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ABSTRACT  
 
 
 

Residual Stress Measurement Using X-ray Diffraction. 

 (December 2004)  

Osman Anderoglu, B.S., Bogazici University, Turkey  

Chair of Advisory Committee: Dr. Mustafa Yavuz  

 

This paper briefly describes the theory and methods of x-ray residual stress 

measurements. 

Residual stresses can be defined as the stresses which remain in a material in the 

absence of any external forces. There are many stress determination methods. Some of 

those methods are destructive and some are nondestructive. X-ray residual stress 

measurement is considered as a nondestructive method.  

X-ray diffraction together with the other diffraction techniques of residual stress 

measurement uses the distance between crystallographic planes as a strain gage. The 

deformations cause changes in the spacing of the lattice planes from their stress free 

value to a new value that corresponds to the magnitude of the residual stress. Because of 

Poisson’s ratio effect, if a tensile stress is applied, the lattice spacing will increase for 

planes perpendicular to the stress direction, and decrease for planes parallel to the stress 

direction. This new spacing will be the same in any similarly oriented planes, with 
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respect to the applied stress. Therefore the method can only be applied to crystalline, 

polycrystalline and semi-crystalline materials.  

The diffraction angle, 2θ, is measured experimentally and then the lattice spacing 

is calculated from the diffraction angle, and the known x-ray wavelength using Bragg's 

Law. Once the d-spacing values are known, they can be plotted versus 2sin ψ , (ψ  is the 

tilt angle). In this paper, stress measurement of the samples that exhibit a linear behavior 

as in the case of a homogenous isotropic sample in a biaxial stress state is included. The 

plot of d vs. 2sin ψ  is a straight line which slope is proportional to stress. On the other 

hand, the second set of samples showed oscillatory d vs. 2sin ψ  behavior. The oscillatory 

behavior indicates the presence of inhomogeneous stress distribution. In this case the x-

ray elastic constants must be used instead of E andν  values. These constants can be 

obtained from the literature for a given material and reflection combination. It is also 

possible to obtain these values experimentally. Calculation of the residual stresses for 

these samples is beyond the scope of this paper and will not be discussed here. 
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I. INTRODUCTION 

 

With modern analytical and computational techniques it is usually possible to estimate 

the stresses that exist in a component. This is not sufficient for the reliable prediction of 

component performance. Indeed, in many cases where unexpected failure has occurred, 

this has been due to the presence of residual stresses which seriously shorten component 

life. Residual stresses can arise from differences in thermal expansivity, yield stress, or 

stiffness. Considerable effort is currently being devoted to the development of a basic 

framework within which residual stresses can be incorporated into design in aerospace, 

nuclear, and other critical engineering industries. 

Today, there are a large number of residual stress measurement techniques in 

use. Some are destructive, while others can be used without significantly altering the 

component; some have excellent spatial resolution, whereas others are restricted to near-

surface stresses or to specific classes of material [1].  

1.1 Definition 

Residual stress is the stress that exists within a material without application of an 

external load [2], or it can be described as the stress which remains in a body that is 

stationary and at equilibrium with its surroundings. 
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1.2 The Origin of Stresses 

Residual stresses can arise in materials in almost every step of processing. The origins of 

residual stresses in a component may be classified as: mechanical, thermal, and 

chemical.  Mechanically generated residual stresses are often a result of manufacturing 

processes that produce non-uniform plastic deformation. They may develop naturally 

during processing or treatment, or may be introduced deliberately to develop a particular 

stress profile in a component. Examples of operations that produce undesirable surface 

tensile stresses or residual stress gradients are rod or wire drawing, welding, machining 

and grinding. Fig. 1.1 shows characteristic residual stress profiles resulting from 3 

different types of grinding. It can be seen that conventional and highly abrasive grinding 

produced tensile stresses near the surface compared with compressive stresses with 

gentle grinding. Compressive residual stresses usually lead to performance benefits and 

can be introduced by shot peening, toughening of glass or cold expansion of holes. On a 

macroscopic level, thermally generated residual stresses are often the consequence of 

non-uniform heating or cooling operations. Coupled with the material constraints in the 

bulk of a large component this can lead to severe thermal gradients and the development 

of large internal stresses. An example is the quenching of steel or aluminum alloys, 

which leads to surface compressive stresses, balanced by tensile stresses in the bulk of 

the component.  
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Figure 1.1. Characteristic residual stress distributions in hardened steel for three 
different grinding operations [3]. 
 

The chemically generated stresses can develop due to volume changes associated 

with chemical reactions, precipitation, or phase transformation. Chemical surface 

treatments and coatings can lead to the generation of substantial residual stress gradients 
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in the surface layers of the component. Nitriding produces compressive stress in the 

diffusion region because of expansion of the lattice and precipitation of nitrides, and 

carburizing causes a similar effect. The magnitude of residual stresses generated in 

coatings can be very high –compressive stresses of the order of 6-8GPa or higher have 

been measured at the interface of some thermal barrier coatings (TBCs). 

1.3 Measurement Methods 

1.3.1. Mechanical Stress Measurement Methods 

These methods based on the monitoring of changes in component distortion, either 

during the generation of the residual stress, or afterwards, by deliberately removing 

material to allow the stress to relax. 

1.3.1.1. Curvature 

These methods are usually used to determine the stress within coatings and layers. The 

deposition of a layer can make the substrate to bend.  

The changes in curvature during deposition make it possible to calculate 

variations in stress as a function of deposit thickness. 

Curvature measurements can also be used to determine the stresses by 

incremental layer removal. This has been used for metallic and polymeric composites, 

and for thin coatings produced using chemical and physical vapor deposition (CVD and 

PVD). Since the stress distribution associated with a given curvature is not unique, there 

is some ambiguity in this latter approach. 
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1.3.1.2. Hole Drilling 

The undisturbed portions of a stressed sample will relax into a different shape when the 

locality is machined; this provides data for the calculation of residual stress. The 

machining operation is simply drilling a hole around which the strain is measured. 

Although it is possible to infer the variation in stress with depth by incrementally 

deepening the hole, it is difficult obtain reliable measurements when the depth is beyond 

the size of diameter. This method is cheap and widely used. If the residual stresses 

exceed 50% of the yield stress, localized yielding could introduce some errors. Although 

the method is used for coatings, it is not practical for thin (<100µm), or brittle coatings. 

1.3.1.3. Compliance Methods 

The crack compliance method is basically cutting a small slot to see the relaxation of 

stress in the vicinity of the crack using strain gauge interferometry. Increasing the depth 

of the slot will allow resolving the stress field normal to the crack as a function of depth 

for relatively simple stress distributions.  

1.3.2. Magnetic and Electrical Methods 

There are two magnetic methods: the magnetostriction and the Barkhausen noise. The 

former based on the measurement of permeability and magnetic induction, the latter on 

the analysis of magnetic domain wall motion. 

If magnetostrictive materials are stressed the preferred domain orientations are 

altered. This makes domains most nearly oriented to a tensile stress to grow (positive 

magnetostriction) or shrink (negative magnetostriction). Stress induced magnetic 

anisotropy causes the rotation of an induced magnetic field away from the applied 
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direction. It is possible to monitor these small rotations in the plane of the component 

surface by a sensor coil. If there is no rotation, then the principal axes of the magnetic 

field and stress are parallel. When the assembly is rotated, both the principal stress 

directions and the size of the principal stress difference can be measured. 

Magnetoacoustic emission is the generation of elastic waves caused by changes in 

magnetostrictive strain during the movement of magnetic domain walls and is generally 

detected from the material bulk. Barkhausen emission on the other hand, is recorded as a 

change in the emf proportional to the rate of change in magnetic moment detected in  

probe coils as domain walls move. It is attenuated at high frequencies by eddy current 

shielding and so provides only a near surface probe (<250 µm).   Magnetic methods have 

the advantage of providing cheap and portable methods for non-destructive residual 

stress measurement. 

