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ABSTRACT

Impact of Wireless Losses on the Predictability of End-to-End Flow Characteristics

in Mobile IP Networks. (December 2004)

Sameer Bhoite, B. E., Visvesvaraya Regional College of Engineering

Chair of Advisory Committee: Dr. Alexander G. Parlos

Technological advancements have led to an increase in the number of wireless and

mobile devices such as PDAs, laptops and smart phones. This has resulted in an ever-

increasing demand for wireless access to the Internet. Hence, wireless mobile traffic

is expected to form a significant fraction of Internet traffic in the near future, over

the so-called Mobile Internet Protocol (MIP) networks. For real-time applications,

such as voice, video and process monitoring and control, deployed over standard IP

networks, network resources must be properly allocated so that the mobile end-user

is guaranteed a certain Quality of Service (QoS). As with the wired and fixed IP

networks, MIP networks do not offer any QoS guarantees. Such networks have been

designed for non-real-time applications. In attempts to deploy real-time applications

in such networks without requiring major network infrastructure modifications, the

end-points must provide some level of QoS guarantees. Such QoS guarantees or QoS

control, requires ability of predictive capabilities of the end-to-end flow characteristics.

In this research network flow accumulation is used as a measure of end-to-end

network congestion. Careful analysis and study of the flow accumulation signal shows

that it has long-term dependencies and it is very noisy, thus making it very difficult

to predict. Hence, this work predicts the moving average of the flow accumulation

signal. Both single-step and multi-step predictors are developed using linear system

identification techniques. A multi-step prediction error of up to 17% is achieved for
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prediction horizon of up to 0.5sec.

The main thrust of this research is on the impact of wireless losses on the ability to

predict end-to-end flow accumulation. As opposed to wired, congestion related packet

losses, the losses occurring in a wireless channel are to a large extent random, making

the prediction of flow accumulation more challenging. Flow accumulation prediction

studies in this research demonstrate that, if an accurate predictor is employed, the

increase in prediction error is up to 170% when wireless loss reaches as high as 15% ,

as compared to the case of no wireless loss. As the predictor accuracy in the case of

no wireless loss deteriorates, the impact of wireless losses on the flow accumulation

prediction error decreases.



v

To my parents and sister



vi

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to Dr. Alexander G. Parlos for

his sound advice, valuable guidance, kind cooperation and constant encouragement

throughout my research under him. I am also thankful to all my friends who were

with me whenever I needed their support. I would like to thank Dr. Jayasuriya and

Dr. Pappu for being on my committee, and Dr. Langari and Dr. Zoghi for their

support.

Lastly, I thank my family for all their sacrifices that made me what I am today.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B. Proposed Network Topology . . . . . . . . . . . . . . . . . 2

C. Problem Statement and Research Objective . . . . . . . . 4

D. Literature Review . . . . . . . . . . . . . . . . . . . . . . . 7

1. Review of QoS in Wired Media Applications . . . . . 7

2. Review of Wireless Mobile Applications . . . . . . . . 8

E. Proposed Approach . . . . . . . . . . . . . . . . . . . . . . 9

F. Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 10

G. Organization of Thesis . . . . . . . . . . . . . . . . . . . . 10

II OVERVIEW OF QOS IN MOBILE IP NETWORKS . . . . . . 11

A. Nature of Losses in Wireless Channel . . . . . . . . . . . . 11

1. Doppler Shift . . . . . . . . . . . . . . . . . . . . . . . 12

2. Attenuation . . . . . . . . . . . . . . . . . . . . . . . . 13

3. Multipath Fading . . . . . . . . . . . . . . . . . . . . 14

B. QoS impacted by Wired Network Conditions . . . . . . . . 16

1. Causes of Delays in Network . . . . . . . . . . . . . . 16

2. Causes of Delay Variation in Network . . . . . . . . . 17

3. Causes of Packet Loss in Wired Network . . . . . . . . 18

C. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 19

III LINEAR EMPIRICAL MODELING TECHNIQUES . . . . . . . 20

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 20

B. System Identification Procedure . . . . . . . . . . . . . . . 21

C. Linear System Identification Technique . . . . . . . . . . . 23

1. Auto-Regressive Exogenous (ARX) Model Structure . 23

2. Auto-Regressive Exogenous Parameter Estimation . . 24

D. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 25

IV MEASUREMENT OF END-TO-END PACKET TRANSPORT:

A QUALITATIVE DISCUSSION . . . . . . . . . . . . . . . . . 27

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 27



viii

CHAPTER Page

B. End-to-End Network Measurement . . . . . . . . . . . . . 27

1. Signal Measurement at the Source . . . . . . . . . . . 27

2. Signal Measurement at the Destination . . . . . . . . 28

3. Packet Measurement and Cumulative Packet Loss . . 28

4. End-to-End Delay Versus Packet Accumulation . . . . 29

C. Major Assumptions . . . . . . . . . . . . . . . . . . . . . . 29

D. Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 30

1. Generation of Simulated Wireless Data . . . . . . . . 30

2. Collection of Wired Traffic Data . . . . . . . . . . . . 35

3. Generation of MIP Data . . . . . . . . . . . . . . . . . 37

E. Auto-correlation of MIP Data . . . . . . . . . . . . . . . . 37

F. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 44

V SINGLE-STEP AND MULTI-STEP PREDICTOR DEVEL-

OPMENT AND TESTING FOR NETWORK ACCUMULATION 45

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B. Performance Metrics . . . . . . . . . . . . . . . . . . . . . 45

C. Description on Training, Testing and Validation Data Sets 46

D. Development of SSP . . . . . . . . . . . . . . . . . . . . . 49

E. Development of MSP . . . . . . . . . . . . . . . . . . . . . 62

1. Six-Step-Ahead Prediction . . . . . . . . . . . . . . . 62

2. Ten-Step-Ahead Prediction . . . . . . . . . . . . . . . 66

3. Thirteen-Step-Ahead Prediction . . . . . . . . . . . . 74

4. Twenty-Five-Step-Ahead Prediction . . . . . . . . . . 78

F. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 86

VI IMPACT OF WIRELESS LOSSES ON PREDICTOR ACCURACY 87

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B. Impact of Wireless Losses on the Performance of the

Predictors Developed . . . . . . . . . . . . . . . . . . . . . 87

1. Impact of Wireless Losses on the Predictor Perfor-

mance for the Flow between NIML (TAMU) and

pli pa Node Present in the Planet-lab, Princeton . . . 87

2. Impact of Wireless Losses on the Predictor Perfor-

mance for the Flow between NIML (TAMU) and

gtidsl Node Present in the Planet-lab, Princeton . . . 88



ix

CHAPTER Page

3. Impact of Wireless Losses on the Predictor Per-

formance for the Flow between gtidsl and nbgisp

Nodes Present in the Planet-lab, Princeton . . . . . . 91

C. Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 98

VII SUMMARY AND CONCLUSION . . . . . . . . . . . . . . . . . 99

A. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B. Conclusion and Recommendations . . . . . . . . . . . . . . 100

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



x

LIST OF TABLES

TABLE Page

I Values of β in various Environmental Conditions . . . . . . . . . . . 31

II Values of σdB in various Environmental Conditions . . . . . . . . . . 31

III Wired losses(%) present in different data-sets with source node

NIML (Texas A&M) and destination node pli pa (planet-lab) . . . . 47

IV Wired losses(%) present in different data-sets with source node

NIML (Texas A&M) and destination node gtidsl (planet-lab) . . . . 48

V Wired losses(%) present in different data-sets with source node

gtidsl (planet-lab) and destination node nbgisp (planet-lab) . . . . . 49

VI Wired losses(%) present in data-sets used for predictor develop-

ment with source node NIML (Texas A&M) and destination node

pli pa (planet-lab) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

VII Single-step-ahead prediction results for Predictor1, Predictor2 and

Predictor3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

VIII Wired loss(%) present in the data used for the predictor develop-

ment with source node NIML (Texas A&M) and destination node

gtidsl (planet-lab) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

IX Single-step-ahead prediction results for Predictor4, Predictor5 and

Predictor6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

X Wired losses(%) present in the data-sets used for predictor devel-

opment with source node gtidsl (planet-lab) and destination node

nbgisp (planet-lab) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

XI Single-step-ahead prediction results for Predictor7, Predictor8 and

Predictor9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

XII Six-step-ahead prediction results for Predictor7, Predictor8 and

Predictor9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



xi

TABLE Page

XIII Ten-step-ahead prediction results for Predictor1, Predictor2 and

Predictor3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

XIV Ten-step-ahead prediction results for Predictor4, Predictor5 and

Predictor6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

XV Thirteen-step-ahead prediction results for Predictor7, Predictor8

and Predictor9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

XVI Twenty-Five-step-ahead prediction results for Predictor1, Predic-

tor2 and Predictor3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

XVII Twenty-Five-step-ahead prediction results for Predictor4, Predic-

tor5 and Predictor6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

XVIII Impact of wireless losses in data-set1 on the performance of Pre-

dictor1, Predictor2 and Predictor3 . . . . . . . . . . . . . . . . . . . 88

XIX Impact of wireless losses in data-set2 on the performance of Pre-

dictor1, Predictor2 and Predictor3 . . . . . . . . . . . . . . . . . . . 89

XX Impact of wireless losses in data-set3 on the performance of Pre-

dictor1, Predictor2 and Predictor3 . . . . . . . . . . . . . . . . . . . 89

XXI Impact of wireless losses in data-set4 on the performance of Pre-

dictor1, Predictor2 and Predictor3 . . . . . . . . . . . . . . . . . . . 90

XXII Impact of wireless losses in data-set5 on the performance of Pre-

dictor1, Predictor2 and Predictor3 . . . . . . . . . . . . . . . . . . . 90

XXIII Impact of wireless losses in data-set6 on the performance of Pre-

dictor1, Predictor2 and Predictor3 . . . . . . . . . . . . . . . . . . . 91

XXIV Impact of wireless losses in data-set7 on the performance of Pre-

dictor4, Predictor5 and Predictor6 . . . . . . . . . . . . . . . . . . . 92

XXV Impact of wireless losses in data-set8 on the performance of Pre-

dictor4, Predictor5 and Predictor6 . . . . . . . . . . . . . . . . . . . 92

XXVI Impact of wireless losses in data-set9 on the performance of Pre-

dictor4, Predictor5 and Predictor6 . . . . . . . . . . . . . . . . . . . 93



xii

TABLE Page

XXVII Impact of wireless losses in data-set10 on the performance of Pre-

dictor4, Predictor5 and Predictor6 . . . . . . . . . . . . . . . . . . . 93

XXVIII Impact of wireless losses in data-set11 on the performance of Pre-

dictor4, Predictor5 and Predictor6 . . . . . . . . . . . . . . . . . . . 94

XXIX Impact of wireless losses in data-set12 on the performance of Pre-

dictor4, Predictor5 and Predictor6 . . . . . . . . . . . . . . . . . . . 94

XXX Impact of wireless losses in data-set13 on the performance of Pre-

dictor4, Predictor5 and Predictor6 . . . . . . . . . . . . . . . . . . . 95

XXXI Impact of wireless losses in data-set14 on the performance of Pre-

dictor7, Predictor8 and Predictor9 . . . . . . . . . . . . . . . . . . . 95

XXXII Impact of wireless losses in data-set15 on the performance of Pre-

dictor7, Predictor8 and Predictor9 . . . . . . . . . . . . . . . . . . . 96

XXXIII Impact of wireless losses in data-set16 on the performance of Pre-

dictor7, Predictor8 and Predictor9 . . . . . . . . . . . . . . . . . . . 96

XXXIV Impact of wireless losses in data-set17 on the performance of Pre-

dictor7, Predictor8 and Predictor9 . . . . . . . . . . . . . . . . . . . 97

XXXV Impact of wireless losses in data-set18 on the performance of Pre-

dictor7, Predictor8 and Predictor9 . . . . . . . . . . . . . . . . . . . 97



xiii

LIST OF FIGURES

FIGURE Page

1 MIP Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Initial Position of Mobile Nodes . . . . . . . . . . . . . . . . . . . . . 5

