2(s)=k,kε[1,10], P20=5.5 is taken at the centre of the plant template at all 

frequencies. This means lmin=10-5.5=4.5 

As in [12] the sensitivity function is taken as  

4
2 , 0.01( 40 ), 1.2, 2 10

/
B

B
B

s AW A dB M
s M

ω ω
ω

+
= = − = = ×

+
 

G2(s) is then designed for robust stability and nominal performance. To achieve 

robust performance c was varied till 
( ) { }2 2

2 2

1,
1

yW
P P

G P
∞

≤ ∀ ∈
+

was satisfied. 
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Once G2 was designed ,G1 was designed for the specifications (6),(7) and (12) using 

the standard QFT method. MATLAB QFT Toolbox [14] was used to do this. The 

nominal plant used was T20P20 to design the loop L10= G1T20P20. 

          Since H∞ gave a controller with e=0,the degree difference between the 

numerator and denominator, poles were added at high frequency for roll off to the H 

infinity design. 

          The controllers designed were:  

( )
( )( )

6

2 25

113.4 / 2.088 10 1

/ 200 1 / 7 10 1

s
G

s s

× +
=

+ × +

( )( )1 2 2

392.9
/152.8 1 / 509.1 2 0.2377 / 509.1 1

G
s s s

=
+ + × +

 

 

                                         Fig. 17: Robust margin specification 
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                      Fig. 18: Output disturbance rejection specification 
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                               Fig. 19: Robust input disturbance rejection 
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                                     Fig. 20: Outer loop controller comparison 
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                                              Fig. 21: Inner loop controller comparison 

The results for the controllers designed are shown in Figs. 17 to 21. 

B. Conclusions 

It can be seen from the above results that all specifications are met. In [10] the controllers 

designed were compared to the outer-inner design and it was shown that the there was 

significant reduction in the bandwidth of the outer loop controller with the new method 

proposed compared to the outer-inner design. This implies that the method in [10] gave a 

better design than the outer-inner design with respect to bandwidth and sensor noise 

reduction. In this work the controllers designed  were compared to those designed in [10]. 

It is seen in Fig. 20 that G2 designed using both methods have almost the same 

bandwidth. The outer loop controller in fact has lower bandwidth than the design in 

[10].Hence it can be said that this method gives a comparable design to the design in 

[10],in fact even better which implies that this method is much better the outer-inner 
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design. Also if compared to the single loop design this method gives a huge reduction in 

the bandwidth of the outer loop controller just as in the case of the outer-inner design 

carried out in the usual way. This would help in significant reduction of the sensor noise. 

The added advantage of this method is that the inner loop design is almost automated. In 

the case of n number of loops, this automation can prove very beneficial wherein all the 

inner loops can be automatically designed using the H∞ method. 
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CHAPTER V 

COMPARATIVE STUDY OF CASCADED DESIGN USING QFT AND H∞ 

In this chapter we compare the H∞ design of a two loop cascade control system with the 

QFT design.  

A. H∞ Design for a Two Loop Cascade Control Structure 

As before a linear time invariant plants having two cascaded sections is considered. The 

plants have uncertainty which can be of the structured or unstructured form. The plant 

transfer functions are P1(s)=P10(s)+W1∆1(s) and P20(s)+W2∆2(s) where W1(s),W2(s) are 

additive uncertainty weights and 1 21, 1
∞ ∞

∆ ≤ ∆ ≤ . The reference input to the system is 

r(t) with corresponding Laplace transform R(s). The design objective is to achieve robust 

stability along with nominal performance. The LFT form of the control structure is shown 

in Fig. 22. To solve the problem using the software tools available, this LFT form was 

converted into the form in Fig. 23 using the method used in [5]. 

               From Fig. 23,  

1

2

3

zy
z

z
z

z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=       ,         
1

2

r
d

w ω

ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

=         

1

2

e

y e

r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=        ,         
1

2

3

u

u u

u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=                                                       
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Fig. 22. LFT formulation for two loop control structure 
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Fig. 23. Modified LFT formulation for two loop control structure 
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where z, y, w and u are the error variables, measured variables, exogenous inputs and  

control inputs to the system respectively.   

1 2 1

2 1
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⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 

where Pzw ,Pzu, Pyw,Pyu are the open loop transfer functions from z to w, z to u, y to w and 

y to u respectively. Wy, Wp are weights which are to be selected appropriately. Tid is the 

desired closed loop transfer function. Wd shapes the disturbance coming into the system.   

 ( ) 1

zw zw zu yu ywN P P G I P G P
−

= + −  

where Nzw is the closed loop transfer function from z to w. 

The H infinity problem then reduces to minimizing zwN
∞

 

B. Design Example 

Given: 

( ) ( )( ) ( ) ( )( )
,1 1,10 201 20 1 20

P s P s
s s s s

= =
+ + + +
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( )

( )
( )

( )

( )

0.11 0.11,1 22 22 0.75 2 0.751 2 1 215 15 15 15

1
2 2 0.75 15 5

W s W s
s s s ss s

W sd s s

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

= =
× × × ×+ + + + + +

=
× ×+ +

 

The weights are taken as 

1 1 100, ,
2 10 1001 125 25

W W Ty p ids s s s⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠

= = =
+ ++ +

 

The zwN
∞

 achieved was 1.6. 

The frequency response of the controllers and pre filters designed is shown in Fig. 24. 

 

Fig. 24. Frequency response of all prefilters and controllers 
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C. Conclusions 

 It can be seen that H∞ gives a fully populated controller, pre filter matrix. Hence four 

controllers and five filters are designed using this method. The system has three degrees 

of freedom. Hence as reasoned out in [11] six of the elements in the nine element 

controller matrix designed using H∞ are redundant. The only way the redundancy could 

be removed is by having the elements of the control matrix diagonal. Also the transfer 

function between the reference input and output  for the control system designed using 

H∞ was found out. It included all the nine controllers and pre filters designed.  This 

transfer function was tried to be written in the form 1 1 2 2 1 1 2 2

2 2 2 2

/ 1
1 1
PG P G PG P G

F
P G P G

⎛ ⎞⎛ ⎞ ⎛ ⎞
+⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

  but 

this was not possible as the corresponding controllers were functions of plants. Hence for 

bringing two loop H∞ design on the same platform for comparison with the QFT design 

we must have the control matrix diagonal. A special class of plants would give such a 

control matrix but this is yet to be investigated as it would involve a deep insight into the 

H∞ design algorithm.  
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CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

It has been shown in this thesis that a two loop control structure is not necessary for 

satisfying typical performance specifications though it finally boils down to a trade off 

between the various requirements of disturbance rejection, simplicity of controller, noise 

rejection in the high frequencies etc. . Further the robust outer loop bounds for the inner 

loop of a two loop control structure has been found analytically. This research could be 

extended to the generalization of the mapping of outer loop margin condition to inner 

loop bounds for MIMO systems. 

                A new method was devised for designing cascade controllers using H∞ and 

QFT. It gave better results compared to the outer-inner design and the design in [10]. The 

added advantage of this method is that the inner loop design is automated. This would be 

particularly beneficial when there are more than two loops. This can be extended to SISO 

systems with n loops. Also the H∞ and QFT designs for a two loop cascade control 

structure was compared. It was found that two loop cascade design using H∞ results in 

redundant controllers and pre filters. Since the only case when QFT and H∞ can be put on 

the same platform for comparison is the design with diagonal controllers, a promising 

research direction could be investigation of a class of plants which result in the H∞ 

controllers being diagonal. This could possibly be done by analyzing the algorithm for 

solving the  H∞ problem.  
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