Eddy current techniques can simply be described as inducing eddy currents in the 

material under test and detecting changes in the electrical conductivity or magnetic 

permeability through changes in the test coil impedance. The depth of penetration can be 

changed by altering the excitation frequency, but is around 1 mm at practical 

frequencies, and the probe cannot identify the direction of the applied stress. Recent 

studies on this method showed that eddy current methods can be applied to a wider range 

of materials than magnetic methods. Although eddy current methods are not well suited 

to basic measurements of residual stress due to the sensitivity of eddy current monitoring 

to plastic work and microstructural changes, they can provide a quick and cheap 

inspection method. 
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1.3.3. Ultrasonic Methods 

Changes in ultrasonic speed can be observed when a material is subjected to a stress, the 

changes providing a measure of the stress averaged along the wave path. The 

acoustoelastic coefficients necessary for the analysis are usually calculated using 

calibration tests. Different types of wave can be employed but the commonly used 

technique is the critically refracted longitudinal wave method. The greatest sensitivity is 

obtained when the wave propagates in the same direction as the stress [1]. The basic 

equation for the stress calculation;  

0V V Kσ= +       (1.1)    

where 0V the velocity of a wave is in an unstressed medium, σ is the stress and K is a 

material parameter known as acoustoelastic constant [5]. 

1.3.4. Thermoelastic Methods 

The elastic deformations in the materials cause small changes in temperature (1 mK for 

1 MPa in steel). It is possible to map the thermal variations using an infrared camera. 

These variations are indications of variations in stress. The thermoelastic constant (β) 

describes the dependence of temperature on stress. Using the thermoelastic constant the 

hydrostatic stress component can be determined using the relation 

( )11 22 33heat
T

β σ σ σ∂
≈ − + +

∂
   (1.2) 

This method is usually used in fatigue studies. Since the method uses infrared 

cameras, it is effected by the sensitivity of them hence has limited use in present [1]. 
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1.3.5. Photoelastic Methods 

The speed of light is prone to vary unisotropically in transparent materials, when the 

material is subjected to stress. This tendency is called photoelastic effect. 

It gives rise to interference fringe patterns when such objects are observed in 

white or monochromatic light between crossed polars.  It is possible to interpret the 

resulting fringe patterns to give the local maximum shear stress when the stress optic 

coefficient n is known from a calibration experiment 

11 22
fn
t

σ σ− =       (1.3) 

where 11 22,σ σ  are in plane principal stresses, f is the fringe order, and t  is the optical 

path length. Photoelastic measurements are generally made using two-dimensional 

epoxy resin models or from slices cut from three-dimensional models in which the 

stresses have been frozen in [1]. 

1.3.6. Diffraction Methods 

1.3.6.1. Neutron Diffraction 

Neutron diffraction is a non-destructive method of determination of residual stresses in 

crystalline materials. Neutron diffraction provides the values of elastic strain 

components parallel to the scattering vector which can be converted to stress. Neutron 

diffraction measures strain components from changes in crystal lattice spacing. When 

crystalline materials exposed to radiation of wavelength close to interplanar spacing 

(0.5-3 Å) elastically and coherently scatter this radiation as distinctive Bragg peaks 
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imaged usually by a position sensitive detector. The angle at which any given peak 

occurs can be calculated using Bragg’s equation  

2 sinhkl hkld θ λ=       (1.4) 

where λ is the wavelength of the radiation, dhkl is the lattice plane spacing of a family of 

crystallographic planes (hkl) responsible for the Bragg peak and θhkl is the angular 

position of this diffraction peak. The peak will be observed at an angle of 2θhkl from the 

incident beam. If a specimen is elastically strained, the lattice spacing changes. 

Therefore any elastic strain will be apparent as a shift in the value of 2θhkl for a 

particular reflecting plane illuminated by a fixed wavelength. By differentiating the 

Bragg’s equation, 

( )0 0/ tanhkl d dθ θ∆ = − ∆       (1.5) 

where ∆d is the change of lattice spacing, and do, the lattice spacing of a stress-free 

sample of the material.  So, the strain in the (hkl) set of planes can be calculated with 

 ( )0 0/ cotd dε θ θ= ∆ = −∆        (1.6) 

The direction in which strain is measured is along the scattering vector and is 

perpendicular to the diffracting planes [6-7]. 

1.3.6.2. Synchrotron Diffraction 

Synchrotrons (hard X-rays), provide very intense beams of high energy X-rays. These 

X-rays have higher depth penetration than conventional X-rays (~50 mm in Al). This 

increased penetration depth means that synchrotron diffraction is capable of providing 

high spatial resolution, three-dimensional maps of the strain distribution to millimeter 
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depths in engineered components. Higher penetration depth is considered as one of the 

major advantages of synchrotron diffraction over the conventional X-ray diffraction. 

Another advantage is that intense narrow beams of 1 mm-l0 µm in size are possible. This 

leads to spatial resolutions that are limited by the crystallite size within the sample not 

by the instrument. The measurement is also much quicker than the conventional X-ray 

diffraction. Today synchrotron diffraction is only available at some central facilities, in 

much the same way as with neutron diffraction [3-1].  

Table 1.2 shows comparison of the residual stress measurement techniques. 
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Table 1.2. Comparison of the residual stress measurement techniques [3-1]. 
Technique 
 

PROs 
 

CONs 
 

X Ray Diffraction 
 

Versatile, widely available 
Wide range of materials 
Portable systems 
Macro and micro RS* 

Basic measurements 
Lab-based systems, small 
components 
 

Hole Drilling 
 

Quick, simple, 
Widely available 
Portable. 
Wide range of materials 
Deep hole drilling for 
thick section components 

Interpretation of data 
Destructive 
Limited strain sensitivity 
and resolution 
 

Synchrotron 
 

Improved penetration & 
resolution cf X-rays 
Depth profiling 
Fast 
Macro and micro RS 

Specialist facility only 
Lab-based 
 

Neutron Diffraction 
 

Excellent penetration & 
resolution 
3D maps 
Macro and micro RS 

Specialist facility only 
Lab-based 
 
 

Magnetic 
 

Very fast 
Wide variety of magnetic 
techniques 
Portable 

Only ferromagnetic 
materials  
Need to separate the 
microstructure signal from 
that due to stress 

Ultrasonic 
 

Generally available 
Very fast 
Low cost 
Portable 

Limited resolution 
Bulk measurements over 
whole volume 
 

Raman/Fluorescence 
 

High resolution 
Portable systems 
available 
 

Surface measurements 
Interpretation 
Calibration 
Limited range of materials 
 

*RS: Residual stress 
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II. FUNDAMENTAL CONCEPTS IN X-RAY DIFFRACTION 

 

Diffraction methods of residual stress determination basically measure the angles at 

which the maximum diffracted intensity take place when a crystalline sample is 

subjected to x-rays. From these angles it is possible to obtain the interplanar spacing of 

the diffraction planes using Bragg’s law. If the residual stresses exist within the sample, 

then the d spacing will be different than that of an unstressed state. This difference is 

proportional to magnitude of the residual stress. 

 

 

 
Figure 2.1a. Diffractometer scheme. The incident beam diffracts X-rays of wavelength λ 
from planes which satisfy Bragg’s law. If the surface is in compression then the planes 
are further apart than in the stress-free state because of Poisson’s ratio. The interplanar 
spacing “d” is obtained from the peak in intensity versus scattering angle and Bragg’s 
law [6]. 
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With reference to Figure 2.1a, assume that the detector is turned over a range of 

angles, 2θ, to find the angle, θ, of the diffraction from grains which satisfy Bragg’s law. 

In other words the grains that have planes of atoms with interplanar spacing “d” such 

that 2 sindλ θ= . The grains that have planes with this spacing that are parallel to the 

surface will diffract as in Figure 2.1a. This diffraction occurs from a thin surface layer 

which is about 20 µm. If the surface is in compression, then the interplanar spacing “d” 

is larger than in the stress free state as a result of Poisson’s effect. When the specimen is 

tilted with respect to the incoming beam new grains will diffract and the orientation of 

the diffraction planes is more nearly perpendicular to the stress direction (Figure 2.1b). 