3 Final Position of Mobile Nodes . . . . . . . . . . . . . . . . . . . . . 6

4 Reflection Refraction Scattering . . . . . . . . . . . . . . . . . . . . . 15

5 System Identification Process. . . . . . . . . . . . . . . . . . . . . . . 21

6 Wireless loss (%) vs. Distance of Wireless Node from Base-Station . 32

7 Network Topology for Simulated Data . . . . . . . . . . . . . . . . . 34

8 Network Topology for Actual Wired Traffic Data Collection . . . . . 36

9 Auto-Correlation Function of a Typical Accumulation Signal Be-

tween TAMU and pli pa Node in Planet-Lab . . . . . . . . . . . . . 38

10 Auto-Correlation Function of a Typical Accumulation Signal Be-

tween TAMU and gtidsl Node in Planet-Lab . . . . . . . . . . . . . . 39

11 Auto-Correlation Function of Moving Average Accumulation Sig-

nal Between TAMU and pli pa Node in Planet-Lab . . . . . . . . . . 40

12 Auto-Correlation Function of Moving Average Accumulation Sig-

nal Between TAMU and gtidsl Node in Planet-Lab . . . . . . . . . . 41

13 Moving Average Accumulation Time Series Between TAMU and

pli pa Node in Planet-Lab . . . . . . . . . . . . . . . . . . . . . . . . 42

14 Moving Average Accumulation Time Series Between TAMU and

gtidsl Node in Planet-Lab . . . . . . . . . . . . . . . . . . . . . . . . 43

15 Representation of Training, Testing and Validation Data Sets . . . . 48



xiv

FIGURE Page

16 Single-Step-Ahead Prediction of Data-set1 Using Predictor2 . . . . . 51

17 Single-Step-Ahead Prediction Error of Data-set1 Using Predictor2 . . 51

18 Single-Step-Ahead Prediction of Data-set2 Using Predictor2 . . . . . 52

19 Single-Step-Ahead Prediction Error of Data-set2 Using Predictor2 . . 52

20 Single-Step-Ahead Prediction of Data-set3 Using Predictor2 . . . . . 53

21 Single-Step-Ahead Prediction Error of Data-set3 Using Predictor2 . . 53

22 Single-Step-Ahead Prediction of Data-set7 Using Predictor5 . . . . . 55

23 Single-Step-Ahead Prediction Error of Data-set7 Using Predictor5 . . 55

24 Single-Step-Ahead Prediction of Data-set8 Using Predictor5 . . . . . 56

25 Single-Step-Ahead Prediction Error of Data-set8 Using Predictor5 . . 56

26 Single-Step-Ahead Prediction of Data-set9 Using Predictor5 . . . . . 57

27 Single-Step-Ahead Prediction Error of Data-set9 Using Predictor5 . . 57

28 Single-Step-Ahead Prediction of Data-set14 Using Predictor8 . . . . 59

29 Single-Step-Ahead Prediction Error of Data-set14 Using Predictor8 . 59

30 Single-Step-Ahead Prediction of Data-set15 Using Predictor8 . . . . 60

31 Single-Step-Ahead Prediction Error of Data-set15 Using Predictor8 . 60

32 Single-Step-Ahead Prediction of Data-set16 Using Predictor8 . . . . 61

33 Single-Step-Ahead Prediction Error of Data-set16 Using Predictor8 . 61

34 Six-Step-Ahead Prediction of Data-set14 Using Predictor8 . . . . . . 63

35 Six-Step-Ahead Prediction Error of Data-set14 Using Predictor8 . . . 63

36 Six-Step-Ahead Prediction of Data-set15 Using Predictor8 . . . . . . 64

37 Six-Step-Ahead Prediction Error of Data-set15 Using Predictor8 . . . 64



xv

FIGURE Page

38 Six-Step-Ahead Prediction of Data-set16 Using Predictor8 . . . . . . 65

39 Six-Step-Ahead Prediction Error of Data-set16 Using Predictor8 . . . 65

40 Ten-Step-Ahead Prediction of Data-set1 Using Predictor2 . . . . . . 67

41 Ten-Step-Ahead Prediction Error of Data-set1 Using Predictor2 . . . 67

42 Ten-Step-Ahead Prediction of Data-set2 Using Predictor2 . . . . . . 68

43 Ten-Step-Ahead Prediction Error of Data-set2 Using Predictor2 . . . 68

44 Ten-Step-Ahead Prediction of Data-set3 Using Predictor2 . . . . . . 69

45 Ten-Step-Ahead Prediction Error of Data-set3 Using Predictor2 . . . 69

46 Ten-Step-Ahead Prediction of Data-set7 Using Predictor5 . . . . . . 71

47 Ten-Step-Ahead Prediction Error of Data-set7 Using Predictor5 . . . 71

48 Ten-Step-Ahead Prediction of Data-set8 Using Predictor5 . . . . . . 72

49 Ten-Step-Ahead Prediction Error of Data-set8 Using Predictor5 . . . 72

50 Ten-Step-Ahead Prediction of Data-set9 Using Predictor5 . . . . . . 73

51 Ten-Step-Ahead Prediction Error of Data-set9 Using Predictor5 . . . 73

52 Thirteen-Step-Ahead Prediction of Data-set14 Using Predictor8 . . . 75

53 Thirteen-Step-Ahead Prediction Error of Data-set14 Using Predictor8 75

54 Thirteen-Step-Ahead Prediction of Data-set15 Using Predictor8 . . . 76

55 Thirteen-Step-Ahead Prediction Error of Data-set15 Using Predictor8 76

56 Thirteen-Step-Ahead Prediction of Data-set16 Using Predictor8 . . . 77

57 Thirteen-Step-Ahead Prediction Error of Data-set16 Using Predictor8 77

58 Twenty-Five-Step-Ahead Prediction of Data-set1 Using Predictor2 . 79

59 Twenty-Five-Step-Ahead Prediction Error of Data-set1 Using Predictor2 79



xvi

FIGURE Page

60 Twenty-Five-Step-Ahead Prediction of Data-set2 Using Predictor2 . 80

61 Twenty-Five-Step-Ahead Prediction Error of Data-set2 Using Predictor2 80

62 Twenty-Five-Step-Ahead Prediction of Data-set3 Using Predictor2 . 81

63 Twenty-Five-Step-Ahead Prediction Error of Data-set3 Using Predictor2 81

64 Twenty-Five-Step-Ahead Prediction of Data-set7 Using Predictor5 . 83

65 Twenty-Five-Step-Ahead Prediction Error of Data-set7 Using Predictor5 83

66 Twenty-Five-Step-Ahead Prediction of Data-set8 Using Predictor5 . 84

67 Ten-Step-Ahead Prediction Error of Data-set8 Using Predictor5 . . . 84

68 Ten-Step-Ahead Prediction of Data-set9 Using Predictor5 . . . . . . 85

69 Twenty-Five-Step-Ahead Prediction Error of Data-set9 Using Predictor5 85



1

CHAPTER I

INTRODUCTION

The Internet was developed with the primary intention of connecting the different

military networks of the United States of America. Since then it has come a long

way and is now a primary source of information exchange. The current technological

advancement has led to the increase in the number of portable, wireless devices such

as personal digital assistants (PDAs), laptops and smart phones. This has caused an

ever increasing demand for instant access to the Internet. Consequently, in the near

future a major portion of the traffic would be wireless and mobile traffic.

A. Motivation

Increase in the number of Internet users has made it necessary to allocate network

resources efficiently so that the end-users are guaranteed certain Quality of Service

(QoS). Subsequently, QoS has become an important topic for researchers. This car-

ries greater importance for real-time audio-video applications with mobile end-users.

For such real-time applications one must provide the desired QoS. The principal ob-

jectives of this research are to predict network congestion for a certain class of mobile

wireless networks and to study the impact of wireless losses on the accuracy of these

predictions. There are at least two ways by which network congestion can be pre-

dicted. One is to analyze end-to-end delays, while the second is by analyzing network

accumulation. Accumulation is defined as the number of packets in transit for the flow

under consideration at any given point in time. Some researchers have addressed the

problem of network congestion using end-to-end delays. From their research results

The journal model is IEEE Transactions on Automatic Control.



2

it can be concluded that it is very difficult to predict end-to-end delays [1]. Hence,

feasibility of prediction of end-to-end network accumulation will be explored. Based

on the current and past values of accumulation, the future values of accumulation will

be predicted. A controller will use these predictions to dynamically adjust the source

send-rate. The round trip time (RTT) of the network might be up to few seconds.

This implies a controller might have to wait for few seconds before it gets the nec-

essary network information and implement the control. In order to compensate for

this dead-time one must perform multi-step-ahead predictions. Different prediction

horizons will be explored to investigate the accuracy of the predictors developed.

B. Proposed Network Topology

Researchers are currently trying to take advantage of the cheap wireless local area

networks (WLAN), in order to provide Internet access to the mobile end-users. This

way, wireless users can stay online even when they are moving and take advantage of

the seamless user mobility. Available options for cheap WLAN are IEEE 802.11 [2],

Bluetooth [3], Home RF [4] etc. for indoor applications, while for outdoor applications

the solution might be wireless coverage provided by existing cellular operators in

urban and rural areas. At the same time, attempts are being made by some private

Internet Service Providers (ISPs) [5] for providing wireless IP services within US. It

is expected that more ISPs will enter into this market.

The methods discussed above have a major disadvantage, that the mobility man-

agement is handled by underlying wireless infrastructure. This leads to the problem

that users might not be able to move seamlessly across different wireless media.

To overcome these problems new methods have been proposed for handling mo-

bility at the IP layer, and such protocols are being developed by Internet Engineering
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Task Force (IETF) [6]. Mobile IP (MIP) is one of the solutions provided by IETF

for handling mobility. This concept will be used in this work. With the use of MIP

mobile users will be able to change their point of attachment to the wired Internet.

In MIP no IP address change is required to allow mobility. Figure 1 shows routing of

packets within an MIP network.

Fig. 1. MIP Network Topology

Each mobile node (MN) is assigned two IP addresses, one is the home address
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(HAddr) which never changes, while the other one is the care-of address (COAddr),

which is the address given by the visiting subnet to determine the actual position

of the mobile node. The COAddr changes as the mobile node changes its Foreign

Agent (FA) and is generally the address of the FA, e.g base station. When the MN is

away from its Home Agent (HA), HA keeps track of MN and its CoAddr by means of

registration procedure. HA forwards the data traffic addressed to MN when it is away.

Thus, irrespective of its position in the Internet, mobile node (MN) can communicate

using its home address.

C. Problem Statement and Research Objective

As discussed in the previous section, various methodologies have been put forward

for communication between mobile end-users through the wired Internet. One of

them is the use of MIP networks, which will be used in this work. In these kinds

of networks, a base station acts as a gateway between wireless mobile nodes and the

Internet infrastructure. The previous section gives detailed information about the

functionality of a MIP network. In this work, two mobile nodes will be assumed

communicating through a wired network (Internet). The network topology is as

shown in Figure 2 and Figure 3. The main thrust of this research is to study the

impact of wireless losses on the accuracy of the predictors. Hence in this work, both

the nodes are considered stationary while they are communicating.

The main objectives of this research are to design multi-step predictors that can

predict the moving average accumulation in MIP networks for a certain prediction

horizon and study the impact of wireless losses on the overall performance of the

predictors.
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Fig. 2. Initial Position of Mobile Nodes
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Fig. 3. Final Position of Mobile Nodes
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D. Literature Review

1. Review of QoS in Wired Media Applications

Extensive research literature exists on improving QoS in multimedia applications

for wired networks. Many applications such as the Web browser and FTP require

reliability and ”in order” packet delivery. Hence such application use Transmission

Control Protocol (TCP) as their transport protocol. Real-time applications are time

sensitive and hence use User Datagram Protocol (UDP). UDP does not use any

congestion control algorithm nor does it employ retransmission, and hence it is not

reliable. Sally Floyd et al. [7] talk about the disadvantages of using unresponsive flows

and propose the development of new protocols for best-effort networks. Congestion

control and fairness are the key issues in case of multimedia applications over best-

effort networks. Some researchers have acknowledged this and suggested adaptive

control schemes [8] which promote ”TCP-friendly” behavior in order to accomplish

their objectives.

Some researchers have attempted to develop TCP-friendly protocols using con-

gestion control algorithms [9, 10]. Implementing such protocols smoothens the bit

streams and eliminates use of large buffers. A technique called HPF (Heterogeneous

Packet Flows) has also been proposed [11], which provides ”in order” delivery.

Methods have been developed for best-effort transmission of audio and video

using UDP as the transport protocol [12, 13]. Smith et al. [14] talk about cyclic UDP

which uses the notion of rounds and prioritizes packets within rounds. This approach

is very useful in case of stored media. Some researchers have tried to use video

encoder parameters to develop feedback control [15, 16]. Most of these are receiver-

based and control action is taken based on the available bandwidth resources. Some

papers talk about sender-based controls, based on queue length and other network
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parameters [17, 18]. But these control approaches have not been developed for best-

effort networks, rather for ATM networks. Sun et al. [19] use prediction of packet loss

probability and round-trip-time to develop control schemes. These schemes control

source flow rate.

Recently researchers are more inclined towards building systems and architec-

tures that are end-to-end rather than network-centric [20, 21, 22]. The advantage of

this method is that analysis and controllers developed for one system can be used

by any other system. Yang et al. [23] give an overview of the ways researchers

are modeling Internet dynamics and predict the end-to-end delays with emphasis on

using system identification techniques. The paper also provides the connection be-

tween a control engineer’s view-point and a statistician’s view-point of addressing the

problem.