 
 
 

 
Figure 2.1b. When the sample is tilted, diffraction will take place from other grains, but 
from the same planes (that satisfy Bragg’s law). The peak takes place at higher values of 
2θ. [6]  
 
 

As a result of the tilt, the d spacing decreases and the angle 2θ increases, as seen 

in the figures. In this case the d spacing acts as a strain gauge. Because of the fact that 



 14

the interplanar spacing is so small, both micro and macro stresses will effect it. The 

XRD measures sum of all these stresses. 

2.1. X-ray Source 

In early 1895, W. C. Roentgen (1845-1923) discovered that if the electrons are 

accelerated by a high voltage in a vacuum tube and allowed to strike a glass or metal 

surface, fluorescent minerals some distance away would glow, and film would become 

exposed. He attributed these effects to a new type of radiation which are different from 

cathode rays. They were given the name X-rays which means an unknown quantity. X-

rays are produced similar to Roentgen’s today [7].  

X-rays are produced in a standard way: by accelerating electrons with a high 

voltage and allowing them to collide with a metal target. Electrons are produced by 

heating a tungsten filament cathode in a vacuum. The cathode is as a high negative 

potential, and the electrons are accelerated toward the anode, which is at ground 

potential. Then the electrons hit the anode with a very high velocity. The loss of energy 

as a result of the impact is manifested as x-rays.  

2.2. Absorption of X-rays 

X-rays are attenuated when they pass through matter, thus the transmitted beam is 

weaker than the incident beam. Many different processes cause the decrease in the 

incident beam. Scattering (coherent & incoherent), heat production or excitations of 

photoelectrons, etc. are some of the contributors. The total loss in the intensity is termed 

absorption. The attenuation related to thickness of an infinitesimal slab is given by the 

relation 
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dI dz
I

µ= −                                      (2.1) 

 

Figure 2.2. Schematic showing the basic components of a modern x-ray tube. Beryllium 
window is highly transparent to x-rays. [8-9] 
 
    

where I is the intensity of the transmitted beam, µ is the linear absorption coefficient. It 

is proportional to density and is usually listed as ( µ
ρ ). This ratio is known as mass 

absorption coefficient. It is a material property and independent of the material phase. 

Mass absorption coefficients of some materials are given in Table 2.1.  Equation 2.1 can 

be integrated (for a homogenous finite slab thickness of z) to give 

( )
0

z
zI I e µ ρ ρ−=              (2.2) 
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where 0I  is the intensity of the incident beam [6, 10]. 

 
Table 2.1. Mass absorption coefficients of and densities of some metals for commonly 
used radiations [6]. 

 

 

2.3. Scattering of X-rays 

When a beam of x-rays is incident on the specimen, the photons collide with the 

electrons and scatter in different directions. There are two types of collisions. First type 

is elastic and the second one is inelastic. The former is the case when the x-rays collide 

with the electrons that are tightly bound to nucleus (usually the inner orbital electrons). 

There is no momentum transfer between the photon and electron which means scattered 

photon has the same energy and wavelength after the collision. This type of scattering is 

called coherent scattering (Figure 2.3). On the other hand, for the inelastic collision there 

is a momentum transfer from photon to electron. Due to this momentum transfer, photon 

looses energy and has longer wavelength. In the former there is a relation between 

 

Metal 

Density 

(gm/cm3) 

Mo Kα 

(λ=0.711 Ǻ) 

Cu Kα 

(λ=1.542 Ǻ) 

Co Kα 

(λ=1.790 Ǻ) 

Cr Kα 

(λ=2.290 Ǻ)  

Aluminum 2.70 5.30 48.7 73.4 149 

Iron 7.87 38.3 324 59.5 115 

Nickel 8.90 47.7 49.3 75.1 145 

Copper 8.96 49.7 52.7 79.8 154 

Titanium 4.54 23.7 204 304 603 
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phases of incident and scattered x-rays, whereas this is not the case for the latter. Latter 

is called Compton modified scattering or Incoherent scattering. In both cases the photons 

are scattered in all directions. 

When an unpolarized x-ray beam impinges on an electron, the total scattered 

intensity on a point P is given by the equation 

4 2

0 2 2 4

1 cos 2
2

eI I
r m c

θ⎛ ⎞+
= ⎜ ⎟

⎝ ⎠
       (2.3) 

where I0 is the intensity of the incoming beam, m is the electron mass, c is the speed of 

light, e is the electron charge, r is the length of the position vector to point P, and 2θ is 

the angle between r and the incident beam direction. The term ( 21 cos 2θ+ ) is called 

polarization factor. 

 

Figure 2.3. Coherent scattering from an electron to a point P [6]. 
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Equation 2.3 is for an electron. If there are Z electrons (referring to atomic number Z), 

there will be Z beam sources at different positions. That means Z rays all with λ will 

arrive at point P. It is also important to note that the total scattering intensity is the some 

of relative phases of all individual rays. For instance if all the beams are in phase the 

total intensity will be 2 ( )eZ I , where eI  is given by equation 2.3. For any other direction, 

the beams from every single electron will be out of phase by different amounts and a 

certain amount of destructive interference take place. Hence only coherence scattering 

can take part in this process.  

The total coherent scattering factor from an atom to a point P is called atomic 

scattering factor (f) is defined as  

amplitude of wavescattered by an atom
amplitude of wave scattered by an electron

f =       (2.4) 

f is equal to Z at 2θ equal to 0, and decreases as 2θ increases. Tabulated values of 

atomic scattering factors for elements can be obtained from references [12-13]. 

2.4. Bragg’s Law 

In real materials there are a great many atoms. When atoms spaced at regular intervals 

are irradiated by X-ray beams, the scattered radiation undergoes interference. In certain 

directions constructive; in other directions destructive interference occurs depending on 

the spacing between planes, and the wavelength of the incident radiation.  The law that 

governs constructive interference (diffraction) is known as Bragg’s law. When x-rays 

strikes a crystal, the beam is reflected not only from the surface atoms but also from the 

atoms underneath the top surface to some considerable depth (Figure 2.4) [6-14].
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Figure 2.4. Diffraction of x-rays by a crystal and Bragg’s law [14]. 

 

Figure 2.4 shows reflection of an x-ray beam from two parallel lattice planes. In 

real there would be too many other planes. In the figure, the distance between two 

parallel planes is represented by “d” (interplanar spacing). Lines Ai and Ar are drawn 

perpendicular to incident and reflected beams respectively. The line oAi is a wave front. 

Points o and m must be in phase because they lie on this line. The same condition is 

valid for points o and m. This condition can be satisfied when the distance mpn equals a 

multiple of a complete wavelength. That is to say it must equal nλ where n is an integer 

and λ is wavelength of x-rays.  

From the figure, the distances mp and np equal sind θ . The distance mpn 

is 2 sind θ . When this quantity equated to nλ we have: 

nλ= 2 sind θ                      (2.5) 

where n= 1, 2, 3…, λ is wavelength, d is interplanar spacing, θ  is angle of reflection.  
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This equation is known as Bragg’s law. 

When the relation is satisfied, the reflected rays a1 and a2 will be in phase which 

results in constructive interference. 

The three-dimensional symmetry of the unit cell was not taken account into 

consideration in the derivation of Bragg’s law. Due to the particular positions of the 

atoms in the unit cell Bragg’s law is necessary but not sufficient condition for 

diffraction. The total diffraction intensity from a unit cell can be determined by summing 

up the waves from each atom. If the scattering amplitude from the ith atom, with 

fractional dimensionless coordinates ui, vi, wi, is fi, the relative intensity scattered by the 

unit cell for a given reflection hkl is proportional to  

1

2N

hkl
i

i i i
i

i hu kv lw
F f e

π ⎛ ⎞
⎜ ⎟
⎝ ⎠

=

+ +
= ∑         (2.6) 

The term hklF is called structure factor and describes the effect of the crystal structure on 

the intensity of the diffracted beam. Using equation 2.6 structure factors of some simple 

Bravais lattice types are shown in Table 2.2. 

Table 2.2. Structure factors and reflection conditions [6]. 
Bravais lattice Structure factor Reflections 

present 
Reflections 
absent 

Simple F=f all None 

Body-centered i(h+k+l)F=f(1+e )π  (h+k+l) even (h+k+l) odd 

Face-centered i(h+k) i(h+l) i(l+k)F=f(1+e +e +e )π π π h,k,l unmixed h,k,l mixed 

 

As a result the conditions for diffraction can be summarized as follows 
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- Bragg’s law is satisfied for one or more sets of crystallographic plane (hkl). 

- The structure factor F for these hkl reflections are non-zero for the unit cell. 

By using a monochromatic x-ray beam of known wavelength and measuring the 

diffraction angle 2θ, it is possible to determine interplanar spacing dhkl.  This technique 

is the basis of structure analysis and of residual stress measurement. 

Residual stress/strain analysis together with the other structure analysis methods is based 

on Bragg’s law, and therefore there are some implicit assumptions: 

1- The x-rays accepted as traveling waves. 

2- The path difference between the waves arriving at a point is a linear function of 

interplanar spacing d. 

3- The scattering is elastic and energy is conserved during collision. That means 

there is no phase difference between incident and diffracted beams. 

4- The scattered waves within the specimen do not rescatter. 

The above assumptions are the basis of the kinematic theory of diffraction. Now 

we can move on to the methods and the equipment necessary for residual stress 

measurements by x-ray diffraction.   

2.5. Diffractometer Geometry 

The diffractometer is the most common apparatus used for determining diffraction 

patterns. The diffractometer uses electronic counters sensitive to x-rays, rotation tools to 

rotate the sample, and a detector to measure x-ray intensities. In Figure 2.5 the basic 

geometry of an x-ray diffractometer is shown. X-rays coming from an x-ray source 

strike the specimen which stabilized by a sample holder. The sample holder can be 
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rotated around X axis perpendicular to the plane of the diffractometer. Then the 

diffracted beam is detected by a suitable detector. The detector can be rotated around X 

along the circumference of the diffractometer. The rotation of the sample holder and 

detector can be determined very accurately (±0.005 to ±0.0005º) 

 

 

 Figure 2.5. An x-ray diffractometer scheme [6]. 
 
 
 

The detector is moved along with the diffractometer circle to detect the diffracted 

beam (Figure 2.5). The sample holder is also rotated around X half of the rotation angle 

of the detector simultaneously for the sake of keeping the focus (Figure 2.6).   
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Figure 2.6. Focusing in the X-ray diffractometer [6]. 
 

  

Since both sets of rays section equal arcs on the focusing circle, the divergence in 

the incident beam will converge (focus) at the receiving slit. 

The detection surface of the diffractometer is a cylindrical segment of radius R 

(radius of the diffractometer) and height l (the length of the receiving slit). The detector 

only perceives the intersection of the diffracted beam with the surface. As a result, 

optimization of angular resolution with intensity results in a rectangular slit (generally).  

2.6. Absorption Factor 

The path of x-ray beam identical from one volume element to another in a flat sample 

may vary remarkably in a specimen with complex geometry (such as a curved one), 

leading to phenomena called absorption effect [5].  In this part the most common 

situation, absorption in a flat sample will be studied.  
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Figure 2.7. Diffraction from a flat plane and calculation of the absorption factor [6]. 
 
 

Suppose an x-ray beam of intensity I0 strikes a flat sample with an angle (Figure 

2.7). Because of the absorption the total energy reaching a layer of length l and thickness 

dx, located at depth x below the surface, is proportional to ( 0
ABaI e µ− ) where a is the 

volume fraction (of crystallites) that can diffract at this angle. The total energy diffracted 

by this layer is 0
ABablI e dxµ− , where b is the fraction of incident beam energy diffracted 

by unit volume. The intensity of the diffracted beam also decreases when it traverses the 

distance BC by a factor BCe µ− . Hence the total diffracted intensity becomes 

( )
0

AB BC
DdI albI e dxµ− +=         (2.7)      

Making necessary substitutions from the figure and integrating the equation for an 

infinitely thick specimen gives the total diffracted intensity 

0 (1 tan cot )
2D

I abI ψ θ
µ

= −         (2.8) 
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For the particular geometry, the angular dependence of the absorption factor is given by 

the term (1 tan cot )ψ θ− .  

Note that for the values of 0ψ <  the absorption factor becomes1 tan( )cotψ θ+ . 

Equation 2.8 tells that for 0ψ =  no matter what theθ  is, the value of the absorption 

factor is 1. Hence there is no absorption correction for the data obtained. 

 

 
Figure 2.8. Geometry of psi-goniometer for the residual stress measurements [6]. 

 

On the other hand, if 1 exp( 2 sin )xG xµ θ= − − which is the case during residual 

stress measurements, a correction may be necessary. The geometry shown in Figure 2.8 

is known as the psi-goniometer. The geometry shows that the tilts are around an axis 

parallel to the plane of the diffractometer. The incident and the diffracted beams traverse 
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the same distance independent of the ψ -tilts. Hence, in this case there will be no 

absorption correction. 

2.7. Penetration Depth of X-rays 

The attenuation due to absorption limits the x-ray penetration depth. The penetration 

depth depends on the absorption coefficient of the material and the beam dimensions on 

specimen surface. Because attenuation of the incident beam is proportional to the 

thickness of the material it passes through, the contribution to the diffracted beam from 

layers deeper down in the material within the irradiated volume is less. Also because the 

diffracted beam has to traverse more material before leaving the surface, there will be 

more attenuation.   

The intensity of an x-ray beam diffracted from an infinitesimally thin layer 

located a distance x below the surface is given by (making necessary geometrical 

substitutions in equation 2.7) 

0 1 1exp
sin( ) sin( ) sin( )D

I abdI x dxµ
θ ψ θ ψ θ ψ

⎧ ⎫⎡ ⎤
= − +⎨ ⎬⎢ ⎥+ + −⎣ ⎦⎩ ⎭

    (2.9) 

Then the total intensity diffracted by the volume of the material between this layer and 

the surface is given by 

0

0

1 11 exp
sin( ) sin( )

x

D
x

x

D
x

dI
G x

dI
µ

θ ψ θ ψ
=
∞

=

⎧ ⎫⎡ ⎤
= = − − +⎨ ⎬⎢ ⎥+ −⎣ ⎦⎩ ⎭

∫

∫
    (2.10) 

for 0ψ =  becomes  

1 exp( 2 sin )xG xµ θ= − −                                                (2.11) 
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Equation 2.11 shows us that the effective depth of penetration can be defined as 

the thickness that contributes 99% of the diffracted intensity. For instance effective 

depth of penetration for steel is approximately 5.4 microns [6,15]. 

It can be said from the equations that the effective depth of penetration is also a 

function of the psi, which decreases with increasing psi. This effect is taken account into 

consideration for residual stress calculations. 
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III. CALCULATION OF STRESSES BY X-RAY DIFFRACTION 

 

In this section the concepts related to x-ray diffraction which was studied in the previous 

sections will be combined in the derivation of the equations of the residual stress. It is 

important to note that stress is not measured directly by the x-ray diffraction; it is always 

strain that is measured. Then the stress is calculated using appropriate equations of 

elasticity.  

3.1. Brief History of the Method  

This method was first proposed by Lester and Aborn in 1925. In 1930, Sachs and Weerts 

showed that the accuracy obtained was similar to other methods. The method was 

improved in 1934 by Barret and Gensamer which was used to measure sum of 

eigenstresses. In 1935, Glocker showed that it was possible to evaluate each of the 

eigenstresses [5]. Since then, because of both technological improvements and better 

understanding of the deformation of the crystal lattice, especially influence of anisotropy 

and crystallographic texture, a remarkable progress made on the method. Today, it is one 

of the most common techniques that is used to measure residual stresses. 