Ohsaki et al. [24] have revealed the importance of end-to-end delays and the

impact on QoS and congestion control. They have used a black-box approach for

modeling best-effort networks. This approach is useful for time sensitive applications

such as multimedia applications. The above mentioned issues demonstrate the impor-

tance of developing methods to accurately measure and predict end-to-end network

flow characteristics [25].

2. Review of Wireless Mobile Applications

Internet protocols were not developed for real-time applications nor were they devel-

oped for mobile end-users. Recently a lot of research is being conducted on mobile

networking which aims at providing real-time services for mobile end-users. Badri-

nath et al. [26] have put forward the concept of Internet Cellular Phones which is

an IP-based backbone network having the capability of delivering packetized voice to

moving end-users. Langendoen et al. [27] talk about QoS negotiation frameworks for
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multimedia applications with mobile end-users.

Of late, network architectures have been put forward that employ multiple wire-

less hops in route to and from the wired Internet. Gambiroza et al. [28] studied the

fairness and end-to-end performance in such multihop wireless backhaul networks. If

there are too many users present in a cell, content may experience large delays and

QoS may degrade. A dynamic channel allocation scheme assigns more channels to

such cells [29].

Bhargava et al. [30] put forward an approach integrating mobile ad-hoc net-

works with cellular networks. This approach increases the network security as well

as throughput.

E. Proposed Approach

In this work traffic data pertaining to wireless losses is obtained from the widely

used Network Simulator (NS). Whereas, data pertaining wired network is aggregated

using Planet-Lab. Tool UPBAT developed by Yeom is used to generate packet traffic

between NIML (TAMU) and different nodes present in Planet-Lab, Princeton. Model

replicating real life MIP network is developed by imposing the simulated wireless

losses on the real traffic trace. This model is used as input and accumulations are

predicted. The accumulation signal has long term dependency which makes it very

difficult to predict. Hence, moving average of the signal is calculated. The main

purpose of using a moving average is that the large noise content of the raw signal is

smoothened out to a certain extent.

The use of linear methods such as Auto-Regressive Exogenous (ARX) in modeling

the accumulation in MIP networks has been demonstrated in this thesis. These

predictors are used for single and multi-step prediction. In this work, impact of the
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wireless losses on the accuracy of the predictors developed is studied.

F. Contribution

It can be seen from the literature that the problem of predicting the accumulation

in case of MIP networks hasn’t been addressed. This is because of the long-term

dependencies involved and the unpredictable channel fading errors. This work would

be considered as contribution in following ways:

1. Development of single-step and multi-step predictors that can predict the mov-

ing average flow accumulation in MIP networks.

2. Study the impact of wireless (fading) losses on the ability to predict end-to-end

flow accumulation.

G. Organization of Thesis

Chapter II presents a qualitative discussion on various parameters those can affect

QoS in MIP Networks. Chapter III outlines the linear system identification tech-

niques and methods for modeling network accumulation. Measurement and analysis

of end-to-end accumulation for MIP networks are presented in Chapter IV. Chapter

V demonstrates the development of single-step and multi-step predictors for predict-

ing network accumulation. Impact of wireless losses on the predictors developed is

discussed in Chapter VI. Thesis summary and conclusions are presented in Chapter

VII. Recommendations for future work is also included in the chapter.
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CHAPTER II

OVERVIEW OF QOS IN MOBILE IP NETWORKS

Increasingly, networks are being used as our primary source of information exchange.

This implies that users would prefer to have access to this network information even

when they are moving. Hence now a days mobility is also an issue while designing

networks, network protocols and information services.

Currently researchers are dealing with problem of end-to-end QoS between sender

and receiver having static path. But with mobile end-users, the network path might

not be static anymore. As the user keeps on moving the end-to-end network path

keeps on changing, which will change the end-to-end dynamics.

There are three factors on which QoS in MIP networks depend. One of them is

the unpredictable losses occurring in the wireless channel, the second is the congestion

level and delay variation in the wired network and the third one is the losses occurring

due to congestion in the wired network. The following sections discuss all theses

factors in detail.

A. Nature of Losses in Wireless Channel

Key obstacle in offering desired QoS in case of MIP network is the unpredictable

losses occurring in the wireless channel. Studying the impact of these losses on the

ability to provide end-to-end QoS is the main objective of this work.

In case of wireless mobile communication, packets are not only lost to congestion

but also due to errors introduced in the wireless channel (Channel Fading). Perfor-

mance of wireless channel depends on diffractions around a corner, line of sight (LOS)

radiation, reflections from a smooth surface, and scattering caused by an object with

dimensions on the order of the wavelength. Hence, estimating the impact of such



12

random losses (on the ability to predict network congestion) is very difficult. These

errors do not follow any particular model as in case of wired one, in which the queue-

size gives the estimate of occurrence of losses. These are totally random errors and

mainly dependent on the surrounding environment and the signals present in it.

Due to this problem, it becomes more difficult to predict the accumulation in

MIP networks. Some of the major causes of errors that result in packet loss are:

1. Doppler Shift

Doppler shift occurs due to the relative motion between mobile user and base-station.

This causes a frequency shift of the transmitted signal. This frequency shift makes

it difficult for base-station to successfully receive the signal without any error. The

same effect can be observed as sound pitch varies between a stationary observer and

a moving sound source or vice versa.

Doppler effect causes the apparent frequency of the signal to be different than

that of the transmitted frequency, if there is a relative motion between the source and

the receiver. When there is no relative motion between the source and the receiver

the received signal has the same frequency as the transmitted one. When the distance

between the source and the receiver increases frequency of the received signal is lower

than that of the transmitted. Whereas, if the distance is decreasing the frequency of

the received signal will be higher than that of the transmitted one.

In MIP networks as the mobile end-users keep on moving relative to the sta-

tionary base-station, the frequency of the received signal might keep on fluctuating

depending on the speed of motion and direction of motion. Due to this reason, it is

difficult for the base-station to receive signal without any error.
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2. Attenuation

Electromagnetic intensity decreases as the distance increases. This results in low

signal-to-noise ratio. This problem also exists in case of wired cable. Hence, when

it is necessary to transmit signals over large distance repeaters are inserted which

increases the strength of the transmitted signal. The distance between repeaters

is determined so as to minimize errors due to attenuation.But, in case of wireless

transmission one can not have such kind of repeaters, since there might be multiple

signals present in the wireless channel.

Higher the frequency of the signal, greater data capability it has. On the other

hand, higher frequency signals are more susceptible to attenuation than the lower

frequency ones. Generally, line of sight is desired in case of higher frequency signals.

Since physical obstructions reduce the signal amplitude to certain extent.

Rain attenuation is the term used to describe the effect of precipitation on the

magnitude of the signal. Apart from rain, snow, hail and sleet have a considerable

impact on the signal attenuation. Even in the case of a purest day, signal suffers from

some degree of attenuation. The only case where signal will not get attenuated is if

the signal is traveling in vacuum.

Attenuation is generally expressed in terms of attenuation coefficient, which is

defined as the rate of diminution of average power with respect to distance along a

transmission path. i.e.

Attenuation Coefficient is given by:

α = power lost per unit length/(2 x power transmitted)

It is generally expressed in dB/mile and attenuation is expressed in dB.

The fading effects due to attenuation is known as large-scale fading.
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3. Multipath Fading

Electromagnetic waves get reflected, refracted and scattered from different objects

present in the wireless channel. This makes the signal to travel over multiple paths.

This can cause fluctuations in received signal’s amplitude, phase and angle of arrival.

Usually if the wireless medium characteristics are unknown, one assumes it to be

free space. It is assumed that there are no objects that can absorb or reflect radio

frequency energy that is being transmitted between the mobile-user and the base-

station. But in practice it is very rarely realized.

There are three main reasons for Multipath Fading:

1. Reflection: When an electromagnetic wave hits on a smooth surface of large

dimensions compared to its wavelength reflection occurs. This may interfere

constructively or destructively at the base-station.

2. Diffraction: When electromagnetic wave hits an impenetrable body of large

dimension, it gets diffracted. This is also called as shadowing, because the

diffracted signal reaches the base-station even if it is shadowed by impenetrable

objects.

3. Scattering: When the wireless channel contains objects of dimension on the

order of wavelength of the electromagnetic wave, it gets scattered. These kinds

of objects deflect the energy from the mobile-user to be transmitted in many

directions.

Figure 4 shows phenomenon of reflection, refraction and scattering in urban area.

If there is a clear line of sight (LoS) between the mobile-user and base-station the

above three mechanisms have minimal impact on the strength of the signal received at

the base-station. But if there is no clear LoS then the strength of the signal received
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Fig. 4. Reflection Refraction Scattering

will be the sum of the components due to all three of the above. The strength of the

signal received depends largely on the relative displacement between mobile-user and

base-station, and also on the displacement of other objects present in the medium.

In case of mobile end-users these three factors makes a huge impact on the quality

of the received signal.

The fading effects due to multi-path fading is called as small-scale fading.
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B. QoS impacted by Wired Network Conditions

QoS in MIP networks not only depend on the wireless losses, but also on the network

congestion in the wired Internet. Delay variations (delay jitter) and packet drops are

most important parameters impacting QoS for time sensitive real-time applications

over the wired Internet. Data sent over a network is split into smaller segments called

data packets. These packets are then transmitted to their destination by routers

present over different paths. The time taken by a packet to reach the destination

application layer, once it leaves the source application layer is called as ”delay” of

the packet. Variation in the delay between consecutive packets is called as ”delay

jitter”. Various types of delays and the causes of delay variation and packet drops

are discussed below.

1. Causes of Delays in Network

End-to-end delay comprises of two components, one is constant while the other one

is variable and keeps on changing depending on the network dynamics. The constant

part includes delay at the nodes and propagation delay of the links through which

the packet travels before reaching the destination. Variable delay includes queueing

delay which keeps on changing depending on the cross-traffic and processing time.

Following are some of the important factors contributing end-to-end delays [31]

1. Transmission Delay: It is the time taken to transmit a packet into the link. It

can also be stated as the time required by a node to push a packet onto the

link. For mobile as well as wired networks, it is generally of the order of few

microseconds.

2. Propagation Delay: It is the time required by a bit to travel from the beginning

to the end of the link. Speed with which a bit travels through a link is called as
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propagation speed of the link. It is dependent on the capacity of the physical

medium. Mathematically it can be defined as distance between the two nodes

divided by the propagation speed of the medium. In case of wired networks it

is of the order of milliseconds while in case of wireless channel it is of the order

of microseconds.

3. Processing Delay: It is the time required to process the packet to check for bit

errors and determine where to route it examining it’s header. Generally it is of

the order of microseconds.

4. Queueing Delay: It is the time a packet waits in queue before being transmitted

onto the link. It depends on the number of packets already present in the queue.

This delay varies from few milliseconds to hundreds of milliseconds depending

on the cross-traffic present in the network.

2. Causes of Delay Variation in Network

There are several reasons which lead to delay variation known as delay jitter. Some

of them are [32, 33]

1. Queues: It is the most prominent cause of delay jitter. If the flow rate of packets

onto the link is more than bandwidth of the link, then packets are queued.

Queues are built up at routers and switches. Generally, delay jitter happens if

there is more than one flow competing for the bandwidth of the link. If two

consecutive packets of a flow undergo different waiting time in a queue it leads

to delay jitter. If variation in cross-traffic is large and the route to destination

is multi-hop, it leads to large delay jitter, since this effect is cumulative.
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2. Faulty Clocks: If clocks of transmitting node and the receiving node are not

synchronized it leads to time drifts and clock skews. Since it has an impact on

the observed state of the network, it is extremely important to deal with clock

accuracy.

3. Bursty Traffic: If capacity of the link is less than the incoming burst, then queue

starts to build up. If packets of a flow are queued in such a queue, each packet

will experience different queueing delay depending on its position in the queue.

This leads to a large delay jitter. If there are multiple bursty flows competing

for limited bandwidth the jitter can be severe.

4. Route Changes: It happens due to router failures, change in routing algorithm,

and sudden recovery of failed routers. Change in route because of any of the

above mentioned reasons will lead to jitter, since propagation delays and queue-

ing delays for different routes might be different.

5. Packet Reordering: A packet is reordered if its sequence number is less than

any of the packet arrived before it. Reordering of packets happen due to re-

transmission algorithm present in some reliable protocols like TCP, or due to

route changes, or due to multiple buffers at routers.

3. Causes of Packet Loss in Wired Network

In case of wired networks, packets are lost if the queues at the router are full. Routers

have finite queue, when the incoming packet comes after the queue has reached its

saturation the router drops the packet. Generally, a router has two buffers, the

incoming interface buffer and the outgoing interface buffer. If a router is not able

to process the incoming packet fast enough, it is dropped at the incoming interface

buffer. If the outgoing link of a router is very busy, the packet is dropped at the
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outgoing interface buffer. Sometimes packets are dropped due to transmission errors,

and if the checksum on the packet fails.