3.2. Fundamental Equations  

In Figure 3.1 the orthogonal coordinate systems used to derive equations are shown. The 

axes Si are for the surface of the sample with 1S and 2S on the surface. Li define the 

laboratory system with 3L is in the direction of the normal to the planes (hkl) whose 

interplanar spacing d will be measured. 2L  makes an angle φ  with 2S  and is in the plane 

which is defined by 1S and 2S . When the interplanar lattice spacing d is obtained from the 
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diffraction peak for a given reflection hkl, the strain component along 3L  can be 

obtained using the formula 

 0
33

0

( )
d d

d
φψ

φψε
−

′ =          (3.1) 

where 0d  is the unstressed interplanar spacing.  

(Primed components refer to laboratory system Li  whereas unprimed components refer 

to the sample coordinate system,Si ) 

The strain in equation 3.1 can be transformed to the sample coordinate system 

using tensor transformation [16] 

( )33 3 3k l kla a
φψ

ε ε′ =          (3.2)  

where 3ka , 3la are the direction cosines between 3L , Sk and 3L , Sl . 

 

 
Figure 3.1. Sample and laboratory coordinate systems [6].  
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 Then the direction cosine matrix will be 

cos cos sin cos sin
sin cos 0

cos sin sin sin cos
ika

φ ψ φ ψ ψ
φ φ

φ ψ φ ψ ψ

−
= −       (3.3) 

substitute 3ka , 3la in equation 3.2 to get 

0
33

0

( )
d d

d
φψ

φψε
−

′ = = 11ε 2 2cos sinφ ψ + 2
12 sin 2 sinε φ ψ + 2 2

22 sin sinε φ ψ  

          + 2
33 cosε ψ + 13 cos sin 2ε φ ψ + 23 sin sin 2ε φ ψ    (3.4) 

Equation 3.4 is the fundamental equation that is used in x-ray diffraction strain 

measurement. 

As a result of x-ray diffraction, there are three basic behaviors of dφψ vs. 2sin ψ  

for a d-spacing at all psi tilts. Now we will study the three patterns as shown in Figures 

3.2a, b and c. 

       

  

Figure 3.2a. Linear dφψ vs. 2sin ψ  behavior.       Figure 3.2b. ψ -splitting behavior. 
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The graphs in Figures 3.2a and b shows regular dφψ vs. 2sin ψ  pattern. For both 

cases equation 3.4 can be used to determine the strains from the given data. Equation 3.4 

tells that if 13ε and 23ε  are both zero, then there is a linear behavior of dφψ vs. 2sin ψ  

which is shown in Figure 3.2a. On the other hand, if either or both of these components 

are non-zero, values of d measured at positive and negative ψ  tilts will be different 

because of the term sin 2ψ . As a result, sin 2ψ  will cause a split (Figure 3.2b) in the 

associated dφψ vs. 2sin ψ  behavior, which is named “ψ -splitting” [6].  

The third type of   dφψ vs. 2sin ψ  behavior exhibits oscillatory pattern (Figure 

3.2c). Further modification should be done on the equation 3.4. That will be discussed 

later on. 

 

 
Figure 3.2c. Oscillatory behavior of dφψ vs. 2sin ψ  [6]. This type of data can not be 
solved with the equation 3.4. 
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3.3. Analysis of φψd vs. 2sin ψ  Behavior 

3.3.1. Regular Data 

3.3.1.1. ψ -Splitting 

There are six unknown strains ( 11ε , 12ε , 22ε , 33ε , 13ε , 23ε ) in the equation 3.4. There should 

be six independent equations to determine these six strains. That is, the equation can be 

solved by measuring dφψ in six independent directions.  In practice, for the sake of 

improving accuracy more points are measured. For instance, suppose that the data 

exhibits “ψ -splitting”, then the solution is given as follows; 

1
0

1 1
2 2

d d
a

d
φψ φψ

φψ φψ
ε ε

+ −

+ −

+⎧ ⎫⎪ ⎪⎡ ⎤= + = −⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭  

    { }2 2 2
11 12 22 33 33cos sin 2 sin sinε φ ε φ ε φ ε ψ ε= + + − +    (3.5a) 

 

2
0

1
2 2

d d
a

d
φψ φψ

φψ φψ
ε ε

+ −

+ −

+⎧ ⎫⎪ ⎪⎡ ⎤= − = ⎨ ⎬⎣ ⎦ ⎪ ⎪⎩ ⎭
 

    { }11 23cos sin sin 2ε φ ε φ ψ= +       (3.5b) 

where 1a and 2a  are defined parameters, ( 1)ψ ψ− += −  andsin 2 sin 2 2sin 2ψ ψ ψ+ −− = . 

Equation 3.5a shows a linear relation between 1a  and 2sin ψ . From the equation, slope 

and the intercept ( 0ψ = ) point can be derived, 

1

2 2
11 12 22 33cos sin 2 sinam ε φ ε φ ε φ ε= + + −      (3.6a) 

1 33I =a ε           (3.6b) 
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Similar to relationship between 1a  and 2sin ψ , there is a linear relation between 2a  

andsin 2ψ . In this case the intercept ( 0ψ = ) is at point zero obviously, the slope is, 

2 13 23cos sinam ε φ ε φ= +        (3.7) 

As a result, if dφψ  data is obtained over a range ψ±  at three φ  tilts (0º, 45º, 90º), and 1a  

vs. 2sin ψ  and 2a  vs. sin 2ψ  are plotted for all ψ , the quantities 11 33ε ε− , 22 33ε ε−  and 

( )11 12 22 33
1 2 22 ε ε ε ε+ + −  can be obtained from equation 3.7 for the corresponding tilts 

of φ . From the equation 3.6a it can be derived that the intercept of 1a  vs. 2sin ψ  gives 

33ε  for all the values ofψ . Similarly, using the slope of 2a  vs. sin 2ψ , the quantities 13ε , 

23ε  can be obtained in such a way that for φ =0º, equation 3.7 yields 23ε , and for φ =90º 

it yields 13ε .  

3.3.1.2. Linear φψd  vs. 2sin ψ  Behavior (No ψ -Splitting) 

Procedure for dφψ  vs. 2sin ψ  plot (Figure 3.2a) is also similar to the procedure of ψ -

splitting except less data points are required. The strain tensor in the Si coordinate 

system is given by 

ijε =
11 12

22

33

0
0 0
0 0

ε ε
ε

ε
 

and dφψ vs. 2sin ψ  data is required at positive (or negative) ψ  values only. For this case 

equation 3.4 takes the form 
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0

0

d d
d

φψ −
= { 11ε 2cos φ + 12 sin 2ε φ + 2

22 33sinε φ ε− } 2
33sin ψ ε+    (3.8) 

the terms in the curl bracket of equation 3.8 is the same as right hand side of equation 

3.7. Similar procedure can be followed to find values of the strain terms in the equation 

3.8.  

Stress Calculation 

Calculation of the stresses using the strain values obtained from diffraction data is rather 

straight forward. The stress values of the sample coordinate system (Si ) can be 

calculated using general form of Hooke’s law [16,17] 

ij ijkl klCσ ε=          (3.9) 

where ijklC is fourth-order stiffness tensor and in sample coordinate system. The stresses 

in any other coordinate system can be determined using tensor transformation rule 

[16,17]: 

 mn mi nj ija aσ σ′ =         (3.10) 

where mia and nja are the direction cosines. 

The procedure is the basis for stress calculation of various types of diffraction 

techniques. 

These equations will take different forms depending on the material properties of 

the sample and the stress state of resultant body shape. 

The general case for an anisotropic material under stress 
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11 12 13

22 23

33

0
0 0

ij

σ σ σ
σ σ σ

σ
=         (3.11) 

Using the inverse of equation 3.9, the strains of the sample coordinate system can be 

expressed in terms of stresses:  

ij ijkl klSε σ=          (3.12) 

where ijklS is the elastic compliance tensor[16]. 

When equation 3.12 substituted into equation 3.4, the relation between the 

stresses and the measured data is obtained. It is important to note that the elastic 

compliances are also referred to the sample coordinate system, therefore it must be 

obtained from the elastic constants referred to the unit cell axes (Figure 3.3), by again 

tensor transformation rule that was used previously. 
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Figure 3.3. Crystal axes and their orientation with respect to laboratory and sample axes 
[6].  
 
 

For instance, 

11 1 1 0m n k lp mnop kla a a a Sε σ=        (3.13) 

where 0ka and lpa are the direction cosines and mnopS is the elastic compliance tensor 

defined in the crystal axes.  

The next step is to link measured d values to the stresses in the sample coordinate 

system. 

Equation 3.13 can be substituted into equation 3.4 to get the general equation. 

For an isotropic material, 

1
ij ij ij kkE E

ν νε σ δ σ+
= −        (3.14) 

is the associated strain relation [16]. If the equation 3.8 is substituted into equation 3.4: 
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{ }

{ }

0 2 2 2
11 12 22 33

0

33

13 23

1 cos sin 2 sin sin

1 ( )

1 cos sin sin 2

d d
d E

tr
E E

E

φψ ν σ φ σ φ σ φ σ ψ

ν νσ σ

ν σ φ σ φ ψ

− +
= + + −

+
+ −

+
+ +

  (3.15) 

From the equation 3.15, it is clear that the stress tensor will expected to be in one of the 

following forms: 

11

22

0 0
0 0
0 0 0

σ
σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,
11 12

22

0
0 0
0 0 0

σ σ
σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

,
11

22

33

0 0
0 0
0 0

σ
σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

, 
11 12

22

33

0
0 0
0 0

σ σ
σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.16a, b, c, d) 

 

3.4. Biaxial Stress Analysis 

3.4.1. The “ 2sin ψ ” Method 

If the sample has a biaxial stress state, then the equation 3.15 takes the form 

( )0 2
11 22

0

1 sin
d d

d E E
φψ

φ
ν νσ ψ σ σ

− +
= − +      (3.17) 

where φσ  is the stress component along the Sφ direction (Figure 3.3). It is given by 

2 2
11 22cos sinφσ σ φ σ φ= +        (3.18a) 

2 2
11 12 22cos sin 2 sinφσ σ φ σ φ σ φ= + +      (3.18b) 

for the stress tensors given in equations (3.16a,b) respectively. 
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Equation 3.17 is the common x-ray residual stress equation. It predicts a linear behavior 

of dφψ vs. 2sin ψ . In this case, experimental data is used to obtain the least-squares line. 

Then, the stress in φσ  direction is the slope of the least-squares line supposing material 

constants ,E ν  and unstressed d-spacing ( 0d ) are known.  This method is known as 

2sin ψ , because it utilizes multiple ψ  values. There are various ways to evaluate 0d  

[5,6]. The lattice spacing measured at 0ψ =  is substituted for 0d  in this experiment. 

This substitution is based on the fact that, most of the materials, elastic strains do not 

introduce more than 0.1% difference between the true 0d  and d at any ψ . The error of 

such usage is less than 0.1%, because 0d is a multiplier to the slope. Therefore this much 

error is omitted compared to other error sources that will be discussed later. 

3.4.2. The Two-Tilt Method        

This method is usually used for rapid testing. The method assumes a linear variation of d 

with 2sin ψ . Hence only two tilts will be enough to define the line (ψ ,ψ =0).  

For this method a simplified version of the equation 3.17 can be written as: 

( )2
11 22

1 sind
d E Eφ

ν νσ ψ σ σ∆ +
= − +       (3.19) 

The term on left side of equation 3.19 can be written in terms of the shift in 2θ  of the 

diffracted intensity between these to tilts (ψ ,ψ =0).  

If Bragg’s law is differentiated: 
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( )cot 2
2

d
d

θ θ∆∆
= −         (3.20) 

From equations 3.19 & 3.20, 

2

cot 2
2(1 )sin

E
φ

θσ θ
ν ψ

⎛ ⎞
= ∆⎜ ⎟+⎝ ⎠

       (3.21) 

where 2θ∆ is the peak-shift. The term in the parenthesis at the right side of the equation 

3.21 is the stress constant. 

2

cot
2(1 )sin

EK θ
ν ψ

=
+

        (3.22) 

This method is practical for small values of 2θ∆ . Equation 3.22 is not valid for large 

values of 2θ∆ . For the large values of 2θ∆ , equation 3.19 will be still valid [5,6].  

3.5. Triaxial Stress Analysis 

The two methods of biaxial stress analysis which was discussed in the previous section 

assume that the stress components in the direction of the surface normal are negligible. 

However, that assumption may not be true for some cases. ψ − splitting shows the 

existence of those strain components that were neglected in biaxial stress analysis.  

In fact, existence of the strain components in the direction of normal to the 

surface of the sample indicates the presence of the stress components in this direction. 

Analysis of stresses for ψ − split case of the d vs. 2sin ψ  behavior is similar to 

that of strains. In this case the terms ( 1, 2a a ) will be expressed in terms of stresses instead 

of strains: 
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{ }

1
0

2 2 2
11 12 22 33

33 11 22 33

1
2

1 cos sin 2 sin sin

1 ( )

d d
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    (3.24) 

Hence, the stress components in equation 3.23 can be obtained from the slope and 

intercept of 1a  vs. 2sin ψ  for φ = 0º, 45º, and 90 º. On the other hand the stress 

components of the equation 3.24 will be obtained from the 2a  vs. sin 2ψ  for the same 

values of φ  except 45º. Once the stress tensor in the sample coordinate system is 

obtained, it can be transformed to the any coordinate system via tensor transformation 

rule that was discussed earlier. 

If the stress components of the equation 3.24 are zero, then it suggests that d vs. 

2sin ψ  plot is linear. Then equation 3.15 reduces to 

{ }0 2 2 2
33 11 12 22 33

0

33

1( ) cos sin 2 sin sin

1 ( )

d d
d E

tr
E E

φψ
φψ

νε σ φ σ φ σ φ σ ψ

ν νσ σ

− +′ = = + + −

+
+ −

  (3.25) 

If the equations 3.17 and 3.25 are compared, the stress φσ  determined by the method of 

biaxial stress analysis will contain an error of magnitude 33σ . For the sake of eliminating 

this error, the following methodology can be utilized: 
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If the data obtained for the two tilts, Aφ φ= , 90Aφ φ= + o , then it is possible to find the 

slopes of the 33( )φψε ′ vs. 2sin ψ  graphs, 
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1 ( )

A A A A
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E

E
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      (3.26b) 

The sum of these two slopes is 

11 22 3390

1 ( 2 )A A
m m

Eφ φ

ν σ σ σ
+

+
+ = + −o       (3.27) 

The intercept is 

33
1 ( )I tr

E E
ν νσ σ+⎛ ⎞= −⎜ ⎟

⎝ ⎠
        (3.28) 

It is important to note that the intercept of 33( )φψε ′ vs. 2sin ψ  does not depend on the 

angle φ  [5,6]. 

3.6. Determination of Unstressed d-spacing 

As it was mentioned in the previous sections, there are various ways to determine the 

unstressed lattice spacing 0d . Based on the biaxial assumption, the lattice spacing 

measured at 0ψ =  is substituted for 0d  due to the fact that this assumption introduces a 

negligible amount of error. Another method uses the data obtained during stress 
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measurement itself. If the stress state is biaxial, this method can be used to determine 

exact 0d  from the d  vs. 2sin ψ  graph. For 0φ = , equation 3.17 takes the form 

( )0 2
11 11 22

0

1 sin
d d

d E E
φψ ν νσ ψ σ σ

− +
= − +       (3.29) 

Suppose, if for ψ ψ ′= , 0 0d dψ ′ = , then the equation 3.22 will take the form 

 2 22 2

11 1

sin 1 1
1 1

m
m

σν νψ
ν σ ν

⎛ ⎞ ⎛ ⎞
′ = + = +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

      (3.30) 

where 1m  and 2m  are the slopes of the plot for 0 ,90φ = o o  respectively. Once the 

equation 3.30 is solved for 2sin ψ ′ , then 0d  can be determined from d  vs. 2sin ψ  for 

0φ =  [6]. 