C. Chapter Summary

Ensuring QoS in MIP networks is more difficult than wired networks because of the

random channel fading errors in the wireless channel. QoS in case of mobile end-users

is not only affected by random channel fading losses, but also due to delay jitter and

packet losses experienced by the packets in the wired network. This indicates that

there is a need for predictive estimation of end-to-end characteristics of MIP networks

in order to guarantee a certain level of QoS for mobile end-users.
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CHAPTER III

LINEAR EMPIRICAL MODELING TECHNIQUES

A. Introduction

The problem addressed in this research is multi-step-ahead prediction of the moving

average of accumulation signal for MIP networks. Prediction can be defined as esti-

mation of a variable of interest at a future point in time given measured data up until

and including present time [34]. Two types of models are used in system modeling,

first is the physical model whereas second one is empirical model. In physical models,

mathematical models are used to describe the relationship between the input system

variables and output system variables. Empirical models are derived from the ob-

served data of the system. Empirical models are also known as ”black-box” models.

The system models developed in this research are empirical.

System identification develops empirical models based on observed data of the

system under consideration. System identification is used to develop models in the

fields of medicine, process control, computer engineering, and business. As the dy-

namics of a system becomes increasingly complex and uncertain its mathematical

analysis becomes more difficult. In such cases system identification is necessary and

very useful for modeling the system. For developing an efficient controller with desired

performance, an accurate model representing the system is necessary. Thus, accu-

rately modeling the system is very crucial step of a control problem. The following

section gives some information about system identification procedures.
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B. System Identification Procedure

Figure 5 shows the sequential steps involved in System Identification (SI). Following

are the steps involved in system identification [34]:

Fig. 5. System Identification Process.
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1. Experiment design and data collection: For developing a good model, it is

very important to capture the dynamics of the system. Experiments should

be conducted in such a way that the input signal must replicate the important

dynamics of the system. Hence, the data collected should be analyzed rigorously.

Correlation tests should be done to make sure that the data is suitable for

system identification. If the data is not replicating the dynamics of the system

or not suitable for system identification, experiments should be performed again.

Hence, this step is the most important step in system identification process.

2. Model structure selection: After desired data has been collected, the next step

is to select an appropriate model. A prior knowledge of the system is very

useful for selecting a good model structure. Linear models can be classified into

input-output and state-space models. In input-output models, linear regression

is used to represent the relation between system inputs and outputs. On the

other hand, in state-space models intermediate states are used to represent the

system. In this work, input-output models are used for modeling.

3. Model parameter estimation: The third step is to solve an optimization problem

using the data collected in the first step and the model selected in the second

step. Model parameters are numerical values obtained in this optimization

problem which are used to describe the model selected in the previous steps.

4. Model validation: The model developed in the previous three steps must be

tested to work in the operating range of interest. For validating a model, com-

pletely fresh data are used which are not used in any of the previous steps and

the performance of the model is monitored on this data set. If this data set

invalidates the model, all of the above steps must be repeated to develop a new

model.
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Thus mathematically, system identification can be state as follows:

Obtain a free parameter θ of a function F() such that one-step-ahead prediction

is given by:

ŷ(t|t − 1) = F(u, Y ; θ) (3.1)

where, u = u(1), ..., u(T ) are finite set of input observations,

Y = y(1), ..., y(T ) are the corresponding output observations,

and ŷ(.|..) are the past predictions values.

C. Linear System Identification Technique

Linear estimation is based on the assumption that the system being analyzed can

be represented as a linear model. Linear models can be classified into input-output

systems and state-space system. In input-output systems linear regression is used to

present the relation between system inputs and outputs. On the other hand, in state-

space models intermediate states are used to represent the system. For modeling, in

this work input-output model is used. This is because the accumulation signal is in

the form of a time series. Also the system being modeled is single input single output

(SISO). The section below gives outline of the model used in this work.

1. Auto-Regressive Exogenous (ARX) Model Structure

This is the simplest of all the linear system modeling techniques. The AR part

in ARX denotes the Auto-regressive part while the X part denotes the extra input

called exogenous variable. Single-Input Single-Output (SISO) ARX model can be

represented by the following equation:
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y(t + 1) =a1y(t) + .... + any
y(t − ny + 1)

+ b1u(t − nd) + ... + bnu
u(t − nu − nd + 1) + e(t + 1)

(3.2)

where y(t) is the output of the ARX model, ny is the number of past outputs

commonly known as the lag terms of the model, u(t) is the input to the ARX model,

nu is the number of past input lags used in the model and nd is the pure time delay

(the dead time) in the system. It is assumed that the coefficients a1, ..., any
and

b1, ...., bnu
are known.

From SISO ARX model presented by equation 3.2, single-step-prediction (SSP)

of the system output ŷ(t + 1|t) can be given by following equation:

ŷ(t + 1|t) =a1y(t) + ... + any
y(t − ny + 1)

+ b1u(t − nd + 1) + ... + bnu
u(t − nu − nd + 2)

(3.3)

Similarly, multi-step-ahead predictor (MSP) can be written as:

ŷ(t + 1|t − p + 1) =a1ŷ(t|t − p + 1) + ... + any
ŷ(t − ny + 1|t − p + 1)

+ b1u(t − nd + 1) + ... + bnu
u(t − nu − nd + 2)

(3.4)

2. Auto-Regressive Exogenous Parameter Estimation

Previous section described the predictor form of the ARX model. The parameters

a1, ...any
, b1..., bnu

of ARX model are unknown. These parameters must be determined

using measurement data, Y and u. The section following discusses estimation of these

parameters.

The ARX predictor can also be written as:

ŷ(t + 1|t) = ϕT (t + 1)θ (3.5)
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where,

ϕ(t + 1) = [y(t), ..., y(t − ny + 1), u(t − nd + 1), ..., u(t − nu − nd + 2)]T

θ = [a1, ..., any
, b1, ..., bnu

]T

Thus ARX predictor form can be written as a scalar product between the data

vector ϕ(t + 1) and the parameter vector θ. The equation above is in the form of

a linear regression with the parameter vector θ as the regression vector and hence

least-squares method can be used to solve for θ [30].

To solve for the parameters of the ARX predictor using least-squares method,

the mean-square of the prediction error, VN(θ, ZN) must be defined as:

VN(θ, ZN) =
1

N

N
∑

t=1

[y(t) − ŷ(t|t − 1; θ)]2 (3.6)

where ZN is the data set of N input-output samples u(t) and y(t) for t = 1, ..., N .

The above equation can also be interpreted as the objective function of the least-

squares problem. The objective function, VN(θ; ZN), is minimized with respect to θ.

The solution to this least-squares problem is the value of θ̂N that minimizes VN(θ; ZN).

This is given by:

θ̂N = [
N

∑

t=1

ϕ(t)ϕT (t)]−1

N
∑

t=1

ϕ(t)y(t). (3.7)

Since no exogenous inputs are used, accumulation signal is a time series. In that

case model becomes Auto-Regressive (AR) model.

D. Chapter Summary

In this chapter system identification procedure and linear methods for single-step-

ahead (SSP) and multi-step-ahead (MSP) are discussed. The linear methods provide

accurate linear system models. The next chapter gives an insight on the accumulation
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data used in this work. Next chapter also highlights the temporal properties of

accumulation signal along with its moving average calculations.
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CHAPTER IV

MEASUREMENT OF END-TO-END PACKET TRANSPORT: A QUALITATIVE

DISCUSSION

A. Introduction

The most important step in modeling end-to-end accumulation is to obtain sufficient

data replicating the dynamics of the system. This chapter discusses some important

issues regarding the system of interest. A detailed discussion of various end-to-end

parameters is done. The term end-to-end measurement relates to the measurements

done between the application layer at the source and application layer at the destina-

tion, assuming the intermediate Internet as a ’Black-Box’. This chapter gives detailed

information regarding data collection procedure used to collect simulated data and

real traffic data. The following section discusses about the various possible end-to-end

network measurement parameters. This chapter also gives various assumptions made

in this work.

B. End-to-End Network Measurement

There are different units of measurements for end-to-end network dynamics. Following

section discusses the available units of measurements and their comparison.

1. Signal Measurement at the Source

1. Send Rate: Send rate is defined as number of bytes of data sent by the source

per unit time. It is measured in Kb/s

2. Send Flow: Send flow is defined as the total number of packets or bytes sent by

the source into the the network at any given instance of time. It is measured in
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bytes or number of packets.

2. Signal Measurement at the Destination

1. Arrival Rate: Arrival rate is defined as number of bytes of data received by the

destination per unit time. It is measured in Kb/s.

2. Arrival Flow: Arrival flow is defined as the total number of packets or bytes

received by the destination at any given instance of time. It is measured in

bytes or number of packets.

3. End-to-End Delay: End-to-end delay is the time required by the packet to

travel from the application layer of the source to the application layer of the

destination. It is given in ms.

3. Packet Measurement and Cumulative Packet Loss

In this work, network packet accumulation is used as an indicator of the end-to-end

dynamics of the network. ”Accumulation and loss” of a flow is the difference between

cumulative send and cumulative arrival flows. Mathematically, Accumulation and

losses can be expressed as:

AccL(k) = U(k) − Y (k), (4.1)

where Y (k) is the arrival flow, U(k) is the send flow, AccL(k) is the accumulation

and loss function and k is the discrete time step. The accumulation and loss function

has two parts, first is the accumulation and the second one is the cumulative packet

loss in the network. Thus, accumulation loss function is:

AccL(k) = Acc(k) + L(k), (4.2)



29

where Acc(k) is the true packet accumulation and L(k) is the cumulative packet loss

of the flow under consideration at any give time step k. The true accumulation signal

can be obtained by removing the trend from the accumulation and loss signal. From

now on, the term packet accumulation will denote the true packet accumulation in

this work.

4. End-to-End Delay Versus Packet Accumulation

In this work network accumulation is used as an indicator of end-to-end dynamics of

the network instead of end-to-end delays because of the following reasons:

1. It is very difficult to distinguish between the packets with very large delays and

the packets those are dropped in the network.

2. It is difficult to assign a delay value to the dropped packet.

3. Accumulation signal can be used in case of flow reversal when the packets arrive

out of order. On the other hand it is very difficult to account for out of order

packet arrival in case of end-to-end delay signal.

C. Major Assumptions

The major assumptions made in this work are as follows:

• The mobile node does not move in a random fashion.

• The fraction of flow under consideration is very less compared to the cross-

traffic.

• Losses in wireless channel are Physical Layer losses and there are no Mac layer

(collision) losses.
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D. Data Collection

As MIP networks are yet to be implemented, there is no data available as of now.

Hence, in this work data pertaining to losses in the wireless channel is obtained using

popular network simulator (ns-2). Where as, tool UPBAT developed by Yeom is

used to generate packet traffic between NIML (TAMU) and different nodes present

in Planet-Lab, Princeton. The data generated by the tools discussed above are called

as real traffic data. After getting both the data, the wireless losses obtained from

ns-2 simulations are imposed on the real data to get the effects of MIP networks. The

following sections gives the data collection procedure adopted in detail.

1. Generation of Simulated Wireless Data

This section deals with generation of the wireless loss data using ns-2. The data

generated using ns-2 will now be called as simulated data. As described in Chapter

II, there are two types of fading effects:

1. Small scale fading: It is caused due to multi-path fading.

2. Large scale fading: It is caused due to signal attenuation.

Shadowing model simulates large scale fading effects in NS-2. But, shadowing model

can only be used in case of mobile ad-hoc networks and not in MIP networks.Hence

in this work shadowing model is used to get the realistic range of large scale fading

effects. Mathematically shadowing model is given by the following equation:

[
Pr(d)

Pr(d0)
]dB = −10β log(

d

d0

) + XdB (4.3)

where, Pr(d0) represents mean power received at a distance d0, β is called as

path loss exponent, and XdB is the Gaussian random variable with zero mean and
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Table I. Values of β in various Environmental Conditions

Environment β

Outdoor
Free Space 2

Shadowed urban

area

2.7 to 5

In

Building

Line-of-Sight 1.6 to 1.8

Obstructed 4 to 6

Table II. Values of σdB in various Environmental Conditions

Environment σdB

Outdoor 4 to 12

Office, hard partition 7

Office, soft partition 9.6

Factory, line-of-sight 3 to 6

Factory, obstructed 6.8

standard deviation σdB. σdB is also known as shadowing deviation.

Values of β and σdB for different environmental conditions are given by Tables I

and II [36] respectively.
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Fig. 6. Wireless loss (%) vs. Distance of Wireless Node from Base-Station

In this work, values of path loss exponent and shadowing deviation are selected

for the outdoor conditions. From Figure 6, 15% wireless loss can be observed for a

distance of 1430m. In the worst case, wireless losses can be considered as random

losses. Hence to model the worst case scenario built in error model in NS was used

to generate errors in random numbered packets.

For simulating small scale fading effects commonly used Ricean Fading model is

incorporated in ns-2. This model is available online at (http://www.ece.cmu.edu/).

Mathematically, Ricean model can be represented as:
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r =
√

(σx1 + A)2 + σx2
2 (4.4)

where, A = 0 since it is the line-of-sight component and we are assuming there

is no clear line of sight between mobile node and base station,

σx1, σx2 are in-phase and quadrature phase component respectively, and

r is the magnitude of the fading envelope.

These error models, introduce errors in randomly picked packets and drop them

before queuing. For generating simulated data, the flow conditions are maintained

the same as in case of wired network. Which means packet size and bit rate of the

packets is maintained the same as in case of the wired networks. Figure 7 shows the

basic topology used to get the desired simulated data using NS-2.

The MIP network considered has the following components:

1. Mobile Nodes: As shown in the Figure 6 proposed network has two mobile

nodes. Initially, the mobile nodes are considered to be stationary, so as to get

fading effect due to wireless channel. To have a realistic effect of fading due

to mobility after some time both nodes move at 55 mph. In this work, fading

effects due to wireless channel only is considered and fading due to mobility is

not considered.

2. Base Stations: As shown, the MIP network considered has four base-stations.

Each Base station acts as a gateway between wireless mobile node and the

Internet infrastructure network. As discussed in chapter I, base-station 1 is

home-agent (HA) for mobile-node1 while base-station 3 is the HA for mobile-

node 2. Thus initially, base-station 1 acts as a gateway between mobile-node

1 and the Internet. As node 1 starts moving away from its HA, the strength

of the signal received by HA weakens. After some time period the mobile



34

node is unable to connect to any of the base stations and all of its information

transmitted gets lost. When mobile node 1 comes in the vicinity of base-station

(2), it (base-station 2) becomes its foreign-agent (FA) and routes its data packets

through wired Internet. Mobile-node 2 follows the same mobility pattern, except

when it reaches its FA (base-station 4), packets addressed to it arrives at its

HA first. HA then reroutes those packets to mobile-node 2 via its FA.

3. Wired Link: NS-2 simulations are used in this work to get the data pertaining

to wireless and mobile losses. Hence instead of having wired network only a

wired link is used, as shown in the network topology. The wired link will be

replaced by wired Internet as discussed in the following section.

Fig. 7. Network Topology for Simulated Data
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2. Collection of Wired Traffic Data

In this work Planet-lab is used for collecting real traffic trace. Planet-lab is open

infrastructure for invention of next generation wide area services. It is the foundation

on which next generation Internet can emerge. Its a different kind of network test-bed:

• It is not a distributed super-computer.

• It is not a collection of pipes or giga-pops

• It is geographically distributed network services.

• It provides alternative network architectures and protocols.

Planet-lab has more than 430 nodes across 201 sites worldwide which includes

Universities, Labs and Internet2. It is an active and growing research community.

Tool UPBAT developed by Yeom [35] are used for generating packet traffic be-

tween NIML (TAMU) and different nodes present in Planet-Lab, Princeton. The data

generated by these tools will be called as real data. Once the real data is generated,

simulated data pertaining to the wireless fading losses is superimposed on the real

data to get the replication of MIP networks. The data generated by superimposition

will be called as MIP data. MIP data will be used for predictor development and val-

idation. By comparing the validation results of different MIP data, impact of wireless

and mobile losses can be studied. Figure 8 gives the topology used for collecting real

data using UPBAT tool. The tool requires a source node to send the information

packets and the receiver node to receive it.

In this research, real traffic traces between different source node and destina-

tion node have been collected. The different source-destination pairs used for data

collection are:
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Fig. 8. Network Topology for Actual Wired Traffic Data Collection

1. Source node is NIML (TAMU) and the destination node was pli pa node present

in the planet-lab, Princeton. For this flow protocol used was UDP, packet size

was 70 Bytes and bit-rate was 28Kb/s.

2. Source node is NIML (TAMU) and the destination node was gtidsl node present

in the planet-lab, Princeton. For this flow protocol used was UDP, packet size

was 70 Bytes and bit-rate was 28Kb/s.

3. Source node is gtidsl and the destination node was nbgisp, both these nodes

are present in the planet-lab, Princeton. For this flow protocol used was UDP,

packet size was 30 Bytes and bit-rate was 9.6Kb/s.

UPBAT uses two threads for sending and receiving data packets. For collecting

real traffic data, server program is started on the remote host and client program is

started on the local host. Packets are sent from the source host to the destination

host. These packets are echoed back to the source with the destination time stamp

on it. Thus this tool gives two way delay.
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3. Generation of MIP Data

After generating the simulated trace pertaining to wireless, mobile part and real

traffic trace, this section discuss about combining these two traces to generate the

MIP trace. As discussed earlier, the flow characteristics while generating simulated

data are maintained the same as the real traffic. From the simulated data, the

information pertaining to the channel fading losses and the mobility losses is derived.

After getting this information, those data packets are dropped from the real traffic

trace. This will give the pseudo impression of real MIP communication through wired

Internet. The data developed by superimposing the wireless and mobile losses on the

real traffic data is used throughout this work.

E. Auto-correlation of MIP Data

Autocorrelation of different MIP traces gives us the necessary information about the

nature of the data to be predicted. The rate at which the autocorrelation falls with the

increase in the number of lags gives some indication about the long-term dependency

of the signal. Figures 9 and 10 give autocorrelation coefficient for 20lags. From the

figures it can be observed that autocorrelation function does not drop below 0.82

even after 20 lags. The study of autocorrelation function is necessary since it helps

in deciding the order of linear predictive model like ARX.

From Figures 9 and 10 it can be seen that the autocorrelation of MIP trace is

high even after 20 lags. This shows that the traces has long term dependency. This

will make the task of multi-step-ahead prediction very difficult. If the errors in these

predictions are very high, the predictor will not be suitable for further development

of the source controller. This problem exists because the time series is extremely

noisy. In order to smoothen the time series, moving average of the original accumu-
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lation time-series is taken to generate a mean accumulation time-series. Thus mean

accumulation time-series can be given as:

AccMA(k + w − 1) =
1

w

k+w−1
∑

j=k

Acc(j) (4.5)

where AccMA(k) is k-th moving average of network accumulation and m is the window

of the moving average. In this work moving window of 100ms is used to get the mean

accumulation time-series. Figures 11 and 12 show the autocorrelation function of the

mean accumulation signal.
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Fig. 11. Auto-Correlation Function of Moving Average Accumulation Signal Between

TAMU and pli pa Node in Planet-Lab
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Figures 13 and 14 show the mean accumulation time-series along with the original

accumulation time-series.The original accumulation time-series is shown in discrete

points. From these plots it can be seen that the original accumulation signal is spiky

in nature indicating large noise content of the signal. Moving average accumulation

gets rid of these spikes and smoothens the accumulation signal to certain extent.
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Fig. 13. Moving Average Accumulation Time Series Between TAMU and pli pa Node

in Planet-Lab
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F. Chapter Summary

This chapter provides various possible units of end-to-end network measurement,

which can be used as an indication for network congestion. A detailed discussion on

the data collection methods is done in this chapter.

The accumulation time-series has long term dependency and is extremely noisy.

Because of these reasons prediction is very difficult. Hence moving average of accu-

mulation time series is used instead of the original accumulation time-series.

The following chapter deals with the development of predictors and their perfor-

mance analysis.
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CHAPTER V

SINGLE-STEP AND MULTI-STEP PREDICTOR DEVELOPMENT AND

TESTING FOR NETWORK ACCUMULATION

A. Introduction

In this chapter, linear predictor models for the moving average accumulation (in MIP

networks) are developed and tested. Empirical modeling is done using ”black-box”

approach and accumulation signal is modeled as time-series. SI technique AR is used

for modeling. In this chapter single-step and multi-step predictors are developed.

A detailed discussion on the linear modeling technique AR is done in Chapter III.

Next section discusses the performance metrics used while developing the predictors

in this work. It will be followed by the development of single-step and multi-step

predictors.

B. Performance Metrics

In this work, two types of errors are used for performance evaluation of the predictors

developed. The first one is the Mean Square Error(MSE1). It is the ratio between

the sum of the square of the prediction error and the sum of the square of the input

data, as as described in Equation 5.1.

MSE1 =

∑N

k=1
(x(k) − x̂(k|k − 1))2

∑N

k=1
(x(k))2

X100 (5.1)

where x(k) is the observation, x(k|k − 1) is the predicted data and N is the total

number of data points. MSE can also be defined as inverse of Signal-to-Noise Ratio

(SNR). Hence MSE is considered to be the best performance metric which gives good

idea about the quality of predictor.
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The second metric used in this work for performance evaluation of the predictors

is a variant of mean square error (MSE2). It is defined as the ratio between the sum

of the square of the prediction error and sum of square of input data from which its

(input data’s) mean has been removed. Mathematically, it can be represented as:

MSE2 =

∑N

k=1
(x(k) − x̂(k|k − 1))2

∑N

k=1
(x(k) − x)2

X100 (5.2)

where, x is the arithmetic mean of the observation x(k). In case of signals with large

variations, this metric might give better indication of the predictor performance as

compared to the MSE1 discussed earlier.

C. Description on Training, Testing and Validation Data Sets

As described in chapter IV MIP data generated has been used for the predictor

development. First moving average of the accumulation time series is generated. As

shown in Figure 15, the data obtained is divided into training, testing and validation

data.

In this work, different predictors have been developed with data sets with varying

wired losses. These predictors are then tested with testing data sets having differ-

ent wired losses than the one with which it was developed. All the predictors are

developed with the ideal wireless channel conditions. Which means that there are

no wireless losses in the data with which the predictor is developed. The impact of

wireless losses on the accuracy of these predictors is discussed in detail in Chapter

VI. The real traffic data is collected with three different source-destination pairs as

discussed in section 4.D.2. Description of various data-sets used for predictor testing

is as follow:

1. Table III gives the data-sets along with the wired losses present in them. For
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Table III. Wired losses(%) present in different data-sets with source node NIML (Texas

A&M) and destination node pli pa (planet-lab)

File Name Wired Loss(%)

Data-set1 0

Data-set2 0

Data-set3 0.3

Data-set4 0.7

Data-set5 1.4

Data-set6 2.0

these flows source node is NIML (TAMU) and the destination node is pli pa

node present in the planet-lab, Princeton.

2. Table IV gives the data-sets along with the wired losses present in them. For

these flows source node is NIML (TAMU) and the destination node is gtidsl

node present in the planet-lab, Princeton.

3. Table V gives the data-sets along with the wired losses present in them. For

these flows source node is gtidsl and the destination node is nbgisp, both these

nodes are present in the planet-lab, Princeton.

These traces are collected at different times and hence have different wired losses.
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Fig. 15. Representation of Training, Testing and Validation Data Sets

Table IV. Wired losses(%) present in different data-sets with source node NIML (Texas

A&M) and destination node gtidsl (planet-lab)

File Name Wired Loss(%)

Data-set7 0

Data-set8 1.4

Data-set9 2.7

Data-set10 3.6

Data-set11 4.3

Data-set12 5.3

Data-set13 9



49

Table V. Wired losses(%) present in different data-sets with source node gtidsl

(planet-lab) and destination node nbgisp (planet-lab)

File Name Wired Loss(%)

Data-set14 0

Data-set15 2.6

Data-set16 3.0

Data-set17 5.1

Data-set18 10.4

Table VI. Wired losses(%) present in data-sets used for predictor development with

source node NIML (Texas A&M) and destination node pli pa (planet-lab)

Predictor Name Wired loss (%) present Predictor Order

Predictor1 0 7

Predictor2 1 8

Predictor3 2 10

D. Development of SSP

Once the desired data is obtained, the next step is to develop predictor model using

system identification techniques. Single-step-ahead prediction in this research means

20msec ahead prediction for the first and second source-destination pair, whereas for

the third pair it means 40msec ahead prediction of the moving average accumulation.
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For the data-sets with source node NIML (Texas A&M) and destination node

pli pa (planet-lab) three different predictors have been developed. Table VI gives

the information about the wired losses present in the traces used for the predictor

development.

Table VII gives the prediction errors described in previous section 5.2 for all

the SSPs obtained using AR model. Figures 16, 18 and 20 show the performance

of the Predictor2 for Dataset1, 2 and 3. The discrete points in the figure presents

the predicted value, whereas the continuous line is the actual accumulation signal.