The triaxial case has the procedure which is similar to that of the biaxial case. 

For 0φ = , and if,ψ ψ ′= , 0 0d dψ ′ =  then equation 3.25 will take the form   

( )
( )

332

11 33

1 ( )
sin

1 ( )
trν σ ν σ

ψ
ν σ σ

− + +
′ =

+ −
       (3.31) 

Equation 3.31 can further be simplified by 

( ) ( )
2 22 33 2

11 33 1

sin 1 1
1 1

m
m

σ σν νψ
ν σ σ ν

⎧ ⎫ ⎛ ⎞−′ + = +⎨ ⎬ ⎜ ⎟+ − + ⎝ ⎠⎩ ⎭
�      (3.32) 

where terms 1m  and 2m  can be obtained using the procedure of biaxial method 

explained earlier. The difference of this case comes from the assumption made  to obtain 

the simplified equation. Due to the fact that, it may introduce large amount of errors, this 

method should not be used for the higher values of 33σ . 

= 
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IV. EXPERIMENTAL TECHNIQUES 

Figure 4.1. Bruker-AXS GADDS 2D powder and single-crystal X-Ray diffractometer, 
Department of Chemistry, Texas A&M University. 
 

For measurement of diffraction events from regular and irregularly shaped samples. The 

instrument employs;  

• the H-star multi-wire two-dimensional area detector (1024 x 1024 pixel size)   

• a Cu X-ray tube.  

A small monochromatic X-ray beam is used to probe micro and irregular areas. 

Common applications of the diffractometer (Figure 4.1) can be summarized as follows; 

• Powder and polymer diffraction  

• Single-crystal structure determination  

• Pole figure measurements  

• Residual stress measurements (normal and shear)  

• Determination of crystallinity of polycrystalline materials  

• Preferred orientation of samples [18].  



 44

4.1. Material Under Investigation 

The material investigated in this paper is SS316. 

Material properties of SS316 [19]. 

E= 193 Gpa    ν= 0.29 

Table 4.1 and Table 4.2 give chemical composition and physical properties of SS316. 

Table 4.1. Chemical composition of SS316 [4]. 
Chemistry Data  

Carbon  0.08 max  

Chromium  16 - 18  

Iron  Balance  

Manganese  2 max  

Molybdenum  2 - 3  

Nickel  10 - 14  

Phosphorus  0.045 max  

Silicon  1 max  

Sulphur  0.03 max  

 
 
 
Table 4.2. Physical properties of SS316 [4]. 
Physical Data  

Density   0.288 (lb / cu. In.)   

Specific Gravity  7.95  

Specific Heat [32-212 °F] 0.12 Btu/lb/Deg °F 

Electrical Resistivity ( at 68 

Deg °F)  

445 microhm-cm 

Melting Point 2550 Deg °F 

Modulus of Elasticity  193 GPa 
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4.2. Sample Preparation 

For the sake of being consistent, each sample was prepared in the same way. This way 

amount of error due to sample preparation will be reduced to a minimum amount. It is 

also important to note that, it is unavoidable to introduce new stresses to the samples 

during sample preparation. However, amount that is introduced during the preparation 

reduced to minimum by taking necessary precautions. For instance, first a diamond saw 

used to obtain small samples, and then these small samples were cut using a precision 

cut to get smaller samples. Hence, instead of obtaining samples at one step, several steps 

were taken to reduce the amount of error due to preparation step. Also, each sample was 

cut along the wavy lines if it was possible.  

Calculation of residual stress of some samples together with the graphs of the 

experimental data will be given as examples in the next section, and than residual stress 

values of the rest of the samples will be given as tabulated. 
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V. RESULTS AND DISCUSSIONS 

In this section, typical x-ray diffraction data will be shown. Then the way this data is 

used in calculations will be explained. Afterwards, residual stress calculation of some 

samples will be given. However, the calculations of each sample will not be included 

here. Residual stress values for the samples will be tabulated. Table 5.1 gives the 

abbreviations of the samples used in the experiment. 

 
 
Table 5.1. The abbreviations of the samples. 
Abbreviation Process 

B1 2_150_4CPI STAMPED 

B2 2_150_8CPI STAMPED 

B3 6_150_4CPI STAMPED 

B4 6_150_8CPI STAMPED 

B5 8_300_8CPI ROLLED 

B6 8_300_8CPI SEGMENT 

B7 UNPROCESSED 

B8 8_300_4CPI STAMPED 
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5.1. Residual Stress Calculations  

Considering the thickness of the material, biaxial stress analysis was carried out.  

y = -0.0008x + 2.0838

2.0836

2.08362

2.08364

2.08366

2.08368

2.0837

2.08372

2.08374

2.08376

2.08378

2.0838

2.08382

0 0.05 0.1 0.15 0.2 0.25sin²ψ

d,
 A

º

 
Figure 5.1. A linear graph of d vs. 2sin ψ  fitted to diffraction data with a negative slope. 
 
 
Figure 5.1 shows a least square line fitted to data obtained from the x-ray diffraction. 

Figure 5.1 exhibits a regular d vs. 2sin ψ  behavior, which suggests the use of the 

equation 3.17. 

( )0 2
11 22

0

1 sin
d d

d E E
φψ

φ
ν νσ ψ σ σ

− +
= − +  

This equation can be modified as 
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( )2
0 0 11 22 0

1 sind d d d
E Eφψ φ
ν νσ ψ σ σ+

= − + +      (5.1) 

multiplier of the 2sin ψ  term is the slope of the d vs. 2sin ψ  graph.  Equation 5.1 can be 

rearranged for the slope m, 

0
1m d

E φ
ν σ+

=          (5.2) 

Equation 5.2 can be further modified to give the stress, 

0 1
m E
dφσ

ν
⎛ ⎞= ⎜ ⎟+⎝ ⎠

         (5.3) 

The equation 5.3 is a very simple equation, 

9
30

0.0008 193 10
2.18516 1 0.29

Pa
φ

σ
=

− ⎛ ⎞= ⎜ ⎟+⎝ ⎠
o  

30
54.774 MPa

φ
σ

=
= −o  

The residual stress calculation for Figure 5.2 is similar to that of Figure 5.1. It follows, 

using equation 5.3 
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y = 0.0031x + 2.0859

2.0858
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 Figure 5.2. A linear graph of d vs. 2sin ψ  fitted to diffraction data with a positive slope. 
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Table 5.2. X-ray diffraction data for B6, Ψ=30 φ=90.    
  
Legend Angle 
2-Theta ° 
 

 d value 
Angstrom 
 

Intensity % h     k        l 

2Th = 43.449 °  d = 2.08102 I = 53.6 % 2.08102 11.2 53.6 

2Th = 50.735 °  d = 1.79793  I = 77.7 % 1.79793 16.3 77.7 

2Th = 72.569 °  d = 1.30160 I = 22.7 % 1.30160 4.75 22.7 

2Th = 74.573 °  d = 1.27150  I = 71.6 % 1.27150 15.0 71.6 

2Th = 76.375 °  d = 1.24593  I = 35.8 % 1.24593 7.49 35.8 

2Th = 77.659 °  d = 1.22851 I = 23.8 % 1.22851 4.97 23.8 

2Th = 86.461 °  d = 1.12460 I = 30.7 % 1.12460 6.42 30.7 

2Th = 90.652 °  d = 1.08320 I = 100.0 % 1.08320 20.9 100.0 

2Th = 95.697 °  d = 1.03899  I = 68.3 % 1.03899 14.3 68.3 

2Th = 67.108 °  d = 1.39360 I = 22.3 % 1.39360 4.66 22.3 

2Th = 71.649 °  d = 1.31603  I = 23.1 % 1.31603 4.83 23.1 

2Th = 69.691 °  d = 1.34814 I = 21.3 % 1.34814 4.46 21.3 
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Table 5.2 shows part of typical x-ray diffraction results for B6. The data in red 

indicates the angle and the d-spacing which is used in calculations, because the relative 

intensity has the maximum intensity at this value. Next, some portion of sample B2 data 

for the angles 30ψ = o , 90φ = o together with the associated graph is given in Table 5.3 

and Figure 5.3 respectively.   