Figures 17, 19 and 21 give the prediction error for the same Data-Sets. From the

prediction figures it can be seen that predictor can capture the dynamics of the

network by predicting moving average of the accumulation signal. From table VII

it can be observed that MSE1 as well as MSE2 for all the predictors is pretty high

for the case of Dataset5. This implies that the predictors developed fails to predict

Dataset5 well. It can be seen that the wired losses does not affect the accuracy of

the predictors to a great extent. This is because the wired losses follow a trend and

are not totally random. For Dataset1 moving average accumulation signal is also

plotted. From the plot it can be observed that the predicted values follow closely

the moving average signal. This natural since the predictors were developed using

moving average accumulation signal.
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Fig. 16. Single-Step-Ahead Prediction of Data-set1 Using Predictor2
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Fig. 17. Single-Step-Ahead Prediction Error of Data-set1 Using Predictor2
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Fig. 18. Single-Step-Ahead Prediction of Data-set2 Using Predictor2
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Fig. 19. Single-Step-Ahead Prediction Error of Data-set2 Using Predictor2
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Fig. 20. Single-Step-Ahead Prediction of Data-set3 Using Predictor2
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Fig. 21. Single-Step-Ahead Prediction Error of Data-set3 Using Predictor2
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Table VII. Single-step-ahead prediction results for Predictor1, Predictor2 and Predic-

tor3

Data-Set
Predictor1 Predictor2 Predictor3

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset1 1.1 43.3 1.3 50.1 1.3 50.5

Dataset2 2.0 49.7 2.2 56.4 2.3 57.6

Dataset3 1.0 36.6 1.1 42.2 1.2 43.2

Dataset4 0.8 35.3 0.9 40.0 0.9 41.3

Dataset5 4.8 40.2 5.8 48.6 6.0 50.5

Dataset6 1.2 37.8 1.6 48.0 1.6 50.2

Table VIII. Wired loss(%) present in the data used for the predictor development with

source node NIML (Texas A&M) and destination node gtidsl (planet-lab)

Predictor Name Wired loss (%) present Predictor Oder

Predictor4 2.7 9

Predictor5 4.3 5

Predictor6 9 3

For the data-sets with source node NIML (Texas A&M) and destination node

gtidsl (planet-lab) three predictors have been developed. Table VIII gives the informa-

tion about the wired losses present in the traces used for developing these predictors.

Table IX gives information about the prediction errors of the predictors developed

on varying wired loss data. Figures 22, 24 and 26 show the performance of the

Predictor5 for Datasets7, 8 and 9. Figures 23, 25 and 27 give the error plot of the

same traces. Again, it can be seen from table IX wired losses does not impact the

predictor accuracy to a great extent. From the figures it can be observed that the
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predictors developed are able to capture the network dynamics.
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Fig. 22. Single-Step-Ahead Prediction of Data-set7 Using Predictor5
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Fig. 23. Single-Step-Ahead Prediction Error of Data-set7 Using Predictor5
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Fig. 24. Single-Step-Ahead Prediction of Data-set8 Using Predictor5
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Fig. 25. Single-Step-Ahead Prediction Error of Data-set8 Using Predictor5
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Fig. 26. Single-Step-Ahead Prediction of Data-set9 Using Predictor5
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Fig. 27. Single-Step-Ahead Prediction Error of Data-set9 Using Predictor5
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Table IX. Single-step-ahead prediction results for Predictor4, Predictor5 and Predic-

tor6

Data-Set
Predictor4 Predictor5 Predictor6

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset7 3.5 50.5 3.5 59.8 2.6 37.3

Dataset8 6.6 38.6 6.3 36.7 4.4 25.6

Dataset9 9.2 41.8 8.5 36.5 5.9 26.6

Dataset10 8.4 41.5 7.9 39.0 5.5 27.3

Dataset11 4.3 56.3 4.1 54.2 3.0 38.9

Dataset12 7.2 31.3 6.8 29.5 4.8 20.9

Dataset13 13.0 31.2 11.2 28.6 8.2 19.8

Table X. Wired losses(%) present in the data-sets used for predictor development with

source node gtidsl (planet-lab) and destination node nbgisp (planet-lab)

Predictor Name Wired loss (%) present Predictor Order

Predictor7 0 7

Predictor8 2.7 5

Predictor9 6.4 10

For the data-sets with source node gtidsl (planet-lab) and destination node nbgisp

(planet-lab) three predictors have been developed. Table X gives the information

about the wired losses present in the traces used for developing these predictors.

Table XI gives information about the predictions errors of the predictors devel-

oped on varying wired loss data. Figures 28, 30 and 32 show the performance of the

Predictor8 for Datasets14, 15 and 16. Figures 29, 31 and 33 give the error plot of

the same traces. The predictors performance vary irrespective of the increasing wired
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losses which was observed earlier also.

0 2 4 6 8 10 12 14 16 18 20
30

40

50

60

70

80

90

100

110

120

Send Time (sec)

Ac
cu

m
ula

tio
n 

(B
yte

s)

Actual Accumulation Signal
Predicted Moving Average Accumulation
Moving Average Accumulation Signal

Fig. 28. Single-Step-Ahead Prediction of Data-set14 Using Predictor8
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Fig. 29. Single-Step-Ahead Prediction Error of Data-set14 Using Predictor8
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Fig. 30. Single-Step-Ahead Prediction of Data-set15 Using Predictor8
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Fig. 31. Single-Step-Ahead Prediction Error of Data-set15 Using Predictor8
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Fig. 32. Single-Step-Ahead Prediction of Data-set16 Using Predictor8
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Fig. 33. Single-Step-Ahead Prediction Error of Data-set16 Using Predictor8
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Table XI. Single-step-ahead prediction results for Predictor7, Predictor8 and Predic-

tor9

Data-Set
Predictor7 Predictor8 Predictor8

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset14 0.9 31.7 1.0 34.0 0.7 26.6

Dataset15 4.6 28.0 5.2 29.0 3.8 21.4

Dataset16 3.6 78.6 3.3 73.4 2.6 58.1

Dataset17 4.1 68.6 4.1 68.3 3.1 51.6

Dataset18 2.6 3.0 2.9 3.3 2.0 2.4

E. Development of MSP

In this section, procedure followed in developing and evaluating MSP is discussed.

Accumulation must be predicted well ahead of time so that it can be used in congestion

control/avoidance algorithms. The following sections discuss about the development

and performance evaluation of multi-step-ahead predictors.

1. Six-Step-Ahead Prediction

For the flow between gtidsl node and nbgisp node six-step-ahead means 0.24sec ahead

prediction of the moving average of accumulation signal. The predictor used for

six-step-ahead prediction is the same developed for SSP. The performance of the

predictors developed for different data-sets is summarized in table XII. Figures 34,

36 and 38 show the performance of Predictor8 on Datasets14, 15 and 16. Whereas,

Figures 35, 37 and 39 show the error plots of the predictions. It can be seen from the

Table XII that six-step-ahead prediction errors are higher compared to SSP errors.

From the prediction figures and error figures it can be seen that as compared to SSP,
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the predictor is not so accurate to capture the dynamics of the network ahead of time.
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Fig. 34. Six-Step-Ahead Prediction of Data-set14 Using Predictor8
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Fig. 35. Six-Step-Ahead Prediction Error of Data-set14 Using Predictor8
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Fig. 36. Six-Step-Ahead Prediction of Data-set15 Using Predictor8
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Fig. 37. Six-Step-Ahead Prediction Error of Data-set15 Using Predictor8
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Fig. 38. Six-Step-Ahead Prediction of Data-set16 Using Predictor8
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Fig. 39. Six-Step-Ahead Prediction Error of Data-set16 Using Predictor8
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Table XII. Six-step-ahead prediction results for Predictor7, Predictor8 and Predictor9

Data-Set
Predictor7 Predictor8 Predictor8

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset14 2.1 75.5 2.2 77.4 2.2 78.9

Dataset15 13.3 73.6 12.4 69.1 17.1 95.0

Dataset16 6.7 148.0 7.3 162.2 4.4 97.7

Dataset17 8.0 133.7 8.5 142.4 6.2 102.9

Dataset18 8.2 9.5 9.0 10.5 11.8 13.8

2. Ten-Step-Ahead Prediction

The AR predictor model used for ten-step-ahead prediction is the same developed

for SSP. Ten-step-ahead prediction in this research means 0.2 sec ahead prediction of

the moving average accumulation. For the flow between a node in Texas A&M and

pli pa node in planet-lab the prediction errors of the predictors for different data-

sets is presented in table XIII. Figures 40, 42 and 44 show the performance of the

Predictor2. Figures 41, 43 and 45 give the error plot of the same traces. From the

prediction figures it can be observed that predictor gives reasonably good ten-step-

ahead predictions. Again, the prediction errors is high compared to the SSP. For

Dataset1 moving average accumulation signal is also plotted. From the plot it can

be seen that the predicted values follow more closely the moving average signal as

expected.
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Fig. 40. Ten-Step-Ahead Prediction of Data-set1 Using Predictor2
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Fig. 41. Ten-Step-Ahead Prediction Error of Data-set1 Using Predictor2



68

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

Send Time (sec)

Ac
cu

m
ul

at
io

n 
(B

yt
es

)
Actual Accumulation Signal
Predicted Moving Average Accumulation
Moving Average Accumulation Signal

Fig. 42. Ten-Step-Ahead Prediction of Data-set2 Using Predictor2

0 1 2 3 4 5 6 7 8 9 10
−150

−100

−50

0

50

100

150

200

250

300

Send Time (sec)

Er
ro

r (
By

te
s)

Fig. 43. Ten-Step-Ahead Prediction Error of Data-set2 Using Predictor2
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Fig. 44. Ten-Step-Ahead Prediction of Data-set3 Using Predictor2
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Fig. 45. Ten-Step-Ahead Prediction Error of Data-set3 Using Predictor2
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Table XIII. Ten-step-ahead prediction results for Predictor1, Predictor2 and Predic-

tor3

Data-Set
Predictor1 Predictor2 Predictor3

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset1 2.6 98.8 2.6 98.4 2.5 95.8

Dataset2 4.5 114.4 4.5 113.7 4.4 110.0

Dataset3 2.3 83.3 2.3 84.2 2.2 82.4

Dataset4 1.7 79.6 1.7 79.7 1.7 77.8

Dataset5 15.1 126.3 14.6 122.2 13.5 113.0

Dataset6 5.7 175.0 5.4 167.0 4.8 149.5

Similarly, for the flow between a node in Texas A&M and gtidsl node in planet-

lab the prediction errors of the predictors for different data-sets is presented in Table

XIV. Figures 46, 48 and 50 show the performance of the Predictor5 for Datasets7, 8

and 9. Figures 47, 49 and 51 give the error plot of the same traces. Prediction figures

show that good ten-step-ahead prediction is achieved. But it can be seen that MSE1

and MSE2 has increased compared to SSP.
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Fig. 46. Ten-Step-Ahead Prediction of Data-set7 Using Predictor5

14.5 15 15.5 16 16.5 17 17.5 18 18.5 19

−100

−50

0

50

100

150

200

Send Time (sec)

Pr
ed

ict
io

n 
Er

ro
r (

By
te

s)

Fig. 47. Ten-Step-Ahead Prediction Error of Data-set7 Using Predictor5
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Fig. 48. Ten-Step-Ahead Prediction of Data-set8 Using Predictor5
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Fig. 49. Ten-Step-Ahead Prediction Error of Data-set8 Using Predictor5
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Fig. 50. Ten-Step-Ahead Prediction of Data-set9 Using Predictor5
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Fig. 51. Ten-Step-Ahead Prediction Error of Data-set9 Using Predictor5
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Table XIV. Ten-step-ahead prediction results for Predictor4, Predictor5 and Predic-

tor6

Data-Set
Predictor4 Predictor5 Predictor6

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset7 12.2 176.8 10.5 150.2 11.8 168.8

Dataset8 22.5 131.3 23.4 136.4 28.3 165.0

Dataset9 29.6 134.4 32.0 145.3 38.0 172.8

Dataset10 28.0 138.3 28.9 142.6 33.9 167.5

Dataset11 12.4 163.1 10.4 137.8 12.0 158.8

Dataset12 26.3 115.0 26.4 115.0 29.3 127.4

Dataset13 46.7 112.0 52.0 124.8 62.3 149.4

3. Thirteen-Step-Ahead Prediction

For the flow between gtidsl node and nbgisp node six-step-ahead means 0.52sec ahead

prediction of the moving average of accumulation signal. The predictor used for

thirteen-step-ahead prediction is the same developed for SSP. The performance of the

predictors developed for different data-sets is presented in Table XV. Also Figures

52,54 and 56 show the performance of Predictor8. Whereas, Figures 53,55 and 57

show the error plots of the predictions. From table it can be seen that prediction

errors are high as compared to SSP and six-step-ahead prediction. From this result it

can be concluded that the predictor performance decreases as the prediction horizon

is increased. This means that as we go on increasing the prediction horizon, the

predictor’s performance will go down.
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Fig. 52. Thirteen-Step-Ahead Prediction of Data-set14 Using Predictor8
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Fig. 53. Thirteen-Step-Ahead Prediction Error of Data-set14 Using Predictor8
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Fig. 54. Thirteen-Step-Ahead Prediction of Data-set15 Using Predictor8
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Fig. 55. Thirteen-Step-Ahead Prediction Error of Data-set15 Using Predictor8
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Fig. 56. Thirteen-Step-Ahead Prediction of Data-set16 Using Predictor8
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Fig. 57. Thirteen-Step-Ahead Prediction Error of Data-set16 Using Predictor8



78

Table XV. Thirteen-step-ahead prediction results for Predictor7, Predictor8 and Pre-

dictor9

Data-Set
Predictor7 Predictor8 Predictor8

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset14 3.6 127.9 3.6 130.7 3.5 126.9

Dataset15 28.0 155.8 25.6 142.4 26.1 145.3

Dataset16 6.6 146.5 6.0 124.0 5.8 127.3

Dataset17 8.4 141.5 8.0 133.0 7.2 120.4

Dataset18 59.3 69.4 57.2 66.4 61.5 71.5

4. Twenty-Five-Step-Ahead Prediction

The AR model used for twenty-five-step-ahead prediction is the same developed for

SSP. Twenty-five-step-ahead prediction in this research means 0.5 sec ahead predic-

tion of the moving average accumulation. For the flow between a node in Texas A&M

and a pli pa node in planet-lab the prediction errors of the predictors for different

files is presented in table XVI. Figures 58,60 and 62 show the performance of the

Predictor2 for different traces. Figures 59,61 and 63 give the error plot of the same

traces. From the Table XVI it is observed that the MSE2 in some of the cases goes

beyond 200%, which indicates poor predictor performance. But, in most of the cases

the predictors give satisfactory prediction. Again, for Dataset1 moving average accu-

mulation signal is plotted. It can be concluded that the predicted values follow more

closely the moving average signal as expected.
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Fig. 58. Twenty-Five-Step-Ahead Prediction of Data-set1 Using Predictor2
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Fig. 59. Twenty-Five-Step-Ahead Prediction Error of Data-set1 Using Predictor2
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Fig. 60. Twenty-Five-Step-Ahead Prediction of Data-set2 Using Predictor2
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Fig. 61. Twenty-Five-Step-Ahead Prediction Error of Data-set2 Using Predictor2
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Fig. 62. Twenty-Five-Step-Ahead Prediction of Data-set3 Using Predictor2
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Fig. 63. Twenty-Five-Step-Ahead Prediction Error of Data-set3 Using Predictor2
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Table XVI. Twenty-Five-step-ahead prediction results for Predictor1, Predictor2 and

Predictor3

Data-Set
Predictor1 Predictor2 Predictor3

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset1 3.7 143.0 3.8 145.3 3.7 142.7

Dataset2 6.0 152.5 6.2 155.1 6.0 150.0

Dataset3 3.2 117.5 3.3 122.0 3.2 119.5

Dataset4 2.5 116.9 2.7 122.5 2.6 120.0

Dataset5 19.2 160.6 19.0 159.1 17.8 149.2

Dataset6 6.3 193.2 6.3 193.9 6.0 186.5

Similarly, for the flow between a node in Texas A&M and gtidsl node in planet-

lab the prediction errors of the predictors for different files is presented in table

XVII. Figures 64,66 and 68 show the performance of the Predictor5 for different

traces. Figure 65,67 and 69 give the error plot of the same traces. From Table XVII

we can see that for Data-set6 MSE2 goes beyond 200%, indicating poor predictor

performance in this case. But again in most of the cases predictor gives satisfactory

results. By comparing the results of SSP, ten-step-ahead prediction and twenty-five-

step-ahead prediction it can be concluded that as the prediction horizon is increased

the predictor performance goes down.
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Fig. 64. Twenty-Five-Step-Ahead Prediction of Data-set7 Using Predictor5
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Fig. 65. Twenty-Five-Step-Ahead Prediction Error of Data-set7 Using Predictor5
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Fig. 66. Twenty-Five-Step-Ahead Prediction of Data-set8 Using Predictor5

7 8 9 10 11 12

−200

−100

0

100

200

300

Send Time (sec)

Pr
ed

ict
io

n 
Er

ro
r (

By
te

s)

Fig. 67. Ten-Step-Ahead Prediction Error of Data-set8 Using Predictor5
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Fig. 68. Ten-Step-Ahead Prediction of Data-set9 Using Predictor5
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Fig. 69. Twenty-Five-Step-Ahead Prediction Error of Data-set9 Using Predictor5
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Table XVII. Twenty-Five-step-ahead prediction results for Predictor4, Predictor5 and

Predictor6

Data-Set
Predictor4 Predictor5 Predictor6

MSE1(%) MSE2(%) MSE1(%) MSE2(%) MSE1(%) MSE2(%)

Dataset7 22.4 256.4 13.4 191.4 13.3 190.2

Dataset8 32.8 191.4 27.0 157.6 30.3 176.6

Dataset9 39.8 181.0 36.8 167.2 42.8 194.5

Dataset10 37.3 184.7 33.6 166.3 38.9 192.6

Dataset11 23.4 180.2 14.7 154.4 16.6 168.3

Dataset12 35.3 153.6 30.8 134.3 35.2 153.4

Dataset13 52.2 125.2 53.8 129.0 63.7 152.8

F. Chapter Summary

This chapter demonstrates training, testing and validation data sets used for pre-

dictor development. Performance metrics used for developing the predictors is also

discussed. The chapter gives SSP and MSP results of the predictors developed using

linear technique. Performance of the predictors developed is discussed and tabulated

in terms of the performance metrics discussed. The models gave good prediction on

most of the test cases but MSP is not as accurate as SSP and fails on several test cases

as the prediction horizon is increased gradually. Acceptable multi-step prediction up

to 0.5 sec has been achieved.
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CHAPTER VI

IMPACT OF WIRELESS LOSSES ON PREDICTOR ACCURACY

A. Introduction

The previous chapters dealt with the development of SSP and MSP. This chapter

discusses about the impact of channel fading losses on the MSP (developed in the

previous chapter) accuracy. As discussed in Chapter II, wireless errors are random

errors and mostly depends on the surrounding conditions and the signals present in

the wireless channel.

B. Impact of Wireless Losses on the Performance of the Predictors Developed

This section discusses the impact of wireless fading losses on the performance of

predictors developed. Three predictors were developed for each of the flow discussed

in section 4.D.2.2. The section is divided in three subsections, each discussing in

detail the impact of wireless losses in each of the above flows. Impact of wireless

losses is studied for 0.5sec ahead predictors.

1. Impact of Wireless Losses on the Predictor Performance for the Flow between

NIML (TAMU) and pli pa Node Present in the Planet-lab, Princeton

For each of the predictors developed the wireless loss is increased from 0 to 15%

and the impact on the predictor accuracy is studied. Tables XVIII to XXIII give

the predictor performance with increasing wireless losses on various data-sets. From

the tables it can be seen that the wireless losses has major impact on the MSE1

while MSE2 remains nearly the same in all the data-sets. Table XVIII shows more

than 100% increase in MSE1 for all the predictors with 15% increase in wireless loss.
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Table XVIII. Impact of wireless losses in data-set1 on the performance of Predictor1,

Predictor2 and Predictor3

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 3.7 143.0 0 3.8 145.3 0 3.7 142.4 0

2 4.2 137.2 13.5 4.3 138.7 13.2 4.1 134.2 10.8

3 4.5 136.6 21.6 4.5 137.5 18.4 4.4 133.6 18.9

5 5.0 135.5 35.1 5.1 135.9 34.2 4.9 131.3 32.4

10 6.4 140.6 73.0 6.6 143.6 73.7 6.3 137.7 70.3

15 7.4 132.4 100.0 7.7 136.7 102.6 7.3 130.7 97.3

Note: All values of MSE’s are in % and ∆E1 represents % change in MSE1 with

respect to 0% wireless loss MSE1.

Similar observation can be made for data-set3 and data-set4 as well. This increase

in error can be attributed to the randomness of the wireless errors. In case of data-

set2 the increase is nearly 40%. It can be seen that none of the predictors is able to

capture the randomness of channel fading errors.

2. Impact of Wireless Losses on the Predictor Performance for the Flow between

NIML (TAMU) and gtidsl Node Present in the Planet-lab, Princeton

Wireless losses are increased from 0% to 15% for each of the data-set. The impact of

these wireless losses can be seen from Tables XXIV to XXX. Again, it can be observed

that MSE2 does not vary much and its variation is totally random. Nearly 100%

increase in MSE1 is observed in case of data-set11 for Predictor5 and Predictor6 and

for Predictor 4 the increase is 45%. This shows that wireless losses has more impact
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Table XIX. Impact of wireless losses in data-set2 on the performance of Predictor1,

Predictor2 and Predictor3

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 6.0 152.5 0 6.2 155.1 0 6.0 150.0 0

2 6.7 150.5 11.7 6.8 153.6 9.7 6.6 148.5 10.0

3 6.9 158.8 15.0 7.0 161.4 12.9 6.8 156.3 13.3

5 7.4 156.4 23.0 7.5 159.3 21.0 7.3 154.2 21.7

10 8.3 139.5 38.3 8.5 143.0 37.1 8.1 136.2 35.0

15 8.4 120.4 40.0 8.7 125.9 40.3 8.3 120.3 38.3

Table XX. Impact of wireless losses in data-set3 on the performance of Predictor1,

Predictor2 and Predictor3

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 3.2 117.5 0 3.3 122.0 0 3.2 119.6 0

2 3.7 119.5 15.6 3.8 123.6 15.1 3.7 120.1 15.6

3 4.0 121.3 25.0 4.2 125.0 27.3 4.0 120.8 25.0

5 4.9 128.9 53.1 5.1 132.9 54.6 4.9 127.6 53.1

10 5.7 118.0 78.1 5.8 121.0 75.8 5.5 115.5 71.9

15 6.8 117.8 112.5 6.9 120.7 109.1 6.6 114.4 106.3
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Table XXI. Impact of wireless losses in data-set4 on the performance of Predictor1,

Predictor2 and Predictor3

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 2.5 116.9 0 2.7 122.7 0 2.6 120.0 0

2 3.0 113.6 20.0 3.2 119.0 18.4 3.1 116.2 19.2

3 3.2 111.4 28.0 3.4 116.8 25.9 3.3 112.9 26.9

5 3.8 113.5 52.0 3.9 117.5 44.4 3.8 113.6 46.2

10 5.1 124.2 104.0 5.3 128.7 96.3 5.0 122.2 92.3

15 6.3 124.7 152.0 6.4 126.5 137.0 6.1 120.8 134.6

Table XXII. Impact of wireless losses in data-set5 on the performance of Predictor1,

Predictor2 and Predictor3

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 19.2 160.6 0 19.0 159.1 0 17.8 149.2 0

2 19.8 159.8 3.1 17.8 149.2 3.2 18.3 148.0 2.8

3 20.4 160.3 6.3 20.2 158.8 6.3 18.9 148.9 6.2

5 21.0 161.3 9.4 20.8 160.2 9.5 19.5 150.2 9.6

10 21.7 158.7 13.0 21.6 157.6 13.7 20.2 147.3 13.5

15 20.6 155.7 7.3 20.4 7.4 6.2 19.3 145.9 8.4
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Table XXIII. Impact of wireless losses in data-set6 on the performance of Predictor1,

Predictor2 and Predictor3

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 6.3 193.2 0 6.3 193.9 0 6.0 186.5 0

2 6.7 181.2 6.4 6.8 182.8 7.9 6.4 173.9 6.7

3 7.2 180.1 14.3 7.2 180.3 14.3 6.8 171.4 13.3

5 7.0 171.9 11.1 7.1 174.1 12.7 6.8 165.6 13.3

10 9.4 163.7 49.3 9.6 165.8 52.4 9.1 158.1 51.7

15 9.7 156.8 54.0 9.9 160.7 57.1 9.4 152.8 56.7

on the accuracy of a good predictor and less impact if the predictor is less accurate.

For data-set7 the increase in error is nearly 25%, if the wireless losses is increased to

15%. From Tables XXVII and XXX it can be concluded that wireless losses has very

less impact on the predictor performance, if the predictors developed are poor.

3. Impact of Wireless Losses on the Predictor Performance for the Flow between

gtidsl and nbgisp Nodes Present in the Planet-lab, Princeton

Wireless losses are increased from 0% to 15% for each of the data-set. The impact of

these wireless losses can be seen from Tables XXXI to XXXV. From Table XXXI it

can be observed that increase of 15% wireless losses in data-set14 has lead to increase

in nearly 150% error in the prediction. Whereas, this increase in wireless losses has

increased the error in prediction to nearly 80% in case of data-set16 and data-set17.