 

 
Figure 5.3. Two peak values of scattering angle θ are given together with the 
corresponding d-spacing values for B4. 
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Table 5.3. Part of X-ray diffraction data for B2. 
Angle d Intensity h k l 

2Th = 43.441 °, d = 2.08138, I = 100.0 % 2.08138 77.5 100.0 

2Th = 50.650 °, d = 1.80077, I = 36.9 % 1.80077 28.6 36.9 

2Th = 68.325 °, d = 1.37172, I = 3.9 % 1.37172 3.06 3.9 

2Th = 73.595 °, d = 1.28597, I = 9.6 % 1.28597 7.46 9.6 

2Th = 82.308 °, d = 1.17048, I = 5.3 % 1.17048 4.14 5.3 

2Th = 88.911 °, d = 1.09984, I = 7.3 % 1.09984 5.62 7.3 

 

Next, the graphs of B4 at different φ o  and ψ o  values will be shown (Figures 

5.4a, b, c). The values in red show the maximum relative intensity and the corresponding 

values of the diffraction angle along with the d-spacing value. h, k, l values may be used 

to determine the set of parallel planes that cause the diffraction.   
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Figure 5.4a. Peak values for 15ψ = o  and 0φ = o of B4. 
 
 
 

 
Figure 5.4b. Peak values for 15ψ = o  and 45φ = o  of B4. 
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 Figure 5.4c. Peak values at 30ψ = o  and 0φ = o  of B4. 

 

Table 5.4. Comparison of two peak data at three different angles of B4. 

Sample: B4 2θº d-spacing h k L 

15 , 0ψ φ= =o o  43.392 ° 2.08363 2.08363 48.1 100.0 

15 , 45ψ φ= =o o 43.468 ° 2.08016 2.08016  62.7 100.0 

30 , 0ψ φ= =o o  43.399 ° 2.08333 2.08333  63.4 100.0 

15 , 0ψ φ= =o o  50.693 ° 1.79933 1.79933 21.4 44.4 

15 , 45ψ φ= =o o 50.775 ° 1.79662 1.79662 25.5 40.7 

30 , 0ψ φ= =o o  50.629 ° 1.80147 1.80147  23.3 36.8 

 

Table 5.4 compares the two peak values of B4 at different angles. 
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 Figure 5.5a. Peaks of all 8 samples are shown for Ψ=150, φ=450 
 
 

Figure 5.5b. Peaks for all 8 samples are shown for Ψ=150, φ=000 
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Figures 5.5a, b show the peaks of the samples.  Residual stress values of all 8 samples 

are given below in Table 5.5.  

 

Table 5.5. Residual stress values of the samples. 

Residual Stress Values (
30φ

σ
= o ) in MPa for 30φ = o  

B1 B2 B3 B4 B5 B6 B7 B8 

-54.274 95.327 170.872 200.227 190.872 -160.254 ___ 212.249 

 

For the 7 given samples, the assumption of biaxial method made the calculations 

straightforward. Using the associated equations for the method the residual stress values 

of the samples were determined. For the second set of samples, however the method was 

not applicable due to existence of texture in the grains. Figure 5.6 shows the oscillatory 

behavior of the curve for the data. Such behavior suggests that the material under 

investigation is textured.  
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Figure 5.6. The curve exhibits oscillatory behavior. 

 

If the material under investigation is textured, then the material values given 

cannot be used directly. For the textured materials, the x-ray elastic constants are used 

instead of E and ν. These constants can be obtained from the literature for a given 

material and reflection combination. It is also possible to obtain these values 

experimentally. In this method of experimentally determining elastic constants the 

specimen is stressed on a diffractometer with a known magnitude of load. Then using 

available equipment which is usually microprocessor controlled device that is capable of 

determining elastic constants, those values can be obtained. Uniaxial tensile loading or 



 58

four-point bending is usually employed. Table 5.6 shows the x-ray elastic constants for 

some materials for the given radiations. 

 

Table 5.6 X-ray elastic constants of some materials [6]. 

MATERIAL Radiation ( )
8

1 /

10

Eν
−

+

×
 

Hkl 

Aluminum Co 14.09 420 

ARMCO Fe Cr 2.41 211 

1045 Cr 3.50 211 

1045 Co 4.99 310 

0.73 %C Steel Cr 4.38 211 

0.39 %C Steel Cr 3.88 220 

Copper Co 10.62 400 

Nickel Cu 4.36 420 

304SS Cr 4.95 220 
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VI. CONCLUSIONS 

 

The X-ray diffraction (XRD) is one of the best developed methods available for residual 

stress determination. It is a non destructive technique. XRD technique uses the distance 

between crystallographic planes (d-spacing) as a strain gage. This method can only be 

applied to crystalline, polycrystalline and semi-crystalline materials. When the material 

is in tension, the d-spacing increases and when the material is in compression, the d-

spacing decreases. Among the samples, B1 and B6 have negative values of residual 

stresses which means the state of residual stress exist in the both samples are 

compressive. On the other hand, for the rest of the samples it is tensile since they have 

positive values of residual stresses. 

The presence of residual stresses in the material produces a shift in the x-ray 

diffraction peak angular position that is directly measured by the detector. In Figures 

5.5a, b the shift in the peak positions can be observed for different samples. It is 

important to obtain a diffraction peak of suitable intensity. The peaks must be free of 

interference from neighboring peaks. So that the diffraction angle 2-theta can be 

measured experimentally and the d-spacing is then calculated using Bragg's law.  

The most common problems in using X-ray diffraction technique arise due to the 

location of diffraction peak. For peak fitting purposes, the high precision is necessary 

which in turn requires accurate sample alignment and precise methods of diffraction 

peak location.  
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One of the major disadvantages with XRD is the limitation imposed on the test 

piece size and geometry. The geometry has to be such that an X-ray can both hit the 

measurement area and still be diffracted to the detector without hitting any obstructions. 

However, due to irregular geometry of some of the samples, it was not possible to get 

clear diffraction data. 

The method is valid for isotropic and anisotropic materials. However it is 

necessary to have homogenous strain distribution within the material. Experimental data 

for the first set of samples indicated that dφψ vs. 2sin ψ  behavior is linear. On the other 

hand, that was not the case for the second set of samples. The oscillatory behavior of the 

samples indicates the presence of inhomogeneous stress distribution. Analysis of this 

data with regular procedure would cause large errors. Analysis of the second set of 

samples may be part of future work.   

6.1. Sources of Errors 

In addition to the factors mentioned in the previous section, a number of factors can 

contribute to the introduction of error in the measurements. These parameters can be 

summarized as the following: 

• Collection time. 

• Number of Psi angles for sin2ψ technique. 

• Peak location method. 

• Surface curvature. 

• Aperture size. 

• Oscillation. 
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6.2. Future Work 

• In addition to the biaxial method, the triaxial method can be used. The results of 

these two techniques can be compared.  

•A better fitting program can be used to get peak values, so that the amount of 

error introduced during calculation can be reduced.  

• Number of data points can be increased to get more accurate results. 

• Surfaces of the samples can be cleaned using proper chemicals to eliminate any 

possible error due to surface. 

• Samples can be run more than once, so that repeatability of the technique can 

be shown. 

• Calculation of proportions of macro and micro stresses.  

• X-ray residual stress determination of textured samples. 
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