Once again, from the predictors performance on data-set18, it can be concluded that

if the predictor developed is poor then wireless losses has very less impact on the

prediction errors.
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Table XXIV. Impact of wireless losses in data-set7 on the performance of Predictor4,

Predictor5 and Predictor6

Wireless

loss(%)

Predictor4 Predictor5 Predictor6

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 22.4 256.4 0 13.4 191.4 0 13.3 190.2 0

2 22.8 258.2 1.8 14.0 184.8 4.5 14.0 184.4 5.3

3 23.0 257.5 2.7 14.3 184.1 6.7 14.2 183.5 6.8

5 23.6 260.2 5.4 15.0 180.6 11.9 15.0 180.7 12.8

10 25.0 263.6 11.6 16.6 175.3 23.9 16.7 176.2 25.6

15 25.1 258.6 12.1 16.7 171.2 24.6 16.7 170.5 25.6

Table XXV. Impact of wireless losses in data-set8 on the performance of Predictor4,

Predictor5 and Predictor6

Wireless

loss(%)

Predictor4 Predictor5 Predictor6

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 32.8 191.5 0 27.0 157.6 0 30.3 176.5 0

2 33.0 189.2 0.6 27.2 155.2 0.7 30.3 173.7 0.0

3 33.5 186.9 2.1 27.7 154.5 2.6 31.0 173.2 2.3

5 34.2 184.2 4.3 28.7 154.5 6.3 32.3 173.9 6.6

10 34.3 185.8 4.6 29.2 158.2 8.1 32.9 178.4 8.6

15 35.6 183.7 8.5 30.9 159.6 14.4 34.9 180.2 15.2
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Table XXVI. Impact of wireless losses in data-set9 on the performance of Predictor4,

Predictor5 and Predictor6

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 39.8 181.0 0 36.8 167.2 0 42.8 194.5 0

2 39.0 182.4 -2.0 35.6 166.5 -3.3 41.2 192.2 -3.7

3 39.8 182.2 0.0 36.8 168.8 0.0 42.8 196.1 0.0

5 39.5 180.9 -0.8 36.3 165.9 -1.4 42.0 192.3 -1.9

10 41.0 182.1 3.0 38.1 169.1 3.5 43.8 194.8 2.3

15 43.2 172.5 8.5 41.1 163.6 11.7 47.7 190.0 11.4

Table XXVII. Impact of wireless losses in data-set10 on the performance of Predictor4,

Predictor5 and Predictor6

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 37.7 184.7 0 33.6 166.3 0 38.9 192.6 0

2 37.0 186.7 -0.8 33.2 167.3 -1.2 38.3 193.2 -1.5

3 37.6 181.8 0.8 33.9 164.1 0.9 39.3 189.9 1.0

5 37.0 184.0 -0.8 33.0 164.3 -1.8 38.0 188.9 -2.3

10 38.3 177.4 2.7 34.6 160.6 3.0 39.9 184.6 2.6

15 36.6 182.3 -1.9 32.2 160.4 -4.2 36.3 180.6 -6.7
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Table XXVIII. Impact of wireless losses in data-set11 on the performance of Predic-

tor4, Predictor5 and Predictor6

Wireless

loss(%)

Predictor4 Predictor5 Predictor6

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 23.3 180.2 0 14.7 154.4 0 14.6 168.3 0

2 24.0 181.2 2.6 15.4 153.7 4.8 15.3 165.9 4.8

3 24.3 179.8 3.9 15.6 157.6 6.1 15.7 166.1 7.5

5 24.8 180.0 6.0 16.3 156.8 10.9 16.5 163.9 13.0

10 33.3 179.5 42.3 27.8 149.0 89.1 30.4 163.0 108.2

15 34.0 178.5 45.3 28.3 148.5 92.5 30.9 162.4 111.6

Table XXIX. Impact of wireless losses in data-set12 on the performance of Predictor4,

Predictor5 and Predictor6

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 35.3 153.6 0 30.8 134.3 0 35.2 153.4 0

2 40.3 148.0 14.2 37.6 138.6 22.0 43.3 149.6 23.0

3 35.6 151.6 0.9 31.2 132.6 1.3 35.5 151.2 0.9

5 36.3 150.3 2.8 32.1 133.0 4.2 36.6 151.8 4.0

10 36.6 147.6 3.7 32.4 131.0 5.2 37.2 150.3 5.7

15 38.2 150.0 8.2 34.5 135.8 12.0 39.6 155.7 12.5
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Table XXX. Impact of wireless losses in data-set13 on the performance of Predictor4,

Predictor5 and Predictor6

Wireless

loss(%)

Predictor4 Predictor5 Predictor6

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 52.2 125.2 0 53.8 129.0 0 63.7 152.8 0

2 52.8 126.5 1.1 54.8 131.3 1.9 65.0 155.5 2.0

3 52.6 125.2 0.8 54.5 129.6 1.3 64.6 153.7 1.4

5 53.8 124.4 3.0 56.1 129.7 4.3 66.4 153.4 4.2

10 56.1 126.7 7.5 59.6 134.8 10.8 71.2 160.9 11.8

15 55.1 123.9 5.6 57.8 130.0 7.4 68.4 153.8 7.2

Table XXXI. Impact of wireless losses in data-set14 on the performance of Predictor7,

Predictor8 and Predictor9

Wireless

loss(%)

Predictor7 Predictor8 Predictor9

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 3.6 127.9 0 3.6 130.7 0 3.5 126.9 0

2 6.3 189.3 75.0 6.7 201.2 86.1 6.1 185.4 74.3

3 6.6 187.7 83.3 7.0 199.0 94.4 6.4 182.5 82.9

5 6.8 177.5 88.9 7.2 188.6 100.0 6.5 171.7 85.7

10 7.9 176.4 119.4 8.4 188.0 133.3 7.6 168.4 117.1

15 9.2 166.0 155.6 9.6 173.3 166.7 8.7 156.9 148.6
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Table XXXII. Impact of wireless losses in data-set15 on the performance of Predictor7,

Predictor8 and Predictor9

Wireless

loss(%)

Predictor4 Predictor5 Predictor6

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 28.0 155.8 0 25.6 142.4 0 26.1 145.3 0

2 32.0 171.8 14.3 29.0 155.9 13.3 30.5 163.9 16.9

3 32.3 170.8 15.4 29.3 155.2 14.5 30.8 163.0 18.0

5 33.1 169.1 18.2 30.0 153.2 17.2 31.5 161.5 20.7

10 37.1 170.8 32.5 33.4 153.5 30.5 35.3 162.1 35.3

15 37.7 166.9 34.6 34.4 152.0 34.4 35.8 158.3 37.2

Table XXXIII. Impact of wireless losses in data-set16 on the performance of Predic-

tor7, Predictor8 and Predictor9

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 6.6 146.5 0 6.0 134.0 0 5.8 127.3 0

2 8.9 186.7 34.9 8.8 184.1 46.7 7.9 165.6 38.9

3 9.3 182.2 40.9 9.1 181.2 51.7 8.2 163.4 43.1

5 9.6 182.0 45.5 9.4 178.9 56.7 8.5 161.2 54.2

10 11.0 168.7 66.7 10.7 163.7 78.3 9.9 151.3 58.3

15 11.4 160.9 72.7 11.2 157.7 86.7 10.2 143.3 79.2
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Table XXXIV. Impact of wireless losses in data-set17 on the performance of Predic-

tor7, Predictor8 and Predictor9

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 8.4 145.5 0 8.0 133.8 0 7.2 120.2 0

2 11.2 176.3 33.3 11.2 176.3 40.0 10.0 157.4 38.9

3 11.5 175.2 36.9 11.5 177.8 43.8 10.3 157.4 43.1

5 12.3 176.5 46.4 12.2 175.1 52.5 11.1 159.0 54.2

10 12.6 166.2 50.0 12.7 166.2 58.8 11.4 150.2 58.3

15 14.2 167.1 69.1 14.0 164.4 75.0 12.9 151.4 79.2

Table XXXV. Impact of wireless losses in data-set18 on the performance of Predictor7,

Predictor8 and Predictor9

Wireless

loss(%)

Predictor1 Predictor2 Predictor3

MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1 MSE1 MSE2 ∆E1

0 59.3 69.4 0 57.2 66.4 0 61.5 71.4 0

2 59.7 69.5 0.14 57.4 66.8 0.6 61.7 71.9 0.7

3 59.7 69.5 0.14 57.4 66.8 0.6 61.7 71.9 0.7

5 59.7 69.5 0.14 57.4 66.7 0.45 61.8 71.8 0.56

10 59.8 69.4 0.0 57.4 66.6 0.3 61.8 71.7 0.42

15 59.8 69.3 -

0.14

57.4 66.6 0.3 61.8 71.7 0.42
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C. Chapter Summary

This chapter gave insight about the impact of wireless losses on the performance of

the predictors developed. From the results it can be concluded that the unpredictable

wireless losses has major impact on the predictors performance. It is observed that

in certain cases the wireless losses has increased the error more than 100%. It is

also observed that if the predictor developed is poor then wireless losses has very less

impact on its performance.
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CHAPTER VII

SUMMARY AND CONCLUSION

A. Summary

The objective of this research work is to develop SSP and MSP for network accumu-

lation in MIP networks. Various predictors are developed and tested in this work.

Since these networks are highly dynamic in nature the traditional approaches such as

queuing theory and other statistical theories are not useful. In this thesis, network

accumulation is modeled using linear models like Auto-Regressive eXogenous (AR).

Chapter I gives the literature review done in this work. Most of the literature is

related to the QoS related to the best-effort networks and the proposed mechanisms

for providing Internet access to mobile end-users. It gives information about the re-

search conducted in end-to-end dynamics measurement of best-effort networks, and

use of system identification techniques for modeling network dynamics. It also pro-

vides the various techniques researchers have proposed for providing Internet access

to the mobile end users. Network topology used in this work is also discussed. This

chapter gives the methodology adopted in this work and proposed approach of this

research.

Chapter II provides the various factors impacting QoS in MIP networks. It

gives in detail, the various types of channel fading losses along with their causes and

discusses how these losses can impact the QoS. In this chapter impact of congestion

in wired network on the QoS is also discussed.

Chapter III talks about the linear system identification technique AR used in

this work. It gives the AR model structure and the mathematical representation of

the model. Also discussed in this chapter is the parameter estimation of the models.
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Chapter IV gives the data collection techniques and the various end-to-end net-

work measurement parameters. The data collection part is divided in three parts,

first collection of the data pertaining to the losses due to channel fading and mobil-

ity, the second is the collection of real traffic data and the last part describes how

MIP data is obtained by superimposing the simulated channel fading losses on the

real traffic data. In this chapter, various end-to-end measurement parameters are

discussed which gives the estimate of the congestion level in the network.

In Chapter V, the performance metrics considered for developing and evaluating

the SSP and MSP are discussed. The performance of SSP and MSP are presented.

SSP results are quite good and as the prediction horizon is increased the prediction

of MSP detoriates.

A quantitative discussion on the impact of channel fading losses on the predictors

developed in Chapter VI is done in chapter VII. Results shows that the channel fading

has major impact on the predictor accuracy.

B. Conclusion and Recommendations

The proposed work has direct impact on the end-to-end network congestion dynamics

of the MIP networks. The empirical models developed in this work can be used

to develop effective bandwidth allocation and network control strategies for MIP

networks. The predicted values can be used to develop controller to control the

wireless mobile traffic over internet, which will increase the QoS for the mobile end

user. The study of impact of the channel fading losses on the predictor accuracy is

useful and it gives us the wireless channel conditions under which predictors will give

good results.

Following conclusions can be drawn from this study:
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1. Linear system identification techniques such as AR can be used to model MIP

network flow accumulation. Real time network measurements can be used to

develop models for predicting network congestion.

2. By studying the predictor performance it can be concluded that SSP are more

accurate than MSP, but MSP are needed to predict the network accumulation

for certain future time horizon.

3. The predictors perform satisfactorily under varying network congestion level for

a given sender-receiver pair.

4. Channel fading losses have major impact on the accuracy of the predictors

developed. This is because, the channel fading errors are random errors.

5. In the best predictor case 15% increase in wireless losses has increased MSE1 by

170%, while in the worst predictor case it has nearly no impact on the predictor

performance.

Following are the recommendations for future work in this area:

1. Impact of Predictor performance needs to be studied as the mobile node moves

from one base-station to the other.

2. More accurate fading models representing the actual wireless channel need to

be developed and used.

3. Experimental setup with real MIP networks needs to be developed so that real

MIP data can be obtained.
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